
Approximation Schemas for the Min Sum k-Clustering
Problem

by

Ismail Naderi Beni

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Ismail Naderi Beni, 2023



Abstract

In this thesis, we present Approximation Schemes for the Min Sum k Clustering

problem on a number of classes of graph metrics. In Min Sum k Clustering

problem introduced by Sahni and Gonzalez [22] in 1976, given a graph G(V,E)

with metric edge costs and parameter k, we are asked to partition V (i.e. as-

sume all V must be clustered) into clusters C1, C2, · · · , Ck such that the sum

of pairwise distances of points in the same cluster is minimized. This is a

generalization of k-median clustering with avoiding unbalanced cluster sizes.

The best known algorithm for Min Sum k Clustering by Behsaz, Friggstad,

Salavatipour and Sivakumar [6] on metric spaces is an O(log n) approximation

algorithm. Even for the case of trees, the best approximation factor given by

the same authors is 2 + ✏ . Cohen-Addad, Karthik, and Lee [11] proved that

min sum k clustering is APX-Hard on Metric spaces, i.e. there isn’t any PTAS

unless P=NP. In this work, we will make an improvement on this problem by

presenting the first Quasi Polynomial Time Approximation Schemes for sev-

eral graph metrics: graphs of bounded treewidth, graphs of bounded highway

dimension, and graphs of bounded doubling dimensions.

ii



Acknowledgements

I would like to thank my supervisor, Mohammad Salavatipour, for his support

and guidance over the last two years, and for his patient reviews of various

stages of this thesis. Thank you again for always pushing to make it better.

I would also like to thank Mohsen Rezapour, without whom this work would

have not been possible, not only for his thoughtful discussions but also for his

academic advice and motivations.

Besides my supervisor, I am grateful to all members of my examining

committee for their time and their helpful comments on my thesis.

I am thankful to my parents for their overwhelming support, and for con-

stantly and unconditionally placing my interests ahead of theirs. I want to

thank my brother for being there for me whenever I needed help. Finally,

I would like to thank the Department of Computing Science for financially

supporting me during my course of study.

I dedicate this thesis to the people of Iran and all the people who are

fighting for their freedom.

iii



Contents

1 Introduction 1
1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Graphs and Metrics . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Metric Embeddings . . . . . . . . . . . . . . . . . . . . 5
1.1.3 Optimization problems and Approximation algorithms 6

1.2 Previous Works . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 k-MSC on Trees 10
2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Approximate Equivalence of k-MSC and (k,�)-MHC . . . . . . 11
2.3 An Exact (but Exponential Time) Dynamic Program . . . . . 19

2.3.1 Cluster, Backbone Tree, and Partial Cluster Types . . 21
2.3.2 Dynamic Program . . . . . . . . . . . . . . . . . . . . 23
2.3.3 Consistency Constraints . . . . . . . . . . . . . . . . . 24
2.3.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 A Quasi-Polynomial Time Dynamic Program . . . . . . . . . . 26
2.4.1 Dynamic Program . . . . . . . . . . . . . . . . . . . . 28
2.4.2 Consistency Constraints . . . . . . . . . . . . . . . . . 29
2.4.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 k-MSC on Graphs of Bounded Treewidth 32
3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Approximate Equivalence of k-MSC and (k,�)-MHC . . . . . . 36
3.3 QPTAS Dynamic Program for k-MSC . . . . . . . . . . . . . 39

3.3.1 Dynamic program . . . . . . . . . . . . . . . . . . . . . 43
3.3.2 Consistency Constraints . . . . . . . . . . . . . . . . . 44
3.3.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Generalization to k-MSC on Doubling Metrics and Highway
Dimension 48
4.1 Embedding Lemma . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Polynomial Aspect Ratio . . . . . . . . . . . . . . . . . . . . . 49
4.3 k-MSC on Doubling Metrics . . . . . . . . . . . . . . . . . . . 50
4.4 k-MSC on Highway Dimensions . . . . . . . . . . . . . . . . . 51

iv



5 Conclusion and Future Problems 53

References 54

v



List of Figures

2.1 An illustration of the execution of Algorithm 1 on a set of points
on the tree. (a) Small circles around dots specify points. (b)
Shaded regions highlight the resulting groups. Note that for
each pair of points that are in di↵erent groups (for example,
see u and v), we have dT (u, v) = dH(u, v) holds as long as H
includes the border vertices; shaded circles depict the border
vertices of the groups. . . . . . . . . . . . . . . . . . . . . . . 13

2.2 (a) A cluster and its corresponding groups. (b) The cluster type
corresponds to the cluster (the backbone tree whose nodes are
labelled with their weights accordingly). (c) The partial cluster
with respect to Tv. (d) The corresponding partial cluster type
(the backbone tree whose nodes are labelled according to their
sizes/weights). . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Three possible ways that a vertex v and its children v1 and v2
may belong to one or two groups of a cluster. Note that each
cluster covers only a subset of points, however, the groups of
the cluster always include all the vertices of T (see Algorithm 1). 25

3.1 (a) A graph G. (b) A tree decomposition T of the graph. . . . 33
3.2 Each big circle represents a bag, the small points inside each

bag are the nodes of the corresponding bag, a circle around a
point shows that it is a token. By creating two duplicates of
the bag on the left, the token with dark shade is placed in a leaf
bag on. the right. . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 (a) A graph including a set of points (in grey). (b) A tree
decomposition of the graph in which each point is placed in
exactly one bag. (c) A proper tree decomposition of the graph
in which points are placed only in leaf bags, each point is placed
in exactly one bag. . . . . . . . . . . . . . . . . . . . . . . . . 35

vi



3.4 An illustration of the execution of Algorithm 1 on a proper
tree decomposition of a graph. (a) Shaded regions highlight
the three di↵erent groups obtained by the algorithm. Circles
around bags specify the bags picked as hubs by the algorithm.
(b) Circles around nodes specify the corresponding set of hubs
in the graph. Observe that each path in the graph between any
pair of points u and v that are in di↵erent groups (for example,
all paths connecting v1 to v9) go through hubs, hence we have
dG(u, v) = dH(u, v) holds for such u and v as long as H includes
all vertices in the border bags as picked by the algorithm. . . . 37

3.5 A cluster and its corresponding weighted backbone tree; the
weight of each node of the backbone tree indicates the number
of points within the group corresponding to that node (top fig-
ures). A partial cluster type at vertex v and its corresponding
backbone tree whose nodes are associated with sizes and weights. 41

3.6 (a) shows path < 1, 3, 4, 6, 9 > on a graph G. (b) shows the
same path by traversing the edges inside bags and (c) shows it
by using the bridge edges on the tree decomposition T for G. 42

3.7 Consistency of load distribution per each vertex. . . . . . . . 46

vii



Chapter 1

Introduction

Clustering is a fundamental problem in Computer Science with many appli-

cations in machine learning, data mining, and bioinformatics, among others.

Given a set of points with a notion of similarity (distance) between every pair

of points, in a typical k clustering problem, the task is to partition the points

into k clusters to minimize dissimilarities of the points that fall into the same

group. Clustering analysis has been regarded as an e↵ective method to extract

useful features and explore potential data patterns.

In the well-known center-based clustering problems (k-center, k-median,

k-means), the partition is obtained by selecting a set of k centers and assign-

ing each point to its nearest center. The clusters are then evaluated based on

the distances between the points and their centers: in the case of k-center, the

objective is to minimize the maximum distance of a point to its nearest center,

while in the case of k-median (k-means), respectively, the objective is to mini-

mize the sum of distances (the sum of squared distances, respectively) between

points and their centers. Compared to other clustering algorithms, center-

based algorithms are very e�cient for clustering large and high-dimensional

datasets as the main task reduces to selecting k centers.

One can argue that center-based clustering is suitable for well-shaped data

points where each cluster can be naturally represented by only one center.

Center-based clustering can be contrasted with pairwise clustering. In this

approach, points are partitioned using pairwise similarity between data points.

For example, in the case of the k-diameter problem, the goal is to minimize

the maximum distance between two points in a cluster (the diameter of the

cluster); or in the min-sum k-clustering problem (which is the main focus

of this work), the goal is to minimize the sum of pairwise distances between

1



points of a cluster.

The Min-Sum k-Clustering problem (k-MSC) is defined as the following.

Definition 1 (Min-Sum k-Clustering). Given a metric space over a set of

n points V with metric distances d(u, v) between any two u, v 2 V . In the

k-MSC problem the goal is to partition points V into k clusters C1, ..., Ck to

minimize the sum of pairwise distances between points assigned to the same

cluster:
Pk

i=1

P
{u,v}✓Ci

d(u, v).

Bartal et al. [4] showed that at the cost of a (multiplicative) error of

2, instead of solving this problem, one can solve the following (center-based

clustering) problem.

Definition 2 (Balanced k-Median). Given a metric space over a set of n points

V with metric distances d(u, v) between any two u, v 2 V . In the k-BM prob-

lem, the goal is to select k points c1, ..., ck 2 V as the centers of the clusters and

partition points V into clusters C1, ..., Ck to minimize
Pk

i=1 |Ci|
P

v2Ci
d(v, ci)

.

Indeed, Bartal et al. [4] (as well as the follow-up papers) consider solving

k-MSC by devising algorithms for this closely related (center-based clustering)

problem. Going in this direction, a 2-approximation solution is the best one

can get.

How about evaluating the cost of a (pairwise-based) cluster with respect to

a group of centers (instead of only one center as in k-BM)? We show that at

the cost of a negligible error, one can compute the min-sum cost of a pairwise-

based cluster with respect to a (su�ciently large) constant-size set of proper

centers (we will call them proper hubs of the cluster). Using this, we formulate

a somewhat center-based clustering problem with a structure that enables us

to use the dynamic programming approach. Solving this leads to the first ap-

proximation scheme for the min-sum k-clustering problem on di↵erent metrics

as described below.

In this thesis, we give the first Quasi-Polynomial Time Approximation

Schemas (QPTAS) for the k-MSC problem on tree metrics (see Chapter 2).

Then, we show that the QPTAS for trees can be extended to graphs of bounded

treewidth (see Chapter 3) and also graphs of bounded doubling dimension and

bounded highway dimension (see Chapter 4).

2



1.1 Preliminaries

In this section, we give the definitions and the notation we will use throughout

the thesis. Most of the definitions are based on [26], [20], [21]. We begin by

giving the basic definitions related to graph theory and metrics on graphs.

1.1.1 Graphs and Metrics

A graph G is a triple consisting of vertex set V (G), an edge set E(G), and

a relation that associates with each edge two vertices called its endpoints.

When u, v are endpoints of some edge, we say u, v are neighbours or adjacent.

A loop is an edge whose endpoints are equal. Multiple edges are edges

having the same pair of endpoints. A simple graph is a graph having no

loops or multiple edges. This thesis uses the term graph instead of a simple

one. A path is a simple graph whose vertices can be ordered so that two

vertices are adjacent if and only if they are consecutive in the list. A cycle

is a graph with an equal number of vertices and edges whose vertices can be

placed around a circle so that two vertices are adjacent if and only if they

appear consecutively along the circle.

A subgraph of graph G is a graph H that V (H) ✓ V (G) and E(H) ✓
E(G) and the assignment of endpoints to edges in H is the same as in G. We

then write H ✓ G and say that “G contains H“. We say that there is a

uv-path in graph G if G contains a path starting from u and ending to v. A

graph G is connected if it has a u, v-path whenever u, v 2 V (G).

A complete graph is a graph whose vertices are pairwise adjacent. A

graph with no cycle is called acyclic. A tree is a connected acyclic graph. A

rooted tree has one vertex r chosen as root. For each vertex v, let P (v) be the

unique vr-path. The parent of v is its neighbour on P (v); its children are its

other neighbours. Its ancestors are the vertices of P (v)�v. Its descendants
are the vertices u such that P (u) contains v. Let the degree of each vertex

be the number of the adjacent vertices of it. The leaves are the vertices with

degree equal to 1. A planted tree is a rooted tree with a left-to-right ordering

specified for the children of each vertex. A binary tree is a planted tree where

each vertex has at most two children, and each child of a vertex is designated

as its left child or right child.

A tree decomposition of G = (V,E) consists of a tree T (on a di↵erent

node set from G), and a subset Vt ✓ V associated with each node t of T . (We

3



will call these subsets Vt the “bags” of the tree decomposition.) We sometimes

write this as the ordered pair (T, {Vt : t 2 T}). The tree T and the collection

of bags Vt : t 2 T must satisfy the following three properties.

• (Node Coverage) Every node of G belongs to at least one bag Vt.

• (Edge Coverage) For every edge e of G, there is some bag Vt containing

both ends of e.

• (Coherence) Let t1, t2, and t3 be three nodes of T such that t2 lies on the

path from t1 to t3. Then, if a node v of G belongs to both Vt1 and Vt3 ,

it also belongs to Vt2 .

Width of a tree decomposition (T, {Vt}) is one less than the maximum size

of any bag Vt:

width(T, {Vt}) = max
t

|Vt|� 1

We then define the tree-width of G to be the minimum width of any tree

decomposition of G.

A metric space is an ordered pair (X, d) where X is a set and d is a

metric on X, i.e. a function d : X ⇥ X ! R satisfying the following axioms

for all points x, y, z 2 X:

1. (Identity) d(x, x) = 0

2. (Positivity) x 6= y ! d(x, y) > 0

3. (Symmetry) d(x, y) = d(y, x)

4. (Triangle inequality) : d(x, z)  d(x, y) + d(y, z)

Aweighted graph is a graph with numerical labels on edges denoted by w(e).

We only work with non-negative edge weights. We can convert Metric (X, d)

into a complete weighted graph G such that V (G) = X and w(uv) = d(u, v).

The wights represent distances; therefore we define the length of a path to be

the sum of its edge weights. Let dG(u, v) be the length of the shortest uv-path

in G, if u, v are not connected, it is infinite. Let dmax(G) be maxu,v2G dG(u, v),

dmin(G) be minu,v2G d(G(u, v) and aspect ratio � be dmax(G)
dmin(G) . In the rest of

this section, we will introduce tree, doubling and highway metrics.

A metric (X, d) is a tree metric if there exist an edge-weighted tree

T (X 0, E) such that X ✓ X 0 and for all x, y 2 X, d(x, y) = dT (x, y).

4



A metric space (X, d) is said to be doubling if there is some constant

 > 0 such that for any x 2 X and r > 0, it is possible to cover any ball

B(x, r) = {y|d(x, y) < r} with the union of at most 2O() balls of radius r
2 . 

is referred to as the doubling dimension of the metric. This definition is from

[18].

The highway dimension of a weighted graph G = (V,E) is the smallest

integer k such that for some universal constant c � 4, for every r 2 R > 0 and

every ball Bcr(v) of radius cr, there are at most k vertices in Bcr(v) hitting

all shortest paths of length more than r that lie completely in Bcr(v). This

definition is from [14].

1.1.2 Metric Embeddings

This section is mostly based on [8]. For some of the optimization problems

devising an approximation algorithm is hard. One approach to tackling this

issue is to solve it in smaller cases or by modifying a general case into a special

one by preserving some properties. For example, converting graph metrics to

tree metrics, due to the powerful technique of dynamic programming on trees

is widely used, which we will apply in Chapter 2. Usually, we lose the optimal

solution in this procedure, but we try to do it with a cost as low as possible. A

metric mapping f : M ! N is defined on two metric spaces (M, dM), (N, dM)

such that 8x1, x2 2M, dM(x1, x1)  dN(f(x1), f(x2)).

The best kind of metric mapping is isometric mapping which preserves the

exact values. A mapping f : X ! Y of a metric space (X, dX) to a metric

space (Y, dY ) is an isometric embedding if for every two points x1, x2 2 X,

dY
�
f(x1), f(x2)

�
= dX(x1, x2)

Note that the point of mappings is to embed a large space into a small

space, which enables us to solve the problem in a shorter time, however we

lose some of the original instance information. We define this approximation

on metrics as below: A mapping f : X ! Y of a metric space (X, dX) to

a metric space (Y, dY ) is an embedding with distortion ↵ if there exist a

constant r > 0 such that for every two points x1, x2 2 X,

r.dX(x1, x2)  dY
�
f(x1), f(x2)

�
 ↵.r.dX(x1, x2)

5



Note that an isometric embedding is an embedding with distortion 1. The

constant r here is just a scaling factor because we only care about the relative

values.

1.1.3 Optimization problems and Approximation algo-

rithms

In this section, we will explain what an approximation algorithm is and how

they work. This section is mostly based on [12],[27].

Decision Problems vs Optimization Problems The problems we study

are optimization problems where we are asked to find a feasible solution with

the best value. However, decision problems are the class of problems whose

answer is “Yes” or “No”.

We say that an algorithm solves a problem in time O(T (n)) if, when it

is provided a problem instance i of size n = |i| , the algorithm can produce

the solution in O(T (n)) time. Therefore we say a problem is polynomial-

time solvable if there exists an algorithm to solve it in time O(nk) for some

constant k. The complexity class P is the set of decision problems that are

polynomial-time solvable.

The complexity class NP is the class of decision problems in which a

polynomial-time algorithm can verify a proposed solution (certificate). The

notion of a verifier requires more language theory to be formulated in detail

but roughly saying, a verifier is defined as a polynomial algorithm which, for a

given certificate of a decision problem, outputs whether this solution is feasible

or not. An NP-Hard problem is a problem that every NP problem can be

polynomially reduced to. There is an essential question of whether P = NP

or not.

Approximation Algorithms Still, we don’t know whether P = NP or not,

although most of the important problems belong to classNP . One approach to

attack this challenge is to find near-optimal solutions in sub-exponential time.

We refer to algorithms returning near-optimal solutions as approximation

algorithms. We say that an algorithm has approximation factor ⇢(n), if

the solution of algorithm C for an input with size n is at most ⇢(n) times worse

than optimal solution C⇤, i.e. max( C
C⇤ ,

C⇤

C )  ⇢(n). If an algorithm achieves

6



an approximation ratio of ⇢(n), we call it a ⇢(n)-approximation algorithm.

An approximation scheme for an optimization problem is a class of

algorithms ( or parameterized) that takes as input not only an instance of the

problem but also a value ✏ > 0 such that for any fixed ✏, the scheme is a (1+✏)

approximation algorithm. The class of PTAS class consists of problems with

a polynomial time approximation scheme.

The class APX is the set of NP optimization problems that allow polynomial-

time approximation algorithms with approximation ratio bounded by a con-

stant; therefore PTAS ✓ APX. A PTAS reduction [28] is an approximation-

preserving reduction that is often used to perform reductions between solutions

to optimization problems, which it preserves the property that a problem has

a polynomial time approximation scheme (PTAS). A problem is said to be

APX-hard if there is a PTAS reduction from every problem in APX to that

problem, and to be APX-complete if the problem is APX-hard and also in

APX. If P 6= NP is assumed to be true, then it implies that PTAS 6= APX,

one example problem in the APX-Hard class, is the bin-packing problem.

1.2 Previous Works

Min Sum k clustering was introduced by Sahni, and Gonzalez [23] in 1976.

They proved k-Max Cut is NP -Hard (where the goal is to partition points into

k clusters such that the summation of distances of points in di↵erent clusters

is maximized), which is the dual of Min Sum k clustering problem. Also,

they presented a polynomial time k-approximation algorithm for it. Kann,

Sanjeev, Lagergren and Panconesi [19] show that unless P = NP , there cannot

be a polynomial time algorithm on general graphs with approximation factor

better than 1 + 1
34k . They also show that it is NP -Hard to approximate Min

k-Partition with k � 3 (an equivalent problem of k-MSC) within O(n2�✏).

Frieze and Jerrum [15] give a ( k
k�1)-approximation for MAX k-CUT problem.

Di↵erent Metrics One other case of this problem is considering metrics

on continuous space. The important di↵erence in continuous space is that the

facility will be selected from Rd against a discrete finite space. Vega, Karpinski,

Mathieu and Rabani [25] gave the first polynomial time approximation scheme

for k-MSC on metric spaces when k is fixed. They also gave a PTAS for k-

MSC on `22 ( Note that (Rd, ||.||22) is not a metric) and a PTAS for k-Median

7



on `22. The running time of their algorithm is O(f(k, ✏)n3k). Cohen-Addad,

Karthik, and Lee [11] proved that it is NP -hard to approximate continuous

k-MSC to a factor of 1.415.

Parameterized Algorithms One other modification allows the algorithm

to exclude a small number of points. Banerjee, Ostrovsky and Rabani [3] de-

vised an algorithm that for any ✏ > 0, for any instance with n input points and

for any positive integer n0  n, how to compute in polynomial time a cluster-

ing of at least (1 � ✏)n0 points of cost at most a constant factor greater than

the optimal cost of clustering n0 points. Their approximation guarantee grows

with 1
✏ . Czumaj and Sohler [13] introduced the first sublinear time (4 + ✏)

approximation algorithm for k-MSC on metric spaces where k is bounded

k = o(log n/ log log n). For arbitrary values of k, they present a sublinear

time polylogarithmic-factor-approximation algorithm for k-MSC. Hassin and

Or [17] formulated Penalized k-Min Sum Clustering as following: Given a met-

ric space (V, d) and p : V ! N[0 a penalty function on its vertices, the penal-

ized min sum k-clustering problem is the problem of finding a partition of V

into k+1 sets, S1, ..., Sk+1, minimizing
Pk

i=1

�P
{u,v}2Si

d(u, v)
�
+
P

u2Sk+1p(u)
.

They presented an approximation scheme for penalized 1-min-sum clustering

and also a 2-approximation algorithm for penalized k-min-sum problem for

constant k.

2-factor reduction to k-BM Guttman-Beck and Hassin [16] first showed

the 2-factor relation between k-MSC and k-BM to give a 2-approximation

algorithm for k-MSC with running time nO(k) on general graphs. They do this

by enumerating all possible cluster sizes and solving problems for each case.

This makes the running time exponent dependent on k.

Bartal, Charikar and Raz [5] considered k-MSC in metric spaces and by

using this relation between k-MSC and k-BM they gave the first polynomial

time approximation algorithm for k-MSC. They presented an O(1✏ log
1+✏ n)

approximation algorithm for k-MSC with running time n
1

✏ . Their work is

based on the embedding of arbitrary metric spaces into hierarchically separated

trees (HSTs). They also presented a bi-criteria approximation algorithm with

a constant approximation factor such that the number of the clusters is O(k).

Behsaz, Friggstad, Salavatipour and Sivakumar [6] improved Bartal et al.s

work and presented O(log n) approximation algorithm for both k-MSC and

8



k-BM, which is the best result for general metrics. They also present a quasi-

polynomial time approximation scheme (QPTAS) for k-BM in constant dou-

bling dimension metrics. To reach this result, they give (1+ ✏) approximation

for k-BM in HSTs.

Close problems A similar problem to k-BM is capacitated k-Median de-

fined later which Bartal et al. [5] used to give a bi-criteria for k-BM. They

presented a constant factor approximation algorithm such that the number of

the clusters is O(k). One important property of k-BM, which makes it hard,

is that even given the allocation of centers and cluster sizes, it is not easy to

assign clients, since a client does not necessarily go to its closest center.

There is no known constant factor approximation algorithm for capacitated

k-median unless violating the number of facilities or capacity. Adamczyk,

Byrka, Marcinkowski, Meesum and W lodarczyk [1] gave (7+✏) approximation

algorithm running in time 2O(k log k)nO(1).

Still, there isn’t any O(1)�approximation algorithm for k-MSC and capac-

itated k-median on general graphs with arbitrary k.

9



Chapter 2

k-MSC on Trees

This chapter gives a Quasi-Polynomial Time Approximation Scheme (QPTAS)

for the k-MSC problem on trees with logarithmic heights. We will later extend

this to graphs of bounded treewidth and show that one can assume the height

is O(log n). This implies a QPTAS for k-MSC on trees as they have bounded

treewidth.

2.1 Preliminaries

Suppose we have a tree metric T (V,E) with edge weights w(uv), for all uv 2 E,

and a set of points P ✓ V . Let dT (u, v) denote the (shortest-path) distance

in T between u and v. We let T be rooted at an arbitrary vertex r 2 V . The

parent of a vertex v 2 V \ {r} is the vertex adjacent to v on the path from v

to r. If u is the parent of v then v is a child of u. A tree vertex is called a leaf

if it has no children and is called an internal vertex otherwise. The ancestors

of vertex v are all the vertices (including v) on the path connecting v to r and

the descendants of v are all the vertices for which v is an ancestor. The level

of each node is the number of edges on the path from it to r. The height of

the tree is the number of edges on the longest path between the root and a

leaf. We use Tv to denote the subtree rooted at v, V (Tv) to denote the vertex

set of Tv, and E(Tv) to denote the edge set of Tv.

For a given set C ✓ P of points, we use D(C) to denote the sum of pair-

wise distances of the points in C : D(C) =
P

{u,v}✓C dT (u, v). Also, For a

given set C ✓ V of points and a given set of vertices H ✓ V , called hubs,

we denote the sum of pairwise hub-distances of the points in C by DH(C) =

10



P
{u,v}✓C dH(u, v), where dH(u, v) = minh1,h22H

�
dT (u, h1)+dT (h1, h2)+dT (h2, v)

�
1.

Let pH(u, v) be the shortest path between u and v through hubs H (namely,

the path with the total weight dH(u, v)).

We assume every vertex of T has at most two children; if not, as long as

there exists a vertex v with more than two children, say v1, v2, . . . , vt, do the

following: add a new vertex v0 and connect v0 to v with a zero-cost edge and

replace edges vv1 and vv2 with edges v0v1 and v0v2 of the same weights. Note

that the resulting binary tree has at most 2|V | vertices.

Definition 3 (tree k-MSC). Given an edge-weighted tree T = (V,E), a set

of n points P ✓ V , a positive integer k (such that k  n). The goal is to

partition points P into k clusters C1, ..., Ck to minimize the sum of pairwise

distances between points assigned to the same cluster:
Pk

i=1 D(Ci).

We formulate a closely related problem, called the Min �-Hub k-Clustering

problem, (k,�)-MHC, with a structure that enables us to use dynamic pro-

gramming approach.

Definition 4 (tree Min �-Hub k-Clustering). Given a set of points P ✓ V

and a weighted tree T = (V,E). In (k,�)-MHC, we are asked to partition

points P into k clusters C1, ..., Ck and associate with each cluster Ci a set of

hubs Hi ✓ V of size at most � (that is |Hi|  �) to minimize
Pk

i=1 DHi(Ci).

Observe that (k, 1)-MHC is equivalent to k-BM (recall that a ⇢-approximation

algorithm for BkM gives a 2⇢-approximation algorithm for k-MSC), and (k, n)-

MHC is equivalent to k-MSC.

In the next section, we will show that for su�ciently large (constant) values

of � a ⇢-approximation algorithm for (k,�)-MHC gives (1+✏)⇢-approximation

of k-MSC on tree metrics.

2.2 Approximate Equivalence of k-MSC and

(k,�)-MHC

Let ✏ > 0. In this section, we show that finding a (1 + ✏)-approximation

for (k,O(1✏ ))-MHC will imply a (1 + O(✏))-approximation for k-MSC on tree

metrics.
1For the sake of our dynamic programming algorithm, we let h1 be di↵erent from h2,

however, one can argue that based on the definition of the hub distance the minimum value
occurs when h1 = h2.

11



The following lemma (together with Theorem 6) is a tool we will use to

locate a constant-size set H of “proper” hubs for a given set C of points such

that D(C)  DH(C)  (1 +O(✏))D(C).

For a subset of vertices V̂ ✓ V , we use �(V̂ ) = {v 2 V̂ : uv 2 E & u /2 V̂ }
to denote the border vertices of V̂ .

Lemma 5. Let C ✓ V be a set of points (say a cluster) and let T = (V,E) be

a given binary tree. For any ✏ > 0, there exists a partition of V into a set of

groups C✏ = {g1, . . . , g�} such that all of the following properties hold:

• The subgraph induced by each group g 2 C✏ is connected.

• For each group g 2 C✏, |g \ C| 2 [1,max {1, ✏|C|}].

• |C✏| = O(1/✏).

• 8g 2 C✏, |�(g)| = O(1/✏).

Algorithm 1 Tree Partitioning Algorithm

C✏  ;
⌘  max{✏|C|, 1}
L {v 2 V : 1

2⌘  |V (Tv) \ C|  ⌘}
while L 6= ; do

v̂  v 2 L . If multiple, select v with the lowest level.
g  V (Tv̂)
C✏  C✏ [ {g}
remove Tv̂ from T
L {v 2 V (T ) : 1

2⌘  |V (Tv) \ C|  ⌘}
end while
C✏  C✏ [ {V (Tr)}

Proof. We use Algorithm 1 to compute C✏: The algorithm iteratively selects

a subtree Tv̂ with approximately ✏
2 |C| points, adds the vertex set V (Tv̂) to C✏,

and removes Tv̂ from T . It is not hard to verify that at each iteration, except

for the last one, such a subtree exists (recall that the tree is binary). This

implies that the number of the iterations (so the number of the groups made

by the algorithm) is at most 2/✏. Note that every vertex of V belongs to one

group.

Note that there is at most one edge between any two groups, so |�(g)| =
O(1/✏), 8g 2 C✏. The subgraphs induced by gi’s are connected by construction.

12



(a)

(b)

Figure 2.1: An illustration of the execution of Algorithm 1 on a set of points
on the tree. (a) Small circles around dots specify points. (b) Shaded regions
highlight the resulting groups. Note that for each pair of points that are in
di↵erent groups (for example, see u and v), we have dT (u, v) = dH(u, v) holds
as long as H includes the border vertices; shaded circles depict the border
vertices of the groups.

13



Hence, we conclude that the algorithm has constructed a partition with the

desired properties. See Figure 2.1.

Theorem 6. Let T = (V,E) be a binary tree with edge weights w(uv), 8uv 2
E, and let P ✓ V be a given set of points. Consider a subset C ✓ P of points.

For any ✏ > 0, there exists a set of hubs H ✓ V of size |H| = O(1✏ ) for which

the following holds: D(C)  DH(C)  (1 +O(✏))D(C).

Proof. Let C✏ = {g1, . . . , g�} be the groups obtained by executing Algorithm

1 on C. For each group gi 2 C✏, we let mi be the median of gi, i.e. mi =

argminv2gi
�P

u2gi\C dT (u, v)
�
. We define the set of hubs assigned to this

group to be Hi = �(gi) [ {mi}. Let H = [�i=1Hi. By Lemma 16, we have

|H| = O(1/✏). We shall show that inequalities D(C)  DH(C) and DH(C)�
D(C)  O(✏)D(C) hold with respect to this choice of H.

It is easy to verify that D(C)  DH(C) holds: recall that D(C) =
P

{u,v}✓C dT (u, v) and DH(C) =
P

{u,v}✓C dH(u, v), and note that dT (u, v)

is the shortest distance between u, v in T , whereas dH(u, v) is the shortest

distance between u, v through hubs H (so dT (u, v)  dH(u, v) for any u and

v).

Let X = [�i=1Xi, where Xi is the set of all pairs of C where one point is in

gi and one is outside, i.e. Xi = {(u, v) : u 2 gi & v 2 C \ gi}. Let I = [�i=1Ii,

where Ii is the set of all pairs of points which both are in gi, i.e. Ii = {(u, v) :
u 2 gi & v 2 gi}. Observe that D(C) =

P
(u,v)2X dT (u, v) +

1
2

P
(u,v)2I dT (u, v)

and DH(C) =
P

(u,v)2X dH(u, v) +
1
2

P
(u,v)2I dH(u, v). One can verify that

P
(u,v)2X dT (u, v) =

P
(u,v)2X dH(u, v) holds by using the fact that [�i=1�(gi) ✓

H (see Figure 2.1). Therefore, to show DH(C) �D(C)  O(✏)D(C), we just

need to show that

X

(u,v)2I

dH(u, v)�
X

(u,v)2I

dT (u, v)  O(✏)D(C).

Claim 7.
P

(u,v)2I dH(u, v)  2
P

(u,v)2I dT (u, v)

Proof. The proof is analogous to the proof of Claim 1 of [4]. From the defini-

tions, we have
P

(u,v)2I dH(u, v) =
P�

i=1

P
{u,v}✓gi\C dH(u, v) and

P
(u,v)2I dT (u, v) =P�

i=1

P
{u,v}✓gi\C dT (u, v). To prove the claim, it su�ces to show that, for each

14



group gi 2 C✏, we have

X

{u,v}✓gi\C

dH(u, v)  2
X

{u,v}✓gi\C

dT (u, v) (2.1)

Consider a group gi 2 C✏. Since mi 2 H, by the definition, we have

X

{u,v}✓gi\C

dH(u, v) 
X

{u,v}✓gi\C

d{mi}(u, v)

=
X

{u,v}✓gi\C

�
dT (u,mi) + dT (v,mi)

�

 |gi \ C|
X

v2gi\C

dT (v,mi)

(2.2)

From the definition of mi, it is easy to see that inequality
P

v2gi\C dT (v,mi) P
v2gi\C dT (v, u) holds for each u 2 gi \ C. Summing this over all u, we get

P
u2gi\C

P
v2gi\C dT (v,mi) 

P
u2gi\C

P
v2gi\C dT (v, u). This implies

|gi \ C|
X

v2gi\C

dT (v,mi) 
X

u2gi\C

X

v2gi\C

dT (v, u)  2
X

u,v2gi\C

dT (u, v) (2.3)

Together (2.2) and (2.3) imply (2.1), hence the claim.

Claim 8.
P

(u,v)2I dT (u, v)  O(✏)
P

(u,v)2X dT (u, v)

Proof. From the definitions, we have

X

(u,v)2I

dT (u, v) =
�X

i=1

X

u,v2gi\C

dT (u, v)

and

X

(u,v)2X

dT (u, v) =
��1X

i=1

�X

j=i+1

X

u2gi\C,v2gj\C

dT (u, v) =
�X

i=1

1

2

� X

u2gi\C

X

v2C\gi

dT (u, v)
�
.

Hence, to prove the claim, it su�ces to show that, for each group gi 2 C✏, we

have X

u,v2gi\C

dT (u, v)  O(✏)
� X

u2gi\C

X

v2C\gi

dT (u, v)
�
. (2.4)

Consider a group gi 2 C✏. For any (u, v) 2 Xi, we let b(u,v)i to be the border

15



vertex of �(gi) which lies on the u, v-path. For each (u, v) 2 Xi, we let

buvi = argmin
v̂2�(gi)

�
dT (u, v̂) + dT (v̂, v)

�
.

We need a notation to show the number of the points that must cross z to

connect to any point of gi. Formally saying, for each z 2 �(gi), let

czgi = |{w 2 C \ gi : 9u 2 C \ gi s.t. b
wu
i = z}|.

Notice that for any group gi, we have
P

z2�(g) c
z
gi = |C \ gi|. We need another

notation for the hub of �(gi), which has the least sum of distance to the points

of gi. Let

bi = argmin
v2�(gi)

� X

u2gi\C

dT (u, v)
�
.

By Lemma 16, we have |C\gi|  ✏|C| 2 and so
P

z2�(g) c
z
gi = |C\gi| � (1�✏)|C|.

Using these together with the definitions of buvi and bi, we get

X

v2C\gi

X

u2gi\C

dT (u, v) =
X

v2C\gi

X

u2gi\C

�
dT (u, b

uv
i ) + dT (b

uv
i , v)

�

�
X

v2C\gi

X

u2gi\C

dT (u, b
uv
i )

=
X

z2�(gi)

czgi
X

u2gi\C

dT (u, z) �
X

z2�(gi)

czgi
X

u2gi\C

dT (u, bi)

= |C \ gi|
X

u2gi\C

dT (u, bi) � (1� ✏)|C|
X

u2gi\C

dT (u, bi)

� (1� ✏)
✏

|C \ gi|
X

u2gi\C

dT (u, bi)

� (1� ✏)
✏

X

(u,v)2Xi

dT (u, v) =
(1� ✏)
✏

D(gi \ C)

(2.5)

The last inequality follows from the triangle inequality. This implies D(gi\
C)  ✏

(1�✏)
P

v2C\gi
P

u2gi\C dT (u, v), and hence (2.4).

2Note that we can exclude the cases where C \ gi is singleton as D(C \ gi) = 0 and so
(2.4) holds trivially.

16



We have

DH(C)�D(C) =
X

(u,v)2I

dH(u, v)�
X

(u,v)2I

dT (u, v)


X

(u,v)2I

dT (u, v)

 O(✏)
X

(u,v)2X

dT (u, v)  O(✏)D(C)

(2.6)

The first inequality follows from Claim 7, and the second one follows from

Claim 8.

Two immediate corollaries of Theorem 6 are the following. Let ✏ > 0.

Consider a cluster C ✓ P . Let C✏ = {g1, . . . , g�} be the cluster groups and

let mi = argminv2gi
�P

u2gi\C dT (u, v)
�
be the median hub of each group

(as described above). For each such cluster C and any constant ✏ > 0,

we let H✏(C) = [�i=1�(gi) denote the border hubs of the cluster, H+
✏ (C) =

[�i=1

�
�(gi) [ {mi}

�
denote the proper hubs of the cluster, and costH✏(C) =

P�
i=1

P�
j=i+1

P
u2gi\C,v2gj\C dH✏(C)(u, v) be the ✏-approximate cost of the clus-

ter. Observe that D(C) = costH✏(C) +
P�

i=1

P
u,v2gi\C dT (u, v). By Claim 8,

we have
P�

i=1

P
u,v2gi\C dT (u, v)  O(✏)costH✏(C). Hence, we get

costH✏(C)  D(C)  (1 +O(✏))costH✏(C). (2.7)

Corollary 9. Let ✏ > 0. A (1 + ✏)-approximation for (k,O(1/✏))-MHC will

imply a (1 +O(✏))-approximation for k-MSC on tree metrics.

Proof. Consider an instance of the k-MSC problem with an optimal cluster-

ing C1, C2, · · · , Ck. Let OPT =
Pk

i=1 D(Ci). Let OPT 0 be the cost of the

optimal solution to the (k,O(1/✏))-MHC problem on the same instance. Let

Ĉ1, Ĉ2, · · · , Ĉk and Ĥ1, Ĥ2, · · · , Ĥk be the clusters and the hubs corresponding

to an (1 + ✏)-approximation solution to the (k,O(1/✏))-MHC problem on this

instance. We have
kX

i=1

DĤi
(Ĉi)  (1 + ✏)OPT 0 (2.8)

We shall show that clusters Ĉ1, Ĉ2, · · · , Ĉk form a k-MSC solution on the

considered instance with cost (1 +O(✏))OPT .

Consider the optimal clusters C1, C2, · · · , Ck. By Theorem 6, we have

|H+
✏ (Ci)| = O(1/✏) andDH+

✏ (Ci)
(Ci)  (1+✏)D(Ci), for each cluster Ci. Hence,

17



clusters C1, C2, · · · , Ck and hubs H1 = H+
✏ (C1), H2 = H+

✏ (C2), · · · , Hk =

H+
✏ (Ck) form a feasible (k,O(1/✏))-MHC solution of cost at most (1+ ✏)OPT .

This implies

OPT 0  (1 + ✏)OPT (2.9)

Now, consider the (1+✏)-approximation solution Ĉ1, Ĉ2, · · · , Ĉk and Ĥ1, Ĥ2, · · · , Ĥk

to the (k,O(1/✏))-MHC problem. By Theorem 6, we have DH+
✏ (Ĉi)

(Ĉi) 
(1 + ✏)D(Ĉi) and from the definition we have D(Ĉi)  DĤi

(Ĉi), for each

cluster Ĉi. Hence, we have

kX

i=1

DH+
✏ (Ĉi)

(Ĉi)  (1 + ✏)
kX

i=1

DĤi
(Ĉi) (2.10)

Finally, by using Theorem 6 again, we get

kX

i=1

D(Ĉi)  (1 + ✏)
kX

i=1

DH+
✏ (Ĉi)

(Ĉi) (2.11)

Together (2.8), (2.9), (2.10) and (2.11) imply

kX

i=1

D(Ĉi)  (1 +O(✏))
kX

i=1

D(Ci) = (1 +O(✏))OPT (2.12)

as desired.

We show that it is su�cient to obtain a QPTAS for a further simplification

of (k, �)-MHC as defined below.

Definition 10 (tree Simplified Min-Hub k-Clustering problem (k-SMHC)).

Given a constant ⌫ > 0, a set of points P ✓ V and a weighted tree T = (V,E).

In k-SMHC, we are asked to partition points P into k clusters C1, ..., Ck to

minimize
Pk

i=1 costH⌫ (Ci).

Corollary 11. Let ✏ > 0. A (1 + ✏)-approximation for k-SMHC will imply a

(1 +O(✏))-approximation for k-MSC on tree metrics.

Proof. The proof is analogous to that of Corollary 18. Let I = (T, P ) be

an instance of the k-MSC problem with an optimal clustering C1, C2, · · · , Ck.

Let OPT =
Pk

i=1 D(Ci). Let OPT 0 be the cost of the optimal solution to the

k-SMHC problem on the instance I 0 = (T, P, ⌫ = ✏). Let Ĉ1, Ĉ2, · · · , Ĉk be an

18



(1 + ✏)-approximation solution to the k-SMHC problem on I 0. So we have

kX

i=1

costH✏(Ĉi)  (1 + ✏)OPT 0 (2.13)

We shall show that clusters Ĉ1, Ĉ2, · · · , Ĉk form a k-MSC solution on I with

cost (1 +O(✏))OPT .

Consider the optimal clusters C1, C2, · · · , Ck. By Inequality 2.7, we have

costH✏(Ci)  D(Ci), for any ✏ and any cluster Ci. Hence, clusters C1, C2, · · · , Ck

form a feasible k-SMHC solution on I 0 with cost at most OPT . This implies

OPT 0  OPT (2.14)

Now, consider the (1 + ✏)-approximate k-SMHC solution Ĉ1, Ĉ2, · · · , Ĉk. By

Inequality 2.7, we have D(Ĉi)  (1+O(✏))costH✏(Ĉi), for any ✏ and any cluster

Ĉi. Hence, we have

kX

i=1

D(Ĉi)  (1 +O(✏))
kX

i=1

costH✏(Ĉi) (2.15)

Together (2.15), (2.13), and (2.14) imply

kX

i=1

D(Ĉi)  (1 +O(✏))OPT 0  (1 +O(✏))OPT (2.16)

as desired.

2.3 An Exact (but Exponential Time) Dynamic

Program

This section provides an exact exponential-time algorithm for the k-SMHC

problem using the dynamic programming approach. This implies approxi-

mation schemas for the k-MSC problem (thanks to Corollary 20). We then

show (in Section 2.4) how to improve the running time to quasi-polynomial.

Consider a k-SMHC instance on a tree consisting of a weighted rooted tree

T = (V,E), a set of points P ✓ V , and a constant ⌫ > 0. Our dynamic

programming algorithm will find a partitioning of the points P into k clusters

19



(a) (b)

(c) (d)

Figure 2.2: (a) A cluster and its corresponding groups. (b) The cluster type
corresponds to the cluster (the backbone tree whose nodes are labelled with
their weights accordingly). (c) The partial cluster with respect to Tv. (d) The
corresponding partial cluster type (the backbone tree whose nodes are labelled
according to their sizes/weights).

C1, ..., Ck such that
Pk

i=1 costH⌫ (Ci) is minimized.

Preprocessing. We first need to do some preprocessing that helps us to

simplify the explanation of the dynamic programming. We repeatedly remove

leaves with no points until there is no such leaf in the tree. Also, by introducing

zero-weight edges, we convert the tree into an equivalent binary tree in which

the points are only located on distinct leaves. We also repeatedly remove

internal vertices of degree two by consolidating their incident edges into one

edge of the total weight. One can verify that the number of vertices and edges

in this tree remains linear in the size of the original instance.

20



2.3.1 Cluster, Backbone Tree, and Partial Cluster Types

Backbone Tree. Let ⌫ > 0. Consider a cluster C ✓ P . Let C⌫ =

{g1, . . . , g�} be the groups obtained by executing Algorithm 1 on C (with

✏ = ⌫), where 1
⌫  �  2

⌫ . We construct a tree (we call it the backbone tree of

C) whose nodes correspond to groups g1, . . . , g� and has edges between those

nodes whose corresponding groups are connected by an edge. We abuse the

notation and let gi also denote the node corresponding to each group gi 2 C⌫ .

Note that the number of di↵erent trees which can be formed by ñ labelled

vertices is ññ�2 (Cayley’s formula [2]). Hence, since |C⌫ | is � = O(1/⌫), the

cluster’s backbone tree has one of the types 1, 2, · · · , ���2.

Cluster Type. Consider a cluster C ✓ P , the groups C⌫ = {g1, . . . , g�} as

well as the backbone tree representing C (as described above). We associate

with each node i of the backbone tree a weight that represents the number of

points inside the i-th group (the group corresponding to node i) of the cluster.

We use ~w to denote the node weights of the cluster, ~w[i] = |gi \ C|, 8gi 2 C⌫ .

For each such cluster C, we associate a pair (tb, ~w), in which tb 2 {1, 2, · · · , ���2}
specifies the type of the backbone tree of the cluster and ~w[i] 2 {0, 1, · · · , n}
specifies the weight of the i-th group of the cluster (see Figure 2.2). Note that

there are at most n� many ways (where n = |P |) to assign weights to nodes

of a backbone tree, and hence there are ���2n� many di↵erent pairs (tb, ~w)

(we refer to them as the cluster types) to represent clusters in the optimal

solution. In Section 2.4, we shall reduce the number of cluster types (and so

the time complexity of the underlying DP) to a poly-logarithmic number by

considering “approximate” weights of the groups for each cluster.

Partial Cluster Type. For each cluster C ✓ P and each vertex v 2 V , we

define the partial cluster with respect to Tv as follows. Consider the groups

C⌫ = {g1, . . . , g�} as well as the weighted backbone tree (tb, ~w) representing C

(as described above). Suppose V (Tv) \ C 6= ;. We associate with each node

i of the backbone tree tb a size, which specifies the number of points of the

group i (the group corresponding to the node i) that intersect with V (Tv). We

use ~sv to denote such node sizes; namely, ~sv[i] = |(gi \ P ) \ V (Tv)| for each

group i of the cluster. We let �v ✓ C⌫ indicate the groups (referred to as the

inner groups of the partial cluster) whose vertices are entirely inside Tv. We

refer to the group (of the partial cluster) that includes v as the split group of

21



the partial cluster and denote it by �v. Observe that ~sv[i] = ~w[i] holds for

each group gi 2 �v; and ~sv[i] = 0 holds for each group gi 2 C⌫ \ (�v [ {�v});
see Figure 2.2. Note that any partial cluster C at root r is indeed the actual

cluster C (so ~sr[i] = ~w[i] holds for every group i of the cluster).

For each partial cluster C with respect to Tv, we associate a triple (tc, �v,~sv),

in which tc 2 {1, 2, . . . , ���2n�} specifies the type of the cluster C, �v specifies

the split group of the partial cluster, and ~sv specifies the node (group) sizes of

the partial cluster. Note that the inner groups �v of the partial cluster can be

induced from tc, �v,~sv. Observe that there are at most ���2n2� many triples

(tc, �v,~sv) (we refer to them as the partial cluster types) to represent the par-

tial clusters. Hence, each partial cluster in the optimal solution has one of the

types ` 2 {1, 2, · · · , ���2n2�}. To refer to the split group, the inner groups,

the weight and the size vectors of a specific partial cluster type ` with respect

to a specific subtree Tv we will use the notation �`v,�
`
v,~s

`
v, ~w

` respectively.

Valid Partial Cluster Types. Consider a vertex v and a partial cluster

type `. For a given ⌫ > 0, we say the partial cluster type ` with respect to Tv

is valid if the following holds:

• For each group i of `, we have 0  ~s`v[i]  ~w`[i] (from the definition of

the partial cluster),

• For each group i of `, we have ~w`[i]  max{⌫.
P

i0 ~w
`[i0], 1} (from the

properties of the groups by Lemma 16),

• If v is a leaf vertex of T , then �`v is a leaf node of the backbone tree of `.

(from the definition of the backbone tree)

We say that ` is a leaf partial cluster type at v if �`v is a leaf node of

the backbone tree of ` and ~s`v[�
`
v] = 1.

Edge Load, Cluster Cost, and Partial Cluster Cost. Let ⌫ > 0. For

each cluster C ✓ P and each edge e 2 E, we define the load of the edge

with respect to the cluster as follows. Consider the groups C⌫ = {g1, . . . , g�}
representing C. Let H = H⌫(C). We use loadC(e) to denote the load of e with

respect to C, which is the number of paths pH(u, v) that contains edge e over all

(u, v) 2 X (recall that X = [�i=1Xi, where Xi = {(u, v) : u 2 gi & v 2 C \gi}),

22



namely loadC(e) = |{(u, v) 2 X : e 2 pH(u, v)}|. Observe that

costH⌫ (C) =
X

e2E(T )

loadC(e).w(e).

Consider a vertex v and a partial cluster type `. Let ev denote the edge

connecting v to its parent in T . One can verify that the load of edge ev with

respect to this partial cluster can be obtained as follows:

load`(ev) =
� �X

i=1,i 6=�v

~s`v[i]
�
⇥
� �X

i=1

(~w`[i]� ~s`v[i])
�

| {z }
#pairs such that one is below �v

+ ~s`v[�v]⇥
� �X

i/2�v

~w`[i]
�

| {z }
#pairs such that none of them is below �v

(2.17)

We define and compute the cost of a partial cluster type ` with respect to

a vertex v (we denote it by cost`v) recursively as follows. For the base case,

cost`v = 0, if v is a leaf vertex. For the recurrence, cost`v = cost`v1 + cost`v2 +

load`(ev1)w(ev1) + load`(ev2)w(ev2), where v1, v2 are children of v.

Consider a cluster C ✓ P . Note that the groups of each cluster always

include r (see Algorithm 1). Let ` be the partial cluster type representing C

at r. Observe that cost`r = costH⌫ (C).

2.3.2 Dynamic Program

The Dynamic Program (DP) traverses T starting at the leaves and moving

upward and considers all ways clusters can be made. We have a subproblem

entry in our dynamic program table for each vertex v and each configuration

( to be defined) for partial clusters for Tv. A configuration Pv 2 [k]�
��2n2�

specifies, for each type ` 2 {1, 2, · · · , ���2n2�}, the number of partial clusters

of type ` covering points inside subtree Tv.

Consider a vertex v of T . Assume for now that we have access to an inner

table �[Pv,Pv1 ,Pv2 ] that for every combination of configurations of Pv on v

and Pv1 ,Pv2 on its children, v1, v2, indicates whether they are consistent or

not, i.e. there is a solution such that for the subtrees v, v1, v2, the description

of partial clusters below v, v1, v1 is Pv,Pv1 ,Pv2 . We will explain in the next

section (Section2.3.3) how � is computed. We let A[v,Pv] store the minimum

cost of a set of partial clusters, whose types are consistent with Pv, covering

all points in Tv.

We will compute subproblems A[v,Pv] in a bottom-up manner: we compute

23



A[v,Pv] after we have computed the subproblems A[v1,Pv1 ], A[v2,Pv2 ] for the

children of v.

Base Case. For each leaf vertex v and every configuration Pv:

A[v,Pv] =

(
0 if Pv[`] = 1 for some ` which is a leaf partial cluster at v.

1 o.w.

(2.18)

Recurrence. For each internal vertex v and its children, v1, v2 and every

combination of configurations of Pv on v and Pv1 ,Pv2 :

A[v,Pv] = min
Pv ,Pv1 ,Pv2 :�[Pv ,Pv1 ,Pv2 ]=True

X

i=1,2

�
A[vi,Pvi ] + load(vi)w(vvi)

�
(2.19)

where load(vi) =
P

` Pvi [`]load
`(evi).

The optimal solution of k-SMHC is the minimum of A[r,Pr] over all Pr

such that:

1.
P

` Pr[`] = k

2. For each partial cluster type ` with Pr[`] > 0, we have ~s`r[i] = ~w`[i] holds

for all i.

2.3.3 Consistency Constraints

Consider a vertex v and its two children v1, v2. Let Pv = (tc, �v,~sv), Pv1 =

(tc1 , �v1 ,~sv1), Pv2 = (tc2 , �v2 ,~sv2) be considered valid partial cluster types at

v, v1, v2, respectively. We say the partial cluster type Pv (with respect to Tv)

is consistent with the two partial clusters Pv1 and Pv2 (with respect to Tv1 and

Tv2 , respectively) if the following holds:

• Type Consistency. The cluster types of Pv1 and Pv2 are consistent

with that of Pv: tc = tc1 = tc2 .

• Group Consistency. The groups of Pv1 and Pv2 are consistent with

those of Pv: Recall that �v indicates the split group of a partial cluster

Pv and �v indicates the inner groups of Pv. Let �inv = �({�v}) \ �v be

the inner groups adjacent to �v where �({�v}) indicates groups adjacent

24



(a) (b) (c)

Figure 2.3: Three possible ways that a vertex v and its children v1 and v2 may
belong to one or two groups of a cluster. Note that each cluster covers only
a subset of points, however, the groups of the cluster always include all the
vertices of T (see Algorithm 1).

to �v (in the backbone tree). Depending on the values of �v, �v1 , �v2 , one

of the following cases holds:

– If �v = �v1 = �v2 (See Figure 3.7a), then we ensure that:

∗ �inv1 [ �
in
v2 = �inv

∗ �inv1 \ �
in
v2 = ;

– If �v = �v1 and �v2 2 �inv (See Figure 3.7b), then we ensure that:

∗ �inv1 = �inv \ {�v2}
∗ �inv2 = �({�v2}) \ {�v}

– If �v = �v2 and �v1 2 �inv (See Figure 2.3c), then we ensure that:

∗ �inv2 = �inv \ {�v1}
∗ �inv1 = �({�v1}) \ {�v}

• Size Consistency. The group sizes of P1 and P2 are consistent with

those of P . Note that points are located only at leaves. Depending on

the values of �v, �v1 , �v2 , one of the following cases holds:

– If �v = �v1 = �v2 (See Figure 3.7a), then we ensure that:

∗ ~sv1 [�v1 ] + ~sv2 [�v2 ] = ~sv[�v]

– If �v = �v1 and �v2 2 �inv (See Figure 3.7b), then we ensure that:

∗ ~sv2 [�v2 ] = ~w[�v2 ]

∗ ~sv1 [�v1 ] = ~sv[�v]

– If �v = �v2 and �v1 2 �inv (See Figure 2.3c), then we ensure that:

25



∗ ~sv1 [�v1 ] = ~w[�v1 ]

∗ ~sv2 [�v2 ] = ~sv[�v]

Note that the case that �v1 = �v2 , �v 6= �v1 is impossible since each group

of the cluster covers a connected subtree. Furthermore, the case when �v1 2
�inv & �v2 2 �inv is impossible using the fact that there is no point on the internal

node v (see Algorithm 1).

For every combination of configurations on v and its children, v1, v2, �[Pv,Pv1 ,Pv2 ]

is computed recursively as below. For the base case �[~0,~0,~0] = TRUE. For

the recurrence, we consider all possible consistent valid partial cluster types

Pv, Pv1 and Pv2

�[Pv,Pv1 ,Pv2 ] =
_

8 consistent Pv ,Pv1 ,Pv2

�[Pv � Pv,Pv1 � Pv1 ,Pv2 � Pv1 ]

where Pv �Pv indicates the configuration of Pv with one less partial cluster of

type Pv.

2.3.4 Analysis

It is not hard to verify that the dynamic program computes the optimal solu-

tion. Note that for each vertex v, we compute values of nO(���2n2�) subprob-

lems and each such a value can be computed in time nO(���2n2�). Thus our

algorithm runs in exponential time.

In the next section, we decrease the size of our dynamic program (the

number of subproblems) by approximately storing the weights and sizes of the

partial cluster type. This will lead to the main result of this chapter, namely,

the first QPTAS for the k-MSC problem.

2.4 A Quasi-Polynomial Time Dynamic Pro-

gram

Consider a k-SMHC instance on a tree consisting of a weighted rooted tree

T = (V,E), a set of points P ✓ V , and a constant ⌫ > 0. Let h be the height

of the tree T . Let OPT be the cost of the optimal k-SMHC solution to this

instance. For any given ✏ > 0, our modified dynamic programming algorithm

26



will find a partitioning of the points P into k clusters C1, ..., Ck such that
Pk

i=1 costH⌫ (Ci) is at most (1 +O(✏h))OPT .

✏-Restricted Partial Cluster Types. Let ⌫ > 0. As before, we associate

with each cluster C ✓ P a pair (tb, ~w), in which tb 2 {1, 2, · · · , ���2} specifies

the type of the backbone tree of the cluster and ~w[i] specifies the weight of the

i-th group of the cluster, where � = O(1/⌫) is an upper bound for the number

of the groups. However, here we store the groups’ weights approximately. We

define a set of threshold values (see below), and for each group i of the cluster

(instead of storing the exact weight of the group), we round up the weight of

the group to the nearest threshold and store this (rounded) value at ~w[i].

Definition 12. For ✏ > 0, let �✏ = {�1, · · · ,�⌧} be a set of threshold val-

ues, where �i = i for 1  i  d1✏ e, �i = d�i�1(1+ ✏)e for i > d1✏ e, and �⌧ = n.

So ⌧ = O(log n/✏). We define a mapping � which associates with each value

1  i  n the minimum threshold value �j for which i  �j holds.

This gives O(���2 log� n/✏) many di↵erent pairs (tb, ~w) (we refer to them as

✏-restricted cluster types) to represent the ✏-restricted partial clusters. Remind

that ⌫ = ✏ and � = O(1/⌫).

We also associate with each partial cluster C ✓ P and each vertex v 2 V

a triple (tc, �v,~sv) in which tc 2 {1, 2, . . . , O(���2 log� n/✏)} indicates the type

of the ✏-restricted cluster C, and ~sv 2 ��✏ denotes the node sizes rounded up to

the nearest thresholds. That gives a poly-logarithmic number of ✏-restricted

partial cluster types.

As before, we use ` 2 {1, 2, . . . , O(���2 log� n/✏)}} to refer to a specific

✏-restricted partial cluster type. We retain all the notations and terminolo-

gies we defined for the partial cluster types. Note that since all the nota-

tions and terminologies are written in terms of triple (tc, �v,~sv), they can

be extended naturally to the case of the ✏-restricted partial cluster types.

We say an ✏-restricted partial cluster type ` is valid if its corresponding

triple (tc, �v,~sv) satisfies the conditions mentioned for a valid partial cluster

type. For a vertex v and a ✏-partial cluster type `, the load of edge ev with

respect to this ✏-restricted partial cluster can be computed as load`(ev) =
�P�

i=1,i 6=�v ~s
`
v[i]

�
⇥
�P�

i=1(~w
`[i]� ~s`v[i])

�
+ ~s`v[�v] ⇥

�P�
i/2�v

~w`[i]
�
, and thereby

the cost of the ✏-restricted partial cluster cost`v can be obtained recursively, as

before.

27



Note that (unlike the case of the partial cluster type) here (tc, �v,~sv) stores

the weights and the sizes of the cluster approximately (rounded up to the

nearest thresholds) and so load`(ev) we just computed might overestimate the

actual load of the edge by a factor of (1 + ✏). In the next section, we will see

how this causes our dynamic program to obtain a (1 + O(✏h))-approximation

solution.

2.4.1 Dynamic Program

The dynamic program is very similar to the one presented in the previous

section. We use (almost) the same configuration for each v 2 V (T ). A

configuration Pv 2 [k]O(���2 log� n/✏)} at a vertex v specifies, for each type

` 2 {1, 2, . . . , O(���2 log� n/✏)}}, the number of ✏-restricted partial cluster

types of type ` covering points inside subtree Tv. We let A[v,Pv] store the

minimum cost of a set of ✏-restricted partial clusters, whose types are con-

sistent with Pv, covering all points in Tv. Observe that the number of such

subproblems is at most nO(���2 log� n/✏)}.

As before, we assume that we have access to an inner table �[P,P1,P2] that

for every combination of configurations of P on v and P1,P2 on its children,

v1, v2, indicates whether they are consistent or not. We will explain in the

next section how � is computed.

We will compute subproblems A[v,Pv] in a bottom-up manner: we compute

A[v,Pv] after we have computed the subproblems A[v1,Pv1 ], A[v2,Pv2 ] for the

children of v. Analogous to our previous dynamic program, subproblems are

computed in post order as follows.

Base Case. For each leaf vertex v:

A[v,Pv] =

(
0 if Pv[`] = 1 for some ` which is a leaf partial cluster at v.

1 o.w.

(2.20)

Recurrence. For each internal vertex v and its children, v1, v2:

A[v,Pv] = min
Pv ,Pv1 ,Pv2 :�[Pv ,Pv1 ,Pv2 ]=True

X

i=1,2

�
A[vi,Pvi ] + load(vi)w(vvi)

�
(2.21)

where load(vi) =
P

` Pvi [`].load
`(evi).

28



The final solution of k-SMHC on points P ✓ V is the minimum of A[r,Pr]

over all Pr such that
P

` Pr[`] = k and for each ✏-restricted partial cluster type

` with Pr[`] > 0, we have ~s`r[i] = ~w`[i] holds for all i.

2.4.2 Consistency Constraints

The consistency-checking process is very similar to that in the previous section,

though here (when we check the size consistency), we need to take the fact

that the weights and sizes are stored approximately into our consideration.

Let P = (tc, �v,~sv), P1 = (tc1 , �v1 ,~sv1), P2 = (tc2 , �v2 ,~sv2) be considered valid ✏-

restricted partial cluster types at v, v1, v2, respectively. We say the ✏-restricted

partial cluster P (with respect to Tv) is consistent with the two ✏-restricted

partial clusters P1 and P2 (with respect to Tv1 and Tv2 , respectively) if the

following holds:

• Type Consistency. The cluster types of Pv1 and Pv2 are consistent

with that of Pv: tc = tc1 = tc2 .

• Group Consistency. The groups of Pv1 and Pv2 are consistent with

those of Pv. Depending on the values of �v, �v1 , �v2 , one of the following

cases holds:

– If �v = �v1 = �v2 , then we ensure that:

∗ �inv1 [ �
in
v2 = �inv

∗ �inv1 \ �
in
v2 = ;

– If �v = �v1 and �v2 2 �inv , then we ensure that:

∗ �inv1 = �inv \ {�v2}
∗ �inv2 = �({�v2}) \ {�v}

– If �v = �v2 and �v1 2 �inv , then we ensure that:

∗ �inv2 = �inv \ {�v1}
∗ �inv1 = �({�v1}) \ {�v}

• Size Consistency. The sizes of Pv1 and Pv2 are consistent with those

of Pv. Depending on the values of �v, �v1 , �v2 , one of the following cases

holds:

– If �v = �v1 = �v2 , then we ensure that �
�
~sv1 [�v1 ] +~sv2 [�v2 ]

�
= ~sv[�v].

29



– If �v = �v1 and �v2 2 �inv , then we ensure that ~sv2 [�v2 ] = w[�v2 ] and

~sv1 [�v1 ] = ~sv[�v].

– If �v = �v2 and �v1 2 �inv , then we ensure that ~sv1 [�v1 ] = w[�v1 ] and

~sv2 [�v2 ] = ~sv[�v]

For every combination of configurations on v and its children, v1, v2, �[Pv,Pv1 ,Pv2 ]

is computed recursively as below. For the base case �[~0,~0,~0] = TRUE. For

the recurrence, we consider all possible consistent partial cluster types Pv, Pv1

and Pv2

�[Pv,Pv1 ,Pv2 ] =
_

8 consistent Pv ,Pv1 ,Pv2

�[Pv � Pv,Pv1 � Pv1 ,Pv2 � Pv1 ]

where Pv �Pv indicates the configuration of Pv with one less partial cluster of

type Pv.

2.4.3 Analysis

Recall that in our DP, configurations store the rounded sizes (and the rounded

weights) of the partial clusters’ groups, i.e. to check the consistency of sizes

of groups of a subproblem at v with children v1, v1, we allowed the size of the

group at v to be a (1+✏) upper bound for the added size of this group at v1, v2.

This causes a multiplicative error of at most (1+✏), in the calculation of edges’

loads and so the cost of the partial cluster, at every vertex of the tree when we

round the sizes (weights) of a merged partial cluster. Since the height of the

tree is h, it is not hard to verify that our DP finds an (1 + ✏)h-approximation

solution to the problem.

Note that for each vertex v, the number of the possible configurations Pv is

at most nO(���2 log� n/✏)}. Therefore the number of the dynamic program table

entries is nO(���2 log� n/✏)}. To compute each dynamic program table entry at

v, we iterated over all consistent configurations at v, v1, v2. Similar to v, the

number of the possible configurations at v1, v2 is nO(���2 log� n/✏)} too. Deciding

whether configurations Pv,Pv1 ,Pv2 are consistent requires iterating over all con-

sistent partial clusters Pv, Pv1 , Pv2 which is at most equal to O(���2 log� n/✏)}.
Therefore computing each table entry takes nO(���2 log� n/✏)} time. Hence run-

ning time is nO(���2 log� n/✏)} which is quasi-polynomial in n.

Suppose h = log n. Note that for su�ciently small values of ✏ we have

(1 + ✏)h ⇡ 1 + ✏h. Hence, by setting ✏0 = ✏
logn in the threshold mapping and

30



without modifying ⌫ , our DP finds a (1 + ✏) approximation solution in time

n
log

� n
✏0/ logn = nlog�+1 n/✏ which is still quasi-polynomial in n.

Theorem 13. There is a QPTAS for the k-MSC problem on trees with loga-

rithmic heights.

In the next chapter, we will show how to extend the result to the general

trees and the graphs with bounded treewidth.

31



Chapter 3

k-MSC on Graphs of Bounded

Treewidth

This chapter will provide a quasi-polynomial time (1 + ✏)-approximation dy-

namic program for the k-MSC problem on graphs with bounded treewidth.

We will extend the approximation schemas presented in the previous chapter

(for the case of tree metrics) to the more general case of graphs with bounded

treewidth. First, we will show that (similar to the case of tree metrics) a

QPTAS for a simplified variant of the (k,�)-MHC problem gives a QPTAS

for the k-MSC problem on graphs with bounded treewidth and thereby we

will find a (1 + ✏)-approximation solution for the problem using the dynamic

programming approach.

3.1 Preliminaries

Bounded Treewidth Graphs. Let G = (V,E) be a graph. A tree decompo-

sition of G is a tree T = (V 0, E 0) on a new set of nodes V 0, where each i 2 V 0

corresponds to a subset bi, called a bag, of vertices of V with the following

properties:

• [i2V 0bi = V .

• For every edge uv 2 E, there exists a bag t of T such that bt contains

both u and v.

• If bi, bj contain vertex v then every bag on the path between i and j in

T contains v.

32



(a) (b)

Figure 3.1: (a) A graph G. (b) A tree decomposition T of the graph.

The width of a tree decomposition T is the size of the largest bag of T minus

one; this is maxi2V 0(|bi|�1). The treewidth of a graph G is the minimum width

over all possible tree decompositions of G. Note that the treewidth of trees is

1. See Figure 3.1.

The authors of [7] showed that any graph G = (V,E) with treewidth f has

a tree decomposition T of width at most 3f + 2 that has the following two

extra properties:

• T is binary.

• The height of T is O(log |V |).

Notations. Consider a graph G = (V,E) with a tree decomposition T =

(V 0, E 0). We will refer to G as the graph and T as the tree. We will refer

to vertices in V as nodes and vertices in V 0 as bags. We abuse the notation

and use b to refer to a bag and its corresponding vertex in V 0. We will refer

to edges in G as edges and edges in T as super-edges. Let T be rooted at

an arbitrary bag r 2 V 0. A tree bag is called a leaf bag if it has no children

and is called an internal bag otherwise. The level of each bag is the number

of super-edges on the path connecting it to r in T . We use Tb to denote the

subtree rooted at the bag b, V 0(Tb) to denote the bag set of Tb, and E 0(Tb)

to denote the super-edge set of Tb. For each bag b 2 V 0, let V 0
b = [i2V 0(Tb)bi

denote the union of nodes in bags of V 0(Tb). Let p : V 0 ! V 0 be a mapping of

bags that maps each bag to its parent bag and maps r to itself.

33



We refer to the edges {(s, t) 2 b⇥ p(b)} as the bridge-edges with respect to

the super-edge eb. We use ebs,t to refer to the bridge-edge that connects s 2 b

to t 2 p(b). We add an edge between u and v in G with weight dG(u, v) (if it

does not exist).

For any pair of points u, v 2 V , one can verify that equivalent to the path

pH(u, v) there exists a path on bags of T connecting u and v that consists

of only the bridge-edges over the super-edges connecting Bu to Bv in T . We

write pB(u, v) to refer to this path. See Figure 3.6.

The Min-Sum k-Clustering Problem on Bounded Treewidth Graphs.

Given a graph G = (V,E) with treewidth f 0, and a set P ✓ V of points, let

T = (V 0, E 0) be a binary decomposition tree of width at most 3f 0 + 2 and

height O(log n). Let f be the width of T . We assume that for each point

u 2 P , there is only one bag b 2 V 0 that contains u. Recall that each node

u 2 V may appear in multiple bags of V 0, and the bags containing u form a

subtree of T . To ensure that each point is covered exactly once, we mark only

one of these bags as the bag containing the point: we place the point of a node

at the bag containing the node which is closest to the root bag of T . Next,

we further change the points so that only leaf bags of the decomposition tree

contain points. To ensure this, repeatedly duplicate each internal bag that

contains a point, mark the new copy as the bag containing the point, and then

connect this copy to the original bag as a child. Finally, remove all leaf bags

with no points. Notice that the tree remains binary, and tree height is still

O(log n). See Figure 3.2. We refer to the resulting tree decomposition with all

the properties mentioned above as the proper tree decomposition of the graph.

For each point u, we let Bu denote the bag that contains u. For each C ✓ P ,

let BC = {Bu : u 2 C}. Let dG(u, v) denote the (shortest-path) distance in

G between u and v. For a given set C ✓ P of points, we use D(C) to denote

the sum of pairwise distances of the points in C, D(C) =
P

{u,v}✓C dG(u, v).

Also, For a given set C ✓ P of points and a given set of vertices H ✓ V ,

called hubs, we denote the sum of pairwise hub-distances of the points in

C by DH(C) =
P

{u,v}✓C dH(u, v), where dH(u, v) = minh1,h22H
�
dG(u, h1) +

dG(h1, h2) + dG(h2, v)
�
. In other words, dH(u, v) is the shortest path between

u, v that crosses two hubs, not necessarily distinct.

Definition 14 (graph k-MSC). Given an edge-weighted graph G = (V,E), a

34



Figure 3.2: Each big circle represents a bag, the small points inside each bag
are the nodes of the corresponding bag, a circle around a point shows that it
is a token. By creating two duplicates of the bag on the left, the token with
dark shade is placed in a leaf bag on. the right.

(a)

(b) (c)

Figure 3.3: (a) A graph including a set of points (in grey). (b) A tree decom-
position of the graph in which each point is placed in exactly one bag. (c) A
proper tree decomposition of the graph in which points are placed only in leaf
bags, each point is placed in exactly one bag.

35



set of n points P ✓ V and a positive integer k (such that k  n), the goal is

to partition points P into k clusters C1, ..., Ck to minimize the sum of pairwise

distances between points assigned to the same cluster:
Pk

i=1 D(Ci).

Like trees, we formulate a closely related problem, called the Min �-Hub

k-Clustering problem, (k,�)-MHC.

Definition 15 (graph Min �-Hub k-Clustering). Given a set of points P ✓ V

and a weighted graph G = (V,E), in (k,�)-MHC, we are asked to partition

points P into k clusters C1, ..., Ck and associate with each cluster Ci a set of

hubs Hi ✓ V of size at most � (that is |Hi|  �) to minimize
Pk

i=1 DHi(Ci).

3.2 Approximate Equivalence of k-MSC and

(k,�)-MHC

Let ✏ > 0. In this section, we show that finding a (1 + ✏)-approximation for

(k,O(1✏ ))-MHC will imply a (1 + O(✏))-approximation for k-MSC on graphs

with bounded treewidth.

Analogous to the case of trees, employing the following lemma (together

with Theorem 17), we will show how to find a constant-size set of “proper”

hubs such that DH(C) would be almost equal to D(C) for a given set C of

points; this is: D(C)  DH(C)  (1 +O(✏))D(C).

For a tree decomposition T = (V 0, E 0) and a subset of bags V̂ ✓ V 0, we

use �(V̂ ) = {bi 2 V̂ : bibj 2 E 0 & bj /2 V̂ } to denote the border bags of V̂ .

Lemma 16. Given a graph G = (V,E) of bounded treewidth, a proper tree

decomposition T = (V 0, E 0) of G, a set of points C ✓ P , for any ✏ > 0, there

exists a partition of V 0 into a set of groups C✏ = {g1, . . . , g�} such that all of

the following properties hold:

• � = O(1/✏).

• The subgraph induced by each group g 2 C✏ is connected in T .

• For each group g 2 C✏, |g \BC | 2 [1,max {1, ✏|C|}].

• 8g 2 C✏, |�(g)| = O(1/✏).

36



(a)

(b)

Figure 3.4: An illustration of the execution of Algorithm 1 on a proper tree
decomposition of a graph. (a) Shaded regions highlight the three di↵erent
groups obtained by the algorithm. Circles around bags specify the bags picked
as hubs by the algorithm. (b) Circles around nodes specify the corresponding
set of hubs in the graph. Observe that each path in the graph between any
pair of points u and v that are in di↵erent groups (for example, all paths
connecting v1 to v9) go through hubs, hence we have dG(u, v) = dH(u, v) holds
for such u and v as long as H includes all vertices in the border bags as picked
by the algorithm.

37



Proof. Since there is no point in the internal bags and there is (exactly) one

point in each leaf bag of the proper tree decomposition, the partitioning C✏

of T can be computed using Algorithm 1 (by replacing C with BC in the

algorithm) and so the proof is exactly similar to the proof of Lemma 2.2. See

Figure 3.4.

Theorem 17. Given an edge-weighted graph G = (V,E), a proper three de-

composition T = (V 0, E 0) of width f = O(1) for the graph G, a set of points

C ✓ P , for any ✏ > 0, there exists a set of hubs H ✓ V of size O(1/✏) (this is,

|H| = O(f✏ )) for which the following holds: D(C)  DH(C)  (1+O(✏))D(C).

Proof. Since the proof is very similar to that of Theorem 6, we shall sketch

the proof, referring the reader to that proof for more details.

Let C✏ = {g1, . . . , g�} be the groups of C by Lemma 16. For each group

gi 2 C✏, we let V (gi) = [j2gibj denote the set of all vertices and points inside

(the bags of) that group, and mi = argminv2V (gi)

�P
u2V (gi)\C dG(u, v)

�
be

the median hub of the group, and Ĥi = [j2�(gi)bj be the border hubs of the

group. Let H = [�i=1

�
Ĥi [ {mi}

�
be the hub set of V (note that H ✓ V ).

Observe that |H| = O(f✏ ) using Lemma 16 and the fact that the size of bjs is

f . It is easy to verify that D(C)  DH(C) holds for each choice of H (by the

definitions), so we need to show that DH(C)�D(C)  O(✏)D(C) holds with

respect to this choice of H.

Let I = [�i=1Ii, where Ii = {(u, v) : u 2 V (gi) & v 2 V (gi)}. Let X =

[�i=1Xi, where Xi = {(u, v) : u 2 V (gi) & v 2 C \ V (gi)}. One can verify that

DH(C)�D(C) =
X

(u,v)2I

dH(u, v)�
X

(u,v)2I

dG(u, v).

and X

(u,v)2I

dH(u, v)  2
X

(u,v)2I

dG(u, v)

and X

(u,v)2I

dT (u, v)  O(✏)
X

(u,v)2X

dG(u, v).

hold for this choice of H (we refer the reader to the proof of Theorem 6 for

details).

These three together imply DH(C)�D(C)  O(✏)D(C) as desired.

38



Let ✏ > 0. Consider a cluster C ✓ P . Let C✏ = {g1, . . . , g�} be the

cluster groups. For each such cluster C and any constant ✏ > 0, we let

H✏(C) = [�i=1[j2�(gi) bj denote the border hubs of the cluster and costH✏(C) =
P�

i=1

P�
j=i+1

P
u2V (gi)\C,v2V (gj)\C dH✏(C)(u, v) be the ✏-approximate cost of the

cluster. Similar to the case of trees, two immediate corollaries of Theorem 17

are the following.

Corollary 18. Let ✏ > 0. A (1 + ✏)-approximation for (k,O(1/✏))-MHC will

imply a (1 +O(✏))-approximation for k-MSC on bounded treewidth graphs.

Definition 19 (graph Simplified Min-Hub k-Clustering problem (k-SMHC)).

Given a constant ⌫ > 0, a set of points P ✓ V and a weighted graph G =

(V,E), in k-SMHC, we are asked to partition points P into k clusters C1, ..., Ck

to minimize
Pk

i=1 costH⌫ (Ci).

Corollary 20. Given ✏ > 0, for some ⌫ = O(✏), a (1 + ✏)-approximation

for k-SMHC, will imply a (1 + O(✏))-approximation for k-MSC on bounded

treewidth graphs.

3.3 QPTAS Dynamic Program for k-MSC

Given ⌫ > 0, G(V,E), P ✓ V , and a proper decomposition tree T = (V 0, E 0) of

graph G with treewidth f and height less than c log n, for some constant c, let

OPT be the value of partitioning P into k clusters C1, C2, · · · , Ck such that
Pk

i=1 costH⌫ (Ci) is minimized. Let ✏ > 0. We will present a dynamic program

to find a (1+ ✏) approximation for OPT which, thanks to Theorem 17, implies

a (1 +O(✏))-approximation solution for k-MSC.

Cluster, Backbone Tree, and Partial Cluster Types. Consider a clus-

ter C ✓ P . Let C⌫ = {g1, . . . , g�} be the groups by Lemma 16. Each group

gi contains a subset of the bags of T . Similar to Section 2.4, we construct the

backbone tree associated with C which is a tree with O(1/⌫) nodes correspond-

ing to groups of C⌫ and with edges between those nodes whose corresponding

groups are connected by an edge in T .

Definition 21. Given ✏ > 0, let ✏0 be ✏
c logn . Let logarithmic threshold

values be �0
✏,n = {�0

1, · · · ,�0
⌧ 0} where �0

i = i for 1  i  d 1✏0 e, and for i > 1
✏0

we have �0
i = d�0

i�1(1 + ✏0)e, and �0
⌧ 0 = n. So ⌧ = O(log n/✏0). We define

39



a mapping �0 which associates with each value 1  i  n the minimum

threshold value �j for which i  �0
j holds.

An ✏-restricted cluster type (associated with a cluster) is a node-weighted

backbone tree with weights vector ~w 2 �0
✏,n

� which for each group of the cluster

(so for each node of the backbone tree) stores the number of points within the

group’s bags rounded up to the nearest threshold.

We associate to each cluster and each bag b of T , an ✏-restricted partial

cluster type with respect to Tb with a size vector ~sb 2 �0
✏,n

� which for each group

of the cluster stores the points at the intersection of the bags of the group and

V 0
b , rounded up to the nearest threshold. We use ~sb 2 �0

✏,n
� to denote the size

vector of the cluster with respect to Tb. We use a triple (tc, �b,~sb) to denote a

partial cluster with respect to b in which tc indicates the type of the cluster,

�b indicates the cut group of the cluster (the group of the cluster that contains

the bag b), and ~sb indicated the size vector of the cluster with respect to Tb.

It is not hard to verify that the number of possible ✏-restricted partial clusters

is O(���2 log�(1+✏0) n) = O(log�+1 n/✏), where we fix � = O(1/⌫).

As before, we use ` 2 {1, 2, . . . , O(log�+1 n/✏)} to refer to a specific ✏-

restricted partial cluster type. We say an ✏-restricted partial cluster type `,

with respect to Tb, is valid if all of the conditions stated in Section 2.3.1 are

satisfied ( i.e. For each group i of `, we have 0  ~s`v[i]  ~w`[i] and we have

~w`[i]  max{⌫
P

i0 ~w
`[i0], 1} and if b is a leaf bag, then �`b is a leaf node of the

backbone tree of `). Parallel to the same section a leaf partial cluster is `

within Tb, such that b is a leaf and ~s`b[�
`
b ] = 1.

Edge Loads, Cluster and Partial Cluster Costs. Let ⌫ > 0. Consider

a cluster C and its groups C⌫ = {g1, . . . , g�}. Let H = H⌫(C) be a set of hubs

of C. For points u and v, we say path pH(u, v) goes via super-edge e 2 E 0 only

if the path between Bu, Bv in T contains the super-edge e. For each cluster

C ✓ P and each super-edge e 2 E 0, we define the load of e with respect to

C, denoted by loadC(e), to be the number of the paths pH(u, v) that goes

via e over all {u, v} 2 X (recall that X = [�i=1Xi, where Xi = {(u, v) : u 2
V (gi) & v 2 C \ V (gi)}.

Consider a partial cluster type ` with respect to some bag b. Let eb denote

the super edge connecting b to its parent bag p(b) in T . One can verify that

the load of super-edge eb with respect to this partial cluster can be obtained

as follows (recall that �`b refers to the group that b belongs to and �b is the set

40



(a) (b)

(c)

Figure 3.5: A cluster and its corresponding weighted backbone tree; the weight
of each node of the backbone tree indicates the number of points within the
group corresponding to that node (top figures). A partial cluster type at vertex
v and its corresponding backbone tree whose nodes are associated with sizes
and weights.

41



(a)

(b) (c)

Figure 3.6: (a) shows path < 1, 3, 4, 6, 9 > on a graph G. (b) shows the same
path by traversing the edges inside bags and (c) shows it by using the bridge
edges on the tree decomposition T for G.

of groups in Tb except �b):

load`(eb) =
� �X

i=1,i 6=�b

~s`b[i]
�
⇥

� �X

i=1

(~w`[i]� ~s`b[i])
�

| {z }
#pairs such that one is below �b

+ ~s`b[�b]⇥
� �X

i/2�b

~w`[i]
�

| {z }
#pairs such that none of them is below �b

Indeed load`(eb) computes the number of the paths pH(u, v) that intersects

the cut-set (b, p(p)) in G over all (u, v) 2 X.

Consider a partial cluster C with respect to b, we define the load of a

bridge-edge ebs,t with respect to C, denoted by loadC(ebs,t), to be the number of

paths pB(u, v) that contains this edge over all {u, v} 2 X. Observe that

costH⌫ (C) =
X

b2V 0

X

{s,t}2b⇥p(b)

loadC(ebs,t).w(e
b
s,t).

42



Also, for any bag b, we have loadC(eb) =
P

{s,t}2b⇥p(b) load
C(ebs,t). We let

load`(ebs,t) denote the the load of a bridge-edge ebs,t with respect to the partial

cluster type `. We note that (unlike the load of the super-edges) the load of a

bridge-edge can not be induced from the sizes and weights of the groups ( we

do not store any details on the nodes inside the bags).

Associated with each partial cluster type ` and each b, we define a vec-

tor  `b with dimension f 2, that  `b[e
b
s,t] specifies the load of each bridge-edge

ebs,t with respect to `. One can now compute the cost of a partial cluster `

at bag b (we denote it by cost`b) recursively as follows. For the base case,

cost`b = 0, if b is a leaf bag. For the recurrence, cost`b = cost`b1 + cost`b2 +P
{s,t}2b1⇥b  

`
b1(e

b1
s,t)w(e

b1
s,t)+

P
{s,t}2b2⇥b  

`
b2(e

b2
s,t)w(e

b2
s,t), where b1, b2 are children

of b.

3.3.1 Dynamic program

The Dynamic Program (DP) traverses T starting at the leaves and moving

upward and considers all ways ✏-restricted partial clusters can be made. A

configuration < b,Pb, b > is defined at each bag b in which P specifies the

number of ✏-restricted partial cluster of each type covering points within Tb

and  b specifies the total load for each bridge-edge over all the partial cluster

types ` specified in Pb; namely,  b =
P

` Pb[`]. `b.

Valid configuration In the validity check of a configuration, we ensure the

feasibility of load distributions relative to partial clusters. Consider a bag b

and configuration (Pb, b). Using the definition of the load of a cluster for

super edges, we can write

 b =
X

`

Pb[`] 
`
bload

`(eb).

Pb, b are consistent with respect together if and only if

�0( b) = �0
✓ X

ebs,t2b⇥p(b)

 [ebs,t]

◆
.

Observe that for the case that b is a leaf, it implies that �0(
P

ebs,t2b⇥p(b)  [e
b
s,t]) =

�0(
P

i w[i]� 1).

Let A[b,Pb, b] be the minimum cost solution for subproblem < b,Pb, b >

43



in which points in V 0
b are covered by a set of partial clusters whose types

(and loads) are consistent with the configuration Pb, b (recall that V 0
b =

[i2Tb
bi). Similar to before, assume that we have access to an inner table

'[(P, ), (P1, 1), (P2, 2)] that for every combination of configurations of (P, )
on b and (P1, 1), (P2, 2) on its children, b1, b2, indicates whether they are con-

sistent or not. In the case that b is a leaf or has one child we represent the

empty configurations for its children by ?.

Base Case. For each leaf vertex b:

A[b,Pb, b] =

(
0 '[(Pb, b),?,?] = True

1 o.w.
(3.1)

Recurrence. For each internal vertex b and its children, b1, b2:

A[b,Pb, b] = min
'[(Pb, b),(Pb1

, b1
),(Pb2

, b2
)]=True

⇢X

i=1,2

�
A[bi,Pbi , bi ] +

X

{s,t}2bi⇥b

 b[e
bi
s,t]w(e

bi
s,t)

��

(3.2)

The case of b having one child is similar.

3.3.2 Consistency Constraints

Consider a bag b and configuration < b,Pb, b > and for its possible children

< b1,Pb1 , b1 >,< b2,Pb2 , b2 >. We break the consistency checking of it

into two parts, the feasibility of 1) partial clusters regarding to (Pb,Pb1 ,Pb2)

and feasibility of 2) load distributions regarding to ( b, b1 , b2), which we

will describe in the same order. We say a configuration is consistent with its

children, if they are all valid configurations and all of the following constraints

are satisfied ('[(Pb, b), (Pb1 , b1), (Pb2 , b2)] = True). We can see Pb is used

to check if a solution is possible,(i.e. it covers all of the points correctly), and

we can view  b as it is used to calculate the cost of a solution as a flow.

Feasibility of Partial Clusters There are three cases based on the degree

of b.

• (Leaf) The following constraint must be satisfied: Pb[`] = 1 for some `

which is a leaf partial cluster at b.

44



• (One child) Assume that b has one child. Consider P1 = (tc1 , �b1 ,~sb1)

be the snapshot of P at b1. Since there is no point on internal bags,

based on Algorithm 1, b and b1 must belong to the same group. In this

case, we must ensure that :

– (Type Consistency) tb = tb1

– (Group Consistency) �b = �b1 , �
in
b = �inb1

– (Size Consistency) ~sb = ~sb1

• (Two children) Assume that b has two children b1, b2. Let P =

(tc, �b,~sb), P1 = (tc1 , �b1 ,~sb1), P2 = (tc2 , �v2 ,~sb2) be considered partial

cluster types at b, b1, b2, respectively. Note that the type of a cluster

is made up of backbone tree tb and weights ~w. Recall that similar to

trees, �({�b}) stands for the adjacent bags of �b and �inb stands for the

adjacent bags of �b inside Tb. We say the partial cluster type P (with

respect to Tb) is consistent with the two partial clusters P1 and P2 (with

respect to Tb1 and Tb2 , respectively) if the following holds:

– (Type Consistency) tc = tc1 = tc2 .

– (Group Consistency)

∗ If �b = �b1 = �b2 , then we ensure that �inb1 [ �
in
b2 = �inb and

�inb1 \ �
in
b2 = ;.

∗ If �b = �b1 and �b2 2 �inb , then we ensure that �inb1 = �inb \ {�b2}
and �inb2 = �({�b2}) \ {�b}.

∗ If �b = �b2 and �b1 2 �inb , then we ensure that �inb2 = �inb \ {�b1}
and �inb1 = �({�b1}) \ {�b}.

– (Size Consistency)

∗ If �b = �b1 = �b2 , then we ensure that �0�~sb1 [�b1 ] + ~sb2 [�b2 ]
�
=

~sb[�b]

∗ If �b = �b1 and �b2 2 �inb , then we ensure that ~sb2 [�b2 ] = w[�b2 ]

and ~sb1 [�b1 ] = ~sb[�b].

∗ If �b = �b2 and �b1 2 �inb , then we ensure that ~sb1 [�b1 ] = w[�b1 ]

and ~sb2 [�b2 ] = ~sb[�b]

For every combination of configurations on b and its children, b1, b2, �[Pb,Pb1 ,Pb2 ]

is computed recursively as below. For the base case �[~0,~0,~0] = TRUE. For

45



(a) (b)

Figure 3.7: Consistency of load distribution per each vertex.

the recurrence, we consider all possible consistent ✏-restricted partial cluster

types Pb, Pb1 and Pb2

�[Pb,Pb1 ,Pb2 ] =
_

8 consistent Pb,Pv1 ,Pv2

�[Pb � Pb,Pb1 � Pb1 ,Pb2 � Pb1 ] (3.3)

where Pb � Pb indicates the configuration of Pb with one less partial cluster of

type Pb.

Feasibility of Load Distributions There are two cases based on the num-

ber of children of b.

• (Leaf) Consider b is a leaf. Suppose y 2 b is the only point of bag b, we

must ensure that: 8st : s 2 b, t 2 p(b), s 6= y, [ebs,t] = 0

• (One child) Consider b has one child b1. Loads of configurations  b, b1

are consistent if and only if, for each vertex of b, the load coming from

b1 into each vertex of b is equal to the load going upwards, formulated

as following (See Figure 3.7a):

8t 2 b.
X

s2b1

 [eb1s,t] =
X

u2p(b)

 [ebt,u]

• (Two children) Consider b has two children b1, b2. For each t 2 b let Lt

be
P

s2b1  [e
b1
s,t], Rt be

P
s2b1  [e

b2
s,t], Ut be

P
s2p(b)  [e

b
t,s]. Load vectors

of configurations  b, b1 , b2 are consistent if and only if for each u 2 bb

one of the constraints below must hold (See Figure 3.7b):

46



– Lb +Rb = Ub

– |Lb �Rb| = Ub

3.3.3 Analysis

The number of the possible ✏-restricted partial clusters is O(log�+1 n/✏), there-

fore the number of the possible subproblem configurations at bag b, Pb is

nO(log�+1 n/✏). The number of the possible values for  , is nf2

, which implies that

the number of the dynamic program table entries is nO(log�+1 n/✏f2). Deciding

whether configurations (Pb, b), (Pvb , b1), (Pb2 , b2) are consistent requires it-

erating over all consistent configurations which are at most equal nO(log�+1 nf2

✏ ).

Therefore running time is nO(log�+1 nf2

✏ ) which is quasi-polynomial in n. Ob-

serve that even if treewidth is poly-logarithmic, the running time stays quasi-

polynomial.

At each level of recursion we lose a factor of (1+✏/ log n) calculatingA[b,Pb].

Since c log n is an upper bound for the height of the tree, the approximation

factor of the final solution is, at most (1 + ✏
c logn)

c logn  1 + ✏. Also note that

the problem of finding treewidth is NP but assuming the treewidth is bounded

finding a tree decomposition takes linear time.

Theorem 22. Given ✏ > 0, there is an algorithm that for an instance of k-

MSC on a f treewidth graph metric with cost OPT , finds a (1+✏) approximate

solution in time nO(log�+1 nf2

✏ ) where � = O(1/✏).

Note that the treewidth of trees is equal to 1, therefore this solution gives

a QPTAS for trees. In the next section, we will extend this algorithm to other

graph metrics (doubling metrics, highway dimensions) by embedding them

into logarithmic tree width decomposition trees.

47



Chapter 4

Generalization to k-MSC on

Doubling Metrics and Highway

Dimension

This section shows how to extend our algorithm to metrics with bounded dou-

bling dimension and bounded highway dimension via embedding to Bounded

Treewidth graphs. Firstly we show that an embedding of a graph metric with

(1 + ✏) distortion gives us a (1 + ✏) solution in base metric, and then we show

that we can assume that the aspect ratio of the given metric is polynomially

bounded and then we use our QPTAS on bounded treewidth graphs as a black

box.

4.1 Embedding Lemma

Suppose G is an input graph for an instance of k-MSC. Suppose we have a

probabilistic embedding  : G ! B where B is the host graph metric with

distortion (1 + ✏) i.e for any u, v 2 V (G) we have

dG(u, v)  E[dB((u),(v))]  (1 + ✏)dG(u, v)

We will show that if we can find a near optimum solution in B we can convert

an instance of k-MSC on input graph G to an instance of k-MSC on B and

move the solution of B back to G with additional ✏ cost which is proved in the

next lemma.

48



Lemma 23. Given ✏ > 0, let  : G ! B be a probabilistic embedding with

(1+ ✏) distortion. For instance, IG of k-MSC with optimal solution OPTG we

can create an instance IB of k-MSC on B with optimal solution OPTB and

then move back OPTB to a solution of IG with the cost at most (1 + ✏)OPTG.

Proof. Note that the vertices are the same in both graphs G,B, so a solution

in G is a solution in B (and vice versa). With the help of mapping  : G! B,

we abuse the notation and for a solution S on IG, we use (S) to show the

same solution embedded on IB. Suppose that C1, C2, · · · , Ck are the clusters

of OPTG and C 0
1, C

0
2, · · · , C 0

k are the clusters of OPTB. Let costiG be the cost

of Ci in OPTG where costG(C) =
P

{u,v2C} dG(u, v). Let costiB be the cost

of C 0
i in OPTB where costB(C) =

P
{u,v2C} dB(u, v). We can write OPTG =

P
i costG(Ci) and OPTB =

P
i costB(C

0
i). Let costG(

�1(OPTB)) be the cost of

clusters C 0
1, C

0
2, · · · , C 0

k of solution OPTB as a solution for IG. Our goal is to

show that costG(�1(OPTB))  (1 + ✏)OPTG.

Since in expected we have dG(u, v)  dB((u),(v)), we know that for any

solution S, costG(S)  costB((S)), therefore for any solution SG of IG, we

have OPTB = costB(OPTB)  costB((SG)) and for any solution SB of IB, we

have OPTG = costG(OPTG)  costG(�1(SB)).

costG(
�1(OPTB))  costB(OPTB)  costB((OPTG))

=
X

Ci2OPTG

costB(Ci)

=
X

Ci

(
X

{u,v2Ci}

dB(u, v))


X

Ci

(
X

{u,v2Ci}

(1 + ✏)dG(
�1(u),�1(v)))

= (1 + ✏)
X

Ci

costG(
�1(Ci))

= (1 + ✏)OPTG

(4.1)

4.2 Polynomial Aspect Ratio

In this section, based on [10], we will prove the following standard result that

one can assume the aspect ratio of the given metric of a k-MSC instance is poly-

nomially bounded. Recall that aspect ratio of a metric (X, d) is maxu,v2X d(u,v)
minu,v2X d(u,v) .

49



Lemma 24. Given an ⇢(n)�approximation algorithm for k-MSC on instances

with polynomial bounded aspect ratio that runs in time T , we can obtain a

⇢(n) + o(1)-approximation algorithm for k-MSC on all instances running in

time T + poly(n).

Proof. Given an instance I of k-MSC, we find an upper bound estimate M for

the optimal cost on I (denoted by OPT (I)) by using 2.611-approximation algo-

rithm for k-median of [9], that runs in polynomial time for general metrics. Let

OPTk-median be the cost of the optimal solution for k�median, one can verify

that n.OPTk-median is an upper bound for k-BM which together with the 2 fac-

tor relation between k-MSC and k-BM implies that OPT (I)  6n.OPTk-median

and OPTk-median  OPT (I). (We can write M/3  OPT (I)  6nM). View

the metric space (X, d) as a complete graph. For each edge with weight more

than 12n.⇢(n)M , reduce their weight to 12n.⇢(n)M , and for short edges of

length less than M
n3 increase their length to M

n3 . Computing all-pairs shortest

paths gives us a new metric (X, d0), let I 0 be the corresponding k-MSC instance

on (X, d0). Note that the aspect ratio of (X, d0) will be at most 12n4.⇢(n).

Let S⇤ be the optimal solution of clusters for I and use the given algorithm

to get an ⇢(n) approximate solution S 0. We claim that S 0 is a (⇢(n) + o(1))-

approximate solution for the original instance I. The cost of S⇤ in I 0 is greater

than in I, by at most n2(Mn3 ), for the reason that OPT (I) M , no long edges

would be used in S⇤ and there is only the increase of short edges which implies

that OPT (I 0)  OPT (I) + n2(Mn3 ) = (1 + o(1))OPT (I). Since S 0 is a ⇢(n)-

approximation for I 0, and the weight of long edges are reduced to 12n.⇢(n)M ,

none of the clusters in S 0 will contain a long edge. Therefore

costI(S
0)  costI0(S

0)  ⇢(n)OPT (I 0)  ⇢(n)(1 + o(1))OPT (I)

completes the proof.

4.3 k-MSC on Doubling Metrics

In this section, we will use the following embedding lemma from [24] of graphs

of bounded Doubling Dimensions into Bounded Tree Width Graphs to present

a QPTAS for k-MSC on metrics with constant doubling dimensions.

50



Lemma 25 (Theorem 9 in [24]). Let (X, d) be a metric with doubling dimen-

sion D and aspect ratio �. For any ✏ > 0, (X, d) can be probabilistically

approximated by a family of treewidth k-metrics for k  2O(D)d(4D log�
✏

D
)e .

The following Theorem is a direct implication of Lemmas 23, 25 and The-

orem 22.

Theorem 26. Given ✏, D > 0, there is an algorithm that for an instance of

k-MSC on a D doubling dimension graph, finds a (1+ ✏) approximate solution

in time nO(4↵ logn
✏ (D logn

✏ )2D) where ↵ = O(D)

Proof. Based on Theorem 22 for a graph with treewidth f , we can find a

(1 + ✏) approximate solution in time nO(log�+1 nf2

✏ ), where � = O(1/✏). Based

on Lemma 25 there is an embedding of a doubling metric into a graph with

treewidth f such that f  2O(D)d(4D log�
✏

D
)e with (1 + ✏) distortion. Finally,

using Lemma 23, an approximation scheme on bounded treewidth graphs im-

plies an approximation on doubling metrics. Thanks to Lemma 24, we have

� = O(n5), therefore the running time of algorithm will be nO(4↵ logn
✏ (D logn

✏ )2D)

where ↵ = O(D) .

Euclidean space Rm has a doubling dimension ⇥(m), which is constant

for constant m. As an immediate corollary of Theorem 26 we can use this

theorem for Euclidean metrics. Lemma 25 embeds Rm into a graph with

treewidth O(log n).

Corollary 27. There exist a QPTAS for k-MSC on Euclidean metrics Rm for

any fixed m.

4.4 k-MSC on Highway Dimensions

In this section, analogous to the previous section, we will use the embedding

of graphs of bounded highway dimensions into bounded treewidth graphs from

[14] to devise a QPTAS for k-MSC on constant highway dimensions.

Lemma 28 (Theorem 1.3 in [14]). Let G be a graph with highway dimen-

sion D of violation � > 0 and aspect ratio �. For any ✏ > 0, there exists

a polynomial time computable probabilistic embedding E of G with treewidth

(log�)O(log2( D
✏� )/�) and expected distortion (1 + ✏).

51



Theorem 29. Given ✏ > 0, D > 0,� > 0, there exists a quasi-polynomial

time algorithm that, for an instance of k-MSC on a D highway dimension

graph with violation � and aspect ratio �, finds a (1+ ✏) approximate solution

in time nO( logn
✏ (logn)2↵) where ↵ = O(log2(D✏�)/�).

Proof. Observe that Theorem 22 shows that for a graph with tree width f ,

there is a (1+✏) approximate algorithm running in time nO(log�+1 nf2

✏ ). Based on

lemma 28 there is an embedding of a highway dimension metric into a graph

with treewidth f such that f  (log�)O(log2( D
✏�/�)) with (1 + ✏) distortion.

Finally, using lemma 23, an approximation scheme on treewidth graphs implies

an approximation on highway dimensions. Thanks to lemma 24, we have

� = O(n5), therefore the running time of this algorithm is nO( logn
✏ (logn)2↵)

where ↵ = O(log2(D✏�)/�).

52



Chapter 5

Conclusion and Future

Problems

In this work, we gave a quasi-polynomial time approximation scheme for Min

Sum k-Clustering Problem on graphs with bounded treewidth and bounded

doubling metrics. An immediate question is to make it polynomial time. Since

the number of cluster types is poly-logarithmic, it is not clear how to improve

our algorithm to get a PTAS. Although [11] proved that Metric k-MSC is

APX-HARD to a factor of 1.415.

One possible idea to find a PTAS for k�MSC on other metrics such as

the Euclidean metric, is to use the idea of simplifying the k�MSC objective

function. Actually this simplification is a generalization of corsets. Instead

of storing O(n2) distances between all of the pairs of points, we show that

a selection of O(n) pairs is enough to approximate the k-min sum objective.

One may use this idea on di↵erent problems to work with a candidate subset

instead of the whole input.

53



References

[1] M. Adamczyk, J. Byrka, J. Marcinkowski, S. Meesum, and M.W lodarczyk,
Constant factor fpt approximation for capacitated k-median, Sep. 2018.

[2] M. Aigner and G. M. Ziegler, “Cayley’s formula for the number of trees,”
in Proofs from THE BOOK. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2010, pp. 201–206, isbn: 978-3-642-00856-6. doi: 10.1007/978-3-
642-00856-6_30. [Online]. Available: https://doi.org/10.1007/978-
3-642-00856-6_30.

[3] S. Banerjee, R. Ostrovsky, and Y. Rabani, Min-sum clustering (with
outliers), Nov. 2020.

[4] Y. Bartal, M. Charikar, and D. Raz, “Approximating min-sum k-clustering
in metric spaces,” STOC ’01, pp. 11–20, 2001. doi: 10.1145/380752.
380754. [Online]. Available: https:/ /doi.org/ 10.1145/380752.
380754.

[5] Y. Bartal, M. Charikar, and D. Raz, “Approximating min-sum k-clustering
in metric spaces,” in Proceedings of the Thirty-Third Annual ACM Sym-
posium on Theory of Computing, ser. STOC ’01, Hersonissos, Greece: As-
sociation for Computing Machinery, 2001, pp. 11–20, isbn: 1581133499.
doi: 10.1145/380752.380754. [Online]. Available: https://doi.org/
10.1145/380752.380754.

[6] B. Behsaz, Z. Friggstad, M. Salavatipour, and R. Sivakumar, “Approx-
imation algorithms for min-sum k-clustering and balanced k-median,”
vol. 9134, Jul. 2015, pp. 116–128, isbn: 978-3-662-47671-0. doi: 10.
1007/978-3-662-47672-7_10.

[7] H. L. Bodlaender and T. Hagerup, “Parallel algorithms with optimal
speedup for bounded treewidth,” SIAM Journal on Computing, vol. 27,
no. 6, pp. 1725–1746, 1998. doi: 10.1137/S0097539795289859. eprint:
https://doi.org/10.1137/S0097539795289859. [Online]. Available:
https://doi.org/10.1137/S0097539795289859.

[8] J. Bourgain, “On lipschitz embedding of finite metric spaces in hilbert
space,” Israel Journal of Mathematics, vol. 52, pp. 46–52, 1985.

54

https://doi.org/10.1007/978-3-642-00856-6_30
https://doi.org/10.1007/978-3-642-00856-6_30
https://doi.org/10.1007/978-3-642-00856-6_30
https://doi.org/10.1007/978-3-642-00856-6_30
https://doi.org/10.1145/380752.380754
https://doi.org/10.1145/380752.380754
https://doi.org/10.1145/380752.380754
https://doi.org/10.1145/380752.380754
https://doi.org/10.1145/380752.380754
https://doi.org/10.1145/380752.380754
https://doi.org/10.1145/380752.380754
https://doi.org/10.1007/978-3-662-47672-7_10
https://doi.org/10.1007/978-3-662-47672-7_10
https://doi.org/10.1137/S0097539795289859
https://doi.org/10.1137/S0097539795289859
https://doi.org/10.1137/S0097539795289859


[9] J. Byrka, T. Pensyl, B. Rybicki, A. Srinivasan, and K. Trinh, “An im-
proved approximation for k-median and positive correlation in budgeted
optimization,” ACM Trans. Algorithms, vol. 13, no. 2, Mar. 2017, issn:
1549-6325. doi: 10.1145/2981561. [Online]. Available: https://doi.
org/10.1145/2981561.

[10] V. Cohen-Addad, A. Gupta, A. Kumar, E. Lee, and J. Li, “Tight FPT
Approximations for k-Median and k-Means,” in 46th International Col-
loquium on Automata, Languages, and Programming (ICALP 2019), C.
Baier, I. Chatzigiannakis, P. Flocchini, and S. Leonardi, Eds., ser. Leib-
niz International Proceedings in Informatics (LIPIcs), vol. 132, Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019, 42:1–
42:14, isbn: 978-3-95977-109-2. doi: 10.4230/LIPIcs.ICALP.2019.42.
[Online]. Available: http://drops.dagstuhl.de/opus/volltexte/
2019/10618.

[11] V. Cohen-Addad, C. S. Karthik, and E. Lee, “On approximability of clus-
tering problems without candidate centers,” in Proceedings of the 2021
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 2635–2648.
doi: 10.1137/1.9781611976465.156. eprint: https://epubs.siam.
org/doi/pdf/10.1137/1.9781611976465.156. [Online]. Available:
https://epubs.siam.org/doi/abs/10.1137/1.9781611976465.156.

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 2nd. The MIT Press, 2001, isbn: 0262032937.

[13] A. Czumaj and C. Sohler, “Small space representations for metric min-
sum k-clustering and their applications,” in Proceedings of the 24th An-
nual Conference on Theoretical Aspects of Computer Science, ser. STACS’07,
Aachen, Germany: Springer-Verlag, 2007, pp. 536–548, isbn: 9783540709176.

[14] A. E. Feldmann, W. S. Fung, J. Könemann, and I. Post, “A (1 + ")-
embedding of low highway dimension graphs into bounded treewidth
graphs,” SIAM Journal on Computing, vol. 47, no. 4, pp. 1667–1704,
2018. doi: 10 . 1137 / 16M1067196. eprint: https : / / doi . org / 10 .
1137/16M1067196. [Online]. Available: https://doi.org/10.1137/
16M1067196.

[15] A. Frieze and M. Jerrum, “Jerrum, m.: Improved approximation algo-
rithms for max k-cut and max bisection. algorithmica 18(1), 67-81,”
Algorithmica, vol. 18, pp. 67–81, May 1997. doi: 10.1007/BF02523688.

[16] N. Guttmann-Beck and R. Hassin, “Approximation algorithms for min-
sum p-clustering,”Discrete Applied Mathematics, vol. 89, no. 1-3, pp. 125–
142, 1998.

[17] R. Hassin and E. Or, “Min sum clustering with penalties,” European
Journal of Operational Research, vol. 206, no. 3, pp. 547–554, 2010, issn:
0377-2217. doi: https://doi.org/10.1016/j.ejor.2010.03.004.

55

https://doi.org/10.1145/2981561
https://doi.org/10.1145/2981561
https://doi.org/10.1145/2981561
https://doi.org/10.4230/LIPIcs.ICALP.2019.42
http://drops.dagstuhl.de/opus/volltexte/2019/10618
http://drops.dagstuhl.de/opus/volltexte/2019/10618
https://doi.org/10.1137/1.9781611976465.156
https://epubs.siam.org/doi/pdf/10.1137/1.9781611976465.156
https://epubs.siam.org/doi/pdf/10.1137/1.9781611976465.156
https://epubs.siam.org/doi/abs/10.1137/1.9781611976465.156
https://doi.org/10.1137/16M1067196
https://doi.org/10.1137/16M1067196
https://doi.org/10.1137/16M1067196
https://doi.org/10.1137/16M1067196
https://doi.org/10.1137/16M1067196
https://doi.org/10.1007/BF02523688
https://doi.org/https://doi.org/10.1016/j.ejor.2010.03.004


[Online]. Available: https : / / www . sciencedirect . com / science /
article/pii/S0377221710001724.

[18] J. Heinonen, Lectures on Analysis on Metric Spaces. Jan. 2001, isbn:
978-1-4612-6525-2. doi: 10.1007/978-1-4613-0131-8.

[19] V. Kann, S. Khanna, J. Lagergren, and A. Panconesi, “On the hardness
of approximating max k-cut and its dual,” Chicago J Theoret Comput
Sci, May 1997.

[20] J. Kleinberg and É. Tardos, Algorithm Design. Addison Wesley, 2006.

[21] “Metric structures for riemannian and non-riemannian spaces,” 2007,
Zapis avtomatsko prevzet s spletne strani založnika Springer, issn: 978-
0-8176-4583-0. [Online]. Available: doi:10.1007/978-0-8176-4583-0.

[22] S. Sahni and T. Gonzalez, “P-complete approximation problems,” J.
ACM, vol. 23, no. 3, pp. 555–565, Jul. 1976, issn: 0004-5411. doi: 10.
1145/321958.321975. [Online]. Available: https://doi.org/10.1145/
321958.321975.

[23] S. Sahni and T. F. Gonzalez, “P-complete approximation problems,”
Journal of the ACM (JACM), vol. 23, pp. 555–565, 1976.

[24] K. Talwar, “Bypassing the embedding: Algorithms for low dimensional
metrics,” in Proceedings of the Thirty-Sixth Annual ACM Symposium
on Theory of Computing, ser. STOC ’04, Chicago, IL, USA: Association
for Computing Machinery, 2004, pp. 281–290, isbn: 1581138520. doi:
10.1145/1007352.1007399. [Online]. Available: https://doi.org/10.
1145/1007352.1007399.

[25] W. F. de la Vega, M. Karpinski, C. Mathieu, and Y. Rabani, “Approxi-
mation schemes for clustering problems,” in STOC ’03, 2003.

[26] D. B. West, Introduction to Graph Theory, 2nd ed. Prentice Hall, Sep.
2000, isbn: 0130144002.

[27] Wikipedia contributors, Apx —Wikipedia, the free encyclopedia, [Online;
accessed 11-November-2022], 2021. [Online]. Available: https://en.
wikipedia.org/w/index.php?title=APX&oldid=1040375348.

[28] Wikipedia contributors, Ptas reduction — Wikipedia, the free encyclo-
pedia, [Online; accessed 23-November-2022], 2022. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=PTAS_reduction&
oldid=1102026234.

56

https://www.sciencedirect.com/science/article/pii/S0377221710001724
https://www.sciencedirect.com/science/article/pii/S0377221710001724
https://doi.org/10.1007/978-1-4613-0131-8
doi:10.1007/978-0-8176-4583-0
https://doi.org/10.1145/321958.321975
https://doi.org/10.1145/321958.321975
https://doi.org/10.1145/321958.321975
https://doi.org/10.1145/321958.321975
https://doi.org/10.1145/1007352.1007399
https://doi.org/10.1145/1007352.1007399
https://doi.org/10.1145/1007352.1007399
https://en.wikipedia.org/w/index.php?title=APX&oldid=1040375348
https://en.wikipedia.org/w/index.php?title=APX&oldid=1040375348
https://en.wikipedia.org/w/index.php?title=PTAS_reduction&oldid=1102026234
https://en.wikipedia.org/w/index.php?title=PTAS_reduction&oldid=1102026234

	Introduction
	Preliminaries
	Graphs and Metrics
	Metric Embeddings
	Optimization problems and Approximation algorithms

	Previous Works

	k-MSC on Trees
	Preliminaries
	Approximate Equivalence of k-MSC and (k,)-MHC
	An Exact (but Exponential Time) Dynamic Program
	Cluster, Backbone Tree, and Partial Cluster Types
	Dynamic Program
	Consistency Constraints
	Analysis

	A Quasi-Polynomial Time Dynamic Program
	Dynamic Program
	Consistency Constraints
	Analysis


	k-MSC on Graphs of Bounded Treewidth
	Preliminaries
	Approximate Equivalence of k-MSC and (k,)-MHC
	QPTAS Dynamic Program for k-MSC 
	Dynamic program
	Consistency Constraints
	Analysis


	Generalization to k-MSC on Doubling Metrics and Highway Dimension
	Embedding Lemma 
	Polynomial Aspect Ratio
	k-MSC on Doubling Metrics
	k-MSC on Highway Dimensions

	Conclusion and Future Problems
	References

