
Machine Learning Enabled Prediction of Solvent-Based Reaction

Energetics

by

Yiren Mao

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Process Control

Department of Chemical and Materials Engineering

University of Alberta

© Yiren Mao, 2024

Abstract

Despite recent advancements in molecular dynamics (MD) methods, the computational costs

of ab initio molecular dynamics simulations for explicit solvation systems are still too signif-

icant. If accuracy is to be left uncompromised, new methods must be employed to reduce

computational expenses. This work focuses on the development of machine learning (ML)

models as proxy models for Car-Parrinello molecular dynamics (CPMD) metadynamics sim-

ulations in condensed-phase biomass reactions.

Explicit solvation CPMD metadynamics simulation data of HMF undergoing protonation

in a solution of dimethyl sulphoxide (DMSO) and water is used to train various model archi-

tectures to make time-series predictions of their probability distribution functions (PDFs).

For each model architecture, three models were trained to fully predict the system, one for

each of the following species: reactants, water and DMSO. Each model was tested assuming

an initial simulation had been performed and the proxy models were used to complete the

simulation.

The long short-term memory (LSTM) autoencoder and 3D convolutional neural networks

(CNN)-LSTM autoencoder architectures failed to accurately capture PDF magnitudes and

locations. A binary relevance 3D CNN-LSTM autoencoder, employing different loss func-

tions, showed marginal improvement but struggled to predict probability locations over a

large horizon. Models trained on principal component analysis (PCA)-transformed and

dynamic PCA (DPCA)-transformed data showed promise in training but failed in testing.

Models trained on PDFs without "dead voxels" (zero probability voxels independent of time)

ii

and atomic Cartesian coordinates perform well during training but encounter challenges in

testing due to teacher forcing. Teacher forcing is a training method that can potentially

make the trained model over-reliant on ground truth, which is unavailable if the model is

to be used as a proxy. Despite attempts to mitigate teacher forcing effects through sched-

uled sampling, no model architecture achieves reliable long-term predictions without ground

truth data. However, the model trained on Cartesian coordinates demonstrated proficiency

in making short-term predictions regarding the atomic configuration of the system.

iii

Preface

This thesis is an original work by Yiren (Kevin) Mao. No part of this thesis has been

previously published.

iv

Quitters never win. Winners never quit.

v

Acknowledgements

I would like to first thank my academic supervisors, Dr. Vinay Prasad and Dr. Samir H.

Mushrif, for giving me this incredible opportunity to further my knowledge and push the

boundaries of my capabilities. I could not have done this without your patience, encourage-

ment, and expertise. The passion you both show for your students and your work has and

will continue to inspire me long after I have left the University of Alberta.

Throughout my nearly eight years at the University of Alberta, my family has uncondi-

tionally supported my education and personal growth. My parents, Quan Mao and Rebecca

Li, are also two of my greatest role models. They made great sacrifices to ensure my sister

and I could lead more comfortable and successful lives. They have also patiently bestowed

me with their knowledge and experience so that I may achieve greater heights and pass on

our family values. Thank you to my sister, Joy Mao, who is a wise, hard-working and suc-

cessful person in her own right. You have always been there for me when I needed advice or

someone to talk to, and it is so comforting to see our relationship get stronger.

There is an extremely special place in my heart for my dear girlfriend and future wife,

Holly Chen. Through you, I gained a vast sense of purpose that fuels my passion to be-

come the best person I can be. Through your intelligence and wisdom, I have learned

much. Through your encouragement, comfort and patience, I persevered through tough

times. Through your affection, care and thoughtfulness, I experienced love. I wouldn’t have

made it here without your undying support.

My journey from a high school graduate to a Master’s graduate has been accompanied by

vi

the most incredible cast of friends inside and outside the university. Thank you to Linus Hu

and Adam Mogensen, who are like brothers to me, for over a decade of friendship; one I am

confident will endure for decades to come. Thank you to my good friends Owais Siddiqui,

Edward Fan, Jade Barker, Camryn Lowe, Simon Paisley, Nate Peñas, Dante Luu, Mark

Sulaimanbekov, Rocky Chen, Tiger-Willow Ward, Abdullah Ahmed, Derek Zhang, Daniel

Liu, Jamie Too, Tim Thomson, Levin Joshua, Lauren Cheng, Shahdab Pathan, Karthik

Srinivasan, Chinmay Baliga, Seth Beck, Tanay Kumar and Devavrat Thosar. Each of these

remarkable individuals has their own unique set of strengths; from these strengths, I tried

to learn as much as possible. I am eternally grateful for all your friendships as they helped

me become the person I am today.

I would also like to acknowledge the professors of the Chemical and Materials Engineering

department who have instructed me throughout both my Bachelor’s and Master’s degrees,

as well as the Digital Research Alliance of Canada, for the computational resources they

provided for my research.

Sincerely,

Yiren (Kevin) Mao

Edmonton 2024

vii

Table of Contents

Abstract ii

Preface iv

Acknowledgements vi

List of Tables xi

List of Figures xiii

List of Symbols xvii

Abbreviations xx

1 Introduction 1

2 Literature Review 5

3 Molecular Dynamics Methods 13

3.1 Classical Molecular Dynamics . 13

3.2 Ab Initio Molecular Dynamics . 16

4 LSTM autoencoder application for the time-series prediction of spatial

features from CPMD with metadynamics simulation data 21

4.1 Introduction . 21

viii

4.2 Methods . 22

4.3 Results and Discussion . 30

4.3.1 LSTM Autoencoder Architecture . 30

4.3.2 3D Convolutional neural network LSTM autoencoder architecture . . 33

4.3.3 Binary relevance CNN-LSTM autoencoder classifier architecture . . . 35

4.3.4 Binary relevance CNN-LSTM autoencoder classifier architecture with

a weighted loss function . 39

4.4 Conclusions . 41

5 Alternate dimensionality reduction methods applied for time-series predic-

tion of spatial features from CPMD with metadynamics simulation data 43

5.1 Introduction . 43

5.2 Methods . 44

5.3 Results and Discussion . 46

5.3.1 Principal component analysis and dynamic principal component anal-

ysis for feature reduction . 46

5.3.2 Feature reduction through elimination of negligible features used in

conjunction with an LSTM . 50

5.3.3 Using Cartesian coordinates with an LSTM to predict the future loca-

tions of molecules within the system 53

5.4 Conclusions . 61

6 Conclusion and Future Work 62

6.1 Summary . 62

6.2 Future Work . 65

Bibliography 67

Appendix A 81

ix

A.1 Introduction . 81

A.2 Ground Truth Reactants Projections . 81

A.3 Ground Truth Water Projections . 85

A.4 Ground Truth DMSO Projections . 88

Appendix B 91

B.1 Introduction . 91

B.2 Predicted Reactants Projections . 91

B.3 Predicted Water Projections . 94

B.4 Predicted DMSO Projections . 96

x

List of Tables

4.1 Training and testing results for the 3 LSTM autoencoder model. 32

4.2 Training and testing results for the 3D CNN-LSTM autoencoder model. . . . 34

4.3 Training and testing results for the binary relevance 3D CNN-LSTM classifier

model. 37

4.4 Training and testing results for the binary relevance 3D CNN-LSTM classifier

model on four different artificial datasets. 38

4.5 Number of critical voxels and the weights assigned to each species. 39

4.6 Training and testing results for the binary relevance 3D CNN-LSTM classifier

model using a global weighted loss function. 40

4.7 Training and testing results for the binary relevance 3D CNN-LSTM classifier

model using an “on-the-fly” weighted loss function. 40

5.1 Training and testing results for the LSTM model using PCA-transformed data. 46

5.2 Testing results for the LSTM model using PCA-transformed data with a pre-

diction horizon of H = 1. 48

5.3 Training and testing results for the LSTM model using DPCA-transformed

data. 49

5.4 Training and testing results for the LSTM model using data free of “dead voxels”. 51

5.5 Average F1 scores of the trained models when tested to make 10,000 time-

series predictions with different prediction horizons H. 52

xi

5.6 Mean average percentage error for training, validation and testing for LSTM

using Cartesian coordinates dataset. 54

5.7 Average MAPE of the trained models when tested to make 10,000 time-series

predictions with different prediction horizons H. 54

5.8 Mean average percentage error for training, validation and testing for LSTM

trained using scheduled sampling with cartesian coordinates dataset. 59

5.9 Average MAPE of the trained models when tested to make 10,000 time-series

predictions with different prediction horizons H. 59

xii

List of Figures

3.1 Example of how metadynamics explores a FES for a system that goes from

state A to a more stable state B. The potential energy surface is filled starting

from "well" A as shown by lines 1 and 2. As the "well" gets filled up it spills

into "well" B as shown with line 3. Then the FES is filled uniformly (lines 4

and 5). 20

4.1 Defined collective variables for the protonation of HMF. Adapted from Calderón

and Mushrif [54]. 23

4.2 Projection of a randomly selected PDF for each of the three species onto the

XY plane. 25

4.3 Neuron structure within a neural network. Adapted from Maren et al. [55]. . . 26

4.4 Visualization of a recurrent layer. 27

4.5 Visualization of an LSTM layer. Adapted from Eslamibidgoli et al. [30]. . . . 27

4.6 Representation of the pairing of input sequences to their outputs. 28

4.7 Model architecture of the LSTM autoencoder. 32

4.8 Predicted versus actual PDF of the reactants, water and DMSO for a selected

test time step when using an LSTM autoencoder architecture. 32

4.9 An example of a 3D CNN-LSTM model architecture that was tested. 34

4.10 Predicted versus actual PDF of the reactants, water and DMSO for a selected

test time step when using a 3D CNN-LSTM autoencoder architecture. 35

xiii

4.11 Confusion matrices of the predicted vs actual classes of each voxel for a se-

lected test time step for reactants, water and DMSO based on the binary

relevance CNN-LSTM autoencoder models. 37

4.12 Confusion matrices of the predicted vs actual classes of each voxel for a se-

lected test time step for reactants, water and DMSO based on the binary

relevance CNN-LSTM autoencoder models with a global weighting tensor. . 41

4.13 Confusion matrices of the predicted vs actual classes of each voxel for a se-

lected test time step for reactants, water and DMSO based on the binary rel-

evance CNN-LSTM autoencoder models with an “on-the-fly” weighting tensor. 41

5.1 Predicted versus actual PDF of the reactants, water and DMSO for a selected

test time step when using PCA transformation on input data. 47

5.2 Predicted versus actual PDF of the reactants, water and DMSO for a selected

test time step when using DPCA transformation on input data. 50

5.3 Confusion matrices of the predicted vs actual classes of each voxel for a se-

lected test time step for reactants, water and DMSO based on the “dead voxel”

feature reduction method. 52

5.4 Predicted vs. actual Cartesian coordinates of protonating hydrogen ion (a)

when the prediction horizon is 1 and (b) when the prediction horizon is infinite. 56

5.5 The inverse sigmoid curve with (a) varying K values and (b) varying m values. 57

5.6 The new training loop used with the scheduled sampling technique. The num-

ber of times each training step goes through this loop is adjustable through a

hyperparameter. 58

5.7 Predicted vs. actual Cartesian coordinates of protonating hydrogen ion for

the scheduled sampling model (a) when the prediction horizon is 1 and (b)

when the prediction horizon is infinite. 60

xiv

A.1 Projections of the reactants species for the ground truth PDF when the system

is at its reactants state. 82

A.2 Projections of the reactants species for the ground truth PDF when the system

is at its transition state. 83

A.3 Projections of the reactants species for the ground truth PDF when the system

is at its product state. 84

A.4 Projections of water molecules for the ground truth PDF when the system is

at its reactants state. 85

A.5 Projections of water molecules for the ground truth PDF when the system is

at its transition state. 86

A.6 Projections of water molecules for the ground truth PDF when the system is

at its product state. 87

A.7 Projections of DMSO molecules for the ground truth PDF when the system

is at its reactants state. 88

A.8 Projections of DMSO molecules for the ground truth PDF when the system

is at its transition state. 89

A.9 Projections of DMSO molecules for the ground truth PDF when the system

is at its product state. 90

B.1 Projections of the reactants species for the first predicted time step by the

PCA model. 92

B.2 Projections of the reactants species for the 5000th predicted time step by the

PCA model. 93

B.3 Projections of water molecules for the first predicted time step by the PCA

model. 94

B.4 Projections of water molecules for the 5000th predicted time step by the PCA

model. 95

xv

B.5 Projections of DMSO molecules for the first predicted time step by the PCA

model. 96

B.6 Projections of DMSO molecules for the 5000th predicted time step by the

PCA model. 97

xvi

List of Symbols

Constants

e Euler’s number - 2.71828183

ℏ Planck constant - 6.62607015× 10−34J/s

Latin letters

b Neuron bias

Ct Cell state of cell t

c Atomic orbital coefficient

DKL Kullback-Leibler divergence

E Epoch

E Energy

G Gibbs free energy

H Prediction Horizon

H Hamiltonian operator

ht Hidden state of cell t

i ith reaction

j Mass fraction

xvii

K Inverse sigmoid function coefficient parameter

K Force constant

k Apparent reaction rate constant

L Dynamic principle component analysis lag

L Lagrangian

l Sequence length

l Bond length

m Sigmoid function parameter

n Samples

n Periodicity

p Probability

Q Atomic charge

R Atomic coordinates

R Atomic distance

S Solvent

s Vector of collective variables

T Total simulation time steps

W Neural network weights

xt Ground truth input at time t

xt Input sequence at time t

x̂t Predicted input at time t

yt Ground truth output at time t

xviii

ŷt Predicted output at time t

Greek letters

α Leaky ReLU coefficient

∆ Change in

ϵ Teacher forcing ratio

εdielec Dielectric constant

θ Angle

µ Fictitious mass parameter

ν Potential

ρ Density

σ Kinetic solvent parameter

χ Molecular orbital

Ψ Wavefunction

ω Angle of rotation

Subscripts

e electrons

n nuclei

t timestep

xix

Abbreviations

3D three dimensional

4D four dimensional

AI artificial intelligence

AIMD ab initio molecular dynamics

ANN artificial neural network

BCE binary cross-entropy

BOMD Born-Oppenheimer molecular dynamics

BLSTM bidirectional long short-term memory

BNN Bayesian neural network

CMA-ES covariance matrix adaptation-evolution strategy

CNN convolutional neural network

CPMD Car-Parrinello molecular dynamics

CV collective variable

DFT density functional theory

DIO 1,4 dioxane

DMSO dimethyl sulphoxide

xx

DPCA dynamic principle component analysis

DRO Deep Reaction Optimizer

FES free energy surface

GRU gated recurrent unit

GVL γ -valerolactone

HMF 5-hydroxymethylfurfural

KL divergence Kullback-Leibler divergence

KS Kohn-Sham

Leaky ReLU leaky rectified linear unit

LSTM long short-term memory

MAPE mean absolute percentage error

MCMM multi-configurations molecular mechanics

MD molecular dynamics

ML machine learning

MLaMD machine learning-accelerated molecular dynamics

MLIP machine-learned interatomic potentials

MM molecular mechanics

MTP moment tensor potential

PCA principle component analysis

PDF probability distribution function

QM quantum mechanics

QM/MM quantum mechanics - molecular mechanics

xxi

ReLU rectified linear unit

RMSD root mean squared deviation

RMSE root mean squared error

RNN recurrent neural network

TCL Tool Command Script

THF tetrahydrofuran

TS transition state

VMD Visual Molecular Dynamics

xxii

Chapter 1

Introduction

Currently, many chemical and pharmaceutical processes occur in the presence of a solvent;

however, the effect of the solvent environment is not yet fully understood at a fundamental

level [1]. In addition to stabilizing the transition state (TS) and altering reaction kinetics, a

solvent and its reorganization can also (i) impact reaction mechanisms and pathways, (ii)

change the relative stability of the reactants, transition state and products, (iii) alter reaction

thermodynamics, (iv) facilitate diffusion in porous catalysts and (v) improve selectivity [2].

These effects must be considered when potential materials and catalysts are being evaluated

to achieve optimization. While empirical tests can be conducted to find the ideal solvent(s)

and their corresponding concentrations for a reaction through trial and error, this would be

time-consuming and expensive while not allowing us to develop a mechanistic understanding

behind why a particular solvent is ideal for a given reaction [3]. For such investigations, using

molecular dynamics methods becomes an attractive option.

Molecular dynamics is a computational tool that models the dynamics of chemical sys-

tems at an atomic level. This level of detail is what allows researchers to gain a deeper level

of understanding of chemical systems through the use of molecular dynamics. The dynamics

of a system is modeled through classical molecular dynamics (MD) or ab initio molecular dy-

namics (AIMD). Classical MD uses Newton’s equations of motion to solve for the evolution of

1

atomic positions over time. This is often computationally inexpensive, and therefore, is able

to model larger systems and access longer timescales. However, it fails to accurately model

chemically complex systems such as reaction systems; thus, AIMD is necessary for modeling

these systems [4]. AIMD methods, which use quantum mechanics to model molecular dynam-

ics, is often used to study reactions over its classical counterpart. For solvent-based systems,

AIMD approaches can either model the solvent molecules implicitly or explicitly. Implicit

solvation models imply the presence of solvent molecules by approximating the mean force

exerted on the explicitly modeled molecules, while explicit approaches model each solvent

molecule within the system as well as their dynamics [5]. While implicit models can be useful

by approximating reality with relatively few resources [6], they are accompanied by draw-

backs. It has been shown that implicit models fail to accurately capture hydrogen bonding

interactions and entropic effects on free energy [7,8]. Explicit solvation modeling, on the other

hand, can accurately model solvation systems but is computationally intensive and therefore

is limited in its timescale.

A part of what makes AIMD so computationally expensive is the need for the electronic

structure of the system to be recalculated after each time step. Car-Parinello molecular

dynamics (CPMD) addresses this issue by following the movement of the electronic structure

with a classical representation [4]. The metadynamics technique can be used with CPMD to

further accelerate reaction events so that they can be observed within a shorter time frame.

In metadynamics, small energy potentials are added to the system so that the energy wells of

the system within a user-defined coordinate space are filled. The added energy potentials are

tracked to reveal the potential energy surface of the system within the coordinate space [9].

The potential energy surface of a reaction system shows the activation energy, which aids

us in studying the solvent effects on reactions. Even with the CPMD formulation and the

metadynamics technique, a complete simulation of a reaction system containing 232 atoms

takes roughly 100,000 CPU-hours. If a study were to be conducted to find the ideal solvents

and their concentrations for a given set of reactions, this alone could take years.

2

To address the computational cost of AIMD methods, researchers have been integrating

machine learning (ML) into existing MD methods. It has already been shown that ML

algorithms can support classical MD simulations by sampling protein conformations in a

more efficient manner [10] and predict reaction rates [11]. However, the impact of ML has

not been limited to just classical MD. ML algorithms have been used to accelerate AIMD

simulations by predicting the energies and forces of atomic configurations [12,13], build more

accurate density functionals [14], and model atomic interactions [15]. In the context of solvents,

ML has been used to improve the accuracy of implicit solvation simulations [16] and model

reactions in explicit solvation models [17,18]. For explicit solvation environments, ML has been

primarily been employed to predict the potential energy surface or reaction barriers within

rather than predicting the evolution of the atomic configuration. This work attempts to train

a proxy ML algorithm for CPMD metadynamics simulations of explicitly solvated biomass

reactions. This model would decrease the time and computational cost of studying such

systems by predicting both the atomic configurations and the potential energy surface.

The condensed phase reaction under study is the protonation 5-hydroxymethylfurfural

(HMF) in water and dimethyl sulphoxide (DMSO). The reaction mechanism of HMF into

humins is of particular interest because humins offer very little economic value while HMF

eventually forms profitable fuel additives and polymers [19]. It has been shown that the

presence of DMSO as a cosolvent shields HMF molecules thereby hindering their ability

to degrade to humins [20]. ML-assisted AIMD simulations could provide such mechanistic

insights at a fraction of the current computational cost in a fraction of the time because

a proxy ML model would act as a shortcut to the outcomes already attainable through

standard AIMD methods. The increased speed and reduction in the computational cost of

AIMD simulations would also make screening for cosolvents that increase the selectivity of

HMF a less demanding task.

In Chapter 2 of this thesis, a literature review is performed on previous work related

to the machine learning application in computational chemistry. Chapter 3 will provide

3

a background on molecular modeling methods, while Chapters 4 and 5 will explain how

different ML proxy models were developed and tested.

4

Chapter 2

Literature Review

The fields of chemistry and computing have long crossed paths with each other. Initially,

simple analog computers were used for basic calculations related to chemical reactions and

molecular structures [21], but as both disciplines advanced, so too did their involvement with

each other. More recently, thanks to rapid advances in computing power, incredibly detailed

simulations can be conducted to study complex chemical systems. Implementing machine

learning and artificial intelligence (AI) has also revolutionized how experimental and com-

putational chemistry is approached.

A strength of machine learning is its ability to save time and reduce the costs of tasks

it is trained for. Chemists often try to optimize reactions by adjusting one experimental

variable at a time while keeping the others constant. However, this method often falls short

of identifying optimal conditions and is often laborious and resource-intensive [22]. Hence, de-

veloping an ML model for optimizing chemical reactions would be of significant value. Zhou

et al. [23] pursued this goal with their Deep Reaction Optimizer (DRO) model, utilizing rein-

forcement learning for training. Reinforcement learning models take actions based on inputs

to maximize a particular "reward." In the context of chemical reactions, the DRO model

adjusts reaction conditions to maximize the yield. A mixture of Gaussian density functions

was used to train the model. The motivation behind this approach is based on the assump-

5

tion that the response surface for most reactions can be treated as a continuous function,

and a combination of Gaussian density functions can approximate any continuous function.

When tested on a set of previously unseen mixture of Gaussian density functions alongside

several popular blackbox optimization algorithms, DRO was able to achieve optimization

in fewer steps than its competitors. It was first pre-trained on simulation reaction data for

four reactions to test its viability for chemical reactions. For each reaction, the model was

required to adjust the flow rate, voltage and pressure based on random initial conditions to

determine the maximum yield. It was found that DRO achieved optimization in fewer steps

than the blackbox optimization algorithm covariance matrix adaptation-evolution strategy

(CMA-ES) and the one variable at a time method that chemists typically use to try and

achieve optimization [23]. The DRO model successfully identified the optimal reaction condi-

tions by fine-tuning a few parameters that directly influenced the reaction yield. However,

it is important to note that the influence of these parameters tends to be consistent across

various reactions. On the other hand, altering the solvent environment in which a reaction

occurs can yield varying effects for different reactions. Consequently, the DRO model does

not possess the capability to foresee whether a different solvent or co-solvent combination in

a specific ratio would lead to a higher yield for a given reaction.

Classical MD simulations can help provide insights into the reactant, water, and cosolvent

interactions within a condensed-phase reaction system [24]. Based on this information, Walker

et al. [11] hypothesized that the reaction rates of acid-catalyzed reactions for biomass-derived

compounds could be predicted computationally based on three observables: i) the number

of water molecules within the local solvation shell of the reactant, ii) the average lifetime

of bonds between the reactant and nearby water molecules and iii) the fraction of reactant

surface area exposed to nearby hydroxyl groups. These indicators were quantified and fit

into a linear regression model to predict the kinetic solvent parameter σ for a given reaction.

The kinetic solvent parameter σ is defined in Equation 2.1 where ki
S,j is the apparent rate

constant for reaction i in solvent S with a mass fraction of j and ki
H2O

is the apparent rate

6

constant for reaction i in pure water.

σi
S,j = log10

(
ki
S,j

ki
H2O

)
(2.1)

A positive kinetic solvent parameter indicates that the solvent environment would increase

the reaction rate, while a negative kinetic solvent parameter indicates the opposite. The

model was trained on experimentally determined rate constants for seven biomass reactions

occurring in an environment consisting of water and one of three cosolvents: 1,4 dioxane

(DIO), γ-valerolactone (GVL) and tetrahydrofuran (THF). The results of the regression

model demonstrate that these three descriptors are capable of predicting the kinetic solvent

parameter within reasonable error, particularly for DIO cosolvent systems [11]. This shows

that at least in certain cases, classical MD simulations can predict solvent effects on reaction

rates without explicitly modeling the reaction mechanism. The regression model was less

accurate for GVL and THF mixtures, indicating that the model has some limitations. The

authors concluded that either the descriptors computed from classical MD cannot quantify

reaction rates in some systems or more complex descriptors are required to capture more

complex trends.

Identifying increasingly complex descriptors requires extensive human effort; therefore,

a method that would bypass such rigorous methods would be of great value. Convolutional

neural networks (CNN) are machine learning models that use convolutional layers to extract

spatial features. It has already been shown that three-dimensional (3D) CNNs trained on

protein structures are able to detect protein functional sites [25] and evaluate protein-ligand

binding sites [26]. Hence, the possibility that a 3D CNN will be effective at extracting spa-

tial features to capture trends in complex descriptors within a classical MD simulation is

high. Chew et al. [3] aimed to train a 3D CNN capable of predicting the reaction rates of

acid-catalyzed biomass reactions within a solvent and co-solvent system based on classical

MD data. Their 3D CNN, named SolventNet, was trained to predict the kinetic solvent

7

parameter using 76 experimental reaction rates for seven biomass-derived model reactants

along with their associated MD trajectories and tested using 32 experimental reaction rates,

including reaction rates with cosolvents not seen within the training set. The model’s perfor-

mance was evaluated based on the predicted kinetic solvent parameter’s root mean squared

error (RMSE). A 4 nm cubed box within the simulation cell was voxelized into 20 voxels

along each dimension, and the normalized molecule counts were stored in each voxel for each

simulation time step. This procedure was repeated for the reactant, solvent, and cosolvent

and stored in three channels. The voxelized occupancy distributions were further averaged

over 2 ns of simulation time to minimize computation cost while not sacrificing model ac-

curacy. SolventNet was found to predict experimental reaction rates more accurately than

models based on human-selected, MD-derived descriptors and reaction rates for polar aprotic

cosolvents not seen in training based on as little as 4 ns of MD simulation data. The model

also gives some level of interpretability through saliency maps, which allowed researchers

to identify voxels within each channel that had the most significant impact on the model’s

prediction [3]. SolventNet shows that machine learning can expedite solvent screening for re-

action optimization using classical MD simulations with some level of interpretability. While

MD simulations can access longer timescales while keeping computational expense minimal,

AIMD methods are able to provide mechanistic details behind reactions, which could be

invaluable to researchers. CPMD with metadynamics, a type of AIMD method, can also

provide details regarding the energetics of a reaction, something classical MD cannot repli-

cate. Since a machine learning model can reduce the computational cost of MD simulations

while still being able to predict its outcomes, then it is reasonable to assume that the same

idea can be applied to AIMD trajectories. The following studies showcase this concept.

Häse et al. [27] used a Bayesian neural network (BNN) to predict the dissociation time

of unmethylated and tetramethylated 1,2-dioxetane and compared them to the results of

AIMD simulations. In addition to accurate predictions of dissociation time, Häse et al.

also aimed to interpret the trained BNN to understand the mechanistic relationship between

8

dioxetanes and their corresponding dissociation time. The dissociation time of 1,2-dioxetanes

into two formaldehyde molecules is of particular interest because this decomposition exhibits

chemiluminescent properties [27]. The chemiexcitation yield is directly proportional to the

dissociation time, so studying molecular variations of 1,2-dioxetane is useful to determine

which variation will produce the highest yield [28]. Two separate BNNs, named BNN1 and

BNN2, were trained. BNN1 predicted the dissociation time based on the initial nuclear

geometry of the system, while BNN2 used both the nuclear geometry and velocities to

predict the dissociation time. By directly predicting the dissociation time based on the

system’s initial configuration, the BNNs bypass almost all the computational costs AIMD

typically requires. When predicted and actual values were plotted against each other, the

models BNN1 and BNN2 were found to have r2 values of 0.86 and 0.97, respectively. BNN 2

also had a smaller mean absolute deviation, meaning the model had better generalizability.

The models were also able to outperform AIMD in terms of computational efficiency. Each

model could make predictions based on 250 different initial conditions in a few seconds,

whereas it would take over one year of computation for AIMD to do the same. The weights

and biases of the BNNs were initialized using the Laplace distribution [27]. It has been

shown that after training a BNN initialized with the Laplace distribution, the magnitude of

the weights within the BNN is related to the corresponding feature’s relevancy in the final

prediction [29]. Using the weights of the trained BNNs, it was found that the planarization

of the two formaldehyde molecules and the shortening of their C-O bonds were associated

with an earlier dissociation time [27]. This work proved that ML used on AIMD data could

make accurate predictions regarding AIMD outcomes while keeping computational costs at

a minimum and providing mechanistic insights regarding the studied system(s).

Eslamibidgoli et al. [30] trained a gated recurrent unit (GRU) and a long short-term mem-

ory (LSTM) model to predict various solids’ AIMD trajectories and potential energy profiles.

The training and testing data set was generated from AIMD trajectory data over 5000 fs on

rutile Ir0.75M0.25O2(100) surfaces where M is one of the following metals: Co, Cr, Ir, Mn,

9

Mo, Nb, Ni, Pb, Pt, Rh, Ru, Sn, Ta, Ti, V and W. In addition to trajectory data for each

atom within the simulated call, the potential energy profile and the temperature fluctuations

for the simulations were also included as input data for each model. One iridium atom was

chosen at random from the training data to test each model. The model’s prediction of the

Cartesian coordinates for this atom, and the total potential energy profile, was compared

with ground truth data from AIMD using mean absolute percentage error (MAPE). The test

MAPE for the iridium atom’s coordinates was less than 0.9% for the GRU model and 1.3%

for the potential energy profile, while the LSTM model recorded MAPEs of 0.2% and 2.1%,

respectively. This shows that both the GRU and the LSTM models were very accurate when

predicting the Cartesian coordinates and the potential energy profile. Further investigation

found that the spatial distribution of atoms within the simulation cell and the distribution

of temperature fluctuations and potential energy were all Gaussian. Since GRU and LSTM

models tend to work better with Gaussian distributions, it makes sense why these models

performed so well [30]. This work shows that GRU and LSTM models can be used as proxy

models instead of AIMD simulations for solid-based systems. While the prediction horizon

for these models isn’t very long, future more complex models have the potential to make

longer-term predictions and, therefore, save even more computational costs. This concept

can also be expanded towards condensed phase systems, where the molecular interactions

differ, providing an extra challenge for ML models.

Puliyanda [31] aimed to train a 3D CNN autoencoder to extract features based on the

AIMD trajectory of a reactant from which the extent of solvent reorganization would be

determined. AIMD simulations of the reactant and product trajectories for the pyrolytic

decomposition of cellobiose at four different temperatures (100 K, 500 K, 900 K and 1200

K) were used to train the model. The root mean squared deviation (RMSD) between the

encoded features of the reactant and product was fit to a probability distribution using

kernel density estimation. This probability distribution function was used to determine the

extent of solvent reorganization. Solvent reorganization was found to be more significant

10

for the cellobiose system at 100 K and 500 K and less significant at 900 K and 1200 K.

The 3D CNN autoencoder model was tested using reactant trajectories of an acid-catalyzed

conversion reaction of fructose to HMF in a solution of water and DMSO. A Mahalanobis

distance-based classifier was used to compare the extracted features of the reactant trajectory

of the new system to the extracted features of Class 1. Class 1 is the training data that

exhibited the highest degree of solvent reorganization was the cellobiose system at 100 K. The

model predicted solvent reorganization would decrease significantly by introducing 5% wt

DMSO to a pure water solution. In comparison, DMSO concentrations beyond 5% wt would

result in a linear increase in solvent reorganization. This trend agreed with free energy surface

minima calculations for the reactant and product states with differing concentrations of water

and DMSO. When % wt DMSO was introduced into the system, the free energy difference

between the hydronium ion occupying the bulk solvent and the hydronium ion occupying the

first solvation shell of fructose (∆G) increased. This suggests the DMSO preferred to group

near the fructose molecule while the water molecules stabilized the hydronium ion, resulting

in a sharp decrease in solvent reorganization. When the DMSO concentration was increased

beyond 5% wt, ∆G decreased while solvent reorganization increased. This suggests that the

hydronium ions were forced to interact with the fructose molecule due to a lack of water

molecules in the system and increasing solvent reorganization [31]. This model shows that it

is possible to screen reactions for their level of solvent reorganization in different solvents.

This is advantageous because if solvent reorganization is found to be minimal for a reaction

under certain solvent conditions, then the mechanics and energetics of the reaction can be

studied using an implicit solvent environment instead, saving computational costs and time.

If solvent reorganization is significant, then a different approach must be used to study the

reaction cost-efficiently. This complex problem could be tackled with machine learning as

well.

Chen et al. [32] used an active learning framework with machine-learned interatomic po-

tentials (MLIP) to accelerate explicit solvent AIMD simulations of solvated heterogeneous

11

catalytic systems. MLIPs are a class of ML models that relate the potential energy of a sys-

tem to the coordinates of the atoms it contains [33]. It has already been shown that MLIPs

are able to assist in the search of global minima [34] and transition states [35]. Typically, an

accurate MLIP requires a training set consisting of thousands of Density Functional Theory

(DFT) calculations, presenting a sizeable computational barrier to the approach. It is also

difficult to intuitively predict what kind of training set would result in the generalizable

MLIPs [32]. To rectify these obstacles, an MLIP obtained from literature, called moment

tensor potential (MTP) [36], was trained “on-the-fly” through active learning [32]. What makes

active learning unique is that ML models trained through active learning select the data

they are trained on, which is advantageous when the availability of labelled data is lim-

ited [37]. Chen et al. used their ML model to perform machine learning-accelerated molecular

dynamics (MLaMD) simulations during active learning. Poor predictions were reassessed

using DFT and added to the training data pool. This ensures that the training dataset

grows more comprehensive with minimal effort. As the training data expands, the need for

DFT calculations to be performed decreases, thereby decreasing the computational costs of

MLaMD simulations. DFT calculations are also performed periodically to ensure the contin-

ued accuracy of the ML model. This work found that their MLaMD simulations were able

to (i) accurately model the molecular structure of water near a metal surface, (ii) predict

adsorption energies of CO* and OH* onto Cu(111) and (iii) estimate the energy barrier of

the C-H bond breaking in ethylene glycol over Cu(111) and Pd(111) with MLaMD-based

metadynamics. Other advantages of this model include far fewer required DFT calculations,

simulation times four orders of magnitude shorter than AIMD, and access to longer time

scales [32].

12

Chapter 3

Molecular Dynamics Methods

Molecular dynamics (MD) is a computer simulation tool that allows dynamic molecular

systems to be studied at the atomic level [38]. The ability to simulate atomic dynamics

provides researchers with previously inaccessible insight regarding chemical systems at the

expense of computational costs. Ever since the 1970s, MD has been used to compliment

physical experiments to deepen our level of understanding [39]. With computational resources

becoming increasingly more accessible, MD has started to play a more significant role in

chemistry, material science and biology. It has been used to aid in drug development [40], test

the properties of new materials [41] and study chemical reactions [42].

3.1 Classical Molecular Dynamics

There are two main types of MD: force field-based MD (or classical MD) and ab initio

molecular dynamics (AIMD) [4]. Both types of MD update the spatial arrangement of atoms

based on the potential energy of the system, but how they calculate the potential energy

differ. Classical MD uses molecular mechanics (MM) to determine the total potential energy

while AIMD uses quantum mechanics (QM) [43]. In MM, Newton’s equations of motion are

applied by treating each atom as a particle of a certain size and mass, and each bond as

a spring with a certain length and stiffness. The energy of the forces within a system is

13

modeled by a set of equations called the force field, hence the name force field-based MD.

The modeled forces can be divided into bonded interactions, which include stretch, bend and

torsion energies, and non-bonded interactions, which include van der Waals and electrostatic

energies, as indicated in Equation 3.1 [4].

EMM = Estretch + Ebend + Etorsion + EvdW + Eelectrostatic + (Ecoupled) (3.1)

The terms Estretch, Ebend, Etorsion, EvdW and Eelectrostatic represent the energy for bond stretch-

ing between two atoms, energy for angle bending between three atoms, energy for bond

twisting, van der Waals interaction and electrostatic interaction, respectively. An example

of equations for each of these terms are as follows:

E12
stretch = Kstretch

(
l12 − l0

)2 (3.2)

E123
bend = Kbend

(
θ123 − θ0

)2 (3.3)

E1234
torsion = Ktorsion (1− cos (nω)) (3.4)

E12
vdW = 4EL−J

min

[(
R0

R12

)12

−
(

R0

R12

)6
]

(3.5)

E12
electrostatic =

Q1Q2

εdielecR12 (3.6)

where Kstretch, Kbend, and Ktorsion are force constants, ω is the angle of rotation, n is period-

icity, EL−J
min is the depth of the minimum in the potential, R0 is the distance at zero potential,

Q is atomic charge and εdielec is the dielectric constant [4].

Each energy term in Equation 3.1 is only a function of atomic coordinates. Therefore,

it is through the minimization of EMM as a function of atomic coordinates that the lowest

energy state of a given system is found [44]. There are two types of minimization algorithms:

local and global. Local minimization algorithms locate the system’s nearby energy minima

14

however, this minima may not be the lowest possible minima of the system. The global

minima of the system refers to the lowest possible energy state of the system which is ideal

result through minimization. Two standard methods that attempt to find the global energy

minima are Monte-Carlo and molecular dynamics (MD). The Monte-Carlo method finds

global minima through trial and error adjustments to a system’s configuration. On the other

hand, MD gives each atom within the system a velocity based on the system’s temperature

and classically solves for the position of each atom. MD better represents the system’s

behaviour in reality since it accounts for temperature-dependent dynamics. The general

algorithm used to solve for atomic positions and their evolution over time can be seen in

the velocity Verlet MD algorithm. For a system of N atoms R⃗ (R1, R2, . . . , RN) the velocity

Verlet algorithm can be summarized as such [4]:

1. Start with initial positions R⃗0 and velocities dR⃗0/dt

2. Calculate potential energy E
(
R⃗
)

and forces dE/dR⃗

3. Recalculate positions with

R⃗t+1 = R⃗t +

(
dR⃗t

dt

)
∆t+

1

2!

(
d2R⃗t

dt2

)
(∆t)2

4. Recalculate potential energy E
(
R⃗t+1

)
and forces dE/dR⃗t+1

5. Update velocity with

dR⃗t

dt
=

(
dR⃗t

dt

)
+

1

2

(
d2R⃗t

dt2
+

d2R⃗t+1

dt2

)
∆t

6. Return to step 3

Many force fields exist because parameter values for the energy terms in Equation 3.1

are derived from experimental data, which give differing results depending on the data is

15

used [45]. The equations used to calculate each energy term and the inclusion of extra energy

terms that capture coupled interactions of forces (Ecoupled) are also ways one force field differs

from another. The systems each force field is best suited for depend on the experimental

data they were parameterized on. Therefore, a trade-off exists for each force field where

increased accuracy for one type of system means sacrificing generalizability [4].

MM methods are computationally inexpensive and can easily model large systems such as

proteins and DNA. However, for chemically exotic systems where few or no accurate param-

eters exist, the effectiveness of MM may be reduced. It is also extremely difficult for MM to

be applied to systems containing metals and reaction systems. The bonds in metal systems

are not as well-defined as in organic systems. MM has no clear answer to this since it treats

atoms as singular entities rather than nuclei with accompanying electronic structures. MM

also breaks down when dealing with reaction systems because the transition from reactant

to product changes the bonds and possibly the number of atoms they contain, meaning that

separate force field energy functions are required for the reactant and product [45].

3.2 Ab Initio Molecular Dynamics

As discussed in Section 3.1, the general idea of MD is to solve for the potential energy, solve

for the forces, update the velocities, and recalculate the position for the next timestep. In

AIMD, QM is used to solve for the electronic structure of a system and its potential energy.

The Shrödinger equation (Equation 3.7) [46] describes the spatial and temporal evolution of

a particle’s wavefunction in a potential.

HΨ(R, t) = iℏ
∂

∂t
Ψ(R, t) (3.7)

Solving the Shrödinger equation with the Born-Oppenheimer approximation decouples elec-

tronic and nuclear motion, thereby allowing them to be solved separately through a quantum

mechanical and a classical formulation, respectively. This allows the electronic structure to

16

be optimized based on the nuclear configuration after each time step. This is known as

Born-Oppenheimer molecular dynamics (BOMD). The Lagrangian for BOMD is shown in

Equation 3.8. Nuclei can be treated classically because they have sufficient mass to obey

Newtonian physics. Therefore, only the solution to the Shrödinger equation for electrons in

a system (Equation 3.9) is needed to find the potential energy [4].

LBOMD =
1

2

∑
i

miR
2
i − ⟨Ψ|H|Ψ⟩ (3.8)

HeΨe (Re, Rn) = EeΨe (Re, Rn) (3.9)

In the above equations, H is the Hamiltonian operator, ℏ is the Planck constant, Ψe is the

wavefunction for electrons, Re is the electronic coordinates and Rn is the nuclear coordinates.

Since Equation 3.9 cannot be solved analytically for systems with more than one electron,

an approximation must be made for polyelectric systems [44].

Density functional theory (DFT) is a quantum mechanical calculation method that uses

electron density instead of wavefunctions for each electron to find a system’s energy. Ho-

henberg and Kohn showed that an external potential ν(R⃗) can be determined if the electron

density is provided and that wavefunctions can be expressed as a functional of electron den-

sity [47]. This reduces the complexity of the energy calculation since only the density function

is needed [4]. Based on this idea, Kohn and Sham developed a formulation that would be

able to calculate the energy of a multi-electron interacting system using DFT while keeping

computational costs to a minimum [48]. Kohn-Sham DFT introduces a set of fictitious non-

interacting electrons with Kohn-Sham orbitals χKS in a potential νKS(R⃗). The Kohn-Sham

orbitals are chosen so that they have the same electron density ρ as the interacting system

in the real potential ν(R⃗). Equation 3.10 shows how the energy can be calculated based

on the density. The energy in Equation 3.10 needs to be minimized with respect to density

because of the variational principle [4]. The variational principle states that the calculated

energy based on approximate wavefunctions will always be greater than the actual energy

17

of the system [45]. Therefore, the ground state density needs to be calculated in an iterative

manner to find the density that minimizes energy. With Kohn-Sham DFT, the potential

energy of a system can now be solved quantum mechanically and AIMD can be performed.

E = min
ρ

{⟨Ψ[ρ]|H|Ψ[ρ]⟩} (3.10)

AIMD holds a significant advantage over classical MD methods in that the limitations of

classical MD do not apply to AIMD. Chemically exotic systems, metals systems and reaction

systems can now be accurately modeled through AIMD. However, due to the substantial

computation cost associated with AIMD, the steep trade-off between computational costs

and accuracy makes AIMD rarely practical [4].

The hefty computational cost of AIMD comes from the need to optimize the electron

density after each time step in order to ensure the system is at its energy minima [49]. To

work around this, Car and Parrinello demonstrated how the movement of the optimal elec-

tronic structure between time steps could be approximated with a classical formulation

(Car-Parrinello molecular dynamics (CPMD)). This is achieved by assigning the wavefunc-

tions a fictitious mass µ which gives them fictitious kinetic energy. The extended Lagrangian

for CPMD is defined as [50]:

LCPMD =
1

2

∑
i

miṘ
2
i +

1

2

∑
j

µi ⟨χ̇j|χ̇j⟩ − ⟨Ψ|H|Ψ⟩+ constraints (3.11)

where χj is the orbital of the jth electron and the constraints are external or internal con-

straints placed on the system. The CPMD Lagrangian results in the following Euler-Lagrange

equations:
d

dt

(
∂LCPMD

∂Ṙi

)
− ∂LCPMD

∂Ri

= 0

d

dt

(
∂LCPMD

∂χ̇∗
i

)
− ∂LCPMD

∂χ∗
i

= 0

18

miR̈i = − ∂

∂Ri

⟨Ψ|H|Ψ⟩+ ∂

∂Ri

(constraints)

µiχ̈i = − ∂

∂χ∗
i

⟨Ψ|H|Ψ⟩+ ∂

∂χ∗
i

(constraints)
(3.12)

which can solved numerically using the velocity Verlet algorithm described in Section 3.1. To

ensure CPMD still follows BOMD, the assigned µ must be small enough to prevent energy

transfer from the nuclei to the wavefunction. With CPMD, only a single electronic structure

is required while the classical formulation takes care of the rest. Despite the reduction in

computational costs that CPMD provides, the timescales it can access still fall short of

classical MD by five orders of magnitude [4].

To accelerate atomic events so they can be observed within CPMD’s short timescale, the

metadynamics method was developed [51]. Metadynamics adds small energy potentials to fill

a system’s free energy surface (FES) within the collective variable (CV) space of interest.

The CV space chosen depends on the objective of the study; examples of CVs are bond

length, bond angle, bond distance or coordination numbers. This technique requires an

extended CPMD Lagrangian which is defined as [52]:

LMTD = LCPMD +
1

2

∑
CV

mCV ṡCV − 1

2

∑
CV

KCV

[
SCV

(
R⃗CV

)
− sCV

]2
+ νCV (t, s) (3.13)

where s is the vector of CVs, mCV is the fictitious mass assigned to the collective variables,

KCV is the force constant, KCV

[
SCV

(
R⃗CV

)
− sCV

]
is the potential energy acting on the

CVs and νCV (t, s) are the energy potentials added. Similar to the selection of µ in CPMD,

the selection of mCV in metadynamics must be sufficiently large so that the dynamics of CVs

are separate from the dynamics of both nuclear and fictitious electronic motion. By adding

energy potentials νCV (t, s), the system is forced to cross energy barriers to reach nearby local

and global energy minima. These energy potentials are tracked and used to reconstruct the

FES after the simulation [53]. An example of how metadynamics explores and allows for

the reconstruction of a FES is shown in Figure 3.1. The training and testing data used in

19

Chapters 4 and 5 comes from a CPMD metadynamics simulation of 5-hydroxymethylfurfural

in water and dimethylsulphoxide. With CPMD and the metadynamics method, it is possible

to simulate reactions accurately within a reasonable time frame, but there is still room for

improvement. Chapters 4 and 5 will explore ways a machine learning model could be used as

a proxy model with CPMD metadynamics to achieve the same modeling results at a fraction

of the computational cost.

Figure 3.1: Example of how metadynamics explores a FES for a system that goes from state
A to a more stable state B. The potential energy surface is filled starting from "well" A as
shown by lines 1 and 2. As the "well" gets filled up it spills into "well" B as shown with line
3. Then the FES is filled uniformly (lines 4 and 5).

20

Chapter 4

LSTM autoencoder application for the

time-series prediction of spatial features

from CPMD with metadynamics

simulation data

4.1 Introduction

Applying machine learning to ab initio molecular dynamics (AIMD) simulations of solvent-

based reaction systems, particularly those with significant solvent reorganization, involves a

two-step process. First, it requires making a time-series prediction of the spatial configuration

of the system. Subsequently, this spatial configuration is used to predict the system’s free

energy for that time step. This chapter aims to train a set of models that can act as a proxy

model for Car-Parrinello molecular dynamics (CPMD) metadynamics simulation given a

short initial simulation. Thus, a time-series prediction of the simulation is necessary. The

outputs from CPMD simulations performed with metadynamics can serve as training data

for a set of models that can address this two-step process. CPMD, as explained in Chapter

21

3, is a type of AIMD simulation that approximates the movement of the electronic structure

based on a classical formulation instead of using a quantum formulation to recalculate the

electronic structure for each time step, thereby reducing the computational expense of the

simulation [50]. Despite this, CPMD’s accessible time scale remains limited to picoseconds [4].

However, when paired with the metadynamics technique that accelerates the dynamics within

the system, a larger time scale is now accessible. Metadynamics influences the system by

periodically adding small energy potentials to fill up the free energy surface (FES) within the

coordinate domain of a set of human-selected collective variables (CVs) [51]. These CVs are

specifically selected based on the system being studied. Moreover, metadynamics allows the

reconstruction of an FES post-simulation [53]. This reconstruction aids in studying reaction

systems as it provides the free energy of the reactant, transition and product states. By

pre-processing the trajectory and FES data from the CPMD-metadynamics simulation, this

dataset can serve as training and testing data for machine learning (ML) models to achieve

the previously stated objective.

4.2 Methods

The dataset designated for training comes from a CPMD-metadynamics simulation of the

protonation of 5-hydroxymethylfurfural (HMF) in 50 wt% dimethyl sulfoxide (DMSO) and

water. The simulation ran for T = 200, 000 time steps for a simulation cell with side lengths

of 11.832 Å, containing one HMF, one proton, 9 DMSO and 42 water molecules. The time

step used for the simulation was 0.0967 fs. Two CVs were chosen for metadynamics for this

reaction: the coordination number of the proton participating in the reaction (Hα) with bulk

oxygen belonging to water (Owater) and the coordination number of the protonation site (C4)

with bulk water belonging to water (Hwater) and (Hα). The CVs selected with respect to the

protonation reaction are shown in Figure 4.1. For further details regarding the parameters

of the CPMD-metadynamics simulation, refer to Calderón and Mushrif [54].

22

Figure 4.1: Defined collective variables for the protonation of HMF. Adapted from Calderón
and Mushrif [54].

Future analysis will change the reference point of the simulation to the HMF molecule.

This could cause issues because the location of the HMF molecule within the simulation

cell was close to a corner. Based on the trajectory file, there is a large region near the

HMF molecule where no solvent molecules exist because the periodic boundary condition is

implied within the output file. Since this isn’t indicative of reality, two periodic images of

the simulation cell were created in each dimension (26 periodic images) so that the output

file explicitly shows the periodic boundary condition. The T = 200, 000 time steps were

segmented into slices of 10 frames each, and each time slice was loaded into the Visual

Molecular Dynamics (VMD) software, where each frame in each slice was aligned so that

the orientation and position of the central HMF molecule are the same for each time slice.

This alignment changes the position and trajectory of each atom in the system so that

they move relative to the central HMF molecule instead of the origin of the simulation

cell. This modification to the simulation data allows each simulation cell to be directly

compared with each other because the HMF molecule will have a consistent position and

orientation. A Tool Command Language (TCL) script was used within VMD to generate

an occupancy distribution for each species and each time slice. An occupancy distribution

shows the fraction of frames that contain the molecule of focus for every discrete point

within the system. The discrete points are generated by VMD automatically by finding

23

the smallest 3D grid needed to contain the entire occupancy distribution and dividing each

dimension into 1 Å gridlines. The orientation of the 3D grid VMD creates always remains

constant; therefore, each occupancy distribution can be directly compared with one other.

The occupancy at the intersection of every gridline is recorded by VMD and saved as a

file. This process yields 60,000 total occupancy distributions, n = 20, 000 samples for each

species. Given the substantial volume of data in each file, resulting in billions of data points,

voxelization was necessary to condense the information. It can be assumed that solvent

molecules further from the reaction will have a negligible effect compared to those close to

the studied reaction. Therefore, a cutoff of 12 Å was assigned for each occupancy distribution

beyond which solvent molecules were assumed to have negligible impact on the reaction. This

cutoff strikes a balance between including solvents and cosolvents in the vicinity while not

incorporating too much space that could lead to a voxelization with an overly large feature

space or a feature space with a large resolution. A Python code was used to voxelize each

dimension into 12 voxels, with the HMF molecule acting as the centre of each voxelized

distribution. The values within each voxelized occupancy distribution were normalized to

yield a probability distribution function (PDF). A voxelization factor of 12 was chosen to

give the voxelized PDF a resolution of 2 Å. With this resolution, there is no concern that

two different water molecules will overlap on the same voxel as the intermolecular distance

between water molecules is roughly 3 Å. Figure 4.2 shows a sample occupancy map for each

of the three species while Appendix A contains sample projections of the final PDFs onto

two dimensional planes.

The goal is to utilize past PDFs to make time-series predictions of future PDFs for each

species. This information will aid in making predictions regarding the energetics for the

studied reaction. Artificial neural networks (ANNs), particularly those containing recurrent

layers, are commonly used for time-series predictions. An ANN consists of interconnected

layers, each composed of neurons. Each connection between neurons is associated with a

weight W , and each neuron has an associated bias b. It is these values that change during

24

(a)

(b) (c)

Figure 4.2: Projection of a randomly selected PDF for each of the three species onto the XY
plane.

training to form the network’s memory. Each neuron’s activation function determines the

output fed to the neurons connected to itself, as pictured in Figure 4.3 [55].

ANNs generally contain an input layer, an output layer, and hidden layers between the input

25

Figure 4.3: Neuron structure within a neural network. Adapted from Maren et al. [55].

and output layers. Special layers, such as recurrent layers, introduce additional memory ele-

ments into the network to optimize its performance for certain tasks. As illustrated in Figure

4.4, Recurrent layers contain a sequence of neurons that relay information regarding previ-

ous inputs to subsequent layers, making them useful for time-series predictions. However,

recurrent layers may face problems during backpropagation. The gradients responsible for

updating weights and biases can become extremely small or extremely large. This problem

is known as a vanishing gradient and an exploding gradient, respectively [56]. Any recurrent

layers that contain many neurons are particularly vulnerable to this weakness, making them

more suitable for shorter sequences. The Long-Short Term Memory (LSTM) layer was cre-

ated to address the exploding or vanishing gradients and handle longer sequences, making

it a sensible starting point for this study [57]. Within each neuron, a series of gates and ac-

tivation functions update a cell state that is passed on from one neuron to the next within

the LSTM layer. A visualization of these gates and activation functions is shown in Figure

4.5, with the cell state indicated with a dashed line. Given the previous hidden state h(t−1)

and the new input xt, the forget gate determines what information should be forgotten while

the input gate determines what new information should be added. The outputs of these two

gates are then applied to the old cell state C(t−1) to update it into the new cell state Ct.

26

Finally, the output gate determines the new hidden state ht based on the new cell state Ct

that was just updated [58].

Figure 4.4: Visualization of a recurrent layer.

Figure 4.5: Visualization of an LSTM layer. Adapted from Eslamibidgoli et al. [30].

The number of past time steps used to predict the next time step is called the sequence

length (l) and is an adjustable hyperparameter for each model. Since an LSTM layer is

being used within each model, the sequence length will be able to take on a wider range of

27

values while keeping the threat of an exploding or vanishing gradient to a minimum. In the

training phase of each model, n = 20, 000 PDFs for each species were arranged into sequences

of length l and paired with its designated output, which is the PDF of the species for the

next step. Figure 4.6 demonstrates an example of this procedure.

Figure 4.6: Representation of the pairing of input sequences to their outputs.

This creates a total of n − l samples. Of the complete dataset, 80% was allocated for

training, while the rest was used as validation data. The loss function used to evaluate the

performance of the model was the Kullback-Leibler Divergence (KL divergence). For two

PDFs, P (x) and Q(x), the KL divergence is defined as [59]:

DKL(P ||Q) =
∑
xϵX

P (x) ln

(
P (x)

Q(x)

)
(4.1)

The KL divergence measures the entropy between two PDFs, P (x) and Q(x), indicating

their similarity or dissimilarity. This loss function is ideal for the given situation as it allows

us to evaluate how similar the predicted PDFs ŷt are to the ground truths yt established by

the CPMD-metadynamics simulation. The KL divergence will always return a non-negative

28

value with lower values signifying greater similarity between the two PDFs.

Using the Adam optimizer, each model was implemented, trained, and tested using ver-

sion 2.10.0 of the TensorFlow Python package. Each model was tested using various con-

figurations of hyperparameters, with the configuration producing the lowest validation error

deemed the best configuration for that architecture. The hyperparameters adjusted were the

number of fully connected layers after the LSTM layer, the number of neurons in each dense

layer and the sequence length. During training, the validation loss for each epoch was moni-

tored and only when a new validation loss was lower than all preceding validation losses was

the model saved, overwriting any older models. This procedure was set in place to prevent

models that have been overtrained from being saved. Each model was tested by assuming

a simulation had already been performed but aborted halfway. With this initial data, each

model was tasked with predicting the PDF for each remaining time step of the simulation.

To achieve this, the output of each time step is subsequently integrated into the input se-

quence used to predict the next time step. Because the number of steps the model needs to

predict without any ground truth is unbounded, the prediction horizon H for this model in

this testing scenario can be considered infinite. An infinite horizon test is necessary because

of the target objective of this study. Suppose we want to apply a machine learning model to

a simulation for which we have some initial simulation data to reduce computational costs.

In that case, the model will not have ground truths to assist in its predictions beyond the

initial data provided. The loss and metrics between the prediction and the ground truth

were recorded and averaged over every predicted time step. The models weren’t tested with

previously unseen data because this would have further increased the difficulty. If a model

cannot make accurate predictions for the data it was trained on, then we can assume that

the model will perform poorly on previously unseen data as well. Once a model has proved

to be accurate, it will be subjected to more difficult tests.

29

4.3 Results and Discussion

This section outlines four different model architectures and their outcomes when the previ-

ously mentioned procedure was carried out using CPMD-metadynamics simulation data for

the solvent-based protonation reaction of HMF.

4.3.1 LSTM Autoencoder Architecture

After processing the CPMD-metadynamics dataset, there were still 5184 total input fea-

tures across all three species participating in the reaction. Therefore, three separate LSTM

autoencoders were proposed, one for each species. An autoencoder is a type of ANN that

deconstructs inputs into a smaller feature space, often called the bottleneck layer or latent

space, and then constructs an output based on the deconstructed features [60,61]. This type

of architecture is used for this study as it allows multi-variate time-series data to be taken

as inputs [30]. Ideally, the initial encoding portion of the autoencoder will further reduce the

input feature size and extract critical features to use them to predict the feature space for the

next time step. An additional benefit an autoencoder provides is that the trained encoder

model can be saved and used to reduce the feature size of the inputs for the model that will

predict the energetics of the reaction in a separate model. The dataset is first arranged into

sequences of length l and passed into an LSTM layer with a dropout of p = 0.1. Dropout

is a technique applied to neural networks where each neuron within the dropout layer has

a probability p of temporarily being removed from the network. This technique is a simple

way of preventing overfitting and exploring variations of the original network, which can be

learned and combined to improve the network’s performance [62]. The output of the LSTM

is fed into a series of fully connected layers that form the rest of the encoder and decoder,

with the final fully connected layer giving the prediction for the PDF of the next time step.

The activation function used for the fully connected layers was the leaky rectified linear unit

(Leaky ReLU) activation function (Equation 4.3), except for the final fully connected layer,

30

which used a softmax activation function (Equation 4.4) [63]. Unlike the rectified linear unit

(ReLU) function (Equation 4.2), the Leaky ReLU function still returns a value even when

the input is negative. When the input is negative, the output value is partially determined

by the coefficient α, which is an adjustable hyperparameter. For the purposes of this work,

α will always be 0.01. The Leaky ReLU function was chosen for its simplicity and immunity

to the dying ReLU problem that ReLU functions occasionally suffer from. In a situation

where the inputs for a neuron happen to be negative, a ReLU activation function will only

return zero. Since its gradient will also be zero in this scenario, its weights will not change

during backward propagation, and the neuron will keep outputting zeros [64]. The softmax

activation function converts an array of values into an array of values that sum up to one.

The converted values will also only fall between zero and one. It is these two properties that

ensure the output of the model is always a PDF.

ReLU(x) =

0 if x < 0

x if x ≥ 0

(4.2)

LeakyReLU(x) =

αx if x < 0

x if x ≥ 0

(4.3)

f(xi) =
exi

ΣN
j=1e

xj
(i = 1, 2, . . . , N) (4.4)

Figure 4.7 represents a simplified outline of the architecture of the LSTM autoencoder

used for training. Table 4.1 shows the training and testing results for each species and Figure

4.8 compares the predicted and ground truth PDFs for the reactants, water and DMSO at a

selected test time step when an LSTM autoencoder architecture is used. The loss function

used was the KL divergence. The hyperparameters adjusted for the training of this model

are the sequence length, the number of neurons in the LSTM and fully connected layers and

the number of the fully connected layers.

31

Figure 4.7: Model architecture of the LSTM autoencoder.

Table 4.1: Training and testing results for the 3 LSTM autoencoder model.

Species Train Validation Avg. Test
KL Divergence KL Divergence KL Divergence

Reactants 0.837 0.866 15.431
Water 0.864 1.486 9.947
DMSO 0.848 1.504 11.843

(a)

(b) (c)

Figure 4.8: Predicted versus actual PDF of the reactants, water and DMSO for a selected
test time step when using an LSTM autoencoder architecture.

32

When two PDFs are very similar, their KL divergence is extremely small on the count

of the KL divergence formula containing the natural logarithm of the ratio between two

probabilities. This tells us that the values within Table 4.1 are too large to indicate that

the models are accurate, especially during testing. Upon further examination, this poor

performance could be attributed to the sparsity of input data, as indicated by the large

number of ground truth points with a value of 0. Using DMSO as an example, there are

a total of 9 DMSO molecules within the simulation cell and assuming they all move one

voxel during the 10-time frame period each PDF entails, then there will be 18 out of 1728

voxels (1%) containing a non-zero probability. The uneven distribution of the data makes it

difficult for the model to give attention to the voxels with non-zero probability.

4.3.2 3D Convolutional neural network LSTM autoencoder archi-

tecture

A convolutional neural network (CNN) is a type of neural network model that uses the

convolution operation to identify spatially or temporally correlated data locally within a

dataset. The ability to extract local correlations within the data is why CNNs excel at tasks

that involve spatiality [65]. If the flattened PDFs of the CPMD-metadynamics simulation are

reverted to their 3D state, a CNN might be able to capture the important features within

the PDFs and outperform the LSTM autoencoder model. Like the LSTM autoencoder

model, the 3D PDFs will be arranged into sequences of a certain sequence length and then

act as the input for multiple time-distributed 3D CNN layers. Because the input data is

now four-dimensional (4D) with three spatial components and a temporal component, time-

distributed 3D CNN layers are needed to perform 3D convolution on each 3D PDF within

an input sequence. After four time-distributed 3D convolution layers, the resulting output is

flattened and fed into an LSTM layer. A bottleneck layer, a fully connected layer and three

3D deconvolution layers follow the LSTM layer to complete the autoencoder. Figure 4.9

33

shows a rough outline of the architecture described. Table 4.2 shows the training, validation

and test results for each species and Figure 4.10 compares the predicted and the actual PDF

for each species for a selected time step when a 3D CNN-LSTM architecture is used. KL

divergence remained as the loss function used for this model, and each model predicts the

spatial features of one species. The hyperparameters adjusted for the training of this model

are the sequence length, the filter size of each convolution layer, the number of convolution

layers, the number of filters for each convolution layer, the number of neurons in the LSTM

and the size of the bottleneck layer.

Figure 4.9: An example of a 3D CNN-LSTM model architecture that was tested.

Table 4.2: Training and testing results for the 3D CNN-LSTM autoencoder model.

Species Train Validation Avg. Test
KL Divergence KL Divergence KL Divergence

Reactants 0.574 0.575 15.430
Water 0.567 0.606 3.365
DMSO 0.521 0.632 5.580

Overall, both training and testing performance improved from the LSTM autoencoder

models. Regardless, the KL divergence values are still too substantial to indicate that this

model is accurate. It is hypothesized that predicting both the location and the magnitude

of a handful of probabilities within a feature space of 1728 is too demanding. Therefore, the

focus of future models was shifted to just predicting the location of the probability within

the feature space. The location was prioritized over the magnitude because the position of

solvent molecules relative to the reactants is crucial for the study of the impact of solvents

34

(a)

(b) (c)

Figure 4.10: Predicted versus actual PDF of the reactants, water and DMSO for a selected
test time step when using a 3D CNN-LSTM autoencoder architecture.

on reaction energetics regardless of magnitude, while the reverse is not true.

4.3.3 Binary relevance CNN-LSTM autoencoder classifier architec-

ture

With greater emphasis on predicting the probability locations, the input data must be ad-

justed to reflect this objective. Any non-zero probability within the dataset was converted

into a one while the zeros remained zero, creating a binary data set. This new model will in-

dividually assign either class 0 or class 1 to each voxel within every PDF it predicts, making

it a binary relevance classifier. It will also use the same CNN-LSTM autoencoder architec-

ture described in Section 4.3.2. Since the input data is now in a binary format rather than

35

a PDF, the loss function will change to a binary cross-entropy (BCE) function (Equation

4.5) [66]. BCE works well as a loss function but cannot give us an intuitive sense regarding

how well the model is performing, much like the KL divergence. Binary classifiers often

use binary accuracy as a metric to assess the accuracy of their model, which is simply the

ratio between the sum of true positives and true negatives to the total number of predictions

made. However, due to the skewed nature of the training data set, this metric could be

misleading because even if the model were to assign 0 to every voxel, its binary accuracy

would still appear to be very high owing to the scarcity of class 1 voxels within the ground

truth as proven in Section 4.3.1.

BCE = − 1

N

N∑
i=1

yi · log (p (yi)) + (1− yi) · log (1− p (yi)) (4.5)

For skewed binary datasets, the F1 score (Equation 4.6) is a more reliable metric to base

the assessment of a model on because it heavily penalizes a high ratio of false positives to

actual positives, which would be the case if the model assigned a 0 to every voxel. There-

fore, the F1 score will be used to evaluate models on their performance rather than binary

accuracy. The F1 score is the harmonic mean between precision (Equation 4.7) and recall

(Equation 4.8) and returns a value between 0 and 1 with higher values associated with greater

accuracy. Table 4.3 shows the training and testing results of the binary relevance classifier

model, and Figure 4.11 shows the confusion matrices for a selected test time step for each

species. Each species of the reaction system had its own model to keep the three channels of

information separate. The hyperparameters adjusted for the training of this model are the

sequence length, the filter size of each convolution layer, the number of convolution layers,

the number of filters for each convolution layer, the number of neurons in the LSTM and

the size of the bottleneck layer.

F1 score =
2 · Precision · Recall
Precision + Recall

(4.6)

36

Precision =
TP

TP + FP
(4.7)

Recall =
TP

TP + FN
(4.8)

TP = true positive FP = false positive FN = false negative

Table 4.3: Training and testing results for the binary relevance 3D CNN-LSTM classifier
model.

Species Train Train Validation Validation Avg. Test Avg. Test
BCE F1 score BCE F1 score BCE F1 score

Reactants 0.019 0.00 0.018 0.00 0.018 0.00
Water 0.010 0.82 0.012 0.27 0.460 0.34
DMSO 0.040 1.00 0.052 0.36 0.154 0.10

Figure 4.11: Confusion matrices of the predicted vs actual classes of each voxel for a selected
test time step for reactants, water and DMSO based on the binary relevance CNN-LSTM
autoencoder models.

Since the loss function and metric used for this model differ from previously tested mod-

els, a direct comparison cannot be made with previous models. However, based on the low

F1 scores for training, validation and testing, we can still conclude that these models also

perform poorly. The water and DMSO models produced good results during training; how-

ever, that success was not carried over during validation and testing. The F1 scores also vary

across species. A plausible hypothesis for this would be that because of the relatively high

number of water molecules within the system, it is easier to obtain true positives, even if by

chance, than if there are very few molecules, such is the case with the reactants. To improve

this model, a strategy to deal with the sparsity in the dataset is required. To prove that

37

sparsity is the primary issue, a total of 4 artificial datasets were created and used as training

data with the binary relevance classifier model without any modifications to architecture

or hyperparameters to prove that sparsity is indeed what is causing the poor performance

of the models. The first artificial dataset contained a 12 × 12 × 12 tensor of alternating

0s and 1s, creating evenly balanced classes. Every 10 time steps, every voxel would flip to

the opposite class. The second artificial dataset contains the same distribution of 0s and

1s as the first artificial dataset but contains a different time pattern (a-a-a-b-b-b-b-b-a-a-a-

a-a-a-a-a-b-b-b-b or 3a-5b-8a-4b). The third artificial data set contains 1s in three “hollow

cubes” of different sizes to mimic hypothetical solvation shells. This was done in a specific

manner so that the distribution of class 0 and class 1 was still roughly even. Every 10 time

steps, the 0s and 1s would once again switch. The fourth artificial dataset maintained the

“hollow cubes” pattern but this time with the 3a-5b-8a-4b time pattern. The training and

testing results for all four artificial datasets are shown in Table 4.4. As shown by the results

in Table 4.4, the same model architecture performs perfectly for all four artificial datasets,

which supports the hypothesis that the problem with the CPMD-metadynamics data is that

it is a heavily imbalanced dataset.

Table 4.4: Training and testing results for the binary relevance 3D CNN-LSTM classifier
model on four different artificial datasets.

Species Train Train Validation Validation Avg. Test Avg. Test
BCE F1 score BCE F1 score BCE F1 score

1 0.000 1.00 0.000 1.00 0.000 1.00
2 0.001 1.00 0.001 1.00 0.000 1.00
3 0.001 1.00 0.001 1.00 0.001 1.00
4 0.000 1.00 0.000 1.00 0.000 1.00

38

4.3.4 Binary relevance CNN-LSTM autoencoder classifier architec-

ture with a weighted loss function

Naturally, with the skewed nature of the data, the next course of action would be to introduce

a weighted loss function. A weighted loss function will emphasize predicting true positives by

heavily penalizing false negatives, thereby increasing the F1 score. The model architecture

follows the same architecture outlined in Sections 4.3.2 and 4.3.3, with only the loss function

changing. Two different methods of using weighted loss functions were tested. The first

method involves calculating a weighting tensor that will apply to each BCE calculation.

This weighting tensor is calculated by first identifying the voxels that contain a probability

for at least one timestep at some point during the simulation. These voxels are deemed

critical and assigned a weight greater than 1. This weight is different for each species and

is calculated by dividing the total number of voxels by the number of critical voxels within

the input data for that species (tabulated in Table 4.5), while the rest of the voxels were

assigned a weight of 1. This information was used to create a weighted matrix, which would

be multiplied element-wise inside the loss function with the matrix containing the element-

wise BCE between the prediction and the ground truth. The mean of the resulting matrix is

the final loss value. The second weighted loss function method involves calculating a different

weighting tensor based on the ground truth for each prediction and using that tensor to find

the final loss value. Table 4.6 shows the training and testing results for the model that uses

the global weighting tensor, and Table 4.7 shows the training and testing results for the

model that uses the “on-the-fly” weighting tensor.

Table 4.5: Number of critical voxels and the weights assigned to each species.

Species Number of Weightingcritical voxels
Reactants 44 39.27

Water 1308 1.32
DMSO 516 3.35

39

Table 4.6: Training and testing results for the binary relevance 3D CNN-LSTM classifier
model using a global weighted loss function.

Species Train Train Validation Validation Avg. Test Avg. Test
BCE F1 score BCE F1 score BCE F1 score

1 0.017 0.97 0.030 0.96 0.697 0.00
2 0.020 0.99 0.323 0.27 0.673 0.32
3 0.007 1.00 0.159 0.36 0.395 0.11

Table 4.7: Training and testing results for the binary relevance 3D CNN-LSTM classifier
model using an “on-the-fly” weighted loss function.

Species Train Train Validation Validation Avg. Test Avg. Test
BCE F1 score BCE F1 score BCE F1 score

1 0.006 0.67 0.334 0.69 12.829 0.23
2 0.064 0.80 8.751 0.21 12.756 0.39
3 0.021 0.74 5.106 0.36 14.442 0.14

Figures 4.12 and 4.13 show the confusion matrices of a selected test time step for all

three species for the global weighting tensor and the “on-the-fly” weighting tensor implemen-

tations, respectively. The hyperparameters adjusted for the training of this model are the

sequence length, the filter size of each convolution layer, the number of convolution layers,

the number of filters for each convolution layer, the number of neurons in the LSTM and the

size of the bottleneck layer. The training and validation F1 score for the reactant species

increased dramatically from the model that did not use a weighted loss function. Because

only two molecules make up the reactant species, there are fewer voxels that will see a re-

actant molecule at some point during the simulation. Due to the calculation method of the

weights, the critical voxels will have a much greater weighting than other voxels and increas-

ing performance. However, there is a delicate balance between the weighting and how many

voxels it is applied to. If a heavy weight is applied to too many voxels, then the effectiveness

of the weighting goes down. This is the reason behind limiting the weighting for water and

DMSO in both weighted BCE function methods. The test F1 score for each species across

both methods shows that only the “on-the-fly” weighting calculation method increased the

F1 score for the classification of reactant species voxels. While there was an improvement,

40

neither weighted BCE method facilitated the training of an acceptable ML for any of the

three species.

Figure 4.12: Confusion matrices of the predicted vs actual classes of each voxel for a selected
test time step for reactants, water and DMSO based on the binary relevance CNN-LSTM
autoencoder models with a global weighting tensor.

Figure 4.13: Confusion matrices of the predicted vs actual classes of each voxel for a selected
test time step for reactants, water and DMSO based on the binary relevance CNN-LSTM
autoencoder models with an “on-the-fly” weighting tensor.

4.4 Conclusions

In this chapter, five different models were trained and tested using CPMD-metadynamics

trajectory data for the protonation reaction of HMF within a 50 wt% solution of water and

DMSO. The LSTM autoencoder model processed sequences of flattened PDFs, encoding

the information to predict subsequent PDFs, which gave disappointing results. To enhance

the model’s ability to capture important spatial features, convolution layers were used in

conjunction with an LSTM layer for the next iteration of the model. The test results of

the CNN-LSTM model show an improvement, but the loss was still too high to indicate an

41

accurate model. To simplify the task required of each model, the PDFs were converted into

binary labels with a class 0 label indicating no probability and a class 1 label indicating

a non-zero probability. Three binary relevance classifier models were evaluated: one with

an unweighted loss function, one with a global weighted loss function calculated based on

training data, and the other with an “on-the-fly” weighted loss function. Unfortunately, none

of the three model architectures accurately predicted spatial features for all three species

within the feature space. As proven in Section 4.3.3, the sparsity of the input data is likely

making it difficult for these models to perform well. All four models discussed in Chapter

4 use an autoencoder structure to reduce the feature space of the input, so an alternative

approach to feature reduction is needed. These alternative approaches will be discussed in

Chapter 5.

42

Chapter 5

Alternate dimensionality reduction

methods applied for time-series

prediction of spatial features from

CPMD with metadynamics simulation

data

5.1 Introduction

Chapter 4 primarily focused on autoencoder architectures for making time-series predictions

of probability distribution functions (PDFs) for each species within a reaction system. These

predictions, if accurately representative of the ground truth, would serve as inputs for a sep-

arate model to predict the system’s free energy at that specific time step within the collective

variable (CV) space. However, the autoencoders proved ineffective, regardless of the archi-

tecture type used. An alternative approach involves applying a reversible transformation to

the input PDFs before their use in training. The inverse transformation can be applied to

43

return the actual prediction following the predictions. This chapter outlines several candi-

dates that meet this criterion and their performance and draws conclusions based on each

model’s outcomes.

5.2 Methods

Section 4.2 outlines the methodology employed to extract trainable data from the raw data

files of the Car-Parrinello molecular dynamics (CPMD)-metadynamics simulation. The pre-

processing yielded 20,000 flattened PDFs for each species: reactant, solvent and cosolvent.

An applicable reversible transformation that can be applied to this dataset is principal

component analysis (PCA). This technique projects a dataset onto a lower dimensional space

consisting of a set of orthogonal axes called principal components. This process preserves

any patterns or trends within the data [67]. PCA begins with the standardization of all

values within the dataset and computing its covariance matrix. The eigenvectors of the

covariance matrix indicate the principal components’ directions, and the covariance matrix’s

eigenvalues indicate the amount of variance each principal component accounts for. The PCA

transformation was executed automatically using the built-in PCA function within version

1.1.2 of the scikit-learn module in Python. The number of principal components used was

determined by the minimum number of principal components needed to account for 99%

of the total variance within the input dataset. Another transformation, dynamic principal

component analysis (DPCA) [68], builds on standard PCA to incorporate both temporal and

feature trends. DPCA involves creating a lagged matrix containing lagged features up to L

past time steps alongside the non-lagged features. Standard PCA is then performed on the

lagged matrix. Both transformations are viable options for addressing the sparsity within

the data. Since the new input was transformed by PCA or DPCA, the long short-term

memory (LSTM) model was trained to predict the principal components defined by the

PCA or DPCA transformation. The output was multiplied by the transpose of the PCA or

44

DPCA transformation matrix to recover the real prediction.

Another reversible transformation involves eliminating voxels within the dataset that do

not contribute useful information when making time-series predictions. If a voxel contained

a probability of zero for the entire simulation, they were considered a “dead voxel” and

eliminated from that species’ dataset entirely. This allowed the LSTM model to receive

fewer input features while predicting fewer outputs. These eliminated voxels were tracked

and can be used to restore the full PDF if needed. This approach substantially reduced the

feature space for all three species, with their feature spaces becoming 44, 1308 and 516 in

size for the reactants, solvent and co-solvent species, respectively. This transformation has

the largest impact on the reactants; therefore, it is expected that this model will perform

the best with the reactant species.

A different approach to reducing input features is to abandon the idea of predicting

PDFs and instead focus on predicting the Cartesian coordinates for each molecule within the

simulation cell [69]. To simplify the task further, only the coordinates of one atom within each

molecule were saved as training data. For the reactants, these atoms were the proton and the

fourth carbon in HMF that is the bonding site for the proton for this reaction. For the solvent

and cosolvent molecules, these were the oxygen atom in water and the sulphur molecule in

dimethyl sulphoxide (DMSO). These atoms were chosen based on their importance to the

reaction being studied or their location within their molecule. Once applied to the input

data, the feature space for the reactant solvent and cosolvent species was 6, 126 and 27,

respectively, representing a 99.7%, 92.7% and 98.4% reduction in feature space. With the

modifications to the input dataset, the outputs of the LSTM were Cartesian coordinates

instead of a PDF. The simulation data was also down-sampled by a factor of 10 so that the

number of total samples within the data set remained n = 20, 000.

The training and testing methodology discussed in Section 4.2 will remain as the method-

ology used to train and evaluate the models in Chapter 5.

45

5.3 Results and Discussion

This section will outline three approaches to feature reduction and their impact on model

performance when applied to the CPMD-metadynamics simulation dataset for the condensed

phase protonation reaction of 5-hydroxymethylfurfural (HMF).

5.3.1 Principal component analysis and dynamic principal compo-

nent analysis for feature reduction

Before training any models, the input dataset was first transformed using PCA. To account

for 99% of the total variance, the principal components used for the reactant, solvent and

cosolvent species were 29, 848 and 390, respectively. Sequences of principal components were

used to train the LSTM model. The model architecture consists of an LSTM layer with a

dropout of 0.1 followed by fully connected layers that use the Leaky ReLU activation function

with an α of 0.01. Table 5.1 shows this model’s training and testing results, and Figure 5.1

compares the predicted and ground truth PDFs for a selected test time step across all three

species. Once the inverse PCA transformation was applied to the predictions for this model,

the result is still PDFs. Therefore, the Kullback-Leibler divergence (KL divergence) was

used as the loss function for this model. The hyperparameters adjusted for the training of

this model were the sequence length, the number of neurons in each layer and the number

of fully connected layers.

Table 5.1: Training and testing results for the LSTM model using PCA-transformed data.

Species Train Validation Avg. Test
KL Divergence KL Divergence KL Divergence

Reactants 0.0005 0.0003 12.753
(0.748 - 16.855)

Water 0.0011 0.0012 2.563
(1.771 - 3.113)

DMSO 0.0011 0.0014 9.917
(1.387 - 16.419)

46

(a)

(b) (c)

Figure 5.1: Predicted versus actual PDF of the reactants, water and DMSO for a selected
test time step when using PCA transformation on input data.

Table 5.1 shows that the KL divergence values for training and validation for this model

are now on the magnitude expected of a valid model. Unfortunately, this performance did

not translate to testing. A range of KL divergence values is also given for testing in Table

5.1 to convey the wide range of loss values seen during testing. The lowest KL divergence

within the range always comes from the model’s first few predictions, with the loss values

steadily increasing with each time step predicted. The underlying cause is due to the model

making predictions based on an infinite horizon. The first prediction is likely the most

accurate as the model has been provided with a sequence of ground truths for the first

prediction. This prediction will naturally carry some error, and this error will propagate

since this prediction will be a part of the input for the prediction of the next time step.

This process repeats as prediction error within each prediction will continually compound.

47

Disregarding the compounding error issue, the KL divergence for the initial prediction for

each model is three orders of magnitudes larger than it was during training and validation.

Normally, the disparity between training and testing is the result of overfitting [70], data

mismatch, over-tuning of hyperparameters [71] or a test set that is too small. Overfitting was

prevented during training by only saving models that improved the validation loss, and a

data mismatch is impossible as the same data was used for training and testing. Over-tuning

of hyperparameters can happen when the hyperparameters are tuned towards the validation

data; however, this is impossible since the validation data and testing data match. While

the total number of time steps predicted by the model during testing is 10,000, which cannot

be considered small, only one time step was predicted with purely ground truth values. It is

possible the poor performance in predicting the first step was an outlier, and unfortunately,

that error was propagated through the rest of the predictions. To investigate the validity of

this hypothesis, each trained model was used to perform a one-step horizon prediction for

every input within the training dataset. The range of KL divergences for these predictions

for each species is tabulated in Table 5.2.

Table 5.2: Testing results for the LSTM model using PCA-transformed data with a prediction
horizon of H = 1.

Species Minimum Maximum
KL Divergence KL Divergence

Reactants 0.032 10.921
Water 1.485 2.594
DMSO 1.040 3.816

As the results show, the cause of the poor performance cannot be attributed to the first

prediction within an infinite horizon prediction scheme being an outlier. The minimum KL

divergence for the reactant species is lower than for the solvent and cosolvent, but it is still

two orders of magnitude greater than what was seen in training and validation. Therefore,

the reasons behind the mismatch between model performance are currently unknown.

DPCA incorporates past information into the PCA procedure to better capture temporal

48

trends. This characteristic of DPCA may allow it to be more effective than standard PCA

when used for time-series prediction. While the transformation method changed, the model’s

architecture remained the same. Table 5.3 shows this model architecture’s training and

testing results, while Figure 5.2 compares the predicted and the ground truth PDF of all

three species for a given test time step. The lag was adjusted within the range of 5 to 15

alongside the rest of the hyperparameters that accompany the PCA model.

Table 5.3: Training and testing results for the LSTM model using DPCA-transformed data.

Species Train Validation Avg. Test
KL Divergence KL Divergence KL Divergence

Reactants 0.002 0.003 14.535
(0.255 - 16.623)

Water 0.009 0.009 9.776
(7.319 - 12.445)

DMSO 0.007 0.015 10.384
(1.430 - 14.465)

Table 5.3 and Figure 5.2 show that the DPCA models perform worse than the PCA

models; therefore, no further investigation was done regarding DPCA. Because the PCA

transformation is applied on a larger matrix in DPCA, the number of principal components

needed to account for 99% of the variance is larger. On average, it was found that when

the lag is set to five, DPCA resulted in roughly three times the number of principal com-

ponents compared to standard PCA. If the lag is increased, so will the number of principal

components, resulting in more input features and making it harder to predict all principal

components accurately. This increase in principal components is hypothesized to be the rea-

son behind why standard PCA performs better than DPCA for the purposes of this study.

Because the PCA method gave the best overall results out of any model predicting a PDF

as its output, its projections can be found in Appendix B.

49

(a)

(b) (c)

Figure 5.2: Predicted versus actual PDF of the reactants, water and DMSO for a selected
test time step when using DPCA transformation on input data.

5.3.2 Feature reduction through elimination of negligible features

used in conjunction with an LSTM

Looking at the PDFs generated from the simulation, one might notice that some voxels

within the input data always show zero probability. These “dead voxels” can be calculated

and predicted without a model because these voxels will always be associated with a zero

probability. The location and number of “dead voxels” differ between species but can be easily

calculated by taking the element-wise summation of all sample PDFs for a certain species

and removing the voxels that have a sum of zero. Leaving these “dead voxels” inside the

input data increases the feature space and gives the model more opportunities to make wrong

predictions. The location of these “dead voxels” was recorded so that the original PDF could

50

be recovered. Because the voxels removed from each PDF only contain zeroes, the resulting

inputs are still PDFs; therefore, the KL divergence is still viable as a loss function. However,

as discussed at the end of Section 4.3.2, predicting the location of the probabilities within

the PDFs is the most critical part. To set a more achievable target, the model was used to

only predict the locations of the probabilities as a binary relevance classifier. Any non-zero

probability within the input data set was labelled class 1, while all other voxels were labelled

class 0. The loss function used was the binary cross-entropy (BCE) function, and the metric

was the F1 score. Table 5.4 shows this model’s training and testing results, and Figure 5.3

shows the confusion matrix between the predicted and actual classification of voxels for all

three species. The hyperparameters adjusted for the training of this model are the lag of the

lagged matrix, the sequence length, the number of neurons in each layer and the number of

fully connected layers. The values in Table 5.4 do not include the “dead voxels” eliminated

from the dataset at the beginning. Since they can be considered true positives as they are

known to always be zero, the F1 scores within Table 5.4 are lower than if the F1 score was

calculated with the full PDF. This was done so the known true positives would not inflate

the F1 score.

Table 5.4: Training and testing results for the LSTM model using data free of “dead voxels”.

Species Train Train Validation Validation Avg. Test Avg. Test
BCE F1 score BCE F1 score BCE F1 score

Reactants 0.039 0.93 0.039 0.94 0.405 0.13
(0.013 -
0.475)

(0.00 - 1.00)

Water 0.049 0.90 0.052 0.90 0.731 0.12
(0.083 -
0.890)

(0.00 - 0.85)

DMSO 0.057 0.86 0.059 0.86 0.519 0.09
(0.030 -
0.721)

(0.00 - 0.95)

The results in Table 5.4 show that the model performs well during training and validation;

however, the testing results show a wide range of values. No doubt this is because of the

51

Figure 5.3: Confusion matrices of the predicted vs actual classes of each voxel for a selected
test time step for reactants, water and DMSO based on the “dead voxel” feature reduction
method.

infinite horizon prediction scheme. As discussed in Section 5.3.1, the error of one prediction

gets carried onto the input for the next input and through this interaction, the errors within

the input begin to compound with each other. During training, the prediction horizon H is

always one, so the model learns to make one-step-ahead predictions very well, as shown in

Table 5.4. This training method is called teacher forcing and translates poorly when applied

to infinite horizon predictions. Teacher forcing is a training strategy for recurrent neural

network (RNN) type neural networks that uses the ground truth as the input instead of the

output of a previous time step. This is the default training method for an RNN or LSTM

because it accelerates and stabilizes training, but the model can become reliant on having

the ground truth as an input, which is exactly what happened to these models. Table 5.5

shows the average F1 scores from testing with different prediction horizons to determine the

extent to which the trained models can make accurate predictions.

Table 5.5: Average F1 scores of the trained models when tested to make 10,000 time-series
predictions with different prediction horizons H.

Species Avg. F1
score,

Avg. F1
score,

Avg. F1
score,

Avg. F1
score,

Avg. F1
score,

H = 1 H = 5 H = 10 H = 15 H = 20
Reactants 0.97 0.93 0.90 0.87 0.85

Water 0.90 0.85 0.79 0.76 0.72
DMSO 0.87 0.80 0.71 0.65 0.60

Table 5.5 shows that with increasing H, the performance of the models quickly deterio-

52

rates. The biggest weakness in these models is that ground truth will not be available in a

real-life application to assist the model in its predictions. Another major weakness is that

ground truth was used to determine which voxels were “dead voxels” and which voxels were

important before the data was used to train the model. Combined, these weaknesses prevent

this model from being applied to real-life situations. However, the model still proves that

given the ground truth, time-series predictions can be made with acceptable accuracy.

5.3.3 Using Cartesian coordinates with an LSTM to predict the

future locations of molecules within the system

If the goal is to reduce the number of features to a minimum, then one such solution is

to use a different spatial representation than what has been considered so far, which is the

PDF. The trajectory file output from the CPMD-metadynamics simulation gives the three

Cartesian coordinates for each atom within the system for all T = 200, 000 time steps. It

is trivial to extract the coordinates of certain atoms into a dataset spanning all time steps.

It would be inefficient to predict the coordinates of each atom within the system therefore,

certain atoms were selected. For the reactants, this was the fourth carbon on the HMF

molecule and the proton. For the solvent and cosolvent, it was the oxygen atom in water

and the sulphur atom in DMSO, respectively. The total feature space across all species was

now 159 compared to the 5184 features from the PDF approach. Similar to what was done

with the PDFs, the dataset was then down-sampled by a factor of 10 for a total of n = 20, 000

data points. This was necessary because each time frame represented an extremely small

step in time, meaning the coordinates were roughly the same from one time step to the next.

These tiny differences would be challenging to learn, whereas down-sampling the input data

and magnifying the changes within the system slightly gives the model a higher chance of

learning these trends. Sequences of these features were created and used as the training data

for an LSTM network consisting of an LSTM layer and several fully connected layers with

53

Leaky Rectified Linear Unit (Leaky ReLU) activation functions. Because the input data is

no longer in the form of PDFs, a new loss function was selected for this model. Mean average

percentage error (MAPE) was chosen over root mean squared deviation (RMSD) as the loss

function because the magnitude of values within the dataset is generally small. We aim to

penalize small deviations with MAPE because these deviations can be significant relative to

the magnitude of the dataset. Table 5.6 shows the training and testing results for this model.

The hyperparameters adjusted for this model were the sequence length, the number of layers

and the number of neurons in each layer. Similar to the model discussed in Section 5.3.2,

the models showed excellent accuracy during training and validation with a wide range of

losses during training due to the infinite horizon prediction testing method. Table 5.7 shows

that the LSTM models that use the Cartesian coordinates as input data give more sustained

accuracy with increasing prediction horizon compared to the models described in Section

5.3.2, particularly for the solvent and cosolvent.

Table 5.6: Mean average percentage error for training, validation and testing for LSTM using
Cartesian coordinates dataset.

Species Train MAPE Validation MAPE Avg. Test MAPE

Reactants 2.5% 2.1% 33.5%
(2.2% - 42.8%)

Water 2.0% 1.9% 22.5%
(1.7% - 35.9%)

DMSO 2.5% 2.2% 33.3%
(2.3% - 46.2%)

Table 5.7: Average MAPE of the trained models when tested to make 10,000 time-series
predictions with different prediction horizons H.

Species Avg.
MAPE,

Avg.
MAPE,

Avg.
MAPE,

Avg.
MAPE,

Avg.
MAPE,

H = 1 H = 50 H = 100 H = 200 H = 300
Reactants 2.0% 5.1% 8.9% 16.6% 22.0%

Water 1.6% 2.4% 3.4% 5.3% 7.1%
DMSO 1.7% 3.4% 5.4% 9.0% 11.8%

It also has the advantage of being more generalizable since these models do not require

54

ground truth information to further adjust the input data in some way before testing. Figure

5.4 compares the predicted Cartesian coordinates of the protonating hydrogen ion in the

protonation reaction for two different prediction horizons. It is observed that within 25

prediction steps, the predicted Cartesian coordinates start deviating heavily from targets

with no ground truth to set them back on course and eventually, the predictions plateau.

This pattern was seen not just for the hydrogen ion but for all atoms predicted. Figure 5.4a

indicates that the trained models perform well when given a test environment that emulates

their training environment but falters when given longer prediction horizons, as shown by

Figure 5.4b.

Both the wide range of test MAPE values observed in Table 5.6 and the comparison made

in Figure 5.4 indicate that teacher forcing during training made the models too dependent

on ground truths. Scheduled sampling is introduced into the training procedure to address

this issue. Scheduled sampling is a training method that chooses if the ground truth or the

predicted output is used for the next prediction at random. A teacher forcing ratio ϵE is

used to determine whether the model uses the previous prediction or the ground truth as

part of the next input for epoch E. The teacher forcing ratio can be conceptualized as the

chance of a prediction step being teacher forced. If a randomly generated value is less than

the teacher forcing ratio, the ground truth will be used as part of the next input, otherwise,

the predicted output is used instead. When ϵE = 1, teacher forcing will always enabled,

whereas when ϵE = 0, the model will train with solely self-generated outputs. The teacher

forcing ratio is often determined by a function rather than a static value. Examples of such

functions are linear, exponential decay and inverse sigmoid [72].

55

(a)

(b)

Figure 5.4: Predicted vs. actual Cartesian coordinates of protonating hydrogen ion (a) when
the prediction horizon is 1 and (b) when the prediction horizon is infinite.

56

The inverse sigmoid function (Equation 5.1) was chosen because it gradually reduces ϵE

initially to ensure training stability. Once deeper into training, ϵE starts to drop significantly

until ϵE = 0. The parameters K and m are hyperparameters adjusted to manipulate the

shape of the inverse sigmoid curve depending on the training context. The variable K is

a positive value that controls the steepness of the inflection point seen within any sigmoid

function while m controls which epoch E the inflection point (ϵE = 0.5) occurs at. Figure

5.5 demonstrates the effects of K and m on the inverse sigmoid function.

ϵE =
1

1 + eK(E−m)
(5.1)

(a) (b)

Figure 5.5: The inverse sigmoid curve with (a) varying K values and (b) varying m values.

The training and validation methodology was also adjusted to properly implement sched-

uled sampling. Previously, each input within a batch predicts only one step and their mean

loss is used for backpropagation; however, if only one prediction is made, then the decision of

whether teacher forcing should be used or not is meaningless because a new batch of inputs

will be used to calculate the next loss value. In other words, each input sequence must have

a H > 1 for the teacher forcing decision to have an impact on training. This change is

reflected in the new training loop, shown in Figure 5.6, where each input sequence of length

57

l makes multiple one-step-ahead predictions in a row. After each one-step-ahead prediction,

a randomly generated value between 0 and 1 would be compared with the teacher forcing

ratio ϵE for that epoch to determine which output (predicted or ground truth) is used for

the next prediction.

Figure 5.6: The new training loop used with the scheduled sampling technique. The number
of times each training step goes through this loop is adjustable through a hyperparameter.

The prediction horizon H was always at least l+1. The motivation behind this constraint

was to ensure that at least one prediction within every set of predictions would have a chance

of containing only predicted outputs, which most similarly emulates an infinite prediction

horizon scenario. To code and execute this custom training loop alongside a scheduled

sampling teacher forcing scheme, version 1.12.1 of Pytorch was used. The hyperparameters

adjusted for each model were the number of times the teacher forcing decision was for a

single starting input, the K and m parameters within the inverse sigmoid function and

the number of neurons in each layer. In theory, applying scheduled sampling should have

improved each model’s ability to make long-term predictions. However, Tables 5.8 and 5.9

show that using scheduled sampling only helped the HMF model improve, while the models

58

for water and DMSO performed worse. The improvement in MAPE for the reactants model is

also highlighted in Figure 5.7a. Figure 5.7b indicates that despite employing the scheduled

sampling method, the predictions still reached a plateau, albeit over a longer duration,

suggesting that scheduled sampling is still insufficient.

Table 5.8: Mean average percentage error for training, validation and testing for LSTM
trained using scheduled sampling with cartesian coordinates dataset.

Species Train MAPE Validation MAPE Avg. Test MAPE

Reactants 1.4% 1.7% 20.7%
(1.3% - 31.7%)

Water 1.4% 2.5% 33.5%
(3.8% - 44.8%)

DMSO 1.5% 2.7% 45.6%
(2.5% - 55.1%)

Table 5.9: Average MAPE of the trained models when tested to make 10,000 time-series
predictions with different prediction horizons H.

Species Avg.
MAPE,

Avg.
MAPE,

Avg.
MAPE,

Avg.
MAPE,

Avg.
MAPE,

H = 1 H = 50 H = 100 H = 200 H = 300
Reactants 1.8% 6.0% 9.2% 13.1% 15.0%

Water 3.8% 5.1% 7.3% 10.5% 12.7%
DMSO 3.6% 8.9% 14.4% 23.4% 28.9%

59

(a)

(b)

Figure 5.7: Predicted vs. actual Cartesian coordinates of protonating hydrogen ion for the
scheduled sampling model (a) when the prediction horizon is 1 and (b) when the prediction
horizon is infinite.

60

5.4 Conclusions

Various feature reduction methods were applied to the sample data with varying levels of

success in terms of model performance. The PCA transformation significantly improved

training loss for each model; however, this improvement was not reflected in the valida-

tion loss. This result pointed to several possibilities, including overfitting, data mismatch,

over-tuning of hyperparameters or a test set that is too small. All these possibilities were

ruled out due to the testing method’s nature, precautions made during training or further

testing. When a DPCA transformation was applied, it decreased model performance since

using DPCA resulted in more principal components. The following method tested involved

identifying redundant features within the input data called “dead voxels” to shave down the

feature space. Lastly, a new data set containing the Cartesian coordinates of each species

within the simulation cell was used as a dataset. The models trained from this dataset gave

promising results but again suffered from dependence on ground truth, albeit to a lesser

extent than previously trained models. The scheduled sampling method was used to remedy

this issue, but to no avail.

Unfortunately, no model discussed in this chapter could perform well under the proposed

testing method despite some promising training results. The effects of teacher forcing were

evident within the trained models even when scheduled sampling was applied, indicating that

a different approach is required. Some strategies and approaches that could be taken toward

training a model capable of predicting a CPMD simulation of a solvent-based reaction are

discussed in Chapter 6.

61

Chapter 6

Conclusion and Future Work

6.1 Summary

This thesis outlined the process of training machine learning (ML) models that can act as

a proxy model for Car-Parrinello molecular dynamics (CPMD) metadynamics simulations

of condensed-phase biomass reactions. Chapter 2 reviews a handful of relevant literature,

showcasing past work regarding the cooperation between ML and molecular dynamics (MD).

These works portray the academic community’s strong motivation to improve MD methods’

computational efficiency to simulate larger systems and access longer time scales. Doing

so would only serve to enhance our comprehension of computational chemistry. This work

follows in these footsteps and attempts to push beyond what studies have achieved. Chapter

3 contains a high-level overview of the principles and concepts behind various molecular

modeling methods. The intricacy of these methods, particularly ab initio molecular dynamics

(AIMD) methods, is behind why ML is being leveraged to push MD beyond its current limits,

which this study also attempts to do.

Chapter 4 uses data from an explicit solvation CPMD metadynamics simulation of HMF

undergoing protonation in a 50/50 solution of water and dimethyl sulphoxide (DMSO) to

train autoencoder models to predict the probability distribution function (PDF) of each

62

species within the system. The molecules within the system were split into three species: the

reactants, water and DMSO. The output data from the simulation was converted into PDFs

for each species, voxelized and constructed into sequences. These sequences served as training

data as well as testing data. Testing data was the same as training data to ensure that the

model at least had the proficiency to make predictions based on data it had already seen.

Each model was tested by assuming that a CPMD metadynamics simulation had been run

for 100,000 steps, and the proxy model was needed to predict the PDFs for the next 100,000

time steps. Because each PDF is constructed based on positional data from a time slice of 10

frames, the model would predict 10,000 PDFs that encapsulate the next 100,000 time steps.

The first model architecture tested was a Long Short-Term Memory (LSTM) autoencoder

architecture, with each species getting its own separate model. Each method described in

this chapter refers to a set of three trained models, each trained to make predictions for one

species. The second model architecture used a 3D CNN-LSTM autoencoder architecture to

better capture spatial relationships within the PDFs. Both models failed to capture both

the magnitude and the location of probabilities with each PDF. The attempted solution

to this problem was a binary relevance 3D CNN-LSTM autoencoder that classifies voxels

as either a class 1 (contains a non-zero probability) or a class 0 (no probability). This

architecture was trained using three different loss functions: an unweighted binary cross-

entropy (BCE) function, a weighted BCE function using a global weighting tensor and a

weighted BCE function using an “on-the-fly” weighting tensor. Using a weighted loss function

marginally improved testing results compared to when an unweighted loss function was used.

Nonetheless, none of the models could accurately predict the location of probabilities over a

10,000 time step prediction horizon.

Chapter 5 tested five different ML models that don’t use an autoencoder architecture.

Instead, they employed feature reduction methods to make it easier for an LSTM neural

network to learn the input feature space. The first techniques discussed were Principal

Component Analysis (PCA) and Dynamic Principal Component Analysis (DPCA). Both

63

techniques involve projecting a dataset onto a lower dimensional feature space made up

of mathematically determined principal components. The only difference is that DPCA

applies the PCA transformation on a lagged matrix of the dataset to better capture temporal

trends. It was found that the ML models did a good job training on PCA-transformed data

however, this performance did not translate into the testing environment. DPCA, on the

other hand, delivered poor results in both training and testing, most likely because DPCA

inherently creates a larger feature space than PCA since it also captures time-dependent

patterns. The third set of models was trained on PDFs stripped of their “dead voxels.” “Dead

voxels” refers to voxels within the dataset of each species that always give a probability of

zero. Since the probability of these voxels never changes, there is no point in including

them in the feature space. The disadvantage of this approach is that it requires knowledge

of ground truth before the model is trained, which won’t be the case in an application

scenario. Nonetheless, this model could indicate what feature space size is learnable by the

ML model. Despite promising training results and a significant reduction in input features,

particularly for the reactants species, this set of models fails in a testing scenario. This

observation can also be applied to the next set of models where the ML models were trained

on Cartesian coordinates rather than PDFs. This pattern occurred because teacher forcing

during training made these models dependent on ground truth, which wasn’t available in

the testing environment. Scheduled sampling was used to adjust the training loop for the

ML models that use Cartesian coordinates as inputs to dampen the effect of teacher forcing

but was met with very little success. In conclusion, no model architectures or dataset

formulations resulted in a model that could reliably make accurate long-term predictions

when no ground truth data is available.

64

6.2 Future Work

Given that the ML architectures explored within this work were unsuccessful at achieving

the original objective, there are multiple directions for future work. These directions come

in two varieties: adjustments to models already discussed within this work and architectures

that approach the problem differently.

Throughout Chapter 5, the idea of feature reduction comes up regularly however, this

idea was not as emphasized in Chapter 4. A possible feature reduction method that could be

applied to the voxelized PDFs used as input data in Chapter 4 is to apply coarser voxelization

or limit the range of atoms considered within the voxelization. Since the simulation cell is

3D, a slightly coarser voxelization along each axis would be compounded with each other

to reduce feature size exponentially. Other possible modifications that apply to all models

discussed include adding relational data into the dataset, bidirectional LSTMs (BLSTMs) [73],

and self-tuning hyperparameter optimization [74]. Unfortunately, even if these adjustments

successfully improved training results, they would not be able to address the larger underlying

issue, which is how to decrease the model’s reliance on ground truth data.

Since this study found that scheduled sampling was ineffective at reducing the effect of

teacher forcing even when the training horizon was extended to emulate the testing envi-

ronment, new strategies are required. Two such possibilities include increasing the role that

molecular dynamics has on the ML model and attention mechanisms. In Section 5.3.3 the

set of models trained using scheduled sampling was found to accurately predict each atom’s

Cartesian coordinates with a limited prediction horizon. Suppose the ML models had a

limited prediction horizon, and CPMD uses the last ML-predicted coordinates to calculate

several new time steps before feeding them back into the ML models. In that case, the

overreliance on ground truth will no longer be an issue. This would increase the compu-

tational costs of this new hybrid CPMD-ML model but could deliver accurate predictions

while still being less expensive than only using CPMD. A different approach would be to use

65

attention mechanisms to improve the ML models’ ability to focus on important aspects of

the input data to make accurate predictions. This is because attention mechanisms process

inputs in an iterative manner while paying greater attention to information deemed more

important [75]. It has already been shown that attention-based recurrent neural networks

can make accurate multivariate time-series predictions [76]. Given the nature of the training

data, this is promising, but only when it is put into action will we be able to see if this type

of model can handle large feature spaces and limited ground truth availability in testing

environments.

Once accurate time-series predictions can be made regarding the spatial features, a sepa-

rate model can then be trained to make predictions of the collective variables and free energy

of the system. This is so that a free energy surface (FES) can be reconstructed through the

proxy models. The reconstructed FES will allow the energetics of the reaction in question to

be studied. Unlike the ML model trained on spatial inputs, this new free energy model won’t

need to make time series-predictions. Instead, it will take each predicted spatial arrangement

of the reactants and solvents and use that information to predict the CVs and free energy

for that predicted step.

66

Bibliography

[1] David J. C. Constable, Conchita Jimenez-Gonzalez, and Richard K. Henderson. Per-

spective on Solvent Use in the Pharmaceutical Industry. Organic Process Research

& Development, 11(1):133–137, January 2007. ISSN 1083-6160, 1520-586X. doi:

10.1021/op060170h. URL https://pubs.acs.org/doi/10.1021/op060170h.

[2] Jithin John Varghese and Samir H. Mushrif. Origins of complex solvent effects on chemi-

cal reactivity and computational tools to investigate them: a review. Reaction Chemistry

& Engineering, 4(2):165–206, 2019. ISSN 2058-9883. doi: 10.1039/C8RE00226F. URL

https://pubs.rsc.org/en/content/articlelanding/2019/re/c8re00226f.

[3] Alex K. Chew, Shengli Jiang, Weiqi Zhang, Victor M. Zavala, and Reid C. Van Lehn.

Fast predictions of liquid-phase acid-catalyzed reaction rates using molecular dynamics

simulations and convolutional neural networks. Chemical Science, 11(46):12464–12476,

2020. ISSN 2041-6520, 2041-6539. doi: 10.1039/D0SC03261A. URL http://xlink.

rsc.org/?DOI=D0SC03261A.

[4] Samir H. Mushrif. Molecular Modeling Methods. Unpublished Notes for CME 694:

Computational Chemistry & Molecular Modeling, University of Alberta.

[5] Jens Kleinjung and Franca Fraternali. Design and application of implicit solvent models

in biomolecular simulations. Current Opinion in Structural Biology, 25:126–134, April

2014. ISSN 0959440X. doi: 10.1016/j.sbi.2014.04.003. URL https://linkinghub.

elsevier.com/retrieve/pii/S0959440X14000438.

67

https://pubs.acs.org/doi/10.1021/op060170h
https://pubs.rsc.org/en/content/articlelanding/2019/re/c8re00226f
http://xlink.rsc.org/?DOI=D0SC03261A
http://xlink.rsc.org/?DOI=D0SC03261A
https://linkinghub.elsevier.com/retrieve/pii/S0959440X14000438
https://linkinghub.elsevier.com/retrieve/pii/S0959440X14000438

[6] Alexey Onufriev. Chapter 7 - Implicit Solvent Models in Molecular Dynamics

Simulations: A Brief Overview. In Annual Reports in Computational Chemistry,

volume 4, pages 125–137. Elsevier, 2008. ISBN 9780444532503. doi: 10.1016/

S1574-1400(08)00007-8. URL https://linkinghub.elsevier.com/retrieve/pii/

S1574140008000078.

[7] Alex K. Chew, Theodore W. Walker, Zhizhang Shen, Benginur Demir, Liam Witte-

man, Jack Euclide, George W. Huber, James A. Dumesic, and Reid C. Van Lehn. Ef-

fect of Mixed-Solvent Environments on the Selectivity of Acid-Catalyzed Dehydration

Reactions. ACS Catalysis, 10(3):1679–1691, February 2020. ISSN 2155-5435, 2155-

5435. doi: 10.1021/acscatal.9b03460. URL https://pubs.acs.org/doi/10.1021/

acscatal.9b03460.

[8] Jin Zhang, Haiyang Zhang, Tao Wu, Qi Wang, and David Van Der Spoel. Comparison

of Implicit and Explicit Solvent Models for the Calculation of Solvation Free Energy

in Organic Solvents. Journal of Chemical Theory and Computation, 13(3):1034–1043,

March 2017. ISSN 1549-9618, 1549-9626. doi: 10.1021/acs.jctc.7b00169. URL https:

//pubs.acs.org/doi/10.1021/acs.jctc.7b00169.

[9] Nilesh Varadan Orupattur, Samir H. Mushrif, and Vinay Prasad. Catalytic materi-

als and chemistry development using a synergistic combination of machine learning

and ab initio methods. Computational Materials Science, 174:109474, March 2020.

ISSN 09270256. doi: 10.1016/j.commatsci.2019.109474. URL https://linkinghub.

elsevier.com/retrieve/pii/S0927025619307736.

[10] Zahra Shamsi, Kevin J. Cheng, and Diwakar Shukla. Reinforcement Learning Based

Adaptive Sampling: REAPing Rewards by Exploring Protein Conformational Land-

scapes. The Journal of Physical Chemistry B, 122(35):8386–8395, September 2018.

ISSN 1520-6106, 1520-5207. doi: 10.1021/acs.jpcb.8b06521. URL https://pubs.acs.

org/doi/10.1021/acs.jpcb.8b06521.

68

https://linkinghub.elsevier.com/retrieve/pii/S1574140008000078
https://linkinghub.elsevier.com/retrieve/pii/S1574140008000078
https://pubs.acs.org/doi/10.1021/acscatal.9b03460
https://pubs.acs.org/doi/10.1021/acscatal.9b03460
https://pubs.acs.org/doi/10.1021/acs.jctc.7b00169
https://pubs.acs.org/doi/10.1021/acs.jctc.7b00169
https://linkinghub.elsevier.com/retrieve/pii/S0927025619307736
https://linkinghub.elsevier.com/retrieve/pii/S0927025619307736
https://pubs.acs.org/doi/10.1021/acs.jpcb.8b06521
https://pubs.acs.org/doi/10.1021/acs.jpcb.8b06521

[11] Theodore W. Walker, Alex K. Chew, Huixiang Li, Benginur Demir, Z. Conrad Zhang,

George W. Huber, Reid C. Van Lehn, and James A. Dumesic. Universal kinetic

solvent effects in acid-catalyzed reactions of biomass-derived oxygenates. Energy

& Environmental Science, 11(3):617–628, 2018. ISSN 1754-5692, 1754-5706. doi:

10.1039/C7EE03432F. URL http://xlink.rsc.org/?DOI=C7EE03432F.

[12] Venkatesh Botu and Rampi Ramprasad. Adaptive machine learning framework to ac-

celerate ab initio molecular dynamics. International Journal of Quantum Chemistry,

115(16):1074–1083, August 2015. ISSN 0020-7608, 1097-461X. doi: 10.1002/qua.24836.

URL https://onlinelibrary.wiley.com/doi/10.1002/qua.24836.

[13] Zhenwei Li, James R. Kermode, and Alessandro De Vita. Molecular Dynamics with

On-the-Fly Machine Learning of Quantum-Mechanical Forces. Physical Review Letters,

114(9):096405, March 2015. ISSN 0031-9007, 1079-7114. doi: 10.1103/PhysRevLett.

114.096405. URL https://link.aps.org/doi/10.1103/PhysRevLett.114.096405.

[14] Felix Brockherde, Leslie Vogt, Li Li, Mark E. Tuckerman, Kieron Burke,

and Klaus-Robert Müller. Bypassing the Kohn-Sham equations with ma-

chine learning. Nature Communications, 8(1):872, October 2017. ISSN 2041-

1723. doi: 10.1038/s41467-017-00839-3. URL https://www.nature.com/articles/

s41467-017-00839-3.

[15] Linfeng Zhang, Jiequn Han, Han Wang, Roberto Car, and Weinan E. Deep Poten-

tial Molecular Dynamics: A Scalable Model with the Accuracy of Quantum Mechan-

ics. Physical Review Letters, 120(14):143001, April 2018. ISSN 0031-9007, 1079-7114.

doi: 10.1103/PhysRevLett.120.143001. URL https://link.aps.org/doi/10.1103/

PhysRevLett.120.143001.

[16] Yaoyi Chen, Andreas Krämer, Nicholas E. Charron, Brooke E. Husic, Cecilia Clementi,

and Frank Noé. Machine learning implicit solvation for molecular dynamics. The Journal

69

http://xlink.rsc.org/?DOI=C7EE03432F
https://onlinelibrary.wiley.com/doi/10.1002/qua.24836
https://link.aps.org/doi/10.1103/PhysRevLett.114.096405
https://www.nature.com/articles/s41467-017-00839-3
https://www.nature.com/articles/s41467-017-00839-3
https://link.aps.org/doi/10.1103/PhysRevLett.120.143001
https://link.aps.org/doi/10.1103/PhysRevLett.120.143001

of Chemical Physics, 155(8):084101, aug 2021. ISSN 0021-9606, 1089-7690. doi: 10.

1063/5.0059915. URL https://pubs.aip.org/aip/jcp/article/1018119.

[17] Michael Gastegger, Kristof T. Schütt, and Klaus-Robert Müller. Machine learning of

solvent effects on molecular spectra and reactions. Chemical Science, 12(34):11473–

11483, 2021. ISSN 2041-6520, 2041-6539. doi: 10.1039/D1SC02742E. URL http:

//xlink.rsc.org/?DOI=D1SC02742E.

[18] Hanwen Zhang, Veronika Juraskova, and Fernanda Duarte. Modeling Chemical

Processes in Explicit Solvents with Machine Learning Potentials. preprint, Chem-

istry, July 2023. URL https://chemrxiv.org/engage/chemrxiv/article-details/

64a8085fba3e99daefab8f89.

[19] Juben N. Chheda, George W. Huber, and James A. Dumesic. Liquid-Phase Catalytic

Processing of Biomass-Derived Oxygenated Hydrocarbons to Fuels and Chemicals.

Angewandte Chemie International Edition, 46(38):7164–7183, September 2007. ISSN

1433-7851, 1521-3773. doi: 10.1002/anie.200604274. URL https://onlinelibrary.

wiley.com/doi/10.1002/anie.200604274.

[20] Samir H. Mushrif, Stavros Caratzoulas, and Dionisios G. Vlachos. Understanding sol-

vent effects in the selective conversion of fructose to 5-hydroxymethyl-furfural: a molec-

ular dynamics investigation. Physical Chemistry Chemical Physics, 14(8):2637, 2012.

ISSN 1463-9076, 1463-9084. doi: 10.1039/c2cp22694d. URL http://xlink.rsc.org/

?DOI=c2cp22694d.

[21] Stephen J. Smith and Brian T. Sutcliffe. The Development of Computational Chemistry

in the United Kingdom. In Kenny B. Lipkowitz and Donald B. Boyd, editors, Reviews

in Computational Chemistry, volume 10, pages 271–316. Wiley, 1 edition, January 1996.

ISBN 9780471186489 9780470125878. doi: 10.1002/9780470125878.ch5. URL https:

//onlinelibrary.wiley.com/doi/10.1002/9780470125878.ch5.

70

https://pubs.aip.org/aip/jcp/article/1018119
http://xlink.rsc.org/?DOI=D1SC02742E
http://xlink.rsc.org/?DOI=D1SC02742E
https://chemrxiv.org/engage/chemrxiv/article-details/64a8085fba3e99daefab8f89
https://chemrxiv.org/engage/chemrxiv/article-details/64a8085fba3e99daefab8f89
https://onlinelibrary.wiley.com/doi/10.1002/anie.200604274
https://onlinelibrary.wiley.com/doi/10.1002/anie.200604274
http://xlink.rsc.org/?DOI=c2cp22694d
http://xlink.rsc.org/?DOI=c2cp22694d
https://onlinelibrary.wiley.com/doi/10.1002/9780470125878.ch5
https://onlinelibrary.wiley.com/doi/10.1002/9780470125878.ch5

[22] Jonathan P. McMullen and Klavs F. Jensen. Integrated microreactors for reac-

tion automation: new approaches to reaction development. Annual Review of An-

alytical Chemistry, 3(1):19–42, June 2010. ISSN 1936-1327, 1936-1335. doi: 10.

1146/annurev.anchem.111808.073718. URL https://www.annualreviews.org/doi/

10.1146/annurev.anchem.111808.073718.

[23] Zhenpeng Zhou, Xiaocheng Li, and Richard N. Zare. Optimizing Chemical Reactions

with Deep Reinforcement Learning. ACS Central Science, 3(12):1337–1344, December

2017. ISSN 2374-7943, 2374-7951. doi: 10.1021/acscentsci.7b00492. URL https://

pubs.acs.org/doi/10.1021/acscentsci.7b00492.

[24] Max A. Mellmer, Chotitath Sanpitakseree, Benginur Demir, Peng Bai, Kaiwen Ma,

Matthew Neurock, and James A. Dumesic. Solvent-enabled control of reactivity for

liquid-phase reactions of biomass-derived compounds. Nature Catalysis, 1(3):199–207,

February 2018. ISSN 2520-1158. doi: 10.1038/s41929-018-0027-3. URL https://www.

nature.com/articles/s41929-018-0027-3.

[25] Wen Torng and Russ B Altman. High precision protein functional site detection using

3D convolutional neural networks. Bioinformatics, 35(9):1503–1512, May 2019. ISSN

1367-4803, 1367-4811. doi: 10.1093/bioinformatics/bty813. URL https://academic.

oup.com/bioinformatics/article/35/9/1503/5104336.

[26] J Jiménez, S Doerr, G Martínez-Rosell, A S Rose, and G De Fabritiis. DeepSite: protein-

binding site predictor using 3D-convolutional neural networks. Bioinformatics, 33(19):

3036–3042, October 2017. ISSN 1367-4803, 1367-4811. doi: 10.1093/bioinformatics/

btx350. URL https://academic.oup.com/bioinformatics/article/33/19/3036/

3859178.

[27] Florian Häse, Ignacio Fdez. Galván, Alán Aspuru-Guzik, Roland Lindh, and Morgane

Vacher. How machine learning can assist the interpretation of ab initio molecular dy-

71

https://www.annualreviews.org/doi/10.1146/annurev.anchem.111808.073718
https://www.annualreviews.org/doi/10.1146/annurev.anchem.111808.073718
https://pubs.acs.org/doi/10.1021/acscentsci.7b00492
https://pubs.acs.org/doi/10.1021/acscentsci.7b00492
https://www.nature.com/articles/s41929-018-0027-3
https://www.nature.com/articles/s41929-018-0027-3
https://academic.oup.com/bioinformatics/article/35/9/1503/5104336
https://academic.oup.com/bioinformatics/article/35/9/1503/5104336
https://academic.oup.com/bioinformatics/article/33/19/3036/3859178
https://academic.oup.com/bioinformatics/article/33/19/3036/3859178

namics simulations and conceptual understanding of chemistry. Chemical Science, 10

(8):2298–2307, 2019. ISSN 2041-6520, 2041-6539. doi: 10.1039/C8SC04516J. URL

http://xlink.rsc.org/?DOI=C8SC04516J.

[28] Morgane Vacher, Anders Brakestad, Hans O. Karlsson, Ignacio Fdez. Galván, and

Roland Lindh. Dynamical Insights into the Decomposition of 1,2-Dioxetane. Journal of

Chemical Theory and Computation, 13(6):2448–2457, June 2017. ISSN 1549-9618, 1549-

9626. doi: 10.1021/acs.jctc.7b00198. URL https://pubs.acs.org/doi/10.1021/acs.

jctc.7b00198.

[29] Peter M. Williams. Bayesian Regularization and Pruning Using a Laplace Prior.

Neural Computation, 7(1):117–143, January 1995. ISSN 0899-7667, 1530-888X.

doi: 10.1162/neco.1995.7.1.117. URL https://direct.mit.edu/neco/article/7/1/

117-143/5830.

[30] Mohammad Javad Eslamibidgoli, Mehrdad Mokhtari, and Michael H. Eikerling. Re-

current Neural Network-based Model for Accelerated Trajectory Analysis in AIMD

Simulations. arXiv, 1909.10124, 2019. doi: 10.48550/ARXIV.1909.10124. URL

https://arxiv.org/abs/1909.10124.

[31] Anjana Thimmaiah Puliyanda. Machine learning-based monitoring of com-

plex reactive systems. Doctor of Philosophy in Process Control, University

of Alberta, Edmonton, 2022. URL https://era.library.ualberta.ca/items/

1c56f686-fb63-43e6-a589-2418bd518301.

[32] Benjamin W. J. Chen, Xinglong Zhang, and Jia Zhang. Accelerating explicit sol-

vent models of heterogeneous catalysts with machine learning interatomic poten-

tials. Chemical Science, 14(31):8338–8354, 2023. ISSN 2041-6520, 2041-6539. doi:

10.1039/D3SC02482B. URL http://xlink.rsc.org/?DOI=D3SC02482B.

72

http://xlink.rsc.org/?DOI=C8SC04516J
https://pubs.acs.org/doi/10.1021/acs.jctc.7b00198
https://pubs.acs.org/doi/10.1021/acs.jctc.7b00198
https://direct.mit.edu/neco/article/7/1/117-143/5830
https://direct.mit.edu/neco/article/7/1/117-143/5830
https://arxiv.org/abs/1909.10124
https://era.library.ualberta.ca/items/1c56f686-fb63-43e6-a589-2418bd518301
https://era.library.ualberta.ca/items/1c56f686-fb63-43e6-a589-2418bd518301
http://xlink.rsc.org/?DOI=D3SC02482B

[33] Tetiana Zubatiuk and Olexandr Isayev. Development of Multimodal Machine Learn-

ing Potentials: Toward a Physics-Aware Artificial Intelligence. Accounts of Chemical

Research, 54(7):1575–1585, April 2021. ISSN 0001-4842, 1520-4898. doi: 10.1021/

acs.accounts.0c00868. URL https://pubs.acs.org/doi/10.1021/acs.accounts.

0c00868.

[34] Siddhartha Laghuvarapu, Yashaswi Pathak, and U. Deva Priyakumar. BAND NN: A

Deep Learning Framework for Energy Prediction and Geometry Optimization of Organic

Small Molecules. Journal of Computational Chemistry, 41(8):790–799, March 2020.

ISSN 0192-8651, 1096-987X. doi: 10.1002/jcc.26128. URL https://onlinelibrary.

wiley.com/doi/10.1002/jcc.26128.

[35] Zachary D. Pozun, Katja Hansen, Daniel Sheppard, Matthias Rupp, Klaus-Robert

Müller, and Graeme Henkelman. Optimizing transition states via kernel-based machine

learning. The Journal of Chemical Physics, 136(17):174101, May 2012. ISSN 0021-9606,

1089-7690. doi: 10.1063/1.4707167. URL https://pubs.aip.org/jcp/article/136/

17/174101/191704/Optimizing-transition-states-via-kernel-based.

[36] Alexander V. Shapeev. Moment Tensor Potentials: A Class of Systematically Im-

provable Interatomic Potentials. Multiscale Modeling & Simulation, 14(3):1153–1173,

January 2016. ISSN 1540-3459, 1540-3467. doi: 10.1137/15M1054183. URL http:

//epubs.siam.org/doi/10.1137/15M1054183.

[37] Burr Settles. Active Learning, volume 6 of Synthesis Lectures on Artificial Intelligence

and Machine Learning. Springer International Publishing, 2012. ISBN 978-3-031-01560-

1. URL https://www.springer.com/series/16915.

[38] Martin Karplus and J. Andrew McCammon. Molecular dynamics simulations of

biomolecules. Nature Structural Biology, 9(9):646–652, September 2002. ISSN 10728368.

73

https://pubs.acs.org/doi/10.1021/acs.accounts.0c00868
https://pubs.acs.org/doi/10.1021/acs.accounts.0c00868
https://onlinelibrary.wiley.com/doi/10.1002/jcc.26128
https://onlinelibrary.wiley.com/doi/10.1002/jcc.26128
https://pubs.aip.org/jcp/article/136/17/174101/191704/Optimizing-transition-states-via-kernel-based
https://pubs.aip.org/jcp/article/136/17/174101/191704/Optimizing-transition-states-via-kernel-based
http://epubs.siam.org/doi/10.1137/15M1054183
http://epubs.siam.org/doi/10.1137/15M1054183
https://www.springer.com/series/16915

doi: 10.1038/nsb0902-646. URL https://www.nature.com/doifinder/10.1038/

nsb0902-646.

[39] J. Andrew McCammon, Bruce R. Gelin, and Martin Karplus. Dynamics of folded

proteins. Nature, 267(5612):585–590, June 1977. ISSN 0028-0836, 1476-4687. doi:

10.1038/267585a0. URL https://www.nature.com/articles/267585a0.

[40] Edgar F. Meyer, Stanley M. Swanson, and Jocylin A. Williams. Molecular mod-

elling and drug design. Pharmacology & Therapeutics, 85(3):113–121, March 2000.

ISSN 01637258. doi: 10.1016/S0163-7258(99)00069-8. URL https://linkinghub.

elsevier.com/retrieve/pii/S0163725899000698.

[41] Zhenhua Yao, Chang-Chun Zhu, Min Cheng, and Junhua Liu. Mechanical properties of

carbon nanotube by molecular dynamics simulation. Computational Materials Science,

22(3-4):180–184, December 2001. ISSN 09270256. doi: 10.1016/S0927-0256(01)00187-2.

URL https://linkinghub.elsevier.com/retrieve/pii/S0927025601001872.

[42] Jacob R. Gissinger, Benjamin D. Jensen, and Kristopher E. Wise. Modeling chemical

reactions in classical molecular dynamics simulations. Polymer, 128:211–217, October

2017. ISSN 00323861. doi: 10.1016/j.polymer.2017.09.038. URL https://linkinghub.

elsevier.com/retrieve/pii/S0032386117309114.

[43] C. David Sherrill. Introduction to Molecular Mechanics. URL http://vergil.

chemistry.gatech.edu/courses/chem6485/pdf/molmech-lecture.pdf.

[44] Jose Carlos Velasco Calderon. Investigating acid-catalyzed biomass reactions and solvent

effects in humins formation, using multiscale molecular modeling. Doctor of Philosophy

in Chemical Engineering, University of Alberta, Edmonton, Alberta, 2023. URL https:

//era.library.ualberta.ca/items/f58a8108-bb63-4f5e-9fe3-245f8bf2a7b2.

[45] Frank Jensen. Introduction to Computational Chemistry. John Wiley & Sons, Chich-

74

https://www.nature.com/doifinder/10.1038/nsb0902-646
https://www.nature.com/doifinder/10.1038/nsb0902-646
https://www.nature.com/articles/267585a0
https://linkinghub.elsevier.com/retrieve/pii/S0163725899000698
https://linkinghub.elsevier.com/retrieve/pii/S0163725899000698
https://linkinghub.elsevier.com/retrieve/pii/S0927025601001872
https://linkinghub.elsevier.com/retrieve/pii/S0032386117309114
https://linkinghub.elsevier.com/retrieve/pii/S0032386117309114
http://vergil.chemistry.gatech.edu/courses/chem6485/pdf/molmech-lecture.pdf
http://vergil.chemistry.gatech.edu/courses/chem6485/pdf/molmech-lecture.pdf
https://era.library.ualberta.ca/items/f58a8108-bb63-4f5e-9fe3-245f8bf2a7b2
https://era.library.ualberta.ca/items/f58a8108-bb63-4f5e-9fe3-245f8bf2a7b2

ester, England ; Hoboken, NJ, 2nd ed. edition, 2007. ISBN 9780470058046. OCLC:

85851059.

[46] E. Schrödinger. An Undulatory Theory of the Mechanics of Atoms and Molecules.

Physical Review, 28(6):1049–1070, December 1926. ISSN 0031-899X. doi: 10.1103/

PhysRev.28.1049. URL https://link.aps.org/doi/10.1103/PhysRev.28.1049.

[47] P. Hohenberg and W. Kohn. Inhomogeneous Electron Gas. Physical Review, 136(3B):

B864–B871, November 1964. ISSN 0031-899X. doi: 10.1103/PhysRev.136.B864. URL

https://link.aps.org/doi/10.1103/PhysRev.136.B864.

[48] W. Kohn and L. J. Sham. Self-Consistent Equations Including Exchange and Corre-

lation Effects. Physical Review, 140(4A):A1133–A1138, November 1965. ISSN 0031-

899X. doi: 10.1103/PhysRev.140.A1133. URL https://link.aps.org/doi/10.1103/

PhysRev.140.A1133.

[49] Arul Mozhi Devan Padmanathan. The Influence of High Temperature Py-

rolysis Melt and Lignin on Cellulose Pyrolysis Chemistry: A First-principles

based Investigation. Doctor of Philosophy in Chemical Engineering, University

of Alberta, Edmonton, 2023. URL https://era.library.ualberta.ca/items/

8c217839-9584-49a0-857a-042fc0e57308.

[50] R. Car and M. Parrinello. Unified Approach for Molecular Dynamics and Density-

Functional Theory. Physical Review Letters, 55(22):2471–2474, November 1985. ISSN

0031-9007. doi: 10.1103/PhysRevLett.55.2471. URL https://link.aps.org/doi/10.

1103/PhysRevLett.55.2471.

[51] Alessandro Laio and Francesco L Gervasio. Metadynamics: a method to simulate rare

events and reconstruct the free energy in biophysics, chemistry and material science.

Reports on Progress in Physics, 71(12):126601, December 2008. ISSN 0034-4885, 1361-

75

https://link.aps.org/doi/10.1103/PhysRev.28.1049
https://link.aps.org/doi/10.1103/PhysRev.136.B864
https://link.aps.org/doi/10.1103/PhysRev.140.A1133
https://link.aps.org/doi/10.1103/PhysRev.140.A1133
https://era.library.ualberta.ca/items/8c217839-9584-49a0-857a-042fc0e57308
https://era.library.ualberta.ca/items/8c217839-9584-49a0-857a-042fc0e57308
https://link.aps.org/doi/10.1103/PhysRevLett.55.2471
https://link.aps.org/doi/10.1103/PhysRevLett.55.2471

6633. doi: 10.1088/0034-4885/71/12/126601. URL https://iopscience.iop.org/

article/10.1088/0034-4885/71/12/126601.

[52] Marcella Iannuzzi, Alessandro Laio, and Michele Parrinello. Efficient Exploration of

Reactive Potential Energy Surfaces Using Car-Parrinello Molecular Dynamics. Physical

Review Letters, 90(23):238302, June 2003. ISSN 0031-9007, 1079-7114. doi: 10.1103/

PhysRevLett.90.238302. URL https://link.aps.org/doi/10.1103/PhysRevLett.

90.238302.

[53] Giovanni Bussi, Alessandro Laio, and Michele Parrinello. Equilibrium Free Energies

from Nonequilibrium Metadynamics. Physical Review Letters, 96(9):090601, March

2006. ISSN 0031-9007, 1079-7114. doi: 10.1103/PhysRevLett.96.090601. URL https:

//link.aps.org/doi/10.1103/PhysRevLett.96.090601.

[54] José Carlos Velasco Calderón and Samir H. Mushrif. Energetics of acid catalyzed

biomass reactions: how and why does the solvent model matter? Reaction Chem-

istry & Engineering, page 10.1039.D3RE00340J, 2024. ISSN 2058-9883. doi: 10.1039/

D3RE00340J. URL http://xlink.rsc.org/?DOI=D3RE00340J.

[55] Alianna J. Maren, Craig T. Harston, and Robert M. Pap, editors. Handbook of

Neural Computing Applications. Academic Press, Inc., San Diego, California, 1990.

ISBN 9780124712607 9780125460903. URL https://www.sciencedirect.com/book/

9780125460903/handbook-of-neural-computing-applications.

[56] Y. Bengio, P. Simard, and P. Frasconi. Learning Long-Term Dependencies with Gradient

Descent is Difficult. IEEE Transactions on Neural Networks, 5(2):157–166, March 1994.

ISSN 1045-9227, 1941-0093. doi: 10.1109/72.279181. URL https://ieeexplore.ieee.

org/document/279181/.

[57] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural Computa-

76

https://iopscience.iop.org/article/10.1088/0034-4885/71/12/126601
https://iopscience.iop.org/article/10.1088/0034-4885/71/12/126601
https://link.aps.org/doi/10.1103/PhysRevLett.90.238302
https://link.aps.org/doi/10.1103/PhysRevLett.90.238302
https://link.aps.org/doi/10.1103/PhysRevLett.96.090601
https://link.aps.org/doi/10.1103/PhysRevLett.96.090601
http://xlink.rsc.org/?DOI=D3RE00340J
https://www.sciencedirect.com/book/9780125460903/handbook-of-neural-computing-applications
https://www.sciencedirect.com/book/9780125460903/handbook-of-neural-computing-applications
https://ieeexplore.ieee.org/document/279181/
https://ieeexplore.ieee.org/document/279181/

tion, 9(8):1735–1780, November 1997. ISSN 0899-7667, 1530-888X. doi: 10.1162/neco.

1997.9.8.1735. URL https://direct.mit.edu/neco/article/9/8/1735-1780/6109.

[58] F.A. Gers. Learning to Forget: Continual Prediction with LSTM. In 9th International

Conference on Artificial Neural Networks: ICANN ’99, volume 1999, pages 850–855, Ed-

inburgh, UK, 1999. IEE. ISBN 9780852967218. doi: 10.1049/cp:19991218. URL https:

//digital-library.theiet.org/content/conferences/10.1049/cp_19991218.

[59] Ponkrshnan Thiagarajan and Susanta Ghosh. A Jensen-Shannon Divergence Based Loss

Function for Bayesian Neural Networks. arXiv preprint arXiv:2209.11366, 2022. doi:

10.48550/ARXIV.2209.11366. URL https://arxiv.org/abs/2209.11366.

[60] Shujian Yu and José C. Príncipe. Understanding autoencoders with information the-

oretic concepts. Neural Networks, 117:104–123, September 2019. ISSN 08936080. doi:

10.1016/j.neunet.2019.05.003. URL https://linkinghub.elsevier.com/retrieve/

pii/S0893608019301352.

[61] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolf-

gang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner,

Apurva Shah, Melvin Johnson, Xiaobing Liu, Łukasz Kaiser, Stephan Gouws, Yoshikiyo

Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei

Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Cor-

rado, Macduff Hughes, and Jeffrey Dean. Google’s Neural Machine Translation System:

Bridging the Gap between Human and Machine Translation. arXiv, 1609.08144, 2016.

doi: 10.48550/ARXIV.1609.08144. URL https://arxiv.org/abs/1609.08144.

[62] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: A Simple Way to Prevent Neural Networks from Overfit-

ting. The Journal of Machine Learning Research, 15(1):1929–1958, June 2014. ISSN

1532-4435.

77

https://direct.mit.edu/neco/article/9/8/1735-1780/6109
https://digital-library.theiet.org/content/conferences/10.1049/cp_19991218
https://digital-library.theiet.org/content/conferences/10.1049/cp_19991218
https://arxiv.org/abs/2209.11366
https://linkinghub.elsevier.com/retrieve/pii/S0893608019301352
https://linkinghub.elsevier.com/retrieve/pii/S0893608019301352
https://arxiv.org/abs/1609.08144

[63] Meiqi Wang, Siyuan Lu, Danyang Zhu, Jun Lin, and Zhongfeng Wang. A High-Speed

and Low-Complexity Architecture for Softmax Function in Deep Learning. In 2018

IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), pages 223–226,

Chengdu, October 2018. IEEE. ISBN 9781538682401. doi: 10.1109/APCCAS.2018.

8605654. URL https://ieeexplore.ieee.org/document/8605654/.

[64] Lu Lu, Yeonjong Shin, Yanhui Su, and George Em Karniadakis. Dying RELU and

Initialization: Theory and Numerical Examples. Communications in Computational

Physics, 28(5):1671–1706, June 2020. ISSN 1815-2406, 1991-7120. doi: 10.4208/cicp.

OA-2020-0165. URL http://global-sci.org/intro/article_detail/cicp/18393.

html.

[65] Yann LeCun and Yoshua Bengio. Convolutional Networks for Images, Speech, and Time-

Series. In The handbook of brain theory and neural networks. MIT Press, Cambridge,

Massachusetts, 1995.

[66] Cai Guo, Xinan Chen, Yanhua Chen, and Chuying Yu. Multi-Stage Attentive Network

for Motion Deblurring via Binary Cross-Entropy Loss. Entropy, 24(10):1414, Octo-

ber 2022. ISSN 1099-4300. doi: 10.3390/e24101414. URL https://www.mdpi.com/

1099-4300/24/10/1414.

[67] Sidharth Prasad Mishra, Uttam Sarkar, Subhash Taraphder, Sanjoy Datta, Devi Swain,

Reshma Saikhom, Sasmita Panda, and Menalsh Laishram. Multivariate Statistical

Data Analysis-Principal Component Analysis (PCA). International Journal of Live-

stock Research, 7(5), 2017. ISSN 2277-1964. doi: 10.5455/ijlr.20170415115235. URL

http://www.ejmanager.com/fulltextpdf.php?mno=261590.

[68] Wenfu Ku, Robert H. Storer, and Christos Georgakis. Disturbance detection and

isolation by dynamic principal component analysis. Chemometrics and Intelligent

Laboratory Systems, 30(1):179–196, November 1995. ISSN 01697439. doi: 10.

78

https://ieeexplore.ieee.org/document/8605654/
http://global-sci.org/intro/article_detail/cicp/18393.html
http://global-sci.org/intro/article_detail/cicp/18393.html
https://www.mdpi.com/1099-4300/24/10/1414
https://www.mdpi.com/1099-4300/24/10/1414
http://www.ejmanager.com/fulltextpdf.php?mno=261590

1016/0169-7439(95)00076-3. URL https://linkinghub.elsevier.com/retrieve/

pii/0169743995000763.

[69] Jörg Behler and Michele Parrinello. Generalized Neural-Network Representation of

High-Dimensional Potential-Energy Surfaces. Physical Review Letters, 98(14):146401,

April 2007. ISSN 0031-9007, 1079-7114. doi: 10.1103/PhysRevLett.98.146401. URL

https://link.aps.org/doi/10.1103/PhysRevLett.98.146401.

[70] Xue Ying. An Overview of Overfitting and its Solutions. Journal of Physics: Confer-

ence Series, 1168:022022, February 2019. ISSN 1742-6588, 1742-6596. doi: 10.1088/

1742-6596/1168/2/022022. URL https://iopscience.iop.org/article/10.1088/

1742-6596/1168/2/022022.

[71] Bernd Bischl, Martin Binder, Michel Lang, Tobias Pielok, Jakob Richter, Stefan Coors,

Janek Thomas, Theresa Ullmann, Marc Becker, Anne-Laure Boulesteix, Difan Deng,

and Marius Lindauer. Hyperparameter optimization: Foundations, algorithms, best

practices, and open challenges. WIREs Data Mining and Knowledge Discovery, 13

(2):e1484, March 2023. ISSN 1942-4787, 1942-4795. doi: 10.1002/widm.1484. URL

https://wires.onlinelibrary.wiley.com/doi/10.1002/widm.1484.

[72] Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Sched-

uled Sampling for Sequence Prediction with Recurrent Neural Networks. In

C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors, Ad-

vances in Neural Information Processing Systems, volume 28. Curran Associates,

Inc., 2015. URL https://proceedings.neurips.cc/paper_files/paper/2015/

file/e995f98d56967d946471af29d7bf99f1-Paper.pdf.

[73] Hoon Kang, Seunghyeok Yang, Jianying Huang, and Jeill Oh. Time Series Pre-

diction of Wastewater Flow Rate by Bidirectional LSTM Deep Learning. Interna-

tional Journal of Control, Automation and Systems, 18(12):3023–3030, December 2020.

79

https://linkinghub.elsevier.com/retrieve/pii/0169743995000763
https://linkinghub.elsevier.com/retrieve/pii/0169743995000763
https://link.aps.org/doi/10.1103/PhysRevLett.98.146401
https://iopscience.iop.org/article/10.1088/1742-6596/1168/2/022022
https://iopscience.iop.org/article/10.1088/1742-6596/1168/2/022022
https://wires.onlinelibrary.wiley.com/doi/10.1002/widm.1484
https://proceedings.neurips.cc/paper_files/paper/2015/file/e995f98d56967d946471af29d7bf99f1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/e995f98d56967d946471af29d7bf99f1-Paper.pdf

ISSN 2005-4092. doi: 10.1007/s12555-019-0984-6. URL https://doi.org/10.1007/

s12555-019-0984-6.

[74] James Bergstra, Brent Komer, Chris Eliasmith, Dan Yamins, and David D Cox.

Hyperopt: a Python library for model selection and hyperparameter optimization.

Computational Science & Discovery, 8(1):014008, July 2015. ISSN 1749-4699. doi:

10.1088/1749-4699/8/1/014008. URL https://iopscience.iop.org/article/10.

1088/1749-4699/8/1/014008.

[75] Jan Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, and Yoshua

Bengio. Attention-Based Models for Speech Recognition. arXiv, 1506.07503, 2015. doi:

10.48550/ARXIV.1506.07503. URL https://arxiv.org/abs/1506.07503.

[76] Yao Qin, Dongjin Song, Haifeng Chen, Wei Cheng, Guofei Jiang, and Garrison Cottrell.

A Dual-Stage Attention-Based Recurrent Neural Network for Time Series Prediction.

arXiv, 1704.02971, 2017. doi: 10.48550/ARXIV.1704.02971. URL https://arxiv.

org/abs/1704.02971.

80

https://doi.org/10.1007/s12555-019-0984-6
https://doi.org/10.1007/s12555-019-0984-6
https://iopscience.iop.org/article/10.1088/1749-4699/8/1/014008
https://iopscience.iop.org/article/10.1088/1749-4699/8/1/014008
https://arxiv.org/abs/1506.07503
https://arxiv.org/abs/1704.02971
https://arxiv.org/abs/1704.02971

Appendix A

A.1 Introduction

When the dataset used in this work is converted into probability distribution functions

(PDF), the result is four dimensions: a three dimensional PDF and a temporal component.

Since the nature of the data is four dimensional, it is difficult to visualize clearly. This

appendix attempts to give readers a better sense of the data by showing the three dimensional

PDFs as two dimensional projections on three different planes for a certain timestep. This

appendix gives the projections for each species at three different states of the ground truth

data: the reactant state, transition state and product state.

A.2 Ground Truth Reactants Projections

81

(a)

(b) (c)

Figure A.1: Projections of the reactants species for the ground truth PDF when the system
is at its reactants state.

82

(a)

(b) (c)

Figure A.2: Projections of the reactants species for the ground truth PDF when the system
is at its transition state.

83

(a)

(b) (c)

Figure A.3: Projections of the reactants species for the ground truth PDF when the system
is at its product state.

84

A.3 Ground Truth Water Projections

(a)

(b) (c)

Figure A.4: Projections of water molecules for the ground truth PDF when the system is at
its reactants state.

85

(a)

(b) (c)

Figure A.5: Projections of water molecules for the ground truth PDF when the system is at
its transition state.

86

(a)

(b) (c)

Figure A.6: Projections of water molecules for the ground truth PDF when the system is at
its product state.

87

A.4 Ground Truth DMSO Projections

(a)

(b) (c)

Figure A.7: Projections of DMSO molecules for the ground truth PDF when the system is
at its reactants state.

88

(a)

(b) (c)

Figure A.8: Projections of DMSO molecules for the ground truth PDF when the system is
at its transition state.

89

(a)

(b) (c)

Figure A.9: Projections of DMSO molecules for the ground truth PDF when the system is
at its product state.

90

Appendix B

B.1 Introduction

This appendix gives the two dimensional projections of the PDFs for both the first and

5000th predicted time step by the PCA model discussed in Section 5.3.1.

B.2 Predicted Reactants Projections

91

(a)

(b) (c)

Figure B.1: Projections of the reactants species for the first predicted time step by the PCA
model.

92

(a)

(b) (c)

Figure B.2: Projections of the reactants species for the 5000th predicted time step by the
PCA model.

93

B.3 Predicted Water Projections

(a)

(b) (c)

Figure B.3: Projections of water molecules for the first predicted time step by the PCA
model.

94

(a)

(b) (c)

Figure B.4: Projections of water molecules for the 5000th predicted time step by the PCA
model.

95

B.4 Predicted DMSO Projections

(a)

(b) (c)

Figure B.5: Projections of DMSO molecules for the first predicted time step by the PCA
model.

96

(a)

(b) (c)

Figure B.6: Projections of DMSO molecules for the 5000th predicted time step by the PCA
model.

97

	Abstract
	Preface
	Acknowledgements
	List of Tables
	List of Figures
	List of Symbols
	Abbreviations
	Introduction
	Literature Review
	Molecular Dynamics Methods
	Classical Molecular Dynamics
	Ab Initio Molecular Dynamics

	LSTM autoencoder application for the time-series prediction of spatial features from CPMD with metadynamics simulation data
	Introduction
	Methods
	Results and Discussion
	LSTM Autoencoder Architecture
	3D Convolutional neural network LSTM autoencoder architecture
	Binary relevance CNN-LSTM autoencoder classifier architecture
	Binary relevance CNN-LSTM autoencoder classifier architecture with a weighted loss function

	Conclusions

	Alternate dimensionality reduction methods applied for time-series prediction of spatial features from CPMD with metadynamics simulation data
	Introduction
	Methods
	Results and Discussion
	Principal component analysis and dynamic principal component analysis for feature reduction
	Feature reduction through elimination of negligible features used in conjunction with an LSTM
	Using Cartesian coordinates with an LSTM to predict the future locations of molecules within the system

	Conclusions

	Conclusion and Future Work
	Summary
	Future Work

	Bibliography
	Appendix A
	Introduction
	Ground Truth Reactants Projections
	Ground Truth Water Projections
	Ground Truth DMSO Projections

	Appendix B
	Introduction
	Predicted Reactants Projections
	Predicted Water Projections
	Predicted DMSO Projections

