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Abstract—Additive Manufacturing (AM) has been adopted world-
wide for rapid prototyping and small-scale production of complex 
parts. Despite its widespread adoption, much is still unknown about 
AM. Many researchers have devoted significant e fforts t o studying 
the importance of AM characteristics such as build time, dimensional 
accuracy, surface quality, and mechanical behavior in relation to the 
printing parameters used to create them. Several research have 
indicated the impacts of printing parameters on the performance 
of fused filament fabrication (FFF); however, developing a generic 
model to optimize FFF printing parameters received little attention. 
This study presents the utilization of genetic programming along 
with a genetic algorithm to search for the best set of printing 
parameters that maximizes the tensile strength of PLA samples. The 
search variables are raster angle, extrusion width, and extrusion 
temperature. From the test results, genetic programming using 
Eureqa is conducted to obtain a surrogate model that predicts 
tensile strength from print parameters. Finally, a genetic algorithm is 
used to obtain the set of printing parameters that maximizes tensile 
strength of the test specimen. The proposed model showed a good 
agreement with experimental data.

Keywords—3D printing, additive manufacturing, fused fila-
ment fabrication, genetic algorithm, genetic programming, tensile
strength.

I. INTRODUCTION

Additive manufacturing (AM) is a manufacturing technol-
ogy that allows a component to be generated from a 3D model
with minimal post-processing. Consequently, AM allows de-
signers to create unique or sophisticated models in a single step
without the constraints of traditional production, such waste
management, difficulty generating complex geometries, or the
need for specialized equipment [1]. Since the late 1980s, AM
has advanced in technology and has become widely adopted
in the last ten years. While AM applications will continue to
expand, its benefits have already had a significant impact on
five industries: aerospace, consumer goods, energy, healthcare,
and transportation [2]. AM sees most of its use in short-run
part production and rapid prototyping. AM processes include
directed energy deposition, material extrusion, material jetting,
powder bed fusion, etc. Polymers, ceramics, and metals are the
predominant materials that are used in AM processes [3].

Optimization methods can help researchers generate models
to overcome the design and process flaws in AM and link the

AM process parameters to material and structural properties.
Topology optimization and process variable optimization are
widely used to design the optimal part geometry, support
structure, and process parameters [4]. Different optimization
techniques such as Analysis of variance (ANOVA), Genetic
algorithm (GA), Particle swarm optimization (PSO), Taguchi,
and hybrid methods have been introduced to propose the
optimal printing parameters [5].

The tensile strength of an FFF printed part is the most
explored and analyzed attribute. Prior research has shown that
build orientation and raster angle are the most influential pro-
cess parameters regarding the tensile strength of FFF produced
parts.

This paper begins with a background of AM and an in-
troduction of the current state of the art in using optimiza-
tion techniques with AM technologies. In addition, genetic
algorithm (GA) and genetic programming (GP) process are
explained. Section III explains the proposed optimization
scheme for optimizing print parameters. Section IV explains
the experimentation required for this optimization. Finally, sec-
tion V reports the results of the experiments and optimization.

II. BACKGROUND

A. Additive Manufacturing

Fused filament fabrication (FFF) is a solid-extrusion based
3D printing process that was invented by Stratasys in early
1992 was initially used to make prototypes. The layers are
created by extruding a thermoplastic (ABS, PLA, etc.) through
a heated nozzle to print one cross-section of an item, and
then repeating the process as layers to complete the part. The
anisotropic mechanical properties of FFF printed parts have
attracted much interest in recent years. The impact of FFF
build variables on stiffness, strength, and fracture performance
has been investigated. ASTM D638 test techniques for tensile
performance of plastics are used for most of the fundamental
tensile testing, which studies the influence of process variables
on tensile strength. The influences of raster orientation, air gap,
extrusion width, colour, and print temperature on the tensile
and compressive strengths of directionally manufactured spec-
imens were investigated by Ahn and colleagues [6]. Riddick et



al. [7] used tensile testing to assess the mechanical properties
of the FFF process parameters like build direction and raster
orientation. Huang and Singamneni [8] utilized the tensile test
as the experimental setup to study the impact of raster angle
on modulus and strength in FFF components.

Many researchers have developed different approaches to
optimize the mechanical properties of FFF parts and pro-
cess parameters. Ulu, et al. [9] proposed the surrogate-based
optimization approach to improve structural performance by
evaluating mechanical property sensitivities and optimizing
build orientation. They used tensile testing as the experimental
setup for obtaining the mechanical and material properties.
Torres et al. [10] have developed a method for optimizing
FFF mechanical properties based on experimental sensitivity
to build parameters such as layer thickness, density, extrusion
temperature, speed, infill direction, and component orientation.
Wang et al. [11] used a genetic algorithm to obtain the
optimum printing direction. Nguyen et al. [12] investigated
the optimal set of FFF process parameters by using NSGA-II
algorithm.

B. Genetic Algorithm

First developed by John Holland in 1975 [13], GA is a
category of evolutionary algorithms used to find optimal solu-
tions to problems by mimicking the natural selection process.
GA involves manipulating a population of “chromosomes,”
whereby each chromosome encodes the variable values of
the problem to be solved. Chromosomes that return better
results in an optimization problem will have a higher chance
of crossover to create offspring and pass on their desirable
characteristics to the next generations. This process happens
over many generations until an acceptable optimization result
is found.

1) Chromosome Encoding: Chromosomes are discrete bi-
nary strings that contain only 0s and 1s. Encoding allows the
chromosomes to represent values within any specified range. A
string of 0s means that the variable is at the minimum value,
while a string of 1s means the variable is at the maximum
value.

2) Objective Function and Fitness Evaluation: The objec-
tive is to find a combination of print parameters to maximize
the tensile strength. Raster angle, extrusion width, extrusion
temperature, and ultimate strength are α, w, T , and σUTS ,
respectively. The objective function is in the form of (1).

f(a,w, T ) = max
{
σUTS

}
(1)

Fitness evaluation determines the probability of choosing a
chromosome as one of the crossover parents. A higher objec-
tive function value will lead to higher selection probability for
crossover. Parents were selected based on their fitness scores
using roulette wheel selection. There are various methods of
assigning a selection probability from evaluation scores, such
as proportionate reproduction [14], ranking selection [15],
tournament selection [16], or Genitor selection [17]. This
paper utilized a simple linear selection probability increase
based on ranking. The population size is 100; thus, the

Figure 1. Illustration of two-point crossover.

Figure 2. Mutation operation.

selection probability starts at zero for the worst individual, then
increases linearly by 0.0202% as individual ranking increases,
up to 2% for the best individual.

3) Biological Operators: Crossover is a process that in-
volves two or more chromosomes. These chosen chromosomes
are called parents. Offspring are created by recombining the
binary strings of the parents randomly.

In this paper, a two-point crossover is utilized. Two cut
locations are chosen at random. The binary segment between
the cut points is swapped between the parents, and the result-
ing new chromosomes are offspring, as shown in Fig. 1. In
addition, to reduce the likelihood that the crossover operation
creates clones of the parents, the distance between the two cut
locations (cut length) is set to a minimum of 5 bits. Random
cloning happens when the swapping segment are identical,
which is more likely to happen if the cut length is small.

After crossover, the mutation procedure is performed. The
cloned elites are likewise subjected to the mutation procedure.
Mutation occurs when the binary bits of the chromosomes are
flipped.

C. Genetic Programming

GP was invented and patented by Koza in 1990 [18] as an
extension of GA. It was developed to solve problems beyond
optimizing values, where fundamental system modelling is
required. GP shares many similarities with GA; they are
both population-based evolutionary algorithms, with selection,
crossover, and mutation operations. The primary difference
between GP and GA is the structure of the individual. Each



Figure 3. Optimization procedure flowchart.

individual for GP is a computer program or an equation, while
each individual in GA is a binary string or a vector of values.
In addition, the chromosome size of GP changes over time as
equation complexity increases; meanwhile, the chromosome
size for GA stays constant.

III. PROPOSED SCHEME

The proposed procedure in this paper involves the utilization
of both GA and GP to obtain the best 3D printing parameters,
as shown in Fig. 3.

GA is a population-based algorithm; thus, printing test
specimens for each individual in GA would be prohibitively
expensive. 3D printing and tensile test simulations are also
very computationally expensive. GP is used to create a
surrogate model that can effectively predict tensile strength
from 3D printing parameters. GP surrogate model is obtained
by printing 27 tensile tests, where each test specimen is
printed using a unique combination of printing parameters.
The printing parameter combinations and the resulting tensile
strengths from tensile tests form the database for GP to search
for the optimization function. Finally, GA is used to obtain
the optimized printing parameters according to the surrogate
model.

All evolutionary algorithm (EA), which includes GA and
GP, follows a closed-loop until either a satisfactory result has
been reached or a limited number of generations has been
reached.

A. Genetic Programming Implementation

Implementing GP is done using Eureqa [19]. The GP search
building blocks and trigonometric functions to regulate the
raster angle parameter enables the most basic mathematical
operations. In addition, exponential, natural logarithm, and
power are included, at lower complexity, as shown in Table I.
The stop criteria for the GP is a R2 goodness of fit of 0.95.

R2 = 1− SSresidual

SStotal
(2)

Figure 4. GA evolutionary algorithm flowchart.

TABLE I
GP FORMULA BUILDING BLOCKS USING EUREQA

Building-blocks Complexity Building-blocks Complexity

Constants 1 Sine 3
Input variable 1 Cosine 3

Addition 1 Exponential 4
Subtraction 1 Natural logarithm 4

Multiplication 1 Power 5
Division 1

B. Genetic Algorithm Application

GA implementation is done using MATLAB. GA starts with
a uniform, randomly generated population of 100 individuals.
This population size is maintained through all generations.
For each generation, each individual’s fitness is evaluated
by calculating the predicted tensile strength from printing
parameters according to the GP surrogate model. Then the
individuals are ranked from highest tensile strength to lowest.
Their probability of being chosen as one of the parents for
crossover is calculated based on their ranking in the popula-
tion. Elitism ensures that the best genes are not lost, where five
best performing individuals are allowed to propagate directly
to the next generation. In addition, these five elites are also
cloned and mutated before going to the next generation. Both
the cloned elites and the offspring from crossover experience
a mutation rate of 5%. Finally, all individuals in the new



TABLE II
GA CONTROL PARAMERS

Parameters Value

Population size 100
Elitism rate 5%

Crossover rate 90%
Mutation rate 5%

Maximum number of generations 100
Chromosome total binary bits length 60
Binary bits length for each variable 20

Stop criteria 100 iterations

Figure 5. Tensile specimen dimensions.

population are evaluated, and a new iteration starts. GA
parameters are encapsulated in Table II. At the end of a GA
search, optimized printing parameters are obtained.

IV. EXPERIMENT DESIGN AND TESTS

A. Material and Specimen

Polylactic acid (PLA) was selected as the material studied
in this paper. The samples were created from white 1.75 mm
PLA manufactured by 3D Printing Canada. The specimens
were fabricated on a Voxelab Aquila FFF 3D printer. The
open-source software Ultimaker Cura was used to slice the
tensile 3D model, control the printing process parameters,
and generate the G-Code for use in the printer. The tensile
specimens were prepared in the conventional “dog bone” style,
and the dimensions are shown in Fig. 5. The specimens were
printed solid with no cavities or infill to reduce extraneous
factors.

B. Process Parameters

Three variables were selected for analysis, with three varia-
tions each for 27 combinations. Each specimen has two walls
surrounding the perimeter to aid printing. The walls are only
changed between trials by extrusion width. The specimens
consist of 50 layers, with a layer height of 0.1 mm. All
parameters aside from the three search variables remained
constant between samples.

TABLE III
PRINTING PARAMETER BOX-CONSTRAINTS.

Variable Min Max

Raster Angle 0° 90°
Extrusion Width 0.4 mm 0.6 mm

Extrusion Temperature 200°C 220°C

TABLE IV
TENSILE TEST RESULTS

Test No. Raster Angle
(degrees)

Ex. Width
(mm)

Ex. Temp.
(°C)

UTS
(MPa)

1 0 0.4 200 28.883
2 0 0.5 200 9.6389
3 0 0.6 200 13.244
4 45 0.4 200 34.475
5 45 0.5 200 39.417
6 45 0.6 200 28.242
7 90 0.4 200 49.052
8 90 0.5 200 54.16
9 90 0.6 200 53.494
10 0 0.4 210 25.546
11 0 0.5 210 31.956
12 0 0.6 210 12.705
13 45 0.4 210 36.638
14 45 0.5 210 25.175
15 45 0.6 210 26.357
16 90 0.4 210 54.773
17 90 0.5 210 53.588
18 90 0.6 210 53.897
19 0 0.4 220 31.127
20 0 0.5 220 20.982
21 0 0.6 220 26.535
22 45 0.4 220 45.367
23 45 0.5 220 36.211
24 45 0.6 220 41.475
25 90 0.4 220 50.277
26 90 0.5 220 51.848
27 90 0.6 220 57.161

C. Testing Procedure

Once the specimens were fabricated, their tensile perfor-
mance was evaluated in a LS100Plus 100 kN Universal
Materials Testing Machine. The specimens were secured in
the jaws and pulled at 40 mm/min, stopping at fracture. The
ultimate tensile strength (UTS) was calculated using force at
fracture and cross-sectional area.

V. RESULTS AND DISCUSSION

A. Testing Results

Table IV list all tensile tests and their varying strengths. The
average UTS was 36.75 MPa, with a maximum of 57.16 MPa
and a minimum of 9.64 MPa. The specimen printed at 220°C
with a 90-degree infill direction and 0.6 mm extrusion width
achieved the highest UTS. The sample with the minimum UTS
has a temperature, extrusion width, and raster angle of 200°C,
0.5 mm, and 0 degrees, respectively. Process variables have a
considerable impact on sample strength.

B. Parameter Correlation

Fig. 6a, Fig. 6b, and Fig. 6b show the effects of raster
angle, extrusion width, and extrusion temperature, respectively.
Raster angle has the strongest correlation with increasing
strength, demonstrated by the upwards trend. Extrusion width
has a negligible effect on the strength directly, but consistency
appears to decrease as the extrusion width increases, as shown
by the tight grouping at 0.4 mm and the spread at 0.6 mm.
Extrusion temperature shows a slight increase in strength



(a) Tensile strength versus raster angle

(b) Tensile strength versus extrusion width

(c) Tensile strength versus extrusion temperature

Figure 6. Parameter effects on tensile strength.

between 200 °C and 210 °C; however, a noticeable upwards
trend can be seen between 210 °C and 220 °C.

C. Parameter Correlation

The data from Table IV was given to Eureqa for the GP,
resulting in (3) with α in radians, w in mm, and T in ◦C.

σUTS(α,w, T ) = 53.59 + 5.614 sin(98.57 · wT cosα)

+ wT cosα− 268.6 · w cosα (3)

The solution details are outlined in Table V, showing (3)
achieved the target R2 value and a maximum error of 5.86
MPa. Fig. 7 shows (3) tested against each of the 27 samples,
showing where the error occurs. Results from GP shows good
agreement.

TABLE V
GP SOLUTION EVALUATION BASED ON TENSILE TEST DATA

Solution Assessment Value

R2 goodness of fit 0.952
Correlation coefficient 0.977

Maximum error 5.855 MPa
Mean squared error 9.502 MPa
Mean absolute error 2.346 MPa

Figure 7. GP solution fit plot.

Once the GP was complete, (3) was set as the objective
function, and the GA algorithm was used to explore the
responses to the search parameters. GA algorithm was very
quickly converged to the maximum tensile strength parameters
after about ten generations, shown in Fig. 8. GA predicts the
strongest specimens were printed at a high temperature in
the direction of loading. The weakest were printed at a low
temperature perpendicular to the direction of loading.

VI. CONCLUSION

GA and GP optimization methods successfully created a
predictive model from experimental data gathered from PLA

Figure 8. Average and maximum tensile strength over generations.



TABLE VI
BEST PRINTING PARAMETERS AS DETERMINED BY GA

Parameters Value

Raster angle 90.0°
Extrusion width 0.509 mm

Extrusion temperature 220.0°C
Predicted tensile strength 59.199 MPa

tensile tests. Of the three examined printing parameters, the
raster angle was shown to have the greatest impact, followed
by extrusion temperature. Extrusion width was found to have
little effect on strength but negatively impacted test consis-
tency.

The proposed scheme was highly effective at predicting
material properties from varying printing parameters. This has
circumvented the current gap in the literature, where there is
not yet a powerful general mathematical model for predicting
the mechanical behavior of AM parts. Printing parameters can
then be optimized without needing a mathematical and me-
chanical model. Despite being built from limited experimen-
tation and limited varying printing parameters, the proposed
scheme is a good step towards building prediction models
with many more complex printing parameters. Future research
shows promise for considering many more print parameters
and expanding parameter ranges. Optimizing multiple com-
peting objective functions is also possible, such as optimizing
infill patterns to maximize strength. At the same time, reduce
weight or optimize printing speed, print temperature, and print
resolution to obtain the best surface finish while reducing print
time.
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