[LL]]

University of Alberta

S

o)

GIGA Program Description and
Operation

by

Joseph Culberson

Technical Report TR 92—-06
June 1992

DEPARTMENT OF COMPUTING SCIENCE
The University of Alberta
Edmonton, Alberta, Canada

GIGA Program Description and Operation

Joseph C. Culberson * f

June, 1992

Abstract

This document describes the gene invariant genetic algorithm (GIGA)
program. This program represents a unique approach to designing GAs
with many interesting results. The primary distinguishing feature is
that when a pair of offspring are created and chosen as worthy of mem-
bership in the population, they replace their parents. In the absence
of mutation, this has the effect of maintaining the original genetic ma-
terial over time, although it 1s reorganized, and hence the “invariant”
in the name.

The source code for the GIGA program, written in the program-
ming language C, is available on line. This document explains how to
use this program and describes the inputs. It also discusses the design
philosophy and indicates several possibilities for future extensions and
variations.

1 Foreword

This program is a prototype, and is not intended for any commercial appli-
cation. It consists of C source code, and has been designed to run under
UNIX, although it should be easy to port it to other environments. Its pri-
mary purpose is to allow readers of [2] to perform variations and extensions
to the experiments cited there.
To obtain the program source and this document ftp thorhild.cs.ualberta.ca

and cd to directory pub/GIGA. The README file will contain information
on obtaining these and the following related documents.

*Supported by Natural Sciences and Engineering Research Council Grant No.
OGP8053. Department of Computing Science, University of Alberta, Edmonton, Alberta,
Canada, T6G 2H1. email:joe@cs.ualberta.ca

"This paper is available via ftp thorhild.cs.ualberta.ca

An accompanying paper [2] describes some of the interesting results and
contrasts this approach with traditional genetic algorithms (TGAs). The
paper is written to be read in conjunction with the experiments available
with this program, and is designed to be used in an interactive fashion.

Lewchuk’s master’s thesis [11] presents research results on a special case
of GIGA not currently available in this program. It is a particularly inter-
esting approach in that nowhere does it explicitly select for or bias toward
superior individuals, but it nevertheless is effective on several functions.

The intent of this program, documentation and the accompanying papers
[2, 11] is to convince the reader that GIGA is a neat idea and deserves
exploration. It is hoped the reader will find many new intriguing mysteries
concerning evolutionary processes and discover that this is a unique tool
that may help achieve some insight.

The program and this document should be considered preliminary and
non-static. I hope to update both as new ideas and old bugs come to light.!
To this end I welcome suggestions for improvements and extensions, and
look forward to many controversial comments both pro and con.

In section 2 a quick and superficial over view of GAs is presented, followed
by a short summary of the basic design principles of GIGA and how it
contrasts with the GA. Section 4 explains the operation of the program,
and its inputs. Section 5 discusses some of the design philosophies and lists
various improvements and features that might be tried in future versions.

2 Introduction

For a thorough introduction to genetic algorithms the reader is referred to
[7,9, 4, 3]. Here we outline the basic features of genetic algorithms (GAs)
for purposes of comparison to and description of gene invariant genetic al-
gorithms(GIGAs).

A genetic algorithm maintains a population of n strings, called individuals
or members. Fach string is of length [and is drawn from a set of & characters,
called the alphabet. Often the alphabet is binary, that is @ = 2, but larger
character sets are allowed, and in some applications [4] the alphabet is the
set of real numbers, and thus not even finite. The population varies over
time under the control of the genetic algorithm as members are replaced
by new strings. These new strings are generated from previous members
through the action of various genetic operators to be discussed shortly.

"Why are both bugs and ideas attracted to light?

The members of a population are evaluated by the environment, which
just means that the program has some means of assigning a value to a string.
These values may be modified in some way, through scaling for example[7].
This modified value is referred to as the fitness of the string.

We designate the population by the matrix notation Pfj, which refers to
the jth character of the ¢th member of the population at time step t. To
refer to a particular member as a whole, we drop the second subscript, and
when no confusion arises we drop the superscript indicating time.

The genetic operator most often used to produce new strings is crossover.
Two members of the population Py and P (called the parents) are selected,
and a pair (usually) of new strings Cy and C, (called the children) is formed

in which for each j either
Clj = Plj and 02]‘ = sz

or

Clj = P2] and 02] = P1]

That is, the characters of the children are the same as those of the
parents, but may be switched between them. Various crossover types are
described in the literature. In one point crossover an integer k, 1 < k < [is
chosen, and for j < k the first condition holds, while for 7 > k the second
condition holds. In multipoint crossover a number of such points are chosen
and the intervals alternate between the two conditions. In uniform crossover,
the choice between the two conditions is made independently character by
character with some fixed probability p.

Other genetic operators include transpositions, reordering, reversal and
mutation[7]. These are not currently available in the program described in
this paper.

Gene invariant genetic algorithms (GIGAs), the subject of this paper,
form a subclass of genetic algorithms, principally distinguished by the notion
that the total genetic makeup of the population does not change with time.
In particular, the multiset of characters of any column of the population Pij
does not change with time.?

To maintain this invariance, it is only necessary that a pair of children
produced by the crossover operation replace their parents in the population.
The invariance rule then follows trivially provided there is no mutation or
other genetic operator in use.

2We will undoubtedly wish to relax this rule in future research, for example by adding
operators such as mutation and transposition. But the current program enforces this rule.

In the remainder of this section, we will look at some of the design ideas
in the accompanying program.

A family is a set of pairs produced by a set of crossover operations
performed on a single pair of parents. In GIGA when a pair of parents is
selected, they are used to generate a family. The best pair is selected from
the family and replaces the parents. If elitism is invoked, the selection of the
best pair includes the parents as part of the family. Many different notions
of what constitutes a “best” pair can be defined. Several are implemented
in the program. The sequence of a selection, production of a family and
replacement of parents is called a mating cycle or mating.

For many problems, crossing parents which differ widely in value is likely
to produce offspring of intermediate value, and so no progress will be made
either in the minimum or maximum values. This observation is based on
the assumption that similar values are reflective of string similarities, an
assumption we must make if there is to be any use made of crossover.® As-
suming we want to maximize or minimize some function, we are more likely
to make local progress in terms of increased fitness if we mate strings of sim-
ilar value. At the other extreme, crossing identical strings, or strings with
Hamming distance less than two will produce strings identical to their par-
ents. The approaches examined by Lewchuk [11] can be seen as taking these
arguments to the extreme. He only allows the pair closest in value to mate,
with some restrictions to eliminate mating of overly similar individuals.

In this implementation, we always select parents in adjacent rows of the
population. When replacing parents, we always put the child with the larger
value in the row of higher index. The effect, for well behaved functions,
is that the population will become (nearly) sorted by value. The efficacy
of the sorting (and consequently the search) will depend on the selection
criteria for the parents. Several mechanisms are available in the program,
others are suggested in section 5 and readers are encouraged to develop their
own. In future versions we may wish to allow mating between non-adjacent
individuals, perhaps with a probability inversely proportional to the distance
between them in the population.

To further improve the efficiency of the program, the user can specify
that the population be pre-sorted and maintained in sorted order. The user
can also select various crossover operators and parameters, as well as other

®In light of the results in [2] similarities may mean the absence of certain characters or
patterns, not just the presence of them. This discussion is necessarily vague until we can
determine formal and encompassing definitions for these concepts.

specifications. A full discussion of these options is presented in section 4.
The GIGA algorithm is outlined in figure 1.

Initialize population PY.
For some number of matings do begin
Select a pair of parents for mating.
Produce a family of offspring pairs using crossover.
Select the best offspring pair.
Replace the parents with the best pair.
Adjust the population (e.g. sort) if requested.
end.

Figure 1: Outline of GIGA Program

3 Starting Up

This program is designed to be run under UNIX and has been tested pri-
marily on SUN workstations. The program and sample inputs are packaged
as a compressed shar file, created under UNIX by the shell command shar.
The user should uncompress the file, then use the shell command unshar to
obtain the source code and experiment input files. Directories Source and
Experiments will be created for these files. Experiments contains sub-
directories Simple, Decept and DeJong which contain the files from the
three experimental sections of [2]. In Source there is a makefile. Issuing
the command make will create an executable file called giga.

All input to the program is taken from the standard input, and all output
is to the standard output. These features obviously require improvement,
and users are encouraged to modify the program to suit their needs. The
current program is intended primarily for interactive use.

The various input files contain settings for experiments described in [2].
For example, goldberg.1l contains the input for an experiment on Gold-
berg’s 3-bit deception. To run this experiment simply type

giga <goldberg.1

You may wish to pipe the output through more, or redirect it to an output

file for later editing as sometimes the quantity of data generated can be
quite large.

4 Program Inputs

In this section the input parameters required for the operation of this pro-
gram are explained. Further discussion and possibilities for future improve-
ments are presented in the final section.

Random Seed

This is required to initialize the random number generator. The default
random number generator used is the one available in the C library under
UNIX. Use of a different generator may cause some experiments to behave
differently than described.

Population Parameters

GIGAs, like GAs, use a population of strings. This program allows the
strings to be defined over an alphabet with up to 256 different characters in
it. The following parameters allow the user to choose the characteristics of
the population.

Population Size An integer (n) specifies the number of strings in the pop-
ulation. The population size remains fixed throughout the program
run. It must be at least 2 and no more than MAXPOP.*

String Size An integer (/) specifies the number of characters in the strings
with an upper limit of MAXSTRING. All strings are of this fixed
length.

Alphabet Size An integer (a) determines the number of characters in the
alphabet. This must be at least 2 and no more than 256. Populations
may be printed only if the alphabet has fewer than 89 characters. The
characters are stored internally as byte length integers ranging from 0
to o — 1.

*Terms defined in capitals can be found in the file giga.h

Initialization A choice of only 1 or 2, this determines how the population
is to be initialized. The first method simply generates n strings at
random; that is, each character of each string is chosen at random.

The second method generates sets of a strings at a time. The first (i.e.
zeroth) string of a set is chosen at random. The remaining strings of
the set are produced in rotation from the zeroth string; specifically

Py, = (Pg; + i) mod a

This ensures that each character is (as nearly as possible for given a
and n) equally represented in each column of the population. This is
very important for GIGAs, and is the recommended method for ini-
tializing the population.

Keep Sorted An input of ‘y’ will ensure that after each replacement of
a parent pair, the population will be sorted by value. This usually
improves the performance. This also implies the initial population is
sorted before any mating takes place.

Initial Sort If ‘n’ was the response to the previous parameter, then the
user still has the option of sorting the initial population.

Mating Parameters

Mating parameters control how many pairs of children should be generated
and which pair of children should replace the parents, if any.

Elitism Replying ‘y’ will cause the program to use elitism when deciding
whether any pair of the family should replace the parents. If the
parents are judged better than the best pair of children, no replacement
will occur. If ‘n’ is entered, then the best pair of children will always
replace the parents. This allows for greater stochastic behavior in
the exploration, but usually performance is somewhat inhibited. A
possible exception occurs with De Jong function f; as discussed in [2].

Equality Epsilon A real value used by GIGA to test the values of the par-
ents to see if the parents might be equivalent. If the absolute difference
is no greater than this epsilon value, then GIGA tests whether the
parents are equal strings. If the strings are equal, then no crossover
operations are performed, and the remainder of the mating cycle is
aborted. The only effect is one of program efliciency, since no new

strings can be produced by crossing identical parents.® If a negative
value is entered, then no equivalency test will be performed. Usu-
ally a value of 0 (zero) is sufficient, but for noisy functions such as
De Jong’s function number 4, a higher value might be useful. Note
that the equality test itself takes time proportional to string length [,
so epsilon should usually be small.

Family Size An integer(s) controls the number of pairs of children pro-
duced from a single pair of parents. Notice that the number of eval-
uations done by the program is n 4+ 2sm where m is the number of
matings not aborted due to equality considerations.

Definition of Best An integer 1 to 4 that selects one of the four definitions
of best pair. If elitism is activated, then the definition is applied to the
parents as a pair also, and if the parents are best, then no replacement
occurs. In the remainder of this item, “replacement” is deemed to
include this option.

Option 1 selects the pair in which the maximum value of the pair is
largest over all pairs. This pair replaces the parents. This is most
effective when we wish to maximize a function.

Option 2 selects the pair in which the minimum value of the pair is
smallest over all pairs. This pair replaces the parents. This is most
effective when we wish to minimize a function.

Option 3 selects the pair in which the absolute difference of the values
of the pair is maximum over all of the pairs. This pair replaces the
parents. This treats maximization and minimization symmetrically.
The idea behind using this option is to encourage the population to
diverge as much as possible.

Option 4 selects the pair in which the absolute difference of the values
of the pair is minimum over all of the pairs. This pair replaces the par-
ents. This also treats maximization and minimization symmetrically.
However, it is unlikely to optimize anything, as the name SQUISH
implies. The population is encouraged to converge in value as much
as possible. This option is supplied mostly because of its symmetry to
option 3, and because it might be interesting for some functions to see
how similar the values can be made under the condition of enforced
invariance.

°If mutation is added, then invoking this test could affect program results.

Crossover Parameters

The crossover types allowed in this program are one point, uniform and
a mixture of uniform and multipoint, with various parameters controlling
rates and probabilities.

Crossover Type An integer 1 to 4 selects the desired crossover type.

Option 1 selects one point crossover as described in section 2. Fach
pair of the family is generated by an independently chosen crossover
point.

Option 2 selects uniform crossover as described in section 2. An ad-
ditional parameter, Swap Bias will be requested when this option is
selected. This value should be an integer between 0 and 100. It rep-
resents the probability (expressed as a percentage) of the character in
the jth position of child 1 coming from parent 1. The further this value
is from 50, the more similar the offspring will be to their parents. A
value of 50 maximizes the shuffling of the two strings during crossover.

It makes every string in the Hamming closure of the parents equally
probable as a child.®

Option 3 selects one point crossover as in option 1, but guarantees
that each pair of offspring in a family will be produced using a different
crossover point. By setting s = [—1, and using elitism, a deterministic
hill climbing search will be created (in crossover space, not Hamming
space).”

Option 4 allows for a mixed set of crossover operations. If this option
is selected, then the user will be asked for a Swap Bias, as described
in option 2, and its application is the same in those instances when
uniform crossover is used. The user will then be asked for a sequence
of crossover rates and crossover numbers indicating the mixture of
crossover types to use. A crossover number of 0 indicates uniform
crossover, while any positive integer k indicates a k-point crossover. k
point crossover is implemented by selecting k£ points at random from
the range 1 to [—1. The selection is not exclusive, and so it is possible

8C is in the Hamming closure of Py and P if for each j,1 < j < I, C; = Py, or
C; =Pyj.

"In crossover space, two points are adjacent if one can be produced from the other by
a single crossover operation. It only makes sense when points are populations (in this case
of size 2) of strings. In Hamming space, points represent single strings, and two points
are adjacent when they differ in exactly one character position.

that fewer than k crossover points will be generated, although at least
one crossover point is guaranteed.

The crossover rate numbers give the frequencies at which the different
crossover types will be selected. The input to this set of values is
terminated by the entry 0 0. For example, if the user enters

100
151
52
00

then uniform crossover will be selected on average 10 times out of 30,
one point crossover 15 times out of 30 and two point crossover 5 times
out of 30. The selections are made randomly and independently for
each pair of each family.

Selection Parameters

This parameter determines the method of selecting parents in the first step
of the mating cycle.

Selection Type An integer 1 to 3 chooses the desired selection type.

Option 1 selects adjacent pairs at random from the population.

Option 2 selects adjacent pairs starting from the bottom, and pro-
ceeding in sequence until the top most pair has been selected. It then
restarts at the bottom on the next selection request.

Option 3 behaves like option 2 until the top most pair is selected, then
instead of restarting at the bottom, it proceeds instead from the top
to the bottom. When the bottom is reached, the pattern is repeated.

Termination Parameters

Maximum Matings The number of matings before termination.

Report Parameters

The program prints out the number of matings, total string evaluations,
minimum value of the population and the maximal value of the population
exactly when a new minimum or maximum has been found.

10

The user has the option of having the population printed out at vari-
ous times. These options are; before the initial population is sorted, after
the initial population is sorted (if sorting is specified), during execution, in
which case the user specifies the frequency of printing, and after execution
is complete. These options are selected by a sequence of yes or no responses.

Experiment Parameters

More than one run of an experiment may be requested, and if so the program
will keep track of averages and other information and print a summary
report.

Number of Experiments A positive integer indicates the number of ex-
periments to perform. If this is greater than the constant MAXEXPER
defined in giga.h the minimum number of evaluations for finding the
minimum and maximum values will not be summarized for all exper-
iments. A warning will be printed in this case.

Collection Frequency A positive integer indicates how often to collect
data. If the number of collection points (computed as the number of
iterations divided by the frequency) is greater than MAXCOLLECT
then some information will be lost. A warning will be printed in this
case.

Function Parameters

Which Function An integer 1 to 17 selects the desired function.

Function’s 1 to 5 are the De Jong functions described in [5], and
adapted from the GENESIS system?® (files fdj1.c to fdj5.c).

Option 6 selects the one maz function, sometimes called the ones
counting function (file f00.c). This function returns the number of
"1’ characters in the string.

Option 7 selects a function that adds together the character values of
the string (file f01.c).

Option 8 selects the majority function which computes the absolute
difference in the number of 1’s and 0’s in the string (file f02.c).

8 Any errors that have been introduced should not be attributed to GENESIS, but to
the adapter.

11

Options 9 to 12 are various attempts at deceptive functions and are
discussed in [2] (files f03.c to f06.c in that order).

Option 13 interprets a binary string as a binary number (file fbin.c).

Option 14 is Goldberg’s 3-bit deceptive function [8]. String length
must be a multiple of three, and o = 2. The loosely ordered version
can be selected by using the parameter passing option described under
the heading “parameters to functions” (file fdgb.c).

Option 15 is Liepin’s deceptive function [12] as described in [6]. This
function requires the string length to be a multiple of the order of
deception. The default order of deception is 5, but can be changed
using the parameter passing mechanism (file fdl.c).

Options 16 and 17 are deceptive functions for GIGA that have the
optimal points not at the opposite pole from the suboptimal points in
Hamming space. These are discussed in [2] and are found in files f07.c
and f08.c.

Gray Code Interpretation Entering ‘y” or ‘n’ sets a flag that can be
accessed by the function to determine whether to interpret a binary
string as a reflected Gray code instead of the usual binary number
encoding. Only the De Jong functions currently access this flag.

Parameters to Functions A chance to enter real values to be passed to
the function being evaluated. Up to ten real values may be passed
to the function, provided the function elects to make use of them.
Currently only the De Jong functions, fdgb.c and fdl.c make use
of this. In De Jong functions, a value called “center” can be set by
entering a value in this array. If no values are entered, then the default
center values are used. For each of the functions 3 and 4 one other
parameter may be set. Function 3 adds an offset to the final sum, and
this can be altered by entering a second value in the parameter list.
However, this is rather pointless since GIGA is insensitive to linear
scaling. Function 4 uses a noise function, and the degree of the noise
can be altered by entering a second number in the parameter list.

Function fdgb.c tests the first parameter and if it has been set to
anything (other than MAXDOUBLE) the loosely ordered version of
Goldberg’s deceptive function is used, otherwise the tightly ordered
version is used.

12

Function fdl.c implements Liepin’s deceptive function with a default
of order 5 deception. If the first parameter value is set, then this value
is used as the order of deception.

The user is advised to look at the function encodings to see how these

values are used. The values are passed to the functions in the array
OPTIONS.parameters|[];

Adding New Functions

New functions can easily be added to the program. First, the function must
be given a name distinct from the functions already defined. It is a good
idea to place the source in a file of a similar name. Functions take one
argument, a pointer to a character string, which contains the individual
to be evaluated. String length, alphabet size and optional arguments are
passed through the OPTIONS data structure. See the source file fdj3.c for
an example.

Functions must return a double value. Linkage is made through the
evaluate routine in the file evaluate.c and you will need to add a case in
the switch statement to call your function. You should also change the
selection printout under the heading **** FUNCTION *#x** in the file init.c
so the user will be aware of the existence of the function. Finally, add the
source file name with the “.0” suffix to the makefile file and make the
program again.

5 Design Philosophy and Future Options

The reader will undoubtedly have many ideas about what should be added
to this program, or future versions of it. One obvious operation that should
be allowed is mutation. This destroys the invariance property, and this loss
of purity is the reason it is not included in this program. This program’s
purpose is to illustrate the effects of crossover and invariance, and allowing
mutation could have distracted from that purpose. But some functions
would be more readily optimized if the operation were available. If the
approach is ever to become applicable, mutation should be selectable at the
user’s discretion.

In the mating parameters, options 1,2 and 3 for the definition of best
pair are equivalent for linear functions of the character strings, in the sense
that GIGA will produce the same results on these functions using any of

13

these options. Many other functions also make these options equivalent. For
example, if the options are equivalent for function ¢g(2), and f is a monotonic
function, then they are equivalent for f(g(z)). It would be interesting to have
a characterization of all functions yielding equivalence. One characteristic is
“the difference between a pair of children may be greater than the parents
if and only if the maximum increases and the minimum decreases”.

One reason this is of interest is the desire to make GIGAs universal. That
is, to optimize a function, we would like to have to specify as little special
knowledge as possible. Admittedly, not deciding whether to minimize or
maximize does seem a bit extreme. Another reason relates to the analysis of
the attempted deception in [2]. There the production of suboptimal values
leads to a refined search in minimal areas, which leads in turn to the optimal
value. One wonders whether arbitrarily complex behavior can be obtained,
and what criteria for “best” would abet such behavior.

Many other definitions of “best” are possible, including the pair with
greatest or least total value. Such total value selection might have benefit
in some cases by more quickly concentrating the search.

Future mating options could include more choices than the yes or no
response to elitism. For example, we could mimic simulated annealing and
select children to replace their parents with some probability when the par-
ents are superior to their children. This probability would possibly decline
over time.

Family size could be made variable, and perhaps be made greater at the
appropriate end of the population, thus mimicing to some extent the TGA’s
tendency to concentrate search on the best values.

In crossover parameters option 1 is redundant and should be removed.
Option 4 is an ad hoc approach to the perceived need for mixed crossover
types noted in the analysis of the deceptive attempt in [2]. Research into
more robust methods that take notice of previous success rates and are
time dependent may lead to more general and effective results. Targeted
crossover, in which a few bits are exchanged, with the exchanges all taking
place where the strings differ, might be effective in many functions.

In selection parameters the motivation behind the options comes from
viewing GIGAs as processes which sort high value schemata from low value
schemata. Option 1 can be seen as a randomized sorting process. Recall
that when the parents are replaced, the larger valued child always goes into
the top most position. (If no replacement is done, then the parents will
swap position if necessary). Thus, if the function is well behaved, sorting
will gradually take place.

14

Option 2 behaves like bubblesort [1], and in fact would degenerate to
bubblesort if no children were ever produced.

Option 3 behaves like alternating bubble sort, which is called the cocktail
shaker sort [10].

However, these analogies are not quite sufficient. Unlike sorting, the ba-
sic operation of crossover does not guarantee that anything moves upwards.
In fact, if we consider the function f00.c, the ones counting function with
the sorting options turned off, then we may observe that when using option
2 and uniform crossover there is a limit to how much exchange is likely to
occur per mating. If the mating is between P; and P;;1, and P; has many
more ones than its upper neighbor, then the two children will each obtain
about 1/2 of the excess ones. If we have elitism, with high probability the
next mating cycle will result in swapping the parents. If elitism is turned
off, then somewhat over 1/2 of the excess ones will be moved up on each
mating cycle.

If option 3 is used on the ones counting function, the upward passes
sweep excess ones towards the top, and the downwards passes sweep excess
zeroes towards the bottom. This process is repeated until the ones and
zeroes are separated.

If sorting is turned on, then we tend to mate strings with more similar
numbers of ones, and the sweeping actions are more efficient. For a particular
mating, we get ones moving upwards depending on the variance due to the
randomness of crossover. But these ones are moved further upwards by the
sorting action, and the next mating will again be between strings of more
or less equal value.

Future strategies might implement something more akin to parallel sort-
ing. Instead of mating adjacent pairs, we would mate alternating adjacent
pairs, then on the second pass those at distance two, then at distance four
and so on. The basic approach would be much like the parallel merge sort
described in [1]. With the sorting option available, it is not clear that this
technique would be of benefit.

The selection method in [11] could be mimiced in this program by adding
a selection type that would only select the adjacent pair with minimal value
difference. Using this selection method, the sorting option, setting fam-
ily size to one and turning elitism off would be equivalent to Lewchuk’s
method[11]. The definition of “best” would be irrelevant in this case.

In the current program, option 3 is recommended as it appears to be the
best option on all functions we have tried.

Selection of non-adjacent elements as parents may also help in many

15

cases, in particular on functions such as the De Jong functions. The pro-
gram may be used as a tool to explore the interaction of function value and
crossover space. With the current limitation this interaction is more tightly
coupled, and so may be more tractable from a theoretical stand point.

Termination is currently determined only by exceeding the maximum
number of matings. Future options might include measures of progress, or
measures of population diversity and base termination on these measures.
A system that would allow user intervention, changing various parameter
settings and continuation of a run would greatly extend the usefulness of
this program as a research tool.

References

[1] Sara Baase. Computer Algorithms: Introduction to Design and Analy-
sis. Addison-Wesley Publishing Company, Inc., 1978.

[2] Joseph C. Culberson. Genetic invariance: A new paradigm for genetic
algorithm design. ftp thorhild.cs.ualberta.ca, April 1992.

[3] Lawerence Davis, editor. Genetic Algorithms and Simulated Annealing.
Research Notes in Artificial intelligence. Morgan Kaufmann, 1987.

[4] Lawerence Davis, editor. Handbook of Genetic Algorithms. Van Nos-
trand Reinhold, 1991.

[6] K.A. DeJong. Analysis of Behavior of a Class of Genetic Adaptive
Systems. PhD thesis, The University of Michigan, 1975.

[6] Larry J. Eshelman. The CHC adaptive search algorithm: How to
have safe search when engaging in nontraditional genetic recombina-
tion. In Gregory J. E. Rawlins, editor, Fondations of Genetic Algo-
rithms (FOGA 1), pages 265-283. Morgan Kaufmann, 1991.

[7] David E. Goldberg. Genetic Algorithms in Search, Optimization and
Machine Learning. Addison-Wesley Publishing Company, Inc., 1989.

[8] David E. Goldberg, Bradley Korb, and Kalyanmoy Deb. Messy genetic
algorithms: Motivation, analysis, and first results. Complex Systems,
3:493-530, 1989.

[9] John H. Holland. Adaptation in Natural and Artificial Systems. Uni-
versity of Michigan Press, 1975.

16

[10]

[11]

[12]

D. E. Knuth. Sorting and Searching, volume 111 of The Art of Computer
Programming. Addison-Wesley Publishing Company, Inc., Reading,
Massachusetts, 1973.

Michael Lewchuk. Genetic invariance: A new approach to genetic al-
gorithms. Master’s thesis, University of Alberta, Edmonton Alberta,
April 1992. Technical Report TR 92-05 “Genetic Invariance: A New
Type of Genetic Algorithm” ftp thorhild.cs.ualberta.ca.

Gunar E. Liepins and Michael D. Vose. Representational issues in ge-
netic optimization. Journal of Frxperimental and Theoretical AI, May
1991.

17

