
University of Alberta

GIGA Program Description and
Operation

by

Joseph Culberson

Technical Report TR �����
June ����

DEPARTMENT OF COMPUTING SCIENCE
The University of Alberta
Edmonton, Alberta, Canada



GIGA Program Description and Operation

Joseph C� Culberson � y

June� ����

Abstract

This document describes the gene invariant genetic algorithm �GIGA�
program� This program represents a unique approach to designing GAs
with many interesting results� The primary distinguishing feature is
that when a pair of o�spring are created and chosen as worthy of mem�
bership in the population� they replace their parents� In the absence
of mutation� this has the e�ect of maintaining the original genetic ma�
terial over time� although it is reorganized� and hence the �invariant�
in the name�

The source code for the GIGA program� written in the program�
ming language C� is available on line� This document explains how to
use this program and describes the inputs� It also discusses the design
philosophy and indicates several possibilities for future extensions and
variations�

� Foreword

This program is a prototype� and is not intended for any commercial appli�
cation� It consists of C source code� and has been designed to run under
UNIX� although it should be easy to port it to other environments� Its pri�
mary purpose is to allow readers of ��� to perform variations and extensions
to the experiments cited there�

To obtain the program source and this document ftp thorhild�cs�ualberta�ca
and cd to directory pub�GIGA� The README �le will contain information
on obtaining these and the following related documents�

�Supported by Natural Sciences and Engineering Research Council Grant No�
OGP����� Department of Computing Science� University of Alberta� Edmonton� Alberta�
Canada� T�G �H�� email	joe
cs�ualberta�ca

yThis paper is available via ftp thorhild�cs�ualberta�ca

�



An accompanying paper ��� describes some of the interesting results and
contrasts this approach with traditional genetic algorithms 	TGAs
� The
paper is written to be read in conjunction with the experiments available
with this program� and is designed to be used in an interactive fashion�

Lewchuk�s master�s thesis ���� presents research results on a special case
of GIGA not currently available in this program� It is a particularly inter�
esting approach in that nowhere does it explicitly select for or bias toward
superior individuals� but it nevertheless is e�ective on several functions�

The intent of this program� documentation and the accompanying papers
��� ��� is to convince the reader that GIGA is a neat idea and deserves
exploration� It is hoped the reader will �nd many new intriguing mysteries
concerning evolutionary processes and discover that this is a unique tool
that may help achieve some insight�

The program and this document should be considered preliminary and
non�static� I hope to update both as new ideas and old bugs come to light��

To this end I welcome suggestions for improvements and extensions� and
look forward to many controversial comments both pro and con�

In section � a quick and super�cial over view of GAs is presented� followed
by a short summary of the basic design principles of GIGA and how it
contrasts with the GA� Section 
 explains the operation of the program�
and its inputs� Section � discusses some of the design philosophies and lists
various improvements and features that might be tried in future versions�

� Introduction

For a thorough introduction to genetic algorithms the reader is referred to
��� �� 
� ��� Here we outline the basic features of genetic algorithms 	GAs

for purposes of comparison to and description of gene invariant genetic al�
gorithms	GIGAs
�

A genetic algorithm maintains a population of n strings� called individuals
ormembers� Each string is of length l and is drawn from a set of � characters�
called the alphabet� Often the alphabet is binary� that is � � �� but larger
character sets are allowed� and in some applications �
� the alphabet is the
set of real numbers� and thus not even �nite� The population varies over
time under the control of the genetic algorithm as members are replaced
by new strings� These new strings are generated from previous members
through the action of various genetic operators to be discussed shortly�

�Why are both bugs and ideas attracted to light�

�



The members of a population are evaluated by the environment� which
just means that the program has some means of assigning a value to a string�
These values may be modi�ed in some way� through scaling for example����
This modi�ed value is referred to as the �tness of the string�

We designate the population by the matrix notation P t
ij � which refers to

the jth character of the ith member of the population at time step t� To
refer to a particular member as a whole� we drop the second subscript� and
when no confusion arises we drop the superscript indicating time�

The genetic operator most often used to produce new strings is crossover�
Two members of the population P� and P� 	called the parents
 are selected�
and a pair 	usually
 of new strings C� and C� 	called the children
 is formed
in which for each j either

C�j � P�j and C�j � P�j

or
C�j � P�j and C�j � P�j

That is� the characters of the children are the same as those of the
parents� but may be switched between them� Various crossover types are
described in the literature� In one point crossover an integer k� � � k � l is
chosen� and for j � k the �rst condition holds� while for j � k the second
condition holds� In multipoint crossover a number of such points are chosen
and the intervals alternate between the two conditions� In uniform crossover�
the choice between the two conditions is made independently character by
character with some �xed probability p�

Other genetic operators include transpositions� reordering� reversal and
mutation���� These are not currently available in the program described in
this paper�

Gene invariant genetic algorithms 	GIGAs
� the subject of this paper�
form a subclass of genetic algorithms� principally distinguished by the notion
that the total genetic makeup of the population does not change with time�
In particular� the multiset of characters of any column of the population Pt

�j

does not change with time��

To maintain this invariance� it is only necessary that a pair of children
produced by the crossover operation replace their parents in the population�
The invariance rule then follows trivially provided there is no mutation or
other genetic operator in use�

�We will undoubtedly wish to relax this rule in future research� for example by adding
operators such as mutation and transposition� But the current program enforces this rule�

�



In the remainder of this section� we will look at some of the design ideas
in the accompanying program�

A family is a set of pairs produced by a set of crossover operations
performed on a single pair of parents� In GIGA when a pair of parents is
selected� they are used to generate a family� The best pair is selected from
the family and replaces the parents� If elitism is invoked� the selection of the
best pair includes the parents as part of the family� Many di�erent notions
of what constitutes a �best� pair can be de�ned� Several are implemented
in the program� The sequence of a selection� production of a family and
replacement of parents is called a mating cycle or mating�

For many problems� crossing parents which di�er widely in value is likely
to produce o�spring of intermediate value� and so no progress will be made
either in the minimum or maximum values� This observation is based on
the assumption that similar values are re�ective of string similarities� an
assumption we must make if there is to be any use made of crossover�� As�
suming we want to maximize or minimize some function� we are more likely
to make local progress in terms of increased �tness if we mate strings of sim�
ilar value� At the other extreme� crossing identical strings� or strings with
Hamming distance less than two will produce strings identical to their par�
ents� The approaches examined by Lewchuk ���� can be seen as taking these
arguments to the extreme� He only allows the pair closest in value to mate�
with some restrictions to eliminate mating of overly similar individuals�

In this implementation� we always select parents in adjacent rows of the
population� When replacing parents� we always put the child with the larger
value in the row of higher index� The e�ect� for well behaved functions�
is that the population will become 	nearly
 sorted by value� The e�cacy
of the sorting 	and consequently the search
 will depend on the selection
criteria for the parents� Several mechanisms are available in the program�
others are suggested in section � and readers are encouraged to develop their
own� In future versions we may wish to allow mating between non�adjacent
individuals� perhaps with a probability inversely proportional to the distance
between them in the population�

To further improve the e�ciency of the program� the user can specify
that the population be pre�sorted and maintained in sorted order� The user
can also select various crossover operators and parameters� as well as other

�In light of the results in ��
 similarities may mean the absence of certain characters or
patterns� not just the presence of them� This discussion is necessarily vague until we can
determine formal and encompassing de�nitions for these concepts�






speci�cations� A full discussion of these options is presented in section 
�
The GIGA algorithm is outlined in �gure ��

Initialize population P��
For some number of matings do begin

Select a pair of parents for mating�
Produce a family of o�spring pairs using crossover�
Select the best o�spring pair�
Replace the parents with the best pair�
Adjust the population 	e�g� sort
 if requested�

end�

Figure �� Outline of GIGA Program

� Starting Up

This program is designed to be run under UNIX and has been tested pri�
marily on SUN workstations� The program and sample inputs are packaged
as a compressed shar �le� created under UNIX by the shell command shar�
The user should uncompress the �le� then use the shell command unshar to
obtain the source code and experiment input �les� Directories Source and
Experiments will be created for these �les� Experiments contains sub�
directories Simple� Decept and DeJong which contain the �les from the
three experimental sections of ���� In Source there is a make�le� Issuing
the command make will create an executable �le called giga�

All input to the program is taken from the standard input� and all output
is to the standard output� These features obviously require improvement�
and users are encouraged to modify the program to suit their needs� The
current program is intended primarily for interactive use�

The various input �les contain settings for experiments described in ����
For example� goldberg�� contains the input for an experiment on Gold�
berg�s ��bit deception� To run this experiment simply type

giga �goldberg��

You may wish to pipe the output throughmore� or redirect it to an output

�



�le for later editing as sometimes the quantity of data generated can be
quite large�

� Program Inputs

In this section the input parameters required for the operation of this pro�
gram are explained� Further discussion and possibilities for future improve�
ments are presented in the �nal section�

Random Seed

This is required to initialize the random number generator� The default
random number generator used is the one available in the C library under
UNIX� Use of a di�erent generator may cause some experiments to behave
di�erently than described�

Population Parameters

GIGAs� like GAs� use a population of strings� This program allows the
strings to be de�ned over an alphabet with up to ��� di�erent characters in
it� The following parameters allow the user to choose the characteristics of
the population�

Population Size An integer 	n
 speci�es the number of strings in the pop�
ulation� The population size remains �xed throughout the program
run� It must be at least � and no more than MAXPOP��

String Size An integer 	l
 speci�es the number of characters in the strings
with an upper limit of MAXSTRING� All strings are of this �xed
length�

Alphabet Size An integer 	�
 determines the number of characters in the
alphabet� This must be at least � and no more than ���� Populations
may be printed only if the alphabet has fewer than �� characters� The
characters are stored internally as byte length integers ranging from �
to � � ��

�Terms de�ned in capitals can be found in the �le giga�h

�



Initialization A choice of only � or �� this determines how the population
is to be initialized� The �rst method simply generates n strings at
random� that is� each character of each string is chosen at random�

The second method generates sets of � strings at a time� The �rst 	i�e�
zeroth
 string of a set is chosen at random� The remaining strings of
the set are produced in rotation from the zeroth string� speci�cally

P�
ij � 	P�

�j � i
 mod �

This ensures that each character is 	as nearly as possible for given �
and n
 equally represented in each column of the population� This is
very important for GIGAs� and is the recommended method for ini�
tializing the population�

Keep Sorted An input of �y� will ensure that after each replacement of
a parent pair� the population will be sorted by value� This usually
improves the performance� This also implies the initial population is
sorted before any mating takes place�

Initial Sort If �n� was the response to the previous parameter� then the
user still has the option of sorting the initial population�

Mating Parameters

Mating parameters control how many pairs of children should be generated
and which pair of children should replace the parents� if any�

Elitism Replying �y� will cause the program to use elitism when deciding
whether any pair of the family should replace the parents� If the
parents are judged better than the best pair of children� no replacement
will occur� If �n� is entered� then the best pair of children will always
replace the parents� This allows for greater stochastic behavior in
the exploration� but usually performance is somewhat inhibited� A
possible exception occurs with De Jong function f� as discussed in ����

Equality Epsilon A real value used by GIGA to test the values of the par�
ents to see if the parents might be equivalent� If the absolute di�erence
is no greater than this epsilon value� then GIGA tests whether the
parents are equal strings� If the strings are equal� then no crossover
operations are performed� and the remainder of the mating cycle is
aborted� The only e�ect is one of program e�ciency� since no new

�



strings can be produced by crossing identical parents�� If a negative
value is entered� then no equivalency test will be performed� Usu�
ally a value of � 	zero
 is su�cient� but for noisy functions such as
De Jong�s function number 
� a higher value might be useful� Note
that the equality test itself takes time proportional to string length l�
so epsilon should usually be small�

Family Size An integer	s
 controls the number of pairs of children pro�
duced from a single pair of parents� Notice that the number of eval�
uations done by the program is n � �sm where m is the number of
matings not aborted due to equality considerations�

De�nition of Best An integer � to 
 that selects one of the four de�nitions
of best pair� If elitism is activated� then the de�nition is applied to the
parents as a pair also� and if the parents are best� then no replacement
occurs� In the remainder of this item� �replacement� is deemed to
include this option�

Option � selects the pair in which the maximum value of the pair is
largest over all pairs� This pair replaces the parents� This is most
e�ective when we wish to maximize a function�

Option � selects the pair in which the minimum value of the pair is
smallest over all pairs� This pair replaces the parents� This is most
e�ective when we wish to minimize a function�

Option � selects the pair in which the absolute di�erence of the values
of the pair is maximum over all of the pairs� This pair replaces the
parents� This treats maximization and minimization symmetrically�
The idea behind using this option is to encourage the population to
diverge as much as possible�

Option 
 selects the pair in which the absolute di�erence of the values
of the pair is minimum over all of the pairs� This pair replaces the par�
ents� This also treats maximization and minimization symmetrically�
However� it is unlikely to optimize anything� as the name SQUISH
implies� The population is encouraged to converge in value as much
as possible� This option is supplied mostly because of its symmetry to
option �� and because it might be interesting for some functions to see
how similar the values can be made under the condition of enforced
invariance�

�If mutation is added� then invoking this test could a�ect program results�

�



Crossover Parameters

The crossover types allowed in this program are one point� uniform and
a mixture of uniform and multipoint� with various parameters controlling
rates and probabilities�

Crossover Type An integer � to 
 selects the desired crossover type�

Option � selects one point crossover as described in section �� Each
pair of the family is generated by an independently chosen crossover
point�

Option � selects uniform crossover as described in section �� An ad�
ditional parameter� Swap Bias will be requested when this option is
selected� This value should be an integer between � and ���� It rep�
resents the probability 	expressed as a percentage
 of the character in
the jth position of child � coming from parent �� The further this value
is from ��� the more similar the o�spring will be to their parents� A
value of �� maximizes the shu�ing of the two strings during crossover�
It makes every string in the Hamming closure of the parents equally
probable as a child��

Option � selects one point crossover as in option �� but guarantees
that each pair of o�spring in a family will be produced using a di�erent
crossover point� By setting s � l��� and using elitism� a deterministic
hill climbing search will be created 	in crossover space� not Hamming
space
��

Option 
 allows for a mixed set of crossover operations� If this option
is selected� then the user will be asked for a Swap Bias� as described
in option �� and its application is the same in those instances when
uniform crossover is used� The user will then be asked for a sequence
of crossover rates and crossover numbers indicating the mixture of
crossover types to use� A crossover number of � indicates uniform
crossover� while any positive integer k indicates a k�point crossover� k
point crossover is implemented by selecting k points at random from
the range � to l��� The selection is not exclusive� and so it is possible

�C is in the Hamming closure of P� and P� if for each j� � � j � l� Cj � P�j or
Cj � P�j �

�In crossover space� two points are adjacent if one can be produced from the other by
a single crossover operation� It only makes sense when points are populations �in this case
of size �� of strings� In Hamming space� points represent single strings� and two points
are adjacent when they di�er in exactly one character position�

�



that fewer than k crossover points will be generated� although at least
one crossover point is guaranteed�

The crossover rate numbers give the frequencies at which the di�erent
crossover types will be selected� The input to this set of values is
terminated by the entry � �� For example� if the user enters

�� �
�� �
� �
� �

then uniform crossover will be selected on average �� times out of ���
one point crossover �� times out of �� and two point crossover � times
out of ��� The selections are made randomly and independently for
each pair of each family�

Selection Parameters

This parameter determines the method of selecting parents in the �rst step
of the mating cycle�

Selection Type An integer � to � chooses the desired selection type�

Option � selects adjacent pairs at random from the population�

Option � selects adjacent pairs starting from the bottom� and pro�
ceeding in sequence until the top most pair has been selected� It then
restarts at the bottom on the next selection request�

Option � behaves like option � until the top most pair is selected� then
instead of restarting at the bottom� it proceeds instead from the top
to the bottom� When the bottom is reached� the pattern is repeated�

Termination Parameters

Maximum Matings The number of matings before termination�

Report Parameters

The program prints out the number of matings� total string evaluations�
minimum value of the population and the maximal value of the population
exactly when a new minimum or maximum has been found�

��



The user has the option of having the population printed out at vari�
ous times� These options are� before the initial population is sorted� after
the initial population is sorted 	if sorting is speci�ed
� during execution� in
which case the user speci�es the frequency of printing� and after execution
is complete� These options are selected by a sequence of yes or no responses�

Experiment Parameters

More than one run of an experiment may be requested� and if so the program
will keep track of averages and other information and print a summary
report�

Number of Experiments A positive integer indicates the number of ex�
periments to perform� If this is greater than the constantMAXEXPER
de�ned in giga�h the minimum number of evaluations for �nding the
minimum and maximum values will not be summarized for all exper�
iments� A warning will be printed in this case�

Collection Frequency A positive integer indicates how often to collect
data� If the number of collection points 	computed as the number of
iterations divided by the frequency
 is greater than MAXCOLLECT
then some information will be lost� A warning will be printed in this
case�

Function Parameters

Which Function An integer � to �� selects the desired function�

Function�s � to � are the De Jong functions described in ���� and
adapted from the GENESIS system� 	�les fdj��c to fdj��c
�

Option � selects the one max function� sometimes called the ones
counting function 	�le f���c
� This function returns the number of
��� characters in the string�

Option � selects a function that adds together the character values of
the string 	�le f���c
�

Option � selects the majority function which computes the absolute
di�erence in the number of ��s and ��s in the string 	�le f���c
�

�Any errors that have been introduced should not be attributed to GENESIS� but to
the adapter�

��



Options � to �� are various attempts at deceptive functions and are
discussed in ��� 	�les f���c to f���c in that order
�

Option �� interprets a binary string as a binary number 	�le fbin�c
�

Option �
 is Goldberg�s ��bit deceptive function ���� String length
must be a multiple of three� and � � �� The loosely ordered version
can be selected by using the parameter passing option described under
the heading �parameters to functions� 	�le fdgb�c
�

Option �� is Liepin�s deceptive function ���� as described in ���� This
function requires the string length to be a multiple of the order of
deception� The default order of deception is �� but can be changed
using the parameter passing mechanism 	�le fdl�c
�

Options �� and �� are deceptive functions for GIGA that have the
optimal points not at the opposite pole from the suboptimal points in
Hamming space� These are discussed in ��� and are found in �les f�	�c
and f�
�c�

Gray Code Interpretation Entering �y� or �n� sets a �ag that can be
accessed by the function to determine whether to interpret a binary
string as a re�ected Gray code instead of the usual binary number
encoding� Only the De Jong functions currently access this �ag�

Parameters to Functions A chance to enter real values to be passed to
the function being evaluated� Up to ten real values may be passed
to the function� provided the function elects to make use of them�
Currently only the De Jong functions� fdgb�c and fdl�c make use
of this� In De Jong functions� a value called �center� can be set by
entering a value in this array� If no values are entered� then the default
center values are used� For each of the functions � and 
 one other
parameter may be set� Function � adds an o�set to the �nal sum� and
this can be altered by entering a second value in the parameter list�
However� this is rather pointless since GIGA is insensitive to linear
scaling� Function 
 uses a noise function� and the degree of the noise
can be altered by entering a second number in the parameter list�

Function fdgb�c tests the �rst parameter and if it has been set to
anything 	other than MAXDOUBLE
 the loosely ordered version of
Goldberg�s deceptive function is used� otherwise the tightly ordered
version is used�

��



Function fdl�c implements Liepin�s deceptive function with a default
of order � deception� If the �rst parameter value is set� then this value
is used as the order of deception�

The user is advised to look at the function encodings to see how these
values are used� The values are passed to the functions in the array
OPTIONS�parameters���

Adding New Functions

New functions can easily be added to the program� First� the function must
be given a name distinct from the functions already de�ned� It is a good
idea to place the source in a �le of a similar name� Functions take one
argument� a pointer to a character string� which contains the individual
to be evaluated� String length� alphabet size and optional arguments are
passed through the OPTIONS data structure� See the source �le fdj��c for
an example�

Functions must return a double value� Linkage is made through the
evaluate routine in the �le evaluate�c and you will need to add a case in
the switch statement to call your function� You should also change the
selection printout under the heading ���� FUNCTION ���� in the �le init�c
so the user will be aware of the existence of the function� Finally� add the
source �le name with the ��o� su�x to the make�le �le and make the
program again�

� Design Philosophy and Future Options

The reader will undoubtedly have many ideas about what should be added
to this program� or future versions of it� One obvious operation that should
be allowed is mutation� This destroys the invariance property� and this loss
of purity is the reason it is not included in this program� This program�s
purpose is to illustrate the e�ects of crossover and invariance� and allowing
mutation could have distracted from that purpose� But some functions
would be more readily optimized if the operation were available� If the
approach is ever to become applicable� mutation should be selectable at the
user�s discretion�

In the mating parameters� options ��� and � for the de�nition of best
pair are equivalent for linear functions of the character strings� in the sense
that GIGA will produce the same results on these functions using any of

��



these options� Many other functions also make these options equivalent� For
example� if the options are equivalent for function g	x
� and f is a monotonic
function� then they are equivalent for f	g	x

� It would be interesting to have
a characterization of all functions yielding equivalence� One characteristic is
�the di�erence between a pair of children may be greater than the parents
if and only if the maximum increases and the minimum decreases��

One reason this is of interest is the desire to make GIGAs universal� That
is� to optimize a function� we would like to have to specify as little special
knowledge as possible� Admittedly� not deciding whether to minimize or
maximize does seem a bit extreme� Another reason relates to the analysis of
the attempted deception in ���� There the production of suboptimal values
leads to a re�ned search in minimal areas� which leads in turn to the optimal
value� One wonders whether arbitrarily complex behavior can be obtained�
and what criteria for �best� would abet such behavior�

Many other de�nitions of �best� are possible� including the pair with
greatest or least total value� Such total value selection might have bene�t
in some cases by more quickly concentrating the search�

Future mating options could include more choices than the yes or no
response to elitism� For example� we could mimic simulated annealing and
select children to replace their parents with some probability when the par�
ents are superior to their children� This probability would possibly decline
over time�

Family size could be made variable� and perhaps be made greater at the
appropriate end of the population� thus mimicing to some extent the TGA�s
tendency to concentrate search on the best values�

In crossover parameters option � is redundant and should be removed�
Option 
 is an ad hoc approach to the perceived need for mixed crossover
types noted in the analysis of the deceptive attempt in ���� Research into
more robust methods that take notice of previous success rates and are
time dependent may lead to more general and e�ective results� Targeted
crossover� in which a few bits are exchanged� with the exchanges all taking
place where the strings di�er� might be e�ective in many functions�

In selection parameters the motivation behind the options comes from
viewing GIGAs as processes which sort high value schemata from low value
schemata� Option � can be seen as a randomized sorting process� Recall
that when the parents are replaced� the larger valued child always goes into
the top most position� 	If no replacement is done� then the parents will
swap position if necessary
� Thus� if the function is well behaved� sorting
will gradually take place�

�




Option � behaves like bubblesort ���� and in fact would degenerate to
bubblesort if no children were ever produced�

Option � behaves like alternating bubble sort� which is called the cocktail
shaker sort �����

However� these analogies are not quite su�cient� Unlike sorting� the ba�
sic operation of crossover does not guarantee that anything moves upwards�
In fact� if we consider the function f���c� the ones counting function with
the sorting options turned o�� then we may observe that when using option
� and uniform crossover there is a limit to how much exchange is likely to
occur per mating� If the mating is between Pi and Pi	�� and Pi has many
more ones than its upper neighbor� then the two children will each obtain
about ��� of the excess ones� If we have elitism� with high probability the
next mating cycle will result in swapping the parents� If elitism is turned
o�� then somewhat over ��� of the excess ones will be moved up on each
mating cycle�

If option � is used on the ones counting function� the upward passes
sweep excess ones towards the top� and the downwards passes sweep excess
zeroes towards the bottom� This process is repeated until the ones and
zeroes are separated�

If sorting is turned on� then we tend to mate strings with more similar
numbers of ones� and the sweeping actions are more e�cient� For a particular
mating� we get ones moving upwards depending on the variance due to the
randomness of crossover� But these ones are moved further upwards by the
sorting action� and the next mating will again be between strings of more
or less equal value�

Future strategies might implement something more akin to parallel sort�
ing� Instead of mating adjacent pairs� we would mate alternating adjacent
pairs� then on the second pass those at distance two� then at distance four
and so on� The basic approach would be much like the parallel merge sort
described in ���� With the sorting option available� it is not clear that this
technique would be of bene�t�

The selection method in ���� could be mimiced in this program by adding
a selection type that would only select the adjacent pair with minimal value
di�erence� Using this selection method� the sorting option� setting fam�
ily size to one and turning elitism o� would be equivalent to Lewchuk�s
method����� The de�nition of �best� would be irrelevant in this case�

In the current program� option � is recommended as it appears to be the
best option on all functions we have tried�

Selection of non�adjacent elements as parents may also help in many

��



cases� in particular on functions such as the De Jong functions� The pro�
gram may be used as a tool to explore the interaction of function value and
crossover space� With the current limitation this interaction is more tightly
coupled� and so may be more tractable from a theoretical stand point�

Termination is currently determined only by exceeding the maximum
number of matings� Future options might include measures of progress� or
measures of population diversity and base termination on these measures�
A system that would allow user intervention� changing various parameter
settings and continuation of a run would greatly extend the usefulness of
this program as a research tool�

References

��� Sara Baase� Computer Algorithms� Introduction to Design and Analy�
sis� Addison�Wesley Publishing Company� Inc�� �����

��� Joseph C� Culberson� Genetic invariance� A new paradigm for genetic
algorithm design� ftp thorhild�cs�ualberta�ca� April �����

��� Lawerence Davis� editor� Genetic Algorithms and Simulated Annealing�
Research Notes in Arti�cial intelligence� Morgan Kaufmann� �����

�
� Lawerence Davis� editor� Handbook of Genetic Algorithms� Van Nos�
trand Reinhold� �����

��� K�A� DeJong� Analysis of Behavior of a Class of Genetic Adaptive
Systems� PhD thesis� The University of Michigan� �����

��� Larry J� Eshelman� The CHC adaptive search algorithm� How to
have safe search when engaging in nontraditional genetic recombina�
tion� In Gregory J� E� Rawlins� editor� Fondations of Genetic Algo�
rithms �FOGA I�� pages �������� Morgan Kaufmann� �����

��� David E� Goldberg� Genetic Algorithms in Search� Optimization and
Machine Learning� Addison�Wesley Publishing Company� Inc�� �����

��� David E� Goldberg� Bradley Korb� and Kalyanmoy Deb� Messy genetic
algorithms� Motivation� analysis� and �rst results� Complex Systems�
��
������� �����

��� John H� Holland� Adaptation in Natural and Arti�cial Systems� Uni�
versity of Michigan Press� �����

��



���� D� E� Knuth� Sorting and Searching� volume III of The Art of Computer
Programming� Addison�Wesley Publishing Company� Inc�� Reading�
Massachusetts� �����

���� Michael Lewchuk� Genetic invariance� A new approach to genetic al�
gorithms� Master�s thesis� University of Alberta� Edmonton Alberta�
April ����� Technical Report TR ����� �Genetic Invariance� A New
Type of Genetic Algorithm� ftp thorhild�cs�ualberta�ca�

���� Gunar E� Liepins and Michael D� Vose� Representational issues in ge�
netic optimization� Journal of Experimental and Theoretical AI� May
�����

��


