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Abstract

The objective of this thesis is to investigate material failure phenomena, specif-

ically related to localizations with applications to naval and rail steels. In

order to accomplish this objective, steels commonly used in naval and rail

applications were examined in quasi-static and dynamic compression using a

universal testing machine and a split-Hopkinson pressure bar, respectively, with

in-situ imaging. The work was performed on two commonly used rail weights of

115 lb/yd and 136 lb/yd rail steel and a commonly used naval steel, HSLA 65.

In this thesis, state-of-the-art ultra-high-speed imaging was used with testing

procedures to visualize the deformation at high strain rates to capture phenom-

ena that occur over microseconds to provide process information not readily

available in the literature for the compressive stress-state. The quasi-static

and dynamic tests were performed in compression to gain material behaviour

in more representative strain rates and stress states of the steels in blast and

impact loading. The in-situ imaging of the deformation process provided ve-

locities, orientation and propagation of shear bands not widely reported in

the literature with an appropriate experimental setup. The localizations that

occur in the context of rail applications, is the white etching layer, which is a

hardened layer that forms on top of the rail from repeated plastic deformation,

heat and follows the development of shear banding. Process information was

gained in regards to the formation of the white etching layer on the surface of

the rail by displaying grain texturing not known to occur at low strains. The
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new information found in this thesis was further discussed in context to the

current understanding of shear banding and the formation of the white etching

layer. Altogether, this work provides fundamental information for the valida-

tion of material models in studying high rate applications and use in industrial

applications. It provides information into the current understanding of the

shear banding and the white etching layer phenomena, improves understanding

of material behaviour for design, and gives insight for the performance of the

current materials commonly used in the naval and rail industries.
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(a) As-received profile of the a commonly used
115 lb/yd Canadian rail steel

(b) As-received profile of the a commonly used
136 lb/yd Canadian rail steel

(c) Commonly used HSLA 65 naval steel as-received plate

Figure 1.1. Collection of steels investigated in this thesis in their as-received form
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alter a materials behaviour will have far reaching benefits to many research

communities and industry. This topic is addressed in this thesis.

1.2 Thesis Objective

The objective of this thesis is to investigate in-situ localization phenomena in

steels in compressive loading, with applications to rail and naval steels. To

accomplish this objective we first investigate the length and time over which

they form such as the size, rate and the dynamic conditions (i.e. strain rates)

in which they occur, along with the stress-strain behaviour in both quasi-

static and dynamic loading. Secondly, the deformation is characterized in-situ

during quasi-static and dynamic compressive experimentation coupled with

high-speed imaging, noting the shear banding and localizations that occur.

This information is then linked with first-hand accounts of rail and naval steel

failures, processes of formation, and real world phenomena such as the white

etching layer that relates to shear banding in rail and naval applications. The

information obtained in this thesis will provide new perspectives on processes

of current failure mechanisms that are being researched and also provide spatial

and stress-strain information for the development of material models predicting

steel behaviour in high strain rate environments.

The thesis objective will be achieved by completing the following tasks:

1. Determine and select steel that show distinct localizations that are used

in rail and naval applications.

2. Produce high quality tests of the chosen materials in quasi-static compres-

sion with in-situ imaging that provides strain information using Digital

Image Correlation (DIC) and traditional compliance correction methods.

3. Test the materials in dynamic compression with in-situ imaging on

materials determined to show localizations. This requires multiple tests

to determine the rate of formation of the phenomena.
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4. Quantify the localizations that occur on the surface and provide this

information in the context of the formation processes of phenomena seen

in real-world conditions.

5. Provide and relate the quantified localizations in context to validate

models that predict shear banding.

1.3 Thesis Organization

This thesis is composed of four chapters. Chapter 1 provides the motivation

for this research, the objectives and the organizational structure. Chapter 2

is a collection and review of the current state-of-the literature in relation to

localizations that are seen at high strain rates and the by-products thereof. First,

the steels examined in this thesis are explained with perspective of their use in

their respective industry. Next, that chapter provides various theories proposed

for the development of these localization phenomena, identification of their

occurrence and information regarding the implications of their development.

Lastly, it provides a brief overview of high strain rate testing of metals, the

objectives of the apparatus’, and perspective of the current methodology used

in this thesis. Chapter 3 investigates the quasi-static and dynamic strength of

HSLA 65, a high strength low alloy steel used in naval applications, using a

universal testing machine and a split-Hopkinson pressure bar, respectively. In

this chapter, the propagation velocity of shear bands that occur in quasi-static

and dynamic conditions are documented and discussed. These velocities are

captured using a high-speed and ultra-high-speed imaging to capture shear

bands propagation at a frame rate of one million frames per second. Chapter 4

explores the quasi-static and dynamic behaviour of two commonly used rail

steels and weights used in Canada; namely 115 lb/yd and 136 lb/yd. These

experiments are visualized in-situ using ultra-high-speed imaging to capture

localization and texturing related to the development of shear bands and the

white etching layer, which is characterized and discussed in the context of the

current understanding of the phenomena. Chapter 5 provides a summary of
5



the work completed in this thesis, along with the contributions made. Lastly,

a compilation of future work is provided that would compliment the work

completed in this thesis.
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Chapter 2

Background

2.1 Materials

2.1.1 High Strength Low Alloy (HSLA) Steel

The development of High Strength Low Alloy steel mainly started in the 1950’s

and the 1960’s from both an increased scientific understanding and a need of

higher strength materials [19]. The scientific understanding allowing these set

of steels to be made was specifically the effects of various elements added to

the material. The commonly added elements are chromium, nickel, silicon,

vanadium, titanium and zirconium [20]. An example of the composition of

a high strength low alloy steel can be seen in Table 3.1 in Chapter 3. These

components allowed for altering the corrosion resistance, strength, toughness,

formability, weldability and ductility of the material [21]. In addition to having

improved desirable characteristics, the cost of these materials lie between plain

carbon steels and alloy steels, and thus, the cost performance of these steels is

ideal for improving products in industries where exotic high strength materials

are infeasible. Applications of high strength low alloy steels include oil and gas

pipelines, rail and rail cars, off-shore buildings, and machinery [21]

One industry that benefits from high strength low alloy steel is in the

construction of naval ships because of its relatively low weight, good weldability,

higher toughness and ease of manufacturing in relation to formability [22, 23].

The alloying components can add characteristics of corrosion resistance, higher

strength, better weldability and better manufacturing characteristics such as
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stability during heating [21]. High strength low alloy steels have also been used

in construction of naval ships since the mid 1950’s [22, 24, 25], and since that

time they have become the standard for naval ships [22]. Improvements in high

strength low alloy steels from High Yield-Strength (HY) series of steel to HSLA

allowed for less preheat, less care while welding and additional weight savings.

The use of high strength low alloy steels are integral to many industries.

2.1.2 Rail Steels

The basic composition of rail steel and its pearlitic microstructure has remained

the same as rails used in the early 1900’s [26], and the increase in lifespan

and track safety (i.e. preventing rail breaks) can be attributed to the quality

control of rail steel in production and preventative rail maintenance. Quality

control consists of, first, the infrastructure put in place in North America to

have a basis on the expectations of a manufactured rail that is covered in the

“Manual for Railway Engineering” [27], which also covers many other topics,

but not limited to the design of roadway and ballast, ties and track. This

document provides a basis of tolerances, production procedures, and testing

requirements for manufacturers and purchasers to follow, and is a standard

for rail sections used in North America; the standards are provided by the

American Railway Engineering and Maintenance-of-Way Association (AREMA).

Second, an increase of preventative maintenance of rail lines such as monitoring

the rail for defects, rail grinding that is used to remove developing defects

such as the white etched layer, corrugations, flaking, shelling or microcracks,

and reducing the amount of impact loading on the rail (e.g. flange bearing

crossings, continuously welded rail) have aided in preventing rail failures. To

aid in withstanding the increased forces from higher loads and train speeds, the

manufacturing techniques, material composition, the rail profile (cross-sectional

area), and heat treatments have been altered and studied [26–28]. For example,

bainitic rails [26], rail profiles, and thermomechanical processing [28] have been

studied with success, but has not achieved wide spread adoption in industry

because of unproven performance in large scale tests [26].
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often completed through hat-shaped specimens [44, 77] or the use of a variation

of the SHPB that removes the incident bar and directly impacts the specimen

with the striker and records the signal in the output/transmission bar. The

use of these techniques are two-fold, first to ensure shear band generation and

second to reach high strain rates where adiabatic shear bands are likely to form.

In general, a split-Hopkinson pressure bar as employed in Figure 2.5, consists

of the components of a SHPB, in addition to a camera, data acquisition system

and a pulse shaper. For the camera to capture the in-situ deformation of the

sample, the camera is triggered after a set delay after the incident pulse travels

through the strain gauge and is recorded in the data acquisition system. Next,

the pulse shaper can be applied to reduce the amount of Pochhammer-Chree

dispersion [78], improve stress equilibrium [79, 80] and provide a more constant

strain rate over the test duration [79–81]. The stress equilibrium, which is

an assumption made in the analysis of the data [81], can be verified through

examining either the strain, stress or force at the interfaces of the bar and

specimen and ensuring the differences between interfaces remains minimal over

the course of the experiment. An example of this methodology can be seen in

Section A.6, where the difference between the incident pulse and the added

reflected and transmitted pulse is seen to be small over the duration of the test;

this indicates a good test. Another assumption that is made in the analysis

is a constant strain rate obtained during the test. This condition is met by

the strain rate plateauing and remaining constant for the experiment after

the initial loading, an example of this is seen in Figure A.14 of this thesis,

and again, indicates a good experiment. Lastly, the incident pulse should be

matched to the material response to minimize dispersion [82] and in aiding the

previously mentioned two conditions [78, 79, 81, 83]. Further, the use of the

equations governing the determination of the stress and strain of the material

along with best practices used in this thesis can be found in Chapters 3 to 4.
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Chapter 3

Shear Band Characteristics in
High Strain Rate Naval
Applications

Accepted for publication in the Hypervelocity Impact Symposium
conference proceedings published in the American Society of Me-
chanical Engineers (ASME) Journal with invitation for publica-
tion into the special issue of the International Journal of Impact
Engineering (IJIE).
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3.1 Introduction

Shear bands are an important topic in understanding the mechanics of materials

as it is a dominant failure mechanism and precursor for crack initiation and

propagation at high strain rates in many materials [14]. For example, shear

bands are commonly observed in manufacturing and operation in the ship

building [84], rail transportation [43], and aerospace industries [85]. In these

industries, the materials are exposed to a wide range of strain rates from

quasi-static to explosive loading. With the ever-increasing expectations of

steels being stronger and more cost effective, it becomes more important

to develop a fundamental understanding of the failure of these materials. In

these applications, the formation of shear bands plays a role in the failure and

the stability of the material. Understanding these loading conditions and the

behavior of shear bands (i.e. velocity, propagation direction and propensity) will

improve the material selection process and the performance of newly developed

materials for these industries.

In the past, shear banding has been commonly observed in metals [8, 14,

16], polymers [17], and geologic [18] materials. Authors have studied shear

banding through experiments [32, 35], and through computational and analyt-

ical modelling [36, 37]. Shear bands are commonly labelled as: 1. deformed

shear bands, and 2. transformed shear bands, and these are mainly distin-

guished by whether a white etched hardened band is formed [11]. There has

been several theories on the generation of shear bands in materials, including

dynamic recrystallization (DRX) [48], grain deformation [11], rotational recrys-

tallization [50], and phase transformation [13]. Regardless, shear bands are

commonly believed to significantly affect material strength, stability, and have

been noted to often be a precursor to cracking through the generation of voids

[15]. Despite broad implications of shear banding to industry applications, the

topic remains a very active area of research [14, 37, 86].

Motivated by these and many other past works, this paper focuses on study-

ing the growth and evolution of shear bands in a high strength, low alloy steel,
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Figure 3.3. In-situ images of HSLA 65 using Kirana ultra-high-speed camera filming at 1
million frames per second in a Split Hopkinson pressure bar testing apparatus: a) surface of
specimen prior to deformation; b) surface of specimen with bands beginning to form at ∼1%
strain; c) surface of specimen with bands formed before coalesce dominates at ∼2% strain;
d) surface of specimen with visible localizations and surface texturing at ∼3.9% strain.

30



(27± 5)mm s−1 (38± 8)mm s−1

(19± 4)mm s−1

(11± 2)mm s−1

∼ ∼ 4 μs

(951± 96)m s−1

(1911± 192)m s−1

(2122± 213)m s−1

(1464± 147)m s−1



10−2

10−1

100

101

102

103

−1

−1

(541± 8)MPa

(1081± 48)MPa (2029± 172)MPa

(3098± 52)MPa

0.376± 0.028 0.396± 0.006



(38± 8)mm s−1

(19± 4)mm s−1

(11± 2)mm s−1

(1853± 31) s−1

(2122± 213)m s−1

(2122± 213)m s−1

2005m s−1 35m s−1



1200m s−1

1100m s−1

(541± 8)MPa 10−3 s−1 (1081± 48)MPa

(1853± 31) s−1 0.376± 0.028

0.396± 0.006

(0.93± 0.12)%

38mms−1

(1.18± 0.06)%

(2122± 213)m s−1



3.6 Acknowledgements

This work is supported by the Canadian Natural Sciences and Engineering

Research Council, the Canadian Foundation for Innovation, and Defence Re-

search and Development Canada. Calvin Lo and Haoyang Li are thanked for

their aid while running the experiments.

35



Chapter 4

Dynamic and Quasi-Static
Failure of Rail Steels
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4.1 Introduction

Understanding the mechanical response of rail steel has been shown by many in

the literature to be important for understanding the in-use rail performance [98].

Commonly, the characterization of rail steel is completed through tensile

testing, hardness testing and evaluating the wear patterns on used rails [27].

While these characteristics are important for identifying rail steels that will

have acceptable performance, little work has been completed to examine the

mechanical response at high strain rates and for compressive stress-states [8,

43, 99], despite these conditions being important in the contact and impact

loading applications experienced in rail transport. More specifically, dynamic

and impact loading is often seen at bolted rail joints, crossings, and switches.

Evidence from the literature suggests that dynamic loading increases the

accumulation of wear and frequency of maintenance through increased stresses

seen on the rail surface [100]. This increased wear increases the occurrence of

defects, and ultimately catastrophic failure. Impact loading is recognized as an

issue that aids in increased deterioration of the rail and is actively being reduced

through, for example, the use of flange bearing transitions at crossings [101].

While decreasing the occurrence of impact loading in as-designed track, this

does not eliminate the need for understanding the behaviour of the rail in

impact loading as it is still commonly found from defects such as flat wheels or

damaged rail [1]. To address this gap in knowledge, this paper examines the

strain-rate dependent behaviour of rail steel, focusing on understanding rate

effects on failure and mechanical properties.

Few studies have focused on the dynamic failure of rail steel [8, 43, 99].

One related and commonly studied phenomena associated with the dynamic

behaviour of rail steel is the white phase existing on the surface of previously

worn rail head [56–58]. This phenomena is often a precursor to rail breakage

as it serves as sites for crack nucleation [59]. The current understanding

of the formation of this phase is from high temperatures and large plastic

deformation on the rail head as a consequence of repeated loading, the specific

38



conditions in which they form are predicted through numerical simulations [62].

These conclusions then leave a question for what other conditions or failure

mechanisms are involved to develop the white etched layer on rail head, such

as events that occur during dynamic loading. This is probed here.

Previously studies involving rail steel that have focused on dynamic prop-

erty measurements have found that the strength of the material increases for

increasing strain rate [43] in relation to published manufacturer specifications

performed at quasi-static strain rates, but little work has been completed to

study the difference directly through comparing the quasi-static and dynamic

loading of rail steel. Other works include [99], [102], although these studies

only examined the rail wheel and tensile stress-states in quasi-static loading.

Building on these past studies, this current paper focuses on the comparison

of quasi-static and dynamic responses for rail steel and intends to provide in-

formation and insight into the mechanical properties and failure behaviour at

elevated strain rates. From studies performed outside the rail community on

steels, it is seen that the production of localizations (e.g. shears bands) are

apparent in the high strain rate regimes [11, 14], which is the failure mechanism

that is focused on in this work. Additionally, due to the rail steels often having

a higher hardness and the higher propensity for localization formation, this

work intends to provide additional insight into the long studied problem in the

context of rail steel. This is completed through using high speed imaging to

capture the surface of the rail steel in quasi-static and dynamic test conditions.

Results are discussed in the context of our understanding of failure of steels

and how this can be important for improving the performance of railway steels.

4.2 Methodology

4.2.1 Railway Material

The rail steels in this study are American Railway Engineering and Maintenance-

of-Way Association (AREMA) 115 lb/yard (115 RE) and 136 lb/yard (136

RE) supplied by the Canadian National Railway Company (CN). The rail was
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materials, the strain hardening was found to be similar and remained constant

between the quasi-static and dynamic strain rates. Both steels exhibited surface

texturing in dynamic loading with similar size textures with the texturing

approximately occurring around the yield of the material. This mechanism is

believe to correspond with the development of the WEL on rail steels.
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Chapter 5

Conclusion

5.1 Summary

In this thesis, the dynamic failure of rail and naval steels has been explored.

Comparing the naval and rail steels, it was seen that the naval steel had a

much higher strain hardening coefficient than the rail steels examined in the

thesis. All steels examined were found to be strain rate sensitive, the yield

strengths and flow stresses were increased with increasing strain rate. The

in-situ imaging of these experiments has provided insight on the nucleation

and propagation of shear bands in quasi-static and dynamic compression. It

has provided insight of the nucleation location, direction and velocity of the

shear bands as seen on the surface of the specimens for the HSLA 65 naval

steel. The texturing found for the rail steels supports the theories developed in

context of the white etching layer and suggests the processes, which occur in

the development of the white etching layer and shear bands.

In summary,

• Chapter 1 provides motivation for studying shear bands for improving

materials used in many industries. These industries gain large investment

for developing new technologies to improve the performance and safety

of ships and rail transportation.

• Chapter 2 explores a literature review of the current understanding of

shear bands and the white etching layer. This includes the processes that

50



are expected in their development, the identification of this phenomena,

and the implications they have on material stability. Similarly, the white

etching layer is explored in relation to their development with shear bands.

Included in this chapter is a brief overview of the testing techniques and

the materials tested in this thesis.

• Chapter 3 is a work on observing shear bands in HSLA 65, a naval steel

used in North America, and providing information on the shear bands

velocity. This work also includes quasi-static and dynamic stress-strain

information on HSLA 65, in which the shear bands formation is compared.

This work provides shear band velocity in a relatively simple stress-state

that can be modelled and subsequently compared.

• Chapter 4 focuses on the formation of the WEL and provides information

on the development of this layer. This is completed by observing the in-

situ behaviour of the deformation of commonly used rail steels in Canada

at time scales not available, to my knowledge, in the literature. Similarly,

the stress-strain responses of the rail steels are provided.

5.2 Implications

The objective of this thesis was to examine and provide context on the length

scales and time scales that the shear band and WEL localizations occur. In

this thesis, data and perspective has been generated for both localizations

such as shear bands and the WEL that form in high strain-rate conditions.

The work has provided an experimental setup and materials that can be

studied further for the localizations that occur. First, compressive quasi-static

and dynamic material response, which are more representative of operation

conditions, have been shown and discussed in relation to commonly occurring

WEL and shear band localizations providing valuable insight of materials that

are commonly used, but lack extensive characterization in the literature. This

collected data is then coupled with the characterization of propagation velocity,

orientation of formation and strains at which these occur for shear banding. In
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the context of the rail industry, the behaviour of the steel is coupled with the

beginning formation strain, texturing characteristics such as the diameter of

the surface texturing, and progression of formation of the surface texturing over

the duration of the test. The implications of this work include insights on the

formation velocities, strain and time scales, which is valuable for further research

on the conditions the localizations form. The velocity and nucleation strains

of shear bands aid in the study of nucleation and instability modelling with

relatively simple stress-state experimental data for validation. The information

and perspectives of the shear banding and WEL localization phenomena shown

here provide insight on developing new materials as specific alloying, heat

treating and microstructure may be the governing factors of these visible bands.

Lastly, the formation of visible shear banding aids in material selection that

dictate the failure behaviour and material behaviour of steels used in rail and

naval applications, and in general, the ability to make more informed decisions

on material selection in high strain rate applications.

5.3 Future Work

• Quantify shear band characteristics such as strain field, strain rate and

propagation with Digital Image Correlation for quasi-static and dynamic

compressive loading. This would further develop the information pro-

vided in this thesis for use in validating models to obtain higher quality

predictions. These models further could be used to study different load-

ing conditions and strain rates.

• Analyze the formed surface texturing of the rail steel with methods

such as Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD),

Electron Backscatter Diffraction (EBSD), and nano-indentation. This

information would allow for better understanding of how the surface

texturing impacts the development of the white etched layer, shear bands

and crack propagation. For example, how is the characteristics of this

texturing related to increased heat generation or plastic deformation.
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(1023± 21)MPa

(1109± 50)MPa (1149± 35)MPa

(1029± 23)MPa 1400 s−1

1900 s−1

862m s−1 2470m s−1



• Test parameters including all electronics and mechanical systems related

to the Split-Hopkinson Pressure Bar.

• Plotted stress-strain curves including the tests respective achieved strain

rates.

• Quantitative analysis of the shear band formation (i.e. velocity) on

materials that had apparent shear banding occurring on the surface.

Along with this report the electronic data files include:

• In-situ high speed imaging (1–2 million frames per second) of the Split-

Hopkinson Pressure Bar tests in .tiff and .avi format.

• Raw voltage output from all the tests in plain text in delimited format.

• Computed stress, strain, strain rate data in plain text in delimited format.

A.1 Introduction

In Canada, naval steel performance is often determined through bulge testing,

Charpy impact testing and quasi-static compression and tension experimen-

tation. While these tests provide performance characteristics of the steel for

seaworthiness and combat, understanding the behaviours of these steels in

simplified loading conditions can lead to a more fundamental understanding

of what governs material performance in extreme environments. For example,

bulge testing examines the steel’s resistance to crack formation, ductility and

toughness on the bulk material for explosive loading, but does not provide de-

tails for lower strain rates and simplified compressive stress-states such as wave

slamming forces. The Split-Hopkinson pressure bar (SHPB), on the other hand,

both allows the study of representative strain rates and stress states while

being more readily available to researchers. An added benefit of this testing

technique is that it also allows the study of individual failure mechanisms, such

as shear bands, that dominate in high strain rate loading [108]. Ultimately,

understanding the failure mechanisms will improve materials both designed
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A.2.3 Procedure

The testing procedure was as follows:

1. All electronics (amplifiers, data acquisition and high speed camera) are

turned on and allowed to warm to operating temperatures.

2. Specimens and pulse shapers dimensions were measured, recorded and

labelled.

3. Interfaces of the bars with the pulse shaper and specimen were cleaned

with acetone to remove previously applied grease and contaminants.

4. Specimen is placed between the incident and transmission bar with a

small amount of high pressure grease.

5. Pulse shaper is placed on the incident bar where striker impacts with a

small amount of high pressure grease on a marked center.

6. Projectile is loaded and the gas gun is primed to a specified pressure (see

Section A.7).

7. Projectile is fired.

8. High speed imaging system is triggered via the Data acquisition system.

9. Data from the acquisition system and high speed images are exported to

the hard disk drive.

10. The exported data and images are then checked for data integrity by

taking the SHA-256 checksum to ensure data was not corrupted in data

transfer.

11. The data was processed following Section A.2.1, in order to calculate

stress and strain.

12. Item 3 to item 11 are then repeated for the remaining tests.

The relevant settings and specimen measurements are attached in Sec-

tion A.7.
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A.5 Specimen Drawing
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Figure A.14. Strain rate of the specimen during the SHPB test for HSLA 65: “Test 1”.
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A.7 Electronic and Mechanical Testing Param-
eters
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Test ID Material Date Test Number Time of Test Camera File Trigger Delay (ns) Trigger Frame
1 DH36 2/20/2019 1 13:20:23 13_20_24 76000 5
2 DH36 2/20/2019 2 13:56:30 13_56_31 116000 2
3 DH36 2/20/2019 3 14:10:03 14_10_03 110000 2
4 HSLA65 2/20/2019 3 14:27:59 14_27_59 110000 2
5 HY80 2/20/2019 1 16:14:55 14_27_59 110000 2
6 HY80 2/20/2019 2 16:36:49 14_27_59 110000 2
7 HY80 2/20/2019 3 16:51:57 14_27_59 110000 2
8 350WT 2/20/2019 1 17:09:37 14_27_59 110000 2
9 350WT 2/20/2019 2 17:26:25 14_27_59 110000 2
10 350WT 2/20/2019 3 17:50:43 14_27_59 110000 2
11 HSLA65 10/24/2018 1 16:23:14 16_22_40 -- --
12 HSLA65 10/24/2018 2 16:34:30 16_32_05 -- --



Live Rec Delay (ns) Exposure (ns) Rec Speed (ns) Frame Rate (fps) Firing Pressure (psi) Specimen Shape
850 400 1000 1.00E+06 45 Rectangular
850 400 1000 1.00E+06 45 Rectangular
850 400 1000 1.00E+06 45 Rectangular
850 400 1000 1.00E+06 45 Rectangular
850 400 1000 1.00E+06 45 Rectangular
850 400 1000 1.00E+06 45 Rectangular
850 400 1000 1.00E+06 45 Rectangular
850 400 1000 1.00E+06 45 Rectangular
850 400 1000 1.00E+06 45 Rectangular
850 400 1000 1.00E+06 45 Rectangular
-- -- 500 2.00E+06 50 Rectangular
-- -- 500 2.00E+06 50 Rectangular



Specimen Height (mm) Specimen Width (mm) Specimen Length (mm) Pulse Shaper Thickness (mm)
3.973 3.468 5.001 0.61
3.989 3.489 5.039 0.612
3.977 3.466 5.003 0.614
4.003 3.495 5.008 0.698
4.011 3.516 5.037 0.685
4.003 3.519 5.02 0.656
4.01 3.48 5.037 0.666

4.018 3.524 5.016 0.664
4.013 3.52 5.022 0.669
4.052 3.493 5.037 0.677
4.015 3.497 5.014 0.638
4.009 3.501 5.011 0.667



Pulse Shaper Diameter (mm) Pulse Shaper Material Bar Diameter (mm) Projectile Length (mm)
6.449 Mild Steel 12.7 304
6.473 Mild Steel 12.7 304
6.469 Mild Steel 12.7 304
6.458 Mild Steel 12.7 304
6.408 Mild Steel 12.7 304
6.464 Mild Steel 12.7 304
6.456 Mild Steel 12.7 304
6.466 Mild Steel 12.7 304
6.464 Mild Steel 12.7 304
6.466 Mild Steel 12.7 304
6.464 Mild Steel 12.7 304
6.465 Mild Steel 12.7 304



Incident Bar Length (mm) Transmitted Bar Length (mm) Bar Material Acquisition Rate (MHz)
914.4 1016 Maraging C350 25
914.4 1016 Maraging C350 25
914.4 1016 Maraging C350 25
914.4 1016 Maraging C350 25
914.4 1016 Maraging C350 25
914.4 1016 Maraging C350 25
914.4 1016 Maraging C350 25
914.4 1016 Maraging C350 25
914.4 1016 Maraging C350 25
914.4 1016 Maraging C350 25
914.4 1016 Maraging C350 20
914.4 1016 Maraging C350 20



Channel 1 Gain Channel 2 Gain Channel 3 Gain Channel 4 Gain
10 10 N/A 1
10 10 N/A 1
10 10 N/A 1
10 10 N/A 1
10 10 N/A 1
10 10 N/A 1
10 10 N/A 1
10 10 N/A 1
10 10 N/A 1
10 10 N/A 1
10 10 N/A 1
10 10 N/A 1



Distance to Strain Gauge 1 (mm) Distance to Strain Gauge 2 (mm)
698.5 317.5
698.5 317.5
698.5 317.5
698.5 317.5
698.5 317.5
698.5 317.5
698.5 317.5
698.5 317.5
698.5 317.5
698.5 317.5
660 360
660 360



Distance to Strain Gauge 3 (mm) Gauge Factor Excitation Voltage
317.5 2.15 10
317.5 2.15 10
317.5 2.15 10
317.5 2.15 10
317.5 2.15 10
317.5 2.15 10
317.5 2.15 10
317.5 2.15 10
317.5 2.15 10
317.5 2.15 10
360 2.15 15
360 2.15 15
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