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Abstract

This thesis is dedicated to the study of the general class of random processes, called

optional processes, and their various applications in Mathematical Finance, Risk The-

ory, and Statistics.

First, different versions of a comparison theorem and a uniqueness theorem for a

general class of optional stochastic differential equations are stated and proved using a

local time approach. Furthermore, these results are applied to the pricing of financial

derivatives.

Second, the estimates of N. V. Krylov for distributions of stochastic integrals by

means of Lebesgue norm of a measurable function are well-known and are widely used

in the theory of stochastic differential equations and controlled diffusion processes.

These estimates are generalized for optional semimartingales. After that, they are

applied to extend the change of variables formula for a general class of functions from

Sobolev space. It is also shown how to use the obtained estimates for the investigation

of mean-square convergence of solutions of optional SDE’s.

Furthermore, an optional semimartingale risk model for the capital process of

a company is introduced and exhaustively investigated. A general approach to the

calculation of ruin probabilities of such models is shown and supported by diverse

examples.

The main object of the final part of this thesis is a general regression model in an
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optional setting – when an observed process is an optional semimartingale depending

on an unknown parameter. The cases when the model consists of a one-dimensional

and a multi-dimensional unknown parameter are studied separately. The main results

include the proof of strong consistency of least squares estimates and the property of

fixed accuracy of sequential least squares estimates. It is expected that the proposed

general regression models will further be developed and applied in the context of

modern mathematical finance.
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Preface

The thesis is devoted to the development of one of the most general and promising

approaches of modern stochastic analysis, namely, the theory of optional processes.

By doing so, in addition to purely theoretical generalizations, this work has a primary

goal to show how these methods and techniques are applied in the areas such as

mathematical finance, statistics, and risk theory. The origins of the theory of optional

processes belong to the papers dated 1970-80s. In the last decade, many fundamental

works of that period were revisited from the purely theoretical point of view and,

mainly, from the perspective of the applications of optional processes. As a result,

this research was adequately exposed in the first monograph of its kind [4] by M.

Abdelghani and A. Melnikov.

Some of the research conducted for this thesis forms part of a research collab-

oration, led by Professor A. Melnikov at the University of Alberta, with Dr. M.

Abdelghani from Morgan Stanley, NY. Versions of Chapter 3 and Chapter 5 have

been published in [6], [3] and [9], respectively. The author of the thesis was mainly

responsible for giving a detailed analysis of the proposed concepts, transforming them

into actual theorems, and providing the basic steps of their proofs, applications, and

examples needed for illustration of the results. Dr. Abdelghani was involved in the

early stages of the concept formation with further contribution to the manuscript edit-

ing. Dr. Melnikov was the actual supervisory author who was permanently involved

in this research proposing project concepts and leading ideas as well as methods for

their realization.
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Chapter 1

Introduction

Let a triplet (Ω,F ,P) be a complete probability space, i.e., if A ⊆ B ∈ F and P (B) =

0 then A ∈ F . This probability space equipped with a non-decreasing family of σ-

algebras (filtration/information flow) F = (Ft)t∈[0,∞), where Ft ⊆ F , Fs ⊆ Ft, s ≤ t,

forms a stochastic basis - a fundamental notion in stochastic analysis. Usually, the

following conditions are assumed on the filtration F:

• F is right-continuous, i.e., Ft = Ft+ for all t, where Ft+ = ∩t<sFs;

• F is complete, i.e., each Ft contains P -null sets of F .

These assumptions are collectively known as “usual conditions” on the filtration F.

A theory of stochastic processes is well-developed under “usual conditions”. This

theory is widely applied in different areas such as mathematical finance, mathematical

statistics, risk theory, stochastic differential equations, and others. Although “usual

conditions” is considered as a golden standard in stochastic analysis, one can imme-

diately give an example illustrating the existence of a stochastic basis where such

assumptions do not hold.

Example 1.0.1 Suppose

Xt = 1t>t01A,
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where A is F-measurable with 0 < P (A) < 1. Let Ft be a natural filtration of X,

Ft = σ(Xs, s ≤ t).

Then F is not right-continuous at t0, i.e., A /∈ Ft0 , but A ∈ Ft0+, and it is not

possible to make it right-continuous in a useful way.

A reasonable question arises: why are “usual conditions” so predominant in the

studying of random processes? The majority of important results in the stochastic

analysis are proved under “usual conditions”, and for many of them, these conditions

are vital. One of the most prominent illustrations is the following theorem.

Theorem 1.0.1 If the filtration F is right-continuous, then every martingale admits

a cadlag modification.

If the assumption of right-continuity is omitted then the above theorem no longer

works. However, in this case, Dellacherie and Meyer [26] proved the existence and

uniqueness (up to indistinguishability) of optional modifications for martingales.

Theorem 1.0.2 Let X be a bounded random variable. There exists a modification

(Xt) of the martingale (E[X|Ft]) such that (Xt) is an optional process and, for any

stopping time T,

XT1(T<∞) = E[X1(T<∞)|FT ] a.s., (1.1)

where 1(T<∞) is the characteristic function of the set (T < ∞).

If another optional modification (X̃ t) exists satisfying (1.1), then (Xt) and (X̃ t)

are indistinguishable.

Further, Galchuk [30] extended the above result for any integrable random variableX.

These two fundamental works served as the inception of the development of optional

stochastic analysis. Dellacherie first started to use terminology - “unusual probability
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spaces” (or “unusual stochastic basis”) - for the (filtered) probability spaces without

“usual conditions”, to which I stick for the rest of this work.

Furthermore, the theory of stochastic processes on the usual stochastic basis is

mostly devoted to the studying of semimartingales, a large class of adapted random

processes admitting modifications with right-continuous left limits (RCLL) paths.

However, there are many stochastic processes that are neither right nor left-continuous.

It was shown that optional processes on unusual probability spaces, in particular op-

tional semimartingales, are not necessarily right or left-continuous processes but have

right and left limits (RLL, sometimes called laglad processes).

The theory of optional processes was developed by many mathematicians such as

Lepingle [63], Horowitz [46], Lenglart [62]. In these works, a theory of the stochastic

analysis of optional processes on unusual probability spaces was constructed. Most

of the foundations of stochastic calculus of optional processes were formulated by

Gal’chuk in his series of works [30], [32], [33]. Further research in this direction was

done by Gasparyan [35], [37]–[39], Kuhn and Stroh [58]. Recently, this direction

received a new impulse mostly by the works of Abdelghani and Melnikov [4], [7],

[8], [10]–[13], Abdelghani, Melnikov and Pak [3], [5], [6], [9], and Melnikov and Pak

[74]. Apparently, this direction attracts substantial attention and many works have

appeared during the last couple of years, to mention a few, [43], [44], [49]. From a

theoretical point of view, the investigation of such processes is interesting because it

allows for the generalization of different existing results for a richer class of processes,

filling the gaps in theory and, consequently, unification of special cases under a general

holistic approach. On the other hand, from a practical point of view, the optional

processes have a promising potential in different applications.

The main goal of this dissertation is to develop new results in the theory of op-
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tional processes and apply the methods of optional processes in mathematical finance,

statistics, and risk theory.

The rest of the thesis is organized as follows.

In Chapter 2, a brief introduction to the theory of optional processes is provided

including the canonical decomposition of optional semimartingales and the change of

variables formula.

In Chapter 3, different versions of comparison theorem and also a uniqueness

theorem for a general class of optional stochastic differential equations are stated and

proved. Furthermore, these results are applied to the pricing of financial derivatives.

In Chapter 4, the so-calledKrylov estimates for distributions of stochastic integrals

by means of Ld-norm of a measurable function are generalized for a class of optional

processes called optional semimartingales. Corresponding applications of this result

are illustrated.

In Chapter 5, a very general optional semimartingale risk model for the capital

process of a company is introduced and exhaustively investigated. A general approach

to the calculation of ruin probabilities of such models is shown and supported by

diverse examples.

The main object of investigation in Chapter 6 and Chapter 7 is a very gen-

eral regression model in optional setting – when an observed process is an optional

semimartingale depending on an unknown parameter. Chapter 6 considers the one-

dimensional optional regression model, while Chapter 7 studies the multi-dimensional

one. The main results are devoted to the proof of the strong consistency of structural

least squares estimates and the property of fixed accuracy of sequential least squares

estimates.
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Chapter 2

Preliminaries

Here, we provide a brief introduction to the theory of optional processes. All results

in this chapter are required for the subsequent chapters and are presented without

proofs for conciseness, however, a comprehensive exposition of optional processes and

their different applications can be found in [4].

2.1 Optionality and predictability

Let us introduce O(F) and P(F) as the optional and predictable σ-algebras on

(Ω, [0,∞)), respectively. O(F) is generated by all F-adapted processes whose tra-

jectories are right-continuous and have left limits (or cadlag, RCLL). P(F) is gener-

ated by all F-adapted processes whose trajectories are left-continuous and have right

limits.

A random process X = (Xt), t ∈ [0,∞), is said to be optional if it is O(F)-

measurable. In general, an optional process have right and left limits but is not

necessarily right- or left-continuous in F.

A random process (Xt), t ∈ [0,∞), is predictable if X is P(F)-measurable. As

well, in general a predictable process has right and left limits but may not necessarily

be right- or left- continuous in F.
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Denote P and O sets of predictable and optional processes, respectively. For

either optional or predictable processes the following processes can be defined: X− =

(Xt−)t≥0 and X+ = (Xt+)t≥0, ∆X = (∆Xt)t≥0 such that ∆Xt = Xt − Xt− and

∆+X = (∆+Xt)t≥0 such that ∆+Xt = Xt+ −Xt.

Since the random processes that we are going to work with possibly have left and

right limits only, it is necessary to introduce the following definition.

Definition 2.1.1 A random process (Xt), t ∈ [0,∞), is called strongly predictable

if X is P(F)-measurable and X+ is O(F)-measurable. Denote a space of strongly

predictable processes Ps.

2.2 General stopping times

Since in general F ̸= F+ = (Ft+)t≥0, where Ft+ = ∩t<sFs, there are two distinct

notions of stopping times (s.t.’s) with respect to F and F+ on unusual stochastic

basis.

Definition 2.2.1 The random variable T : Ω → [0,∞] is a stopping time (s.t.) if

the set {T ≤ t} ∈ Ft for all t ∈ [0,∞).

Definition 2.2.2 The random variable T : Ω → [0,∞] is a wide (broad) sense stop-

ping time if the set {T ≤ t} ∈ Ft+ for all t ∈ [0,∞).

As on a usual stochastic basis, there are notions of predictable and totally inac-

cessible stopping times on an unusual stochastic basis.

Definition 2.2.3 A stopping time T is called predictable if there exists a sequence of

wide sense stopping times (Sn), n ∈ N, such that limSn = T a.s. and Sn < T a.s. on

the set {T > 0} for all n ∈ N.
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Definition 2.2.4 A stopping time T is called totally inaccessible if P (S = T < ∞) =

0 for every predictable stopping time S.

In addition to these, there exist totally inaccessible wide sense stopping times.

Definition 2.2.5 A wide sense stopping time T is called totally inaccessible wide

sense s.t. if P (S = T < ∞) = 0 for every stopping time S.

Analogously, it is possible to define predictable wide sense stopping times, but it

turns out that this is unnecessary because the set of predictable s.t.’s and the set of

predictable wide sense s.t.’s are equal (see [33]). Denote by T and T+ a set of s.t.’s

and a set of wide sense s.t.’s, respectively; T p, T i, T i
+ - set of predictable s.t.’s, set of

totally inaccessible s.t.’s and totally inaccessible wide sense s.t.’s, respectively. It is

immediately seen that T p ⊆ T ⊆ T+.

On unusual stochastic basis, defined above three canonical types of stopping times

have the following properties: Predictable stopping times, S ∈ T p, are such that

(S ≤ t) is Ft− measurable for all t; Totally inaccessible stopping times, T ∈ T ,

are such that (T ≤ t) is Ft measurable for all t, however, we note that (T < t) is not

necessarily Ft measurable since Ft is not right continuous; Finally, totally inaccessible

stopping times in the broad sense, U ∈ T+, are such that (U ≤ t) is Ft+ measurable

for all t, but since Ft+ is right continuous, (U < t) is also Ft+ measurable.

Definition 2.2.6 Suppose S and T are maps Ω → [0,∞] and S ≤ T a.s. The

stochastic interval denoted by [S, T [ is the set

{(t, ω) ∈ [0,∞[×Ω : S(ω) ≤ t < T (ω)}.

The stochastic intervals [S, T ], ]S, T ] and ]S, T [ are defined similarly.
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The stochastic interval

[T, T ] = {(t, ω) ∈ [0,∞[×Ω : T (ω) = t}

is denoted by [T ], and is called the graph of T. Through out the thesis, we use the no-

tation introduced above for wide sense stopping times. Whenever we use this notation

for the deterministic times, we mean a usual interval of real numbers.

Definition 2.2.7 The sequence of (Tn)n∈N ⊂ T+ exhausts the jumps of the process

(Xt)t∈[0,∞) if for any T ∈ T+ for which the set [T ] ∩ (∪n[Tn]) = ∅ we have ∆XT =

∆+XT = 0 a.s. on {t < ∞}.

Below, a fundamental result that gives foundations for many results in the optional

stochastic analysis is presented. In particular, it is used in the canonical decomposi-

tion of optional semimartingales.

Theorem 2.2.1 (see [33]) Suppose X = (Xt)t∈[0,∞) is an optional process whose

paths have left and right limits a.s.. Then there exist sequences (Sn), (Tn) and

(Un), n ∈ N, of predictable s.t.’s, totally inaccessible s.t.’s and totally inaccessible

wide sense s.t.’s respectively, exhausting all jumps of the process X and having the

following properties: the graphs of these s.t.’s are mutually non-intersecting within

each sequence.

2.3 Processes of finite variation

Here we consider the processes which do not vary a lot, i.e., processes having paths

of finite variation for almost all ω. Let us begin with the definitions of several spaces

of such processes.
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Definition 2.3.1 A process A = (At), t ∈ R+, is of finite variation if it has finite

variation on every segment [0, t], t ∈ R+ a.s., that is Var(A)t < ∞, for all t ∈ R+

a.s. where

Var(A)t =
∑︂
0≤s<t

|∆+As|+
∫︂
]0,t]

|dAr
s|.

Denote by V the set of all F-adapted processes of finite variation.

Definition 2.3.2 A process A = (At)t≥0 is increasing if it is non-negative, F-adapted,

its trajectories do not decrease. Let V+ be the collection of increasing processes.

We know that every increasing process is of finite variation, i.e., V+ ⊂ V .

Definition 2.3.3 An increasing process A is integrable if EA∞ < ∞. The collection

of such processes is denoted by A+.

Definition 2.3.4 A process A = (At)t≥0 of finite variation belongs to the space A of

integrable finite variation processes if E [Var(A)∞] < ∞.

A process X = (Xt)t≥0 belongs to the space Jloc if there is a localizing sequence

of wide sense s.t.’s, (Rn), n ∈ N, Rn ∈ T+, Rn ↑ ∞ a.s. such that X1[0,Rn] ∈ J for

all n, where J is a space of processes and Jloc is an extension of J by localization.

In general, the spaces V , A, A+ can be extended to Vloc, Aloc, A+
loc respectively

by localization. It is well-known that V = Vloc, and the relationships A ⊆ Aloc ⊆ V

and A+ ⊆ A+
loc ⊆ V+ hold.

A finite variation process A can be decomposed to A = Ar + Ag = Ac + Ad + Ag

where Ac is continuous, Ar is right-continuous, Ad is discrete right-continuous, Ag is

discrete left-continuous such that

Ad
t =

∑︂
0<s≤t

∆As and Ag
t =

∑︂
0≤s<t

∆+As,

where the series converge absolutely.
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2.4 Optional Martingales

Definition 2.4.1 A process M = (Mt)t≥0 is an (square integrable) optional martin-

gale (supermartingale, submartingale) if

• M is O(F)-measurable,

• there exists an (square) integrable F∞-measurable random variable M̂ such that

MT = E[M̂ |FT ]

(respectively, MT ≥ E[M̂ |FT ], MT ≤ E[M̂ |FT ]) a.s. on the set (T < ∞) for

any T ∈ T .

Let M (resp. M2) denote the set of optional martingales (resp. square integrable

optional martingales). The space M is extended to a space of local optional martin-

gale, Mloc, and the space M2 is extended to a space locally square integrable optional

martingales, M2
loc, respectively.

Definition 2.4.2 A process M = (Mt)t≥0 is called an optional local (locally square in-

tegrable) martingale if there exists a sequence (Rn,M
(n)), n ∈ N, where Rn ∈ T+, Rn ↑

∞ a.s. and M (n) is a (square integrable) optional martingale, such that M = M (n)

on the stochastic interval [0, Rn] and the random variable MRn+ is integrable for any

n ∈ N.

If M ∈ Mloc then it can be decomposed to

M = M r +M g where M r = M c +Md,

M c is continuous, Md is right-continuous and M g is left-continuous optional local

martingales. Md and M g are orthogonal to each other and to any continuous (local)
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martingale. Moreover, Md and M g can be written as

Md
t =

∑︂
0<s≤t

∆Ms and M g
t =

∑︂
0≤s<t

∆+Ms.

Now, we discuss the extension of the quadratic variation process for the square

integrable optional martingales.

Lemma 2.4.1 1) Suppose X ∈ M2. There exists a unique increasing strongly pre-

dictable process ⟨X⟩ ∈ A such that EX2
T = E⟨X⟩T for every s.t. T, or, equivalently,

X2 − ⟨X⟩ ∈ M, where ⟨X⟩ = ⟨Xg⟩+ ⟨Xc⟩+ ⟨Xd⟩.

2) If X, Y ∈ M2, then there exists a unique strongly predictable process ⟨X, Y ⟩ ∈ A

such that XY − ⟨X, Y ⟩ ∈ M, where

⟨X, Y ⟩ = 1

2
[⟨X + Y ⟩ − ⟨X⟩ − ⟨Y ⟩].

Definition 2.4.3 Suppose X ∈ M2 and Xc is its continuous part. We define [X,X]

to be the process

[X,X]t = ⟨Xc⟩t +
∑︂
s≤t

(∆Xs)
2 +

∑︂
s<t

(∆+Xs)
2, t ∈ R+.

It is not difficult to show that [X,X] is increasing, F-adapted and integrable, and

that X2 − [X,X] ∈ M.

Further, setting the polarization property of quadratic variation processes

[X, Y ] =
1

2
([X + Y,X + Y ]− [X,X]− [Y, Y ])

for X, Y ∈ M2, we have XY − [X, Y ] ∈ M. Using Definition 2.4.3, we get that

[X, Y ]t = ⟨Xc, Y c⟩t +
∑︂
s≤t

∆Xs∆Ys +
∑︂
s<t

∆+Xs∆
+Ys.
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Lemma 2.4.2 A non-negative optional local martingale X is a supermartingale.

Proof. Let X ∈ Mloc, X ≥ 0. Then by defintion of optional local martingale

there exist Xn ∈ M, Xn ≥ 0, and Rn ∈ T+, Rn ↑ ∞ a.s. such that for any

n ≥ 1 : X = Xn1[0,Rn]. Next, for any t ≥ s and A ∈ Fs we have

EXt1A = lim
n→∞

EXt1A1(t≤Rn)

= lim
n→∞

EXn
t 1A1(t≤Rn)

≤ lim
n→∞

EXn
t 1A1(s≤Rn)

= lim
n→∞

EXn
s 1A1(s≤Rn)

=EXs1A.

Hence, the process Xt is a non-negative supermartingale (in usual sense).

2.5 Optional Semimartingales

On an unusual stochastic basis, the most general processes that have good proper-

ties to work with are optional semimartingales. Optional semimartingales are linear

combinations of finite variation processes and local optional martingales. Since local

optional martingales and processes of finite variation are in general neither right-

continuous nor left-continuous, optional semimartingales possess the same continuity

characteristics. Therefore, their structure is complicated.

Definition 2.5.1 The stochastic process X is called an optional semimartingale if

X = X0 +M + A,

where M ∈ Mloc, A ∈ V , A0 = M0 = 0 and X0 is an F0-measurable finite random

variable.
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Definition 2.5.2 An optional semimartingale X is called special optional semimartin-

gale if the above decomposition exists with a strongly predictable process A ∈ Aloc.

Let S denote the set of optional semimartingales and Sp the set of special optional

semimartingales. If X ∈ Sp then the semimartingale decomposition is unique. By

the optional martingale decomposition and the decomposition of predictable processes

[32], [33] we can decompose a semimartingale further to

X =X0 +Xr +Xg, with

Xr =Ar +M r,

M r =M c +Md,

Ar =Ac + Ad,

Xg =Ag +M g,

(2.1)

where Ac, Ad, and Ag are finite variation processes that are continuous, discrete right-

continuous, and discrete left-continuous, respectively; M c ∈ Mc
loc, M

d ∈ Md
loc, M

g ∈

Mg
loc is a continuous, a discrete right-continuous and a left-continuous local martin-

gale, respectively. This decomposition is useful for defining integration with respect

to optional semimartingales.

2.6 Integration with respect to optional semimartin-

gales

A stochastic integral with respect to optional semimartingale is defined as

φ ◦Xt =

∫︂
[0,t]

φsdXs =

∫︂
]0,t]

φs−dX
r
s +

∫︂
[0,t[

φsdX
g
s+ , where∫︂

]0,t]

φs−dX
r
s =

∫︂
]0,t]

φs−dA
r
s +

∫︂
]0,t]

φs−dM
r
s and∫︂

[0,t[

φsdX
g
s+ =

∫︂
[0,t[

ϕsdA
g
s+ +

∫︂
[0,t[

ϕsdM
g
s+.
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The stochastic integral with respect to the finite variation processes or strongly pre-

dictable processes Ar over ]0, t] and Ag over [0, t[ are interpreted as usual, in the

Lebesgue sense. The integral
∫︁
]0,t]

φs−dM
r
s over ]0, t] is the usual stochastic integral

with respect to cadlag local martingale whereas
∫︁
[0,t[

ϕsdM
g
s+ over [0, t[ is the Gal’chuk

stochastic integral (see [32]) with respect to left continuous local martingale. In gen-

eral, the stochastic integral with respect to optional semimartingale X can be defined

as a bilinear form (φr, φg) ◦Xt, φ
r ∈ P and φg ∈ O such that

Yt = (φr, φg) ◦Xt = φr ·Xr
t + φr ⊙Xg

t ,

φr ·Xr =

∫︂
]0,t]

φr
sdX

r
s , φg ⊙Xg =

∫︂
[0,t[

φg
sdX

g
s+,

where Y is again an optional semimartingale. Note that the stochastic integral over

optional semimartingales is defined on a much larger space of integrands, the product

space of predictable and optional processes, P × O. From now on, we are going to

use the operator “◦” to denote the stochastic optional integral, the operator “·” to

denote the regular stochastic integral with respect to RCLL semimartingales, and the

operator “⊙” for the Galchuk stochastic integral g⊙Xg with respect to left continuous

semimartingales.

The properties of optional stochastic integral are: First, isometry is satisfied with

(︁
f 2 · [Xr, Xr]

)︁1/2 ∈ Aloc and
(︁
g2 ⊙ [Xg, Xg]

)︁1/2 ∈ Aloc.

The quadratic variations are defined as

[X,X] = [Xr, Xr] + [Xg, Xg] where

[Xr, Xr]t = ⟨Xc, Xc⟩t +
∑︂
0<s≤t

(∆Xs)
2 and

[Xg, Xg]t =
∑︂
0≤s<t

(︁
∆+Xs

)︁2
;
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Linearity is also satisfied with (f 1 + f 2, g1 + g2) ◦Xt = (f 1, g1) ◦Xt + (f 2, g2) ◦Xt for

any (f 1, g1) and (f 2, g2) in the space P(F)×O(F); ∆+Xg is O(F+)-measurable with

its martingale part satisfying E
[︁
∆+M g

T1(T<∞)|FT

]︁
= 0 a.s. for any stopping time T

in the broad sense and ∆Xr is O(F)-measurable with its martingale part satisfying

E
[︁
∆M r

T1(T<∞)|FT

]︁
= 0 a.s. for any stopping time T ; Moreover, orthogonality is as

such that Xr ⊥ Xg are orthogonal. in the sense that their product is an optional local

martingale; Also, differentials are independent: ∆Y = f∆Xr and ∆+Y = g∆+Xg;

Lastly, for any semimartingale Z the quadratic projection is [Y, Z] = f · [Xr, Zr] +

g ⊙ [Xg, Zg].

2.7 Random Measures and their Compensators

Consider the Lusin space (E, E), where E = R \ {0} and E = B(E) is the Borel

σ-algerba in E. Also, define the spaces

˜︁Ω = Ω× R+ × E, ˜︁E = R+ × E, ˜︁E = B(R+)× E

Õ(F) = O(F)× E , ˜︁O(F+) = O(F+)× E , ˜︁P = P × E .

Definition 2.7.1 A non-negative random set function µ(ω,Γ), ω ∈ Ω, Γ ∈ ˜︁E , is
called a random measure on ˜︁E if µ(·,Γ) ∈ F for any Γ ∈ ˜︁E and µ(ω, ·) is a σ-finite

measure on ( ˜︁E, ˜︁E) for each ω ∈ Ω.

A random measure is called integer-valued if µ(ω,Γ) ∈ {0, 1, . . . ,+∞} and 0 ≤

µ(ω, {t} × E) ≤ 1 for all (ω,Γ).

For a non-negative function f ∈ F × ˜︁E and measure µ let us form the process

f ∗ µ, where

f ∗ µt =

∫︂
[0,t]×E

f(ω, s, x)µ(ω, ds, dx), t < ∞.
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The random measure µ is O(F+)-optional if the process f ∗ µ is O(F+)-measurable

for any non-negative ˜︁O(F)-measurable f. Similarly, the random measure µ is O(F)-

optional (for brevity, optional) if f ∗µ ∈ O for any non-negative ˜︁O(F)-measurable f.

The random measure µ is predictable if f ∗µ ∈ P for any non-negative ˜︁P-measurable

f.

Let µ be an optional measure. On (˜︁Ω, ˜︁O(F)) consider

Ef ∗ µ∞, f ∈ ˜︁O(F), f ≥ 0.

Lemma 2.7.1 Let the optional measure µ be such that the measure Ef ∗ µ∞ is ˜︁P-

σ-finite (i.e., the restriction of Ef ∗ µ∞ to (˜︁Ω, ˜︁P) is σ-finite). Then there exists a

unique (up to indistinguishability) predictable measure ν = ν(ω, dt, dx) such that for

any function f ∈ ˜︁P , f ≥ 0, one has Ef ∗ µ∞ = Ef ∗ ν∞.

The measure ν can be written in the form ν(ω, dt, dx) = dAt(ω)K(ω, t, dx), where

A is an increasing predictable right-continuous process, K(ω, t, dx) is the kernel of

the space (Ω× R+,P) into (E, E).

If the measure µ does not load any predictable s.t.’s whatever, then the same is

true for ν, and the process f ∗ ν is continuous for any f ∈ ˜︁P , f ≥ 0. Moreover, for

any S ∈ T p and any f ∈ ˜︁P , f ≥ 0, on (S < ∞),

E

[︃∫︂
E

f(S, x)µ({S}, dx)
⃓⃓⃓
FS−

]︃
=

∫︂
E

f(S, x)ν({S}, dx).

The process f ∗ ν is the dual projection for the process f ∗ µ, f ∈ ˜︁P , f ≥ 0. If

f ∗ µ ∈ Aloc, then the process

f ∗ µ− f ∗ ν ∈ Mloc.

In the case of integer-valued µ, outside a set of P -null measure, 0 ≤ ν(ω, {t}×E) ≤ 1

for all t ∈ R+.
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The measure ν is called the compensator of the measure µ.

Let η be an O(F+)-optional measure. On
(︂˜︁Ω, ˜︁O(F+)

)︂
consider

Ef ∗ µ∞, f ∈ ˜︁O(F+), f ≥ 0.

Lemma 2.7.2 Let the O(F+)-optional measure η be such that the measure Ef ∗ η∞

is ˜︁O-σ-finite. Then:

a) there exists a unique (up to indistinguishability) optional measure λ = λ(ω, dt, dx)

such that for any function f ∈ ˜︁O(F), f ≥ 0, one has Ef ∗ η∞ = Ef ∗ λ∞.

The measure λ can be written in the form λ(ω, dt, dx) = dAt(ω)K(ω, t, dx), where

A is an increasing optional right-continuous process, K(ω, t, dx) is the kernel of the

space (Ω× R+,O) into (E, E).

b) If the measure η does not load any s.t.’s whatever, then the same is true for λ,

and the process f ∗ λ is continuous for any f ∈ ˜︁O(F), f ≥ 0.

c) The process

f ∗ λ+ =

(︃∫︂
[0,t]×E

fλ(ds, dx)

)︃
is the dual optional projection for the process

f ∗ η+ =

(︃∫︂
[0,t]×E

fη(ds, dx)

)︃
for f ∈ ˜︁O(F), f ≥ 0. In particular, for any T ∈ T and any f ∈ ˜︁O(F), f ≥ 0 on

(T < ∞)

E

[︃∫︂
E

f(T, x)η({T}, dx)
⃓⃓⃓
FT

]︃
= E

[︃∫︂
E

f(T, x)λ({T}, dx)
⃓⃓⃓
FT

]︃
a.s..

If f ∗ η+ ∈ Aloc, then the process

f ∗ ηt − f ∗ λt =

∫︂
[0,t[×E

fη(ds, dx)−
∫︂
[0,t[×E

fλ(ds, dx) ∈ Mloc.

d) If the measure η is integer-valued, then there exists a modification of the measure

λ such that outside a set of P -null measure, 0 ≤ λ(ω, {t} × E) ≤ 1 for any t ∈ R+.
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The measure λ is called the compensator of the O(F+)-optional measure η.

2.8 Canonical Decomposition of Optional Semimartin-

gales

Let Y be a one-dimensional optional semimartingale and (Sn)n⩾1, (Tn)n⩾1, (Un)n⩾1 be

sequences of predictable, totally inaccessible stopping times and totally inaccessible

wide sense stopping times, respectively, exhausting all jumps of the process Y , i.e.

the set {∆Y ̸= 0} ∪ {∆+Y ̸= 0}, such that the graphs of these stopping times do not

intersect within each sequence. Define integer random measures on (R+ × E, Ẽ)

µd(Γ) =
∑︂
n⩾1

1Γ(Tn, β
d
Tn
), µg(Γ) =

∑︂
n⩾1

1Γ(Un, β
g
Un
),

pd(Γ) =
∑︂
n⩾1

1Γ(Sn, β
d
Sn
), pg(Γ) =

∑︂
n⩾1

1Γ(Sn, β
g
Sn
),

η(Γ) =
∑︂
n⩾1

1Γ(Tn, β
g
Tn
),

where 1Γ(·) is an indicator function of a set Γ ∈ Ẽ , βd
t = ∆Yt if ∆Yt ̸= 0 and βd

t = δ

if ∆Yt = 0, βg
t = ∆+Yt if ∆

+Yt ̸= 0, βg
t = δ if ∆+Yt = 0, t > 0.

Under the unusual conditions on probability space Gasparyan [37, Theorem 1]

showed that Y can be decomposed as follows

Yt = Y0 + at +mt +

∫︂
]0,t]×E

u1(|u|≤1)d(µ
d − νd) +

∫︂
[0,t[×E

u1(|u|≤1)d(µ
g − νg)

+

∫︂
]0,t]×E

u1(|u|>1)dµ
d +

∫︂
[0,t[×E

u1(|u|>1)dµ
g

+

∫︂
]0,t]×E

udpd +

∫︂
[0,t[×E

udpg +

∫︂
[0,t[×E

udη

or in short notation

Y = Y0 + a+m+
∑︂
j=r,g

[︁
u1(|u|≤1) ∗ (µj − νj) + u1(|u|>1) ∗ µj + u ∗ pj

]︁
+ u ∗ η, (2.2)
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where Y0 is F0-measurable random variable, a ∈ Aloc, a0 = 0, and m ∈ M2
loc,m0 = 0,

(a and m are both continuous); νj are the compensators of µj.

2.9 Change of variables formulas

The Ito’s formula is a basic instrument in stochastic calculus. In optional settings we

have a generalization of the Ito’s formula - a change of variables formula, which will

be applied extensively in the next chapters.

Theorem 2.9.1 (Gal’chuk-Lenglart formula [33] [62])

Suppose X is an n-dimensional optional semimartingale, i.e.,

X = (X1, ..., Xn),

where X i is an optional semimartingale, i = 1, ..., n, and f(x) = f(x1, ..., xn) is a

twice continuously differentiable function on Rn. Then the process f(x) is an optional

semimartingale, and for all t ∈ R+

f(Xt) =f(X0) +
n∑︂

i=1

∫︂
]0,t]

∂f

∂xi

(Xs−)d(A
ir +M ir)s

+
1

2

n∑︂
i,j=1

∫︂
]0,t]

∂2f

∂xi∂xj

f(Xs−)d⟨M ic,M jc⟩s

+
∑︂
0<s≤t

[︄
f(Xs)− f(Xs−)−

n∑︂
i=1

∂f

∂xi

(Xs−)∆X i
s

]︄

+
n∑︂

i=1

∫︂
[0,t[

∂f

∂xi

(Xs)d(A
ig +M ig)s+

+
∑︂
0≤s<t

[f(Xs+)− f(Xs)−
n∑︂

i=1

∂f

∂xi

(Xs)∆
+X i

s],

(2.3)

where Air,M ir,M ic, Aig, and M ig are from the decomposition of X i in (2.1).
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After comparing Ito’s formula with Gal’chuk-Lenglart formula, we can immedi-

ately notice that there are two additional last terms in (2.3) that appeared due to

jumps from the right.

Let me now consider the following optional semimartingale

X = X0 + f · a+ g ·m+
∑︂
j=r,g

[︁
Uhj ∗ (µj − νj) + (kj + lj) ∗ pj

]︁
+ (r + w) ∗ η, (2.4)

where X0 is F0-measurable random variable; U = U(u) = 1(|u|≤1)(u); a ∈ Aloc is

continuous increasing, m,µj, νj, pj, η as in (2.2). Further, for convenience we use

the notation f = f(ω, t, x), g = g(ω, t, x), hd = h(ω, t, u, x), hg = h(ω, t, u, x) and

similarly for kj, lj, w and r whenever this does not lead to confusion.

Assume the following

• For j = r, g,

|f(X)| · a ∈ Aloc,

g(X) · ⟨m⟩ ∈ Aloc,

|h(X)|2 ∗ νj ∈ Aloc,

|lj(X)| ∗ pj ∈ Aloc,[︁
|kj(X)|2 ∗ pj

]︁1/2 ∈ Aloc,

|r(X)| ∗ η ∈ Aloc,[︁
|w(X)|2 ∗ η

]︁1/2 ∈ Aloc,

and E[kr(S, β
d
S, X0)|FS−] = 0 a.s. for any predictable stopping time S on {S <

∞} and E[kg(T, β
g
T , X0)|FT ] = 0, E[w(T, βg

T , X0)|FT ] = 0 a.s., for any stopping

time T on {T < ∞}.

• f(ω, s, x) and g(ω, s, x) are defined on (Ω×R+×R) and P ×B(R)-measurable;
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• Uhd(ω, s, u, x) is defined on (Ω×R+×E ∩ (|u| ≤ 1)×R) and P ×B(E ∩ (|u| ≤

1))× B(R)-measurable;

• Uhg(ω, s, u, x) is defined on (Ω×R+×E ∩ (|u| ≤ 1)×R) and O×B(E ∩ (|u| ≤

1))× B(R)-measurable;

• kd(ω, s, u, x), ld(ω, s, u, x) are defined on (Ω × R+ × E × R) and P̃ × B(R)-

measurable;

• kg(ω, s, u, x), lg(ω, s, u, x), r(ω, s, u, x), w(ω, s, u, x) are defined on (Ω× R+ ×

E × R) and Õ × B(R)-measurable.

These integrability and measurability assumptions guarantee well-posedness of the

integrals in (2.4).

Theorem 2.9.2 Let X be an optional semimartingale given in (2.4). Let f(x) =

f(x1, ..., xn) be a twice continuously differentiable function on Rn. Then the process

f(x) is an optional semimartingale, and for all t ∈ R+ it has the following represen-
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tation

f(Xt) =f(X0) +
n∑︂

i=1

∫︂
]0,t]

∂f

∂xi

(Xs−)d(a
i +mi)s

+
1

2

n∑︂
i,j=1

∫︂
]0,t]

∂2f

∂xi∂xj

f(Xs−)d⟨m,m⟩s

+ [f(X− + hd)− f(X−)]U ∗ (µd − νd)t

+ [f(X + hg)− f(X)]U ∗ (µg − νg)t

+

[︄
f(X− + hd)− f(X−)−

n∑︂
i=1

∂f

∂xi

(Xs−)h
i
d

]︄
U ∗ νd

t

+

[︄
f(X + hg)− f(X)−

n∑︂
i=1

∂f

∂xi

(Xs)h
i
g

]︄
U ∗ νg

t

+ [f(X− + (kd + ld))− f(X−)] ∗ pdt

+ [f(X + (kg + lg))− f(X)] ∗ pgt

+ [f(X + (r + w))− f(X)] ∗ ηt.
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Chapter 3

Optional SDE’s

This chapter is devoted to the study of comparison of solutions of stochastic equations

of optional semimartingales on unusual probability space, and the study of pathwise

uniqueness of these solutions using local times.

A comparison theorem for stochastic equations with respect to continuous semi-

martingales was proved by Melnikov [68] who developed the Yamada method [89].

Later a similar result was given by Yan [90] using the local time technique. The case

of SDEs with integer-valued random measures where the coefficients are not Lipschitz

but satisfy weaker conditions similar to those of Yamada were considered by Gal’chuk

[31]. Interesting applications of path-wise comparison theorem to mathematical fi-

nance were given in [53] and further developed in [52]. Recently, a comparison theo-

rem for optional semimartingales on unusual probability space was given in [11] when

coefficients satisfy the Yamada conditions. Therefore, our goal here is to study com-

parison of optional SDEs on unusual stochastic basis under a more general condition,

local time condition, placed on the diffusion coefficient. Besides, we extend a version

of the comparison theorem for solutions of SDEs with different diffusion coefficients

(see [29], [78]) to the laglad jump-diffusion case.

Even though, the stochastic calculus of optional semimartingales is well developed,
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little is done in showing pathwise uniqueness of solutions of stochastic equations driven

by optional semimartingales on unusual probability spaces, except, for the works of

Gasparyan [38] and Abdelghani and Melnikov [13] on the existence and uniqueness

of strong solutions under Lipschitz conditions and monotonicity conditions, respec-

tively. On the other hand, Perkins [79] proved the pathwise uniqueness of solutions of

stochastic equations of continuous semimartingales using the local time technique. As

a result, we consider the questions of pathwise uniqueness under one-sided Lipschitz

continuity on a drift function and local time condition on the diffusion coefficient for

laglad optional semimartingale using the method of local time, which was not done

before.

Besides a purely theoretical interest, the topic is motivated by the needs of the

energy market. In many electricity markets, retailers buy electricity at an unregulated

price and sell it to consumers at a regulated price. Therefore, the occurrence of

price spikes due to sudden changes in electricity demand or supply in these markets

represents a major source of risk to retailers. Hence, accurate modeling of price

spikes is important. As a result, we have modeled spikes in spot price in a way

so that each upward jump is accompanied by an immediate downward jump. The

flexibility, modeling capacity, and accuracy of laglad processes can not be achieved

by using cadlag processes, because they are right-continuous and, consequently, can

not have immediate downward jumps. Moreover, even if we use a sequence of right

jumps, it is hard to control times at which downward jumps happen after an upward

jump, and, thus, even if we tried to model “almost” immediate downward jumps after

upward jumps for cadlag processes, we would not succeed.
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3.1 Existence and Uniqueness of solutions of op-

tional SDE’s

Before starting the investigation of comparison of optional SDE’s, we provide a short

exposition of results on their existence and uniqueness.

Let (Ω,F , P ) be a complete probability space equipped with a filtration F =

(Ft)t≥0 which is not complete, right- or left-continuous.

Let Y be a one-dimensional optional semimartingale which has the representation

(2.2). Consider the following SDE

X = X0 + f(X) · a+ g(X) ·m+ (r + w)(X) ∗ η

+
∑︂
j=r,g

[︁
Uhj(X) ∗ (µj − νj) + (kj + lj)(X) ∗ pj

]︁
, (3.1)

where X0 is F0-measurable random variable; U = U(u) = 1(|u|≤1)(u); a ∈ Aloc is

continuous increasing, m,µj, νj, pj, η as in (2.2). Further, for convenience we use the

notation f(X) = f(ω, t,Xt−), g(X) = g(ω, t,Xt−), hd(X) = h(ω, t, u,Xt−), hg(X) =

h(ω, t, u,Xt) and similarly for kj, lj, w and r whenever this does not lead to confusion.

To guarantee well-posedness of the integrals in (3.1) we make the following as-

sumptions.

Assumptions 1.
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• For j = r, g,

|f(X)| · a ∈ Aloc,

(g(X))2 · ⟨m⟩ ∈ Aloc,

|h(X)|2 ∗ νj ∈ Aloc,

|lj(X)| ∗ pj ∈ Aloc,[︁
|kj(X)|2 ∗ pj

]︁1/2 ∈ Aloc,

|r(X)| ∗ η ∈ Aloc,[︁
|w(X)|2 ∗ η

]︁1/2 ∈ Aloc,

and E[kr(S, β
d
S, X0)|FS−] = 0 a.s. for any predictable stopping time S on {S <

∞} and E[kg(T, β
g
T , X0)|FT ] = 0, E[w(T, βg

T , X0)|FT ] = 0 a.s., for any stopping

time T on {T < ∞}.

• f(ω, s, x) and g(ω, s, x) are defined on (Ω×R+×R) and are P×B(R)-measurable;

• hd(ω, s, u, x), kd(ω, s, u, x), ld(ω, s, u, x) are defined on (Ω × R+ × E × R) and

P̃ × B(R)-measurable;

• hg(ω, s, u, x), kg(ω, s, u, x), lg(ω, s, u, x), r(ω, s, u, x), w(ω, s, u, x) are

defined on (Ω× R+ × E × R) and Õ × B(R)-measurable.

For convenience we state here sufficient conditions for the existence and the

uniqueness of the strong solution of (3.1).

Definition 3.1.1 Let Assumptions 1 hold. We say that the functions f, g, hj, kj, lj, r, w

in (3.1) satisfy the L(Y,X0) conditions if:

(L1) there exists non-negative functions F,G,Hj, Lj, Kj, R,W, j = r, g, such that
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(a) F (ω, s), G(ω, s) are P-measurable; Hd(ω, s, u) is P × B(E ∩ (|u| ≤ 1))-

measurable;

Hg(ω, s, u) is O × B(E ∩ (|u| ≤ 1))-measurable;

Ld(ω, s, u), Kd(ω, s, u) are P̃-measurable;

Lg(ω, s, u), Kg(ω, s, u), R(ω, s, u),W (ω, s, u) are Õ-measurable.

(b) F ·at+G ·⟨m⟩t+
∑︁

j=r,g [H
jU ∗ νj + (Kj + Lj) ∗ λj]+(R+W )∗ζ < ∞ a.s.

for any t > 0, where λj and ζ are compensators of pj and η, respectively.

(c) for any x, y ∈ R, s ∈ R+ and j = r, g,

|f(x)− f(y)| · at ≤ (F |x− y|) · at

(g(x)− g(y))2 · ⟨m⟩t ≤
(︁
G|x− y|2

)︁
· ⟨m⟩t

|hj(x)− hj(y)| ∗ νj
t ≤

(︁
Hj|x− y|

)︁
∗ νj

t ,

|lj(x)− lj(y)| ∗ λj
t ≤

(︁
Lj|x− y|

)︁
∗ λj

t ,

|kj(x)− kj(y)|2 ∗ λj
t ≤

(︁
Kj|x− y|2

)︁
∗ λj

t ,

|r(x)− r(y)| ∗ ζt ≤ (R|x− y|) ∗ ζt,

|w(x)− w(y)|2 ∗ ζt ≤
(︁
W |x− y|2

)︁
∗ ζt

(L2)

(g(X0))
2 · ⟨m⟩t + f(X0) · at +

[︁
r(X0) + (w(X0))

2
]︁
∗ ζ

+
∑︂
j=r,g

[︁
(hj(X0))

2U ∗ νj +
[︁
(kj(X0))

2 + lj(X0)
]︁
∗ λj

]︁
< ∞

a.s. for any t > 0.

Theorem 3.1.1 (see [38, Theorem 1], [39, Theorem 3.3.1]) Let Y be an optional

semimartingale and suppose that f, g, hj, kj, lj, r, w satisfy the L(Y,X0) conditions.

Then the strong solution of (3.1) exists and is unique.
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Remark 3.1.1 Results in this chapter can be easily generalized to the eq. (3.1) with

an additional term 1(|u|>1)h
′
j ∗ µj due to its simple structure (see [11, Lemma 3.2]).

3.2 Local Times for optional processes

Next, we discuss the notion of a local time for an optional semimartingale which was

first introduced in ([62], VI.3.4). This concept is crucial for our proof of comparison

of solutions and pathwise uniqueness. A local time at a of an optional semimartingale

X is denoted by La
t (X) and given by

La
t (X) = |Xt − a| − |X0 − a| −

∫︂ t

0

sign(Xs− − a)dXs

−
∑︂
0<s≤t

[|Xs − a| − |Xs− − a| − sign(Xs− − a)∆Xs]

−
∑︂
0≤s<t

[︁
|Xs+ − a| − |Xs − a| − sign(Xs − a)∆+Xs

]︁
where sign(x) = 1 if x > 0 and sign(x) = −1 if x ≤ 0.

Definition 3.2.1 (cf. [17, Definition 1], [16, Section 2]).

We say that a coefficient function g of equation (3.1) satisfies the LT condition, if

for any two solutions X1 and X2 of equation (3.1), the local time at level 0 satisfies,

∀t ≥ 0 L0
t (X

1 −X2) = 0. (3.2)

A generalization of the change of variables formula (Theorem 2.9.2) can be ob-

tained using the local time.

Theorem 3.2.1 If F is the difference of two convex functions and F ′ is its left

derivative and let ρ be the signed measure which is the second derivative of F . Then
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we have

F (Xt) =F (X0) +

∫︂ t

0

F ′(X)dXs +
1

2

∫︂ ∞

−∞
La
t ρ(da)

+
∑︂
0<s≤t

[F (Xs)− F (Xs− − F ′(Xs−)∆Xs] (3.3)

+
∑︂
0≤s<t

[︁
F (Xs+)− F (Xs − F ′(Xs)∆

+Xs

]︁
Proof. First note that, if F is linear function, then by the change of variables formula

(see (2.3)), the result holds for ρ = 0. For a general function F , let g(x) = 1
2

∫︁
|x −

y|ρ(dy). Then g is a convex function, g′(x) =
∫︁
R sign(x− y)ρ(dy) and g′′(x) = ρ(dy).

Therefore F − g has second derivative 0, hence is linear, and so the result holds for

the function F − g. By linearity, it remains to show that the result holds for the

function g. By integrating 1
2
|Xt − a| with respect to ρ(da), we have that

g(Xt) =
1

2

∫︂
R
|Xt − a|ρ(da)

=
1

2

∫︂
R
|X0 − a|ρ(da) + 1

2

∫︂
R

(︃∫︂ t

0

sign(Xs− − a)dXs + La
t

)︃
ρ(da)

+

∫︂
R

∑︂
0<s≤t

[|Xs − a| − |Xs− − a| − sign(Xs− − a)∆Xs] ρ(da)

+

∫︂
R

∑︂
0≤s<t

[︁
|Xs+ − a| − |Xs − a| − sign(Xs − a)∆+Xs

]︁
ρ(da)

= g(X0) +
1

2

∫︂
R

(︃∫︂ t

0

sign(Xs− − a)dXs + La
t

)︃
ρ(da)

+
∑︂
0<s≤t

[g(Xs)− g(Xs−)− g′(Xs−)∆Xs]

+
∑︂
0≤s<t

[︁
g(Xs+)− g(Xs)− g′(Xs)∆

+Xs

]︁
By Fubini’s theorem,

1

2

∫︂
R

(︃∫︂ t

0

sign(Xs− − a)dXs + La
t

)︃
ρ(da) =

∫︂ t

0

g′(Xs−)dXs +
1

2

∫︂
R
La
t ρ(da).

Combining these yields the result.
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Corollary 3.2.1 (Occupation-Density (cf. [61]) Let X be an optional semimartin-

gale with local time (La)a∈R. Let g be a bounded Borel measurable function. Then

a.s. ∫︂ ∞

−∞
La
t g(a)da =

∫︂ t

0

g(Xs−)d⟨X⟩cs. (3.4)

Proof. By first assuming that g = F ′′, where F is a convex and twice continuously

differentiable function, and simply comparing the change of variables formula (2.3)

with the formula in (3.3), we obtain the equality (3.4). Since this formula holds for

positive continuous function g, by monotone class argument it must hold, up to a

P-null set, for any bounded, Borel measurable function g.

Now we present the formula (3.3) using jump measures.

Theorem 3.2.2 Let X be an optional semimartingale given in (3.1). Let function

F be convex on R. Then F (X) = (F (X)t) is an optional semimartingale and has the

following representation

F (Xt) =F (X0) +

∫︂ t

0+

F ′(Xs−)dX
c
s +

1

2

∫︂ ∞

−∞
La
t ρ(da) (3.5)

+ [F (X− + hd(X−))− F (X−)]U ∗ (µd − νd)t

+ [F (X + hg(X))− F (X)]U ∗ (µg − νg)t

+ [F (X− + hd(X−))− F (X−)− F ′(X−)hd(X−)]U ∗ νd
t

+ [F (X + hg(X))− F (X)− F ′(X)hg(X)]U ∗ νg
t

+ [F (X− + (kd + ld)(X−))− F (X−)] ∗ pdt

+ [F (X + (kg + lg)(X))− F (X)] ∗ pgt (3.6)

+ [F (X + (r + w)(X))− F (X)] ∗ ηt.

Proof. Apply the change of variables formula (3.3) to the optional semimartingale
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(2.2)

F (Xt) =F (X0) +

∫︂ t

0+

F ′(Xs−)d(a+m)s +
1

2

∫︂ ∞

−∞
La
t ρ(da)

+ F ′(X−)
[︁
hdU ∗ (µd − νd) + [kd + ld] ∗ pd + [r + w] ∗ η

]︁
+
∑︂
0<s≤t

[F (Xs)− F (Xs− − F ′(Xs−)∆Xs]

+ F ′(X) [hgU ∗ (µg − νg) + [kg + lg] ∗ pg]

+
∑︂
0≤s<t

[︁
F (Xs+)− F (Xs − F ′(Xs)∆

+Xs

]︁
Let us transform sums

∑︁
0<s≤t[·] and

∑︁
0≤s<t[·]. Define Ct =

∑︁
0<s≤t[·], Bt =

∑︁
0≤s<t

and represent them in the form Ct =
∑︁2

i=1 C
i
t , Bt =

∑︁3
j=1 B

j
t , where

C1
t =

∑︂
Tn≤t

[·]Tn1|∆XTn |≤1, C2
t =

∑︂
Sn≤t

[·]Sn ,

B1
t =

∑︂
Un<t

[·]Un1|∆+XUn |≤1, B2
t =

∑︂
Sn<t

[·]Sn , B3
t =

∑︂
Tn<t

[·]Tn .

In ([62], Sec. 3, Theorem 5) it is shown that C1 − C2, B1 − B3 belong to V in case

F (x) = x+. The same result follows for the general function F from the facts that

x+ − x = x− and |x| = x+ + x− using the same approach as in Theorem A.1. We are

going to rewrite this sums using stochastic integrals.

1. Define σd
N = inf(t > 0 :

∫︁ t

0
|dC1

s | ≥ N or |Xt−| > N), σg
N = inf(t > 0 :∫︁ t−

0
|dB1

s+| > N or |Xt+| > N). For any N, σd
N is F-s.t., σg

N is F+-s.t. and σd
N ↑

∞, σg
N ↑ ∞ a.s. as n → ∞,

∫︁
[0,σd

N ]
|dC1

t | =
∫︁
[0,σd

N [
|dC1

t | + ∆C1
σd
N

≤ N + K, where

K = max|x|≤N+1(2F (x) + |F ′(x)|), such that |Xσd
N
| ≤ |Xσd

N−| + |∆Xσd
N
| ≤ N + 1,

thus, E
∫︁
[0,σd

N ]
dC1

t | < ∞. Moreover,
∫︁
[0,σg

N ]
|dB1

t+| ≤ N , e.g., B1, C1 ∈ Aloc. Functions

F (X− + hd) − F (X−) − hdF
′(X−) and F (X + hg) − F (X) − hgF

′(X) are P̃ and Õ

measurable respectively. From [27] it is easy to see that ∆XTn = hd(Tn), ∆
+XTn =

hg(Tn), e.g. F (XTn) = F (XTn− + hd(Tn)), F (XTn+) = F (XTn + hg(Tn)). Next, from
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B1, C1 ∈ Aloc and properties of stochastic integrals with respect to µj it follows that

C1 =
[︂
F

(d)
hd

− hdF
′(X−)

]︂
U ∗ (µd − νd) +

[︂
F

(d)
hd

− hdF
′(X−)

]︂
U ∗ νd,

B1 =
[︂
F

(g)
hg

− hgF
′(X)

]︂
U ∗ (µg − νg) +

[︂
F

(g)
hg

− hgF
′(X)

]︂
U ∗ νg,

where F
(d)
hj

= F (X− + hd) − F (X−), F
(g)
hg

= F (X + hg) − F (X). First terms in the

above sums belong to Md
loc and Mg

loc,respectively, while second terms belong to Aloc.

Now, using generalized mean value theorem for convex functions [82] we have for any

n on {σd
N < ∞)} and {σg

N < ∞)} respectively

|F (d)
hd

(Tn,∆XTn)|21(|hd|≤1,Tn≤σd
N ) ≤

( max
|x|≤N+1

|F ′(x)|)|hd(Tn,∆XTn)|21(|hd|≤1,Tn≤σd
N ),

|F (g)
hg

(Un,∆
+XUn)|21(|hg |≤1,Un≤σg

N ) ≤

( max
|x|≤N+1

|F ′(x)|)|hg(Un,∆
+XUn)|21(|hd|≤1,Un≤σg

N ),

taking into account that |XUn| ≤ |XUn+|+ |∆+XUn| ≤ N +1 in the second inequality.

By summing up along n each of these inequalities we obtain

|F (j)
hj

|2U ∗ µj

σj
N

≤
(︃

max
|x|≤N+1

|F ′(x)|
)︃
|hj|2U ∗ µj

σj
N

.

These inequalities and assumptions about hi imply |F (j)
hj

|2U ∗ µj ∈ Aloc and, thus,

by properties of stochastic integrals with respect to jump measures µj − νj we get

|F (j)
hj

|2U ∗ (µj − νj) ∈ M2,j
loc. By Cauchy-Schwartz inequality we deduce

|F ′(X−)U |2 ∗ µd ∈ Aloc and |F ′(X)U |2 ∗ µg ∈ Aloc,

thus

F ′(X−)U ∗ (µd − νd) ∈ M2,d
loc and F ′(X)U ∗ (µg − νg) ∈ M2,g

loc .
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Finally, we decompose C1 and B1 in the following form

C1 =F
(d)
hd

U ∗ (µd − νd)− [hdF
′(X−)]U ∗ (µd − νd)

+
[︂
F

(d)
hd

− hdF
′(X−)

]︂
U ∗ νd,

B1 =F
(g)
hg

U ∗ (µg − νg)− [hgF
′(X)]U ∗ (µg − νg)

+
[︂
F

(g)
hg

− hgF
′(X)

]︂
U ∗ νg.

where the first two terms in each formula are in M2,d
loc and M2,g

loc respectively, and last

terms are in Aloc.

2. Since the processes

∑︂
Sn≤t

F ′(XSn−)∆XSn ,
∑︂
Sn<t

F ′(XSn)∆
+XSn ,

∑︂
Tn≤t

F ′(XTn)∆
+XTn ,

are semimartingales, then we represent the processes C2, B2 and B3 as

C2 = F
(d)
kd+ld

∗ pd − [kd + ld]F
′(X−) ∗ pd,

B2 = F
(g)
kg+lg

∗ pg − [kg + lg]F
′(X) ∗ pg,

B3 = F
(g)
r+w ∗ η − [r + w]F ′(X) ∗ η,

where all terms on the right side are semimartingales. By plugging
∑︁2

i=1C
i
t ,
∑︁3

j=1 B
j
t

instead of
∑︁

0<s≤t[·] and
∑︁

0≤s<t[·], respectively, we get the required change of vari-

ables formula.

Theorem 3.2.3 Let X be an optional semimartingale satisfying

∑︂
0<s≤t

|∆Xs|+
∑︂
0≤s<t

|∆+Xs| < ∞.

Then there exists a version of B(R)× P version of (a, t, ω) → La
t (ω) which is every-

where jointly right continuous in a and continuous in t.
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Proof. The process Jt =
∑︁

0<s≤t∆Xs +
∑︁

0≤s<t∆
+Xs is a finite variation optional

semimartingale, and Y = X − J is a continuous optional semimartingale. We let

Y = M + A be the (unique) decomposition of Y , with M0 = A0 = 0. Then X =

M + A+ J . Further define

Sa
t =

∑︂
0<s≤t

1(Xs−>a)(Xs − a)− + 1(Xs−≤a)(Xs − a)+

+
∑︂
0≤s<t

1(Xs>a)(Xs+ − a)− + 1(Xs≤a)(Xs+ − a)+

Observe that |Sa
t | ≤

∑︁
0<s≤t |∆Xs|+

∑︁
0≤s<t |∆+Xs| < ∞. By the change of variables

formula

(Xt − a)+ − (X0 − a)+ =

∫︂ t

0+

1(Xs−>a)dAs +

∫︂ t

0+

1(Xs−>a)dMs

+

∫︂ t

0+

1(Xs−>a)dJs + Sa
t +

1

2
La
t .

We have

lim
a→b,a<b

∫︂ t

0+

1(Xs−>a)dAs =

∫︂ t

0+

1(Xs−>b)dAs

lim
a→b,a>b

∫︂ t

0+

1(Xs−>a)dAs =

∫︂ t

0+

1(Xs−≥b)dAs

where the convergence is uniform in t. We have similar results for∫︂ t

0+

1(Xs−>a)dJs

and also for Sa
t , because it is dominated by

∑︁
0<s≤t |∆Xs| +

∑︁
0≤s<t |∆+Xs| < ∞ .

Since we already know that
∫︁ t

0+
1(Xs−>a)dMs is continuous, the proof is complete.

3.3 Comparison Theorem via local times

Let us investigate comparison of solutions of stochastic differential equations driven

by optional semimartingales. In this section we consider two processes given by SDE’s
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of the same type as equation (3.1):

X i = X i
0 + f i(X i) · a+ g(X i) ·m

+
∑︂
j=r,g

[︁
Uhj(X

i) ∗ (µj − νj) + (ki
j + lij)(X

i) ∗ pj
]︁
+ (ri + wi)(X i) ∗ η, i = 1, 2.

(3.7)

We are going to present a general version of a Comparison Theorem with LT

condition on g and the following conditions on functions f i, hj, k
i
j, l

i
j, r

i, wi, i = 1, 2 :

D Conditions. Suppose that

(D1) X2
0 ≥ X1

0 ;

(D2) f 2(s, x) ≥ f 1(s, x) for any s ∈ R+, x ∈ R;

(D3) For any s ∈ R+, u ∈ E, x, y ∈ R, y ≥ x

y + hj(s, u, y) ≥ x+ hj(s, u, x),

y + k2
j (s, u, y) + l2j (s, u, y) ≥ x+ k2

j (s, u, x) + l2j (s, u, x),

y + r2(s, u, y) + w2(s, u, y) ≥ x+ r2(s, u, x) + w2(s, u, x);

(D4) For any s ∈ R+, u ∈ E, x ∈ R

k2
j (s, u, x) + l2j (s, u, x) ≥ k1

j (s, u, x) + l1j (s, u, x),

r2(s, u, x) + w2(s, u, x) ≥ r1(s, u, x) + w1(s, u, x);

Theorem 3.3.1 Suppose that f i, g, hj, k
i
j, l

i
j, r

i, wi in (3.7) satisfy L(Y,Xi
0), i = 1, 2,

and conditions D and LT hold. Then there exist unique strong solutions X1 and X2,

and X1
t ≤ X2

t for all t ∈ R+ a.s. (X1 ≤ X2).
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Proof. Let Y := X1 −X2 and

I1 :=1(Y−>0)(f
1(X1)− f 2(X2)) · at,

I2 :=1(Y−>0)(g(X
1)− g(X2)) ·mt

+
[︁
(Y− + hd(X

1)− hd(X
2))+ − Y +

−
]︁
U ∗ (µd − νd)t

+
[︁
(Y + hg(X

1)− hg(X
2))+ − Y +

]︁
U ∗ (µg − νg)t,

I3 :=
[︁
(Y− + hd(X

1)− hd(X
2))+ − Y +

− − (hd(X
1)− hd(X

2))1(Y−>0)

]︁
U ∗ νd

t

+
[︁
(Y + hg(X

1)− hg(X
2))+ − Y + − (hg(X

1)− hg(X
2))1(Y >0)

]︁
U ∗ νg

t ,

I4 :=
[︁
(Y− + k1

d(X
1) + l1d(X

1)− k2
d(X

2)− l2d(X
2))+ − Y +

−
]︁
∗ pdt

+
[︁
(Y + k1

g(X
1) + l1g(X

1)− k2
g(X

2)− l2g(X
2))+ − Y +

]︁
∗ pgt ,

I5 :=
[︁
(Y + r1(X1) + w1(X1)− r2(X2)− w2(X2))+ − Y +

]︁
∗ ηt.

By Theorem 3.2.2, Y + is expressed in the following form

Y +
t = Y +

0 +
1

2
L0
t (Y ) + I1 + I2 + I3 + I4 + I5. (3.8)

After using (D1) and LT conditions, equation (3.8) becomes

Y +
t = I1 + I2 + I3 + I4 + I5.

Next, we examine each of I1 − I5 separately. By (D2) and (L1) conditions,

I1 =1(Y−>0)

[︁
(f 1(X1)− f 2(X1)) + (f 2(X1)− f 2(X2))

]︁
· at

≤FY +
− · at.

Now, consider I3

I3 =
[︁
(Y− + hd(X

1)− hd(X
2))+ − (Y− + hd(X

1)− hd(X
2))1(Y−>0)

]︁
U ∗ νd

t

+
[︁
(Y + hg(X

1)− hg(X
2))+ − (Y + hg(X

1)− hg(X
2))1(Y >0)

]︁
U ∗ νg

t
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Further, applying the identity I = I+ − I− to the terms Y− + hd(X
1) − hd(X

2) and

Y + hg(X
1)− hg(X

2), we get

I3 =
[︂
(Y− + hd(X

1)− hd(X
2))−1(X1

−>X2
−)

+ (Y− + hd(X
1)− hd(X

2))+1(X1
−≤X2

−)

]︂
U ∗ νd

t

+
[︂
(Y + hg(X

1)− hg(X
2))−1(X1>X2)

+ (Y + hg(X
1)− hg(X

2))+1(X1≤X2)

]︂
U ∗ νg

t .

It follows from (D3), that I3 = 0.

Using (D4), we get

I5 =1(Y >0)

[︁
r2(X1) + w2(X1)− r2(X2)− w2(X2))

]︁
∗ ηt

+
[︁
(Y + r1(X1) + w1(X1)− r2(X1)− w2(X1)

+ r2(X1) + w2(X1)− r2(X2)− w2(X2))+

− Y + − 1(Y >0)

(︁
r2(X1) + w2(X1)− r2(X2)− w2(X2))

)︁ ]︁
∗ ηt

≤1(Y >0)

[︁
r2(X1) + w2(X1)− r2(X2)− w2(X2)

]︁
∗ ηt

+
[︁
(Y + r2(X1) + w2(X1)− r2(X2)− w2(X2))+

− 1(Y >0)

(︁
Y + r2(X1) + w2(X1)− r2(X2)− w2(X2))

)︁ ]︁
∗ ηt.

Due to (D3) and (L1) conditions

I5 ≤ RY + ∗ ηt + 1(Y >0)

[︁
w2(X1)− w2(X2)

]︁
∗ ηt.

Repeating the same calculations for I4, we obtain that

I4 ≤LdY +
− ∗ pd + LgY + ∗ pg

+ 1(Y−>0)

[︁
k2
d(X

1)− k2
d(X

2)
]︁
∗ pdt

+ 1(Y >0)

[︁
k2
g(X

1)− k2
g(X

2)
]︁
∗ pgt
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By combining all the estimates for I1, I3 − I5 with (3.3), we have

Y +
t ≤ Mt + Y + ◦ Ct,

where ◦ means an optional stochastic integral (see [4, Section 7.1]), C := F · at+W ∗

ηt + Ld ∗ pd + Lg ∗ pg is a non-negative increasing process, and

Mt :=I2 + 1(Y >0)

[︁
w2(X1)− w2(X2)

]︁
∗ ηt

+ 1(Y−>0)

[︁
k2
d(X

1)− k2
d(X

2)
]︁
∗ pdt + 1(Y >0)

[︁
k2
g(X

1)− k2
g(X

2)
]︁
∗ pgt ,

M0 =0.

Using Assumptions 1, we have

1(Y−>0)(g(X
1)− g(X2))2 · ⟨m⟩t ≤

2(g(X1))2 · ⟨m⟩t + 2(g(X2))2 · ⟨m⟩t ∈ Aloc,[︁
(Y− + hd(X

1)− hd(X
2))+ − Y +

−
]︁2
U ∗ νd

t ≤

2
[︁
hd(X

1)
]︁2 ∗ νd

t + 2
[︁
hd(X

2)]
]︁2 ∗ νd

t ∈ Aloc,[︁
(Y + hg(X

1)− hg(X
2))+ − Y +

]︁2
U ∗ νg

t ≤

2
[︁
hg(X

1)
]︁2 ∗ νg

t + 2
[︁
hg(X

2)]
]︁2 ∗ νg

t ∈ Aloc,[︂
1(Y >0)

[︁
w2(X1)− w2(X2)

]︁2 ∗ ηt]︂1/2 ≤[︂
2
[︁
w2(X1)

]︁2 ∗ ηt]︂1/2 + [︂2 [︁w2(X2)
]︁2 ∗ ηt]︂1/2 ∈ Aloc,[︂

1(Y−>0)

[︁
k2
d(X

1)− k2
d(X

2)
]︁2 ∗ pdt ]︂1/2 ≤[︂

2
[︁
k2
d(X

1)
]︁2 ∗ pdt ]︂1/2 + [︂2 [︁k2

d(X
2)
]︁2 ∗ pdt ]︂1/2 ∈ Aloc,[︂

1(Y >0)

[︁
k2
g(X

1)− k2
g(X

2)
]︁2 ∗ pgt ]︂1/2 ≤[︂

2
[︁
k2
g(X

1)
]︁2 ∗ pgt ]︂1/2 + [︂2 [︁k2

g(X
2)
]︁2 ∗ pgt ]︂1/2 ∈ Aloc.

Thus, M is an optional local martingale (see [4, Section 7.4.2, p. 234]).
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Now, by Grownwall lemma (see [10, Lemma 3.2])

Y +
t ≤ Et(C)Mt.

Since Ct is an increasing process, Et(C) ≥ 0. Thus, Mt ≥ 0 since Y +
t ≥ 0. Therefore,

Mt is a non-negative optional local martingale and, consequently, by Lemma 2.4.2

it is a non-negative supermartingale starting from 0. It follows that Mt = 0 for all

t ∈ R+ a.s. Hence, Y + ≤ 0, and X1 ≤ X2.

Next, we show generality of LT condition imposed on function g.

Definition 3.3.1 (Yamada condition (see [89, Theorem 1.1], [11, Theorem 3.2]).

We say that a coefficient function g of equation (3.1) satisfies the Yamada condition,

if there exists a non-negative non-decreasing function ρ(u) on R+ and a P-measurable

non-negative function G such that

|g(x)− g(y)| ≤ ρ(|x− y|)G(s),

G2 · ⟨m⟩s < ∞ a.s.,

∫︂ ϵ

0

ρ−2(u)du = ∞ for any s ∈ R+, ϵ > 0, x, y ∈ R.

Lemma 3.3.1 If g satisfies Yamada condition then LT condition holds.

Proof. Using the formula of occupation density we have∫︂ ∞

0

La
t (X

1 −X2)ρ−2(a)da =

∫︂ t

0

1(X1−X2>0)ρ
−2(X1

s −X2
s )d⟨Xc⟩s

=

∫︂ t

0

1(X1−X2>0)ρ
−2(X1

s −X2
s )

×
[︁
g(X1)− g(X2)

]︁2
d⟨m⟩s

<∞

Thus, since a ↦→ La
t (X

1 − X2) is right-continuous and
∫︁ ϵ

0
ρ−2(u)du = ∞,∀ϵ > 0, it

follows that g satisfies LT condition.

39



Example 3.3.1 We provide an example of the function g(x) which satisfies LT con-

dition but does not satisfy Yamada condition. Let g(x) = 1+[log(|x|−1∨2)]−p (p > 0),

it can be shown (see [79, Example 3]) that Yamada condition does not hold. On the

other hand, by the mean value theorem for some c > 0, and for all 0 < y < 1
4
,

(g(x+ y)− g(x))2 ≤ cy| log y|(1 + [log(|x|−1 ∨ 2)]−p)2|x|−1

×
(︁
log
(︁
|x|−1)︁)︁−(2p+1)

1[−3/4,1/2](x)

Let dX1
t = g(X1

t )dWt and dX2
t = g(X2)dWt be two strong solutions (W is a Wiener

process), then by using the formula of occupation density and the above inequality we

prove that∫︂ 1/4

0

1

a log a
La
t (X

1 −X2)da =

∫︂ t

0

1( 1
4
>X1−X2>0)

[g(X1)− g(X2)]
2

(X1
s −X2

s ) log(X
1
s −X2

s )
ds

≤ c

∫︂ t

0

(1 + [log(|X2|−1 ∨ 2)]−p)2

|X2|
(︁
log
(︁
|X2|−1)︁)︁(2p+1)

1[−3/4,1/2](X
2)ds

< ∞

because the expression under the integral sign is Lebesgue integrable over compacts.

Thus, since a ↦→ La
t (X

1 − X2) is right-continuous and
∫︁ 1/4

0
1

a log a
da = ∞ it follows

that g satisfies LT condition.

Remark 3.3.1 The local time technique allows us to prove the comparison theorem in

a short and concise way. As shown in Example 3.3.1, LT condition in Theorem 3.3.1

is generally weaker than Yamada condition in [11]. Notice further, that conditions on

functions f i, lij and ri are weakened in the sense that inequalities in (D2) and (D4)

are not strict as the ones given in [11, Theorem 3.1]. In addition, we have not used

conditions (A4) and (A8) from [11, Theorem 3.1] in our proof.

Remark 3.3.2 Note that the condition on the function g in (L1)-c) guarantees ful-

fillment of the (LT) condition by Lemma 3.3.1, but not other way around.
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3.4 Comparison of solutions of SDEs with different

jump-diffusions

In this section we expand the comparison theorem proved for SDEs with different

diffusions in [29] to the optional jump-diffusion case. For the sake of brevity, here we

want to compare two processes following a simplified version of SDE (3.7) in the form

of

X i
t =X i

0 + f i(X i) · at + gi(X
i) ·mt +

∑︂
j=r,g

[︁
Uhi

j(X
i) ∗ (µj − νj)t

]︁
, i = 1, 2, (3.9)

with initial condition X i
0 = xi

0. Since now gi and hi
j can be all different, we should

put stronger conditions on f i, gi, h
i
j and xi

0, i = 1, 2.

Denote

Fi(z) :=

∫︂ z

xi
0

dx

gi(x)
,

f̃
i
(z) :=

f i(z)

gi(z)
− 1

2
g′i(z)α−

∑︂
j=r,g

∫︂
E

[︃
hi
j(z, u)

gi(z)

]︃
Uν̃j(du),

h̃
i

j(z) :=

∫︂ z+hi
j(z)

z

dx

gi(x)
.

where α and ν̃j are given below (see B1).

Let us introduce the following

B Conditions.

(B1) (structural conditions): There exist densities

α =
d⟨m⟩t
dat

,

νd(ω, (0, t],Γ) =

∫︂ t

0+

ν̃d(ω, s,Γ)das,

νg(ω, [0, t),Γ) =

∫︂ t−

0

ν̃g(ω, s,Γ)das+.
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(B2) gi i = 1, 2, is positive and continuously differentiable in z such that for any

s ∈ R+, z ∈ R

F1(s, z) ≥ F2(s, z) (3.10)

(B3) For any s ∈ R+, u ∈ E, z, y ∈ R, y ≥ z

f̃
1
(s, z) ≤ f̃

2
(s, y),

h̃
1

j(s, u, z) ≤ h̃
2

j(s, u, y),

z + h̃
2

j(s, u, z) ≤ y + h̃
2

j(s, u, y).

(B4) f̃
2
(z) and h̃

2

j(z) are Lipschitz continuous.

Theorem 3.4.1 Suppose that f i, gi, h
i
j in (3.9) satisfy L(Y,Xi

0), i = 1, 2, and con-

ditions B hold. Then there exist unique strong solutions X1 and X2, and X1 ≤ X2.

Proof. We transform the processes X i with the help of the change of variables

formula and structural conditions, i = 1, 2,

X̃
i

t :=

∫︂ Xi
t

xi
0

dx

gi(x)

=
f i(X i

t−)

gi(X i
t−)

· at +mt −
1

2
g′i(X

i
t−) · ⟨m⟩t

+

∫︂ Xi
t−+hi

d(X
i
t−)

Xi
t−

dx

gi(x)
U ∗ µd

t +

∫︂ Xi
t+hi

g(X
i
t)

Xi
t

dx

gi(x)
U ∗ µg

t

−
hi
d(X

i
t−)

gi(X i
t−)

U ∗ νd
t −

hi
g(X

i
t)

gi(X i
t)
U ∗ νg

t

=f̃
i
(F−1

i (X̃
i

t−)) · at +mt + h̃
i

d(F
−1
i (X̃

i

t−))U ∗ µd
t + h̃

i

g(F
−1
i (X̃

i

t))U ∗ µg
t

From the condition (B2), it follows that F−1
1 (z) ≤ F−1

2 (z) and, consequently, for any
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z

f̃
1
(F−1

1 (z)) ≤ f̃
2
(F−1

2 (z)), (3.11)

h̃
1

j(F
−1
1 (z)) ≤ h̃

2

j(F
−1
2 (z)) (3.12)

z + h̃
2

j(s, u, z) ≤ y + h̃
2

j(s, u, y). (3.13)

by applying (B3).

Functions f̃
2
(F−1

2 (x)) and h̃
2

j(F
−1
2 (x)) are obviously Lipschitz continuous since

F−1
2 is continuously differentiable transformation and (B4).

Now, we cannot directly use Theorem 3.3.1 because

h̃
1

j(F
−1
1 (z)) ̸= h̃

2

j(F
−1
2 (z))

in general. Instead, notice that

Y + :=(X̃
1

t − X̃
2

t )
+

=1Y−>0

[︂
f̃
1
(F−1

1 (X̃
1

t−))− f̃
2
(F−1

2 (X̃
1

t−))

+ f̃
2
(F−1

2 (X̃
1

t−))− f̃
2
(F−1

2 (X̃
2

t−))
]︂
· at

+

[︃(︂
Y + h̃

1

d(F
−1
1 (X̃

1

t−))− h̃
2

d(F
−1
2 (X̃

2

t−))
)︂+

− Y +

]︃
U ∗ µd

t

+

[︃(︂
Y + h̃

1

g(F
−1
1 (X̃

1

t ))− h̃
2

g(F
−1
2 (X̃

2

t ))
)︂+

− Y +

]︃
U ∗ µg

t

=I1 + I2 + I3.

By (3.11) and Lipschitz continuity, I1 ≤ const.Y + · at. Next, applying the same

approach as in finding inequality for I5 in the proof of Theorem 3.3.1 and using (3.12),

(3.13) and Lipschitz continuity, we get I2 ≤ const.Y +U ∗µd
t and I3 ≤ const.Y +U ∗µg

t .

Consequently, by Gronwall Lemma we prove that X̃
1 ≤ X̃

2
.

This, together with (B2), implies that∫︂ X1
t

x2
0

dx

g2(x)
≤
∫︂ X1

t

x1
0

dx

g1(x)
≤
∫︂ X2

t

x2
0

dx

g2(x)
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Since g2(x) > 0 we conclude that X1 ≤ X2.

Remark 3.4.1 Proceeding with the same technique for jump measures as in the above

proof, Theorem 3.4.1 can be directly extended to solutions of (3.1).

Let us give specific examples.

Example 3.4.1 Let X1 and X2 follows the equation (3.9) with mt = Wt, at = t. For

A ∈ B(R+) and Γ ∈ E the Poisson random measures µd and µg are defined as

µd (A× Γ) : = #
{︁(︁

t,∆Ld
t

)︁
∈ A× Γ|t > 0 such that ∆Ld

t ̸= 0
}︁

µg (A× Γ) : = #
{︁(︁

t,∆+Lg
t

)︁
∈ A× Γ|t > 0 such that ∆+Lg

t ̸= 0
}︁

where L1
t and L2

t are a Poisson process and a left-continuous modification of a Poisson

process with constant intensities γd = 1 and γg = 2, respectively, and compensators

νd = γdt and νg = γgt. Furthermore, we assume that L1 and L2 are independent.

We have

f 1(z) = 0, g1(z) = 1, x1
0 = 0;

f 2(z) =
0.15cos(z)

(1− 0.3sin(z))3
, g2(z) = (1− 0.3sin(z))−1, x2

0 = 0;

Firstly, we consider the case with no jumps, i.e. hi
j = 0, i = 1, 2. It is easy to check

that all assumptions of Theorem 3.4.1 hold, and, thus, X1 ≤ X2.

Next, let us assume that hi
j = 1, i = 1, 2. Intuitively, by adding the compensated

jumps with the same magnitude we anticipate the same result as in the continuous

case. However, condition (B3) of Theorem 3.4.1 is clearly not satisfied. Therefore,

X1 ≤ X2 is not necessarily true.
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Finally, assume that h1
j = 0.7, h2

j = 1 and f 1(z) = −1.8, other functions stay the

same. Since

f̃
1
(z) = −3.9,

f̃
2
(y) = −3(1− 0.3sin(y))

h̃
1

j(z) =

∫︂ z+0.7

z

dx

1
= 0.7,

h̃
2

j(y) =

∫︂ y+1

y

dx

(1− 0.3sin(x))−1
= 1 + 0.3cos(y + 1)− 0.3cos(y)

then (B3) holds. In addition, f̃
2
and h̃

2

j are obviously Lipschitz continuous. Thus, by

Theorem 3.4.1, X1 ≤ X2.

Example 3.4.2 Let X1 and X2 follows the equation (3.9) with the same at,mt, µ
j
t , λ

j
t ,

as in Example 3.2. and

f 1(z) = −0.5e−2z, g1(z) = e−z, h1
j = 0, x1

0 = 0;

f 2(z) = 0.3 + z + z3, g2(z) = 1 + z2, h2
j = 1, x2

0 = 0;

It is not hard to show that all assumptions of Theorem 3.4.1 hold, and, thus, X1 ≤ X2.

3.5 Approximation of option price bounds using

comparison property

The comparison theorems considered in the previous sections can be applied to find

boundaries of option prices in case of so-called Constant Elasticity of Variance (CEV)

model. This idea was introduced in [53] and developed further in [52]. Here we extend

it to jump-diffusion CEV model and solve the problem formulated in [52]. Option

pricing for jump-diffusion financial market models were also considered in the context

of imperfect (quantile and efficient) hedging (see, for example, [50], [54]).
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CEV model was proposed by Cox and Ross [23]. It is often used in mathematical

finance to capture leverage effects and stochasticity of volatility. It is also widely

used by practitioners in the financial industry for modeling equities and commodities.

Consider a more general version of the jump-diffusion CEV model [91] where the stock

price is said to satisfy the following integral equation,

St =ρ

∫︂ t

0

Ss−ds+ σSα ·Wt + St−U ∗
(︁
µ1 − ν1

)︁
t
+ StU ∗

(︁
µ2 − ν2

)︁
t
,

S0 =s,

(3.14)

where ρ and σ are constants. Wt is a Wiener process, µ1 − ν1 is a compensated

measure of left jumps and µ2 − ν2 is a compensated measure of right jumps. For

B ∈ B(R+) and Γ ∈ E the jump measures are defined as follows

µ1 (B × Γ) : = #
{︁(︁

t,∆L1
t

)︁
∈ B × Γ|t > 0 such that ∆L1

t ̸= 0
}︁

µ2 (B × Γ) : = #
{︁(︁

t,∆+L2
t

)︁
∈ B × Γ|t > 0 such that ∆+L2

t ̸= 0
}︁

where L1
t and L2

t are a Poisson process and a left-continuous modification of a Poisson

process with constant intensities γ1 and γ2, respectively, and L1 and L2 are indepen-

dent. Hence, ν1 = γ1t and ν2 = γ2t.

Consider the function

F (x) =
1

σ

∫︂ x

s

u−αdu =
x1−α − s1−α

σ(1− α)
, and find

F ′(x) =
x−α

σ
, F ′′(x) =

−αx−α−1

σ
.

where 0 < α < 1.

DenoteXt = F (St) and apply the change of variables formula (see Theorem 2.9.2).
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We have

Xt =F ′(S)

[︃
ρ

∫︂ t

0

Ss−ds+ σSα ·Wt

]︃
+

∫︂ t

0

σ2

2
F ′′(Ss−)S

2α
s−ds

+ [F (2St−)− F (St−)]U ∗ (µ1 − ν1)t

+ [F (2St)− F (St)]U ∗ (µ2 − ν2)t

+ [F (2St−)− F (St−)− St−F
′(St−)]U ∗ ν1

t

+ [F (2St)− F (St)− StF
′(St)]U ∗ ν2

t

=

∫︂ t

0

[︂
kS1−α

s− − σα

2
Sα−1
s−

]︂
ds+Wt

+ cS1−α
t− U ∗ (µ1 − ν1)t + cS1−α

t U ∗ (µ2 − ν2)t

=

∫︂ t

0

[︂
k
(︁
Xs−σ(1− α) + s1−α

)︁
− σα

2

(︁
Xs−σ(1− α) + s1−α

)︁−1
]︂
ds+Wt

+ c
(︁
Xt−σ(1− α) + s1−α

)︁
U ∗ (µ1 − ν1)t

+ c
(︁
Xtσ(1− α) + s1−α

)︁
U ∗ (µ2 − ν2)t

where k := ρ
σ
+ (21−α − 1− 1

σ
)λ1U + (21−α − 1− 1

σ
)λ2U and c := 21−α−1

σ(1−α)
.

With the Comparison Theorem 3.3.1, we can give an estimate of the process Xt

from above by a new process Yt, satisfying the equation,

Yt =

∫︂ t

0

[︁
k
(︁
Ys−σ(1− α) + s1−α

)︁]︁
ds+Wt

+c
(︁
Yt−σ(1− α) + s1−α

)︁
U ∗ (µ1 − ν1)t

+c
(︁
Ytσ(1− α) + s1−α

)︁
U ∗ (µ2 − ν2)t,

Y0 = 0.

The process Y is an Ornstein-Uhlenbeck process with left and right jumps. The

explicit solution for the above non-homogeneous linear stochastic integral equation is

given by the following formula (see [10, Theorem 3.1])

Yt = Et(H)
[︂
E(H)−1G̃t

]︂
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where E is an optional stochastic exponent and

Ht = kσ(1− α)t+ (21−α − 1)U ∗ (µ1 − ν1)t + (21−α − 1)U ∗ (µ2 − ν2)t,

G̃t = s1−α
(︁
k − c(1− 2α−1)γ1U − c(1− 2α−1)γ2U

)︁
t

+c(s2)1−αU ∗
[︁
(µ1 − ν1)t + (µ2 − ν2)t

]︁
+Wt.

Applying the comparison theorem to Xt and Yt yields that, Yt ≥ Xt = F (St) a.s.

Since F (x) is monotonically increasing function we have

St ≤ F−1(Yt) a.s. (3.15)

Now let us consider a function f with an option payoff f(ST ), where f is increasing.

Assuming zero interest rates, the price of such option is given by Ẽf(ST ) for an

appropriate martingale measure P̃ (see [10, Section 4], where the existence of P̃ is

discussed). Using inequality (3.15) we have that Ẽf(ST ) ≤ Ẽf(F−1(YT )) and thus we

obtain an estimate for the option price for which Ẽf(F−1(YT )) is easier to compute.

3.6 Pathwise Uniqueness via local times

In the last section of this chapter, we demonstrate how the local time technique used

in the proof of the Theorem 3.3.1 can similarly be utilized to prove the pathwise

uniqueness of (3.1). We say that solution of (3.1) is pathwise unique if whenever X

and Z are any two solutions of (3.1) defined on the same stochastic basis (Ω,F ,F, P )

with the same m ∈ Mloc and the same measures µj, pj, η such that X0 = Z0 a.s.,

then Xt = Zt for all t a.s.

To prove the pathwise uniqueness of solutions of (3.1) we require several assump-

tions on its coefficient functions. To begin with, we present a slightly more general

condition than one-sided Lipschitz condition (cf. [59, Chapter 1.1]).
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Definition 3.6.1 (One Sided Lipschitz Condition) We say that a coefficient func-

tion f of equation (3.1) satisfies one-sided Lipschitz condition with respect to x if there

exists predictable function G(ω, s) such that for any x, y ∈ R, s ∈ R+, ω ∈ Ω

(x− y)(f(ω, s, x)− f(ω, s, y)) ≤ G(ω, s)(x− y)2.

Let us introduce the following conditions:

C Conditions.

We say that the functions f, g, hj, kj, lj, r, w satisfy the C conditions if:

(C1) f is one-sided Lipschitz continuous,

(C2) g satisfies LT condition,

(C3) there exists non-negative functions

Hd(ω, s, u) ∈ P × B(E ∩ (|u| ≤ 1)),

Hg(ω, s, u) ∈ O × B(E ∩ (|u| ≤ 1)),

Ld(ω, s, u), Kd(ω, s, u) ∈ P̃ ,

Lg(ω, s, u), Kg(ω, s, u), R(ω, s, u),W (ω, s, u) ∈ Õ

such that for any x, y ∈ R, s ∈ R+, u ∈ E ∩ (|u| ≤ 1), ω ∈ Ω:

|hj(ω, s, u, x)− hj(ω, s, u, y)| ≤ Hj(ω, s, u)|x− y|, and any u ∈ E

|lj(ω, s, u, x)− lj(ω, s, u, y)| ≤ Lj(ω, s, u)|x− y|,

|kj(ω, s, u, x)− kj(ω, s, u, y)| ≤ Kj(ω, s, u)|x− y|,

|r(ω, s, u, x)− r(ω, s, u, y)| ≤ R(ω, s, u)|x− y|,

|w(ω, s, u, x)− w(ω, s, u, y)| ≤ W (ω, s, u)|x− y|,

G · at + [Ld +Kd] ∗ pdt + [Lg +Kg] ∗ pgt

+2HdU ∗ νd
t + 2HgU ∗ νg

t + [R +W ] ∗ ζt < ∞,
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and the process

G · at + [Ld +Kd] ∗ pdt + [Lg +Kg] ∗ pgt

+2HdU ∗ νd
t + 2HgU ∗ νg

t + [R +W ] ∗ ζt

is increasing.

Theorem 3.6.1 Suppose that functions f , g, hj, lj, kj, w and r satisfy C conditions,

then if the solution of equation (3.1) exists then it is pathwise unique.

Proof. Assume that there are two solutions X and Z of equation (3.1), and let

Y := X − Z. Applying the formula (3.5) to Y and using identity |Y | = 2Y + − Y, we

get

|Yt| =sign(Y−) [(f(X)− f(Z)) · at + (g(X)− g(Z)) ·mt] + L0
t (Y )

+ [|Y− + hd(X)− hd(Z)| − |Y−|]U ∗ (µd − νd)t

+ [|Y + hg(X)− hg(Z)| − |Y |]U ∗ (µg − νg)t

+ [|Y− + hd(X)− hd(Z)| − |Y−| − (hd(X)− hd(Z))sign(Y−)]U ∗ νd
t

+ [|Y + hg(X)− hg(Z)| − |Y | − (hg(X)− hg(Z))sign(Y )]U ∗ νg
t

+ [|Y− + ld(X)− ld(Z) + kd(X)− kd(Z)| − |Y−|] ∗ pdt

+ [|Y + lg(X)− lg(Z) + kg(X)− kg(Z)| − |Y |] ∗ pgt

+ [|Y + r(X)− r(Z) + w(X)− w(Z)| − |Y |] ∗ ηt

Let

Mt :=sign(Y−)(g(X)− g(Z)) ·mt

+ [|Y− + hd(X)− hd(Z)| − |Y−|]U ∗ (µd − νd)t

+ [|Y + hg(X)− hg(Z)| − |Y |]U ∗ (µg − νg)t ∈ Mloc.
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By using one-sided Lipschitz condition on the drift coefficient function f , LT

condition and simple algebraic inequalities, we have

|Y | ≤|Y−|G · at +Mt

+
∑︂
j=r,g

[|lj(X)− lj(Z)|+ |kj(X)− kj(Z)|] ∗ pjt

+ 2|hj(X)− hj(Z)|U ∗ νj
t

+ [|r(X)− r(Z)|+ |w(X)− w(Z)|] ∗ ηt

(3.16)

Further, we apply (C3) to (3.16) and get

|Yt| ≤Mt + |Y−|G · at + |Y−|[Ld +Kd] ∗ pdt + |Y |[Lg +Kg] ∗ pgt

+ 2|Y−|HdU ∗ νd
t + 2|Y |HgU ∗ νg

t + |Y |[R +W ] ∗ ηt (3.17)

If we now define a process Ct := G · at+ [Ld+Kd] ∗ pdt + [Lg +Kg] ∗ pgt +2HdU ∗ νd
t +

2HgU ∗ νg
t + [R +W ] ∗ ζt, then equation (3.17) can be rewritten as

|Yt| ≤ Mt + |Y | ◦ Ct.

Finally, by Gronwall lemma (see [10, Lemma 3.2]) we get that |Yt| ≤ Et(C)Mt. Since

Ct is increasing process, Et(C) ≥ 0. Thus, Mt ≥ 0 because |Y | ≥ 0. Therefore, Mt

is a non-negative optional local martingale and, consequently, by Lemma 2.4.2 it is a

non-negative supermartingale starting from 0. It follows that M = 0. Hence, Yt = 0

for all t a.s., and the pathwise uniqueness follows.

Remark 3.6.1 Existence and uniqueness theorems for differential equations under

one-sided Lipschitz condition on the drift coefficient function were explored by several

authors (see, for example, [45], [13]). One-sided Lipschitz continuity is weaker than

Lipschitz continuity, and an example illustrating this relation is a function f(x) = e−x.
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Chapter 4

Krylov’s Etimates for optional
semimartingales

The estimates of N. V. Krylov have a great importance in the theory of controlled

diffusion processes and stochastic differential equations (see [55],[57]). Anulova and

Pragarauskas (see [14]) generalized this result to the Ito processes with Poisson ran-

dom measures. Melnikov in [69] proved Krylov type estimates for continuous semi-

martingales on probability spaces under usual conditions. In this paper, we do not

assume our probability space satisfy such technical conditions; and, our goal is to

generalize Krylov’s estimates to the class of optional semimartingales - laglad pro-

cesses defined on a complete probability space such that the underlying filtration is

not necessarily left nor right continuous nor complete.

Using these estimates Krylov obtained a generalization of Ito’s formula for func-

tions which have generalized derivatives up to and including the second order (see

[55], [57]). In the same way, by using our obtained estimates we extend the change

of variables formula for optional semimartingales (see [33], [37]) for class C2 to the

Sobolev class of functions W 2
d . Furthermore, we show how Krylov’s estimates can be

applied to the mean square convergence of optional solutions of SDE’s under quite

general assumptions on their coefficients.
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Let (Ω,F ,P) be a given complete space and F = (Ft)t∈[0,∞) be a corresponding

filtration on it. The family F is not assumed right- or left-continuous, and it is not

assumed to be complete.

Aloc (Ac
loc) is the set of all (continuous) processes A = (At,Ft)t≥0 having locally

integrable variation, with A0 = 0.

Mc
loc (M

2,c
loc) is the set of all continuous optional local (square integrable) martin-

gales M = (Mt,Ft)t≥0, M0 = 0.

For functions f : Rd → R we set

fxi
=

∂f

∂xi

, fxixj
=

∂2f

∂xi∂xj

, fx = (fx1 , ..., fxd
).

For vectors x = (xi, ..., xd), y = (y1, ..., yd) ∈ Rd : |x| =
∑︁d

i=1 |xi|, (x, y) =

x1y1 + ... + xdyd. For a square matrix A: trA is the trace of A and detA is the

determinant of A.

Ld(U) is the space of measurable functions f , defined in the region U ⊂ Rd, d ≥ 1

such that

∥f∥d,U =

(︃∫︂
U

|f(x)|d dx
)︃1/d

< ∞.

B(Γ) denotes the set of bounded Borel functions on Γ with the norm

∥f∥B(Γ) = sup
x∈Γ

|f(x)|

Let D be a bounded region in Rd, and let u(x) be a function in D̄. We write

u ∈ W 2(D) (u ∈ W̄
2
(D)) if there exists a sequence of functions un ∈ C2(D̄) such

that

∥u− un∥B(D̄) → 0, ∥un − um∥W 2(D) → 0
(︂
∥un − um∥W̄ 2

(D) → 0
)︂
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as n,m → ∞, where

∥f∥W 2(D) =
d∑︂

i,j=1

∥fxixj
∥d,D +

d∑︂
i=1

∥fxi
∥d,D + ∥f∥B(D̄)

(︄
∥f∥W̄ 2

(D) = ∥f∥W 2(D) +
d∑︂

i=1

∥fxi
∥2d,D

)︄
.

Definition 4.0.1 Let D ⊂ Rd, let v and h be Borel functions locally summable in

D. The function h is said to be a generalized derivative (in the region D) of the

function v of order n in the direction of coordinate vectors r1, ..., rn and this function

h is denoted by vxr1 ...xrn
if for each ϕ ∈ C∞

0 (D)∫︂
D

ϕ(x)h(x)dx = (−1)n
∫︂
D

v(x)ϕxr1 ...xrn
dx

The properties of generalized derivatives are well known (see [76]). We will apply

some of them without proofs. Note first that a generalized derivative can be defined

uniquely almost everywhere. The function u ∈ W 2(D) has generalized derivatives up

to and including the second order, and these derivatives belong to Ld(D).

4.1 Krylov’s estimates

We will consider the following form of a d-dimensional optional semimartingale X,

for i = 1, ..., d,

X i
t = X i

0 + ait +mi
t +

∫︂ t

0+

∫︂
0<z≤1

z(µr − νr)(ds, dz) +

∫︂ t

0+

∫︂
z>1

zµr(ds, dz)

+

∫︂ t−

0

∫︂
0<z≤1

z(µg − νg)(ds, dz) +

∫︂ t−

0

∫︂
z>1

zµg(ds, dz), (4.1)

where X i
0 is F0-measurable random variable, ai ∈ Ac

loc and mi ∈ M2,c
loc. The jump

measures µr and µg are defined on (R+ × E,B(R+)× E) as follows

µr(Γ) =
∑︂
n⩾1

1Γ(Tn,∆XTn), µg(Γ) =
∑︂
n⩾1

1Γ(Un,∆
+XUn),
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where (Tn)n⩾1, (Un)n⩾1 are sequences of totally inaccessible stopping times and totally

inaccessible wide sense stopping times, respectively; 1Γ(·) is an indicator function of

a set Γ ∈ B(R+)× E . The processes νj are respective compensators of µj, j = r, g.

The following facts from the theory of parabolic partial differential equations

are necessary for our proof. We take an auxiliary non-negative smooth function

φ(x), φ(x) = 0 for x ≥ 1, and
∫︁
Rd φ(x)dx = 1. For ϵ > 0 we set φϵ(x) = ϵ−1φ(xϵ−1).

Lemma 4.1.1 (see [56]) For each λ > 0, ϵ > 0 and for every continuous function

f : Rd → [0,∞) with compact support, there exists a smooth function uϵ : Rd → [0,∞)

(uϵ(x) =
∫︁
Rd u(y)φ

ϵ(x − y)dy, see [56] for detailed explanation of u(x)) with the

properties:

(a) for each l ∈ Rd

d∑︂
i,j=1

uϵ
xixj

lilj ≤ λuϵ|l|2;

(b) |uϵ
x| ≤

√
λuϵ

(c) for all symmetric nonegative definite d× d matrices A

d∑︂
i,j=1

Aiju
ϵ
xixj

− λ(trA+ 1)uϵ ≤ −(detA)1/df ϵ,

(︁
f ϵ(x) =

∫︁
Rd f(y)φ

ϵ(x− y)dy
)︁
;

(d) for all p ≥ d, x ∈ Rd

|uϵ(x)| ≤ N(p, d, λ)∥f∥p,Rd .

We now present the main result of this chapter.

Theorem 4.1.1 Let V ∈ Ac
loc be an increasing process, and suppose the characteris-

tics ai, ⟨mi⟩, νj, j = r, g, of X satisfy the structural conditions:
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There exist densities (dV × dP -a.s.)

αi =
dai

dV
, βik =

⟨mi,mk⟩
dV

, β = [βik], i, k = 1, 2, ..., d, (4.2)

and measures ν̄j(ω, t,Γ),Γ ∈ E , j = r, g, such that for all t > 0 (dV × dP -a.s.)

νr(ω, (0, t],Γ) =

∫︂ t

0

ν̄r(ω, s,Γ)dVs, νg(ω, [0, t),Γ) =

∫︂ t−

0

ν̄g(ω, s,Γ)dVs, (4.3)

|αt|+
∑︂
j=r,g

∫︂
0<|z|≤1

z2ν̄j(ω, t, dz) +
∑︂
j=r,g

∫︂
|z|>1

ν̄j(ω, t, dz) ≤ C(ω, t), (4.4)

where C(ω, t) is a predictable function such that k∞ = E
∫︁∞
0

e−ϕtC(ω, t)dVt < ∞.

Then for any measurable function f ≥ 0, λ > 0, p ≥ d

E

∫︂ ∞

0

e−λ
∫︁ t
0 [

1
2
trβs+1]dVs(det βt)

1/df(Xt−)dVt ≤ N(k∞, λ, d, p)∥f∥p,Rd . (4.5)

Proof. We follow the same approach as in [69]. First, consider continuous non-

negative function f = f(x) with compact support. Denote ϕt = λ
∫︁ t

0
[1
2
trβs + 1]dVs.

Applying the integration by parts formula (see Lemma 5.2.3) to uϵ(Xt)e
−ϕt , we get

uϵ(Xt)e
−ϕt − uϵ(X0) =

∫︂ t

0+

e−ϕsduϵ,r(X) +

∫︂ t−

0

e−ϕsduϵ,g(X) +

∫︂ t

0+

uϵ(Xs−)de
−ϕs ,

where uϵ,r(X) and uϵ,g(X) are right- and left-continuous part of u(X), respectively.
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Next, using the change of variables formula to find uϵ(Xt) and e−ϕt , we find that

uϵ(Xt)e
−ϕt − uϵ(X0)

=

∫︂ t

0+

e−ϕs

{︄
1

2

d∑︂
i,j=1

uϵ
xi,xj

(Xs−)d⟨mi,mj⟩s +
d∑︂

i=1

uϵ
xi
(Xs−)d(a

i
s +mi

s)

+

∫︂
0<z≤1

[uϵ(Xs− + z)− uϵ(Xs−)] (µ
r − νr)(ds, dz)

+

∫︂
z>1

[uϵ(Xs− + z)− uϵ(Xs−)]µ
r(ds, dz)

+

∫︂
0<z≤1

[︄
uϵ(Xs− + z)− uϵ(Xs−)−

d∑︂
i=1

uϵ
xi
(Xs−)z

]︄
νr(ds, dz)

}︄

+

∫︂ t−

0

e−ϕs

{︄∫︂
0<z≤1

[uϵ(Xs + z)− uϵ(Xs)] (µ
g − νg)(ds, dz)

+

∫︂
z>1

[uϵ(Xs + z)− uϵ(Xs)]µ
g(ds, dz)

+

∫︂
0<z≤1

[︄
uϵ(Xs + z)− uϵ(Xs)−

d∑︂
i=1

uϵ
xi
(Xs)z

]︄
νg(ds, dz)

}︄

−
∫︂ t

0+

e−ϕsλ

(︃
1

2
trβs + 1

)︃
uϵ(Xs−)dVs (4.6)

Let {σn}n≥1, {τn}n≥1 and {ξn}n≥1 be localizing sequences for∫︂ t

0+

e−ϕs

d∑︂
i=1

uϵ
xi
(Xs−)dmi,

∫︂ t

0+

e−ϕs

∫︂
0<z≤1

[uϵ(Xs− + z)− uϵ(Xs−)] (µ
r − νr)(dz, ds)

and ∫︂ t−

0

e−ϕs

∫︂
0<z≤1

[uϵ(Xs + z)− uϵ(Xs)] (µ
g − νg)(dz, ds),

respectively.

Define ∀n ≥ 1, Rn := t ∧ σn ∧ τn ∧ ξn, Rn ∈ T+, Rn ↑ ∞ a.s. as n ↑ ∞ and

t ↑ ∞. Taking expectation and applying structural conditions (4.2)-(4.3), we obtain

from (4.6):
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Euϵ(XRn)e
−ϕRn − Euϵ(X0)

=E

∫︂ Rn

0+

e−ϕs

{︄
1

2

d∑︂
i,j=1

uϵ
xi,xj

(Xs−)(βs)ij − λ

(︃
1

2
trβs + 1

)︃
uϵ(Xs−)

+
d∑︂

i=1

αi
su

ϵ
xi
(Xs−)

+

∫︂
0<z≤1

[︄
uϵ(Xs− + z)− uϵ(Xs−)−

d∑︂
i=1

uϵ
xi
(Xs−)z

]︄
ν̄r(dz)

+

∫︂
0<z≤1

[︄
uϵ(Xs + z)− uϵ(Xs)−

d∑︂
i=1

uϵ
xi
(Xs)z

]︄
ν̄g(dz)

+

∫︂
z>1

[uϵ(Xs− + z)− uϵ(Xs−)] ν̄
r(dz) (4.7)

+

∫︂
z>1

[uϵ(Xs + z)− uϵ(Xs)] ν̄
g(dz)

}︄
dVs

:=E

∫︂ Rn

0+

e−ϕs {I1 + I2 + I3 + I4 + I5 + I6 + I7} dVs (4.8)

Using the properties (a)-(d) of the function uϵ in Lemma 4.1.1, we have

uϵ(X0) ≤N0∥f∥p,Rd ;

I1 + I2 =
1

2

d∑︂
i,j=1

uϵ
xi,xj

(Xs−)(βs)ij − λ

(︃
1

2
trβs + 1

)︃
uϵ(Xs−)

≤−
(︃
det

1

2
βs

)︃1/d

f ϵ(Xs−);

I3 =
d∑︂

i=1

αi
su

ϵ
xi
(Xs−)

≤|αs|∥f∥p,Rd.

Next, with the help of Taylor’s decomposition for multivariate functions and
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Lemma 4.1.1-(d), we obtain

I5 =

∫︂
0<z≤1

[︄
uϵ(Xs + z)− uϵ(Xs)−

d∑︂
i=1

uϵ
xi
(Xs)z

]︄
ν̄g(dz)

=

∫︂
0<z≤1

∫︂ 1

0

(1− θ)
d∑︂

i,j=1

uϵ
xi,xj

(Xs + θz)z2dθν̄g(dz)

≤λ

2

∫︂
0<z≤1

z2ν̄g(dz) sup
x∈Rd

uϵ(x)

≤λN2

2
∥f∥p,Rd

∫︂
0<z≤1

z2ν̄g(dz),

where θ ∈ [0, 1] is an auxiliary parameter.

We can also find similar inequality for the integral I4:

I4 ≤
λN3

2
∥f∥p,Rd

∫︂
0<z≤1

z2ν̄r(dz).

Using property (d) of Lemma 4.1.1, we get

I7 =

∫︂
z>1

[uϵ(Xs + z)− uϵ(Xs)] ν̄
g(dz)

≤
∫︂
z>1

ν̄g(dz) sup
x∈Rd

uϵ(x)

≤N4∥f∥p,Rd

∫︂
z>1

ν̄g(dz).

Similarly,

I6 ≤ N5∥f∥p,Rd

∫︂
z>1

ν̄r(dz).
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It follows from obtained inequalities and the relation (4.8) that

E

∫︂ Rn

0

e−ϕs(det βs)
1/df ϵ(Xs−)dVs ≤N(λ, d, p)∥f∥p,Rd

× E

∫︂ Rn

0

e−ϕs

[︄
|αs|

+
∑︂
j=r,g

∫︂
0<|z|≤1

z2ν̄j(ω, s, dz)

+
∑︂
j=r,g

∫︂
|z|>1

ν̄j(ω, s, dz)

]︄
dVs.

(4.9)

After applying condition (4.4) to (4.9), it becomes

E

∫︂ Rn

0

e−ϕs(det βs)
1/df ϵ(Xs−)dVs ≤ N(λ, d, p)∥f∥p,RdE

∫︂ Rn

0

e−ϕsC(ω, s)dVs

≤ N(k∞, λ, d, p)∥f∥p,Rd .

Finally, we let n ↑ ∞ then t ↑ ∞ and ϵ ↓ 0 and reach estimate (4.5). Extension of

the estimate to the Borel measurable function f is standard (see, for example, [14]).

Corollary 4.1.1 If, in addition to the structural conditions (4.2)-(4.3) of Theorem

4.1.1, there exist constants 0 < c1 ≤ c2 < ∞ such that for all x ∈ Rd, c1|x|2 ≤

(βtx, x) ≤ c2|x|2 (dV × dP -a.s.) and

|αt| ≤
K

2
trβt,∫︂

0<|z|≤1

z2ν̄j(ω, t, dz) ≤K

2
trβt,∫︂

|z|>1

ν̄j(ω, t, dz) ≤K

2
trβt.

(4.10)

Then for any measurable function f ≥ 0, λ > 0, p ≥ d

E

∫︂ ∞

0

e−λ
∫︁ t
0 [

1
2
trβs+1]dVsf(Xt−)dVt ≤ N(K,λ, d, p, c1, c2)∥f∥p,Rd .
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4.2 Application: Change of Variables formula with

Generalized Derivatives

Change of variables formula is an essential tool of Stochastic Calculus. In this section,

we prove that in some cases the change of variables formula remains valid for functions

whose generalized derivatives are ordinary functions.

Theorem 4.2.1 Let X0 be fixed, X0 ∈ Rd. Let τD be the first exit time of the process

Xt in (4.1) from a bounded region D ⊂ Rd, and let τ ∈ T , τ < τD. Suppose that X

satisfies assumptions of Corollary 4.1.1.

Then for any v ∈ W̄
2
(D)

v(Xτ )e
−ϕτ − v(X0)

=

∫︂ τ

0+

e−ϕs

{︄
1

2

d∑︂
i,j=1

vxi,xj
(Xs−)d⟨mi,mj⟩s − λ

(︃
1

2
trβs + 1

)︃
v(Xs−)dVs

+
d∑︂

i=1

vxi
(Xs−)da

i
s +

d∑︂
i=1

vxi
dmi

s

+

∫︂
0<z≤1

[v(Xs− + z)− v(Xs−)](µ
r − νr)(dz, ds)

+

∫︂
0<z≤1

[︄
v(Xs− + z)− v(Xs−)−

d∑︂
i=1

vxi
(Xs−)z

]︄
νr(dz, ds)

+

∫︂
z>1

[v(Xs− + z)− v(Xs−)]µ
r(dz, ds)

}︄

+

∫︂ τ−

0

e−ϕs

{︄∫︂
0<z≤1

[v(Xs + z)− v(Xs)](µ
g − νg)(dz, ds)

+

∫︂
0<z≤1

[︄
v(Xs + z)− v(Xs)−

d∑︂
i=1

vxi
(Xs)z

]︄
νg(dz, ds)

+

∫︂
z>1

[v(Xs + z)− v(Xs)]µ
g(dz, ds)

}︄
(a.s. on {0 ≤ τ}).

(4.11)

Proof. Let a sequence vn ∈ C2(D̄) be such that
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∥v − vn∥B(D) → 0, ∥v − vn∥W 2(D) → 0,

∥|(vx − vnx)|2∥d,D → 0.

For convenience rewrite (4.11) as following

v(Xτ )e
−ϕτ − v(X0)

=

∫︂ τ

0+

e−ϕs {I1 + I2 + I3 + I4 + I5 + I6 + I7}

+

∫︂ τ−

0

e−ϕs {I8 + I9 + I10} .

We prove that the right side of (4.11) makes sense. For s < τ

I1 + I2 + I3 =
[︂1
2

d∑︂
i,j=1

vxi,xj
(Xs−)β

ij − λ

(︃
1

2
trβs + 1

)︃
v(Xs−)

+
d∑︂

i=1

vxi
(Xs−)α

i
]︂
dVs

From this, using Theorem 4.1.1 we obtain

E

∫︂ τ

0+

e−ϕs

⃓⃓⃓⃓
⃓12

d∑︂
i,j=1

vxi,xj
(Xs−)β

ij − λ

(︃
1

2
trβs + 1

)︃
v(Xs−)

+
d∑︂

i=1

vxi
(Xs−)α

i

⃓⃓⃓⃓
⃓dVs

≤NE

∫︂ τ

0+

e−ϕs

[︄
d∑︂

i,j=1

|vxi,xj
(Xs−)|+ |v(Xs−)|+

d∑︂
i=1

|vxi
(Xs−)|

]︄
dVs

≤N∥v∥W 2(D),

where N depends on λ, p, d,K, c1, c2.

Similarly,

E

⃓⃓⃓⃓
⃓
∫︂ τ

0+

e−ϕs

d∑︂
i

vxi
(Xs−)dm

i
s

⃓⃓⃓⃓
⃓
2

≤NE

∫︂ τ

0+

e−2ϕs |vx(Xs−)|2 dVs

≤N∥|vx|2∥d,D.
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and

E

⃓⃓⃓⃓∫︂ τ

0+

e−ϕs

∫︂
0<z≤1

[v(Xs− + z)− v(Xs−)]µ
r(dz, ds)

⃓⃓⃓⃓
≤ E

∫︂ τ

0+

e−ϕs

∫︂
0<z≤1

|v(Xs− + z)− v(Xs−)|ν̄r(dz)dVs

≤ E

∫︂ τ

0+

e−ϕs

∫︂
0<z≤1

[|v(Xs− + z)|+ |v(Xs−)|] ν̄r(dz)dVs

≤ N∥v∥B(D).

Using the same technique, integrals I7, I8 and I10 are well-defined.

Since

E

∫︂ τ

0+

e−ϕs

∫︂
0<z≤1

⃓⃓⃓⃓
⃓

d∑︂
i=1

vxi
(Xs−)z

⃓⃓⃓⃓
⃓ νr(dz, ds)

≤ NE

∫︂ τ

0+

e−ϕs

∫︂
0<z≤1

|vx(Xs−)|zν̄r(dz)dVs

≤ N∥vx∥d,D,

I6 is well-defined. The same holds for I9.

Further, we apply the change of variables formula for optional semimartingales
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(see Theorem 2.9.2) to the expression vn(xt)e
−ϕt . Then, we have almost surely

vn(Xτ )e
−ϕτ − vn(X0)

=

∫︂ τ

0+

e−ϕs

{︄
1

2

d∑︂
i,j=1

vnxi,xj
(Xs−)d⟨mi,mj⟩s − λ

(︃
1

2
trβs + 1

)︃
vn(Xs−)dVs

+
d∑︂

i=1

vnxi
(Xs−)da

i
s +

d∑︂
i=1

vnxi
dmi

s

+

∫︂
0<z≤1

[vn(Xs− + z)− vn(Xs−)](µ
r − νr)(dz, ds)

+

∫︂
0<z≤1

[︄
vn(Xs− + z)− vn(Xs−)−

d∑︂
i=1

vnxi
(Xs−)z

]︄
νr(dz, ds)

+

∫︂
z>1

[vn(Xs− + z)− vn(Xs−)]µ
r(dz, ds)

}︄

+

∫︂ τ−

0

e−ϕs

{︄∫︂
0<z≤1

[vn(Xs + z)− vn(Xs)](µ
g − νg)(dz, ds)

+

∫︂
0<z≤1

[︄
vn(Xs + z)− vn(Xs)−

d∑︂
i=1

vnxi
(Xs)z

]︄
νg(dz, ds)

+

∫︂
z>1

[vn(Xs + z)− vn(Xs)]µ
g(dz, ds)

}︄
(4.12)

We pass to the limit in equality (4.12) as n → ∞. By the Sobolev Theorem (see [83])

vn → v uniformly in each finite region. From estimates similar to the estimates we

found earlier it easily follows that the right side of (4.12) tends to the right side of

(4.11).
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4.3 Application: Convergence of optional solutions

of SDE

In this section we consider a sequence of solutions (Xn
t )t∈[0,T ], n = 0, 1, 2, ... satisfying

the following d-dimensional SDE’s, respectively,

Xn
t =X0 +

∫︂ t

0

bn(Xn
s )ds+

∫︂ t

0

σn(Xn
s )dWs

+

∫︂ t

0+

∫︂
E

cn(Xn
s−, z)(µ

r − νr)(ds, dz) +

∫︂ t−

0

∫︂
E

hn(Xn
s , z)(µ

g − νg)(ds, dz),

n = 0, 1, 2, . . . , where E = R \ {0}, Wt is a d-dimensional Wiener process, µr and µg

are, respectively, right-continuous and left-continuous modifications of 1-dimensional

Poisson measures with corresponding compensators νr and νg, and bn, cn, hn ∈ Rd,

and σn ∈ Rd×d. Hereafter, we write Xt = X0
t , b = b0 and so on.

Theorem 4.3.1 Assume that

(a) |bn(x)|2+|σn(x)|2+
∫︁
E
|cn(x, z)|2νr(dz)+

∫︁
E
|hn(x, z)|2νg(dz) ≤ k and E|X0|2 <

k0, where k0 and k ≥ 0 are constants;

(x− y) · (b(x)− b(y)) ≤ F (s)ρ(|x− y|2),

d∑︂
i,j=1

|σij(x)− σij(y)|2 +
∫︂
E

|c(x, z)− c(y, z)|2νr(dz)

+

∫︂
E

|h(x, z)− h(y, z)|2νg(dz) ≤ F (s)ρ(|x− y|2),

where 0 ≤ F (s) satisfies that ∀t ≥ 0
∫︁ t

0
F (s)ds < ∞, and ρ(u) is strictly increasing,

continuous, and concave such that ρ(0) = 0, ρ(u) > 0, as u > 0; and
∫︁
0+

du/ρ(u) =

∞;
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(b)

⃦⃦
|bn(x)− b(x)|2

⃦⃦
p,Rd +

⃦⃦
|σn(x)− σ(x)|2

⃦⃦
p,Rd

+

⃦⃦⃦⃦∫︂
E

|cn(x, z)− c(x, z)|2νr(dz)

⃦⃦⃦⃦
p,Rd

+

⃦⃦⃦⃦∫︂
E

|hn(x, z)− h(x, z)|2νg(dz)

⃦⃦⃦⃦
p,Rd

→ 0,

as n → ∞, where p ≥ d+ 1;

(c)there exists k1 > 0 and k2 > 0 such that for all x ⊂ Rd,

k1|x|2 ≤ (βx, x) ≤ k2|x|2,

where β = σnσn∗, n = 1, 2, . . . ;

(d) limn→∞E|Xn
0 −X0|2 = 0.

Then we have ∀t ≥ 0

lim
n→∞

E|Xn
t −Xt|2 = 0.

We will need the following two lemmas to prove the main theorem.

Lemma 4.3.1 (see [81], Lemma 116) If for all t ≥ 0 a real non-random funcion yt

satisfies

0 ≤ yt ≤
∫︂ t

0

ρ(ys)ds < ∞,

where ρ(u) defined on u ≥ 0, is non-negative, increasing such that ρ(0) = 0, ρ(u) > 0,

as u > 0; and
∫︁
0+

du/ρ(u) = ∞, then

yt = 0,∀t ≥ 0.

Lemma 4.3.2 Suppose E|X0|2 < k0 and

|b(x)|2 + |σ(x)|2 +
∫︂
E

|c(x, z)|2νr(dz) +

∫︂
E

|h(x, z)|2νg(dz) ≤ k,

where k0, k ≥ 0 are constants. Then E supt∈[0,T ] |Xt| ≤ kT for some constant kT .
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Proof. First, note that

|Xt|2 ≤4

[︄
|X0|2 +

⃓⃓⃓⃓∫︂ t

0

b(Xs)ds

⃓⃓⃓⃓2
+

⃓⃓⃓⃓∫︂ t

0

σ(Xs)dWs

⃓⃓⃓⃓2
+

⃓⃓⃓⃓∫︂ t

0+

c(Xs−, z)(µ
r − νr)(ds, dz)

⃓⃓⃓⃓2
+

⃓⃓⃓⃓∫︂ t−

0

c(Xs, z)(µ
g − νg)(ds, dz)

⃓⃓⃓⃓2 ]︄
.

Next, using Doob’s inequality and optional stochastic integral properties we obtain

E sup
t∈[0,T ]

⃓⃓⃓⃓∫︂ t

0

b(Xs)ds

⃓⃓⃓⃓2
≤E sup

t∈[0,T ]

∫︂ t

0

|b(Xs)|2 ds ≤ kT,

E sup
t∈[0,T ]

⃓⃓⃓⃓∫︂ t

0

σ(Xs)dWs

⃓⃓⃓⃓2
≤4E

∫︂ t

0

|σ(Xs)|2 ds ≤ 4kT,

E sup
t∈[0,T ]

⃓⃓⃓⃓∫︂ t

0+

∫︂
E

c(Xs−, z)(µ
r − νr)(ds, dz)

⃓⃓⃓⃓2
≤8E

∫︂ t

0+

∫︂
E

|c(Xs−, z)|2 νr(ds, dz)

≤8kT,

E sup
t∈[0,T ]

⃓⃓⃓⃓∫︂ t−

0

∫︂
E

h(Xs, z)(µ
g − νg)(ds, dz)

⃓⃓⃓⃓2
≤8E

∫︂ t−

0

∫︂
E

|h(Xs, z)|2 νg(ds, dz)

≤8kT.

Thus, we conclude that

E sup
t∈[0,T ]

|Xt|2 ≤ kT ,

where kT = 4(21kT + k0).
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Proof of Theorem. By the change of variables formula

E|Xn
t −Xt|2 − E|Xn

0 −X0|2 =2E

∫︂ t

0

(Xn
t −Xt)(b

n(Xn
s )− b(Xs))ds

+ E

∫︂ t

0

d∑︂
i,j=1

|σij(X
n
s )− σij(Xs)|2ds

+ E

∫︂ t

0+

∫︂
E

|cn(Xn
s−, z)− c(Xs−, z)|2νr(ds, dz)

+ E

∫︂ t−

0

∫︂
E

|hn(Xn
s , z)− h(Xs, z)|2νg(ds, dz)

=
4∑︂

i=1

In(i).

For the process Xn
t , we have

Vt =t,

αt =bn(Xn
t ),

βt =σnσn∗(Xn
t ),

ν̄r(dz) =|c(Xn
t , z)|2νr(dz),

ν̄g(dz) =|h(Xn
t , z)|2νg(dz).

Furthermore,

k∞ =

∫︂ ∞

0

e−ν
∫︁ t
0 [1/2trσ

nσn∗(Xn
s )+1]dskdt ≤ k

∫︂ ∞

0

e−νtdt =
k

ν
< ∞.

Therefore, condition (4.4) is satisfied. Thus, by the Krylov’s estimate (Corollary

4.1.1) and the assumption (b) we get

In(1) ≤2E

∫︂ t

0

(Xn
t −Xt)(b

n(Xn
s )− b(Xn

s ))ds

+ 2E

∫︂ t

0

(Xn
t −Xt)(b(X

n
s )− b(Xs))ds

≤E

∫︂ t

0

|Xn
t −Xt|2ds+N

⃦⃦
|bn(x)− b(x)|2

⃦⃦
p,Rd

+ 2

∫︂ t

0

F (s)ρ
(︁
E|Xn

s −Xs|2
)︁
ds,
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where N depends on λ, p, d,K, T, k1, k2.

Similarly,

In(2) ≤2N
⃦⃦
|σn(x)− σ(x)|2

⃦⃦
p,Rd + 2

∫︂ t

0

F (s)ρ
(︁
E|Xn

s −Xs|2
)︁
ds,

In(3) ≤2N

⃦⃦⃦⃦∫︂
E

|cn(x, z)− c(x, z)|2νr(dz)

⃦⃦⃦⃦
p,Rd

+ 2

∫︂ t

0+

F (s)ρ
(︁
E|Xn

s− −Xs−|2
)︁
ds,

In(4) ≤2N

⃦⃦⃦⃦∫︂
E

|hn(x, z)− h(x, z)|2νg(dz)

⃦⃦⃦⃦
p,Rd

+ 2

∫︂ t−

0

F (s)ρ
(︁
E|Xn

s −Xs|2
)︁
ds.

Consequently, applying the assumptions (c) and (e) we have

E|Xn
t −Xt|2 ≤ E

∫︂ t

0

|Xn
t −Xt|2ds+ 8

∫︂ t−

0

F (s)ρ
(︁
E|Xn

s −Xs|2
)︁
ds.

Notice that by Lemma 4.3.2 for every n = 0, 1, 2, ...

E sup
t∈[0,T ]

|Xn
t | ≤ kT < ∞

Therefore, using Fatou’s lemma, it follows that

lim sup
n→∞

E|Xn
t −Xt|2 ≤

∫︂ t

0

lim sup
n→∞

E|Xn
t −Xt|2ds

+ 8

∫︂ t

0

F (s)ρ

(︃
lim sup
n→∞

E|Xn
s −Xs|2

)︃
ds.

Thus, by Lemma 4.3.1

lim
n→∞

E|Xn
t −Xt|2 = 0.
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Chapter 5

An Optional Semimartingales
Approach to Risk Theory

Mathematical risk theory is concerned with the study of stochastic models of risk in

finance and insurance. In a basic risk model the value of a risk-portfolio is the sum of

opposing cash-flows: premium payments that increase the value of the portfolio and

claim payouts that decrease the value of the portfolio. Premium payments are received

to cover liabilities – expected losses from claim payouts and other costs. Claims is

a result of risk events that occur at random times. Usually, claims’ cash-flow is

modelled by point processes. An important problem in risk theory is the calculation

of the probability of ruin and time to ruin. Ruin probability is the probability that

the value of risk-portfolio will ever become negative. Time to ruin is the time it takes

for passage below 0.

In [40], Gerber first applied martingale methods in risk theory. Since then these

methods have become a standard technique, and a vast amount of papers have ap-

peared, where martingale methods have been used to analyze increasingly complicated

risk models. As noted in [41], risk models can be generalized in the following ways:

1. The model includes inflation and interest;
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2. The occurrence of claims may be described by a more general point process

than the Poisson process.

While papers, including [25], [24] and [28], consider the general risk models of the type

1, the works, for example, of [42] and [47] are mainly focused on the generalisations

of type 2. A recent comprehensive review of the literature can be found in [15].

In this chapter we mainly concentrate on the paper of [84], who first used a

classical semimartingale theory to find bounds for ruin probability, and we present a

new formulation of risk theory based on the general theory of optional semimartingales

on unusual probability spaces. We derive an optional local martingales representation

and use it to compute the probability of ruin for a very general risk model which,

in fact, encompasses two types of the generalizations mentioned before. Similar to

other works on probability of ruin, our illustrative examples belong to the field of

insurance, however, we must note that the proposed model can be applied in other

fields as well (see [4]).

5.1 Optional Risk Model

Let
(︁
Ω,F ,F = (Ft)t≥0 ,P

)︁
be an unusual probability space on which risk processes lie.

Elements of a risk portfolio include but are not limited to the following components:

premium payments, returns on investments, payments of liabilities, costs and claims.

These elements are inherently random. For example, returns may jump up, some

premium payments may not be paid, costs may increase and claims and liabilities

exacerbate. So, let us consider a risk process whose flow can be summarized by the

following equation

Rt = u+Bt +Nt +Dt + Lt, (5.1)
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where u > 0 is the initial capital and B0 = W0 = D0 = L0 = 0.

The process B is a continuous predictable process of finite variation characterizing

a stable flow of income payments including premiums and other sources, N is a

continuous local martingale representing a random perturbation, D and L are right-

continuous and left continuous jump processes, respectively. The process L may

model some substantial gains or losses in returns on investment. The process D

includes a sum of negative jumps representing accumulated claims. In addition, D

may also consist of jumps formed by non-anticipated sharp falls or rises in returns on

investment. All these processes are optional and adapted to the filtration Ft.

Let us consider an example. Assume that At is a capital process of some company

at time t, and

At = u+ ct+ σWt +

Nr
t∑︂

k=1

Yk −
Ng

t∑︂
i=1

Zi

where c and σ are some constant parameters, W is a Wiener process, N r and N g are a

Poisson process and left-continuous modification of a Poisson process with intensities

λr and λg respectively, Zi and Yk denote the left and right jump sizes respectively

with some specified distribution. In this case, the process ct is included in the income

process B, Nt = σWt, while Lt =
∑︁Ng

t
i=1 Zi and

∑︁Nr
t

k=1 Yk is a part of the process D.

Let µr(ω, dt, dx) and µg(ω, dt, dx) be random measures that describe jumps of the

process Dt and Lt, respectively, i.e., on (B(R+)× B(R0)), (R0 = R \ {0}) define

µr(dt, dx) =
∑︂
0<s

1{∆Ds ̸=0}δ(s,∆Ds)(dt, dx),

µg(dt, dx) =
∑︂
0≤s

1{∆+Ls ̸=0}δ(s,∆+Ls)(dt, dx),

where 1ω is indicator function of a set ω and δ(s,y)(dt, dx) is the Dirac measure. We

74



assume that ∫︂
]0,t]

∫︂
R0

x dµr ∈ Aloc and

∫︂
[0,t[

∫︂
R0

x dµg ∈ Aloc. (5.2)

This assumption implies that the processes∫︂
]0,t]

∫︂
R0

xd(µr − νr) and

∫︂
[0,t[

∫︂
R0

xd(µg − νg)

are optional local martingales (see [32], Lemma 3.1, 3.3), where νr, νg are compen-

sators of µr, µg, respectively. By Doob-Meyer decomposition of optional semimartin-

gales, R is a special optional semimartingale adapted to Ft.

5.2 The Laplace optional cumulant function and

its properties

To find an upper bound of probability of ruin, we first obtain the martingale char-

acterization of optional semimartingales by means of stochastic exponentials. Con-

sider an optional semimartingale X (e.g. risk process) with the local characteristics

(a, ⟨Xc⟩ , νr, νg) and the following representation (see [32])

Xt = u+ at +Xc
t +

∫︂
]0,t]

∫︂
|x|≤1

xd(µr − νr) +

∫︂
[0,t[

∫︂
|x|≤1

xd(µg − νg)

+

∫︂
]0,t]

∫︂
|x|>1

xdµr +

∫︂
[0,t[

∫︂
|x|>1

xdµg, (5.3)

where at ∈ Ps, X
c
t ∈ Mc

loc,
∫︁
]0,t]

∫︁
|x|≤1

xd(µr−νr) ∈ Mr
loc and

∫︁
[0,t[

∫︁
|x|≤1

xd(µg−νg) ∈

Mg
loc.

In particular, for the risk process R:

at = Bt +

∫︂
]0,t]

∫︂
|x|≤1

xdνr +

∫︂
[0,t[

∫︂
|x|≤1

xdνg, ⟨Xc⟩t = ⟨N⟩t .
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We introduce a (Laplace) optional cumulant function for X:

Gt(z) = −zat +
z2

2
⟨Xc⟩t +

∫︂
]0,t]

∫︂
R0

(e−zx − 1 + zx1(|x|≤1))dν
r
s

+

∫︂
[0,t[

∫︂
R0

(e−zx − 1 + zx1(|x|≤1))dν
g
s+ (5.4)

with the corresponding optional stochastic exponential (E(G(z)) = Et(G(z)))t≥0 (see

[10]).

Let us discuss when the optional stochastic cumulant function Gt(z) in (5.4) is

well-defined. Let

I+ =

∫︂
]0,t]

∫︂ ∞

0

(e−zx − 1 + zx1(|x|≤1))dν
r
s ,

I− =

∫︂
]0,t]

∫︂ 0

−∞
(e−zx − 1 + zx1(|x|≤1))dν

r
s .

Using Taylor’s formula we have

I− ≤
∫︂
]0,t]

∫︂ 0

−1

|e−zx − 1 + zx|dνr
s +

∫︂
]0,t]

∫︂ −1

−∞
|e−zx − 1|dνr

s

≤ z2

2

∫︂
]0,t]

∫︂ 0

−1

x2dνr
s +

∫︂
]0,t]

∫︂ −1

−∞
e−zxdνr

s ;

I+ ≤
∫︂
]0,t]

∫︂ 1

0

|e−zx − 1 + zx|dνr
s +

∫︂
]0,t]

∫︂ ∞

1

|e−zx − 1|dνr
s

≤ z2

2

∫︂
]0,t]

∫︂ 1

0

x2dνr
s + νr

t ([1,+∞)).

The same inequalities hold for the integral
∫︁
[0,t[

∫︁
R0
(e−zx−1+ zx1(|x|≤1))dν

g
s+ in (5.4).

We can see that Gt(z) is well-defined, if, in addition to the assumption νj
t ([1,+∞)) <

∞, j = r, g, there exists z0 > 0 such that∫︂
]0,t]

∫︂ −1

−∞
e−zxdνr < ∞,

∫︂
[0,t[

∫︂ −1

−∞
e−zxdνg < ∞ (5.5)

almost surely for all t > 0 and 0 < z ≤ z0.

Denote

T (z) = inf(t : |Et(G(z))| = 0)
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and

Zt = e−z(Xt−X0)E−1
t (G(z))1(|Et(G(z))|>0).

Now, we formulate the crucial result of this section.

Theorem 5.2.1 For every z ∈ [0, z0] the process Z(z) = (Zt∧T (z))t≥0 is an optional

local martingale.

To prove Theorem 5.2.1 we need the following lemmas.

Lemma 5.2.1 (see [32]) Let X be an O(F+)-measurable process. There exists a

unique (up to indistinguishability) process U ∈ Mg
loc with the property ∆+U = X if

and only if the following conditions are satisfied

(a) the O(F)-optional projection of X is zero,

(b) the process (
∑︁

s≤tX
2
s )

1/2 ∈ Aloc.

Lemma 5.2.2 Let M ∈ Mg
loc and Y ∈ V ∩ O. Then∑︂

s<t

∆+Ys∆
+Ms =

∫︂
[0,t[

∆+YsdMs+.

Proof. sWe use a simple fact:

∆+U := ∆+

(︄∑︂
s<t

∆+Ys∆
+Ms −

∫︂
[0,t[

∆+YsdMs

)︄
= 0.

Notice that integral in the above expression is well-defined. Let X := ∆+U as in

the Lemma 5.2.1. It is easily seen that all sufficient conditions of Lemma 5.2.1 are

satisfied and, thus, U ∈ Mg
loc. On the other hand, since ∆+U = 0, it follows that U

is continuous. Therefore, U = 0 or∑︂
s<t

∆+Ys∆
+Ms =

∫︂
[0,t[

∆+YsdMs+.
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Lemma 5.2.3 If X is a semimartingale and Y r ∈ V ∩ P and Y g ∈ V ∩ O, then

[X, Y ] =
∫︁
]0,t]

∆YsdX
r
s +

∫︁
[0,t[

∆+YsdX
g
s+ and

XtYt −X0Y0 =

∫︂
]0,t]

YsdX
r
s +

∫︂
]0,t]

Xs−dY
r
s +

∫︂
[0,t[

Ys+dX
g
s+ +

∫︂
[0,t[

XsdY
g
s+

Proof.

[X, Y ]t =
∑︂
s≤t

∆Ys∆Xs +
∑︂
s<t

∆+Ys∆
+Xs

=
∑︂
s≤t

∆Ys∆(M r + Ar)s +
∑︂
s<t

∆+Ys∆
+(M g + Ag)s

=

∫︂
]0,t]

∆YsdM
r
s +

∫︂
]0,t]

∆Y dAr
s

+

∫︂
[0,t[

∆+YsdM
g
s+ +

∫︂
[0,t[

∆+YsdA
g
s+

=

∫︂
]0,t]

∆YsdX
r
s +

∫︂
[0,t[

∆+YsdX
g
s+

holds because of Lemma 5.2.2 and Proposition 4.49 in [48]. Next, using integration

by parts

XtYt −X0Y0 =

∫︂
]0,t]

Ys−dX
r
s +

∫︂
]0,t]

Xs−dY
r
s

+

∫︂
[0,t[

YsdX
g
s+ +

∫︂
[0,t[

XsdY
g
s+ + [X, Y ]t

=

∫︂
]0,t]

YsdX
r
s +

∫︂
]0,t]

Xs−dY
r
s

+

∫︂
[0,t[

Ys+dX
g
s+ +

∫︂
[0,t[

XsdY
g
s+

Proof of Theorem 5.2.1. In all considerations below we will fix the parameter

z and write T,G,... instead of T (z), G(z),... In addition, we define t := t ∧ T for

convenience.

Next,

Zt = e−z(Xt−X0)E−1
t (G),
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where

E−1
t (G) = exp

(︃
−
∫︂
]0,t]

dGr
s

1 + ∆Gs

−
∫︂
[0,t[

dGg
s+

1 + ∆+Gs

)︃
×
∏︂

0<s≤t

(︃
1− ∆Gs

1 + ∆Gs

)︃
e

∆Gs
1+∆Gs

∏︂
0≤s<t

(︃
1− ∆+Gs

1 + ∆+Gs

)︃
e

∆+Gs
1+∆+Gs .

By this representation it follows that E−1
t (G) is the solution of Doleans equation (see

[32])

E−1
t (G) = 1−

∫︂
]0,t]

E−1
s− (G)

dGr
s

1 + ∆Gs

−
∫︂
[0,t[

E−1
s (G)

dGg
s+

1 + ∆+Gs

(5.6)

Using (5.3), (5.4) and change of variables formula for optional semimartingales

(see Theorem 2.9.2) we get

Lt =e−rz(Xt−X0)

=1 +

∫︂
]0,t]

Ls−dG
r
s +

∫︂
[0,t[

LsdG
g
s+ − z

∫︂
]0,t]

Ls−dX
c
s

+

∫︂
]0,t]

∫︂
R0

Ls−(e
−zx − 1)d(µr − νr)s

+

∫︂
[0,t[

∫︂
R0

Ls(e
−zx − 1)d(µg − νg)s+. (5.7)
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By (5.6) and (5.7) and Lemma 5.2.3, we find

Zt =LtE−1
t (G)

=1 +

∫︂
]0,t]

E−1
s (G)dLr

s +

∫︂
]0,t]

Ls−d(E−1
s (G))r

+

∫︂
[0,t[

E−1
s+ (G)dLg

s+ +

∫︂
[0,t[

Lsd(E−1
s+ (G))g

=1 +

∫︂
]0,t]

E−1
s− (G)

1 + ∆Gs

[︃
Ls−dG

r
s − zLs−dX

c
s +

∫︂
R0

Ls−(e
−zx − 1)d(µr − νr)s

]︃
+

∫︂
[0,t[

E−1
s (G)

1 + ∆+Gs

[︃
LsdG

g
s+ +

∫︂
R0

Ls(e
−zx − 1)d(µg − νg)s+

]︃
−
∫︂
]0,t]

E−1
s− (G)Ls−

dGr
s

1 + ∆Gs

−
∫︂
[0,t[

E−1
s (G)Ls

dGg
s+

1 + ∆+Gs

=1− z

∫︂
]0,t]

Zs−

1 + ∆Gs

dXc
s +

∫︂
]0,t]

∫︂
R0

Zs−(e
−zx − 1)

1 + ∆Gs

d(µr − νr)s

+

∫︂
[0,t[

∫︂
R0

Zs(e
−zx − 1)

1 + ∆+Gs

d(µg − νg)s+

This implies (Zt∧T )t≥0 is an optional local martingale (for each z ∈ [0, z0]).

Along with the stochastic exponential of the cumulant process E(G) there is a usual

exponent of the cumulant process eG. We know that if ∆G > −1 and ∆+G > −1

then E(G) can be represented as

Et(G) = exp

{︄
Gt +

∑︂
0<s≤t

(log(1 + ∆Gs)−∆Gs)

+
∑︂
0≤s<t

(log(1 + ∆+Gs)−∆+Gs)

}︄

From above we observe that if ∆G = 0 and ∆+G = 0, or equivalently, G is a

continuous process, then

E(G) = eG.

Let us present sufficient conditions for the cumulant process G to be continuous.
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Lemma 5.2.4 • If ∆XT = 0 a.s. on the set {T < ∞} for every predictable time

T , i.e. T ∈ T p, then ∆G = 0.

• If ∆+XT = 0 a.s. on the set {T < ∞} for every totally inaccessible time T , i.e.

T ∈ T , then ∆+G = 0.

Proof. From the first condition it follows that ∆Gt =
∫︁
R0
(e−rx − 1)νr({t}, dx) = 0

(proof without usual hypothesis on the filtration is the same as in [48], II.1.19). By

Lemma 3.3 in [32], it follows from the second condition that ∆+G =
∫︁
R0
(e−rx −

1)νg({t}, dx) = 0.

5.3 Probability of Ruin

Here we apply the theory developed in the previous section to study probability of

ruin of the optional semimartingale R introduced by formula (5.1). Given R, our main

goal is to evaluate the ruin probability P(τ < ∞), where τ = inf {t > 0 : Rt < 0}.

Let us assume that there exists z0 > 0 such that∫︂
]0,t]

∫︂ −1

−∞
e−zxdνr < ∞,

∫︂
[0,t[

∫︂ −1

−∞
e−zxdνg < ∞ (5.8)

almost surely for all t > 0 and 0 < z ≤ z0. Note that, in literature (see [15], p.338)

such risk process R is called as a process with light-tailed negative jumps.

Let us define the optional cumulant process for the risk process R: for all t > 0

and z ∈ (0, z0]

Gt(z) = −zBt +
z2

2
⟨N⟩t +

∫︂
]0,t]

∫︂
R0

(e−zx − 1)dνr +

∫︂
[0,t[

∫︂
R0

(e−zx − 1)dνg.

Define a process

Mt(z) = exp[−z(Rt − u)]E−1
t (G(z)). (5.9)
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It follows from Theorem 5.2.1 that the process Mt(z) is an optional local martingale

for every z in [0, z0], if ∆G > −1 and ∆+G > −1.

We use the optional local martingale M in a similar way as in [84], which is

standard in risk theory. We know that a non-negative optional local martingale is a

supermartingale (see Lemma 2.4.2). Thus, since M0(z) = 1, it follows that

1 ≥E(Mτ∧t(z))

=E(Mτ (z)1τ≤t +Mt(z)1τ>t)

≥E(Mτ (z)1τ≤t)

=E(Mτ (z)|τ ≤ t)P(τ ≤ t)

for every z in [0, z0] and t > 0.

Hence, for all z ∈ [0, z0]

P(τ ≤ t) ≤ 1

E(Mτ |τ ≤ t)

=
1

E(e−z(Rτ−u)E−1
τ (G(z))|τ ≤ t)

.

Since Rτ ≤ 0 on {τ ≤ t}, we get

P(τ ≤ t) ≤ e−zu

E(E−1
τ [G(z)]|τ ≤ t)

, (5.10)

for all z ∈ [0, z0].

At this point, if we want to find a better estimate of the upper bound of the ruin

probability in (5.10), we are required to impose additional assumptions.

Firstly, suppose that

−G′
τ (0) = Bτ +

∫︂
]0,τ ]

∫︂
R0

xdνr
s +

∫︂
[0,τ [

∫︂
R0

xdνg
s+ > 0. (5.11)

Note that differentiation with respect to z under the integral sign with respect to

νj, j = r, g, in (5.11) is possible because zero is an interior point in the range of

z-values for which the integral exists.
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If we assume that ∆G = 0 and ∆+G = 0 (see Remark 5.3.3 below), then

Et(G(z)) = exp(Gt(z)). (5.12)

Now, using (5.12) and Jensen’s inequality, we get from (5.10) that

P(τ ≤ t) ≤ e−zu
[︁
E
(︁
E−1
τ [G(z)]|τ ≤ t

)︁]︁−1

≤ e−zuE(Eτ [G(z)]|τ ≤ t)

= E(exp[−zu+Gτ (z)]|τ ≤ t), (5.13)

for all z ∈ [0, z0] and t > 0.

The function Gτ (z) is a strictly convex function of z with Gτ (0) = 0. Further,

due to assumption (5.11), the function E(exp[−zu +Gτ (z)]|τ ≤ t) is strictly convex

function of z decreasing from 1 at z = 0. Furthermore, under assumption (5.8) with

z0 = ∞, the function E(exp[−zu+Gτ (z)]|τ ≤ t) increases to +∞ as z → ∞. Hence,

there exists a unique z∗ ∈ [0, z0] for which this function attains its minimum, and by

(5.13) we have

P(τ ≤ t) ≤ e−z∗u

E(exp[−Gτ (z∗)]|τ ≤ t)
. (5.14)

It seems the estimate (5.14) is the best upper bound for ruin probability obtained

from (5.10).

We can find a more explicit estimate of the ruin probability if we can choose z-

value zt > 0, for which the denominator of (5.10) equals one. Let us note that this

z-value is not necessarily unique, and it often depends on t. In this case we get

P(τ ≤ t) ≤ e−uzt .

Further, if zt exists for all t > 0 and if ẑ = limt→∞ zt exists, then

P(τ < ∞) ≤ e−uẑ.

Finally, we summarize our results in the following theorem.
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Theorem 5.3.1 Given the optional risk model (5.1), suppose assumptions (5.2) and

νj
t ([1,+∞)) < ∞, j = r, g,

hold and there exists an z0 > 0 such that∫︂
]0,t]

∫︂
|x|>1

e−zxdνr < ∞,

∫︂
[0,t[

∫︂
|x|>1

e−zxdνg < ∞

almost surely for all t > 0 and 0 < z ≤ z0.

1. If ∆G > −1 and ∆+G > −1 then

P(τ ≤ t) ≤ e−zu

E(E−1
τ [G(z)]|τ ≤ t)

for all z ∈ [0, z0] and t > 0.

2. If G′
τ (0) < 0, ∆G = 0 and ∆+G = 0 then there exists a unique z∗ ∈ [0, z0] for

which the right-hand side of

P(τ ≤ t) ≤ e−z∗u

E(exp[−Gτ (z∗)]|τ ≤ t)

attains its minimum.

3. If zt > 0 exists for which E(E−1
τ [G(zt)]|τ ≤ t) = 1 then

P(τ ≤ t) ≤ e−uzt .

Moreover, if zt exists for all t > 0 and if ẑ = limt→∞ zt exists, then

P(τ < ∞) ≤ e−uẑ. (5.15)

Remark 5.3.1 Notice that the inequality (5.15) is an analogue of the classical Cramer-

Lundberg bound (see, for example, [41]) obtained in a very general optional setting.
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Remark 5.3.2 If the process D represents the accumulated claims (all jumps are

downwards) while the process L = 0, then the condition (5.11) becomes

−G′
t(0) = Bt +

∫︂
]0,t]

∫︂ 0

−∞
xdνr > 0 for all t > 0

and is known as net-profit condition in risk theory. This means that the insurance

company adopts the wise premium policy such that premiums follow the claims’ in-

tensity.

Remark 5.3.3 By Lemma 5.2.4, condition ∆G =
∫︁
(e−zx − 1)νr({t}, dx) = 0 is

satisfied if ∆RT = 0 a.s. on the set {T < ∞} for every predictable stopping time

T (i.e. quasi-left-continuity of R (see [65])). From the point of view of risk theory

it means that claims cannot be predicted beforehand. On the other hand, by Lemma

5.2.4, condition ∆+G =
∫︁
(e−zx − 1)νg({t}, dx) = 0 is satisfied if ∆+RT = 0 a.s. on

the set {T < ∞} for every stopping time T measurable with respect to the filtration

F.

5.4 Particular Models and Examples

Let us apply our results to different risk models.

Example 5.4.1 We consider a particular type of the general risk model studied in

the previous section. Specifically, we assume that

Rt = u+Bt +

∫︂ t

0

σsdWs +

Ng
t∑︂

i=1

Zi −
Nr

t∑︂
k=1

Yk

where B is a continuous process of finite variation, W is a standard Wiener process,

and σ is a predictable process. The process N g
s and N r

s are left- and right-continuous
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counting processes with intensities λg
s and λr

s, respectively, such that N j
t −
∫︁ t

0
λj
sds, j =

r, g, are optional local martingales. The positive random variables Yk and Zi assumed

to be mutually independent. The distribution of the claim Yk depend on the time at

which k’th jump occurs, but is otherwise non-random and independent of the N r pro-

cess. Thus, the Yk-s can depend on the N r-process only through the time-dependence

of the distributions of the Yk-s. The same holds for random variables Zi-s and the

process N g. An example of time-dependence is when the claims are subject to inflation

or interest force (see, for example, [21]).

Under these assumptions νr(dt, dx) = λr
t (1−F r

t (−dx))dt and νg(dt, dx) = λg
tF

g
t (dx))dt,

where F r
t and F g

t are the respective distributions of Yk and Zi at time t. Hence

Gt(z) =− zBt +
z2

2

∫︂
[0,t]

σ2
sds

+

∫︂
]0,t]

[φr
s(−z)− 1]λr

sds+

∫︂
[0,t[

[φg
s(z)− 1]λg

sds

where φj
s(z) =

∫︁
e−zxdF j

s (x) is the Laplace transform of F j
s , j = r, g.

For this model, from condition (5.11) we obtain

Bt +

∫︂ t

0

µg
sλ

g
sds >

∫︂ t

0

µr
sλ

r
sds,

for all t > 0 where µg
s and µr

s denotes the mean of Zi and Yk at time s, respectively.

We will next discuss simple situations where the ruin probability can easily be

evaluated. We suppose that for each t > 0 there exists a distribution function F̃
j
such

that F r
s (x) ≥ F̃

r

t (x) and F g
s (x) ≤ F̃

g

t (x) for all x > 0 and all s ≤ t, j = r, g. Under

these conditions, µj
s ≤ µ̃j

t , j = r, g, for s ≤ t and∫︂ s

0

[φr
u(−z)− 1]λr

udu ≤ [φ̃r
t (−z)− 1]Λr

t ,∫︂ s

0

[φg
u(z)− 1]λg

udu ≤ [φ̃g
t (z)− 1]Λg

t .

(5.16)
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where µ̃j
t denotes the mean value of F̃

j

t , φ̃
j
t(z) =

∫︁
e−zxdF̃

j

t(x), and Λj
s =

∫︁ t

0
λj
sds is

integrated intensity of N j, j = r, g.

We assume that a company adopts a policy such that for some constant c > 1

Bt ≥ c

(︃
µ̃r
t

∫︂ t

0

λr
sds− µ̃g

t

∫︂ t

0

λg
sds

)︃
. (5.17)

for s ≤ t. If, moreover, σ2
s is bounded by a constant ζ2t for s ≤ t, (5.16) and (5.17)

implies that

Gs(z) ≤ [−zcµ̃r
t + φ̃r

t (−z)− 1]Λr
s + [−zcµ̃g

t + φ̃g
s(z)− 1]Λg

s+ +
1

2
z2ζ2t s

= (grt (z), g
g
t (z)) ◦ Λs +

1

2
z2ζ2t s

for all s ≤ t where grt (z) = −zcµ̃r
t + φ̃r

t (−z) − 1, ggt (z) = −zcµ̃g
t + φ̃g

s(z) − 1

and Λs = Λr
s + Λg

s. Under the conditions imposed gjt (z) is convex, gjt (0) = 0 and

(gjt )
′
(0) < 0, so there is a range [0, zt] of z-values for which gjt (z) ≤ 0, j = r, g. For

z ∈ [0, z0] it follows from (5.10) that

P(τ ≤ t) ≤ e−zu+ 1
2
z2ζ2t t

E(exp[−(grt (z), g
g
t (z)) ◦ Λτ ]|τ ≤ t)

(5.18)

The Laplace transform of Λ is rarely known, but when the Laplace transform of Λ is

known, it is sometimes possible to proceed in a way analogous to the derivation of the

upper bound (5.21) demonstrated in Example 5.4.2. Quite generally we can use that

−zu+ 1
2
z2ζ2t t has a minimum at z = u/(tζ2t ), which implies

P(τ ≤ t) ≤ e−
1
2
u2/(ζ2t t)

provided u/(tζ2t ) ≤ zt.

In general, we have the result

P(τ ≤ t) ≤ exp

(︃
−ztu+

1

2
z2t ζ

2
t t

)︃
.
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Example 5.4.2 Consider the special case, namely, the classical compound Poisson

risk model with additional random positive left-continuous jumps of size Zi and per-

turbed by a Wiener process W

Rt = u+ ct+ σWt +

Ng
t∑︂

i=1

Zi −
Nr

t∑︂
k=1

Yk (5.19)

where c is the premium rate, N r and N g are a Poisson process and left-continuous

modification of a Poisson process with intensities λr and λg, respectively. The Zi’s

and Yk’s are positive, independent identically distributed random variables with distri-

bution functions F g and F r, respectively. We assume that W,N r, N g, {Zi} and {Yk}

are all mutually independent.

In this particular case, Bt = ct, ⟨N⟩t = σ2t, νr(ω; dt, dx) = λr(1 − F r(−dx))dt

and νg(ω; dt, dx) = λgF g(dx)dt, so

Gt(z) =g(z)t

=

(︃
−zc+

1

2
σ2z2 + λr [φF r(−z)− 1] + λg [φF g(z)− 1]

)︃
t,

where φF j(z) =
∫︁
e−zxdF j(x) is the Laplace transform of F j, j = r, g. Since the

process Rt in this case is a process with independent increments , Mt(z) in (5.9) is

a martingale for every z in the domain of φF r and φF g . We see that zt = ẑ is the

positive solution of g(z) = 0. Thus, for all u ≥ 0

P(τ < ∞) ≤ e−uẑ.

This bound was already obtained in the case with no positive jumps (see, for instance,

[80], 13.2.1). We can sometimes obtain a more accurate upper bound of finite time

probability of ruin. For z ∈ [ẑ, z0], g(z) ≥ 0, thus by (5.10)

P(τ ≤ t) ≤ exp[−zu+ g(z)t] for all z ∈ [ẑ, z0]. (5.20)
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The right hand side of (5.20) attains its minimum at z∗, which is given as the

solution of g′(z∗) = u/t, provided there is a solution in [0, z0]. Otherwise the minimum

is attained at z∗ = z0, in which case g′(z∗) < u/t. If t ≤ u/g′(ẑ), the convexity of g

implies that z∗ ≥ ẑ, so

P(τ ≤ t) ≤ exp[−z∗u+ g(z∗)t] for t ≤ u/g′(z). (5.21)

Since g(z∗) < (z∗ − ẑ)u/t for z∗ > ẑ (using again the convexity of g and the fact

that g(ẑ) = 0), the right hand side of (5.21) is strictly smaller than exp (−uẑ) when

t < u/g′(ẑ).

Example 5.4.3 Consider a specific case of the model (5.19) with the following cu-

mulative distribution functions of Zi and Yi

F g(x) = 1− e−bx, b > 0, F r(x) = 1− e−ax, a > 0.

Additionally, we assume that net profit condition is satisfied, c > λr

a
− λg

b
. For z ∈

(0, a], we obtain

Gt(z) =g(z)t

=

(︃
−cz +

1

2
σ2z2 + λr

[︃
a

a− z
− 1

]︃
+ λg

[︃
b

b+ z
− 1

]︃)︃
t,

We rewrite g(z) = zh(z)
2(a−z)(b+z)

, where

h(z) = −σ2z3 + (σ2(a− b) + 2c)z2

+ (σ2ab− 2c(a− b) + 2(λr + λg))z + 2(λrb− λga− cba). (5.22)

Thus, if the equation h(z) = 0 has solution ẑ ∈ (0, a] then, by Theorem 5.3.1, it

follows that

P (τ < ∞) ≤ e−ẑu.

This result generalizes the following special cases:

89



1. (cadlag case, cf. [85]) If c > 0, σ > 0 and there is no positive jumps, i.e.,

Zi = 0. Then net profit condition is c > λr

a
, and (5.22) becomes

h(z) = −σ2z2 + (σ2a+ 2c)z − 2(ca− λr).

Quadratic equation h(z) = 0 has exactly two real roots for z ∈ (0,∞), given by

ẑ± =
σ2a+ 2c±

√
∆

2σ2
,

where ∆ := (σ2a− 2c)2 + 8σ2λr.

Since (σ2a − 2c)2 ≤ ∆ ≤ (σ2a + 2c)2, we have ẑ− ≥ 0 and ẑ+ ≥ a. If ẑ− ≤ a

then, by Theorem 5.3.1, we get for all u ≥ 0

P(τ < ∞) ≤ e−uẑ− .

2. (pure jumps case, cf. [75], 8.3) If c = 0, σ = 0, then net profit condition is

λg

b
> λr

a
, and (5.22) becomes

h(z) = 2(λr + λg))z + 2(λrb− λga).

Then the equation h(z) = 0 has a unique real root in the interval (0, a), given

by

ẑ =
λga− λrb

λg + λr
.

Therefore, by Theorem 5.3.1, for all u ≥ 0

P(τ < ∞) ≤ e−uẑ.
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Chapter 6

One-dimensional optional
regression models

Regression Analysis is an integral part of Mathematical Statistics. Developments in

this area are important from both theoretical and applied points of view. In statistics

of random processes a regression model is considered as a semimartingale where the

drift depends on an unknown parameter and the martingale part presents the errors

in observations. Such a viewpoint is very productive because it creates a possibility to

study a variety of regression models (with discrete and continuous time) in an unified

way, using martingale methods (see, for example, [65], [71]).

The standard martingale theory is well-developed under so-called “usual condi-

tions”, when filtration (information flow) is complete and right continuous. However,

statistical data is usually delivered by a stochastic process, whose history (natural

filtration) may not be right-continuous, and therefore such technical conditions may

not be fulfilled (see [4]). This is the main reason why we need to consider regres-

sion models in more general setting which we call here the optional regression model.

Optional semimartingales, on which our optional regression model is based, admit

trajectories which are not right-continuous and arise when “usual conditions” are not

assumed on filtered probability space. Up to our knowledge, currently there are no
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works devoted to the relaxing of these “usual conditions” and investigation of such

general optional regression model.

Firstly, we focus on strong consistency of the proposed LS-estimate. In case of

the observed process being cadlag (right-continuous with left limits) semimartingale

this problem was extensively studied in [71] (also see [70]).

Secondly, we concentrate our attention on the sequential estimates with guar-

anteed accuracy. In comparison to the structural LS-estimates the sequential LS-

estimates posses an advantage of having bounded variance. This type of estimates in

cadlag case is well-established (see [72], [71], [34], [19]).

The chapter is organized in the following way: in section 5.1 we introduce the

general regression model along with structural LS-estimates and auxiliary results. In

section 5.2 we prove strong consistency of the proposed LS-estimates. In section 5.3

we consider sequential estimates, show that these estimates are unbiased and have

a property of guaranteed accuracy under suitable conditions on regressor and error

term. In addition, we investigate a problem related to hypothesis testing. Finally, in

section 5.4 we present an extension of sequential LS-estimators for non-linear regres-

sion models and several illustrative examples.

6.1 Optional stochastic regression model

Suppose that on the fixed stochastic basis (Ω,F ,F = (Ft)t≥0,P) without “usual

conditions”, we observe a one-dimensional process X.

Suppose the process X has the following form

Xt = f ◦ atθ +Mt, (6.1)
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where f ◦ at is an optional stochastic integral such that

f ◦ at =
∫︂
]0,t]

f r
s da

r
s +

∫︂
[0,t[

f g
s da

g
s+,

a = ar+ag ∈ A+
loc∩Ps, M ∈ Mloc, ft is a bilinear pair ft = (f r

t , f
g
t ), f

r
t ∈ P , f g

t ∈ O,

and θ ∈ R is the unknown parameter which we need to estimate.

As the estimator of θ we consider the statistic

θt = F−1
t (f ◦Xt) , (6.2)

where Ft := f 2 ◦ at ∈ A+
loc ∩ Ps is assumed to be non-zero (a.s.). This assumption

is not restrictive because further we suppose that Ft → ∞ (a.s.) to provide strong

consistency of θt.

The structure of the estimator (6.2) is similar to estimator obtained by the method

of Least Squares (LS) in classical regression analysis. Therefore, θt will be called the

structural LS-estimator of θ. It is well known how to study its asymptotic behaviour

with the help of the Strong Law of Large Numbers (SLLN). Liptser (1980) [66] pro-

posed a very general form of SLLN for local martingales using a stochastic Kronecker’s

Lemma. For reader’s convenience, let us reproduce this scheme in optional setting

(see [35], [71]).

To prove Kronecker’s Lemma in optional setting, we need the following result

on sets of convergence of optional martingales. In what follows, we denote ˜︁D the

compensator of some increasing process D.

Lemma 6.1.1 (see [36]) If Y ∈ Mloc then

( ˜︁D∞ < ∞) ⊆ (Y →) a.s.,

where

Dt = ⟨Y c⟩t +
∑︂
0<s≤t

(∆Ys)
2

1 + |∆Ys|
+
∑︂
0≤s<t

(∆+Ys)
2

1 + |∆+Ys|
, (6.3)
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and (Y →) is the set, on which there exists a finite random variable Y∞(ω) =

limt→∞ Yt(ω) < ∞.

Now we present the following generalization of Kronecker’s Lemma.

Lemma 6.1.2 For processes N ∈ Mloc and A ∈ V+∩Ps the following relation holds

(A∞ = ∞) ∩ (Yt →) ⊆ (A−1
t Nt → 0) (a.s.) (t → ∞),

where

Yt =

∫︂
]0,t]

(1 + As)
−1dN r

s +

∫︂
[0,t[

(1 + As+)
−1dN g

s+. (6.4)

Proof. From (6.4) it is easy to see that∫︂
]0,t]

(1 + As)dY
r
s +

∫︂
[0,t[

(1 + As+)dY
g
s+ = Nt −N0. (6.5)

Using integration by parts formula (see Lemma 3.4, [5]) we obtain

(1 + At)Yt =

∫︂
]0,t]

(1 + As)dY
r
s +

∫︂
[0,t[

(1 + As+)dY
g
s+ +

∫︂
]0,t]

Ys−dA
r
s +

∫︂
[0,t[

YsdA
g
s+.

Then from (6.5) we conclude that

Nt

1 + At

=
N0 + Yt

1 + At

+
1

1 + At

(AtYt −
∫︂
]0,t]

Ys−dA
r
s −

∫︂
[0,t[

YsdA
g
s+).

Since supt≥0 |Yt| < ∞ on the set (A∞ = ∞)∩(Y →), we have that (1+At)
−1(N0+

94



Yt) → 0 a.s. as t → ∞ . On the other hand, we have for u < t, v < t

1

1 + At

⃓⃓⃓⃓
AtYt −

∫︂
]0,t]

Ys−dA
r
s −

∫︂
[0,t[

YsdA
g
s+

⃓⃓⃓⃓
=

1

1 + At

⃓⃓⃓⃓∫︂
]0,t]

(Yt − Ys−)dA
r
s +

∫︂
[0,t[

(Yt − Ys)dA
g
s+

⃓⃓⃓⃓
≤ 1

1 + At

(︄∫︂
]0,u]

|Yt − Ys−|dAr
s +

∫︂
]u,t]

(|Y∞ − Yt|+ |Y∞ − Ys−|)dAr
s

+

∫︂
[0,v[

|Yt − Ys|dAg
s+ +

∫︂
[v,t[

(|Y∞ − Yt|+ |Y∞ − Ys|)dAg
s+

)︄
≤2 sup

s≥0
|Ys|(1 + At)

−1(Ar
u + Ag

v) + |Y∞ − Yt|

+ (1 + At)
−1

∫︂
]u,t]

|Y∞ − Ys−|dAr
s + (1 + At)

−1

∫︂
[v,t[

|Y∞ − Ys|dAg
s+. (6.6)

Using the fact that sups≥0 |Ys| < ∞ on the set (Y →), we can choose for sufficiently

large t appropriate values u and v on the set (A∞ = ∞) ∩ (Y →) to make the right

side of (6.6) tend to zero. Consequently, the statement of the lemma follows.

Remark 6.1.1 Although we proved Lemma 6.1.2 for the process N ∈ Mloc, this proof

also works for any optional semimartingale N .

6.2 Strong Consistency

In this section we will show that the estimator θt in (6.2) is strongly consistent. The

proof of the strong consistency is based on the SLLN in optional case.

Let N ∈ Mloc and

Nt = N c
t +

∫︂
]0,∞]

∫︂
R0

xd(µr − νr)s +

∫︂
[0,∞[

∫︂
R0

xd(µg − νg)s+ (6.7)

be the canonical decomposition of N , where R0 = R \ {0}, N c be a continuous part

of N , µr and µg be random measures of right and left jumps of N , and νr and νg be

their respective compensators.
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Theorem 6.2.1 Let A ∈ V+ ∩ Ps and A∞ = ∞ a.s. If N ∈ Mloc and for some

q ∈ [1, 2]∫︂
]0,∞]

d⟨N c⟩s
(1 + As)2

+

∫︂
]0,∞]

∫︂
R0

|1 + As|−q|x|qdνr
s

+

∫︂
[0,∞[

∫︂
R0

|1 + As+|−q|x|qdνg
s+ < ∞, (6.8)

then

A−1
t Nt → 0 a.s. as t → ∞.

Proof. Using the fact that

x2

1 + |x|
≤ |x|q, q ∈ [1, 2],

we get for q ∈ [1, 2]

D̃∞ =⟨Y c⟩∞ +
˜︂∑︂

s≤∞

(∆Ys)2

1 + |∆Ys|
+

˜︂∑︂
s<∞

(∆+Ys)2

1 + |∆+Ys|

≤⟨Y c⟩∞ +
˜︂∑︂

s≤∞

(∆Ys)q +
˜︂∑︂

s<∞

(∆+Ys)q,

where Y as defined in (6.4). Thus, from (6.8) it follows that

D̃∞ ≤
∫︂
]0,∞]

d⟨N c⟩s
(1 + As)2

+

∫︂
]0,∞]

∫︂
R0

|1 + As|−q|x|qdνr
s

+

∫︂
[0,∞[

∫︂
R0

|1 + As+|−q|x|qdνg
s+ < ∞.

By Lemma 6.1.1 and Lemma 6.1.2, A−1
t Nt → 0 a.s. as t → ∞.

Theorem 6.2.2 Suppose for the model (6.1) that F∞ = ∞ and for some q ∈ [1, 2]∫︂
]0,∞]

(f r
s )

2d⟨M c⟩s
(1 + Fs)2

+

∫︂
]0,∞]

∫︂
R0

|1 + F r
s |−q|f r

s |q|x|qdνr
s

+

∫︂
[0,∞[

∫︂
R0

|1 + F g
s |−q|f g

s |q|x|qdν
g
s+ < ∞. (6.9)

Then θt → θ (a.s.) as t → ∞.
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Proof. It is sufficient to note that

θt − θ = A−1
t Nt,

where At := Ft and Nt := f ◦Mt. By Theorem 6.2.1 we get immediately the statement

of the theorem.

6.3 Sequential LS-estimators

Let us consider the model (6.1) with M ∈ M2
loc(R). We assume that there exists a

non-negative random variable ξ such that

d⟨M⟩t
dat

≤ ξ, f 2 ◦ at ∈ A+
loc ∩ Ps. (6.10)

Next, for fixed H we define

τH = inf{t : f 2 ◦ at ≥ H}, (6.11)

with τH = ∞ if the corresponding set is empty. We assumed that processes f r ∈

P , f g ∈ O and a ∈ Ps, consequently, by Theorem 2.4.14 in [4] τH is a wide sense

stopping time.

On the set {τH < ∞} we define a random variable βH by the relation

f 2 ◦ aτH− + βH

(︁
(f r

τH
)2∆aτH + (f g

τH
)2∆+aτH

)︁
= H, (6.12)

and on τH = ∞ we put βH = 0. Then βH ∈ [0, 1] and is a FτH -measurable random

variable.

We consider the following statistic as an estimator of θ

θ̂H = H−1
[︁
f 2 ◦XτH− + βH

(︁
(f r

τH
)2∆XτH + (f g

τH
)2∆+XτH

)︁]︁
. (6.13)
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The next theorem shows that the statistic defined by means of (6.10)-(6.13) is an

unbiased estimator of θ and has the property of guaranteed accuracy, i.e., bounded

variance.

Theorem 6.3.1 Suppose that assumptions (6.10) hold, Eξ < ∞, and

P{f 2 ◦ a∞ = ∞} = 1. (6.14)

Then for all H > 0

P{τH < ∞} = 1, Eθ̂H = θ, Varθ̂H ≤ H−1Eξ.

Proof. First,

P{τH = ∞} = P{f 2 ◦ a∞ < H}

= 1−P{f 2 ◦ a∞ ≥ H}

≤ 1−P{f 2 ◦ a∞ = ∞}

= 1− 1 = 0.

Thus,

P{τH < ∞} = 1−P{τH = ∞} = 1.

Next, using (6.1) and (6.13), we obtain

θ̂H =H−1
[︁
f 2 ◦XτH− + βH

(︁
(f r

τH
)2∆XτH + (f g

τH
)2∆+XτH

)︁]︁
=H−1

[︁
(f 2 ◦ aτH−)θ + βH

(︁
(f r

τH
)2∆aτH + (f g

τH
)2∆+aτH

)︁
θ

+ f 2 ◦MτH− + βH

(︁
(f r

τH
)2∆MτH + (f g

τH
)2∆+MτH

)︁ ]︁
=θ +H−1NτH ,

where

Nt = 1{t<τH}f
2 ◦Mt + 1{t=τH}βH

(︁
(f r

τH
)2∆MτH + (f g

τH
)2∆+MτH

)︁
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Since the process Nt is a stochastic integral with respect to the optional square

integrable local martingale M , by the properties of optional stochastic integrals we

have

⟨N⟩t = 1{t<τH}f
2 ◦ ⟨M⟩t + 1{t=τH}β

2
H

(︁
(f r

τH
)2∆⟨M⟩τH + (f g

τH
)2∆+⟨M⟩τH

)︁
.

Hence by (6.10) and (6.12) we get

⟨N⟩τH ≤ ξ
[︁
f 2 ◦ aτH− + βH

(︁
(f r

τH
)2∆aτH + (f g

τH
)2∆+aτH

)︁]︁
= ξH.

Consequently, Nt∧τh is an optional square integrable martingale, and therefore

ENτH = 0, EN2
τH

≤ HEξ,

which proves the theorem.

Now, it is reasonable to discuss the following problem of distinguishing two hy-

potheses with simultaneous estimation of the parameter θ ∈ R :

H0 : Xt =f ◦ atθ +Mt, (6.15)

H1 : Xt =Mt, (6.16)

where M ∈ M2
loc(R). Assuming that (6.10) is fulfilled, we define τH , βH as in (6.11),

(6.12) and

ϕH(X) = H−1
[︁
f 2 ◦XτH− + βH

(︁
(f r

τH
)2∆XτH + (f g

τH
)2∆+XτH

)︁]︁
.

Theorem 6.3.2 Suppose that in the problem (6.15) the parameter satisfies

θ ∈ Rδ = {θ ∈ R : |θ| ≥ δ > 0}
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and condition (6.14) is fulfilled for both hypotheses H0 and H1, Eξ < ∞. Then for a

given ϵ > 0 the criterion

∆(τH) =

{︄
0 if |ϕH(X)| ≥ δ/2,

1 if |ϕH(X)| < δ/2,

for H ≥ 4δ−2ϵ−1Eξ ensures distinguishability of the hypotheses H0 and H1 with prob-

abilities of errors not exceeding ϵ > 0.

Proof. From the definition of ϕH(X), if either H0 or H1 is true, then it follows,

respectively, that

ϕH(X) = θ + ϕH(M) or ϕH(X) = ϕH(M).

Note that by Theorem 6.3.1 under either of the hypotheses H0, H1

EϕH(M) = 0, Eϕ2
H(M) ≤ H−1Eξ. (6.17)

Then in case when H0 is true, applying Chebyshev’s inequality we obtain that for

4δ−2ϵ−1Eξ ≤ H

P{ω : ∆(τH) ̸= 1} =P{ω : |ϕH(X)| ≥ δ/2}

=P{ω : |ϕH(M)| ≥ δ/2∥ ≤ 4δ−2E|ϕH(M)|2

≤4δ−2H−1Eξ ≤ ϵ.

In case when H1 is true, using the simple fact that for θ ∈ Rδ

δ − |ϕH(M)| ≤ |δ + ϕH(M)| ≤ |θ + ϕH(M)| = |ϕH(X)|

implying that

{ω : |ϕH(X)| < δ/2} ⊆ {ω : |ϕH(M)| ≥ δ/2},
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we arrive to the following estimate of the probability of error:

sup
θ∈Rδ

P{ω : ∆(τH) ̸= 0} = sup
θ∈Rδ

P{ω : |ϕH(X)| < δ/2}

≤ sup
θ∈Rδ

P{ω : |ϕH(M)| < δ/2}

≤4δ−2 sup
θ

Eϕ2
H(M) ≤ 4δ−2H−1Eξ ≤ ϵ.

6.4 Further extensions and examples

Let us show how the linear optional regression model (6.1) can be extended in a non-

linear case (see, for example, [18]). The non-linear optional regression model has the

following form

Xt = f ◦ atg(θ) +Mt, (6.18)

where the processes f, a,M satisfy the same assumptions as in (6.10)-(6.12) and

g : R → R is a continuous, bijective function with a continuous inverse g−1. Let τH

and βH be as in (6.11) and (6.12), respectively. Then the sequential LS-estimator can

be obtained by defining ζ := g(θ) and realizing from (6.13) that

ζ̂H = g(θ̂H) = H−1
[︁
f 2 ◦XτH− + βH

(︁
(f r

τH
)2∆XτH + (f g

τH
)2∆+XτH

)︁]︁
or

θ̂H = g−1
(︁
H−1

[︁
f 2 ◦XτH− + βH

(︁
(f r

τH
)2∆XτH + (f g

τH
)2∆+XτH

)︁]︁)︁
. (6.19)

Now, suppose (6.14) holds, g(θ) is differentiable and∫︂ ∞

−∞
(g−1(x))2 exp(−x2/2)dx < ∞. (6.20)

Using the same argument as in the proof of Theorem 6.3.1, we show that P{τH =

∞} = 1.
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Next, note that

E(θH − θ) = E
[︁
g−1(g(θ) +H−1NτH )− g−1(g(θ))

]︁
,

E(θH − θ)2 = E
[︁
g−1(g(θ) +H−1NτH )− g−1(g(θ))

]︁2
,

where

Nt = 1{t<τH}f
2 ◦Mt + 1{t=τH}βH

(︁
(f r

τH
)2∆MτH + (f r

τH
)2∆+MτH

)︁
.

From the proof of Theorem 6.3.1 we already know that

Nt∧τ ∈ M∩M2, ENτH = 0 and EN2
τH

≤ HEξ.

From assumption (6.14) it follows that ⟨N⟩∞ = ∞. Thus, by Theorem 6.2.1 we have

lim
t→∞

Nt

⟨N⟩t
= 0 (a.s.) and lim

H→∞

NτH

⟨N⟩τH
= 0 (a.s.).

Since ⟨N⟩τH ≤ Hξ, we get

lim
H→∞

NτH

H
= 0 (a.s.).

Using the Skorokhod embedding theorem we obtain a

E(θH − θ) =

∫︂ ∞

−∞

[︁
g−1(g(θ) +H−1x)− g−1(g(θ))

]︁
e−x2/(2H)dx

=

∫︂
y≤A

[︁
g−1(g(θ) +H−1/2y)− g−1(g(θ))

]︁
e−y2/2dy

+

∫︂
y>A

[︁
g−1(g(θ) +H−1/2y)− g−1(g(θ))

]︁
e−y2/2dy

Applying condition (6.14) and (6.20) one can always choose numbers A0(ϵ) and H0(ϵ)

such that for H ≥ H0(ϵ)∫︂
y≤A0(ϵ)

[︁
g−1(g(θ) +H−1/2y)− g−1(g(θ))

]︁
e−y2/2dy < ϵ
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and ∫︂
y>A0(ϵ)

[︁
g−1(g(θ) +H−1/2y)− g−1(g(θ))

]︁
e−y2/2dy < ϵ.

Hence, E(θH − θ) < 2ϵ for H > H0(ϵ). This proves θH is asymptotically unbiased as

H → ∞.

It is not difficult to show similar calculations for E(θτH − θ)2. From Cramer-Rao-

Wolfovitz inequality it follows that θτH is asymptotically efficient.

On the other hand, we can show that θH is unbiased and efficient estimator under

assumption that g−1(θ) is differentiable and has a bounded first derivative. Using

Mean Value theorem, we have

E|θH − θ| =E
[︁
g−1(g(θ) +H−1NτH )− g−1(g(θ))

]︁
≤E sup

ζ∈[g(θ),g(θ)+H−1NτH
]

|(g−1)′(ζ)|NτH

H

≤0

Similarly,

E|θH − θ|2 ≤E

[︄
sup

ζ∈[g(θ),g(θ)+H−1NτH
]

|(g−1)′(ζ)|

]︄2
N2

τH

H2

≤K2H−1Eξ,

where K is the constant bound on (g−1)′(ξ).

Let us now illustrate several examples.

Example 6.4.1 Non-linear regression model. Consider the following non-linear

model

Xt = f ◦ at
√
θ +Mt,

where f, a,M satisfy assumption (6.10)-(6.12),(6.14).
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The function g(θ) =
√
θ, θ ≥ 0, is differentiable and its inverse g−1(θ) = θ2 clearly

satisfies (6.20):∫︂ ∞

−∞
(g−1(x))2 exp(−x2/2)dx =

∫︂ ∞

−∞
x4 exp(−x2/2)dx = 3

√
2π < ∞.

Thus, by the above discussion the sequential LS-estimator

θ̂H =
(︁
H−1

[︁
f 2 ◦XτH− + βH

(︁
(f r

τH
)2∆XτH + (f g

τH
)2∆+XτH

)︁]︁)︁2
is both asymptotically unbiased and asymptotically efficient as H → ∞.

Example 6.4.2 Risk process. Consider the following risk process

Xt = ct+ σWt − aN r
t + bN g

t , (6.21)

where c, σ, a, b are positive constants, W is a Wiener process, N r and N g are a Pois-

son process and left-continuous modification of a Poisson process, respectively. The

constant c usually represents premium payments in risk theory, whereas a and b de-

scribe average value of claims and positive gains, respectively. The process σWt is a

random perturbation.

We can rewrite the process Xt as follows

Xt = θt+Mt,

where θ := c − aλr + bλg, Mt := σWt − a(N r
t − λrt) + b(N g

t − λgt), λr and λg are

jump intensities of N r
t and N g

t , respectively.

The structural LS estimator of θ is

θt =
Xt

t
. (6.22)

The condition (6.9) of Theorem 3.2, i.e.,

σ2

∫︂
]0,∞]

ds

(1 + s)2
+ aqλr

∫︂
]0,∞]

(1 + s)−qds < ∞,
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holds for any q ∈ (1, 2]. Thus, the estimator (6.22) is strongly consistent.

The sequential LS-estimators have the following form

θ̂H =
XτH

H
.

All assumptions of Theorem 6.3.1 are obviously satisfied, and ξ = σ2 + a2λr + b2λg.

Consequently,

P{τH < ∞} = 1, Eθ̂H = θ, Varθ̂H ≤ σ2 + a2λr + b2λg

H
.

We usually want the process Xt to be positive, so the estimator θt = c−aλr+bλg > 0.

This assertion is called as a net profit condition in risk theory.

Example 6.4.3 Ornstein–Uhlenbeck process. In mathematical finance we often

deal with Ornstein–Uhlenbeck type processes that possess mean reversion property, i.e.

Xt =

∫︂ t

0

(µ−Xs−)dsθ +Mt,

where µ is a positive constant, and M ∈ M2
loc.

We assume that

Ft :=

∫︂ t

0

(µ−Xs−)
2ds ∈ A+

loc ∩ Ps and
d⟨M⟩t
dt

≤ ξ. (6.23)

Then, the structural LS estimator of θ is

θt =
(µ−X−) ◦Xt∫︁ t

0
(µ−Xs−)2ds

, (6.24)

and sequential LS-estimators have the following form

θ̂H = H−1
[︁
(µ−Xs−)

2 ◦XτH−
]︁
.

If the following condition∫︂
]0,∞]

(µ−Xs−)
2d⟨M c⟩s

(1 + Fs)2
+

∫︂
]0,∞]

∫︂
R0

|1 + F r
s |−q|µ−Xs−|q|x|qdνr

s < ∞
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holds for some q ∈ [1, 2] and F∞ = ∞, then by Theorem 3.2 the estimator (6.24) is

strongly consistent.

Furthermore, by Theorem 6.3.1, we have

P{τH < ∞} = 1, Eθ̂H = θ, Varθ̂H ≤ H−1Eξ.

Example 6.4.4 Finally, consider a regression model with well-known centered Gaus-

sian martingale M ∈ M2
loc and a deterministic function ft,

Xt =

∫︂ t

0

fsdsθ +Mt. (6.25)

Then, the LS estimator of θ is

θt =
f ◦Xt∫︁ t

0
f 2
s ds

, (6.26)

It can be shown in the same way as in [71] that strong consistency of (6.26) follows

only from the assumption of
∫︁∞
0

f 2
s ds = ∞.

We assume that

d⟨M⟩t
dt

≤ ξ, (6.27)

where ξ is constant. Note that in case of centered Gaussian martingales ⟨M⟩t =

EM2
t < ∞ is a deterministic function. Then sequential LS-estimators have the fol-

lowing form

θ̂H = H−1
[︁
f 2 ◦XτH−

]︁
.

If, in addition,

P

{︃∫︂ ∞

0

f 2
s ds = ∞

}︃
= 1,

then, by Theorem 6.3.1, we have

P{τH < ∞} = 1, Eθ̂H = θ, Varθ̂H ≤ H−1ξ.
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6.5 Asymptotic behaviour of the trajectories of

weighted LS-estimates

In this section we will need the following theorem of law of iterated logarithms in case

of optional martingales.

Theorem 6.5.1 (see [36]) Let N ∈ M2
loc and E supt |∆Xt| < ∞, E supt |∆+Xt| <

∞. Then on the set (⟨N⟩∞ = ∞)

lim sup
t

Nt

(2⟨N⟩tloglog⟨N⟩t)1/2
≤ 1 a.s.

Let us now consider a version of the model (6.1) where at = ⟨M⟩t, i.e.

Xt = f ◦ ⟨M⟩t +Mt,

where M ∈ M2
loc.

Next, we define

Yt := θt − θ =
Nt

⟨N⟩t
,

where Nt = f ◦Mt.

Theorem 6.5.2 Suppose that the following conditions are fulfilled:

E sup
t

|∆Xt| < ∞, E sup
t

|∆+Xt| < ∞,

⟨N⟩∞ = ∞.

Then

lim sup
t

|Yt|⟨N⟩1/2t

(2 log log⟨N⟩t)1/2
≤ 1 a.s.

Proof. Multiplying by ⟨N⟩1/2t and dividing by (2 log log⟨N⟩t)1/2
1/2

, we get

|Yt|⟨N⟩1/2t

(2 log log⟨N⟩t)1/2
=

Nt

(2⟨N⟩tloglog⟨N⟩t)1/2
.

Applying directly Theorem 6.5.1, the statement of the theorem follows.
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Chapter 7

Multi-dimensional optional
regression models

Estimation of regression parameters is a classical statistical problem which has various

applications in natural and social sciences. In classical statistics this problem was

studied for regression models with discrete time. With the development of theory

of stochastic processes it obtained a new formulation as a problem of parameter

estimation in random processes and became one of the cornerstones in the statistics

of random processes. The book of [67] brilliantly demonstrates this for the models

with diffusion type processes.

The development of general theory of random processes and theory of martingales

in particular opened new ways for construction of more general models embedding

discrete time and continuous time models at the same time. Apparently, works of [1],

[2] were the first of this kind. Further, a series of other works gave a new impulse

to this direction by consistently examining regression models in the form of cadlag

semimartingales, where the drift depends on an unknown parameter and the martin-

gale part represents the errors in observations. The parameter estimation was usually

implemented by utilizing least squares (LS) method (see, for example, [77], [22], [70],

[60]). Strong consistency and asymptotic normality of the LS-estimates under very
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general conditions were established. Moreover, a mean-square guaranteed accuracy

was proved for sequential LS-estimates (see [72]). The detailed review of the results

of this theory for that period can be found in [71], [73]. Furthermore, in the work of

[34] sequential estimation with prescribed accuracy was extended to the multivariate

semimartingale regression models with out prior existed restrictions on the number

of unknown parameters and the dimension of the observation process.

We also would like to point out that this area attracts an ongoing research interest,

especially, from the point of view of its applications in finance, econometrics etc (see,

for example, [88], [64]). Modern works on parameter estimation seem to focus on

non-semimartingale models driven by fractional Brownian Motion (see, for example,

[51]) and on special cases of semimartingale models (see, for example, [19], [20], [92]).

The recent review of the historical development in sequential prescribed precision

estimation can be found in [86, Section 4].

Martingale theory is well-developed under so-called “usual conditions”, when fil-

tration (information flow) is complete and right-continuous. However, statistical data

and information are usually delivered by a stochastic process, whose history (natural

filtration) may not be right-continuous, and therefore such technical conditions may

not be fulfilled (see [4]). This is the main reason why we need to consider regres-

sion models in more general setting which we call here the optional semimartingale

regression model. Optional semimartingales, on which our optional regression model

is based, admit trajectories which are not right-continuous and arise when “usual

conditions” are not assumed on filtered probability space. Up to our knowledge, cur-

rently there are no works devoted to the relaxing of these “usual conditions” and

investigation of such general optional regression model.

The current chapter is a natural extension of [9] in which the authors studied LS
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estimates and their sequential versions for a 1-dimensional optional regression model.

The first goal of this chapter is to derive the weighted LSE for a multivariate optional

regression model and prove strong consistency of this estimator under conditions on

regressors similar to ones given in [71]. The second goal is to investigate sequential

LS-estimates in the multivariate optional semimartingales regression model. In the

case, when the dimension of unknown parameter does not exceed the dimension of ob-

servable process, we adopt the approach proposed in [72]. In general case, when such

restriction is not assumed, we solve the problem with the help of two-step procedure

proposed by [34].

This chapter is organized in the following way. In Section 6.1, we introduce the

optional semimartingale model. In Section 6.2, we derive the weighted LSE for this

model. In Section 6.3, we prove strong consistency of the weighted LSE by applying

SLLN. Section 6.4 presents the construction of the unbiased fixed accuracy estimators

for multivariate optional regression models with the number of parameters less than or

equal to the dimension of the observation process. The two-step sequential estimation

procedure for the general case with an arbitrary number of parameters is studied in

Section 6.5.

7.1 Model

Let (Ω,F ,F = (Ft)t≥0,P) be a filtered probability space not necessarily satisfying the

usual conditions: the filtration F = (Ft)t≥0 is right-continuous, that is Ft = ∩s>tFs,

and the σ-algebra F0 contains all P-null sets. Consider the observation process X =

(Xt)t≥0 specified by the stochastic regression model

Xt = X0 + Φ′ ◦ atθ +mt, t ≥ 0, (7.1)
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where the optional stochastic integral

Φ′ ◦ at =
∫︂
]0,t]

(Φr
s)

′dars +

∫︂
[0,t[

(Φg
s)

′dags+,

the prime denotes transposition; X, m ∈ Rn; Φr and Φg are, respectively, predictable

and optional p×n matrix (the matrix of stochastic regressors); θ ∈ Rp is the vector of

unknown parameters; mt = (m1
t , . . . ,m

n
t )

′,m0 = 0, is a noise which is a locally square

integrable optional martingale with the trajectories having right and left limits but

not necessarily righ- or left-continuous:

at = ⟨m⟩t = tr(⟨mi,mj⟩t)1≤i,j≤n =
n∑︂

i=1

⟨mi⟩t.

Let

Bt =

(︃
d⟨mi,mj⟩t

dat

)︃
1≤i,j≤n

, Bc
t =

(︃
d⟨mic,mjc⟩t

d⟨mc⟩t

)︃
1≤i,j≤n

,

Bd
t =

(︃
d⟨mid,mjd⟩t

d⟨md⟩t

)︃
1≤i,j≤n

, Bg
t =

(︃
d⟨mig,mjg⟩t

d⟨mg⟩t

)︃
1≤i,j≤n

,

⟨mc⟩t =
n∑︂

i=1

⟨mic⟩t, ⟨md⟩t =
n∑︂

i=1

⟨mid⟩t, ⟨mg⟩t =
n∑︂

i=1

⟨mig⟩t;

here m = mc+md+mg is the orthogonal decomposition of the vector-valued martin-

gale m into a continuous optional martingale, a right-continuous and left-continuous

martingale parts. Note that ⟨mic,mjd⟩ = ⟨mig,mjd⟩ = ⟨mic,mjg⟩ = 0, for all

1 ≤ i, j ≤ n,

at =⟨mc⟩t + ⟨md⟩t + ⟨mg⟩t,

Btd⟨m⟩t =Bc
td⟨mc⟩t +Bd

t d⟨md⟩t +Bg
t d⟨mg⟩t.

Example 7.1.1 Consider a special case of model (7.1):

X i
t =θkt+mi

t, (7.2)

mi
t =σiW i

t + ai(N ir
t − λirt)− bi(N ig

t − λigt), i = 1, . . . , n. (7.3)
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where σi, ai, bi, λir, λig are constants, k =
∑︁n

i=1 k
i, ki := (σi)2+(ai)2λir+(bi)2λig, W i

t

is a 1-dimensional Wiener process, N ir is a Poisson process and N ig is a left-continuous

modification of a Poisson process, λir and λig are corresponding intensities of N ir and

N ig. The processes W i, N id and N ig are all mutually independent.

Here, mi
t is an optional martingale with an orthogonal decomposition, mi

t = mic+

mid +mig, mic = σiW i
t , mid = ai(N ir

t − λirt), mig = bi(N ig
t − λigt).

In this example, the process Φ = (1, . . . , 1) in (7.1) is an n-dimensional row vector

of ones, the process

at =
n∑︂

i=1

⟨mic⟩t + ⟨mid⟩t + ⟨mig⟩t =
n∑︂

i=1

[︁
(σi)2 + (ai)2λir + (bi)2λig

]︁
t = kt,

and the process Bt is a matrix with fixed values (k
i

k
)i=1,...,n on its main diagonal. In

addition, we assume that Bt is invertible, and β :=
∑︁n

i,j=1 β
ij > 0, where βij is a

value from the inverse matrix (Bt)
−1.

The problem of estimation of θ in the model (7.2) can be important when one

wants to estimate a cumulative drift of a portfolio of financial assets (index) mod-

elled by the process (7.2), e.g., what is the main trend of a portfolio of some stocks.

Another application can be the estimation of the drift parameter of model (7.2) when

Xt describes capital processes of some firms (see Chapter 4). For instance, X i
t can be

a risk process of an insurance company where θkt describes a stable flow of income

payments while N r
t describes an accumulation of claims. For simple exposition of fur-

ther results, we assumed constant coefficients in (7.2)-(7.3), though it is, of course,

possible to consider deterministic or stochastic coefficients.

Example 7.1.2 Consider the model (7.1) where the process Φt = (Φr
t ,Φ

g
t ) is deter-

ministic and mt is an optional Gaussian martingale. We know that the distribution

of mt is fully characterized by its covariance function which is a deterministic func-
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tion. We would like to emphasize optionality of mt by pointing out that its covariance

function has right and left jumps. As a result, the process at is a deterministic process

which has jumps ∆at and ∆+at.

7.2 Weighted LSE for optional semimartingale mod-

els in continuous time

Let (Xt)t≥0 be an observation process starting from X0 and specified by the stochastic

differential equation (7.1). Let ˜︂W = (˜︂W r
t ,
˜︂W g

t ), t ≥ 0, ˜︂W r
t ∈ P and ˜︂W g

t ∈ O be some

symmetric positive definite weight matrices of size n × n. Let a = ac + ad + ag

be the decomposition of the increasing process a ∈ Ps into continuous and purely

discontinuous parts:

adt =
∑︂
0<s≤t

∆as, agt =
∑︂
0≤s<t

∆+as, act = at − adt − agt ,

∆as = as − as−, ∆+as = as+ − as.

Introduce a loss function

Lδ(θ) =
∑︂
tk<T

(︂
∆ ˜︁Xd

tk
− (Φr

tk
)′θ∆adtk

)︂′˜︂W r
tk

(︂
∆ ˜︁Xd

tk
− (Φr

tk
)′∆adtk

)︂
+
∑︂
tk≤T

(︂
∆+ ˜︁Xg

tk
− (Φg

tk
)′θ∆agtk

)︂′˜︂W g
tk

(︂
∆ ˜︁Xg

tk
− (Φg

tk
)′∆agtk

)︂
+
∑︂
tk<T

(∆actk)
⊕
(︂
∆ ˜︁Xc

tk
− (Φr

tk
)′θ∆actk

)︂′˜︂W r
tk

(︂
∆ ˜︁Xc

tk
− (Φr

tk
)′∆actk

)︂
,

where δ = {t0, t1, . . .}, 0 = t0 < t1 < . . . < tn = T, is some partition of the interval

[0, T ];

x⊕ =

{︄
x−1, if x ̸= 0,

0, if x = 0;
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∆ ˜︁Xd
tk
= ˜︁Xd

tk+1
− ˜︁Xd

tk
, ∆ ˜︁Xg

tk
= ˜︁Xg

tk+1
− ˜︁Xg

tk
, ∆ ˜︁Xc

tk
= ˜︁Xc

tk+1
− ˜︁Xc

tk
,

˜︁Xd
t =

∫︂
]0,t]

1{∆as ̸=0}dX
r
s , ˜︁Xg

t =

∫︂
]0,t]

1{∆+as ̸=0}dX
g
s+, ˜︁Xc

t =Xr
t − ˜︁Xd

t ,

∆actk =actk+1
− actk , ∆adtk =adtk+1

− adtk , ∆agtk =agtk+1
− agtk ;

1A is the indicator of a set A.

For the fixed partition δ and weight matrix ˜︂W one can find an estimator θ̂δ which

minimizes the loss function Lδ(θ). We have

∇θLδ(θ) =− 2
∑︂
tk<T

Φr
tk
˜︂W r

tk
∆ ˜︁Xd

tk
∆adtk + 2

∑︂
tk<T

Φr
tk
˜︂W r

tk
(Φr

tk
)′
(︁
∆adtk

)︁2
θ

− 2
∑︂
tk≤T

Φg
tk
˜︂W g

tk
∆ ˜︁Xg

tk
∆agtk + 2

∑︂
tk<T

Φg
tk
˜︂W g

tk
(Φg

tk
)′
(︁
∆agtk

)︁2
θ

− 2
∑︂
tk<T

Φr
tk
˜︂W r

tk
∆ ˜︁Xc

tk
∆actk

(︁
actk
)︁⊕

+ 2
∑︂
tk<T

Φr
tk
˜︂W r

tk
(Φr

tk
)′∆actkθ

where ∇θ is the gradient with respect to θ. The equation ∇θLδ(θ) = 0 yields the

estimator

θ̂δ =

[︄∑︂
tk<T

Φr
tk
˜︂W r

tk
(Φr

tk
)′
(︁
∆adtk

)︁2
+
∑︂
tk<T

Φg
tk
˜︂W g

tk
(Φg

tk
)′
(︁
∆agtk

)︁2
+
∑︂
tk<T

Φr
tk
˜︂W r

tk
(Φr

tk
)′∆actk

]︄−1

×

[︄∑︂
tk<T

Φr
tk
˜︂W r

tk
∆ ˜︁Xd

tk
∆adtk +

∑︂
tk≤T

Φg
tk
˜︂W g

tk
∆ ˜︁Xg

tk
∆agtk +

∑︂
tk<T

Φr
tk
˜︂W r

tk
∆ ˜︁Xc

tk

]︄
.

where we make use of the equality ∆ ˜︁Xc
tk
∆actk

(︁
actk
)︁⊕

= ∆ ˜︁Xc
tk
, which is true, because

the process Xc does not change on constancy intervals of the process ac (see [87]).

Taking a sequence of partitions δn = {tn0 , tn1 , . . .}, 0 = tn0 < tn1 < . . . < tnn = T,

such that maxk
(︁
tnk+1 − tnk

)︁
→ 0 as n → ∞ we obtain the following result:
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Theorem 7.2.1 Let, for all t > 0,∫︂
]0,t]

tr
[︂
Φr

s
˜︂W r

s (Φ
r
s)

′
]︂ (︁

∆as + 1{∆as=0}
)︁
dars <∞ (a.s.),∫︂

]0,t]

tr
[︂
Φr

s
˜︂W r

sB
r
s
˜︂W r

s (Φ
r
s)

′
]︂ (︁

(∆as)
2 + 1{∆as=0}

)︁
dars <∞ (a.s.),∫︂

[0,t[

tr
[︂
Φg

s
˜︂W g

s (Φ
g
s)

′
]︂
∆+asda

g
s+ <∞ (a.s.),∫︂

[0,t[

tr
[︂
Φg

s
˜︂W g

s B
g
s
˜︂W g

s (Φ
g
s)

′
]︂
(∆+as)

2dags+ <∞ (a.s.),

and the matrix∫︂
]0,T ]

[︂
Φr

s
˜︂W r

s (Φ
r
s)

′
]︂ (︁

∆as + 1{∆as=0}
)︁
dars +

∫︂
[0,T [

[︂
Φg

s
˜︂W g

s (Φ
g
s)

′
]︂
∆+asda

g
s+

be invertible for sufficiently large T a.s.

Then θ̂δn → θ̂T in probability as n → ∞ and maxk(t
n
k+1 − tnk) → 0, where

θ̂T =

[︄∫︂
]0,T ]

Φr
s
˜︂W r

s (Φ
r
s)

′∆asda
r
t +

∫︂
[0,T [

Φg
s
˜︂W g

s (Φ
g
s)

′∆+asda
g
s+

+

∫︂
]0,T ]

Φr
s
˜︂W r

s (Φ
r
s)

′dacs

]︄−1

×
[︃∫︂

]0,T ]

Φr
s
˜︂W r

s∆asd ˜︁Xd
s +

∫︂
[0,T [

Φg
s
˜︂W g

s ∆
+asd ˜︁Xg

s+ +

∫︂
]0,T ]

Φr
s
˜︂W r

s d ˜︁Xc
s

]︃
.

(7.4)

By making use of the equalities

∆asdX
r
s =∆as(d ˜︁Xc

s + d ˜︁Xd
s )

=∆as1{∆as=0}dX
r
s +∆asd ˜︁Xd

s

=∆asd ˜︁Xd
s ;

∆+asdX
g
s+ =∆+as1{∆+as=0}dX

g
s+ +∆+asd ˜︁Xg

s+

=∆+asd ˜︁Xg
s+;
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we can rewrite θ̂T as follows:

θ̂T =

[︃∫︂
]0,T ]

Φr
sW

r
s (Φ

r
s)

′dart +

∫︂
[0,T [

Φg
sW

g
s (Φ

g
s)

′dags+

]︃−1

×
[︃∫︂

]0,T ]

Φr
sW

r
s dX

r
s +

∫︂
[0,T [

Φg
sW

g
s dX

g
s+

]︃
= [ΦW (Φ)′ ◦ aT ]−1

[ΦW ◦XT ] (7.5)

where

W r
s = ˜︂W r

s (∆as + 1{∆as=0}) and W g
s = ˜︂W g

s ∆
+as.

The estimator θ̂T is called the weighted least-squares estimator (LSE).

7.3 Strong consistency of weighted LSE

The main tool in the proof of strong consistency of weighted LSE in (7.5) is SLLN

for multidimensional optional martingales. In order to prove it we need the following

lemmas.

For N = (N1, . . . , Np)′ ∈ M2
loc(Rp) assume

Qr
t =

(︃
d⟨N ir, N jr⟩t

d⟨N r⟩t

)︃
1≤i,j≤p

and Qg
t =

(︃
d⟨N ig, N jg⟩t

d⟨N g⟩t

)︃
1≤i,j≤p

,

where Qr ∈ P , Qg ∈ Ps and N i = N ir +N ig.

Let A = (Ai,j
t )i,j≤p ∈ V+ ∩ Ps and A+ = (Ai,j

t )i,j≤p ∈ V+ such that∫︂
]0,t]

trA−1
s Qr

s(A
−1
s )′d⟨N r⟩s < ∞,∫︂

[0,t[

trA−1
s+Q

r
s+(A

−1
s+)

′d⟨N r⟩s+ < ∞

Then the process

Yt =

∫︂
]0,t]

A−1
s dN r

s +

∫︂
[0,t[

A−1
s+dN

g
s+ ∈ M2

loc(Rp)

is well-defined.

Consider a p-dimensional version of Kronecker’s Lemma for matrices.
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Lemma 7.3.1 Let N ∈ M2
loc(R

p), A ∈ V+ ∩ Ps and A+ ∈ V+. Then

(λmin(At) → ∞) ∩ (lim sup
t→∞

λ−1
min(At)λmax(A

r
t ) < ∞)∩

(lim sup
t→∞

λ−1
min(At)λmax(A

g
t ) < ∞) ∩ (Yt →) ⊆ (

⃦⃦
A−1

t Nt

⃦⃦
→ 0) (a.s.)

where λmin(At) and λmax(At) are smallest and largest eigenvalues of matrix At.

Proof. It is easy to see that Nt =
∫︁
]0,t]

AsdY
r
s +

∫︁
[0,t[

As+dY
g
s+ (a.s.).

Next, using integration by parts formula we get

AtYt =

∫︂
]0,t]

AsdY
r
s +

∫︂
[0,t[

As+dY
g
s+ +

∫︂
]0,t]

dAr
sYs− +

∫︂
[0,t[

dAg
s+Ys.

From this we have

A−1
t Nt = A−1

t

[︃∫︂
]0,t]

(Yt − Ys−)dA
r
s +

∫︂
[0,t[

(Yt − Ys)dA
g
s+

]︃
.

Taking into account the conditions of the lemma, we get for u < t, v < t
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⃦⃦
A−1

t Nt

⃦⃦
≤λ−1

min(At)

[︃⃦⃦⃦⃦∫︂
]0,t]

(Yt − Ys−)dA
r
s

⃦⃦⃦⃦
+

⃦⃦⃦⃦∫︂
[0,t[

(Yt − Ys)dA
g
s+

⃦⃦⃦⃦]︃
≤λ−1

min(At)

[︄ ⃦⃦⃦⃦∫︂
]0,u]

(Yt − Ys−)dA
r
s

⃦⃦⃦⃦
+

⃦⃦⃦⃦∫︂
]u,t]

(Yt − Ys−)dA
r
s

⃦⃦⃦⃦

+

⃦⃦⃦⃦∫︂
[0,v[

(Yt − Ys)dA
g
s+

⃦⃦⃦⃦
+

⃦⃦⃦⃦∫︂
[v,t[

(Yt − Ys)dA
g
s+

⃦⃦⃦⃦ ]︄

≤λ−1
min(At)

[︄ ⃦⃦⃦⃦∫︂
]0,u]

(Yt − Ys−)dA
r
s

⃦⃦⃦⃦
+

⃦⃦⃦⃦∫︂
]u,t]

(Y∞ − Yt)dA
r
s

⃦⃦⃦⃦
+

⃦⃦⃦⃦∫︂
]u,t]

(Y∞ − Ys−)dA
r
s

⃦⃦⃦⃦
+

⃦⃦⃦⃦∫︂
[0,v[

(Yt − Ys)dA
g
s+

⃦⃦⃦⃦
+

⃦⃦⃦⃦∫︂
[v,t[

(Y∞ − Yt)dA
g
s+

⃦⃦⃦⃦
+

⃦⃦⃦⃦∫︂
[v,t[

(Y∞ − Ys)dA
g
s+

⃦⃦⃦⃦ ]︄

≤λ−1
min(At)

[︃
2n sup

s≥0
∥Ys∥ [λmax(A

r
u) + λmax(A

g
v)]

+ n ∥Y∞ − Yt∥ [λmax(A
r
t ) + λmax(A

g
t )]

+

⃦⃦⃦⃦∫︂
]u,t]

(Y∞ − Ys−)dA
r
s

⃦⃦⃦⃦
+

⃦⃦⃦⃦∫︂
[v,t[

(Y∞ − Ys)dA
g
s+

⃦⃦⃦⃦ ]︄ (7.6)

For sufficiently large t by choosing appropriate values u and v the right hand-side

in (7.6) can be made arbitrary small.

From here, we obtain the following version of SLLN for p-dimensional optional

martingales.

Lemma 7.3.2 Suppose N ∈ M2
loc(Rp), A ∈ V+ ∩ Ps, A+ ∈ V+ and the following

conditions hold (a.s.):

(a) λmin(At) → ∞ as t → ∞;
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(b)

lim sup
t→∞

λ−1
min(At)λmax(A

r
t ) < ∞,

lim sup
t→∞

λ−1
min(At)λmax(A

g
t ) < ∞;

(c) ∫︂
]0,∞]

trA−1
s Qr

s(A
−1
s )′d⟨N r⟩s < ∞,∫︂

[0,∞[

trA−1
s+Q

r
s+(A

−1
s+)

′d⟨N r⟩s+ < ∞.

Then
⃦⃦
A−1

t Nt

⃦⃦
→ 0 a.s. as t → ∞.

Proof. From condition (c), it follows that ⟨Y ⟩∞ < ∞ a.s.. Then from Theorem 2.2

in [36] we have ∥Yt − Y∞∥ → 0 a.s. and by Lemma 7.3.1 we obtain
⃦⃦
A−1

t Nt

⃦⃦
→ 0 a.s.

Suppose

Nt =

∫︂
]0,t]

Ψr
s(W

r
s )

1/2dmr
s +

∫︂
[0,t[

Ψg
s(W

g
s )

1/2dmg
s+ ∈ M2

loc(R
p),

At =

∫︂
]0,t]

Ψr
s(Ψ

r
s)

′dars +

∫︂
[0,t[

Ψg
s(Ψ

g
s)

′dags+, (7.7)

where

Ψj
t = Φj

t(W
j
t )

1/2, j = r, g, At ∈ V+ ∩ Ps, At+ ∈ V+.

Theorem 7.3.1 (cf. [73]). Suppose the following conditions hold for the regressors

in model (7.1) and the weight matrix W = (W r,W g) (a.s.)

(C1) ∫︂
]0,t]

tr[Ψr
s(Ψ

r
s)

′] max(1,∆as + 1{∆as=0})da
r
s

+

∫︂
[0,t[

tr[Ψg
s(Ψ

g
s)

′] max(1,∆+as)da
g
s+ < ∞
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(C2)

W 1/2BW 1/2 ≤ I, dP × da− a.e.

where I is the identity matrix of size n× n.

(C3) λmin(At) → ∞ as t → ∞;

(C4)

lim sup
t→∞

λ−1
min(At)λmax(A

r
t ) < ∞,

lim sup
t→∞

λ−1
min(At)λmax(A

g
t ) < ∞;

(C5) ∫︂
]0,∞]

trA−1
s Ψr

s(Ψ
r
s)

′(A−1
s )′dars <∞ (a.s.),∫︂

[0,∞[

trA−1
s+Ψ

g
s+(Ψ

g
s+)

′(A−1
s+)

′dags+ <∞ (a.s.).

Then weighted LSE in (7.5) is strongly consistent (T > 0).

Proof. By (C1) and (C2) the weighted LSE in (7.5) is well-defined. It is easy to

see that θ̂T = θ + A−1
T NT . Then from Theorem 7.3.2 we have

⃦⃦⃦
θ̂T − θ

⃦⃦⃦
→ 0 a.s. as

T → ∞.

Example 7.3.1 Let us investigate strong consistency of the weighted LSE estimate

(7.5) for the model introduced in Example 7.1.1. If we take Wt = (Bt)
−1 as the weight

matrix, then conditions (a) and (b) of Theorem 7.3.1 obviously hold. The process At

in (7.7) has a simple form At = βkt. Thus, λmin(At) = λmax(At) = βkt → ∞ as

t → ∞.

Further,∫︂
]0,∞]

trA−1
s Ψr

s(Ψ
r
s)

′(A−1
s )′dars =

∫︂
]0,∞]

[︃
1

βkt
β

1

βkt

]︃
dt < ∞. (a.s.)
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As a result, all assumptions of Theorem 7.3.1 are satisfied, and the weighted LSE

estimate in (7.5) is strongly consistent.

Example 7.3.2 Here we consider the model introduced in Example 7.1.2, and we

will show that for this model it is actually sufficient to assume only condition (c) of

Theorem 7.3.1 and take (W r,W g) = ((Br)−1, (Bg)−1) for the weighted LSE (7.5) to

be strongly consistent.

First we show convergence of θt to θ in probability as t → ∞. To accomplish this,

we compute

Eθt = θ + A−1
t ENt = θ,

where

Nt =N r
t +N g

t :=

∫︂
]0,t]

Φr
s(B

r
s)

−1dmr
s +

∫︂
[0,t[

Φg
s(B

g
s )

−1dmg
s+,

At :=

∫︂
]0,t]

Φr
s(B

r
s)

−1(Φr
s)

′dars +

∫︂
[0,t[

Φg
s(B

g
s )

−1(Φg
s)

′dags+.

Further, using orthogonality of N r and N g we have

(︁
⟨N,N⟩ijt

)︁
1≤i,j≤n

=
(︁
⟨N r, N r⟩ijt

)︁
1≤i,j≤n

+
(︁
⟨N g, N g⟩ijt

)︁
1≤i,j≤n

=

∫︂
]0,t]

Φr
s(B

r
s)

−1(Φr
s)

′dars +

∫︂
[0,t[

Φg
s(B

g
s )

−1(Φg
s)

′dags+

=At;

Cov
(︁
A−1

t Nt, A
−1
t Nt

)︁
=E

[︂
A−1

t Nt (Nt)
′ (︁A−1

t

)︁′]︂
=A−1

t E
[︁
Nt (Nt)

′]︁ (︁A−1
t

)︁′
=A−1

t .

Next,

tr Cov
(︁
A−1

t Nt, A
−1
t Nt

)︁
≤ nλ−1

min(At) → 0,

as t → ∞, and, therefore, from Chebyshev’s inequality the consistency of θt follows.

123



To show the convergence (a.s.) we consider the random variable

tc = inf{t : λmin(At) ≥ c}, c > 0,

and the stochastic process defined by

Yt =A−1
t Nt − A−1

tc Ntc .

Let us compute the covariance of the martingale Yt

Cov(Yt, Yt) = E(YtY
′
t ) =E

[︂
A−1

t Nt(Nt)
′ (︁A−1

t

)︁′ − A−1
t Nt(Ntc)

′ (︁A−1
tc

)︁′
− A−1

tc Ntc(Nt)
′ (︁A−1

t

)︁′
+ A−1

tc Ntc (Ntc)
′ (︁A−1

tc

)︁′ ]︂
=A−1

tc + A−1
t − A−1

t − A−1
t = A−1

tc − A−1
t .

As a result, trCov(Yt, Yt) ≤ nλ−1
min(Atc) < ∞. By Theorem 2.2 in [36] Yt converges

(a.s.) to a finite limit. Consequently, A−1
t Nt also converges (a.s.) to a finite limit.

Since we have shown its convergence in probability to zero, this limit is zero.

7.4 Unbiased prescribed precision estimation for

multidimensional processes

Let us consider the model (7.1) under the condition that both the process Xt and

the vector θ are multidimensional but the dimension of unknown parameter vector θ

does not exceed the dimension of Xt:

dim θ = p ≤ n = dimXt ∀t ≥ 0.

In this case one can construct unbiased sequential estimators for θ with prescribed

mean-square error by using the special weight matrix W and stopping rules.

Assume that the matrices Br and ΦrBr(Φr)′ are positive definite dP × dar-a.e.,

and the matrices Bg and ΦgBg(Φg)′ are positive definite dP × dag-a.e.
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We begin with the weighted LSE

θ̂T =

[︃∫︂
]0,T ]

Φr
sW

r
s (Φ

r
s)

′dart +

∫︂
[0,T [

Φg
sW

g
s (Φ

g
s)

′dags+

]︃−1

×
[︃∫︂

]0,T ]

Φr
sW

r
s dX

r
s +

∫︂
[0,T [

Φg
sW

g
s dX

g
s+

]︃
. (7.8)

Let the weight matrix Wt = (W r
t ,W

g
t ) be such that

Φr
tW

r
t (Φ

r
t )

′ =crtI, Φg
tW

g
t (Φ

g
t )

′ =cgt I (7.9)

tr [Φr
tW

r
t B

r
tW

r
t (Φ

r
t )

′] ≤crt , tr [Φg
tW

g
t B

g
tW

g
t (Φ

g
t )

′] ≤cgt (7.10)

where crt ∈ P and cgt ∈ O are positive functions. Equation (7.9) is satisfied for

W r
t = crt (B

r
t )

−1(Φr
t )

′ (︁Φr
t (B

r
t )

−1(Φr
t )

′)︁−2
Φr

t (B
r
t )

−1,

W g
t = cgt (B

g
t )

−1(Φg
t )

′ (︁Φg
t (B

g
t )

−1(Φg
t )

′)︁−2
Φg

t (B
g
t )

−1.
(7.11)

Substituting these functions in inequalities (7.10) yields

(crt )
2tr
[︂(︁
Φr

t (B
r
t )

−1(Φr
t )

′)︁−1
]︂
≤ crt ,

(cgt )
2tr
[︂(︁
Φg

t (B
g
t )

−1(Φg
t )

′)︁−1
]︂
≤ cgt .

Let

crt =
{︂
tr
[︂(︁
Φr

t (B
r
t )

−1(Φr
t )

′)︁−1
]︂}︂−1

,

cgt =
{︂
tr
[︂(︁
Φg

t (B
g
t )

−1(Φg
t )

′)︁−1
]︂}︂−1

.
(7.12)

Conditions (7.9) and (7.10) enable us to invert the matrix in (7.8) and reduce the

problem of constructing a sequential estimator for the vector θ to the scalar case.

For each h > 0 we introduce a stopping time τh as

τh = inf

{︄
t ≥ 0 :

∫︂
]0,t]

dars
tr
[︁
(Φr

s(B
r
s)

−1(Φr
s)

′)−1]︁
+

∫︂
[0,t]

dags+

tr
[︂
(Φg

s(B
g
s )−1(Φg

s)′)
−1
]︂ > h

}︄
, (7.13)
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and a random variable βh, with values in [0, 1], uniquely determined from the equation

∫︂
]0,τh[

dars
tr
[︁
(Φr

s(B
r
s)

−1(Φr
s)

′)−1]︁ + ∫︂
[0,τh[

dags+

tr
[︂
(Φg

s(B
g
s )−1(Φg

s)′)
−1
]︂

+ βh

⎡⎣ ∆arτh

tr
[︂(︁
Φr

τh
(Br

τh
)−1(Φr

τh
)′
)︁−1
]︂ + ∆+agτh

tr
[︂
(Φg

τh(B
g
τh)

−1(Φg
τh)

′)−1
]︂
⎤⎦ = h. (7.14)

The random variable βh is Fτh-measurable.

On the basis of the estimator (7.8) with the weight matrix given by (7.11) and

(7.12), we define the sequential estimator for the vector θ as

θ∗(h) =h−1

[︄∫︂
]0,τh[

Φr
sW

r
s dX

r
s +

∫︂
[0,τh[

Φg
sW

g
s dX

g
s+

+ βh

(︁
Φr

τh
W r

τh
∆Xτh + Φg

τh
W g

τh
∆+Xτh

)︁ ]︄

=h−1

[︄∫︂
]0,τh]

Φr
sW

r
s

(︁
1]0,τh[(s) + βh1{τh}(s)

)︁
dXr

s

+

∫︂
[0,τh]

Φg
sW

g
s

(︁
1[0,τh[(s) + βh1{τh}(s)

)︁
dXg

s+

]︄
. (7.15)

where

W r
t =

{︂
tr
[︂(︁
Φr

t (B
r
t )

−1(Φr
t )

′)︁−1
]︂}︂−1

(Br
t )

−1(Φr
t )

′ (︁Φr
t (B

r
t )

−1(Φr
t )

′)︁−2
Φr

t (B
r
t )

−1,

W g
t =

{︂
tr
[︂(︁
Φg

t (B
g
t )

−1(Φg
t )

′)︁−1
]︂}︂−1

(Bg
t )

−1(Φg
t )

′ (︁Φg
t (B

g
t )

−1(Φg
t )

′)︁−2
Φg

t (B
g
t )

−1.

(7.16)

This estimator has the following properties.

Theorem 7.4.1 Let the matrices Br and Φr(Br)−1(Φr)′ be not degenerate dP ×dar-

a.e., and Bg,Φg(Bg)−1(Φg)′ be not degenerate dP × dag-a.e.; the integral∫︂
]0,t]

dars
tr
[︁
(Φr

s(B
r
s)

−1(Φr
s)

′)−1]︁ + ∫︂
[0,t]

dags+

tr
[︂
(Φg

s(B
g
s )−1(Φg

s)′)
−1
]︂ (7.17)
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be finite for 0 < t < ∞ a.s. and converging to +∞ as t → +∞ a.s.

Then, for each h > 0,

τh <∞ a.s.,

Eθθ
∗(h) =θ,

Eθ ∥θ∗(h)− θ∥2 ≤h−1,

where Eθ denotes the average by the distribution Pθ of the process X with given

parameter θ.

Proof. Since the integral (7.17) tends to +∞, as t → ∞, the stopping time τh is

finite a.s. for all h > 0.

from (7.1) and (7.15) we have

θ∗(h) = h−1

[︄∫︂
]0,τh]

Φr
sW

r
s

(︁
1]0,τh[(s) + βh1{τh}(s)

)︁
θdars

+

∫︂
[0,τh]

Φg
sW

g
s

(︁
1[0,τh[(s) + βh1{τh}(s)

)︁
θdags+ +Mτh+

]︄

where

Mτh+ =

∫︂
]0,τh]

Φr
sW

r
s

(︁
1]0,τh[(s) + βh1{τh}(s)

)︁
dmr

s

+

∫︂
[0,τh]

Φg
sW

g
s

(︁
1[0,τh](s) + βh1{τh}(s)

)︁
dmg

s+.

By (7.11)-(7.14), we get

θ∗(h) = θ + h−1Mτh . (7.18)
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Since M ∈ M2
loc(Rp), then in view of (7.16),

tr
[︁
(⟨M i

τh
,M j

τh
⟩)1≤i,j≤n

]︁
=

∫︂
]0,τh]

tr [Φr
sW

r
sB

r
sW

r
s (Φ

r
s)

′]
(︁
1]0,τh[(s) + βh1{τh}(s)

)︁2
dars

+

∫︂
[0,τh]

tr [Φg
sW

g
s B

g
sW

g
s (Φ

g
s)]
(︁
1[0,τh[(s) + βh1{τh}(s)

)︁2
dags+

=

∫︂
]0,τh]

(︁
1]0,τh[(s) + βh1{τh}(s)

)︁2
dars

tr
[︁
(Φr

s(B
r
s)

−1(Φr
s)

′)−1]︁
+

∫︂
[0,τh]

(︁
1[0,τh[(s) + βh1{τh}(s)

)︁2
dags+

tr
[︂
(Φg

s(B
g
s )−1(Φg

s)′)
−1
]︂

≤
∫︂
]0,τh]

(︁
1]0,τh[(s) + βh1{τh}(s)

)︁
dars

tr
[︁
(Φr

s(B
r
s)

−1(Φr
s)

′)−1]︁
+

∫︂
[0,τh]

(︁
1[0,τh[(s) + βh1{τh}(s)

)︁
dags+

tr
[︂
(Φg

s(B
g
s )−1(Φg

s)′)
−1
]︂ = h.

(7.19)

Hence, EθMτh = 0 and from (7.18) we obtain Eθθ
∗(h) = θ.

Further from (7.18) and (7.19), it follows that

Eθ ∥θ∗(h)− θ∥2 = h−2Eθtr
[︁
(⟨M i

τh
,M j

τh
⟩)1≤i,j≤n

]︁
≤ h−1.

Example 7.4.1 Consider the model from Example 7.1.1. Then condition (7.17) be-

comes∫︂
]0,t]

dars
tr
[︁
(Φr

s(B
r
s)

−1(Φr
s)

′)−1]︁ + ∫︂
[0,t[

dags+

tr
[︂
(Φg

s(B
g
s )−1(Φg

s)′)
−1
]︂ =

∫︂
]0,t]

βkds = βkt,

(7.20)

and it is finite for 0 < t < ∞ a.s. and converging to +∞ as t → +∞ a.s. Thus,

Theorem 7.4.1 holds.
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7.5 Construction of the two-step sequential proce-

dure in general case

In the case when the number of unknown parameters in model is arbitrary, the guar-

anteed estimator for θ can also be constructed on the basis of the weighted LSE,

defined by (7.5). It is convenient to rewrite this estimate as

θt = A−1
t

[︃∫︂
]0,t]

Ψr
s(W

r
s )

1/2dXr
s +

∫︂
[0,t[

Ψg
s(W

g
s )

1/2dXg
s+

]︃
, (7.21)

where the information matrix At is as in (7.7) and its inverse A−1
t is assumed to exist.

In the sequel the following conditions are imposed on the regressors and on the

weight matrix W :

(A1) The regressors matrix-valued functions Φr ∈ P and Φg ∈ O, and such that

for all t ≥ 0 ∫︂
]0,t]

∥Φr
s∥ dars +

∫︂
[0,t[

∥Φg
s∥ da

g
s+ < ∞ (a.s.)

(A2) The weight matrix W is such that

W 1/2BW 1/2 ≤ I, dP × da− a.e.

where I is the identity matrix of size n× n.

(A3) Both integrals in (7.21) are well defined if for all t ≥ 0∫︂
]0,t]

tr[Ψr
s(Ψ

r
s)

′] max(1,∆as + 1{∆as=0})da
r
s

+

∫︂
[0,t[

tr[Ψg
s(Ψ

g
s)

′] max(1,∆+as)da
g
s+ < ∞ (a.s.)

(A4) limt→∞ λmin(At+) = +∞, (a.s.)

(A5) There exists δ, 0 < δ < 1, such that

lim inf
t→∞

λδ
min(At+)/ lnλmax(At+) > 0 (a.s.)
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The procedure is constructed in two steps.

Step 1. Let (Cj)j≥1, (βj)j≥1 be two sequences of positive numbers such that

Cj ↑ ∞,
∑︂
j≥1

βj < ∞,
∑︂
j≥1

βjC
1−δ
δ

j = ∞.

Here δ, 0 < δ < 1, is the same as in condition (A5).

By virtue of condition (A4), for any given positive constant C0 we can define the

a.s. finite wide sense stopping time T as

T = inf{t ≥ 0 : λmin(At+) > C0}, inf{∅} = +∞. (7.22)

Next we introduce the sequence of wide sense stopping times τj, j ≥ 1, as

τj = inf

{︄
t ≥ T : C−1

0

(︃∫︂
]0,T ]

∥Ψr
s(Ψ

r
s)

′∥ dars +
∫︂
[0,T [

∥Ψg
s(Ψ

g
s)

′∥ dags+
)︃

+ tr

∫︂
]T,t]

Ψr
sA

−1
s (Ψr

s)
′dars + tr

∫︂
[T,t]

Ψg
sA

−1
s+(Ψ

g
s)

′dags+ > Cj

}︄
, (7.23)

and the sequence of estimators

θj = θ(τj) = A−1
τj

[︄∫︂
]0,τj ]

Ψr
s(W

r
s )

1/2dXr
s +

∫︂
[0,τj ]

Ψg
s(W

g
s )

1/2dXg
s+

]︄
.

On the basis of these estimators we define the desired sequential estimators of the

unknown vector θ by applying a special smoothing procedure.

Step 2. Let us define the estimator θ∗h as a weighted average of estimators θj :

θ∗h =

⎡⎣σ(h)∑︂
j=1

bj

⎤⎦−1
σ(h)∑︂
j=1

bjθj, (7.24)

where h is a positive parameter; σ(h) is the wide sense stopping time given by

σ(h) = inf

(︄
n ≥ 1 :

n∑︂
j=1

bj > h

)︄
,
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bj = βj/[Cjtr[A
−1
τj+

]].

Denote

N(h) = τσ(h).

The main result of this section is the following.

Theorem 7.5.1 Let the regressor matrix-valued functions (Φr,Φg), Φr ∈ P and Φg ∈

O in model (7.1) and the corresponding weight matrices (W r,W g), W r ∈ P , and

W g ∈ O satisfy conditions (A1)− (A5). Then the sequential design (N(h), θ∗h) has the

following properties: for any h > 0,

N(h) < ∞ a.s.

Eθ ∥θ∗h − θ∥2 ≤ h−1

∞∑︂
j=1

βj(1 + pC−1
j ).

Proof. By condition (A4) we have T < ∞ a.s. From the definition of τj and Lemma

7.5.4 we have τj < ∞ a.s. and τj ↑ +∞, as j → ∞. Therefore, the inequality

N(h) < ∞ is true provided that ∑︂
j≥1

bj = +∞ a.s. (7.25)

Let us verify this equality. From the definitions of bj and τj it follows that

bj =
βj

Cjtr[A
−1
τj+]

≥ βj

Cjpλmax(A
−1
τj+)

=
βj

Cjp
λmin(Aτj+)

=βjp
−1C

1/δ−1
j (λδ

min(Aτj+)/Cj)
1/δ

≥βjp
−1C

1/δ−1
j

[︄
λδ
min(Aτj+)

×

(︄
g(T ) + tr

∫︂
]T,τj ]

Ψr
sA

−1
s (Ψr

s)
′dars + tr

∫︂
[T,τj ]

Ψg
sA

−1
s+(Ψ

g
s)

′dags+

)︄−1 ]︄1/δ
,
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where

g(T ) = C−1
0

(︃∫︂
]0,T ]

∥Ψr
s∥

2 dars +

∫︂
[0,T [

∥Ψg
s∥

2 dags+

)︃
.

By making use of Lemma 7.5.4 we obtain

bj ≥ βjp
−1C

1/δ−1
j

[︂
λδ
min(Aτj+)

/︂(︁
g(T ) + C lnλmax(Aτj+)

)︁]︂1/δ
,

where C > 0 is some constant. From this, the properties of βj, Cj and condition (A5)

we obtain (7.25).

Further, we have

θj − θ = A−1
τj+

Nτj+,

where

Nt+ =

∫︂
]0,t]

Ψr
s(W

r
s )

1/2dmr
s +

∫︂
[0,t]

Ψg
s(W

g
s )

1/2dmg
s+.

From this it follows that

∥θj − θ∥2 =
⃦⃦⃦
A

−1/2
τj+ A

−1/2
τj+ Nτj+

⃦⃦⃦2
≤
⃦⃦⃦
A

−1/2
τj+

⃦⃦⃦2 ⃦⃦⃦
A

−1/2
τj+ Nτj+

⃦⃦⃦2
= Qτj+trA

−1
τj+

,

where

Qτj+ = N ′
τj+

A−1
τj+

Nτj+. (7.26)

Taking into account the definition of bj and applying the Cauchy-Schwarz inequality

we obtain

∥θ∗(h)− θ∥2 ≤
σ(h)∑︂
i=1

bi

⎛⎝σ(h)∑︂
j=1

bj ∥θj − θ∥2
⎞⎠⎛⎝σ(h)∑︂

j=1

bj

⎞⎠−2

≤h−1
∑︂
j≥1

bj ∥θj − θ∥2 ≤ h−1
∑︂
j≥1

bjQτj+trA
−1
τj+

=h−1
∑︂
j≥1

βjQτj+/Cj.

132



Hence,

E ∥θ∗(h)− θ∥2 ≤ h−1
∑︂
j≥1

βjEQτj+/Cj.

From this and Lemma 7.5.5 we obtain the desired result.

Example 7.5.1 Consider the model

Xt = θ1kt+ θ2k

∫︂
]0,t]

f(Xs−)ds+mt,

where mt is the same as in (7.3). This is a non-homogeneous Ornstein –Uhlenbeck

process (mean-reverting process in mathematical finance). In this example, we can

not apply results from Section 7.4 because the number of parameters is greater than

number of the observations Xt. However, we can use the technique described in Section

7.5. We assume that the function f satisfies Lipschitz continuity condition for the

existence and uniqueness of the solution Xt (see [13]).

Suppose that

lim inf
t→∞

∫︁
]0,t]

f 2(Xs−)ds

t
> 0, (7.27)∫︂

]0,t]

f 2(Xs−)ds = O(t). (7.28)

Now, we check the assumptions of Theorem .

Conditions (A1) and (A3) are obviously satisfied, and (A2) holds with W r
t = 1.

The process At in this example has the following form

At =

[︄
kt

∫︁
]0,t]

f(Xs−)ds∫︁
]0,t]

f(Xs−)ds
∫︁
]0,t]

f 2(Xs−)ds

]︄
.

Thus,

λmax,min(At) = k

[︄∫︂
]0,t]

f 2(Xs−)ds+ t

±

√︄(︃∫︂
]0,t]

f 2(Xs−)ds− t

)︃2

+ 4

(︃∫︂
]0,t]

f(Xs−)ds

)︃2
]︄
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Further, using (7.27)

λmin(At) =2k

[︄
t

∫︂
]0,t]

f 2(Xs−)ds−
(︃∫︂

]0,t]

f(Xs−)ds

)︃2
]︄/︄[︄∫︂

]0,t]

f 2(Xs−)ds

+ t+

√︄(︃∫︂
]0,t]

f 2(Xs−)ds− t

)︃2

+ 4

(︃∫︂
]0,t]

f(Xs−)ds

)︃2
]︄

≥ 2k(1− 1/t)

1/t+ 1∫︁
]0,t] f

2(Xs−)ds
+

√︃(︂
1/t− 1∫︁

]0,t] f
2(Xs−)ds

)︂2
+ 4/t

→ ∞

as t → ∞.

Again, using (7.27)

lim inf
t→∞

λmin(At)

t
≥ 2k(1− 1/t)

1 + t∫︁
]0,t] f

2(Xs−)ds
+

√︃(︂
1− t∫︁

]0,t] f
2(Xs−)ds

)︂2
+ 4∫︁

]0,t] f
2(Xs−)ds

>0,

and

λmax(At) =

∫︂
]0,t]

f 2(Xs−)ds+ t

+

√︄(︃∫︂
]0,t]

f 2(Xs−)ds− t

)︃2

+ 4

(︃∫︂
]0,t]

f(Xs−)ds

)︃2

≤
∫︂
]0,t]

f 2(Xs−)ds+ t+

∫︂
]0,t]

f 2(Xs−)ds+ t

+ 2

√︄∫︂
]0,t]

f 2(Xs−)ds.

Thus, by (7.28) λmax(At) = O(t).

Therefore,

lim inf
t→∞

λδ
min(At)/ lnλmax(At) ≥ lim inf

t→∞
tδ/ ln(t) > 0 (a.s.)

for all δ, 0 < δ < 1. Consequently, the implications of Theorem 7.5.1 hold.
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Note that the conditions (7.27) and (7.28) can be obtained, for instance, if the

function f is bounded, i.e. c1 ≤ f(x) ≤ c2, which is enough for most real-world

applications like modelling of financial assets or capital processes of firms.

7.5.1 Auxiliary results

Lemma 7.5.1 Let D be a p × p matrix and F be a p × p symmetric non-negative

definite non-zero matrix of real numbers. If the matrix C = D + F is non-singular

and rankF = r, then

tr[C−1F ] =
r∑︂

i=1

[|C| − |C − λieie
′
i|]/|C|,

where (λi) and (ei) are the eigenvalues and eigenvectors of matrix F respectively. If,

besides, D is symmetric non-negative definite, then

tr[C−1F ] ≤ r[|C| − |D|]/|C| ≤ r.

Lemma 7.5.2 Under assumptions (A1) and (A3) the following inequalities are sat-

isfied:

ln
|At|
|AT |

≤
∫︂
]T,t]

d|Ar
s|

|As−|
+

∫︂
[T,t[

d|Ag
s+|

|As|
a.s.

If At is a continuous matrix-valued process, then

ln
|At|
|AT |

=

∫︂
]T,t]

d|As|
|As−|

a.s.

Proof. By applying change of variables formula to the process ln |At|, t ≥ T, we

obtain

ln |At| = ln |AT |+
∫︂
]T,t]

d|Ar
s|

|As−|
+

∫︂
[T,t[

d|Ag
s+|

|As|

+
∑︂

T<s≤t

(︃
ln

|As|
|As−|

− ∆|As|
|As−|

)︃
+
∑︂

T≤s<t

(︃
ln

|As+|
|As|

− ∆+|As|
|As|

)︃
a.s.
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Thus, ∫︂
]T,t]

d|Ar
s|

|As−|
+

∫︂
[T,t[

d|Ag
s+|

|As|
= ln

|At|
|AT |

+
∑︂

T<s≤t

[︃
∆|As|
|As−|

− ln

(︃
1 +

∆|As|
|As−|

)︃]︃
+
∑︂

T≤s<t

[︃
∆+|As|
|As|

− ln

(︃
1 +

∆+|As|
|As|

)︃]︃
≥ ln

|At|
|AT |

a.s.

From here using the inequality ln(1 + x) ≤ x, x ≥ 0, we come to the desired result.

Lemma 7.5.3 Let the regressor matrices Φr,Φg in (7.1) and the weight matrices

W r,W g satisfy conditions (A1), (A3) and T be defined as in (7.22).

Then for any t ≥ T

tr

(︃∫︂
]T,t]

(Ψr
s)

′ ˜︁A−1
s Ψr

sda
c
s

)︃
=

∫︂
]T,t]

d| ˜︁As|
| ˜︁As|

a.s., (7.29)

where ˜︁At = AT +

∫︂
]T,t]

Ψr
s(Ψ

r
s)

′dacs. (7.30)

Proof. First we verify that the integral in the left-hand side of equality is well-defined,

that is, for all t ≥ T, ∫︂
]T,t]

⃦⃦⃦
(Ψr

s)
′ ˜︁A−1

s Ψr
s

⃦⃦⃦
dacs < ∞ a.s. (7.31)

By the inequality ⃦⃦⃦
(Ψr

s)
′ ˜︁A−1

s Ψr
s

⃦⃦⃦
≤ ∥(Ψr

s)
′Ψr

s∥ tr ˜︁A−1
s
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we have ∫︂
]T,t]

⃦⃦⃦
(Ψr

s)
′ ˜︁A−1

s Ψr
s

⃦⃦⃦
dacs ≤

∫︂
]T,t]

∥Ψr
s∥

2 tr ˜︁A−1
s dacs

≤p

∫︂
]T,t]

λmax( ˜︁A−1
s )tr(Ψr

s)
′Ψr

sda
c
s

≤pλ−1
min(AT )

∫︂
]T,t]

tr(Ψr
s)

′Ψr
sda

r
s.

In view, of condition (A3), we obtain (7.31).

Equality (7.29) is equivalent to the one for the differentials:

d| ˜︁As|
| ˜︁As|

= tr
(︂
(Ψr

s)
′ ˜︁A−1

s Ψr
s

)︂
dacs.

Let us find d| ˜︁As|. By the definition of a determinant we have

| ˜︁At| =
∑︂

(i1,...,ip)

(−1)[i1,...,ip][ ˜︁At]i1,1 · · · [ ˜︁At]ip,p

where [ ˜︁At]ik is the (i, k)-th element of the matrix ˜︁At and the summation is taken over

all permutations (i1, . . . , ip) of numbers 1, . . . , p, and [i1, . . . , ip] denotes the num-

ber of inversions in a permutation (i1, . . . , ip). Since the matrix-valued process ˜︁At is

continuous with bounded variation then by the Ito formula we obtain

p∏︂
i=1

[ ˜︁At]il,l =

p∑︂
k=1

(︄
p∏︂

l=1,l ̸=k

[ ˜︁At]il,l

)︄
d[ ˜︁At]ik,k

and, hence,

d|[ ˜︁At]il,l| =
p∑︂

k=1

∑︂
(i1,...,ip)

(−1)[i1,...,ip]

(︄
p∏︂

l=1,l ̸=k

[ ˜︁At]il,l

)︄
d[ ˜︁At]ik,k

By (7.30)

d[ ˜︁At]ik = [Ψr
t (Ψ

r
t )

′]ik da
c
t
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and therefore

d| ˜︁At| =
p∑︂

k=1

| ˜︁A(k)
t |dact ,

where ˜︁A(k) is the determinant which is obtained from ˜︁At by replacing the k-th column

by the column-vector
(︂
[Ψr

t (Ψ
r
t )

′]1k , . . . , [Ψ
r
t (Ψ

r
t )

′]pk

)︂
. Decomposing the determinant

| ˜︁A(k)
t | by the elements of k-th column yields

| ˜︁A(k)
t | =

p∑︂
i=1

( ˜︁At)ik [Ψ
r
t (Ψ

r
t )

′]ik

where ( ˜︁At)ik is the algebraic adjoint for the element [ ˜︁At]ik of the matrix ˜︁At. Thus

d| ˜︁At|
p∑︂

k=1

p∑︂
i=1

( ˜︁At)ik [Ψ
r
t (Ψ

r
t )

′]ik da
c
t .

From here it follows that

d| ˜︁At|
| ˜︁At|

= tr
(︂
(Ψr

t )
′ ˜︁A−1

t Ψr
t

)︂
dact .

Lemma 7.5.4 Under assumptions (A1), (A3) and (A4),

tr

∫︂
]T,t]

(Ψr
s)

′A−1
s Ψr

sda
r
s + tr

∫︂
[T,t[

(Ψg
s)

′A−1
s+Ψ

g
sda

g
s+ = O(lnλmax(At)),

t → ∞ a.s., (7.32)

lim
t→∞

[︃
tr

∫︂
]T,t]

(Ψr
s)

′A−1
s Ψr

sda
r
s + tr

∫︂
[T,t[

(Ψg
s)

′A−1
s+Ψ

g
sda

g
s+

]︃
= +∞ a.s., (7.33)

where f(t) = O(g(t)), t → ∞, means that there exist t0 > T and 0 < C < ∞ such

that |f(t)| ≤ C|g(t)| for all t ≥ t0.

Proof. We have

tr

∫︂
]T,t]

(Ψr
s)

′A−1
s Ψr

sda
r
s + tr

∫︂
[T,t[

(Ψg
s)

′A−1
s Ψg

sda
g
s+ =tr

∫︂
]T,t]

(Ψr
s)

′A−1
s Ψr

sda
c
s

+ tr
∑︂

T<s≤t

(Ψr
s)

′A−1
s Ψr

s∆as

+
∑︂

T≤s<t

(Ψg
s)

′A−1
s+Ψ

g
s∆

+as.

(7.34)
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Let us introduce the process

˜︁At = AT +

∫︂
]T,t]

Ψr
s(Ψ

r
s)

′dacs.

This process is continuous and satisfies the inequality ˜︁At ≤ At which implies A−1
t ≤˜︁A−1. From this and Lemma 7.5.3 and 7.5.2 it follows that for all t ≥ T,

tr

∫︂
]T,t]

(Ψr
s)

′A−1
s Ψr

sda
c
s ≤tr

∫︂
]T,t]

(Ψr
s)

′ ˜︁A−1
s Ψr

sda
c
s

=

∫︂
]T,t]

d| ˜︁As|
| ˜︁As|

= ln
| ˜︁At|
| ˜︁AT |

≤ ln
|At|
|AT |

. (7.35)

Now we find the upper bound for the second term in the right-hand side of (7.34).

Denoting

Ât = AT +
∑︂

T<d≤t

Ψr
s(Ψ

r
s)

′∆as

and applying Lemma 7.5.1, we obtain

tr
∑︂

T<d≤t

(Ψr
s)

′A−1
s Ψr

s∆as ≤tr
∑︂

T<d≤t

(Ψr
s)

′Â
−1

s Ψr
s∆as

≤p
∑︂

T<s≤t

[|Âs| − |Âs−|]/|Âs|

≤p
∑︂

T<s≤t

∫︂ |Âs|

|Âs−|

dx

x

≤p

∫︂ |Ât|

|ÂT |

dx

x
= p ln

|Ât|
|ÂT |

≤ p ln
|At|
|AT |

. (7.36)

Similarly, denoting

Āt = AT +
∑︂

T≤d<t

Ψg
s(Ψ

g
s)

′∆+as
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and applying Lemma 7.5.1, we get

tr
∑︂

T≤d<t

(Ψg
s)

′A−1
s+Ψ

g
s∆as ≤tr

∑︂
T≤d<t

(Ψg
s)

′Ā
−1
s+Ψ

g
s∆as

≤p
∑︂

T≤d<t

[|Ās+| − |Ās|]/|Ās+|

≤p
∑︂

T≤d<t

∫︂ |Ās+|

|Ās|

dx

x

≤p

∫︂ |Āt|

|ĀT |

dx

x
= p ln

|Āt|
|ĀT |

≤ p ln
|At|
|AT |

. (7.37)

Substituting the estimates (7.35)-(7.37) in (7.34) yields

tr

∫︂
]T,t]

(Ψr
s)

′A−1
s Ψr

sda
r
s + tr

∫︂
[T,t[

(Ψg
s)

′A−1
s+Ψ

g
sda

g
s+ ≤(2p+ 1) ln

|At|
|AT |

≤p(2p+ 1) ln
λmax(At)

|AT |
.

From this in view of condition (A4) we obtain (7.32).

Now we verify (7.33). The integrand in (7.33) can be estimated from below by

tr(Ψr
s)

′A−1
s Ψr

s ≥λmax((Ψ
r
s)

′A−1
s Ψr

s)

≥λmin(A
−1
s ) sup

z ̸=0

∥Ψr
sz∥

2

∥z∥2

≥Cλ−1
max(As) ∥Ψr

s∥
2

≥C ∥Ψr
s∥

2 /trAs = C ∥Ψr
s∥

2 /Vs

where Vs =
∫︁
]0,t]

∥Ψr
s∥

2 dars +
∫︁
[0,t[

∥Ψg
s∥

2 dags+ and C is some positive constant.

tr(Ψg
s)

′A−1
s+Ψ

g
s ≥λmax((Ψ

g
s)

′A−1
s+Ψ

g
s)

≥λmin(A
−1
s+) sup

z ̸=0

∥Ψg
sz∥

2

∥z∥2

≥Cλ−1
max(As+) ∥Ψg

s∥
2

≥C ∥Ψg
s∥

2 /trAs+ = C ∥Ψg
s∥

2 /Vs+.

140



Hence,

lim
t→∞

[︃
tr

∫︂
]T,t]

(Ψr
s)

′A−1
s Ψr

sda
r
s + tr

∫︂
[T,t[

(Ψg
s)

′A−1
s+Ψ

g
sda

g
s+

]︃
≥ C lim

t→∞

[︄∫︂
]T,t]

∥Ψr
s∥

2 dars
Vs

+

∫︂
[T,t[

∥Ψg
s∥

2 dags+
Vs+

]︄

≥ C lim
t→∞

[︃∫︂
]T,t]

dV r
s

Vs

+

∫︂
[T,t[

dV g
s+

Vs+

]︃
Assume that (7.33) is not true. Then with positive probability∫︂

]T,∞]

dV r
s

Vs

< ∞,

∫︂
[T,∞[

dV g
s+

Vs+

< ∞.

From here it follows that

lim
t→∞

V r
t−

Vt

= 1, lim
t→∞

V g
t

Vt+

= 1,

and there exists T1 > T that for all t ≥ T1

V r
t−

Vt

≥ 1/2,
V g
t

Vt+

≥ 1/2.

Thus,

Vt−

Vt

≥ 1/2,
Vt

Vt+

≥ 1/2.

By making use of these inequalities and Lemma 7.5.2 we obtain

+∞ > lim
t→∞

[︃∫︂
]T,t]

dV r
s

Vs

+

∫︂
[T,t[

dV g
s+

Vs+

]︃
≥ lim

t→∞

[︃∫︂
]T1,t]

dV r
s

Vs−

Vs−

Vs

+

∫︂
[T,t[

dV g
s+

Vs

Vs

Vs+

]︃
≥2−1 lim

t→∞

[︃∫︂
]T1,t]

dV r
s

Vs−
+

∫︂
[T,t[

dV g
s+

Vs

]︃
≥ 2−1 lim

t→∞
ln

Vt

VT1

Thus, with positive probability,

lim
t→∞

lnλmin(At) ≤ lim
t→∞

ln tr(At) = lim
t→∞

lnVt < +∞.

This contradicts to the condition (A4).
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Lemma 7.5.5 Under the assumptions (A1)− (A5) the function Q(τj) in (7.26) sat-

isfies the inequality

EQτj ≤ Cj + p, j ≥ 1,

where the sequence (Cj)j≥1 is the same as in (7.23).

Proof. Let us introduce the processes

Nt =(n1
t , . . . , n

p
t )

′ =

∫︂
]0,t]

Ψr
s(W

r
s )

1/2dmr
s +

∫︂
[0,t[

Ψg
s(W

g
s )

1/2dmg
s+,

Zt =(N ′
t , (U

1
t )

′, . . . , (Up
t )

′),

F (Zt) =N ′
tA

−1
t Nt,

(7.38)

where U i
t is the i-th column of the matrixA−1

t .Note that Zt is a (p+1)p×1-dimensional

semimartingale vector. In this notation we have

Qτj = F (Zτj).

Let us calculate the stochastic differential of the process F (Z) by applying the

change of variables formula. The process F (Zt) can be written as

F (Zt) =N ′
t [U

1
t , . . . , U

p
t ]Nt

=(N ′
tU

1
t , . . . , N

′
tU

p
t )Nt

=

p∑︂
i=1

N ′
tU

i
tn

i
t.

(7.39)

For the function F : Rd → R1, d = p(p+ 1) and the semimartingale Z defined by

142



(7.38), the Ito formula has the form

F (Zt) =F (ZT ) +

∫︂
]T,t]

(∇nF (Zs−), dN
r
s ) +

∫︂
[T,t[

(∇nF (Zs), dN
g
s+)

+

∫︂
]T,t]

p∑︂
i=1

(∇ui
F (Zs−), dU

ir
s )

+

∫︂
[T,t[

p∑︂
i=1

(∇ui
F (Zs), dU

ig
s+)

+
1

2

∫︂
]T,t]

tr
[︁
∇n∇nF (Zs−)Ψ

r
s(W

r
s )

1/2Bc
s(W

r
s )

1/2(Ψr
s)

′]︁ d⟨mc⟩s

+
∑︂

T<s≤t

[F (Zs)− F (Zs−)− (∇nF (Zs−),∆Zs)]

+
∑︂

T≤s<t

[︁
F (Zs+)− F (Zs)−

(︁
∇nF (Zs),∆

+Zs)
)︁]︁

,

(7.40)

where ∇n = ( ∂
∂n1

, . . . , ∂
∂np

)′, (u, v) = v′u is a dot product of vectors u, v.

By (7.39) we obtain

∂F

∂nk

=

p∑︂
i=1

∂

∂nk

[N ′
tU

i
t ]n

i
t +

p∑︂
i=1

N ′
tU

i
t δ

ik

=

p∑︂
i=1

uik
t n

i
t +N ′

tU
k
t ,

where U i
t = (ui1

t , . . . , u
ip
t )

′. Therefore,

∇nF (Zt) =

p∑︂
i=1

(ui1
t , . . . , u

ip
t )

′ni
t + (N ′

tU
1
t , . . . , N

′
tU

p
t )

′

=

p∑︂
i=1

U i
tn

i
t + A−1

t Nt = 2A−1
t Yt.

(7.41)

Further, we have

∇ukF (Zt) =

p∑︂
i=1

[∇ukN ′
tU

i
t ]n

i
t =

p∑︂
i=1

Ntδ
ikni

t = Ntn
k
t ; (7.42)
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∇n∇nF =

(︃
∂2F

∂nk∂nj

)︃
1≤k,j≤p

;

∂2F

∂nk∂nj
=

∂

∂nj

∂F (Zt)

∂nk
=

∂

∂nj

[︄
p∑︂

i=1

uik
t n

i
t +N ′

tU
k
t

]︄

=

p∑︂
i=1

uik
t δ

ij + ukj
t = 2ukj

t .

Thus,

∇n∇nF = 2A−1
t ; (7.43)

Combining (7.40)-(7.43), it follows that

F (Zt) = F (ZT ) + 2(µr
t + µg

t ) + I1t + I2t + I3t + I4t + I5t ,

where

µr
t =

∫︂
]T,t]

(︁
(As−)

−1Ns−,Ψ
r
s(W

r
s )

1/2dmr
s

)︁
,

µg
t =

∫︂
[T,t[

(︁
(As)

−1Ns,Ψ
g
s(W

g
s )

1/2dmg
s+

)︁
I1t =

∫︂
]T,t]

Ns−d(A
r
s)

−1Ns−

I2t =

∫︂
[T,t[

Nsd(A
g
s+)

−1Ns

I3t =tr

∫︂
]T,t]

A−1
s−Ψ

r
s(W

r
s )

1/2Bc
s(W

r
s )

1/2(Ψr
s)

′d⟨mc⟩s

I4t =
∑︂

T<s≤t

[︁
F (Zs)− F (Zs−)− 2N ′

s−A
−1
s−∆Ns −N ′

s−∆A−1
s Ns−

]︁
I5t =

∑︂
T≤s<t

[︁
F (Zs+)− F (Zs)− 2N ′

sA
−1
s ∆+Ns −N ′

s∆
+A−1

s Ns

]︁
In order to study I1t in we need to find the differential for (Ar

t )
−1. We have

d
[︁
Ar

t (A
r
t )

−1
]︁
= [dAr

t ](A
r
t−)

−1 + Ar
t−d(A

r
t )

−1 = 0,

Hence,

d(Ar
t )

−1 = −(Ar
t−)

−1[dAr
t ](A

r
t−)

−1 = −(Ar
t−)

−1[Ψr
t (Ψ

r
t )

′](Ar
t−)

−1dart .
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Consequently,

I1t =

∫︂
]T,t]

Ns−d(A
r
s)

−1Ns−

=−
∫︂
]T,t]

Ns−(A
r
s−)

−1[Ψr
s(Ψ

r
s)

′](Ar
s−)

−1Ns−da
c
t

+
∑︂

T<s≤t

N ′
s−∆(Ar

s)
−1Ns−.

(7.44)

The matrix (Ar
s)

−1 is non-increasing because the matrix Ar
s is non-decreasing. There-

fore, the matrix ∆(Ar
s)

−1 ≤ 0, and right-hand side of (7.44) is non-positive. Thus,

I1t ≤ 0 a.s. for all t ≥ T.

Since Ag
t is a pure-jump process and also non-increasing, we have

I2t =

∫︂
[T,t[

N ′
sd(A

g
s+)

−1Ns =
∑︂
[T,t[

N ′
s∆(Ag

s+)
−1Ns ≤ 0.

Consider the term I4t . We have

I4t =
∑︂

T<s≤t

[︁
N ′

sA
−1
s Ns −N ′

s−A
−1
s−Ns− − 2N ′

s−A
−1
s−∆Ns −N ′

s−∆A−1
s Ns−

]︁
=
∑︂

T<s≤t

[︁
∆N ′

sA
−1
s ∆Ns

]︁
+ 2νr

t ,

where

νr
t =

∑︂
T<s≤t

[︁
N ′

s−∆A−1
s ∆Ns

]︁
Similarly,

I5t =
∑︂

T≤s<t

[︁
∆+N ′

sA
−1
s+∆

+Ns

]︁
+ 2νg

t ,

νg
t =

∑︂
T≤s<t

[︁
N ′

s∆
+A−1

s ∆+Ns

]︁
.
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From the obtained estimates for I1t − I5t , it follows that

F (Zt) ≤ F (ZT ) + I3t + 2(µr
t + µg

t ) + 2(νr
t + νg

t ) + δrt + δgt +Dr
t +Dg

t , (7.45)

where

δrt =
∑︂

T<s≤t

[︁
∆N ′

sA
−1
s ∆Ns

]︁
−Dr

t ,

δgt =
∑︂

T≤s<t

[︁
∆+N ′

sA
−1
s+∆

+Ns

]︁
−Dg

t ,

δrt and δgt are local optional martingales, and Dr
t and Dg

t are, respectively, the in-

creasing predictable and optional processes in the Doob-Meyer decomposition of the

submartingales
∑︁

T<s≤t [∆N ′
sA

−1
s ∆Ns] and

∑︁
T≤s<t

[︁
∆+N ′

sA
−1
s+∆

+Ns

]︁
:

Dr
t =

∫︂
]T,t]

tr[(W r
s )

1/2(Ψr
s)

′A−1
s Ψr

s(W
r
s )

1/2Bd
s ]d⟨md⟩s

=

∫︂
]T,t]

tr[A−1
s Ψr

s(W
r
s )

1/2Bd
s (W

r
s )

1/2(Ψr
s)

′]d⟨md⟩s,

Dg
t =

∫︂
[T,t[

tr[(W g
s )

1/2(Ψg
s)

′A−1
s+Ψ

g
s(W

g
s )

1/2Bd
s ]d⟨mg⟩s+

=

∫︂
[T,t[

tr[A−1
s+Ψ

g
s(W

g
s )

1/2Bg
s (W

g
s )

1/2(Ψg
s)

′]d⟨mg⟩s+.

The process Dr
t is well-defined, because by conditions (A2) and (A3) we have

Dr
t ≤

∫︂
]T,t]

tr[A−1
s Ψr

s(Ψ
r
s)

′]d⟨md⟩s

≤
∫︂
]T,t]

tr[A−1
s Ψr

s(Ψ
r
s)

′]dars

≤tr[A−1
T ]

∫︂
]T,t]

∥Ψr
s(Ψ

r
s)

′∥ dars

≤tr[A−1
T ]

∫︂
]T,t]

trΨr
s(Ψ

r
s)

′dars < ∞

for all t ≥ T. The same holds for the process Dg
t .

Let us verify that the processes µj, νj, j = r, g are locally square intagrable

optional martingales. Their predictable quadratic variations are given by the formulae
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⟨µr⟩t =
∫︂
]T,t]

N ′
s−(As−)

−1Ψr
s(W

r
s )

1/2Br
s(W

r
s )

1/2(Ψr
s)

′(As−)
−1Ns−da

r
s,

⟨µg⟩t =
∫︂
[T,t[

N ′
s(As)

−1Ψg
s(W

g
s )

1/2Bg
s (W

g
s )

1/2(Ψg
s)

′(As)
−1Nsda

g
s+,

⟨νr⟩t =
∫︂
]T,t]

N ′
s−∆(As−)

−1Ψr
s(W

r
s )

1/2Bd
s (W

r
s )

1/2(Ψr
s)

′∆(As−)
−1Ns−d⟨md⟩s,

⟨νg⟩t =
∫︂
[T,t[

N ′
s∆

+(As)
−1Ψg

s(W
g
s )

1/2Bg
s (W

g
s )

1/2(Ψg
s)

′∆+(As)
−1Nsd⟨mg⟩s+.

By condition (A2) and the Cauchy-Schwartz inequality,

⟨νr⟩t ≤
∫︂
]T,t]

N ′
s−∆(As)

−1Ψr
s(Ψ

r
s)

′∆(As)
−1N ′

s−da
r
s

=

∫︂
]T,t]

(N ′
s−∆(As)

−1Ψr
s)

2dars

≤
∫︂
]T,t]

⃦⃦
∆(As)

−1/2Ns−
⃦⃦2 ⃦⃦

∆(As)
−1/2Ψr

s

⃦⃦2
dars

≤(trA−1
T )2

∫︂
[T,t[

∥Ns−∥2 ∥Ψr
s(Ψ

r
s)
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for all t ≥ T due to condition (A3) and left-continuity of Ns− and, similarly,
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for all t ≥ T . By Doob’s inequality, conditions (A2) and (A3)
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Therefore, by (A3) ∫︂
[T,t[

∥Ns∥2 ∥Ψg
s(Ψ

g
s)

′∥ dags+ < ∞ a.s.

In a similar way one can verify that ⟨µj⟩t < ∞, j = r, g, a.s. for all t ≥ T.

Since the process Dr
t + ⟨µr⟩t + ⟨νr⟩t +Dg

t + ⟨µg⟩t + ⟨νg⟩t is strongly predictable,

there exists a sequence of stopping times σr
k, σ

r
k ↑ ∞ a.s. as k → ∞, such that for any

k the stopped process Dr
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k
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k
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k
+Dg

σr
k
+ ⟨µg⟩σr

k
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k
is bounded (see

Lemma 1.7, [32]).

Then from (7.45) and condition (A2) we obtain, for k > 0,
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Letting t = τj, taking the limit as k → ∞ and applying the monotone convergence

theorem, we obtain
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Now we can estimate EQτj . We have
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(7.46)

By the definition of wide sense stopping time T in (7.22), condition (A2) and orthog-

onality of N r
T and N g

T ,
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Combining this inequality and (7.46) yields
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. (7.47)

By Lemma 7.5.1,

trA−1
τj
Ψr

τj
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τj
)′∆arτj ≤r[|Aτj | − |Aτj −Ψr

τj
(Ψr

τj
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≤r ≤ p,

where r is the rank of the matrix Ψr
s(Ψ

r
s)

′. By substituting this estimate in (7.47),

we come to the assertion of the Lemma.
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Chapter 8

Conclusion

In this thesis we obtained several new results advancing the theory of optional pro-

cesses and successfully applied this new theory in the areas such as mathematical

finance, risk theory, and statistics. In particular, the following results are obtained:

- different versions of the comparison theorem and also a uniqueness theorem for

a general class of optional stochastic differential equations were stated and proved.

Furthermore, these results were applied to the pricing of financial derivatives.

- the so-called Krylov estimates for distributions of stochastic integrals using Ld-

norm of a measurable function were generalized for optional semimartingales. Corre-

sponding applications of this result were illustrated.

- a very general optional semimartingale risk model for the capital process of a

company was introduced and exhaustively investigated. A general approach to the

calculation of ruin probabilities of such models was shown and supported by diverse

examples.

- an optional semimartingale regression model with a one-dimensional unknown

parameter was introduced. The strong consistency of structural least squares esti-

mates and the property of fixed accuracy of sequential least squares estimates were

proved.
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- a general optional semimartingale regression model with a multi-dimensional un-

known parameter was introduced. The strong consistency of structural least squares

estimates was proved. The property of fixed accuracy of sequential least squares es-

timates was proved for the multivariate optional regression models with the number

of parameters less than or equal to the dimension of the observation process and for

the general case with an arbitrary number of parameters.
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