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Abstract

This thesis is dedicated to the study of the general class of random processes, called
optional processes, and their various applications in Mathematical Finance, Risk The-
ory, and Statistics.

First, different versions of a comparison theorem and a uniqueness theorem for a
general class of optional stochastic differential equations are stated and proved using a
local time approach. Furthermore, these results are applied to the pricing of financial
derivatives.

Second, the estimates of N. V. Krylov for distributions of stochastic integrals by
means of Lebesgue norm of a measurable function are well-known and are widely used
in the theory of stochastic differential equations and controlled diffusion processes.
These estimates are generalized for optional semimartingales. After that, they are
applied to extend the change of variables formula for a general class of functions from
Sobolev space. It is also shown how to use the obtained estimates for the investigation
of mean-square convergence of solutions of optional SDE’s.

Furthermore, an optional semimartingale risk model for the capital process of
a company is introduced and exhaustively investigated. A general approach to the
calculation of ruin probabilities of such models is shown and supported by diverse
examples.

The main object of the final part of this thesis is a general regression model in an

1



optional setting — when an observed process is an optional semimartingale depending
on an unknown parameter. The cases when the model consists of a one-dimensional
and a multi-dimensional unknown parameter are studied separately. The main results
include the proof of strong consistency of least squares estimates and the property of
fixed accuracy of sequential least squares estimates. It is expected that the proposed
general regression models will further be developed and applied in the context of

modern mathematical finance.

1l



Preface

The thesis is devoted to the development of one of the most general and promising
approaches of modern stochastic analysis, namely, the theory of optional processes.
By doing so, in addition to purely theoretical generalizations, this work has a primary
goal to show how these methods and techniques are applied in the areas such as
mathematical finance, statistics, and risk theory. The origins of the theory of optional
processes belong to the papers dated 1970-80s. In the last decade, many fundamental
works of that period were revisited from the purely theoretical point of view and,
mainly, from the perspective of the applications of optional processes. As a result,
this research was adequately exposed in the first monograph of its kind [4] by M.
Abdelghani and A. Melnikov.

Some of the research conducted for this thesis forms part of a research collab-
oration, led by Professor A. Melnikov at the University of Alberta, with Dr. M.
Abdelghani from Morgan Stanley, NY. Versions of Chapter 3 and Chapter 5 have
been published in [6], [3] and [9], respectively. The author of the thesis was mainly
responsible for giving a detailed analysis of the proposed concepts, transforming them
into actual theorems, and providing the basic steps of their proofs, applications, and
examples needed for illustration of the results. Dr. Abdelghani was involved in the
early stages of the concept formation with further contribution to the manuscript edit-
ing. Dr. Melnikov was the actual supervisory author who was permanently involved
in this research proposing project concepts and leading ideas as well as methods for

their realization.
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Chapter 1

Introduction

Let a triplet (€2, F, P) be a complete probability space, i.e.,if A C B € F and P(B) =
0 then A € F. This probability space equipped with a non-decreasing family of o-
algebras (filtration/information flow) F = (F;)cjo,00), Where F; C F, F, C Fy, s < t,
forms a stochastic basis - a fundamental notion in stochastic analysis. Usually, the

following conditions are assumed on the filtration F':
e F is right-continuous, i.e., F; = F;y for all ¢, where F; = Moo Fs;
e F is complete, i.e., each F; contains P-null sets of F.

These assumptions are collectively known as “usual conditions” on the filtration F.
A theory of stochastic processes is well-developed under “usual conditions”. This
theory is widely applied in different areas such as mathematical finance, mathematical
statistics, risk theory, stochastic differential equations, and others. Although “usual
conditions” is considered as a golden standard in stochastic analysis, one can imme-
diately give an example illustrating the existence of a stochastic basis where such

assumptions do not hold.

Example 1.0.1 Suppose
Xt = ]-t>t() 1A7



where A is F-measurable with 0 < P(A) < 1. Let F; be a natural filtration of X,
.Ft :O'(XS,S St)
Then F is not right-continuous at ty, i.e., A & Fy,, but A € Fy, and it is not

possible to make it right-continuous in a useful way.

A reasonable question arises: why are “usual conditions” so predominant in the
studying of random processes? The majority of important results in the stochastic
analysis are proved under “usual conditions”, and for many of them, these conditions

are vital. One of the most prominent illustrations is the following theorem.

Theorem 1.0.1 If the filtration F is right-continuous, then every martingale admits

a cadlag modification.

If the assumption of right-continuity is omitted then the above theorem no longer
works. However, in this case, Dellacherie and Meyer [26] proved the existence and

uniqueness (up to indistinguishability) of optional modifications for martingales.

Theorem 1.0.2 Let X be a bounded random wvariable. There exists a modification
(X:) of the martingale (E[X|F;]) such that (X;) is an optional process and, for any
stopping time T,

Xrlircooy = E[X1(rcoey | Fr]  a.s., (1.1)

where 1 (7<) is the characteristic function of the set (T < 0o).
If another optional modification (Xt) exists satisfying (1.1), then (X;) and (5(75)

are indistinguishable.

Further, Galchuk [30] extended the above result for any integrable random variable X.
These two fundamental works served as the inception of the development of optional

stochastic analysis. Dellacherie first started to use terminology - “unusual probability



spaces” (or “unusual stochastic basis”) - for the (filtered) probability spaces without
“usual conditions”, to which I stick for the rest of this work.

Furthermore, the theory of stochastic processes on the usual stochastic basis is
mostly devoted to the studying of semimartingales, a large class of adapted random
processes admitting modifications with right-continuous left limits (RCLL) paths.
However, there are many stochastic processes that are neither right nor left-continuous.
It was shown that optional processes on unusual probability spaces, in particular op-
tional semimartingales, are not necessarily right or left-continuous processes but have
right and left limits (RLL, sometimes called laglad processes).

The theory of optional processes was developed by many mathematicians such as
Lepingle [63], Horowitz [46], Lenglart [62]. In these works, a theory of the stochastic
analysis of optional processes on unusual probability spaces was constructed. Most
of the foundations of stochastic calculus of optional processes were formulated by
Gal’chuk in his series of works [30], [32], [33]. Further research in this direction was
done by Gasparyan [35], [37]-[39], Kuhn and Stroh [58]. Recently, this direction
received a new impulse mostly by the works of Abdelghani and Melnikov [4], [7],
8], [10]-[13], Abdelghani, Melnikov and Pak [3], [5], [6], [9], and Melnikov and Pak
[74]. Apparently, this direction attracts substantial attention and many works have
appeared during the last couple of years, to mention a few, [43], [44], [49]. From a
theoretical point of view, the investigation of such processes is interesting because it
allows for the generalization of different existing results for a richer class of processes,
filling the gaps in theory and, consequently, unification of special cases under a general
holistic approach. On the other hand, from a practical point of view, the optional
processes have a promising potential in different applications.

The main goal of this dissertation is to develop new results in the theory of op-



tional processes and apply the methods of optional processes in mathematical finance,
statistics, and risk theory.

The rest of the thesis is organized as follows.

In Chapter 2, a brief introduction to the theory of optional processes is provided
including the canonical decomposition of optional semimartingales and the change of
variables formula.

In Chapter 3, different versions of comparison theorem and also a uniqueness
theorem for a general class of optional stochastic differential equations are stated and
proved. Furthermore, these results are applied to the pricing of financial derivatives.

In Chapter 4, the so-called Krylov estimates for distributions of stochastic integrals
by means of Ls;-norm of a measurable function are generalized for a class of optional
processes called optional semimartingales. Corresponding applications of this result
are illustrated.

In Chapter 5, a very general optional semimartingale risk model for the capital
process of a company is introduced and exhaustively investigated. A general approach
to the calculation of ruin probabilities of such models is shown and supported by
diverse examples.

The main object of investigation in Chapter 6 and Chapter 7 is a very gen-
eral regression model in optional setting — when an observed process is an optional
semimartingale depending on an unknown parameter. Chapter 6 considers the one-
dimensional optional regression model, while Chapter 7 studies the multi-dimensional
one. The main results are devoted to the proof of the strong consistency of structural
least squares estimates and the property of fixed accuracy of sequential least squares

estimates.



Chapter 2

Preliminaries

Here, we provide a brief introduction to the theory of optional processes. All results
in this chapter are required for the subsequent chapters and are presented without
proofs for conciseness, however, a comprehensive exposition of optional processes and

their different applications can be found in [4].

2.1 Optionality and predictability

Let us introduce O(F) and P(F) as the optional and predictable o-algebras on
(2,10, 00)), respectively. O(F) is generated by all F-adapted processes whose tra-
jectories are right-continuous and have left limits (or cadlag, RCLL). P(F) is gener-
ated by all F-adapted processes whose trajectories are left-continuous and have right
limits.

A random process X = (X;), t € [0,00), is said to be optional if it is O(F)-
measurable. In general, an optional process have right and left limits but is not
necessarily right- or left-continuous in F'.

A random process (X;), t € [0,00), is predictable if X is P(F)-measurable. As
well, in general a predictable process has right and left limits but may not necessarily

be right- or left- continuous in F.



Denote P and O sets of predictable and optional processes, respectively. For
either optional or predictable processes the following processes can be defined: X_ =
(Xi-)i>0 and Xy = (Xii )0, AX = (AXy)i>o such that AX; = X; — X, and
ATX = (A*X})i>0 such that ATX, = Xy — X,

Since the random processes that we are going to work with possibly have left and

right limits only, it is necessary to introduce the following definition.

Definition 2.1.1 A random process (X;), t € [0,00), is called strongly predictable
if X is P(F)-measurable and Xy is O(F)-measurable. Denote a space of strongly

predictable processes Ps.

2.2 General stopping times

Since in general F # F, = (Fiy)i>0, Where Fpy = M Fs, there are two distinct
notions of stopping times (s.t.’s) with respect to F and F, on unusual stochastic

basis.

Definition 2.2.1 The random variable T : Q — [0,00] is a stopping time (s.t.) if
the set {T <t} € F; for allt € [0, 00).

Definition 2.2.2 The random variable T : Q@ — [0, 00] is a wide (broad) sense stop-

ping time if the set {T <t} € Fiy for allt € [0,00).

As on a usual stochastic basis, there are notions of predictable and totally inac-

cessible stopping times on an unusual stochastic basis.

Definition 2.2.3 A stopping time T is called predictable if there exists a sequence of
wide sense stopping times (Sy,),n € N, such that lim S,, =T a.s. and S, <T a.s. on

the set {T > 0} for alln € N.



Definition 2.2.4 A stopping time T is called totally inaccessible if P(S =T < o0) =

0 for every predictable stopping time S.

In addition to these, there exist totally inaccessible wide sense stopping times.

Definition 2.2.5 A wide sense stopping time T is called totally inaccessible wide

sense s.t. if P(S =T < o0) =0 for every stopping time S.

Analogously, it is possible to define predictable wide sense stopping times, but it
turns out that this is unnecessary because the set of predictable s.t.’s and the set of
predictable wide sense s.t.’s are equal (see [33]). Denote by T and T, a set of s.t.’s
and a set of wide sense s.t.’s, respectively; T7, T, T} - set of predictable s.t.’s, set of
totally inaccessible s.t.’s and totally inaccessible wide sense s.t.’s, respectively. It is
immediately seen that 7?7 C T C T,.

On unusual stochastic basis, defined above three canonical types of stopping times
have the following properties: Predictable stopping times, S € TP, are such that
(S <t) is F;— measurable for all ¢; Totally inaccessible stopping times, T € T,
are such that (T < t) is F; measurable for all ¢, however, we note that (7" < t) is not
necessarily F; measurable since JF; is not right continuous; Finally, totally inaccessible
stopping times in the broad sense, U € T, are such that (U < t) is F;; measurable

for all ¢, but since F; is right continuous, (U < t) is also F;, measurable.

Definition 2.2.6 Suppose S and T are maps Q@ — [0,00] and S < T a.s. The

stochastic interval denoted by [S, T is the set
{(t,w) € [0,00[xQ: S(w) <t <T(w)}

The stochastic intervals [S,T),]S,T| and |S,T[ are defined similarly.



The stochastic interval
IT,T) = {(t,w) € [0,00[x92: T(w) = t}

is denoted by [T, and is called the graph of T. Through out the thesis, we use the no-
tation introduced above for wide sense stopping times. Whenever we use this notation

for the deterministic times, we mean a usual interval of real numbers.

Definition 2.2.7 The sequence of (T,,)nen C T+ exhausts the jumps of the process
(Xt)ico,00) if for any T € Ty for which the set [T] N (U,[T,]) = 0 we have AXy =
ATXr =0 a.s. on {t < oo}.

Below, a fundamental result that gives foundations for many results in the optional
stochastic analysis is presented. In particular, it is used in the canonical decomposi-

tion of optional semimartingales.

Theorem 2.2.1 (see [33]) Suppose X = (Xi)icjo,00) 15 an optional process whose
paths have left and right limits a.s.. Then there exist sequences (S,), (T,) and
(Un), n € N, of predictable s.t.’s, totally inaccessible s.t.’s and totally inaccessible
wide sense s.t.’s respectively, exhausting all jumps of the process X and having the
following properties: the graphs of these s.t.’s are mutually non-intersecting within

each sequence.

2.3 Processes of finite variation

Here we consider the processes which do not vary a lot, i.e., processes having paths
of finite variation for almost all w. Let us begin with the definitions of several spaces

of such processes.



Definition 2.3.1 A process A = (A;), t € Ry, is of finite variation if it has finite
variation on every segment [0,t], t € Ry a.s., that is Var(A); < oo, for allt € Ry

a.s. where

Var(A), = > |ATA |+ /

0<s<t 10

|dA%|.
1]
Denote by V the set of all F-adapted processes of finite variation.

Definition 2.3.2 A process A = (A¢)>o is increasing if it is non-negative, F-adapted,

its trajectories do not decrease. Let V' be the collection of increasing processes.
We know that every increasing process is of finite variation, i.e., V¥ C V.

Definition 2.3.3 An increasing process A is integrable if EA,, < oo. The collection

of such processes is denoted by AT.

Definition 2.3.4 A process A = (A¢)i>o of finite variation belongs to the space A of

integrable finite variation processes if E[Var(A)] < co.

A process X = (X;)i>o belongs to the space Jj,. if there is a localizing sequence
of wide sense s.t.’s, (R,), n € N, R, € Ty, R,, T o0 a.s. such that X1, € J for
all n, where J is a space of processes and Jj,. is an extension of J by localization.

In general, the spaces V, A, A" can be extended t0 Vipe, Ajoe, Aj. respectively
by localization. It is well-known that V = V., and the relationships A C A;,. C V
and AT C A C VT hold.

A finite variation process A can be decomposed to A = A" + A9 = A° + A% + A9
where A¢ is continuous, A" is right-continuous, A¢ is discrete right-continuous, A9 is
discrete left-continuous such that

A= 3" AA, and Al =) ATA,

0<s<t 0<s<t

where the series converge absolutely.



2.4 Optional Martingales

Definition 2.4.1 A process M = (My)i>o is an (square integrable) optional martin-

gale (supermartingale, submartingale) if
o M is O(F)-measurable,
e there exists an (square) integrable Fu.-measurable random variable M such that

My = E[M|F7]

(respectively, My > E[M|Fr], My < E[M|Fz]) a.s. on the set (T < co) for
any T € T.

Let M (resp. M?) denote the set of optional martingales (resp. square integrable
optional martingales). The space M is extended to a space of local optional martin-
gale, M., and the space M? is extended to a space locally square integrable optional

martingales, M3 , respectively.

Definition 2.4.2 A process M = (M;)i>o is called an optional local (locally square in-
tegrable) martingale if there exists a sequence (R,, M™),n € N, where R, € Ty, R, 1
oo a.s. and M™ is a (square integrable) optional martingale, such that M = M)
on the stochastic interval [0, R,,] and the random variable Mg, , is integrable for any

n € N.
If M € M, then it can be decomposed to
M =M"+ M? where M" = M®+ M¢,

M¢€ is continuous, M? is right-continuous and M9 is left-continuous optional local

martingales. M< and M9 are orthogonal to each other and to any continuous (local)
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martingale. Moreover, M? and MY can be written as
M= )" AM, and M} =Y ATM,
0<s<t 0<s<t
Now, we discuss the extension of the quadratic variation process for the square

integrable optional martingales.

Lemma 2.4.1 1) Suppose X € M?. There exists a unique increasing strongly pre-
dictable process (X) € A such that EX? = E(X)r for every s.t. T, or, equivalently,
X2 —(X) € M, where (X) = (X9) + (X°¢) + (X?).

2) If X, Y € M?, then there exists a unique strongly predictable process (X,Y) € A
such that XY — (X,Y) € M, where

(X,Y) = SUX +¥) = (X) — ()]

Definition 2.4.3 Suppose X € M? and X¢ is its continuous part. We define [X, X]|

to be the process

[X7 X]t - <Xc>t + Z(AXS)Q + Z(A+Xs>27 te R-I—'

s<t s<t

It is not difficult to show that [X, X] is increasing, F-adapted and integrable, and
that X% — [X, X] € M.
Further, setting the polarization property of quadratic variation processes
1

for X, Y € M?, we have XY — [X,Y] € M. Using Definition 2.4.3, we get that

X, V] = (XY + > AXAY, + ) ATXATY,.

s<t s<t

11



Lemma 2.4.2 A non-negative optional local martingale X is a supermartingale.

Proof. Let X € M., X > 0. Then by defintion of optional local martingale
there exist X" € M, X" > 0, and R, € T,, R, T o a.s. such that for any

n>1: X =X"1)g, Next, for any t > s and A € F; we have

EX;14 = lim EX;1414<r,)
n— 00 -

= lim EX{"1414<g,)
n— 00 -

< lim EthlAl(ngn)

n—oo

= lim EXSnlAl(ngn)

n—oo

=EX14.

Hence, the process X; is a non-negative supermartingale (in usual sense). =

2.5 Optional Semimartingales

On an unusual stochastic basis, the most general processes that have good proper-
ties to work with are optional semimartingales. Optional semimartingales are linear
combinations of finite variation processes and local optional martingales. Since local
optional martingales and processes of finite variation are in general neither right-
continuous nor left-continuous, optional semimartingales possess the same continuity

characteristics. Therefore, their structure is complicated.
Definition 2.5.1 The stochastic process X is called an optional semimartingale if
X=X+ M+ A,

where M € My,e, A€V, Ay = My =0 and Xy is an Fo-measurable finite random

variable.

12



Definition 2.5.2 An optional semimartingale X s called special optional semimartin-

gale if the above decomposition exists with a strongly predictable process A € Aj,..

Let S denote the set of optional semimartingales and S, the set of special optional
semimartingales. If X € &, then the semimartingale decomposition is unique. By
the optional martingale decomposition and the decomposition of predictable processes
[32], [33] we can decompose a semimartingale further to

X =X, + X" + X9, with

X" =A"+M",
M™ =M+ M?, (2.1)
AT =A° + A%
X9 =A9 + MY,

where A°¢, A%, and A9 are finite variation processes that are continuous, discrete right-
continuous, and discrete left-continuous, respectively; M¢ € M¢ . M? e M - M9 €
M is a continuous, a discrete right-continuous and a left-continuous local martin-

gale, respectively. This decomposition is useful for defining integration with respect

to optional semimartingales.

2.6 Integration with respect to optional semimartin-
gales

A stochastic integral with respect to optional semimartingale is defined as

polX; = / P dXs = QDSdX§+/ sdXJ, , where
[0,t] 10,t] [0,¢]

/ ps—dX, = / aps_dA;+/ ws—dM; and
10,4] 10,4] 10,4]

| oaxt = [ san+ [ o,
[0,¢] [

[0,¢] [0t

13



The stochastic integral with respect to the finite variation processes or strongly pre-
dictable processes A" over ]0,t] and A9 over [0,t[ are interpreted as usual, in the
Lebesgue sense. The integral f]o,t] ws—dM? over ]0,t] is the usual stochastic integral
with respect to cadlag local martingale whereas f[o, " psdM, over [0, [ is the Gal’chuk
stochastic integral (see [32]) with respect to left continuous local martingale. In gen-
eral, the stochastic integral with respect to optional semimartingale X can be defined

as a bilinear form (¢", 99) o Xy, " € P and ¢? € O such that

Vi=(¢ @) o Xy =" - X[ +¢" 0 X/,

oX = / SLAXT, 0o X = / XY,
10,t] [0,¢]

where Y is again an optional semimartingale. Note that the stochastic integral over
optional semimartingales is defined on a much larger space of integrands, the product
space of predictable and optional processes, P x O. From now on, we are going to
use the operator “o” to denote the stochastic optional integral, the operator “” to
denote the regular stochastic integral with respect to RCLL semimartingales, and the
operator “®” for the Galchuk stochastic integral g X? with respect to left continuous
semimartingales.

The properties of optional stochastic integral are: First, isometry is satisfied with

1/2 1/2

(f*- [ X", X)) 7 € Ae and  (¢° © [X9,X9])" € Ajpe.

The quadratic variations are defined as

(X, X] = [X", X"+ [X7 X9 where

(X7 X7, = (XX + Y (AX,)? and

0<s<t

X9 X9, = > (ATX)

0<s<t

14



Linearity is also satisfied with (f1 + f2 ¢' +¢?) o X; = (f', g') o X + (f?, %) o X; for
any (f1, g') and (f?, ¢%) in the space P(F) x O(F); ATX9 is O(F, )-measurable with
its martingale part satisfying E [ATM{1(7<o)|Fr] = 0 a.s. for any stopping time T’
in the broad sense and AX" is O(F)-measurable with its martingale part satisfying
E [AM}l(T@O)U—T} = 0 a.s. for any stopping time 7T’; Moreover, orthogonality is as
such that X" 1 X9 are orthogonal. in the sense that their product is an optional local
martingale; Also, differentials are independent: AY = fAX" and ATY = gA*T X9,
Lastly, for any semimartingale Z the quadratic projection is [V, Z] = f - [X", Z"] +
90O [X9, 2]

2.7 Random Measures and their Compensators

Consider the Lusin space (E,€&), where E = R\ {0} and £ = B(FE) is the Borel

o-algerba in E. Also, define the spaces

Q=QOxR,.xE, E=R,xE, £€=BR,)xE

OF)=0O(F)xE, OF,)=0(F,)xE P=PxE.

Definition 2.7.1 A non-negative random set function p(w,l),w € Q, T € £, is
called a random measure on & if u(-,T) € F forany T € E and p(w,+) is a o-finite

measure on (E, ) for each w € .

A random measure is called integer-valued if p(w,T') € {0,1,..., 400} and 0 <
w(w, {t} x E) <1 for all (w,T).

For a non-negative function f € F X & and measure i let us form the process

f * p, where

f* = / flw,s,x)p(w,ds,dx), t< oc.
[0t]xE

15



The random measure p is O(F )-optional if the process f * p is O(F, )-measurable
for any non-negative 5(F)—measurable f. Similarly, the random measure p is O(F)-
optional (for brevity, optional) if f * u € O for any non-negative (5(F)—measurable f
The random measure p is predictable if f %y € P for any non-negative P-measurable
f.

Let z be an optional measure. On (Q, O(F)) consider

Ef *jis, f€OF), f>0.

Lemma 2.7.1 Let the optional measure pi be such that the measure Ef * pi s P-
o-finite (i.e., the restriction of Ef % s to (52,75) is o-finite). Then there exists a
unique (up to indistinguishability) predictable measure v = v(w,dt,dx) such that for
any function f € 75, f >0, 0nehas Ef *x oo = Ef % 1.

The measure v can be written in the form v(w,dt,dz) = dAy(w) K (w, t,dx), where
A is an increasing predictable right-continuous process, K(w,t,dx) is the kernel of
the space (2 x Ry, P) into (E,E).

If the measure p does not load any predictable s.t.’s whatever, then the same is
true for v, and the process f x v is continuous for any f € 75, f > 0. Moreover, for

any S € TP andanyfeﬁ, >0, o0n (S <o),

B| [ rsoutsy |7 ] = [ ss.amis).an.

The process f x v is the dual projection for the process f *x u, f € ﬁ, f>0.1If

f* € Apoe, then the process
fxu—fxveE My

In the case of integer-valued u, outside a set of P-null measure, 0 < v(w,{t} x ) <1

forallt € R,.
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The measure v is called the compensator of the measure p.

Let n be an O(F,)-optional measure. On (ﬁ, (5(F+)> consider

Ef % i, f€O(F.), f>0.

Lemma 2.7.2 Let the O(F)-optional measure n be such that the measure Ef x 1.,
18 6-0-ﬁnite. Then:

a) there exists a unique (up to indistinguishability) optional measure A = \(w, dt, dx)
such that for any function f € (5(F)7 f >0, onehas Ef xn, = Ef * A.

The measure X can be written in the form \(w, dt, dz) = dA(w) K (w, t,dx), where
A is an increasing optional right-continuous process, K(w,t,dx) is the kernel of the
space (2 x Ry, O) into (E,E).

b) If the measure 1 does not load any s.t.’s whatever, then the same is true for X,
and the process [ x \ is continuous for any f € (5(F), f=>0.

c) The process

A = (/[MXE f)\(ds,dx))

is the dual optional projection for the process

Frm = ( 4 . fn(ds,dx))

for f € (5(F), f > 0. In particular, for any T € T and any f € (’N)(F), f >0 on
(T < 00)

E{/Ef(T,x)n({T},dx)‘}"T} :EUEf(T,g;)A({T},dx)]fT} 0s.

If fxny € A, then the process

frm—fax= |

[0,t[xE

fn(ds,dz) — / fA(ds,dx) € Mipe.

[0,t[xE

d) If the measure n is integer-valued, then there exists a modification of the measure

A such that outside a set of P-null measure, 0 < ANw,{t} x E) <1 for anyt € R,.
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The measure A is called the compensator of the O(F . )-optional measure 7.

2.8 Canonical Decomposition of Optional Semimartin-
gales

Let Y be a one-dimensional optional semimartingale and (S,)n>1, (T0)n>1, (Un)ns1 be
sequences of predictable, totally inaccessible stopping times and totally inaccessible
wide sense stopping times, respectively, exhausting all jumps of the process Y, i.e.
the set {AY # 0} U{ATY # 0}, such that the graphs of these stopping times do not

intersect within each sequence. Define integer random measures on (R, x E, E )

Md(F) = Z ]T(Tnvﬁ%n)a “g(r) = Z 1F(Un> 5[9]71)’
n=1 n>1
p'(T) = 1r(S, BE,), PP = 1r(S,, 8%),
n=1 n>1
H(F) = Z 1F(Tmﬁjg“n)7
n=1

where 1p(-) is an indicator function of a set I' € £, 5% = AY; if AY; # 0 and 3¢ = ¢
if AY; =0, g = AT, if ATY; £0,8/ =6 if ATY; =0, t > 0.
Under the unusual conditions on probability space Gasparyan [37, Theorem 1]
showed that Y can be decomposed as follows
Yo =Yo+ap +my + / ul(uj<nd(p’ —v7) + / ul (uj<nyd(p? — 1)
10t]xE [0,t[xE

+ u1(|u‘>1)dud + / u1(|u|>1)dug
10,t]xE [0,t[xE

+ / udp® + / udp? + / udn

10,t]x E [0,t[xE [0,t[xE

or in short notation

Y=Yy+a+m-+ Z [u1(|u|§1) * (@ — 1) + ul(ju>1) * 11 —|—u>x<p’} +uxn, (2.2)

J=r9
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where Yj is Fo-measurable random variable, a € Ajy., ag = 0, and m € M2 my = 0,

(a and m are both continuous); 7 are the compensators of .

2.9 Change of variables formulas

The Ito’s formula is a basic instrument in stochastic calculus. In optional settings we
have a generalization of the Ito’s formula - a change of variables formula, which will

be applied extensively in the next chapters.

Theorem 2.9.1 (Gal’chuk-Lenglart formula [33] [62])

Suppose X s an n-dimensional optional semimartingale, i.e.,
X = (X1 .., X",

where X' is an optional semimartingale, i = 1,...,n, and f(x) = f(z*,....,2") is a
twice continuously differentiable function on R™. Then the process f(x) is an optional

semimartingale, and for allt € R,

n 8f

10,¢] 0,

f(Xt) :f(XO) + (Xs—)d(AiT + M”)s

F(X)d(M, M€Y,
+ 3 Z ot]a%a«% I )d( )

n a ‘
+ 3 [f(Xs) —fX) =Y &j (X.)AX (2.3)
0<s<t i=1 v
- af ig ig
i [0,¢] Ox; (Xs)d(A M )5+
+ ) (X)) - Z . X)ATX]],
0<s<t v

where A", M™ M AY, and M are from the decomposition of X" in (2.1).
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After comparing Ito’s formula with Gal’chuk-Lenglart formula, we can immedi-
ately notice that there are two additional last terms in (2.3) that appeared due to
jumps from the right.

Let me now consider the following optional semimartingale

X=Xo+f-a+g-m+ Z [Uhj* (1 —17) + (kj + ;) x P’ ] + (r +w) xm, (2.4)
J=ryg
where X is Fy-measurable random variable; U = U(u) = 1(u<1)(u); a € Ape is
continuous increasing, m, u’, 7, p’,n as in (2.2). Further, for convenience we use
the notation f = f(w,t,2), g = g(w,t, ), hg = h(w,t,u,x), hy = h(w,t,u,z) and
similarly for k;,{;,w and r whenever this does not lead to confusion.

Assume the following
e Forj=r,g,

F(X)] -0 € Ape,
9(X) - (m) € A,
B(X)? % 17 € A,
(X)) * P € A,

[y ()12 % 9] € Avee,

[r(X)] 1 € A,

(X)) % 7] € Atge,

and E[k,(S, 8%, Xo)|Fs_] = 0 a.s. for any predictable stopping time S on {S <
oo} and Elky(T, 57, Xo)|Fr] =0, E[w(T, 57, Xo)|Fr|] = 0 a.s., for any stopping

time 7" on {1 < oo}.

e f(w,s,x) and g(w, s, z) are defined on (2 x Ry x R) and P x B(R)-measurable;
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o Uhy(w,s,u,x) is defined on (2 xRy x EN(Ju] < 1) xR) and P x B(EN (Ju| <
1)) x B(R)-measurable;

o Uhy(w,s,u,x) is defined on (2 x Ry x EN(Ju| < 1) xR) and O x B(EN (Ju| <
1)) x B(R)-measurable;

o kyg(w,s,u,x), lg(w,s, u,x) are defined on (Q x Ry x E x R) and P x B(R)-

measurable;

o ky(w,s,u,x), lyj(w,s,u,x), rw,s,u,z), ww,s,u,x) are defined on (2 x Ry x

E x R) and O x B(R)-measurable.

These integrability and measurability assumptions guarantee well-posedness of the

integrals in (2.4).

Theorem 2.9.2 Let X be an optional semimartingale given in (2.4). Let f(x) =
f(z',...,z") be a twice continuously differentiable function on R™. Then the process

f(z) is an optional semimartingale, and for all t € Ry it has the following represen-

21



tation

o) =1+ [

1
+ —
2 i1 10,4] 0;1:1833]

of

10,4] axz

02 f

(X, )d(a" +m"),
i=1

f(Xs-)d(m, m)s

+ [f(X_ + ha) = (XU = (u* — v,

+ (X +hy) = FOIU * (0 —v7),

+

+

n

of

X+ h) =X =2 5 (Xs)hiy| U of
' O il e
F(X 4 hg) = F(X) = Y o (Xahy | U v

i=1 "

LA (Rt L)) — FX)] *
LA+ (g + 1)) — FOXO] %7

HFX A+ (r+w)) = FX)] .
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Chapter 3
Optional SDE’s

This chapter is devoted to the study of comparison of solutions of stochastic equations
of optional semimartingales on unusual probability space, and the study of pathwise
uniqueness of these solutions using local times.

A comparison theorem for stochastic equations with respect to continuous semi-
martingales was proved by Melnikov [68] who developed the Yamada method [89].
Later a similar result was given by Yan [90] using the local time technique. The case
of SDEs with integer-valued random measures where the coefficients are not Lipschitz
but satisfy weaker conditions similar to those of Yamada were considered by Gal’chuk
[31]. Interesting applications of path-wise comparison theorem to mathematical fi-
nance were given in [53] and further developed in [52]. Recently, a comparison theo-
rem for optional semimartingales on unusual probability space was given in [11] when
coefficients satisfy the Yamada conditions. Therefore, our goal here is to study com-
parison of optional SDEs on unusual stochastic basis under a more general condition,
local time condition, placed on the diffusion coefficient. Besides, we extend a version
of the comparison theorem for solutions of SDEs with different diffusion coefficients
(see [29], [78]) to the laglad jump-diffusion case.

Even though, the stochastic calculus of optional semimartingales is well developed,
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little is done in showing pathwise uniqueness of solutions of stochastic equations driven
by optional semimartingales on unusual probability spaces, except, for the works of
Gasparyan [38] and Abdelghani and Melnikov [13] on the existence and uniqueness
of strong solutions under Lipschitz conditions and monotonicity conditions, respec-
tively. On the other hand, Perkins [79] proved the pathwise uniqueness of solutions of
stochastic equations of continuous semimartingales using the local time technique. As
a result, we consider the questions of pathwise uniqueness under one-sided Lipschitz
continuity on a drift function and local time condition on the diffusion coefficient for
laglad optional semimartingale using the method of local time, which was not done
before.

Besides a purely theoretical interest, the topic is motivated by the needs of the
energy market. In many electricity markets, retailers buy electricity at an unregulated
price and sell it to consumers at a regulated price. Therefore, the occurrence of
price spikes due to sudden changes in electricity demand or supply in these markets
represents a major source of risk to retailers. Hence, accurate modeling of price
spikes is important. As a result, we have modeled spikes in spot price in a way
so that each upward jump is accompanied by an immediate downward jump. The
flexibility, modeling capacity, and accuracy of laglad processes can not be achieved
by using cadlag processes, because they are right-continuous and, consequently, can
not have immediate downward jumps. Moreover, even if we use a sequence of right
jumps, it is hard to control times at which downward jumps happen after an upward
jump, and, thus, even if we tried to model “almost” immediate downward jumps after

upward jumps for cadlag processes, we would not succeed.
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3.1 Existence and Uniqueness of solutions of op-
tional SDE’s

Before starting the investigation of comparison of optional SDE’s, we provide a short
exposition of results on their existence and uniqueness.

Let (Q,F,P) be a complete probability space equipped with a filtration F =
(F¢)t>0 which is not complete, right- or left-continuous.

Let Y be a one-dimensional optional semimartingale which has the representation

(2.2). Consider the following SDE

X=Xo+f(X)-a+g(X) - m+ (r+w)(X)x*n

+ ) [UR(X) * (0 =) + (k; + 1;)(X) +p'], (3.1)

J=rg
where X is Fy-measurable random variable; U = U(u) = 1(u<1)(u); a € A is
continuous increasing, m, u’/, 7, p’, 1 as in (2.2). Further, for convenience we use the
notation f(X) = f(w,t, Xi—), 9(X) = g(w, t, Xs_), ha(X) = h(w, t,u, X;_), hy(X) =
h(w,t,u, X;) and similarly for k;,{;, w and r whenever this does not lead to confusion.
To guarantee well-posedness of the integrals in (3.1) we make the following as-
sumptions.

Assumptions 1.
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[F(X)] - a € A,
(9(X))" - {m) € A,
[P(X)? %17 € Apee,
(X)) * P € A,

[ (X)[* = ]

r(X)]*n € A,

[[w(X)[* 7]

1/2

€ Alom

1/2

€ Alom

and E[k,(S, 8%, Xo)|Fs_] = 0 a.s. for any predictable stopping time S on {S <
oo} and Elky(T, 53, Xo)|Fr] = 0, E[w(T, 57, Xo)|Fr] = 0 a.s., for any stopping

time 7" on {7 < oo}.
o f(w,s, x)and g(w, s, x) are defined on (2 xR, xR) and are P xB(R)-measurable;

o hy(w,s,u,x), ke(w,s,u, ), lgy(w,s,u,z) are defined on (2 x Ry x E x R) and

P x B(R)-measurable;

o hy(w,s,u,x), ky(w,s,u,z), l(w,s,u,x), r(w,s,uz), ww,s,u,z) are

defined on (2 x R, x E x R) and O x B(R)-measurable.

For convenience we state here sufficient conditions for the existence and the

uniqueness of the strong solution of (3.1).

Definition 3.1.1 Let Assumptions 1 hold. We say that the functions f, g, h;, kj, l;,r,w
in (3.1) satisfy the L(Y,Xo) conditions if:

(L1) there exists non-negative functions F,G, H? L7, K7, R, W, j =r, g, such that
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(a) F(w,s), G(w,s) are P-measurable; H*(w, s,u) is P x B(E N (Ju| < 1))-
measurable;
H9(w, s,u) is O x B(EN (Ju| < 1))-measurable;
L4 w, s,u), K%w, s,u) are P-measurable;
LI(w, s,u), K9(w, s,u), R(w,s,u), W(w,s,u) are O-measurable.

(b) Fra+G-(m)+3 5,  [HU* 17 + (K7 + L) x N]+(R+W)*( < 00 as.
for any t > 0, where M and ¢ are compensators of p° and n, respectively.

(c) for any x,y € R, s € Ry and j =r,g,

[f(@) = f)l-a < (Flz —y]) -a

(9(x) — g(y) ) (GM—M) m);
|hj(z) — vl < (Ho |z —y|) x v
() — *VS(LJ\x—y\)*)\i,
|Kj (@) — kj( < (K |z —yf?) « N,

Ir(z) — r(y)| * ¢ < (Rla —yl) * ¢,
lw(z) —wy))?* G < Wz —yl*) &

(L2)

(9(X0))? - (m)¢ + f(Xo) - ar + [T(Xo) + (w(XO))ﬂ * C
+ Z VU * 17 + [(k’j(XU))2 + l]-(XO)] * )\j} < 00

Jj=rg

a.s. for anyt > 0.

Theorem 3.1.1 (see [38, Theorem 1], [39, Theorem 3.3.1]) Let Y be an optional
semimartingale and suppose that f, g, h;, k;,1;,r,w satisfy the L(Y,Xo) conditions.

Then the strong solution of (3.1) exists and is unique.
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Remark 3.1.1 Results in this chapter can be easily generalized to the eq. (3.1) with

an additional term (>0l * 7 due to its simple structure (see [11, Lemma 3.2]).

3.2 Local Times for optional processes

Next, we discuss the notion of a local time for an optional semimartingale which was
first introduced in ([62], VI.3.4). This concept is crucial for our proof of comparison
of solutions and pathwise uniqueness. A local time at a of an optional semimartingale

X is denoted by L¢(X) and given by

t
L8 (X) = | X, —a| — | Xo —a] — / sign(X. — a)dX,
0

— Y X, —al = [ X, — a] — sign(X,- — a)AX,]

0<s<t

— Z [ Xot — a| — | X5 — a| —sign(X, — a)A*X,]

0<s<t

where sign(z) = 1if x > 0 and sign(z) = —1 if z <0.

Definition 3.2.1 (¢f. [17, Definition 1], [16, Section 2]).
We say that a coefficient function g of equation (3.1) satisfies the LT condition, if

for any two solutions X' and X? of equation (3.1), the local time at level O satisfies,
Vi>0 LY(X'-X?)=0. (3.2)

A generalization of the change of variables formula (Theorem 2.9.2) can be ob-

tained using the local time.

Theorem 3.2.1 If F' is the difference of two convex functions and F' is its left

deriwative and let p be the signed measure which s the second deriwative of F'. Then
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we have

Fx) =k () + [ 000X+ [ pptaa)
+ Y [F(X,) = F(X,- — F/(X,0)AX,] (3.3)
+ Z [F(Xs-i-) - F<Xs - F/(XS)A+X5]

Proof. First note that, if F' is linear function, then by the change of variables formula
(see (2.3)), the result holds for p = 0. For a general function F, let g(z) = 3 [ |z —
ylp(dy). Then g is a convex function, ¢'(z) = [, sign(z — y)p(dy) and ¢"(x) = p(dy).
Therefore F' — g has second derivative 0, hence is linear, and so the result holds for

the function F' — g. By linearity, it remains to show that the result holds for the

function g. By integrating 1|X; — a| with respect to p(da), we have that

(X0 = 5 [ 1X - alp(da)

-1 /R X0~ alp(da) + /R ( /O Csign(X, — a)dX, + Lg) plda)

+ /R 31X, —al - X, — a] - sign(X,- — a)AX,] p(da)

0<s<t

+ [ Y [ Xer —al — | X, — a] = sign(X, — a)ATX,] p(da)

R 0<s<t

o+ [ ([ sgn(X,_ — a)dX, + Lt ) ol

+ Z [g(Xs) - g(Xs—) - g/(Xs—)AXs}

0<s<t

+ ) [9(Xe) = 9(X,) — ¢ (X)ATX,]

0<s<t

By Fubini’s theorem,

% /R ( /0 t sign(X,- — a)dX, +Lg) p(da) = /0 t 9 (X, )dX, +% /R L p(da).

Combining these yields the result. m
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Corollary 3.2.1 (Occupation-Density (cf. [61]) Let X be an optional semimartin-
gale with local time (L*).er. Let g be a bounded Borel measurable function. Then

a.s.

/ " Log(a)da = /0 (X)X (3.4)

Proof. By first assuming that g = F”, where F' is a convex and twice continuously
differentiable function, and simply comparing the change of variables formula (2.3)
with the formula in (3.3), we obtain the equality (3.4). Since this formula holds for
positive continuous function g, by monotone class argument it must hold, up to a

P-null set, for any bounded, Borel measurable function g. m
Now we present the formula (3.3) using jump measures.

Theorem 3.2.2 Let X be an optional semimartingale given in (3.1). Let function
F be conver on R. Then F(X) = (F(X);) is an optional semimartingale and has the

following representation

t 0o

F(X,) =F(Xo) + /0 PX)X 5/  Liplda (3.5)
+[F(X- + ha(X2)) = F(X)]U * (u* = v?),
+ [F(X + hy(X)) = F(X)]U * (1" — ),
+[F(X_ +ha(X) = F(X_) — F'(X_ )ha(X )] U * 1/}
+[F(X + hy(X)) = F(X) = F'(X)he(X)| U ¢
+[F(X- + (kg + 1) (X)) = F(X2)] *pf
F[F(X A+ (ky + 1,)(X)) — F(X)] * p¢ (3.6)

+[FX + (r+ w)(X)) = F(X)] * .

Proof. Apply the change of variables formula (3.3) to the optional semimartingale
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(2.2)

F(X;) =F(Xo) + t F'(X,_)d(a+m)s + % /_OO L¢p(da)

+ F(X_) [haU * (u* — v*) + [ka + lg) * p* + [r + w] x 1]

+ Z [F<Xs) - F(Xsf - F/(Xsf)AXs]

0<s<t
+ F/(X) [hgU * (1 — v9) + [ky + 1g] * p’]
+ > [F F(X, — F'(X,)ATX,]
0<s<t

Let us transform sums » ;. [] and >, ,[-]. Define Cy = > [, B: = >,
and represent them in the form C, = 327 Ci, B, = >° =1 B/, where

Ci = Z[-]Tnl\AXTn\g, C? = ZHSM

Tn<t Sn<t

Bt1 = Z[']Un1|A+XUn|S17 Btz = Z[']Sn’ Bf = Z[']Tn'

Un<t Sn<t T,<t
In ([62], Sec. 3, Theorem 5) it is shown that C' — C? B! — B3 belong to V in case
F(z) = 2. The same result follows for the general function F' from the facts that
xt —x =27 and |z| = 27 4+ 2~ using the same approach as in Theorem A.1. We are
going to rewrite this sums using stochastic integrals.

1. Define o, = inf(t > 0 : [J]dC}| > N or |X,_| > N), 0% = inf(t > 0 :
[y71dBL| > N or |X,i| > N). For any N,o% is F-s.t., 0% is Fy-st. and o 1
00,0% T 00 a.s. as n — oo, f[O,ajdv] |[dC}| = f[o,adN[ |dC}H + AC;?V < N + K, where
K = maxy<n11(2F (z) + [F'(2)]), such that |[X,a| < [Xoa |+ [AXa| < N +1,
thus, Ef[o 11 dC{| < oo. Moreover, [, o] |dB}.| < N, e.g., B',C' € Aj,.. Functions
F(X_ +hg) — F(X_) — hgF"(X_) and F(X + h,) — F(X) — h,F'(X) are P and O
measurable respectively. From [27] it is easy to see that AXy, = hy(T,), AT Xy, =
hy(T,), e.g. F(Xt,) = F(Xp,— + ha(Ty)), F(Xr,,) = F(Xr, + hg(T,)). Next, from
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B!, C' € Aj,. and properties of stochastic integrals with respect to p it follows that

ol = [F}Ej) - hdF’(X,)} U s (ud — vd) + [Fg? - hdF’(X,)] U % v,

B' = [F}Ej) - th’(X)} U (19 — %) + [Ffﬁj) - th’(X)] U s 19,

where Fi = F(X_ + hy) — F(X_), F{¥ = F(X + hy) — F(X). First terms in the

above sums belong to M{ and M respectively, while second terms belong to Aje.

Now, using generalized mean value theorem for convex functions [82] we have for any

n on {04 < 00)} and {0% < 00)} respectively

d
|Ff§d)<Tm AXTn)|21(lhd\§1,Tn§o§‘V) <
(‘mﬁl%}il |F/<I>|)|hd(Tm AXTn)|21(|hd|§1,TngaglV)a
(9) + 2
| F) (Uns AT XU, )" (g1 <1,00<08) <

(\mfg%}il |F/(I)|)|hg(Um A+XUn>|21(|hd|§1,Un§U]gv)7

taking into account that | Xy, | < | Xy, |+ |A*TXy,| < N +1 in the second inequality.

By summing up along n each of these inequalities we obtain

FOPU s, < (1P ) 0
J UN JN

|z|<N+1

These inequalities and assumptions about h; imply |F,§j )|2U * 1) € Apge and, thus,
by properties of stochastic integrals with respect to jump measures p? — 17/ we get

|F, }Ej )|2U x (4 — v7) € M}, By Cauchy-Schwartz inequality we deduce
|F' (XU % pu® € Ape and |F'(X)U* 5 1 € Ao,

thus

FI(X U % (= v e M2 and F'(X)U * (¢ —19) € MY

loc loc*
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Finally, we decompose C* and B! in the following form
C' =F)U s (' = v") = [haF' (X))U » (u* = o)
+ R - hdF’(X_)} Usu?

B' =FU % (uf — %) — [hyF'(X)] U * (u® — 1)

+ _Féz) — th’(X)} U * 9.

where the first two terms in each formula are in Mfo’i and Mfo’g respectively, and last
terms are in Aj,,.
2. Since the processes
Z F,<Xsn7)AXSn7 Z F/(Xsn)A+XSn7 Z F,(XT7L)A+XT7L’
Sn<t Sp<t Tn<t

are semimartingales, then we represent the processes C?, B? and B? as

C? = F,Sjlld s pt — [kg + L) F'(X_) % p?,

B? — F,ggl,g s p? — [ky + L] F'(X) % p9,

B* = FY9, 1 —[r +wlF'(X) xn,

T

where all terms on the right side are semimartingales. By plugging 23:1 Cr, Z?Zl B’
instead of » ,_.,[] and > [, respectively, we get the required change of vari-

ables formula. =

Theorem 3.2.3 Let X be an optional semimartingale satisfying

S IAX |+ ) ATX,] < o
0<s<t 0<s<t

Then there ezists a version of B(R) x P wversion of (a,t,w) — L{(w) which is every-

where jointly right continuous in a and continuous in t.
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Proof. The process J; = ZO<s§t AX, + Zogs<t AT X, is a finite variation optional
semimartingale, and ¥ = X — J is a continuous optional semimartingale. We let
Y = M + A be the (unique) decomposition of Y, with My = Ay = 0. Then X =
M + A+ J. Further define

Sy = Z Lix, sa)(Xe —a)” + 1ix,_<a)(Xs —a)"

0<s<t

+ Z Lix,sa) (Xop — @) + Lix,<a)(Xop — @)

0<s<t

Observe that [SP| <3 g, [AX |+ <o [ATX,| < 00. By the change of variables

formula
t t
(Xt - CL)+ - (XO - CL)+ :/ 1(Xs—>a)dAs + / ]-(Xs_>a)dMs
0+ 0+
t 1
+ / 1x, sqdJs+ 57 + L.
0+ 2
We have

t t

lim Lix, >a)dAs = / Lix,_>pdAs

a—b,a<b 0+ 0+
t t

lim 1(X57>a)dAs = 1(X572b)dAs
a—b,a>b 0+ 0+

where the convergence is uniform in ¢. We have similar results for

t
/ 1(X5,>a)d(]s
0+

and also for Sf, because it is dominated by > ;_ ., [AX [+ > oo, [ATX | < 00 .

Since we already know that fg + 1(x, >a)dM; is continuous, the proof is complete. =

3.3 Comparison Theorem via local times

Let us investigate comparison of solutions of stochastic differential equations driven

by optional semimartingales. In this section we consider two processes given by SDE’s

34



of the same type as equation (3.1):

X=X+ (XY a+g(X) m
+ 3 [UR (X # (i = v7) + (K + )X 5] + (7 w')(XT) 5, i= 1,2,
J=rg
(3.7)

We are going to present a general version of a Comparison Theorem with LT
condition on g and the following conditions on functions f*, by, k%, I5, 7", w', i = 1,2 :

D Conditions. Suppose that
(D1) X§ > Xg;
(D2) f3(s,z) > fY(s,x) for any s €e Ry, x € R;

(D3) Forany se Ry, ue E, x,ye Rjy>=x

y+hi(s,u,y) >+ hi(s,u, ),
2 2 2 2
Y+ K (s,u,y) +15(s,u,y) > x4+ K (s,u, ) + 15(s, u, ),

y+12(s,u,y) +w?(s,uy) > x4 17 (s,u,x) + (s, u,2);

(D4) For any s e Ry, ue E, x € R

2 2 1 1
ki (s,u, ) + I5(s,u, 7)) > kj(s,u,x) + (s, u, v),

r(s,u, ) + w?(s,u, x) > (s, u, x) + w'(s,u, x);

Theorem 3.3.1 Suppose that f*, g, hj, k;,l;,ri,w" in (3.7) satisfy L(Y,X}),i=1,2,
and conditions D and LT hold. Then there exist unique strong solutions X' and X2,

and X} < X? for allt e Ry a.s. (X' < X?).
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Proof. Let Y := X' — X? and

I 1=1(Y_>0)(f1(X1) - fA(X?) - a,
I, 1=1(Y_>0)(9(X1) —g(X?)) - my
+ (Y + ha(XY) = ha(XP) T =Y U * (0" = v%),
+ [(V 4 he(X") = hg(XP) T = YT U * (09 — %),
L= [(Yo + ha(XY) = ha(X?))" = Y2 = (ha(X") = ha(X?))1v_0)] U * v
[V 4 hg(XT) = hg(X?))T = YT = (hg(X") = hg(X?))1ys0)] U * 1,
L= (Y2 4 k(X7 + LX) = k3(X?) = (X)) = Y]+ pf
+ [V g (X) + (X7 = B3 (X?) = I5(X*) T = Y] %,
I = [(Y + 71 (X" + w!' (X)) = r*(X?) —w*(X?)T = Y] %
By Theorem 3.2.2, Y* is expressed in the following form
1
Y;*=Y0++§L$(Y)+Il+l2+13+l4+l5.
After using (D1) and LT conditions, equation (3.8) becomes
Y=L+ L+I+ 1+ I

Next, we examine each of I; — I5 separately. By (D2) and (L1) conditions,

L =Liy_so) [(fH(XT) = fAXD) + (XD = X)) - a

SFY:F © Q.
Now, consider I3

Iy = [(V- 4 ha(X") = ha(X3) — (Vo + ha(X") = ha(X?)Lyv_s0)] U % 54

+ (Y + hg(XT) = hg (X)) = (V + hg(XT) = hg(X*))1(vs0)] U 1
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Further, applying the identity I = I'™ — I~ to the terms Y_ + hg(X') — hq(X?) and
Y + hy(X1) — hy(X?), we get

Iy = (V- + ha(X") = ha(X?) Tz sx2)
(V4 (K1) = ha( X)) e [ U 5
[V By (X1) = hy(X3) Ly
Y+ g (XT) = by (X)) Lo | U 5 0.

It follows from (D3), that I3 = 0.
Using (D4), we get

Is =1y [TQ(Xl) +w (XY —r}(X?) — wQ(Xz))] * 1y
+ [V +r' (XY + 0" (XY = r?(X) —w?(XT)
Fr2(XY) + (XY = r2(X?) — w?(X2))*
Yt — 1y (rQ(Xl) +wi( XY —r}(X?) — wQ(XQ))” 1,
<Liyso) [rA(X1) +w?(X1) = r3(X?) — w?*(X?)] * 1,
+ [ + 12X + w(XY) — r2(X?) — w?(X2))*

— ey (Y 472X + w2 (XT) = 2(X?) = w?(X2)) ] %
Due to (D3) and (L1) conditions
Is < RY " 1 + Liy=o) [w2(Xl) — w2(X2)} * 1.
Repeating the same calculations for I, we obtain that

I <LYY7* s pd + LIY T % p9
+ 1y s [K3(XT) — K3(X?)] * pf

+ 1oy [F2(XT) — K2(X?)] = pf
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By combining all the estimates for Iy, I3 — I5 with (3.3), we have
)/t+ S Mt+Y+OCt,

where o means an optional stochastic integral (see [4, Section 7.1]), C' := F -a; + W %

n + L% % p? + L9 x pY is a non-negative increasing process, and

My =D+ 1yso) [w*(X") — w*(X?)] %
+ 1y sy [K3(XY) = KZ(XP)] * 0! + Liyso) [Fo(X1) = K5 (X?)] * pf,

My =0.
Using Assumptions 1, we have

Ly >0)(g(X") — g(X?))* - (m), <
2(g(X1)? - (m)s 4+ 2(g(X?))? - (m)s € A,
(V2 + ha(X") = ha(X2) T = YF] U off <
2 [ha(XO]” 5 v 4+ 2 [ha(X2)]]” 5 1 € A,
[(V 4 hg(X1) = hy(X))F = YF U1y <
2 [y (X)) % +2 [hg(X2)]]" 1 € A,

[ 2/ v1 2/ 12112 11/2

2 [w ) s] " 20 o] € A,

1/2

- 2 .
_1(Y_>0) [K3(XT) — k3(X?)] *pf_

- 11/2 11/2
2 k3000 e0t] "+ 2[00+ 01] € A,

1/2

~—~

[1<Y>o> [K2(X1) — k2(X?)] *p?] <
1/2 1/2

220 ]+ 2RO 5 48] € Aue

Thus, M is an optional local martingale (see [4, Section 7.4.2, p. 234]).
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Now, by Grownwall lemma (see [10, Lemma 3.2])

Y < &(C)M,.

Since C; is an increasing process, £&(C) > 0. Thus, M; > 0 since Y;© > 0. Therefore,
M; is a non-negative optional local martingale and, consequently, by Lemma 2.4.2
it is a non-negative supermartingale starting from 0. It follows that M; = 0 for all
t € Ry ass. Hence, YT <0, and X! < X2 =m

Next, we show generality of LT condition imposed on function g.

Definition 3.3.1 (Yamada condition (see [89, Theorem 1.1], [11, Theorem 3.2]).
We say that a coefficient function g of equation (3.1) satisfies the Yamada condition,
if there exists a non-negative non-decreasing function p(u) on Ry and a P-measurable

non-negative function G such that

l9(z) — 9(y)| < p(lz — y)G(s),

G? - (m), < o0 a.s.,/E p~2(uw)du = oo for any s € Ry, e > 0,2,y € R.
0
Lemma 3.3.1 If g satisfies Yamada condition then LT condition holds.
Proof. Using the formula of occupation density we have
[0 = X anda = [ s - XDax,
0 0

:/0 Lixioxzsop 2(X) — X32)
x [g(X") — g(X?)]" d(m),

<0

Thus, since a — L{(X' — X?) is right-continuous and [ p~*(u)du = oo, Ve > 0, it

follows that ¢ satisfies LT condition. m
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Example 3.3.1 We provide an ezample of the function g(x) which satisfies LT con-
dition but does not satisfy Yamada condition. Let g(x) = 1+[log(|z|~*V2)]™ (p > 0),
it can be shown (see [79, Example 3]) that Yamada condition does not hold. On the

other hand, by the mean value theorem for some ¢ > 0, and for all 0 < y < }1,

—(2p+1)
1)) 1[—3/4,1/2] (CU)

Let dX} = g(X})dW; and dX? = g(X?)dW,; be two strong solutions (W is a Wiener
process), then by using the formula of occupation density and the above inequality we

prove that

v t lg(XY) — g(x)?
X' — XYda= [ 1 J d
/0 aloga Jda / (1>X1-X220 (X1 — X2 Jog(X1 — x2)

N X271 v 2)]7P)?
S C/ ( + [Og(| | = ()2]p+1)) 1[73/471/2} (XQ)dS
0 |X2| (log (1X27))

< 00

because the expression under the integral sign is Lebesque integrable over compacts.

1
aloga

Thus, since a — LI(X' — X?) is right-continuous and f01/4 da = oo it follows

that g satisfies LT condition.

Remark 3.3.1 The local time technique allows us to prove the comparison theorem in
a short and concise way. As shown in Example 3.3.1, LT condition in Theorem 3.3.1
is generally weaker than Yamada condition in [11]. Notice further, that conditions on
functions f',1' and r* are weakened in the sense that inequalities in (D2) and (D4)
are not strict as the ones given in [11, Theorem 3.1]. In addition, we have not used

conditions (A4) and (A8) from [11, Theorem 3.1] in our proof.

Remark 3.3.2 Note that the condition on the function g in (L1)-c) guarantees ful-

fillment of the (LT) condition by Lemma 3.5.1, but not other way around.
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3.4 Comparison of solutions of SDEs with different
jump-diffusions

In this section we expand the comparison theorem proved for SDEs with different
diffusions in [29] to the optional jump-diffusion case. For the sake of brevity, here we

want to compare two processes following a simplified version of SDE (3.7) in the form

of

X{ =X+ f{(X) o+ gi(XT) o+ Y [URHXT) = (0 = 27),] i =12, (3.9)

J=rg
with initial condition X§ = 2. Since now g; and R} can be all different, we should

put stronger conditions on f*, g;, h’ and zf, i = 1,2.
Denote
“ dx
E(Z> ::/ TN
z) gl( )
i i 1 hl Z,U .
oo 2

j=rg
s z—i—hj(z) dr
hi(z) = .

: gi(x)

where o and 7/ are given below (see B1).
Let us introduce the following

B Conditions.

(B1) (structural conditions): There exist densities

_ d{m),
“= dat ’
t
v (w, (0,1],T) :/ 7w, s,T)das,
0+



(B2) g; i = 1,2, is positive and continuously differentiable in z such that for any

seR,, zeR

Fi(s,z) > Fy(s,2) (3.10)

(B3) Forany se Ry, ue FE, z,y e Ry > z

(B4) f2(z) and ﬁj(z) are Lipschitz continuous.

Theorem 3.4.1 Suppose that fi,gi,hé» in (3.9) satisfy L(Y,X1),i = 1,2, and con-

ditions B hold. Then there exist unique strong solutions X' and X?, and X! < X?2.

Proof. We transform the processes X* with the help of the change of variables

formula and structural conditions, i = 1, 2,

frXE L,
- =/, —Zd(X ).
(X0) ag + My 291( i)+ (m)
Xi +hg(Xi0) g Xi+hy(XP) g
+/ —xU*,uf—l—/ —xU*,uf
Xi 9i() X gi()
_ Il f_)U*utd— o Z)U*uf
gi(Xt—) gi(Xt>

o}

= (F7N X)) - a4 my + hy (B (XG)U i+ g (F7H(X))U *

2

From the condition (B2), it follows that F, *(z) < F,*(2) and, consequently, for any
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FFTY(2) < F(FY(2)), (3.11)
b (FTN(2)) < By (Fy'(2)) (3.12)
Z + Bj(s, u,z) <y+ ﬁj(s, u,y). (3.13)

by applying (B3).

Functions }2(F2_1(x)) and B?(FQ_I(:E)) are obviously Lipschitz continuous since
Fy ! is continuously differentiable transformation and (B4).

Now, we cannot directly use Theorem 3.3.1 because

1

~ _ ~2 _
hj(Fl 1(Z)) - hj(F2 1(3))
in general. Instead, notice that

Y+ ::()N(; — )N(f)Jr
1y o[ (R - PB L)
FPEED) - PEED)] 0

| (v B L) - B ) -y 0

1 ~2 =2

# | (v Byt () - B ) v o
=0 + I+ I5.

By (3.11) and Lipschitz continuity, I; < const.Y ™ - a;. Next, applying the same
approach as in finding inequality for 5 in the proof of Theorem 3.3.1 and using (3.12),
(3.13) and Lipschitz continuity, we get Iy < const.Y U xud and I3 < const.Y U * jif.
Consequently, by Gronwall Lemma we prove that X' <X 2

This, together with (B2), implies that

/th dx /th dx </Xt2 dz
x2 gg(l') x} gl(‘r> N x2 92(:{:)

0 0

IN
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Since go(x) > 0 we conclude that X' < X?. m

Remark 3.4.1 Proceeding with the same technique for jump measures as in the above

proof, Theorem 3.4.1 can be directly extended to solutions of (3.1).

Let us give specific examples.

Example 3.4.1 Let X! and X? follows the equation (3.9) with my = Wy, a; = t. For

A€ B(Ry) and T € & the Poisson random measures p® and p? are defined as

pt(AxT) « =#{(t,AL{) € AxT|t > 0 such that AL{ # 0}

p (AxT) « =#{(t,ATL]) € Ax D[t > 0 such that ATL] # 0}

where L} and L? are a Poisson process and a left-continuous modification of a Poisson

process with constant intensities ¥ = 1 and 9 = 2, respectively, and compensators

v = ~v% and v9 = y9t. Furthermore, we assume that L' and L? are independent.
We have
fli(z) =0, gi(2) =1, w5 = 0;
0.15
2(z) = os(z) 0(2) = (1 - 03sin(2))"),  a2=0;

(1 —0.3sin(2))?’
Firstly, we consider the case with no jumps, i.e. h; =0, 1 =1,2. It is easy to check
that all assumptions of Theorem 3.4.1 hold, and, thus, X' < X2

Next, let us assume that h; =1, i = 1,2. Intuitively, by adding the compensated
Jumps with the same magnitude we anticipate the same result as in the continuous
case. However, condition (B3) of Theorem 3.4.1 is clearly not satisfied. Therefore,

X1 < X2 is not necessarily true.
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Finally, assume that hjl = 0.7, h? =1 and f1(z) = —1.8, other functions stay the

same. Since

(y) = —3(1 — 0.3sin(y))

-1 z40.7 dZIZ'

2ay— [ du —1403 1) — 0.3
J'(y)_/y ([ 03sin())1 | T 03cosly+1) = 03cos(y)

then (B3) holds. In addition, ]~”2 and ﬁj are obviously Lipschitz continuous. Thus, by
Theorem 3.4.1, X' < X2,

Example 3.4.2 Let X' and X? follows the equation (3.9) with the same ay, mq, jil, X,

as in Fxample 3.2. and

fH(z) = —0.5e7%, g1(z) =e 7, hjl- =0, x5 = 0;

f2(2) =03+ 2+ 2°, ga(2) = 1+ 2%, h?=1, z2 = 0;

It is not hard to show that all assumptions of Theorem 3.4.1 hold, and, thus, X* < X?2.

3.5 Approximation of option price bounds using
comparison property

The comparison theorems considered in the previous sections can be applied to find
boundaries of option prices in case of so-called Constant Elasticity of Variance (CEV)
model. This idea was introduced in [53] and developed further in [52]. Here we extend
it to jump-diffusion CEV model and solve the problem formulated in [52]. Option
pricing for jump-diffusion financial market models were also considered in the context

of imperfect (quantile and efficient) hedging (see, for example, [50], [54]).

45



CEV model was proposed by Cox and Ross [23]. It is often used in mathematical
finance to capture leverage effects and stochasticity of volatility. It is also widely
used by practitioners in the financial industry for modeling equities and commodities.
Consider a more general version of the jump-diffusion CEV model [91] where the stock

price is said to satisfy the following integral equation,

t
Sy :p/ Ss_ds+ oS- W, +5,_U % (,ul — Vl) + S;U * (/UL2 - V2) ,
0 t t (3.14)
S() =S,

1

where p and o are constants. W, is a Wiener process, u' — v! is a compensated

2

measure of left jumps and u? — v? is a compensated measure of right jumps. For

B € B(R;) and I' € € the jump measures are defined as follows
1 . 1 1
p' (BxT) :+ =#{(t,AL}) € BxT|t >0 such that AL; # 0}
p?(BxT) + =#{(t,ATL}) € Bx |t > 0 such that AL} # 0}
where L} and L? are a Poisson process and a left-continuous modification of a Poisson
process with constant intensities 4! and 2, respectively, and L' and L? are indepen-

dent. Hence, v! = vt and v? = ~%t.

Counsider the function

1 T l-a _ -«
F(x) = —/ u‘“du:u, and find

where 0 < o < 1.

Denote X; = F'(S;) and apply the change of variables formula (see Theorem 2.9.2).
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We have

X, =F'(5) [p /t S,_ds + aS* - Wt} + /t gF”(Ss)ngds
+[F(2S;2) — F(S; ) U * (u* — v,
28;) = F(S)]U * (1 = v?),

25,_) — F(Si_) — Si_ F'(S,)| U # v/}

(
+ [F(
+ [F(
[F(QSt) ( ) — StF/<St)] U * VtQ
t
_ / pSie — Zset] ds + W,
o L >
+eSEU x (b — v +eSU * (i — v,

oo

= /Ot k (Xemo(l—a) +57%) — > (Xomo(1l—a) + slfa)‘l] ds + W,

+c(Xpmo(l—a)+ ) Ux(u' —v'),

+c (Xta(l —a)+ Slfa) U * (M2 — VQ)t

where 1= £ 4 (2177~ 1= EU 4 (20— 1= Dl and o= 275

With the Comparison Theorem 3.3.1, we can give an estimate of the process X;

from above by a new process Y;, satisfying the equation,
t
Y, = / [k (Yieo(1— )+ s )] ds + W,
0
te(Yio(l—a)+ ') Ux (u' —v'),
+c (Y;a(l —a)+ 517(1) U % (,u2 — V2)t>
Yo = 0.
The process Y is an Ornstein-Uhlenbeck process with left and right jumps. The

explicit solution for the above non-homogeneous linear stochastic integral equation is

given by the following formula (see [10, Theorem 3.1})

Y = E(H) |E(H) G
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where £ is an optional stochastic exponent and

Hy=ko(l—a)t+ Q2" = DU * (p* —v') + 27 = DU * (u? — %)y,
G, = s (k—c(1=2""'U—-c(1=2"""2U)t

+e(s2)'7U = [(p' — v+ (1 — V)] + W

Applying the comparison theorem to X; and Y; yields that, ¥; > X, = F(S;) a.s.

Since F'(x) is monotonically increasing function we have
S, <F YY) as (3.15)

Now let us consider a function f with an option payoff f(S7), where f is increasing.
Assuming zero interest rates, the price of such option is given by Ef (St) for an
appropriate martingale measure P (see [10, Section 4], where the existence of P is
discussed). Using inequality (3.15) we have that Ef(Sy) < Ef(F~'(Y7)) and thus we

obtain an estimate for the option price for which Ef(F~'(Y7)) is easier to compute.

3.6 Pathwise Uniqueness via local times

In the last section of this chapter, we demonstrate how the local time technique used
in the proof of the Theorem 3.3.1 can similarly be utilized to prove the pathwise
uniqueness of (3.1). We say that solution of (3.1) is pathwise unique if whenever X
and Z are any two solutions of (3.1) defined on the same stochastic basis (2, F, F, P)
with the same m € M, and the same measures pu’,p’,n such that X, = Z; a.s.,
then X; = Z; for all t a.s.

To prove the pathwise uniqueness of solutions of (3.1) we require several assump-
tions on its coefficient functions. To begin with, we present a slightly more general

condition than one-sided Lipschitz condition (cf. [59, Chapter 1.1]).
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Definition 3.6.1 (One Sided Lipschitz Condition) We say that a coefficient func-
tion f of equation (3.1) satisfies one-sided Lipschitz condition with respect to x if there

exists predictable function G(w, s) such that for any z,y € R;s € R, ,w € Q

(@ —y)(f(w,s,7) = f(w,5,9) < Glw,s)(z —y)*.

Let us introduce the following conditions:
C Conditions.

We say that the functions f, g, hj, k;, l;, r, w satisfy the C conditions if:

(C1) f is one-sided Lipschitz continuous,
(C2) g satisfies LT condition,

(C3) there exists non-negative functions

Hw,s,u) € P x B(EN (Ju| <1)),
HI(w,s,u) € O x B(EN(Ju] <1)),

LYw, s,u), K%w, s,u) € P,
L9(w, s,u), K9(w, s,u), R(w, s,u), W(w,s,u) € O
such that for any z,y € R, se R, ue€ EN(Jul <1),w e Q:

|hj(w, s,u, 1) — hj(w,s,u,y)| < H (w,s,u)|r —y|, and any u € E
1w, 8,0, 2) = Li(w, s,u,9)| < L (w, s,u)|z =y,
K (w, 5,0, @) — kj(w, s, u,9)] < K (w, s, u)|r —yl,
Ir(w, s,u,x) — r(w,s,u,y)| < R(w, s, u)|z —yl,
lw(w, s,u, ) — w(w, s, u,y)| < W(w,s,u)lx—1yl,
G-a;+ [L+ K * pf + [L9 + K9] * pf

+2HU * v 4+ 2HIU % V! 4+ [R + W] * ¢, < oo,
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and the process

G-ay+ [L? + K9« p? + [L9 + K9] * p!

+2HU * v 4+ 2HU % v + [R+ W] (;
is increasing.

Theorem 3.6.1 Suppose that functions f, g, hj, l;, kj,w and r satisfy C conditions,

then if the solution of equation (3.1) exists then it is pathwise unique.

Proof. Assume that there are two solutions X and Z of equation (3.1), and let

Y := X — Z. Applying the formula (3.5) to Y and using identity |Y| =2Y+ — Y, we

get
V| =sign(Y2) [(f(X) = £(2)) - ar + (9(X) = 9(2)) - m] + LY (Y')
+[IY2 + ha(X) = ha(Z2)] = [YZ[| U * (! = v),
+ Y + hg(X) = ho(2)| = Y[JU * (1 —v7),
+H Y2+ ha(X) = ha(2)] = |Y=| = (ha(X) — ha(Z))sign(Y)] U * vy
+ (Y + hg(X) = hy(Z)] = [Y] = (he(X) = hy(Z))sign(Y)] U * v
H Y2+ 1a(X) = 1(2) + ka(X) = ka(Z)] = [Y[] * pf
(Y +1g(X) = 14(Z) + kg(X) — kg(Z)] = Y] * pf
+ Y +r(X) =r(Z) + w(X) —w(Z)| = [Y[] +m
Let

M, :=sign(Y_)(g(X) — g(Z)) - my
+[IY- + ha(X) = ha(2)] = [Y_[JU * (p* = ),

H Y+ hg(X) = hy(2)] = YIU * (4 — 7)1 € Mige.
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By using one-sided Lipschitz condition on the drift coefficient function f, LT

condition and simple algebraic inequalities, we have

Y[ <|Y_|G - a; + M,
+ Z [1L;(X) = L(2)] + ki (X) = k;(Z)]] * pi
j=r.g (3.16)
+2|hj(X) — hi(Z)|U * V]
+ [[r(X) = r(2)] + [w(X) — w(Z)|] * ne

Further, we apply (C3) to (3.16) and get

Ve <M+ [YZ|G - ap + [YO|[LY + K 5 pf + |V [L9 + K] # p]

+2|Y_|HU % v + 2|Y|HU x v} + |Y|[R+ W] * (3.17)

If we now define a process C; := G - a; + [L¢+ K9 pd + [L9 + K9] * p] + 2HU * v¢ +
2HIU % v + [R + W] * (4, then equation (3.17) can be rewritten as

Y| < My + Yo C,.

Finally, by Gronwall lemma (see [10, Lemma 3.2]) we get that |Y;| < &(C)M;. Since
C} is increasing process, &(C) > 0. Thus, M; > 0 because |Y| > 0. Therefore, M,
is a non-negative optional local martingale and, consequently, by Lemma 2.4.2 it is a
non-negative supermartingale starting from 0. It follows that M = 0. Hence, Y; = 0

for all ¢ a.s., and the pathwise uniqueness follows. =

Remark 3.6.1 FEuzistence and uniqueness theorems for differential equations under
one-sided Lipschitz condition on the drift coefficient function were explored by several
authors (see, for example, [45], [13]). One-sided Lipschitz continuity is weaker than

Lipschitz continuity, and an example illustrating this relation is a function f(x) = e™*.

o1



Chapter 4

Krylov’s Etimates for optional
semimartingales

The estimates of N. V. Krylov have a great importance in the theory of controlled
diffusion processes and stochastic differential equations (see [55],[57]). Anulova and
Pragarauskas (see [14]) generalized this result to the Ito processes with Poisson ran-
dom measures. Melnikov in [69] proved Krylov type estimates for continuous semi-
martingales on probability spaces under usual conditions. In this paper, we do not
assume our probability space satisfy such technical conditions; and, our goal is to
generalize Krylov’s estimates to the class of optional semimartingales - laglad pro-
cesses defined on a complete probability space such that the underlying filtration is
not necessarily left nor right continuous nor complete.

Using these estimates Krylov obtained a generalization of Ito’s formula for func-
tions which have generalized derivatives up to and including the second order (see
[55], [57]). In the same way, by using our obtained estimates we extend the change
of variables formula for optional semimartingales (see [33], [37]) for class C? to the
Sobolev class of functions W7. Furthermore, we show how Krylov’s estimates can be
applied to the mean square convergence of optional solutions of SDE’s under quite

general assumptions on their coefficients.
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Let (2, F,P) be a given complete space and F = (F;)¢co,00) be a corresponding
filtration on it. The family F is not assumed right- or left-continuous, and it is not
assumed to be complete.

Ajoe (A5,.) is the set of all (continuous) processes A = (A;, Fi)i>0 having locally

integrable variation, with Aq = 0.

c
loc

gales M = (M, Fi)i>0, Mo = 0.

(M:€) is the set of all continuous optional local (square integrable) martin-

For functions f : R? — R we set

_of _Of _
- 8:6/ fxix]— fx - (fﬂﬁl?""fxd)‘

fxi N 8:1518% ’

For vectors z = (z4,...,74),y = (y1,..,yq) € R : |z = Zle ||, (z,y) =
T1Y1 + ... + vqyq. For a square matrix A: trA is the trace of A and det A is the
determinant of A.

Ly(U) is the space of measurable functions f, defined in the region U C R¢, d > 1

1/d
nﬂuyz(zjﬂmﬁﬁg -

B(T") denotes the set of bounded Borel functions on I' with the norm

such that

1/ llBr) = sup /()]

Let D be a bounded region in R¢, and let u(x) be a function in D. We write
u € WD) (u € W?(D)) if there exists a sequence of functions u" € C%(D) such

that

=) = 0. ™ = wlweoy =0 (Jlu" = ™y p) = 0)
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as n, m — 0o, where

£ lw2(o) Z | fova Nl + Z I fellan + 1 £l o)

i,j=1
2d,D) .

d
(HfHWQ(D) = fllw2oy + D> I,
=1

Definition 4.0.1 Let D C R?, let v and h be Borel functions locally summable in

D. The function h is said to be a generalized derivative (in the region D) of the
function v of order n in the direction of coordinate vectors i, ...,, and this function

h is denoted by v, . ., if for each ¢ € C5°(D)

o(x)h(x)dr = (=1)" [ v(2)dy,, . a,, dT
J J

The properties of generalized derivatives are well known (see [76]). We will apply
some of them without proofs. Note first that a generalized derivative can be defined
uniquely almost everywhere. The function u € W?(D) has generalized derivatives up

to and including the second order, and these derivatives belong to Lg(D).

4.1 Krylov’s estimates

We will consider the following form of a d-dimensional optional semimartingale X,

fori=1,...,d,

. t
Xi=Xprarmi+ [ [ s -masdn s [ artsa)
0<2<1 z>1
/ / 2(0f — v9)(ds, dz) + / / I(ds,dz), (4.1)
0<z<1

where X is JFy-measurable random variable, a’ € Af_ and m' € M; . The jump

measures p” and pf are defined on (R, x E,B(R,) x &) as follows

,UT(F) = Z 1F<Tn> AXTn)7 Mg(r) = Z 1F(Una A+AXUn)>

n>1 n>1
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where (T},)n>1, (Un)n>1 are sequences of totally inaccessible stopping times and totally

inaccessible wide sense stopping times, respectively; 1r(+) is an indicator function of

aset I' € B(R,) x €. The processes 1/ are respective compensators of p/, j =r,g.
The following facts from the theory of parabolic partial differential equations

are necessary for our proof. We take an auxiliary non-negative smooth function
o), p(x) =0for x > 1, and [p, ¢(x)dx = 1. For € > 0 we set ¢“(x) = e 'p(ze ™).

Lemma 4.1.1 (see [56]) For each A > 0,e > 0 and for every continuous function
f:R? — [0, 00) with compact support, there exists a smooth function u¢ : R — [0, 00)
(u(x) = [gauy)e (x — y)dy, see [56] for detailed explanation of u(x)) with the
properties:

(a) for each | € R?

d
D il < el

ij=1
(b) Jug] < Ve
(c) for all symmetric nonegative definite d x d matrices A

d
Z Agus . — MtrA 4 Dut < —(det A)Yefe,

TiT;
i.j=1

(fo(x) = Jaa F@)¢(x — y)dy) ;
(d) for allp > d,x € R?

u(z)| < N(p, d, V|| f||ra-
We now present the main result of this chapter.

Theorem 4.1.1 Let V € Aj . be an increasing process, and suppose the characteris-

tics a', (m'), 17,5 =r,g, of X satisfy the structural conditions:
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There exist densities (dV x dP-a.s.)

_ <mi’ mk)

B o 17, B _
dV 7B_[5 ]7 Zak_1727"'7d7 (42)

and measures v (w,t,T),T € £,j =r,g, such that for allt >0 (dV x dP-a.s.)
t_

V' (w, (0,¢],T) = / VM (w, s, 1)dVs, 19(w,|0,t),T) :/ (w,s, I)dVy,  (4.3)

0

|| + Z/ 220 (w, t,dz) + Z /|Z>1 7 (w,t,dz) < C(w,t), (4.4)

j=rg” O<lI=t j=r.g
where C(w, t) is a predictable function such that ke =B [~ e=?C(w, t)dV; < oo.

Then for any measurable function f >0, A >0, p>d
E/ e M olstr A (det )1/ £(X,_)dV; < N (oo, A, d, p) | f |z (4.5)
0

Proof. We follow the same approach as in [69]. First, consider continuous non-
negative function f = f(x) with compact support. Denote ¢; = )xfot[%trﬁs + 1]d V.
Applying the integration by parts formula (see Lemma 5.2.3) to u¢(X;)e™%, we get
t

t—
e¢5duE’T(X)+/ e‘bsdue’g(X)—i-/ u (X, )de %,
0 0+

U (X,)e? — uf(Xo) = /0 t

_l’_

where u©"(X) and u®9(X) are right- and left-continuous part of u(X), respectively.
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Next, using the change of variables formula to find u¢(X;) and e=%, we find that
u(Xy)e ™ — uf(Xo)

t 1 o d . .
:/0 e % {5 Z Uy, o (X )d(m',m?)s + Zui (Xso)d(ag + ms)

/0< <1 u(Xs— +2) —u (X )] (0" — v")(ds, dz)

+/ (Xso +2) —u(Xso)| 1 (ds, dz)

d

/0< <1 IUE(XS_ +2) —u (X)) = Zu; (XS_)Z] V' (ds, dz)}

+

=1

+/Oe¢s{/0< (X 2) = (X)) (4 = ) (s )
+/>1[ (X, + 2) = (X)] p¥(ds, d2)

d
+ / u(Xs + 2) —u(Xs) — Zu;(Xs)z V9(ds,dz)
0<z<1 i=1
! 1
- / e P\ (—trﬁs + 1) u(Xs-)dV (4.6)
0+ 2
Let {0 }n>1, {7 }n>1 and {&, }n>1 be localizing sequences for
t d
/ e % Z ugy, (Xs—)dm,
0+ i=1
t
[ [ e o) - w (o) - vz
0+ 0<z<1
and
t—
/ o / (X + 2) = u (X)) (" = v7)(dz, ds),
0 0<2<1
respectively.

Define Vn > 1R, =t Ao, AT A&, Ry, € Ty, R, T oo as. asn T oo and

t 1 co. Taking expectation and applying structural conditions (4.2)-(4.3), we obtain

from (4.6):
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n d
B /R e d LS e (X ) (B — A <1trﬁs + 1) (X, )
0 2i7j:1 Ti,Xj J 2

+

d
=1

[ d
+ /0< - UE<XS— + Z) — UE<XS_) — ZU;(XS—>Z] Dr<d2)
o | ) - <X8>z] (d2)
" / (X 4 2) — (X)) 77 dz) (4.7)

+ />1 [u(Xs + 2) — u(Xs)] l/g(dz)}d‘/;

Ry
::E/ e L+ L+ L+ 1+ Is + Ig + I} dV, (4.8)
0+

Using the properties (a)-(d) of the function u¢ in Lemma 4.1.1, we have

u(Xo) <Nol| fllpra;

d
I+ 12 :% Z u;zxg (Xs—)(ﬁs)ij —A (%trﬁs + 1) UE(XS—)

ij=1

L\ v
< — (det§ﬁ5> f(Xs0);

d
I3 = Z aiu;i (Xso)
i=1
<levs|[| f1]pra.

Next, with the help of Taylor’s decomposition for multivariate functions and
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Lemma 4.1.1-(d), we obtain

I = /< . [ (X, +2) —u(X,) = > us (X,)z| 79(dz)

=1

/ / (1- uS, o, (X + 02)22d959(d2)
0<2<1

<— / 2209(dz) sup u(x)
2 0<2<1

z€Rd

AN
: ||f||de/ 2v9(dz),
0

<z<1
where 6 € [0, 1] is an auxiliary parameter.

We can also find similar inequality for the integral I,:

AN
I < —3||f\|de/ 257 (d2).
0<2z<L1

Using property (d) of Lemma 4.1.1, we get

I, = />1 [u(Xs + 2) — u(X,)] P (dz)

< / ) sup ()

z€R4

Nl s [ 57(2)

z>1

Similarly,

%SMWMm/iﬂM)

z>1

29



It follows from obtained inequalities and the relation (4.8) that

Rn
E/ e~ (det Bo) VU f(X,)dVe <N (N, d, p)|| f]]ze
0

Rn
X E/ e %
0

+ Z / 2209 (w, s, dz)
; 0<|z|<1

J=rg

+ Z / 7 (w, s,dz)
|z|>1

Jj=r.g

|

(4.9)

dVis.

After applying condition (4.4) to (4.9), it becomes

Ry

Ry
E / e~ (det 8,) 4 £(X,_)dV, < N, d. p)| £, B / 0 C(w, 5)dV,
0 0

< N(kom )‘7d7p)||f||p,Rd'

Finally, we let n 1 oo then ¢ 1 0o and € | 0 and reach estimate (4.5). Extension of
the estimate to the Borel measurable function f is standard (see, for example, [14]).

Corollary 4.1.1 If, in addition to the structural conditions (4.2)-(4.3) of Theorem
4.1.1, there exist constants 0 < ¢; < cg < 00 such that for all x € R4, ¢i]z)? <

(B, x) < colz|* (dV x dP-a.s.) and

K

(e SEtrﬁta
, K

/ 220 (w, t,dz) <—trp, (4.10)
0<|z|<1 2 '

, K

/ V(w, t,dz) <—trp,.
21>1 2

Then for any measurable function f >0, A >0, p>d

E/ 67)\fg[%tTﬁSJrl]dVSf(th)d‘/t S N(K7 )‘7 dap7 C1, CQ)Hpr,Rd'
0
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4.2 Application: Change of Variables formula with
Generalized Derivatives

Change of variables formula is an essential tool of Stochastic Calculus. In this section,
we prove that in some cases the change of variables formula remains valid for functions

whose generalized derivatives are ordinary functions.

Theorem 4.2.1 Let X be fired, Xy € Re. Let tp be the first exit time of the process
X; in (4.1) from a bounded region D C R?, and let 7 € T,7 < 7p. Suppose that X

satisfies assumptions of Corollary 4.1.1.

Then for any v € V_VQ(D)

(4.11)

+ / [u(xs +2) = 0(X) =) v, (Xs)z] V9 (dz, ds)
0<2<1 -
—I—/ [0(Xs + 2) — v(X,)] ug(dz,ds)} (a.s. on {0 < 7}).
z>1
Proof. Let a sequence v" € C%(D) be such that
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lv =v"lBy = 0, [lv = v"lw2) =0,
1(ve = vi)Pllap — 0.
For convenience rewrite (4.11) as following
v(X)e ™ — v(X))

—/ €_¢S{Il+[2+]3+[4+]5+[6+[7}
0+

+/ €7¢S {[8+19+[10}-
0

We prove that the right side of (4.11) makes sense. For s < 7

d
1
h+h+h=; 2 e (o) = <§trﬁs+1)v<xs_>

+val el |av,

From this, using Theorem 4.1.1 we obtain

E/ e %
0+

d

% Z Vz;,z; (Xs—>ﬁij —A (%trﬁs + 1) U(Xs—>

1,7=1

d
+ Z Vg, (X5
i=1
d

gNE/ e [Z [V, (X )| + [0(X HZ‘%
0+

ij=1

s

SNHUHW?(D)

where N depends on A, p,d, K, cq, cs.

Similarly,
2

<NE / e 2%s
0+

<N|lvel*lla,p-

v (X,_)|? dV,

m
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and

E

Lo [ b 0 - o e, as)

0+ 0<2<1

gE/ e¢>s/ W(Xa + 2) — o(X. |7 (d2)dV,
0+ 0<2<1

< E/O+ e~ /O< (K 2]+ X )7 ()Y,

< Nljv[lsw)-

Using the same technique, integrals I7, Iy and Iy are well-defined.

. d
E/ e_¢3/ szi(Xs_)z
0+ 0<z<1 |53

< NE/ e_¢s/ |ve (X )| 20" (d2)d Vs
0+ 0<z<1

< Nl|vglla,p,

Since

V' (dz,ds)

I is well-defined. The same holds for Io.

Further, we apply the change of variables formula for optional semimartingales
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(see Theorem 2.9.2) to the expression v"(z;)e~?*. Then, we have almost surely

+ /0< ., lvn(Xs +z) — 0" (X) — Zv;’i(XS)Z] V9(dz, ds)
+ />1 V"X + 2) — 0™(X,)] 1 (dz, ds)} (4.12)

We pass to the limit in equality (4.12) as n — oo. By the Sobolev Theorem (see [83])
v"™ — v uniformly in each finite region. From estimates similar to the estimates we
found earlier it easily follows that the right side of (4.12) tends to the right side of
(4.11). =
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4.3 Application: Convergence of optional solutions
of SDE

In this section we consider a sequence of solutions (X7")co,r1, 7 = 0, 1,2, ... satisfying

the following d-dimensional SDE’s, respectively,
t t
X{ =Xo+ / b" (X1 )ds +/ (X dW

// Vi — v (ds, d2) + //h”X" (14 — v9)(ds, d2),

n=0,1,2,..., where E =R\ {0}, W, is a d-dimensional Wiener process, u" and p?
are, respectively, right-continuous and left-continuous modifications of 1-dimensional
Poisson measures with corresponding compensators v" and v9, and b, ¢*, h" € R,

and 0" € R™?, Hereafter, we write X; = X2, b= 0" and so on.

Theorem 4.3.1 Assume that
(a) 0" (x) P+|o™ (x) P+ [ |¢"(x, 2)|Pv" (dz)+ [ [P (2, 2) Pr9(dz) < k and E|Xo|* <

ko, where kg and k > 0 are constants;
(z —y) - (b(z) = by)) < F(s)p(lz —y[*),

S o) — o) + /E e, 2) — ely, )PV (d2)

ij=1

/ Ihz, 2) — h(y, 2)P9(dz) < F(s)p(lz — u),

where 0 < F(s) satisfies that Yt > 0 fo s)ds < oo, and p(u) is strictly increasing,
continuous, and concave such that p(0) = 0, p(u) >0, as u > 0; and [, du/p(u) =

00;
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(b)

[16°(2) = @], g + llo" @) = o(@) ], e

+ ‘ /E|c"(x,z) — oz, 2)*V"(d?)

p,R4

— 0,

+ ‘
p,R?

/E|h"(x,z) — h(z, 2)|*19(dz)

as n — 0o, where p > d + 1;

(c)there exists ki > 0 and ky > 0 such that for all x C R?,
kilz)* < (Br,x) < kolaf?,

where = o"c™, n=1,2,...;
(d) lim, . EI X — X = 0.
Then we have Yt > 0
Jim BT — X;>=0.

We will need the following two lemmas to prove the main theorem.

Lemma 4.3.1 (see [81], Lemma 116) If for allt > 0 a real non-random funcion y;

satisfies
t
0<u< [ pluds < oc,
0

where p(u) defined on u > 0, is non-negative, increasing such that p(0) =0, p(u) > 0,

as u > 0; and [, du/p(u) = oo, then
ye = 0,Vt > 0.
Lemma 4.3.2 Suppose E|Xy|? < ko and
MR +lo@P + [ lew () + [ Ihe.2)Por(a) <k

where ko, k > 0 are constants. Then Esupe | X¢| < kr for some constant kr.
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Proof. First, note that

t 2 t 2
X <[P+ | [ ds| +| [ olXaw,
0 0
t 2 t— 2
[ X s | [ X2 - v (s, ]
0+ 0

Next, using Doob’s inequality and optional stochastic integral properties we obtain

¢
E sup /b(Xs)ds <E sup / b(X,)[* ds < kT,
t€[0,T] t€[0,T7]
t 2
E sup /J(XS)dWs §4E/ lo(X,)|> ds < 4kT,
t€[0,7] 0
t
E sup / / X, 2)(p" —v")(ds,dz) §8E/ /|C(XS_,Z)|2VT(dS,dZ)
te[0,7] 0+ JE
<8KT,
t—
E sup / / (Xs, 2)(? — v9)(ds, dz) <8E/ /|h(Xs,z)|2V9(ds,dz)
t€[0,7] E
<8KT.

Thus, we conclude that

E sup |Xt‘2 < kT7

te[0,T]
where kr = 4(21kT + ky). m
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Proof of Theorem. By the change of variables formula

t
E| X! — X;|* - E|X{ — Xo|? —ZE/ (X — X)) (0™(XD) — b(Xy))ds

+E/ Z\aw — oy (X,)Pds

i,7=1

+E / / (XM ) — e(Xo, 2) 2" (ds, d)

+E/t_/ BT(X™ 2) — h(X,, 2) 0¥ (ds, dz)

For the process X', we have

Vi =t,
(e :bn(th),
ﬁt o™ n*(Xn)

v (dz) =le(X7, 2)[*" (dz),
P9(dz) =|h(X]", 2)[Pv9(dz).

Furthermore,

koo = / T v izt o (X +ds gy <k / Tertgr = F oo
0 0

14

Therefore, condition (4.4) is satisfied. Thus, by the Krylov’s estimate (Corollary
4.1.1) and the assumption (b) we get

1) <28 [ (X7 - X)) - b
#2807 - X)00) - 0(x)ds
[, g

t
gE/ X7 — Xy [ds + N ||[b"(2)
0

t
+2/ F(s)p (E|X — X,|*) ds
0
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where N depends on A\, p,d, K, T, ky, k».

Similarly,
t
I"(2) <2V l0"(@) = 010) 0 +2 | Fls)p (BIXZ = X.J?) s,
0

(3) SQN‘ /E (2, 2) — e, 2) 2" (d2)

p,R?

t
+ 2/ F(s)p (E|X — X,_|*) ds,
0+

I"(4) <2N ‘

/E\h”(a;, 2) — h(z, 2)[29(d)

p,R?

t_
+ 2/ F(s)p (E|X] — X,|*) ds.
0

Consequently, applying the assumptions (c¢) and (e) we have

t t—
E| X" — X;]* < E/ X7 — X,|*ds + 8/ F(s)p (E|X] — X,|?) ds.
0 0

Notice that by Lemma 4.3.2 for every n = 0,1, 2, ...

E sup |X]| <kr <o
t€[0,T)]
Therefore, using Fatou’s lemma, it follows that

¢
limsup E| X} — X,/ §/ limsup E|X]* — X, |*ds
0

n—o0 n—0o0

t
+ 8/ F(s)p (lim sup E| X7 — XS]2) ds.
0

n—oo

Thus, by Lemma 4.3.1
lim E|X]" — X,|> = 0.
n—oo
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Chapter 5

An Optional Semimartingales
Approach to Risk Theory

Mathematical risk theory is concerned with the study of stochastic models of risk in
finance and insurance. In a basic risk model the value of a risk-portfolio is the sum of
opposing cash-flows: premium payments that increase the value of the portfolio and
claim payouts that decrease the value of the portfolio. Premium payments are received
to cover liabilities — expected losses from claim payouts and other costs. Claims is
a result of risk events that occur at random times. Usually, claims’ cash-flow is
modelled by point processes. An important problem in risk theory is the calculation
of the probability of ruin and time to ruin. Ruin probability is the probability that
the value of risk-portfolio will ever become negative. Time to ruin is the time it takes
for passage below 0.

In [40], Gerber first applied martingale methods in risk theory. Since then these
methods have become a standard technique, and a vast amount of papers have ap-
peared, where martingale methods have been used to analyze increasingly complicated

risk models. As noted in [41], risk models can be generalized in the following ways:

1. The model includes inflation and interest;
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2. The occurrence of claims may be described by a more general point process

than the Poisson process.

While papers, including [25], [24] and [28], consider the general risk models of the type
1, the works, for example, of [42] and [47] are mainly focused on the generalisations
of type 2. A recent comprehensive review of the literature can be found in [15].

In this chapter we mainly concentrate on the paper of [84], who first used a
classical semimartingale theory to find bounds for ruin probability, and we present a
new formulation of risk theory based on the general theory of optional semimartingales
on unusual probability spaces. We derive an optional local martingales representation
and use it to compute the probability of ruin for a very general risk model which,
in fact, encompasses two types of the generalizations mentioned before. Similar to
other works on probability of ruin, our illustrative examples belong to the field of
insurance, however, we must note that the proposed model can be applied in other

fields as well (see [4]).

5.1 Optional Risk Model

Let (Q, F,F = (Fi)i0> P) be an unusual probability space on which risk processes lie.
Elements of a risk portfolio include but are not limited to the following components:
premium payments, returns on investments, payments of liabilities, costs and claims.
These elements are inherently random. For example, returns may jump up, some
premium payments may not be paid, costs may increase and claims and liabilities
exacerbate. So, let us consider a risk process whose flow can be summarized by the

following equation

Rt:U+Bt+Nt+Dt+Lt, (51)
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where u > 0 is the initial capital and By = Wy = Dy = Ly = 0.

The process B is a continuous predictable process of finite variation characterizing
a stable flow of income payments including premiums and other sources, N is a
continuous local martingale representing a random perturbation, D and L are right-
continuous and left continuous jump processes, respectively. The process L may
model some substantial gains or losses in returns on investment. The process D
includes a sum of negative jumps representing accumulated claims. In addition, D
may also consist of jumps formed by non-anticipated sharp falls or rises in returns on

investment. All these processes are optional and adapted to the filtration F;.

Let us consider an example. Assume that A; is a capital process of some company

at time ¢, and
Ny NY

At:u+ct+0Wt+ZYk—ZZi
k=1

=1

where c and o are some constant parameters, W is a Wiener process, N and N9 are a
Poisson process and left-continuous modification of a Poisson process with intensities
A" and M\ respectively, Z; and Y} denote the left and right jump sizes respectively
with some specified distribution. In this case, the process ct is included in the income

process B, N, = cW,, while L; = Zﬁl Z; and Zivil Y} is a part of the process D.

Let p"(w, dt,dx) and p9(w,dt, dx) be random measures that describe jumps of the
process D; and Ly, respectively, i.e., on (B(Ry) x B(Ry)), (Ry =R\ {0}) define

w'(dt, dx) = Z 1{aD,#0}0(s,aD,)(dt, dx),

0<s

ug(dt, dl’) = Z 1{A+LS;£0}5(5,A+LS)(dt> dm),

0<s

where 1, is indicator function of a set w and 0(s ) (dt, dx) is the Dirac measure. We
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assume that

/ / x du” € A and / x dp? € Ajpe. (5.2)
]O,t] Ro [O,t[ Ro

This assumption implies that the processes

/ /xd(ur—u”) and / /xd(ug—ug)
]O,t] Ro [O,t[ Ro

are optional local martingales (see [32], Lemma 3.1, 3.3), where ", 19 are compen-
sators of u", u?, respectively. By Doob-Meyer decomposition of optional semimartin-

gales, R is a special optional semimartingale adapted to F;.

5.2 The Laplace optional cumulant function and
its properties

To find an upper bound of probability of ruin, we first obtain the martingale char-
acterization of optional semimartingales by means of stochastic exponentials. Con-
sider an optional semimartingale X (e.g. risk process) with the local characteristics

(a, (X°) ,v",19) and the following representation (see [32])

Xt:u+at+Xf+/ / xd(;f—#j%—/ / xd(p? —v9)
10,¢] J|z|<1 [0,t] J |z|<1

—i—/ / xdur—l—/ / xdp?; (5.3)
10,¢] J|z|>1 [0t J|z|>1

where a; € Py, X7 € Mj,, f]o,t] f\:v|§1 zd(p"—v") € Mj,. and f[O,t[ fmgl xd(pf —v9) €

g
loc*

In particular, for the risk process R:

at:Bt+/ / xdi/r—l—/ / xdv?, (Xc>t:<N>t.
10,¢] J|z|<1 [0,t] /]x|<1
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We introduce a (Laplace) optional cumulant function for X:
52
G’t(z) = —za; + — <Xc>t +/ / (67”6 -1+ zx1(|x‘§1))dz/§
2 0.4 JRo

+/ / (6_” -1+ Zwl(‘x|§1))dyg+ (54)
[0>t[ RO

with the corresponding optional stochastic exponential (£(G(2)) = E(G(2)))i0 (see

[10]).

Let us discuss when the optional stochastic cumulant function G¢(z) in (5.4) is

I, = / / (e_zx -1+ Zx1(|$‘§1))dl/§,
10,4 Jo
0
= / / (e_z’” — 1 + Z,Tl(‘x|§1)>dl/§
10,t] J/ —o0

Using Taylor’s formula we have

0
I S/ |€_w 1+ zzx|dv —|—/ / e —1|dv]
L J [l
0,1] 0,]
I, §/ / |e‘”—1+zx|du§+/ / le™** — 1|dv;
Jo,g] Jo 10,6] J1
2 1
< E/ / 22 dv” + vl ([1, +00)).
10,4 Jo

The same inequalities hold for the integral f[O,t[ fRO(e*ZI — 14 221 g <1))dvi, in (5.4).

well-defined. Let

We can see that Gy(z) is well-defined, if, in addition to the assumption 7 ([1, +00)) <

00, J =T, g, there exists zg > 0 such that

—1 -1
/ / e *rdr” < oo, / / e *rdr? < oo (5.5)
10,t] J/—o0 [0,t] J —o0

almost surely for all ¢ > 0 and 0 < 2z < 2.
Denote

T(z) = inf(L - [£(G(2))] = 0)
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and

Zy = e * XX (G(2)) 1 (1g, (0(2))150)-

Now, we formulate the crucial result of this section.

Theorem 5.2.1 For every z € [0, 2] the process Z(z) = (Ziar(2))i0 i an optional

local martingale.
To prove Theorem 5.2.1 we need the following lemmas.

Lemma 5.2.1 (see [32]) Let X be an O(F.)-measurable process. There exists a
unique (up to indistinguishability) process U € M. with the property ATU = X if
and only if the following conditions are satisfied

(a) the O(F)-optional projection of X is zero,
(b) the process (3_,, X2)'/? € Aloe.

Lemma 5.2.2 Let M € M?

loc

andY € VN O. Then

> ATV ATM, = AYY,dM,, .

s<t [07t[

Proof. sWe use a simple fact:

ATU = AT (Z AYY,AYM, — Aﬂfsd]\/[s> = 0.
s<t [0,¢]
Notice that integral in the above expression is well-defined. Let X := ATU as in

the Lemma 5.2.1. It is easily seen that all sufficient conditions of Lemma 5.2.1 are

satisfied and, thus, U € M . On the other hand, since ATU = 0, it follows that U

loc*

is continuous. Therefore, U = 0 or

> ATYYATM, = / AYY,dM,, .
0.4]

s<t
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Lemma 5.2.3 If X is a semimartingale and Y™ € VNP and Y9 € VN O, then
(X,Y] = f]o,t] AY,dX? +ﬁ07t[A+}§de+ and
XY, — XYy = / Y. d X! + Xs_dY] + / Yo dX7, + X,dY?,
10,t] 10,t] [0,¢] [0,¢]

Proof.

(X, V], =) AY,AX, + ) ATY,ATX,

s<t s<t
=D AV AM + A7)+ Y ATY.AT (M + A%),
s<t s<t

= / AY,dM? + / AYdAT
10,t] 10,¢]

+ / AYY,dMY, + / AYY,dA?,
0.1

[0,¢]

= [ AYdXI+ | AtY.dXY,
10,t] [0,¢]

holds because of Lemma 5.2.2 and Proposition 4.49 in [48]. Next, using integration

by parts
XY, — XoYi = / Y, dx"+ [ X, dv?
10,¢] 10,t]
4 / VX% + [ Xav? + (X, V],
[0,¢] [0,¢]
_ / Vax'+ | X, dv?
10,¢] 10,¢]
+ / YodX?, + | X.dve
[0,¢[ [0,¢]
| ]

Proof of Theorem 5.2.1. In all considerations below we will fix the parameter
z and write T, G,... instead of T(z),G(2),... In addition, we define ¢t := ¢t AT for
convenience.
Next,
Zy = e "X Xl (@),
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where

dG", dG?
8_1 G) = _/ s _/ s+ )
t ( ) €xXp ( o 1+ AG, 0] 1+ A+G,

AG AGs ATG, Ata,
< 11 (1_1+—AG) 11 (1—1+T(;)

0<s<t 0<s<t

By this representation it follows that & *(G) is the solution of Doleans equation (see

[32])

r g
@) =1- [ &) £ (@) 20

— — T 56
o 1A T ), & YT ar, (5.6)

Using (5.3), (5.4) and change of variables formula for optional semimartingales

(see Theorem 2.9.2) we get

L, :e—TZ(Xt—XO)

:1+/ LS_dG;+/ LSdG§+—z/ L, dX¢
10,4] [0,¢] 10,4]

+ / / Lo (= — 1)d(y — "),
]Ovt] RO

+ / Lo(e™* = 1)d(p? — v9)s4. (5.7)
[O,t[ Ro
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By (5.6) and (5.7) and Lemma 5.2.3, we find

Zt :Ltgt_l (G)

=1+ / ENGYAL + / Ly d(E71G))"
0.4

10,2]

+ / £-1(@)dL. + / L€ G))
[0,¢] [0,¢]
£1(Q)
=1 L. dG" — zL, dXc L, (e7 = 1d(u" —v"),
+/0t]1 AG[ - / (= — )d(u u>}

5;1(G) g —zx g g
+/[o,t[1+T+Gs [LsdGs+ +/Ro Ly(e™™ = 1)d(p? — 1)
G’ dG?
- ENG Ly ——2— —/ ENG)Ly—-2F—

—zz _ )
:1—2/ ch / / — 2 d(u" — V")
10, 1+ 10,¢] JRo 1+AG (n )

7Z.'E_ d g_ gs
/[Ot[/ 1+ A*G; (2 =)

This implies (Ziar)i>0 is an optional local martingale (for each z € [0, zp]). m
Along with the stochastic exponential of the cumulant process £(G) there is a usual
exponent of the cumulant process e“. We know that if AG > —1 and ATG > —1

then £(G) can be represented as

&(G) = exp {Gt + ) (log(1+ AG,) — AG,)

0<s<t

+ ) (log(1+ATG,) — NGS)}

0<s<t
From above we observe that if AG = 0 and ATG = 0, or equivalently, G is a
continuous process, then

E(G) = e“.

Let us present sufficient conditions for the cumulant process G to be continuous.
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Lemma 5.2.4 o IfAXy =0 a.s. on the set {T < oo} for every predictable time
T, ie. T €TP, then AG = 0.

o IfATX7 =0 a.s. on the set {T < oo} for every totally inaccessible time T, i.e.

T €T, then ATG = 0.

Proof. From the first condition it follows that AG; = fRO(e’m — D ({t},dz) =0
(proof without usual hypothesis on the filtration is the same as in [48], I11.1.19). By
Lemma 3.3 in [32], it follows from the second condition that ATG = fRO(e_” -

Dv9({t},dz) =0. m

5.3 Probability of Ruin

Here we apply the theory developed in the previous section to study probability of
ruin of the optional semimartingale R introduced by formula (5.1). Given R, our main
goal is to evaluate the ruin probability P(7 < oo), where 7 = inf {t > 0 : R; < 0}.

Let us assume that there exists z > 0 such that

—1 —1
/ / e *rdr” < o0, / / e *rdr? < oo (5.8)
10,t] /—o0 [0,t] J —oc0

almost surely for all t > 0 and 0 < z < 2. Note that, in literature (see [15], p.338)
such risk process R is called as a process with light-tailed negative jumps.
Let us define the optional cumulant process for the risk process R: for all t > 0

and z € (0, 2|

2
Gu(z) = —zB, + = (N), + / / (=" — D)dv" + / / (= — 1)dv?.
2 10, JRo 0,t] /Ry

Define a process

My(z) = exp[—2(R; — u)|€7(G(2)). (5.9)
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It follows from Theorem 5.2.1 that the process M;(z) is an optional local martingale
for every z in [0, 2], if AG > —1 and ATG > —1.

We use the optional local martingale M in a similar way as in [84], which is
standard in risk theory. We know that a non-negative optional local martingale is a

supermartingale (see Lemma 2.4.2). Thus, since My(z) = 1, it follows that
1 >E(M:n(2))
SE(M, ()< + Mi(2)100)
>E(M:(2)1,<)
=E(M,(z)|r <t)P(r < t)
for every z in [0, zo] and ¢ > 0.

Hence, for all z € [0, z]

S AT

1
CE(e e (Gle)lr < 1)
Since R, < 0 on {7 < t}, we get

—zZu

E(ENGE)r <t)’

T

P(r<t)< (5.10)

for all z € [0, z].
At this point, if we want to find a better estimate of the upper bound of the ruin
probability in (5.10), we are required to impose additional assumptions.

Firstly, suppose that

— G (0) = B, —I—/ / xdv, +/ / xzdv?, > 0. (5.11)
10,7] Y Ro [0,7[ /Ro

Note that differentiation with respect to z under the integral sign with respect to
v, j = rg, in (5.11) is possible because zero is an interior point in the range of

z-values for which the integral exists.
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If we assume that AG = 0 and ATG = 0 (see Remark 5.3.3 below), then
E(G(z)) = exp(Gi(2)). (5.12)
Now, using (5.12) and Jensen’s inequality, we get from (5.10) that

P(r <t) <e ™ [E(EG(2)]]r <t)]
< e MEE[GR)T <)
= E(exp|—zu + G.(2)]|T < 1), (5.13)

for all z € [0, 2] and t > 0.

The function G.(z) is a strictly convex function of z with G,(0) = 0. Further,
due to assumption (5.11), the function E(exp|—zu + G, (2)]|7 < t) is strictly convex
function of z decreasing from 1 at z = 0. Furthermore, under assumption (5.8) with
zp = 00, the function E(exp[—zu + G.(2)]|7 < t) increases to +00 as z — 0o. Hence,

there exists a unique z* € [0, 2] for which this function attains its minimum, and by

(5.13) we have

—z*u

PUS0 S BowlG.r =0

It seems the estimate (5.14) is the best upper bound for ruin probability obtained

(5.14)

from (5.10).
We can find a more explicit estimate of the ruin probability if we can choose z-
value z; > 0, for which the denominator of (5.10) equals one. Let us note that this

z-value is not necessarily unique, and it often depends on ¢. In this case we get
P(r <t) <e ™.

Further, if z; exists for all ¢ > 0 and if 2 = lim;_,, 2; exists, then
P(1 < 00) < e ™.

Finally, we summarize our results in the following theorem.
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Theorem 5.3.1 Given the optional risk model (5.1), suppose assumptions (5.2) and
v ([1,+00)) < 00, =1,9,

hold and there exists an zy > 0 such that

/ / e *Tdv" < oo, / / e “dvd < oo
10,¢] Ja|>1 [0,¢] J |z]>1

almost surely for allt >0 and 0 < z < zg.

1. If AG > —1 and ATG > —1 then

efzu

E(EGE)r <1)

T

P(r<t)<

for all z € [0, 2] and t > 0.

2. If GL(0) < 0, AG =0 and ATG = 0 then there exists a unique z* € [0, z] for
which the right-hand side of

attains 1ts minimum.
3. If zy > 0 emists for which E(E7YG(2)]|r < t) =1 then
P(r <t) <e ™.
Moreover, if z; exists for all t > 0 and if Z = limy_, 2; exists, then

P(r < 00) < e (5.15)

Remark 5.3.1 Notice that the inequality (5.15) is an analogue of the classical Cramer-

Lundberg bound (see, for example, [41]) obtained in a very general optional setting.
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Remark 5.3.2 If the process D represents the accumulated claims (all jumps are

downwards) while the process L = 0, then the condition (5.11) becomes

0
—G4(0) = By +/ / xzdv” >0 for all t >0
104

and is known as net-profit condition in risk theory. This means that the insurance
company adopts the wise premium policy such that premiums follow the claims’ in-

tensity.

Remark 5.3.3 By Lemma 5.2.4, condition AG = [(e™** — 1)v"({t},dz) = 0 is
satisfied if ARy = 0 a.s. on the set {T" < oo} for every predictable stopping time
T (i.e. quasi-left-continuity of R (see [65])). From the point of view of risk theory
it means that claims cannot be predicted beforehand. On the other hand, by Lemma
5.2.4, condition ATG = [(e7** — 1)v9({t},dx) = 0 is satisfied if A*Rp =0 a.s. on
the set {T < oo} for every stopping time T measurable with respect to the filtration
F.

5.4 Particular Models and Examples

Let us apply our results to different risk models.

Example 5.4.1 We consider a particular type of the general risk model studied in

the previous section. Specifically, we assume that

Ng
Rt:u+Bt+/ o dW, +ZZ ZYk
0 =1

where B is a continuous process of finite variation, W is a standard Wiener process,

and o s a predictable process. The process N9 and N! are left- and right-continuous
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counting processes with intensities A\ and X}, respectively, such that th —f(f Nds, j =
r, g, are optional local martingales. The positive random variables Yy and Z; assumed
to be mutually independent. The distribution of the claim Y} depend on the time at
which k’th jump occurs, but is otherwise non-random and independent of the N pro-
cess. Thus, the Yi-s can depend on the N"-process only through the time-dependence
of the distributions of the Yi-s. The same holds for random variables Z;-s and the
process N9. An example of time-dependence is when the claims are subject to inflation
or interest force (see, for example, [21]).
Under these assumptions V" (dt,dx) = N, (1—F} (—dx))dt and v9(dt, dx) = X F{ (dx))dt,
where FY and F} are the respective distributions of Y, and Z; at time t. Hence
Gi(z) =— 2By + 2—2 olds
2 Jiog
v e s s [ fat(e) g
0,t

[0,¢]
where @?(z) = [ e **dF?(x) is the Laplace transform of F?, j=r,g.

For this model, from condition (5.11) we obtain

t t
B, +/ pINIds >/ iAlds,
0 0

for allt > 0 where pg and u’. denotes the mean of Z; and Yy, at time s, respectively.
We will next discuss simple situations where the ruin probability can easily be
evaluated. We suppose that for each t > 0 there exists a distribution function  such
that Fr(z) > Fy(2) and F9(x) < F{(z) for allz > 0 and all s < t, j =r,g. Under

these conditions, p? < ﬂ{, j=mr,g, fors <t and
[ n=s) — 1 < [ -2) - 1A

s (5.16)
/0 (8 (2) — 1Ndu < [3(=) — 1AL,
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where i denotes the mean value of Fﬁ, Pl(z) = fe‘”dﬁ{(:c), and Al = [} Nds is
integrated intensity of N7, j =r,g.

We assume that a company adopts a policy such that for some constant ¢ > 1

¢ ¢
B, >c (ﬁ:/ Aids — ﬁf/ /\gds> : (5.17)
0 0

for s < t. If, moreover, o2 is bounded by a constant ¢} for s < t, (5.16) and (5.17)

implies that

1
Ga(2) < [zepy + @) (—=2) = AL+ [=zeinf + {(2) — 1AL, + 522438

= (61(2), 61 (2)) 0 A + 55°CEs

for all s < t where g;(z) = —zciiy + ¢;(—2) — 1, g/(2) = —zcpf + @(2) — 1
and Ay = A7 + A9 Under the conditions imposed gl (z) is convez, gl(0) = 0 and
(gg)/(O) < 0, so there is a range [0, 2] of z-values for which g}(z) <0, j =r,g. For
z € [0, zo] it follows from (5.10) that

efqur%zQCft
P <0 S o). 0 o Allr <) (5.18)

The Laplace transform of A is rarely known, but when the Laplace transform of A is
known, it is sometimes possible to proceed in a way analogous to the derivation of the
upper bound (5.21) demonstrated in Example 5.4.2. Quite generally we can use that

—zu + %zQCtQt has a minimum at z = u/(t¢?), which implies
P(T < t) < 6—%712/(@275)

provided u/(t(?) < z.

In general, we have the result
1
P(r <t) <exp (—ztu + 52?(325) :
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Example 5.4.2 Consider the special case, namely, the classical compound Poisson
risk model with additional random positive left-continuous jumps of size Z; and per-

turbed by a Wiener process W

N‘]

Ri=u+ct+oW,+> Zi— ZYk (5.19)

=1

where c is the premium rate, N” and N9 are a Poisson process and left-continuous
modification of a Poisson process with intensities X" and N9, respectively. The Z;’s
and Yy ’s are positive, independent identically distributed random variables with distri-
bution functions F9 and F", respectively. We assume that W, N", N9 {Z;} and {Y}}
are all mutually independent.

In this particular case, By = ct, (N); = ot, v"(w;dt,dx) = \"(1 — F"(—dx))dt
and V9 (w; dt,dx) = NF9(dx)dt, so

Gi(2) =g(2)t
- (—zc + %0222 + X' [ppr(—2) — 1] + N [pra(2) — 1]) t

where @pi(z) = [ e *dFi(x) is the Laplace transform of FI, j = r,g. Since the
process Ry in this case is a process with independent increments , My(z) in (5.9) is
a martingale for every z in the domain of ppr and pre. We see that z; = Z is the

positive solution of g(z) = 0. Thus, for all u >0

P(T < o0) < e ",
This bound was already obtained in the case with no positive jumps (see, for instance,
[80], 13.2.1). We can sometimes obtain a more accurate upper bound of finite time
probability of ruin. For z € [Z, 2], g(z) > 0, thus by (5.10)

P(r <t) <exp|—zu+g(2)t] forall z € [2, 2. (5.20)
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The right hand side of (5.20) attains its minimum at z*, which is given as the
solution of ¢'(z*) = w/t, provided there is a solution in [0, zo]. Otherwise the minimum
is attained at z* = zy, in which case ¢'(z*) < u/t. If t < u/g' (%), the convezity of g

implies that z* > 2, so

P(r <t) < exp|—z'u+ g(z")t] fort <u/g'(z). (5.21)
Since g(z*) < (2* — 2)u/t for z* > z (using again the convezity of g and the fact
that g(2) = 0), the right hand side of (5.21) is strictly smaller than exp (—uz) when
t<u/g(2).
Example 5.4.3 Consider a specific case of the model (5.19) with the following cu-
mulative distribution functions of Z; and Y;

Fi(r)y=1—e" b>0, F'(z)=1—e"" a>0.

Additionally, we assume that net profit condition is satisfied, ¢ > % — ’\—bg For z €

(0, a], we obtain
Gi(2) =g(2)t

1 b
—(—czt 20224 A | —— — 1| + N9 - 1] ),
2 a—z b+ z

_ zh(z)
2(a—z)(b+z)”’

We rewrite g(z) where

h(z) = —0%2° + (6%(a — b) + 2¢)2?
+ (o2ab — 2¢(a — b) + 2(A\" + X))z + 2(N'b — Na — cba). (5.22)

Thus, if the equation h(z) = 0 has solution z € (0,a] then, by Theorem 5.5.1, it
follows that

P(1 < 00) <e ™.

This result generalizes the following special cases:
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1. (cadlag case, cf. [85]) If ¢ > 0,0 > 0 and there is no positive jumps, i.e.,

Z; = 0. Then net profit condition is ¢ > -, and (5.22) becomes
h(z) = —0°2* + (0%a + 2¢)z — 2(ca — \").

Quadratic equation h(z) = 0 has exactly two real roots for z € (0,00), given by

02a—|—201\/z

- 202 ’

Z4 =

where A := (0%a — 2¢)* + 802 \".

Since (0%a — 2¢)* < A < (0%a + 2¢)?, we have 2_ >0 and 2, > a. If 2_ < a

then, by Theorem 5.5.1, we get for all u > 0

P(1 < 00) < e %,

2. (pure jumps case, cf. [15], 8.3) If ¢ = 0,0 = 0, then net profit condition is

2> 2 and (5.22) becomes
hl(z) = 20 + A7)z + 20 — Xia).

Then the equation h(z) = 0 has a unique real root in the interval (0,a), given

by
MNa — \"b
N 4+ N\

Therefore, by Theorem 5.3.1, for all u > 0

Z =

P(r < 00) < e
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Chapter 6

One-dimensional optional
regression models

Regression Analysis is an integral part of Mathematical Statistics. Developments in
this area are important from both theoretical and applied points of view. In statistics
of random processes a regression model is considered as a semimartingale where the
drift depends on an unknown parameter and the martingale part presents the errors
in observations. Such a viewpoint is very productive because it creates a possibility to
study a variety of regression models (with discrete and continuous time) in an unified
way, using martingale methods (see, for example, [65], [71]).

The standard martingale theory is well-developed under so-called “usual condi-
tions”, when filtration (information flow) is complete and right continuous. However,
statistical data is usually delivered by a stochastic process, whose history (natural
filtration) may not be right-continuous, and therefore such technical conditions may
not be fulfilled (see [4]). This is the main reason why we need to consider regres-
sion models in more general setting which we call here the optional regression model.
Optional semimartingales, on which our optional regression model is based, admit
trajectories which are not right-continuous and arise when “usual conditions” are not

assumed on filtered probability space. Up to our knowledge, currently there are no
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works devoted to the relaxing of these “usual conditions” and investigation of such
general optional regression model.

Firstly, we focus on strong consistency of the proposed LS-estimate. In case of
the observed process being cadlag (right-continuous with left limits) semimartingale
this problem was extensively studied in [71] (also see [70]).

Secondly, we concentrate our attention on the sequential estimates with guar-
anteed accuracy. In comparison to the structural LS-estimates the sequential LS-
estimates posses an advantage of having bounded variance. This type of estimates in
cadlag case is well-established (see [72], [71], [34], [19]).

The chapter is organized in the following way: in section 5.1 we introduce the
general regression model along with structural LS-estimates and auxiliary results. In
section 5.2 we prove strong consistency of the proposed LS-estimates. In section 5.3
we consider sequential estimates, show that these estimates are unbiased and have
a property of guaranteed accuracy under suitable conditions on regressor and error
term. In addition, we investigate a problem related to hypothesis testing. Finally, in
section 5.4 we present an extension of sequential LS-estimators for non-linear regres-

sion models and several illustrative examples.

6.1 Optional stochastic regression model

Suppose that on the fixed stochastic basis (2, F,F = (F;)i>0, P) without “usual
conditions”, we observe a one-dimensional process X.

Suppose the process X has the following form

Xt :foat9+Mt, (61)
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where f o a; is an optional stochastic integral such that

foat:/ f;dag+/ fida?,,
10,¢] [0,¢]
a=a"+a? € A NPy, M € Mo, fiisabilinear pair f, = (ff, f{), f{ € P, f{ € O,

loc

and 6 € R is the unknown parameter which we need to estimate.

As the estimator of 8 we consider the statistic

Op = F, " (foXy), (6.2)

where F, := f?oa; € A} NP is assumed to be non-zero (a.s.). This assumption
is not restrictive because further we suppose that F; — oo (a.s.) to provide strong
consistency of 6;.

The structure of the estimator (6.2) is similar to estimator obtained by the method
of Least Squares (LS) in classical regression analysis. Therefore, 6; will be called the
structural LS-estimator of 8. It is well known how to study its asymptotic behaviour
with the help of the Strong Law of Large Numbers (SLLN). Liptser (1980) [66] pro-
posed a very general form of SLLN for local martingales using a stochastic Kronecker’s
Lemma. For reader’s convenience, let us reproduce this scheme in optional setting
(see [35], [71]).

To prove Kronecker’s Lemma in optional setting, we need the following result
on sets of convergence of optional martingales. In what follows, we denote D the

compensator of some increasing process D.

Lemma 6.1.1 (see [36]) If Y € My, then
(Do < 0) € (Y =) as.,

where

(AY;)? (ATY})?
D, =(Y° —— % = -8/
0= >t+21+|AYS|+Zl+|A+YS|’

0<s<t 0<s<t
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and (Y —) is the set, on which there exists a finite random variable Yy (w) =

limy o Vi (w) < 0.

Now we present the following generalization of Kronecker’s Lemma.
Lemma 6.1.2 For processes N € My,. and A € VT NP, the following relation holds
(Ao = 00) N (Y; =) C (AN, = 0) (a.s.) (t— o00),

where

Vim [ aeayrane [ e an)tang, (6.4)
10,t] [0,¢]

Proof. From (6.4) it is easy to see that

[ oasagays+ [ e acdvg = 5 - . (6.5)
10,¢] [0,¢]

Using integration by parts formula (see Lemma 3.4, [5]) we obtain

u+Awﬂj+/

(4 Ay +
[0,

10,¢]

(LHMEzf

Y, _dA +/ Y,dA?,.
10,t] [0,¢]
Then from (6.5) we conclude that

N,  Ny+Y 1
1+4, 14+A 1+A,

avi- [ veax- [ vaa,)
10,¢] [0,¢]

Since sup, |Y;| < 0o on the set (As = 00)N(Y —), we have that (1+A4;)~"(No+
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Y;) — 0 a.s. as t — oo . On the other hand, we have for u < t,v <t

1
AY—/ YS_dA’S”—/ Y,dA?
T+ A |7 10,4 [0,4] *
Sl
- V- Yoddr+ [ (viev)dag
L+ A [ Siog ! [o,t[( ' i
Ay
< Y—stAH/ Y = Vil + Voo — Yo |)dA”
1+At< M\ ! | M(\ i+ | )

+ / Y: — Yi|dAL + / (Yoo = Yi| + Voo — Ysl)dA§+>
[0,0] [v,t[

<2sup [Yi[(1+ A) (A} + A7) + [V = V]

s>0

+ (14 A4)7" /

Just]

Yoo = Yol (14407 [ V- VijaAL. (66)

[v,t]
Using the fact that sup, |Ys| < oo on the set (Y —), we can choose for sufficiently
large ¢ appropriate values v and v on the set (A, = 00) N (Y —) to make the right

side of (6.6) tend to zero. Consequently, the statement of the lemma follows. m
Remark 6.1.1 Although we proved Lemma 6.1.2 for the process N € M., this proof

also works for any optional semimartingale N .

6.2 Strong Consistency

In this section we will show that the estimator 6; in (6.2) is strongly consistent. The

proof of the strong consistency is based on the SLLN in optional case.

Let N € M,,. and

Ny = Ny + / / xd(p" —v")s + / / zd(pd — v9)sy (6.7)
10,00] 4 Rg [0,00[ Y/ Rg

be the canonical decomposition of N, where Ry = R\ {0}, N¢ be a continuous part
of N, u" and p9 be random measures of right and left jumps of N, and " and 9 be

their respective compensators.
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Theorem 6.2.1 Let A € VT NP, and Aye = 00 a.s. If N € My, and for some

q€[1,2]

14+ Ag| Y x|%dv.
/MHA /OOO/RO| e

s [ s A, <o (69
[0,00[ RO

then

AN, =0 a.s. ast — oo.

Proof. Using the fact that

we get for ¢ € [1, 2]

(A+Y,)?
+21+]AY\ Z1+1A+y;|
+Z Y7+ > (A+Y,)s

s<o0 §<00

where Y as defined in (6.4). Thus, from (6.8) it follows that

) d(N©),
Dos< [ I [ [ s asa
0,00 (11 As) 10,00] /Ro

+/ 11+ A |7 Yz|%dri, < oc.
[0,00[ Y/ Ro

By Lemma 6.1.1 and Lemma 6.1.2, A;'N, — 0 a.s. ast — co. m

Theorem 6.2.2 Suppose for the model (6.1) that Fi, = 0o and for some q € [1,2]

/ (f9)?d{M)
10,00]

1 Fr_q 9 (IdT
gt e R

+/ 1+ F9 9| f9]2]2]2dv?, < oo, (6.9)
[0,00[ Y Rg

Then 0, — 0 (a.s.) ast — oo.
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Proof. It is sufficient to note that
(9t - 9 == At_th?

where A; := F, and N, := foM,. By Theorem 6.2.1 we get immediately the statement

of the theorem. =

6.3 Sequential LS-estimators

Let us consider the model (6.1) with M € M2 (R). We assume that there exists a

loc

non-negative random variable £ such that

d(M
(M) <¢  flfoare AL NP, (6.10)

dat

Next, for fixed H we define
g =inf{t: f2oa, > H}, (6.11)

with 74 = oo if the corresponding set is empty. We assumed that processes f" €
P, f9 € O and a € Py, consequently, by Theorem 2.4.14 in [4] 75 is a wide sense
stopping time.

On the set {7y < 0o} we define a random variable Sy by the relation

120 g+ B ((f1,)? Dy + (f2,)7A % ar,) = H, (6.12)

TH

and on 7y = oo we put Sy = 0. Then Sy € [0,1] and is a F,,-measurable random
variable.

We consider the following statistic as an estimator of ¢

~

O =H " [f?0 Xp,— + Bu ((fL,)?AX., + (f2,)°A7X,,)] . (6.13)
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The next theorem shows that the statistic defined by means of (6.10)-(6.13) is an
unbiased estimator of 6 and has the property of guaranteed accuracy, i.e., bounded

variance.
Theorem 6.3.1 Suppose that assumptions (6.10) hold, E{ < oo, and
P{f?0a, =0} =1. (6.14)
Then for all H > 0
P{ry <o} =1, Efy=0, Varfy < H 'EE.
Proof. First,
P{ry =00} =P{f?0a, < H}
—1-P{f*oa. > H)

<1—-P{f*0ay, =0}
=1-1=0.
Thus,
P{ry <0} =1—-P{ryg =00} =1
Next, using (6.1) and (6.13), we obtain
Dy —H [0 Xoy B (DX, + (12, A% X, )]
=H'[(f* 0 ar, )0 + Bu ((f7,)*Aar, + (f7,)°ATar,) 0
+ f2 ° MTH* + Bu (( :H)2AMTH + ( 7{]]_1)2A+MTH) }
=0+ H 'N

TH

where
Nt - 1{t<TH}f2 o Mt + 1{t=TH}/BH (( ;H)QAMTH _I_ ( gH)2A+MTH)

98



Since the process [V, is a stochastic integral with respect to the optional square
integrable local martingale M, by the properties of optional stochastic integrals we

have

(N = Lgmg 2 0 (MY + Ly B2 (7,2 A (M), + (f2,)2AH(M)s,,)
Hence by (6.10) and (6.12) we get
(N} < E[120 e + Bur () Dy + (12,7 " ar,,)] = €.
Consequently, Ny, is an optional square integrable martingale, and therefore
EN,, =0, EN? < HE(,

TH

which proves the theorem. m
Now, it is reasonable to discuss the following problem of distinguishing two hy-

potheses with simultaneous estimation of the parameter § € R :

HO . Xt :f o} U,te -+ Mt7 (615)

Hl . Xt :Mt7 (616)

where M € M2 (R). Assuming that (6.10) is fulfilled, we define 77, 8y as in (6.11),

loc

(6.12) and

On(X) = H™"[f* o Xy + Bu ((f7,) AXey, + (f2,)°AY X, )]

Theorem 6.3.2 Suppose that in the problem (6.15) the parameter satisfies
0 Rs={0e€R:0>6>0}
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and condition (6.14) is fulfilled for both hypotheses Hy and Hy, E§ < co. Then for a

gien € > 0 the criterion

0 i low(X)] = 572
Alrn) = {1 i lon(X)] < 6/2,

for H > 467 2¢7YE¢ ensures distinguishability of the hypotheses Hy and H, with prob-

abilities of errors not exceeding € > 0.

Proof. From the definition of ¢y (X), if either Hy or H; is true, then it follows,

respectively, that
ou(X) =0+ ou(M) or oép(X)=ou(M).
Note that by Theorem 6.3.1 under either of the hypotheses Hy, H;
E¢y(M) =0, E¢}(M)< H 'EE. (6.17)

Then in case when Hj is true, applying Chebyshev’s inequality we obtain that for
4672 'EE< H

Plw: A(re) # 1} =P{w : [ou(X)| = 0/2}
=P{w: |on(M)| = 6/2|| < 467 °Elon (M)

<452H'Ef <.
In case when H; is true, using the simple fact that for 0 € Rs
6 —|ou(M)| < |6+ du (M) <10+ ou(M)| = [¢n(X)]
implying that

{w:lon(X)] <6/2} SH{w: |¢u(M)| = 0/2},
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we arrive to the following estimate of the probability of error:

sup P{w : A(7g) # 0} = sup P{w : |¢u(X)| < 6/2}
0€Rs 0cRs

< sup Plw :|¢n(M)] < 6/2}

<40 % sup E¢3 (M) < 46 ?H'E¢ < e.
0

6.4 Further extensions and examples

Let us show how the linear optional regression model (6.1) can be extended in a non-
linear case (see, for example, [18]). The non-linear optional regression model has the

following form

Xy = foag(d) + M, (6.18)

where the processes f,a, M satisfy the same assumptions as in (6.10)-(6.12) and
g : R — R is a continuous, bijective function with a continuous inverse ¢g=*. Let 74
and By be asin (6.11) and (6.12), respectively. Then the sequential LS-estimator can
be obtained by defining ¢ := ¢(f) and realizing from (6.13) that

5H = g(éH) =H' [fQ o Xry— + Bu (( :H)2AX7—H + ( gH)QA—i—XTH)] or

O =g~  (H™' [f2 0 Xpyo + B (1) AX0, + (F2)°A7X,,)]) - (6.19)
Now, suppose (6.14) holds, ¢(f) is differentiable and

/_ (7 (@) expl—12/2)dz < oo. (6.20)

Using the same argument as in the proof of Theorem 6.3.1, we show that P{ry =

oo} = 1.
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Next, note that

E(0y —0) =E [g7'(9(0) + H'Ny.,) — g ' (9(9))],

E(0n —0)* = E [g7"(9(0) + H'Noyy) = g7 (9(0))]”
where
Ny = Lppergy f? 0 My + Lp—ry B ((F1,)2AM oy + (f7, )2 A M, ) .
From the proof of Theorem 6.3.1 we already know that
Nipr € MO M? EN,,, =0 and EN? < HEE.

From assumption (6.14) it follows that (V). = oco. Thus, by Theorem 6.2.1 we have

N, N

. B . wo_
tlgglo N, 0 (a.s.) and I}gnoo ™., 0 (a.s.).
Since (N),, < HE, we get
N;
lim —% =0 (a.s.).
H—o0

Using the Skorokhod embedding theorem we obtain a

E(0y —0) = /OO (g7 (g(0) + H'z) — g7 (g(0))] e/ dx

:/<A [9_1(9(9) + H—1/2y> _ g—1<g<9))} e—y2/2dy

4 / Lo o)+ 29 = g7 0(0)] 2y

Applying condition (6.14) and (6.20) one can always choose numbers Ay(€) and Hy(e)
such that for H > Hy(e)

/<A . (g7 (g(0) + H%y) — g7 (9(0))] e 2dy <
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and
L T a0+ ) = g o] ey <
y>Aple

Hence, E(0y — 6) < 2¢ for H > Hy(€). This proves 0y is asymptotically unbiased as
H — oo.

It is not difficult to show similar calculations for E(f,, — 6)?. From Cramer-Rao-
Wolfovitz inequality it follows that 6., is asymptotically efficient.

On the other hand, we can show that 6y is unbiased and efficient estimator under
assumption that ¢~'(6) is differentiable and has a bounded first derivative. Using

Mean Value theorem, we have

El0y — 0| =E [g7'(9(0) + H'N,) — g ' (9(9))]

<E s ()OI
C€lg(0),9(0)+H 1 Nry ]
<0
Similarly,
2]\7_2
E|fy —0]* <E sup g™l =5
C€lg(0),9(0)+H 1Ny ]
<K?*H'E¢,

where K is the constant bound on (g~1)'(€).

Let us now illustrate several examples.

Example 6.4.1 Non-linear regression model. Consider the following non-linear

model

Xt:foat\/g"'Mt,

where f,a, M satisfy assumption (6.10)-(6.12),(6.14).
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The function g() = V6,0 > 0, is differentiable and its inverse g~*(6) = 62 clearly
satisfies (6.20):

[e.9]

/ T (07 (@) exp(—a?/2)da = / o exp(—a?/2)dz = 3YFT < oo.

Thus, by the above discussion the sequential LS-estimator

~

O = (H" [ 0 Xpy 4 Bur ((f1, A0, + (f2,°A7 X))

1s both asymptotically unbiased and asymptotically efficient as H — oo.

Example 6.4.2 Risk process. Consider the following risk process

Xy =ct + oWy — aN] + bNY, (6.21)

where ¢, o,a,b are positive constants, W is a Wiener process, N" and N9 are a Pois-
son process and left-continuous modification of a Poisson process, respectively. The
constant ¢ usually represents premium payments in risk theory, whereas a and b de-
scribe average value of claims and positive gains, respectively. The process oWy is a
random perturbation.

We can rewrite the process X; as follows
Xt == 0t + Mt,

where 0 := ¢ — aX + NI, My := oW, — a(N] — N't) + b(N{ — \9t), A" and N9 are
Jump intensities of N[ and Nf, respectively.

The structural LS estimator of 0 is
0, = —. (6.22)

The condition (6.9) of Theorem 3.2, i.e.,

d
02/ i 5+ aq)\’"/ (14 ) %ds < o0,
10,00 (14 ) 10,00]
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holds for any q € (1,2]. Thus, the estimator (6.22) is strongly consistent.
The sequential LS-estimators have the following form

5 X
0

_ TH

"=
All assumptions of Theorem 6.5.1 are obviously satisfied, and & = 02 + a®\" + b2\9.
Consequently,

R . 2 2)\7’ bQ}\g
P{TH<OO}:1, EGHIO, VaI'OHSU ta + .

We usually want the process X, to be positive, so the estimator 0, = c—aX + b\ > 0.

This assertion is called as a net profit condition in risk theory.

Example 6.4.3 Ornstein—Uhlenbeck process. In mathematical finance we often

deal with Ornstein—Uhlenbeck type processes that possess mean reversion property, i.e.

t
Xt:/(u—Xs)d89+Mt,
0

2

where (v is a positive constant, and M € M;, .

We assume that

d(M),
dt

<. (6.23)

loc

t
F, = / (n—X,_)’dse Af NP, and
0

Then, the structural LS estimator of 6 is

_ (b—X_)oX;
f(f(,u - Xsf)2d57

and sequential LS-estimators have the following form

(6.24)

t

~

O =H ' [(n— Xs-)? 0 X,y ]

If the following condition

/ (PJ - Xs—)2d<Mc>s
10,00] (1+ F,)?

+/ 11+ F7 7Y p — X |¥x]?dv] < oo
10,00] Y/ Ro
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holds for some q € [1,2] and Fy, = oo, then by Theorem 3.2 the estimator (6.24) is
strongly consistent.

Furthermore, by Theorem 6.3.1, we have
P{ry <o} =1, Efy=0, Varfy < H 'E¢.

Example 6.4.4 Finally, consider a regression model with well-known centered Gaus-

2

ive and a deterministic function f,

sian martingale M € M

t
Xt = / fsdse + Mt' (625)
0
Then, the LS estimator of 0 is
o X,
, = % (6.26)
fo feds

It can be shown in the same way as in [71] that strong consistency of (6.26) follows
only from the assumption of fooo f2ds = oo.

We assume that
d(M),
dt

<¢, (6.27)

where & is constant. Note that in case of centered Gaussian martingales (M), =
EM? < oo is a deterministic function. Then sequential LS-estimators have the fol-

lowing form

N

Oy = H! [fzoXTH_} .

o{[ s

then, by Theorem 6.5.1, we have

If, in addition,

P{ry <o} =1, Efy=0, Varfy < H .
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6.5 Asymptotic behaviour of the trajectories of
weighted LS-estimates

In this section we will need the following theorem of law of iterated logarithms in case

of optional martingales.

Theorem 6.5.1 (see [36]) Let N € M3, . and Esup, |AX;| < co, Esup, |ATX,| <

loc

0o0. Then on the set ({(N)o = 00)

li N <1
im su a.s.
¢ P (2(N);loglog{N);)V/? —

Let us now consider a version of the model (6.1) where a; = (M), i.e.

Xi = fo (M) + M,

where M € M3 .
Next, we define
Ny
Y, =0, —0 = ——
t t <N>t7

where N, = f o M,.
Theorem 6.5.2 Suppose that the following conditions are fulfilled:
Esutlp]AXt| < 00, Esgp|A+Xt| < o0,
(N)o = 0.

Then

. Y, [(N),?
| <1 .S.
TP Rloglog(N) 12 = 47

Proof. Multiplying by (N)1/? and dividing by (2log log<N>t)1/21/2, we get

ViV N,
(2loglog(N);)'2 — (2(N)doglog(N);)1/?"

Applying directly Theorem 6.5.1, the statement of the theorem follows. =
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Chapter 7

Multi-dimensional optional
regression models

Estimation of regression parameters is a classical statistical problem which has various
applications in natural and social sciences. In classical statistics this problem was
studied for regression models with discrete time. With the development of theory
of stochastic processes it obtained a new formulation as a problem of parameter
estimation in random processes and became one of the cornerstones in the statistics
of random processes. The book of [67] brilliantly demonstrates this for the models
with diffusion type processes.

The development of general theory of random processes and theory of martingales
in particular opened new ways for construction of more general models embedding
discrete time and continuous time models at the same time. Apparently, works of [1],
2] were the first of this kind. Further, a series of other works gave a new impulse
to this direction by consistently examining regression models in the form of cadlag
semimartingales, where the drift depends on an unknown parameter and the martin-
gale part represents the errors in observations. The parameter estimation was usually
implemented by utilizing least squares (LS) method (see, for example, [77], [22], [70],

[60]). Strong consistency and asymptotic normality of the LS-estimates under very
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general conditions were established. Moreover, a mean-square guaranteed accuracy
was proved for sequential LS-estimates (see [72]). The detailed review of the results
of this theory for that period can be found in [71], [73]. Furthermore, in the work of
[34] sequential estimation with prescribed accuracy was extended to the multivariate
semimartingale regression models with out prior existed restrictions on the number
of unknown parameters and the dimension of the observation process.

We also would like to point out that this area attracts an ongoing research interest,
especially, from the point of view of its applications in finance, econometrics etc (see,
for example, [88], [64]). Modern works on parameter estimation seem to focus on
non-semimartingale models driven by fractional Brownian Motion (see, for example,
[51]) and on special cases of semimartingale models (see, for example, [19], [20], [92]).
The recent review of the historical development in sequential prescribed precision
estimation can be found in [86, Section 4].

Martingale theory is well-developed under so-called “usual conditions”, when fil-
tration (information flow) is complete and right-continuous. However, statistical data
and information are usually delivered by a stochastic process, whose history (natural
filtration) may not be right-continuous, and therefore such technical conditions may
not be fulfilled (see [4]). This is the main reason why we need to consider regres-
sion models in more general setting which we call here the optional semimartingale
regression model. Optional semimartingales, on which our optional regression model
is based, admit trajectories which are not right-continuous and arise when “usual
conditions” are not assumed on filtered probability space. Up to our knowledge, cur-
rently there are no works devoted to the relaxing of these “usual conditions” and
investigation of such general optional regression model.

The current chapter is a natural extension of [9] in which the authors studied LS
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estimates and their sequential versions for a 1-dimensional optional regression model.
The first goal of this chapter is to derive the weighted LSE for a multivariate optional
regression model and prove strong consistency of this estimator under conditions on
regressors similar to ones given in [71]. The second goal is to investigate sequential
LS-estimates in the multivariate optional semimartingales regression model. In the
case, when the dimension of unknown parameter does not exceed the dimension of ob-
servable process, we adopt the approach proposed in [72]. In general case, when such
restriction is not assumed, we solve the problem with the help of two-step procedure
proposed by [34].

This chapter is organized in the following way. In Section 6.1, we introduce the
optional semimartingale model. In Section 6.2, we derive the weighted LSE for this
model. In Section 6.3, we prove strong consistency of the weighted LSE by applying
SLLN. Section 6.4 presents the construction of the unbiased fixed accuracy estimators
for multivariate optional regression models with the number of parameters less than or
equal to the dimension of the observation process. The two-step sequential estimation
procedure for the general case with an arbitrary number of parameters is studied in

Section 6.5.

7.1 Model

Let (Q, F,F = (Fi)i>0, P) be a filtered probability space not necessarily satisfying the
usual conditions: the filtration F = (F;);>¢ is right-continuous, that is F; = Ny Fs,
and the o-algebra F{ contains all P-null sets. Consider the observation process X =

(X¢)t>0 specified by the stochastic regression model

Xt:Xo—f—CI),oatQ—l—mt, tZO, (7].)
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where the optional stochastic integral

Woa = [ (@ydn+ [ (@),
10,¢]

[0,¢]

the prime denotes transposition; X, m € R"; ®" and ®7 are, respectively, predictable
and optional p x n matrix (the matrix of stochastic regressors); § € R? is the vector of
unknown parameters; m; = (m}, ..., m?)’ my = 0, is a noise which is a locally square
integrable optional martingale with the trajectories having right and left limits but

not necessarily righ- or left-continuous:

ap = (m), = tr((m',m’))1<i jen = Z<mi>t-

Let
i i ic jc
Bt:(d<m>m>t) 7 Btc:<d<m , T >t) 7
day; 1<ij<n d(me), 1<ij<n
id ,,Jjd ig 79
B! = (M) | BY = (M) |
d(m?), 1<i,j<n d(m9), 1<i,j<n
(m), = Z(mw)t, <md>t = Z<mid>ta (m?)y = Z(mig%;
i=1 i=1 i=1

here m = m®+m?+m? is the orthogonal decomposition of the vector-valued martin-
gale m into a continuous optional martingale, a right-continuous and left-continuous
martingale parts. Note that (m, m/d) = (m¥9 mi?) = (m* mi9) = 0, for all
1<4,9 <n,
a; =(m®); + (m?), + (m9),,
Bid{m), =B{d(m®); + B{d(m"), + B{d(m?),.

Example 7.1.1 Consider a special case of model (7.1):

X| =0kt +mj, (7.2)

mi ='W + a'(NJ" — \N"t) — bi(N}Y = \9), i=1,...,n. (7.3)
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where o', a', b, N, N9 are constants, k=Y k', k' := (0")*4 (') A"+ (b")2 N9, W}
is a 1-dimensional Wiener process, N is a Poisson process and N is a left-continuous
modification of a Poisson process, X" and X9 are corresponding intensities of N and
N9, The processes Wi, N and N9 are all mutually independent.

Here, mt is an optional martingale with an orthogonal decomposition, m! = m™ +
m - mio, mic = g'Wi, mid = a'(NJ" — X"t), m'9 = b'(N}? — \idt),

In this example, the process ® = (1,...,1) in (7.1) is an n-dimensional row vector
of ones, the process

a; = Z<mic>t + <mid>t + <mig>t _ Z[(Uz‘)Z_I_(ai)ZAir_{_(bi)Z)\ig]t — Kt

i=1 =1
and the process By is a matrix with fived values (%)zzln on its main diagonal. In
addition, we assume that By is invertible, and 8 := Y1 7 > 0, where 37 is a
value from the inverse matriz (B;)™'.

The problem of estimation of 0 in the model (7.2) can be important when one
wants to estimate a cumulative drift of a portfolio of financial assets (index) mod-
elled by the process (7.2), e.g., what is the main trend of a portfolio of some stocks.
Another application can be the estimation of the drift parameter of model (7.2) when
X describes capital processes of some firms (see Chapter 4). For instance, X} can be
a risk process of an insurance company where 0kt describes a stable flow of income
payments while N{ describes an accumulation of claims. For simple exposition of fur-

ther results, we assumed constant coefficients in (7.2)-(7.3), though it is, of course,

possible to consider deterministic or stochastic coefficients.

Example 7.1.2 Consider the model (7.1) where the process &, = (P}, D7) is deter-
manistic and my is an optional Gaussian martingale. We know that the distribution

of my s fully characterized by its covariance function which is a deterministic func-
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tion. We would like to emphasize optionality of m; by pointing out that its covariance
function has right and left jumps. As a result, the process a; is a deterministic process

which has jumps Aa; and At ay.

7.2 Weighted LSE for optional semimartingale mod-
els in continuous time

Let (X:):>0 be an observation process starting from X, and specified by the stochastic
differential equation (7.1). Let W = (W7, W¢), t > 0, W/ € P and W € O be some
symmetric positive definite weight matrices of size n x n. Let a = a® + a? + af
be the decomposition of the increasing process a € P, into continuous and purely
discontinuous parts:

_ g __ + c __ d g
—E Aay, at—g ATag, af =a; —ay —af,

0<s<t 0<s<t

Aay = as —as_, Ata,=a. — a,.
Introduce a loss function

Ly(6) = 3" (AXE — (@ )0adf ) Wy, (AXE — (#],)Adf,)

ta<T
+ 30 (arXy - (@g)y0ag ) Wi (AXE — (®)Ad,)
tn<T
+ 3 (Aap)® (MK, - (@000, ) 7, (MK, — ()20, )
t<T

where § = {tg,t1,...}, 0 =1ty <t; < ... <t, =T, is some partition of the interval
[0, T7;

o x7 ifx #£0,
€T =
0, if z =0;
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A)A(:C C o XC

tk+1 tg?

Xg

tk’

AXE =X

tet+1

X :/ Laa oy dX], X} :/ Lara0dXe, X7 =X[ - X[,
10,1 10,1

- Xtdk, AX] =X!

k+1

d d

c _ ¢ _c d __ _ 9 _,9 _ 49 .
Aatk =ay, , — a5, Aatk =ay, , — Gy, Aatk =ay, ., — ay,;

1, is the indicator of a set A.
For the fixed partition ¢ and weight matrix W one can find an estimator 65 which

minimizes the loss function Ls(0). We have

VoLs(0) = —2 Z ;7 WZ; XtdkAat +2 Z o, Wi;(@l;)’ (Aafk)2 0
th<T te<T
— 2% O WIAKS Aaf +27) 7 ®F Wi (®],) (Adf,)" 0
1 <T te<T
=230 LWL AXG Ad, (a5)" +2 3 @IV (@] )/ Adi 6
te<T tpe<T

where Vj is the gradient with respect to 6. The equation VyLs(d) = 0 yields the

estimator

=1 3" ap Wy (@) (Aad)® + Y @ W@ (Adf,)?
t<T tp<T
—1

+ O W (D] ) Aag,

te<T

X [Z ®; W) AXE Aal + " o WIAX] Aaf, + > @ W) AX;,

te<T e <T t,<T

where we make use of the equality AX FAay (atk) = A)?fk, which is true, because
the process X does not change on constancy intervals of the process a¢ (see [87]).
Taking a sequence of partitions 6, = {tf,t7,...}, 0 =1ty <t} < ... <t =T,

such that maxy, (},; — ¢) — 0 as n — oo we obtain the following result:
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Theorem 7.2.1 Let, for allt > 0,
/] ]tr [(bZW!(@Z)’} (Aas + Liaa,—0)) dal <oo  (a.s.),
0,
/] ]tr {<I>ZW§B§’VI7£(<I>Z)’] ((Aas)? 4 Liag,—0y) dal <oco  (a.s.),
0,
/[ [’f?“ [Cbiwf@i)’} Ataudal, <oo  (a.s.),
0,
/[ tr BB @Y ] (Aa)idal, <00 (s
0,t
and the matrix

/ [@;W;(@Z)’} (ACLS + 1{Aa5:0}) da;, + / [(I)?Wé)(q)g)/} A+asda§+
10,77

(0,7
be invertible for sufficiently large T a.s.

Then 05, — O in probability as n — co and maxy(ty,, — tp) — 0, where

Or =

/ OTW! () Aaydal + / SIWI (DY) At a,dal,
107]

0.7
-1
+ / OTW! (") dal (7.4)
10,77

X { / W Aa,dX? + / PIWIATa,dX?, + /
10,77 0,77

@;’W;d&g} .
1071

By making use of the equalities
Aa,dXT =Aay(dXC 4+ dX?)
=Aa,1{pg,—0)d X" + Aa,dX?
:Aasd)?sd;
Ata,dX?, =ATalgara,—yd XY, + Ata,dX?,

=A*ta,dX9,;
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we can rewrite 07 as follows:

1
br — { | emwr@yaa+ [ ézws@z)'daa}
10,77 (0,77

X { / OTWTAXT + / <I>§W§’dX§+]
Jo.7] 0.7

= [DW (D) o ar] " [®W o X7] (7.5)

where

W =W (Aas + 1gaa,—0y) and W9 =WIA*ta,

S

The estimator O is called the weighted least-squares estimator (LSE).

7.3 Strong consistency of weighted LSE

The main tool in the proof of strong consistency of weighted LSE in (7.5) is SLLN
for multidimensional optional martingales. In order to prove it we need the following
lemmas.

For N = (N*',...,N?) € M3 (RP) assume

loc

d<N",NjT>t d(Nig, Njg>t
o — (—) and QF — (— ,
! AN ) icijep t ANV )i jep

where Q" € P, Q9 € Py and N* = N + N,
Let A= (A7), <, € VI NP, and A, = (A}7); j<, € VT such that

| ranqua i, < .
10,¢]

| traQr sy a). < oc
[0.¢]

Then the process

Y, :/ A;ldN;”Jr/ ACLANY, € M (RP)
10,4

[0,¢]
is well-defined.

Consider a p-dimensional version of Kronecker’s Lemma for matrices.
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Lemma 7.3.1 Let N € M} (RF), A€Vt NPs and Ay € V*. Then

loc

(Amin(A;) — 00) N (limsup AL (A Aaz (AL < 00)N

t—00 min
(lim sup A}, (Ae) Amaz (A7) < 00) N (Y; =) € ([|[4;'Ne|| = 0) (a.s.)

min
t—o00

where Apin(Ay) and Az (Ar) are smallest and largest eigenvalues of matriz A;.

Proof. It is easy to see that N; = f]Ot] A dY] + f[o i A dYY (as.).

Next, using integration by parts formula we get

AY, = / AdY] + / A dY? + / dATY, + / dA%.Y,.
10,t] [0,¢] 10,t] [0,¢]

From this we have

ATIN = A {/ (Y%—Y;—)dAz—i-/
10,4]

(i - YAz, |
[0,

Taking into account the conditions of the lemma, we get for u < t,v <t
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| A7 N || <Ak (A) H‘/ (Y; — Y, )dA;
10,¢]

‘/ (V) — Yo )dAT
10,u]

e
[0,0]

‘/ (Y, — Yo )dAL
10,u]

o [ v
Ju,t]

+ H / (Yoo — Y2)dAZ,
[v,t

v
[0,¢]

+y/<n—n>WQ
Ju,t]

e
[v,t]
‘

(¥, — Yo)dAL,

|

<A (Ay)

min

<Ain(Ar)

min

/ (Yoo — Y})dAL
Just]

H [0,0]
+ H/ (Yoo = Yi)dAZ,
[v,t]

<Aoo (40|20 Y2 D (A7) + s (42)

+ 1 ||Yoo = Yol Nnaw (A7) + Amaa(A7)] (7.6)

N N
Ju,t] [v,t[

For sufficiently large ¢ by choosing appropriate values v and v the right hand-side

in (7.6) can be made arbitrary small. m

From here, we obtain the following version of SLLN for p-dimensional optional

martingales.

Lemma 7.3.2 Suppose N € M? (RF),A € VT NP, A, € V" and the following

conditions hold (a.s.):

(a) Apin(Ay) — 00 ast — oo;
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(b)
limsup AL (A) Aaz (A7) < o0,
t—o0

lim sup A, b, (A) Amas (4) < oc;

t—o00 min
()
/ tr AT QU(ATYA(NTY, < oo,
10,00]

| AR (AN < .
[0,00[

Then HAt_leH — 0 a.s. ast — oo.

Proof. From condition (c), it follows that (Y)., < oo a.s.. Then from Theorem 2.2

in [36] we have [|Y; — V|| — 0 a.s. and by Lemma 7.3.1 we obtain ||4;'N;|| — 0 a.s.

||
Suppose
N, = / (W)Y 2!+ / WI(WE) 2dml, € M2, (R?),
10,¢] [0,¢]
A — / V(0T da” + / WI(W9Y da?,, (7.7)
10,¢] [0,¢]
where

\Iji = CI)%(WtJ)l/2’ j = T?.g?At S V+ mPS?At+ € V+'

Theorem 7.3.1 (cf. [73]). Suppose the following conditions hold for the regressors

in model (7.1) and the weight matriz W = (W' W) (a.s.)
(C1)
/ tr[WL (V) max(1, Aas + 1iaa,—0y)da;
10,¢]

—|—/ tr[09(09) ] max(1, ATas)da?, < oo
[0,¢]
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(C2)
WY2BWY2 < I, dP x da — a.e.

where I is the identity matriz of size n X n.

(C3) Apin(Ay) — 00 ast — o0o;

(C4)
lim sup Av, i, (A) Amas (A7) < 00,
lim sup At (A A (A7) < 00
-ro0
(C5)

/ trA;TUT (WD) (A1) dal <00 (a.s.),
10,00]
| Ay (e, <o (as).
[0,00[
Then weighted LSE in (7.5) is strongly consistent (T > 0).

Proof. By (C1) and (C2) the weighted LSE in (7.5) is well-defined. It is easy to
see that @T =0+ A;lNT. Then from Theorem 7.3.2 we have HéT - 9” — 0 a.s. as

T—00. n

Example 7.3.1 Let us investigate strong consistency of the weighted LSE estimate
(7.5) for the model introduced in Example 7.1.1. If we take Wy = (B,)™! as the weight
matriz, then conditions (a) and (b) of Theorem 7.3.1 obviously hold. The process A;
in (7.7) has a simple form A, = Bkt. Thus, Apin(Ar) = Amae(A¢) = Bkt — oo as
t — oo.
Further,

/ tr AT (WY (A dal = / {LBL} dt < oco. (a.s.)
10,00] 10,00] LOKL Bkt
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As a result, all assumptions of Theorem 7.3.1 are satisfied, and the weighted LSE

estimate in (7.5) is strongly consistent.

Example 7.3.2 Here we consider the model introduced in FExample 7.1.2, and we
will show that for this model it is actually sufficient to assume only condition (c) of
Theorem 7.3.1 and take (W™, W9) = ((B")~*,(B9)') for the weighted LSE (7.5) to
be strongly consistent.

First we show convergence of 6; to 0 in probability ast — oo. To accomplish this,
we compute

Ef, = 0+ A;'EN, = 0,

where

NN N = [ e e [ et
10,¢] [0,¢]

A, = / &7 (Br) (@7 da + / 9(B) (@9 da?.,.
10,t]

0.¢]

Further, using orthogonality of N" and N9 we have

({N, N)Y - (<NT’Nr>ij)1§i,an+ (<N97Ng>?

)1smgn

= [ aumy @y | euE @y,
10,¢] [0,

=A;

)1§i,j§n

Cov (A "Ny, A7 N,) =E [ AN (N (47
/

—AVE[N, (V)] (A7)

=At

Next,

min

tr Cov (At_th? At_th) S 77/)\_1 (At) — 0,

as t — oo, and, therefore, from Chebyshev’s inequality the consistency of 0, follows.
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To show the convergence (a.s.) we consider the random variable
te = inf{t : A\pin(Ay) > ¢}, ¢>0,
and the stochastic process defined by
Y, =A;7'N; — AN,

Let us compute the covariance of the martingale Y;

!/ /

Cov(Y,,Y;) = E(Y,Y}) =E [A;th(Nt)’ (A7) = A7 NV (A
— A NN (A7) + AN, (N (At_cl)/}

A+ AT AT AT = A - AL

As a result, trCov(Y;,Y;) < nA !

min(At.) < 0o. By Theorem 2.2 in [36] Y; converges
(a.s.) to a finite limit. Consequently, A;'N; also converges (a.s.) to a finite limit.

Since we have shown its convergence in probability to zero, this limit is zero.

7.4 Unbiased prescribed precision estimation for
multidimensional processes

Let us consider the model (7.1) under the condition that both the process X; and
the vector # are multidimensional but the dimension of unknown parameter vector 6

does not exceed the dimension of X;:
dimf=p<n=dimX, Vt>O0.

In this case one can construct unbiased sequential estimators for # with prescribed
mean-square error by using the special weight matrix W and stopping rules.
Assume that the matrices B" and ®"B"(®")" are positive definite dP x da"-a.e.,

and the matrices BY and ®9B9(P9)" are positive definite dP x da?-a.e.

124



We begin with the weighted LSE
R -1
o= | [ oty [ omwiena,
10,7 0,77
x[/“ ¢§WﬁdX§+l/ @?WﬁdXil. (7.8
10,77 0,77

Let the weight matrix W, = (W], W{) be such that
W (7)) =ci 1, CIWE(9) =cl1 (7.9)
tr [QFW] By ()] <cf, tr [DFWE B{W(®])] <cf (7.10)

where ¢ € P and ¢/ € O are positive functions. Equation (7.9) is satisfied for

Wi = e (By) "1 (@) (@) (By) 1 (®))) " @) (By) Y,

(7.11)
WY = c(B7) (@) (9F(B)H@1)) T e(BY)
Substituting these functions in inequalities (7.10) yields
\2 T =17\ 1 T
(e | (@7(BD (@) ] <,
()2t [(@p(B) (@) | <.
Let
T r T\— r -1 -1
G = {tr |:(q)t (Bf) l(q)t),) ]} )
L (712)

_ -1
o = {ur (@2 @) 7]
Conditions (7.9) and (7.10) enable us to invert the matrix in (7.8) and reduce the

problem of constructing a sequential estimator for the vector € to the scalar case.

For each h > 0 we introduce a stopping time 7, as

_ da’,
Th:mf{tZO:/ 81 —
o tr [(®5(Br) (1)) ]
daj,

+Aﬂﬁkﬁw@1@w>ﬂ>h} (7.13)
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and a random variable (3, with values in [0, 1], uniquely determined from the equation

/ da +/ dal,
10,74 LT [(CPZ(BQ)—l((I)Q)’)*l} 0,7n] £1 [((I)?(Bg)—l(q)g)/)fl}
Aar, N Atad,
r [(@,(Bp) (@) 7] e [(@n (B @)

The random variable 3} is F,,-measurable.

=h. (7.14)

+ Bn

On the basis of the estimator (7.8) with the weight matrix given by (7.11) and

(7.12), we define the sequential estimator for the vector 6 as

6*(h) :h‘ll / OTWTAXT + / DIWIAXY,
]OzTh[

[OuTh[

+ By (L W1 AX,, + 04 WIATX,) ]
—p! [/] ] STW! (Lo,7((8) + Brliny(s)) dX]
0,7

* /[om SIWY (Lo i(5) + Fuliny (s) dX§+]- (7.15)
where
Wy = {““ [(‘Pi(BI)’l(@I)’)_l} }_1 (B M (@) (01BN (@))) T @n(B))
Wi = {tr [((Pf(Bf)‘l(@?)’)‘l] }_1 (BY) (@7 (®(B)~(®Y)) @f(Bf)—(l, )
7.16

This estimator has the following properties.

Theorem 7.4.1 Let the matrices B" and ®"(B")~Y(®")’ be not degenerate dP x da”-

a.e., and B9, ®9(BI)"1(®9) be not degenerate dP x da?-a.e.; the integral

da’, da?,
/]o,t] tr [((I)g(B;“)—l(@g)q*l} + /[0715} " [(q)g(Bg)—l(q)g)/)*l] (7.17)
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be finite for 0 <t < oo a.s. and converging to +00 ast — +00 a.s.

Then, for each h > 0,

Th <00 a.S.,
Eq0*(h) =0,

Eq [|67(h) —6]* <h~",

where By denotes the average by the distribution Py of the process X with given

parameter 6.

Proof. Since the integral (7.17) tends to 400, as t — oo, the stopping time 7, is
finite a.s. for all h > 0.

from (7.1) and (7.15) we have
0" (h) = h~" [/w ]‘PZW§ (L0.r,((8) + Buliz,y(s)) Odag
Th
bW (L) + Bty 4) Bl + M
Th
where

Mrh—i- = /] ] (I)ZWST (1}07%[(8) + Bhl{‘rh}(s)) dmg
O,Th

+ / CI)gng (1[07%](8) + ﬁhl{Th}(S)) dmZ+.
[OrTh}

By (7.11)-(7.14), we get
0*(h) =0 +h"'M,,. (7.18)
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Since M € M3 (RP), then in view of (7.16),

loc

tr [((M},, M, ))1<ij<n]

- /] QTN BIWI @] (o () + Al 5)" ]
0,7
[ eI @] () + il ()" dal,
[OzTh]
_ / (Lorai(5) + Buln(5)” dat
o)t [(®5(By)~H(@)) ]
+f (Lorl(s) + Bl ()" dad,
ol tr [(@2(B9) (@)
</ (Lou1(8) + Brliry(s)) dag
~Jom) tr [(@5(By) (@) ]

+/ (Lo, ((8) + Brlyr,y(s)) daly
07]  tr [(@g(Bg)fl(q)g),)—l]

(7.19)

= h.

Hence, EgM,, = 0 and from (7.18) we obtain E¢0*(h) = 6.

Further from (7.18) and (7.19), it follows that
Ey [|67(h) = 0||* = h™*Eogtr [((M},, M],))1<ij<n] <h 7"

Th?

Example 7.4.1 Consider the model from Example 7.1.1. Then condition (7.17) be-

comes

da” da?,
: —+ : — | Bkds = Bkt,
Am tr [(®7(By)~1 (1)) ] Lt[ tr [(@2(3@7)*1(@2)/)—1} o

(7.20)
and it is finite for 0 < t < oo a.s. and converging to 400 as t — 400 a.s. Thus,

Theorem 7.4.1 holds.
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7.5 Construction of the two-step sequential proce-
dure in general case

In the case when the number of unknown parameters in model is arbitrary, the guar-
anteed estimator for # can also be constructed on the basis of the weighted LSE,

defined by (7.5). It is convenient to rewrite this estimate as

=47 | /} LI AX; /[ x| (7.21)
)t ,

where the information matrix A, is as in (7.7) and its inverse A; ' is assumed to exist.
In the sequel the following conditions are imposed on the regressors and on the
weight matrix W:
(A1) The regressors matrix-valued functions ®” € P and &9 € O, and such that

for allz >0
| waas [ jetdat, < oo (as)
10,] [0,¢]

(As) The weight matrix W is such that
WY2BWY2 < I, dP x da — a.e.

where [ is the identity matrix of size n X n.

(As) Both integrals in (7.21) are well defined if for all t > 0
/ tr[WL (V) max(1, Aas + Liaa,—0y)da;
10,¢]
+/ tr[P9(U9) | max(1, Atas)da?, < oo (a.s.)
[0,¢]

<A4) hmt_,oo >\mzn<At+> = +OO, (CL.S.)

(As) There exists 0, 0 < § < 1, such that
lim inf AN (A)/ 10 Mg (Ary) >0 (a.s.)
—00

min
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The procedure is constructed in two steps.

Step 1. Let (C});>1, (8j);>1 be two sequences of positive numbers such that

Citoo, S B <00, Y407 =

j>1 j>1

Here §, 0 < § < 1, is the same as in condition (Aj).
By virtue of condition (A4), for any given positive constant Cy we can define the

a.s. finite wide sense stopping time 71" as
T =inf{t > 0: A\pin(Aiy) > Co}, inf{0} = +oo. (7.22)

Next we introduce the sequence of wide sense stopping times 7, j > 1, as

7T 0)

szinf{tzT:cal(/ 197w daf + / ||wz<wz>'||da~z+)
[

+t7’/ WA (YT dal, +t7’/ WIA (V) dad, > Cj}, (7.23)
1T't]

(T.1]

and the sequence of estimators

Qj = Q(Tj) = Ai.l

Tj

/}0 L) /[ ‘] @§<W£>1/2dX§+] -

On the basis of these estimators we define the desired sequential estimators of the
unknown vector # by applying a special smoothing procedure.

Step 2. Let us define the estimator 0 as a weighted average of estimators 6, :

o(h) Lom
=) bi| > bt (7.24)
j=1 j=1

where h is a positive parameter; o(h) is the wide sense stopping time given by

J(h):inf<n21izn:bj>h),

j=1
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b; = B;/[Cjtr[AZL]).
Denote

N(h) = Tg(h).

The main result of this section is the following.

Theorem 7.5.1 Let the regressor matriz-valued functions (®", ®9), ®" € P and ®9 €
O in model (7.1) and the corresponding weight matrices (W", W9), W' € P, and
W9 € O satisfy conditions (A1) — (As). Then the sequential design (N (h),05) has the

following properties: for any h > 0,

N(h) <0 a.s.
By [|6; — 0> < h™' > B;(1+pC;h).
j=1

Proof. By condition (A4) we have T' < oo a.s. From the definition of 7; and Lemma
7.5.4 we have 7; < oo a.s. and 7; T 400, as j — oo. Therefore, the inequality
N(h) < oo is true provided that

D bj=+400 as. (7.25)

j>1
Let us verify this equality. From the definitions of b; and 7; it follows that

__ B Bj
CjtT[AT_jl-i-] B ij)‘ma:c(A;jl—i->

b
B
=—" A\nin(A,.
ij mm( 7j7+)
=B OO N (A ) JC)YP
)\6

_ o—
Zﬁjp 10]1/ ' min(ATj+)

—-191/5
X (g(T) + tr / WA (WY dal + tr / \Ing;j(\I/g)’dag+> ] ,
]TvTj] [TvTj]
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where

oty =it ([ s [ ona,).
10,7 [0, 7]

By making use of Lemma 7.5.4 we obtain

1/6
b; > Bip 7101/6 ! |:)\fnln(ATj+)/ (9<T) +Cln Amax(A‘err))] )

where C' > 0 is some constant. From this, the properties of ;, C; and condition (As)
we obtain (7.25).
Further, we have

Qj - 0 - A;jl_'_NTj_;'_,

where
Noo= [+ [ wsw) g,
10,4] [0,¢]
From this it follows that

16; = 01 = | A, 2 AL 2N,

’ 2

1/2

2
< HA_1/2 ‘ — Q. tr ALY,

where

QT]'+ — N7/'j+A7Tj1+NTj+' (726)

Taking into account the definition of b; and applying the Cauchy-Schwarz inequality

we obtain

-2

o(h) o(h) a(h)
16%(h) — 0|J* <Zb Zb 16, =011 | { D_b;
j=1
<h7! ij 16; = 60 < ") " b;Qr 4trAZY
j>1 j>1
=h"Y " BiQn+/C.
j>1
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Hence,

E|07(h) = 0> <h™' > BEQ./C).

j=1

From this and Lemma 7.5.5 we obtain the desired result. m
Example 7.5.1 Consider the model

Xy =0kt + 0% | (X, )ds+me,

10,¢]
where my is the same as in (7.3). This is a non-homogeneous Ornstein —Uhlenbeck
process (mean-reverting process in mathematical finance). In this example, we can
not apply results from Section 7.4 because the number of parameters is greater than
number of the observations X;. However, we can use the technique described in Section
7.5. We assume that the function f satisfies Lipschitz continuity condition for the
ezistence and uniqueness of the solution X; (see [15]).

Suppose that
foﬂ fQ(XS*)dS

lim inf )
t—o0

> 0, (7.27)
(X, )ds = O(t). (7.28)
10,4

Now, we check the assumptions of Theorem. .
Conditions (A1) and (Asz) are obviously satisfied, and (Az) holds with W[ = 1.

The process A; in this example has the following form

o kt o X )ds |
ji()ﬂg] f(Xs—)dS ji07t] fZ(XS_)dS

Thus,

)\maaz,min<At) =k [ f2(X5_>dS +1

10,¢]
2 2
+ \/< fA(Xso)ds — t) +4 ( f(XS_)dS) ]
10,t] 10,¢]
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Further, using (7.27)

AMAAozﬂltmﬂf%XSMs—(}wﬂu&>m§1//[]Mf%xsmS
+t+\/< o fAH(Xso) s—t)2+4<A)7t]f(Xs)ds)2]

§ 2h(1 — 1/8)
1
1t+ r—pxoe + \/(W TP )d) +4/t

— 0

ast — oo.

Again, using (7.27)

Amin(At) 2k(1 —1/t)

lim inf >

t—00 2
_t ot 4
L+ f]Ot f2 Xs—)ds + \/(1 f]O,t] fQ(XS*)d‘g) * f]o,t] FAH(Xs-)ds

>0,
and

)\max(At) - fZ(Xsf)dS +1
10,2]

~+¢(mﬂﬁ( >s—02+4(mﬂﬂxsw§2

< (X )ds +t+ (X )ds +t
10,2] 10,¢]

+2 X
10,4]

Thus, by (7.28) A\paz(As) =

Therefore,
hgn inf \ (Ap)/In Aoz (Ay) > li{n inf t‘;/ln(t) >0 (a.s.)
— 00 —0Q

man

for all 6, 0 < 9 < 1. Consequently, the implications of Theorem 7.5.1 hold.
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Note that the conditions (7.27) and (7.28) can be obtained, for instance, if the
function f is bounded, i.e. c¢; < f(x) < co, which is enough for most real-world

applications like modelling of financial assets or capital processes of firms.

7.5.1 Auxiliary results

Lemma 7.5.1 Let D be a p X p matrix and F be a p X p symmetric non-negative
definite non-zero matrix of real numbers. If the matrizc C = D + F' is non-singular

and rankF = r, then

tr[CT'F] =) [IC] = |C — Nesell]/|C,

i=1
where (\;) and (e;) are the eigenvalues and eigenvectors of matriz F' respectively. If,

besides, D 1is symmetric non-negative definite, then
tr[CT F] < r[|C| = [D|)/IC] <.

Lemma 7.5.2 Under assumptions (A1) and (As) the following inequalities are sat-

1sfied:
| A / d|Af] / d| A3, |
In— < 4+ a.s.
[Ar] = Jirg [As—| Sy [As]

If A, is a continuous matriz-valued process, then

lnﬂ:/ d| As| a.s.
Azl Jirg 1A

Proof. By applying change of variables formula to the process In|A;|, t > T, we

obtain
d| A3 d| AL |
inf =l sl + [ TS [ L
' a1 As—| Jpap 1A
’Asl AlAs‘) ‘Aer‘ A+‘As|
#3 (mitd o2 L 5 (el
T<s<t ’As*‘ |A5*’ T<s<t ’AS, ‘AS,
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Thus,

/ d| A3 / d| A%, | | 4|
+ =In
1Tt] |AS,] [T,t] ’As| ’AT’

+ 2

AL (14 B4)]
rte LA 4]

|
o 2 (%)

From here using the inequality In(1 + z) < z, > 0, we come to the desired result.

Lemma 7.5.3 Let the regressor matrices ®", ®9 in (7.1) and the weight matrices
W7 W9 satisfy conditions (A1), (As) and T be defined as in (7.22).
Then for anyt > T

- dlA
tr ( / (qxg)’Aglxy;‘dag) = / |~S| a.s., (7.29)
7.1 T | As]

A =Ap+ / (07 dal. (7.30)
17,4

where

Proof. First we verify that the integral in the left-hand side of equality is well-defined,

I

oy A w

that is, for all t > T,

(UTY AN | da® < 0o a.s. (7.31)

By the inequality
< (wyywr) e A
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we have

(V) A

I

dat < / 1071 tr A dal
1Tt]
< / N (A1)t (U)W da
|Tt]
<pA;L (Ar) / br (U
|Tt]

In view, of condition (Aj3), we obtain (7.31).

Equality (7.29) is equivalent to the one for the differentials:

Sl gy ((xp;)’ﬁ;%;) dat.

where [Ay]y is the (i, k)-th element of the matrix A, and the summation is taken over
all permutations (iy,...,%,) of numbers 1,...,p, and [iy,...,7,] denotes the num-
ber of inversions in a permutation (iy,...,%,). Since the matrix-valued process JZL is

continuous with bounded variation then by the Ito formula we obtain

H[Avt]il,l = Z ( H [Avt]ihl) d[gt}lkyk’

i=1 k=1 \I=1,l#k

and, hence,

By (7.30)
d[Aix = [V (¥})'],,, da§
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and therefore
p
d|Ay] =" |A"|da,
k=1

where A® is the determinant which is obtained from /Tt by replacing the k-th column
by the column-vector ([\I’;(\I’Dl]m ey [\III(\I/;“)’]M) . Decomposing the determinant

|ﬁ,§k)| by the elements of k-th column yields
P

=1

where (gt)lk is the algebraic adjoint for the element [ﬁt]lk of the matrix A,. Thus

p p
d| Ayl Z Z(At)ik: [0y (V)] day.
k=1 i=1
From here it follows that
d|1’4/ | T 1— 'S C
’A,j = tr <(\Ift)’At 1\11t> dat.

Lemma 7.5.4 Under assumptions (A1), (As) and (Ay),

tr/ (UTY AN da” + tr/ (W9) A1 W9da?, = O(In Apas(Ay)),
1T,t] [T,t]

t— o0 a.s., (7.32)
lim [tr/ (\Ifg)’Asl\Ilgdag—i—t'r’/ (\Ilg)’ASj\Ilgdang] =400 a.s., (7.33)
t=roo IT.1] [T

where f(t) = O(g(t)), t — oo, means that there exist to > T and 0 < C' < 0o such
that |f(t)] < Clg(t)| for all t > to.

Proof. We have
tr/ (\Ilg)’Agl\I/Zdag—l—tr/ (W) A1 W9dal, :tr/ (UT) AW dat
IT:4] [Tt] IT:4]
+r > (W) ATNUT A, (7.34)

T<s<t

3 (WAL A

T<s<t
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Let us introduce the process
A = AT+/ (07 dal.
IT.1]

This process is continuous and satisfies the inequality A, < A, which implies A; ! <

A~'. From this and Lemma 7.5.3 and 7.5.2 it follows that for all t > T,

tr / (UDY AN dat <tr / (U7 AN das
7.4

7]

_ / d|As|
T4 |As]

12 < I 1A (7.35)
|AT’ |AT|

Now we find the upper bound for the second term in the right-hand side of (7.34).

Denoting
At = AT + Z \PZ(\PZ)/ACLS

T<d<t

and applying Lemma 7.5.1, we obtain

tr Y (WY AT AG <tr Y (WI)A] WA,

T<d<t T<d<t
Sp Z HAs’ - |AS—H/‘AS|
T<s<t
[As| dx
oy [
T<ZS<t |As-| ¥
Al A A
gp/ — =pln— <pln—. (7.36)
|Ap| T ‘AT| ‘AT‘

Similarly, denoting

Ay =Ar+ Y WU Ata,

T<d<t
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and applying Lemma 7.5.1, we get

tr Y (WA WIAG, <tr Y (W) A WA,

T<d<t T<d<t

<p Y [A] = A/ 1A

T<d<t
|AS+‘ dl’
@3> [
T<da<t’Asl T
A dy 1Al | Ay
Sp/ =pln <pln—. (7.37)
Ap| X |Az| |Ar|

Substituting the estimates (7.35)-(7.37) in (7.34) yields

A
tr/ (U7 AN dal + tr/ (W9)Y A1 W9da?, <(2p+1)In A
17,4 [T,t] |AT|

<p(2p+1)In A

From this in view of condition (A4) we obtain (7.32).

Now we verify (7.33). The integrand in (7.33) can be estimated from below by

tr(Wy) A; 1] ZAmax((\Ilr)/A_l\IjT)
||‘1’TZ||

o =P
>CX 0 (As) II‘PZH

max

T 2 ' 2
>C ||| /trAs = C|WL)1"/Vs
where V, = jio,t] 107 ||? da” + f[%[ |W9|* dal, and C' is some positive constant.

tr(W9) AL WY > N0, (09) AL DY)

2hmin( A3 SUp ”H HH
Rt

maxr

>C [ ftrAs = C W4 Vi
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Hence,

lim [tr / (VLY A;'Wdal + tr / (\Ifﬁ)’AQj\Pgdang]

(Tt

/ |93 day / |3]° dat.
g Vs ri Vet

T g
zCth dv5+/ dv—*‘*}
t=o | irg Vs Tt Vet

Assume that (7.33) is not true. Then with positive probability

[ e
0, — .
1T00] Vs Too] Vst

> (' lim

t—o00

From here it follows that

and there exists 77 > T that for all ¢ > T}

r Vg
=>1/2, £ >1/2
Vi Viv
Thus,
Vi Vi
—>1/2, — >1/2.
Vi ™ / Vit /

By making use of these inequalities and Lemma 7.5.2 we obtain

+00 > lim {/ dv‘!—i—/ d‘/;ﬂ} > lim {/ dl@rl/;_+/ Vet VS}
t=oo | Jiry Vs i Vsr |~ 20 g Vs- Vs ma Vs Vet

r g
>271 lim U dv; +/ dv—s*] > 27! lim In Vi
t—o0 1T1,1] V;_ [Tt V; t—o0 VT1

Thus, with positive probability,

lim In A (A;) < lim Intr(A4;) = lim InV, < 4o00.
t—o00 t—o00

t—o00

This contradicts to the condition (A4). m
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Lemma 7.5.5 Under the assumptions (A1) — (As) the function Q(7;) in (7.26) sat-
isfies the inequality

EQTj SC] +pa ]217

where the sequence (C});>1 is the same as in (7.23).

Proof. Let us introduce the processes

Ny =(n;,....n}) = / (W) 2dml + / wI(WE) 2dm?,,
Zy =(N,, (U}, ..., (z]Ji;)]'), " (7.38)
F(Z) =N{A['N,,
where U} is the i-th column of the matrix A; '. Note that Z; is a (p+1)px 1-dimensional

semimartingale vector. In this notation we have
QTJ' = F(ZTJ)

Let us calculate the stochastic differential of the process F'(Z) by applying the

change of variables formula. The process F(Z;) can be written as
F(Z;) =NJ|U/, ..., UfIN;
=(N;U/}, ..., N;U)N,

P
_ 1778,
—E N.Uin,.
i=1

For the function F': R? — R!, d = p(p+ 1) and the semimartingale Z defined by

(7.39)
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(7.38), the Ito formula has the form

F(Z) =F(Zr) + /

IT,1]

(VuF(Z._),dNT) + / (VuF(Z.),dN?,)

(Tt

< [ Srz )
- [ Sz
(7.40)
1
+3 / [V V(2 VWD) P B V) ()] i),
Z ) - (VTLF<ZS—)7 AZS)]
T<s<t
> F(Z) — (V. F(Z,),A"Z,))]
T<s<t
where V,, = (Bm 7%)/, (u,v) = v'u is a dot product of vectors u, v.
By (7.39) we obtain
N/ ) N z(szk
ank Z S ViU ; + Z U;
= Z un} + NJUY,
where U/ = (ui', ..., u/)". Therefore,
VaF(Z) = (u)',.. ulYni+ (NUL, ..., NJUPY
i=1
o (7.41)
= Uinj+ AN, = 241,
i=1
Further, we have
p
VaF(Z) = [VuNU]n; Z N;6%*ni = Nynk: (7.42)
i=1
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2
V..V, F = o°F 4 :
nrond )\ o j<p

O°F 0 OF(Z)
) _ [Zu;anNgUf

onkoni _ond  onk

ki
— § uzk(sz] _ 2ut] .

Thus,
VoV F =247 (7.43)
Combining (7.40)-(7.43), it follows that
F(Z) = F(Zr) + 20y + ) + I} + IF + I} + I + I},
where

((Aso) " Noo, WL(WD)V2dmY)

/]T
= [ ()N v e,
/,

I'={ N,_d(A)'N,_
it
]t2 = Nsd(Ag+)_1Ns
(Tt]
It3 —tr A 1\Ijr(W )1/2BC(WT)1/2<\I/T‘> d< C>S
T4

It =3 [F(Z) = F(Z,) = 2N|_A'AN, — N__AA;'N, ]

T<s<t

]t5 - Z [F<ZS+) - F(Z,) - 2NS'AS_1A+NS _ N;AJFAS_INS}

T<s<t

In order to study I} in we need to find the differential for (A7)~'. We have

d [A7(A))7] = [dATJ(A7) ™" + Af_d(A]) ™ =0

Y

Hence,

d(A}) ™ = —(AL) M dAT(AT) ™ = — (AL ) ()| (A} )~ day.
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Consequently,

Il = N, d(A7)"'N,_

1T't]

=— [ N (AL) MWW )(AL) T N, day (7.44)
7.4

+ ) NLA(A)TIN,_.

T<s<t

The matrix (A7)~! is non-increasing because the matrix A” is non-decreasing. There-
S S

fore, the matrix A(A7)~! <0, and right-hand side of (7.44) is non-positive. Thus,
Itl <0 as.foralt>T.

Since AY is a pure-jump process and also non-increasing, we have
t )

I? = Nd(AZ,)7'N, =) NIA(AL) TN, <0,

[Tt] [T,t]

Consider the term I;!. We have

I}= > [NIAJ'N,— N_AJ'N,_ — 2N _AJ'AN, — N|_AA;'N,_]

T<s<t
= > [ANAJIAN,] + 20,
T<s<t
where
vi= > [N_AAJ'AN,]
T<s<t
Similarly,

=Y [ATNAJATN,| + 207,
T<s<t
vl = > [NATATIATN,].

T<s<t
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From the obtained estimates for I} — I7, it follows that
F(Z) S F(Zp) + D+ 2(uy + pf) + 2] +v)) + 6] + 6/ + Dy + Df,  (7.45)
where

i = Y [AN/A'AN,] - D},

T<s<t
=Y [ATNIAZIATN] - D,
T<s<t

07 and d7 are local optional martingales, and D] and Dj are, respectively, the in-
creasing predictable and optional processes in the Doob-Meyer decomposition of the

submartingales >, , [ANJATTAN] and Y, , [ATN/AZIATN,]:
Dy = [ el A ) B,
1Tt]
= [ el B Ay ).
17,]
DE = [ (W) A W) P B )
[Tt
= [ A e B ) i)
[Tt
The process D] is well-defined, because by conditions (As) and (As) we have
Dy < [ A v ).
1Tt]
<[ wia vy
1Tt
<trlay) [ ey da;
17,t]
§tr[A;1]/ trvt (U dal, < oo
|7¢]

for all ¢ > T. The same holds for the process Dy.
Let us verify that the processes p/,17, j = r,g are locally square intagrable

optional martingales. Their predictable quadratic variations are given by the formulae
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(Whhe= [ NL_(Ae) " WUW) Y2 BUW) 2 (0L) (As) ™' Ny—da,

7.

(W)= | NU(A) T WUWH2BIW) 2 (W) (As) ™ Noda,,
]

We= [ NLAA)TWLWI)Y2BIWD) Y2 (WD) A(A) T N-d(m?)s,
7.1

(W= [ NIAY(A)TOIUWE) PBIWIYA (W) AT (A) 7 Nd(m?)ss.
Tl

By condition (Ay) and the Cauchy-Schwartz inequality,

e < | NA(A) (T A(A) TN day

IT't]

~ [ o) ey
1Tt]
—-1/2 2 —1/2q,7112 7.7
< [ Aty P Ay e
1Tt]
<A [N Y d < 00 as
(T
for all ¢ > T due to condition (A3) and left-continuity of Ny and, similarly,

(e < | NAT(A) (W) AT(A,) " Nidal,
Tt

:/ (NIA* (A" 09)2da?,
[Tt
< [ At At e e,
[T,t]
ﬂmﬁW/’wmmwmwwma
[T,t]

for all t > T. By Doob’s inequality, conditions (As) and (A3)

E sup |[N[* <4E|N,|”
T<s<t

—iE [ trwi(ury )i+ [ rwaundel,
10,¢] [0,¢]

<.
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Therefore, by (As3)
[ IR ey, < oo as
(Tt

In a similar way one can verify that (u/); < co, j =r,g, a.s. for all t > T.

Since the process Dy + (u"); + (V") + DY + (u9); + (19), is strongly predictable,
there exists a sequence of stopping times oy, 0, T 00 a.s. as k — 0o, such that for any
k the stopped process D, + (") op + (V7)o + Doy + (1) op + (19)o7 is bounded (see
Lemma 1.7, [32]).

Then from (7.45) and condition (A2) we obtain, for k& > 0,

EF(Z&/\&Z/W%) <E

F(Zr)+ [ AW B V) () ),
7]
b [ A B ) ) ),

IT.1]
+f tr[Asi‘I’é’(Wf)me(Wf)m(‘lfé’)’]d<mg>s+]

[Tt]

<E

F(Zg) + tr / AT (U Y d(me),

1T

4 [ Ay gm),
IT4)

+f tr[A;iwz<wz>']d<mg>s+].
(Tt]

Letting ¢t = 7;, taking the limit as k¥ — oo and applying the monotone convergence

theorem, we obtain

EQ, =EN AZ'N,

<E

tr AN (9T dal” +/ tr[A;j\Ifg’(\IJg)’]dang )

[TvTj [

NjAZ Ny + /

]TvT]']
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Now we can estimate EQ.,. We have

EQ,, <E|N;A7'Nr + / tr(UY AN da’ + tr(U0) AT Al

}TvTj[

- tr[(\vg)'A;\Ifszaa].
[TvTj[

(7.46)

By the definition of wide sense stopping time 7" in (7.22), condition (Ay) and orthog-

onality of NJ. and N,

EN}, A7 Ny <EA s (A7 ) Nj Ny

=E\ !

min

(A7) | Nz ||”

<Cq 'Etr [(N7)'Np + (Np)' N + (N7)'Np + (N7) N{)]

;B [ [P+ [ H\I'§H2da§+] |
10,7 [0,

Combining this inequality and (7.46) yields

ot ([ was+ [ jeac,)
10,7 [0, 7]

/ tr(V0)Y AU dal + tr(W ) AT Aal
]T,T]-[ J J J J

EQT]' SE

+ [ iy,
[TvTj[
<C;+E [tr(\lfij)’A;I‘PijAa;] : (7.47)
By Lemma 7.5.1,

AN (U ) A, <ol Ar | — Ay, — W (W7 YA [1/[[Ar

<r <p,

where r is the rank of the matrix W’ (¥"). By substituting this estimate in (7.47),

we come to the assertion of the Lemma. m
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Chapter 8

Conclusion

In this thesis we obtained several new results advancing the theory of optional pro-
cesses and successfully applied this new theory in the areas such as mathematical
finance, risk theory, and statistics. In particular, the following results are obtained:

- different versions of the comparison theorem and also a uniqueness theorem for
a general class of optional stochastic differential equations were stated and proved.
Furthermore, these results were applied to the pricing of financial derivatives.

- the so-called Krylov estimates for distributions of stochastic integrals using Lg4-
norm of a measurable function were generalized for optional semimartingales. Corre-
sponding applications of this result were illustrated.

- a very general optional semimartingale risk model for the capital process of a
company was introduced and exhaustively investigated. A general approach to the
calculation of ruin probabilities of such models was shown and supported by diverse
examples.

- an optional semimartingale regression model with a one-dimensional unknown
parameter was introduced. The strong consistency of structural least squares esti-
mates and the property of fixed accuracy of sequential least squares estimates were

proved.
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- a general optional semimartingale regression model with a multi-dimensional un-
known parameter was introduced. The strong consistency of structural least squares
estimates was proved. The property of fixed accuracy of sequential least squares es-
timates was proved for the multivariate optional regression models with the number
of parameters less than or equal to the dimension of the observation process and for

the general case with an arbitrary number of parameters.
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