
IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 24, NO. 2, APRIL 2009 939

Interfacing Techniques for Electromagnetic Field
and Circuit Simulation Programs

IEEE Task Force on Interfacing Techniques for Simulation Tools

Babak Asghari, Venkata Dinavahi, Michel Rioual, Juan A. Martinez, and Reza Iravani

Abstract—Interfacing of disparate simulation programs is
increasingly undertaken to gain a deeper understanding of their
functionality and exploit their merits for modeling complex sys-
tems. In this paper, techniques for interfacing field and circuit
equations of low-frequency electromagnetic apparatus are re-
viewed, analyzed, and classified into two main categories of direct
and indirect methods according to the coupling method. Each
category includes a vast array of techniques employing different
methods for circuit modeling. The field analysis is restricted to
2-D finite-element method, which is a widely used numerical
technique for modeling magnetic behavior of power apparatus.
The main features and problems associated with each technique
are summarized. Methods for coupling of mechanical equations
are addressed in a separate section. A comprehensive list of refer-
ences is also included at the end of this paper to provide further
information to the readers.

Index Terms—Circuit simulation, electromagnetic (EM) fields,
finite-element methods (FEMs), interfacing.

I. INTRODUCTION

O VER the years, circuit simulation of electrical systems
has evolved to a mature and well-established field of

study in electrical engineering. Several techniques, such as the
loop current method, nodal analysis, modified nodal analysis
(MNA), and state-variable approach [1] are widely used in dif-
ferent circuit simulators, including electromagnetic transients
(EMT)-type programs (Alternative Transients Program (ATP),
PSCAD/EMTDC, EMTP-RV, etc.), the SPICE family pro-
grams, and the MATLAB/SIMULINK. All of these simulators
are able to solve circuit equations for lumped and distributed
elements in steady-state and transient regimes, handle the
nonlinear behavior of circuit elements, and employ different
techniques to discretize the temporal derivatives during the
transient simulation.
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The field analysis of EM apparatus, with the aid of numer-
ical techniques, has been used as the most accurate and de-
tailed method of predicting the magnetic behavior of such sys-
tems under various operating conditions. Several effects, such
as space harmonics, slotting, and saturation, which are usually
present in different types of electric machines, transformers,
and other magnetic apparatus could be readily included in the
field equations. The finite-element method (FEM) is usually the
method of choice for modeling low-frequency phenomena of
power apparatus because of its flexibility and accuracy.

While one of the main source terms in the FEM equations
is the winding currents, EM apparatus are usually connected to
linear and nonlinear voltage sources [2]. Thus, to have a precise
simulation of the system, one needs to solve the FEM equations
in conjunction with the circuit equations relating the voltages
and currents. The coupling between field and circuit equations
becomes more prominent when neither currents nor voltages at
the output terminals of the apparatus are known a priori. This
usually occurs when the apparatus is connected to a power-elec-
tronic converter and affects the behavior of the circuit (switching
states) to a great extent [3]. Although the 3-D FEM is more ac-
curate in modeling the end region of EM devices, 2-D FEM is
still the method of choice when the coupling between the field
and circuit equations is desired. This is mainly due to the com-
plexity of 3-D FEM.

This paper provides an overview of different techniques for
coupling 2-D FEM equations with external circuit equations of
a power apparatus at low frequencies (up to a few kilohertz).
The main applications of these techniques include simulation
of electrical drives, transformers, actuators, and individual con-
ductors connected to circuit elements, and the interaction phe-
nomena between rotating machines and the network (e.g., SSR
and fault studies). A significant amount of work has been ac-
complished in this area, which usually groups into one of the
two broad categories of direct or indirect methods. In direct
methods, FEM equations and circuit equations of a system are
combined and solved simultaneously. In indirect methods, the
FEM-based part is handled as a separate subsystem which com-
municates with the circuit model through coupling coefficients.
In the literature [4]–[6], the terms “eddy current” method and
“coupled circuit” method are used interchangeably for “direct”
and “indirect” methods respectively, especially for the simula-
tion of electrical drives.

This paper is organized as follows: Section II provides a brief
overview of the EM equations and the FEM for low-frequency
EM transients. Sections III and IV discuss different direct and
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indirect methods with their subcategories available for coupled
analysis. A comparison between direct and indirect methods is
provided in Section V, and the technical challenges encountered
in coupled field-circuit simulations are discussed in Section VI.
Section VII presents the coupling approach for including me-
chanical equations, and Section VIII briefly addresses the time
discretization techniques for coupled problems. Conclusions ap-
pear in Section IX.

II. FINITE-ELEMENT MODEL OF EM APPARATUS

A 2-D quasi-static magnetic model is described by the
Maxwell’s equation as

(1)

where is the magnetic vector potential, is the reluctivity,
is the current density, and and are the induction terms
corresponding to the permanent magnets, respectively. It is as-
sumed that and have only components in the direction.
Two types of conductors are usually distinguished in the litera-
ture:

1) Stranded (thin, fine wire) conductors which are made of
thin separate filaments. In this type of conductor, the skin
effect and induced eddy currents are assumed negligible,
resulting in a constant current density as

(2)

where is the current of a single filament, is the number
of filaments, and denotes the region occupied by the fil-
aments. The relationship between the potential difference
across a stranded conductor and the conductor current is

(3)

where is the axial length of each filament and is the
dc resistance

(4)

2) Solid (thick, massive) conductors which are conductors
with a relatively large surface area. This type of conductor
can exhibit significant skin effect and the relationship be-
tween and total current cannot be calculated in ad-
vance. Instead, according to the Ohm’s law, the following
relation is valid for the surface of the solid conductors:

(5)

where is the electrical conductivity, is the voltage
across the solid bar, and is the length of the solid con-
ductor. The relationship between the voltage across a solid
conductor and the current through it can be written as

(6)

Fig. 1. (a) Stranded conductor. (b) Solid conductor.

where denotes the region occupied by the solid con-
ductor and is the dc resistance

(7)

Fig. 1 shows cross sections of a stranded and a solid con-
ductor, respectively. In the regions, such as air gap and iron core,
when eddy current is neglected, the right-hand side of (1) is zero.

Applying the Galerkin method [7] to (1), (3) and (6), the fol-
lowing set of matrix equations is obtained:

(8)

(9)

(10)

where , , , , and are vectors of the magnetic vector
potential at the nodes, the currents, and voltages of stranded con-
ductors, and the currents and voltages of the solid conductors,
respectively. is the matrix of dc resistance of the thin con-
ductors and is the matrix of the end-windings inductances.
is a diagonal matrix containing the dc resistances of thick con-
ductors. External series resistance and inductance can also be
included in , , and . Matrices , , , , , , and
are obtained by assembling elemental matrices according to the
FEM. Each elemental matrix includes the geometrical informa-
tion and material properties of the corresponding element inside
the mesh region. Further details for an application of the FEM
and the detailed expressions for the elements of the matrices can
be found in [7].

It should be noted that (8) represents the magnetic field, and
(9) and (10) act as the coupling equations. The next two sections
focus on different methods for describing the circuit equations
and solving the coupled system of equations using direct and
indirect methods, respectively.

III. DIRECT METHODS

A. Coupling Based on Simple Circuit Equations

Based on (8)–(10), if two out of four vectors , , , and
are known, the equations comprise a case of coupled mag-

netic fields, and circuit equations and can be solved without any
need for including extra equations. Indeed, the field (8) can be
solved independently if both currents of stranded conductors
and voltages of the solid conductors are known. However, in
some applications, it is necessary to solve the coupled system of
equations together. This coupling approach is especially useful
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when EM apparatus are connected to independent voltage/cur-
rent sources, directly or through series external RLC elements.

If there is no solid conductor in the finite-element region or
when the solid conductors are assumed to be shorted ,
the system of coupled equations will reduce to (8) and (10).
This set of reduced equations is used in [8] for the simulation
of a capacitor motor when the main and auxiliary windings are
connected to voltage sources in [9] for the simulation of a syn-
chronous generator under load and in [10] for analyzing a fast
acting pulse width a modulated (PWM) solenoid actuator. Ref-
erence [2] simplifies the coupled system further by substituting
the vector of the winding currents , from (10) into (8). The
field equation is then solved for the analysis of an induction
machine (IM), with a smooth solid-iron rotor. Each steady-state
operating point is calculated as the asymptotic solution of the
EM-field equation for a fixed speed. The analysis of a saturated
coil fed by a voltage source through a diode is studied in [3].
The coil is modeled as a stranded conductor and the saturated
core is represented as a solid conductor with short-circuit paths

. An extra unknown voltage due to the nonlinear
voltage–current characteristic of the diode is also introduced in
the equations.

The coupling based on simple circuit equations is also used
in some applications where the finite-element region consists of
only solid conductors. In this case, only (8) and (9) have to be
considered to solve the coupled problem. This formulation is
used in [11] for the analysis of an IM, where the stator wind-
ings and rotor bars are treated as solid conductors. Reference
[12] investigates a special case of solid conductors supplied by
current sources. The coupled system is formulated in terms of
the unknown vectors and the electric scalar potential gradient
which is defined as

(11)

A general coupled problem based on simple circuit equations
is categorized into four different classes according to the pres-
ence or absence of eddy currents and the type of supply (voltage
or current) in [13] and [14]. The coupling equations are back-
substituted in the field equations so that the unknown vector in
the final system of equations for all classes is only .

When an EM apparatus is connected to a power-electronic
converter, it is still possible to use the coupling based on simple
circuit equations if the switching sequence of the converter can
be determined in advance. This approach is used in [15] for the
simulation of permanent-magnet synchronous machines fed by
current inverters. The stator voltage (10) is modified in each time
step according to the state of the inverter. This is accomplished
by changing the equivalent resistance of the switches (sequen-
tial method). Constant speed operation is assumed so that the
switching sequence of the inverter is determined before the be-
ginning of the simulation. A similar approach is used in [16] for
the analysis of a permanent-magnet brushless dc motor drive,
in [17] for a switched reluctance motor drive, and in [18] for a
linear induction motor drive.

This method can only be applied to relatively simple circuits
since all the circuit components have to be connected to a partic-
ular FEM-based model. To derive a set of coupled equations for

Fig. 2. System of three busbars in a rectangular domain studied in [20] and
[21] based on the loop current method for coupling.

the arbitrary connection of EM apparatus and circuit elements,
a more general method for circuit analysis should be adopted.
The following sections discuss three popular methods of circuit
analysis for coupled field-circuit systems.

B. Coupling Based on the Loop (Mesh) Current Method

In this type of analysis, a system of loops and fictitious
loop currents are selected for the circuit. Currents in all branches
can be described as the summation of a few loop currents with
appropriate signs. The relationship between the currents in the
EM apparatus and loop currents can be written as

(12)

where is a rectangular matrix with a few nonzero elements of
1 or 1 in each row. The equation is used to replace current

vectors and in (8)–(10) with the loop current vector .
The Kirchhoff’s voltage law is written for each loop as

(13)

where , , , and are vectors of voltage sources, re-
sistive, inductive, and capacitive voltage drops in each loop, re-
spectively. is the vector of voltages across the EM ap-
paratus in each loop. This will provide an adequate number of
equations to solve the coupled field-circuit system in terms of
unknowns , , , and .

This method is used in [19] for the analysis of an IM con-
nected to a voltage source, where the field equations are solved
in the rotating reference frame of the rotor. The loop current
method is also used in [20] for the transient study of solid con-
ductors connected to external circuits. Stranded conductors can
also be included without external circuit connections. All of
the given voltage sources and voltages across capacitors in the
loops are placed in the right-hand side of loop equations. Other
methods (e.g., eliminating the loop currents) for solving the
equations are also discussed in [20]. The same method is also
addressed in [21] in addition to a comprehensive literature re-
view of previous work in this area. Fig. 2 shows a system of
three busbars in a rectangular domain which is studied as a nu-
merical example in [21].

In [22], the direct coupling of field-circuit equations for the
steady-state sinusoidal solution, based on the loop analysis, is
described for solid and stranded conductors. The commercial
software FLUX2D is used to implement the formulation for an
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IM in a locked rotor condition. A similar method for the axisym-
metric and transient conditions is discussed in [23].

Reference [24] presents a method for the direct coupling of
field-circuit equations for motor drives and semiconductor con-
verters. Loop currents and the modified magnetic vector poten-
tial are used as the unknowns in the equations. In this
paper, the volt-ampere characteristics of semiconductors are ap-
proximated by piecewise linear functions to reduce the compu-
tational time. Numerical results include the transients in a per-
manent-magnet synchronous motor drive.

In [25], direct coupling of field and circuit equations (2-D
and 3-D) based on the tree/cotree algorithm and loop analysis
is presented. The tree/cotree algorithm can be used to derive
the circuit equations in a systematic fashion. One advantage of
the method is that the circuit equations are first solved sepa-
rately to predict the state of nonlinear elements (switches) for
the next time step. Thus, the coupled system can be simulated
with a relatively large time step with adequate accuracy and re-
duced computation time. Numerical examples include a brush-
less dc motor, a PM synchronous motor fed by an ac–dc–ac
PWM inverter, and a three-phase power transformer with a rec-
tifier circuit.

1) Application of the Loop Current Method for Modeling the
Rotor Cage Bars: In a squirrel cage IM, the rotor cage bars are
solid conductors which are connected together by means of end
rings. Every portion of the end ring between two bars could be
considered to be an external circuit consisting of a series resis-
tance and inductance. Damper cage bars in synchronous ma-
chines have the same configuration. Thus, to have a consistent
set of equations, circuit loop equations of the rotor network are
usually added to the coupled set of (8)–(10). in (9) is also
substituted by its equivalent in terms of the loop currents and
then all of the equations are solved together. Fig. 3 depicts a
portion of the rotor cage bars network for a squirrel cage induc-
tion motor in which loop currents and voltages across the bars
are considered as the independent variables of the rotor network.

Loop equations of the rotor bars are used in [26] and [27]
for coupled analysis of a shaded pole motor and an IM, respec-
tively. This method has been developed further in [28] and [29]
for coupled analysis of skewed-rotor IM using the multislice fi-
nite-element model. A multislice model is also used in [30] for
the simulation of a brushless dc motor including a control loop.
In this paper, the permanent magnet (PM) is represented as a
squirrel cage to predict the effect of eddy current loss inside
the PM. The impressed terminal voltages of the motor are de-
termined by the controller. In the control loop simulation, the
inputs are the speed command or the current reference, and the
outputs are the stator phase voltages.

In the technical literature, loop equations are not directly
added to the set of coupled equations. Instead, they are used
to relate the current and voltage of each bar in the network.
These relations are then back-substituted in (9) to eliminate
one of the unknown vectors or . This method is used in
[31] for a coupled model of a squirrel cage IM under PWM
supply conditions. Equation (9) is modified to eliminate and
then all three sets of equations are solved simultaneously. It is
assumed that the applied PWM voltages to the stator windings

Fig. 3. Portion of the rotor cage bars network for a squirrel cage induction
motor.

are known. A similar approach has been used in [32] and [33]
for steady-state and transient analysis of an IM.

The direct method for coupling field-circuit equations of a
skewed rotor IM is described in [34], where loop equations of
the rotor bars are used to eliminate from (9). The same ap-
proach is used in [35] for PWM inverter-fed ac motor drives. It is
also assumed that the output voltages of the inverter are known.

Modeling the rotor cage bars network as a macroelement in-
side FLUX2D software is described in [36] for coupled analysis
of an IM. In [37], direct coupling of the field, circuit, and motion
equations of a cage IM are discussed. The rotor circuit equations
are simplified by assuming the effect of end-ring resistance and
inductance in series with each bar, and then shorted at both ends.

C. Coupling Based on the Nodal or Modified Nodal Approach
(MNA)

Consider a circuit with nodes. In nodal analysis, nodes
are selected as independent nodes and their voltages ,
with respect to the reference node, are deemed as unknowns to
be determined.

To translate a circuit topology into equations, Kirchhoff’s
current law is applied to all nodes. This results in a set
of matrix equations

(14)

In the steady state, the admittance matrix and current
source vector can be constructed by a simple electric circuit
inspection. The same algorithm is used for the transients study
by expressing all inductances and capacitances of the circuit
as equivalent conductances in the discrete-time domain. When
voltage sources are present in the circuit, their currents are also
assumed as extra unknowns and the equations expressing the
voltage drops are added to the nodal equations. This method,
which avoids the necessity of any source transformation, is
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Fig. 4. Electric circuit and finite-element mesh of a switched reluctance motor
analyzed in [39], based on the nodal approach for coupling.

called modified nodal analysis (MNA) and is the basis of many
circuit simulators, such as SPICE.

To couple nodal equations with field equations, the voltages
across the EM apparatus are related to node voltages by the aid
of the transformation matrix

(15)

where is a rectangular matrix with a few nonzero elements of
1 or 1 in each row. Using (15), and in (8)–(10) are

replaced by . Also, the unknown vectors and are
placed in the right-hand side of nodal equations by the aid of
the transformation matrix

(16)

Then, (8)–(10) and (16) can be solved simultaneously to ob-
tain the unknowns , , and in the coupled system
of equations.

Reference [38] presents a direct coupling method where cir-
cuit equations are included in terms of the admittance matrix for
a squirrel cage alternator. This approach simplifies the equations
so that the final equations to be solved only include as the un-
known.

Transient analysis of coupled systems based on the nodal ap-
proach is described in [39] where a symmetrical matrix equa-
tion is obtained and solved by a step-by-step integration tech-
nique. Reported test cases include a switched reluctance motor
(SRM) and a skewed brushless dc motor with a squirrel cage
in the rotor. Fig. 4 shows the inverter circuit and the finite-ele-
ment mesh of the analyzed SRM where nodal voltages, the nodal
values of magnetic vector potential, and currents inside the fi-
nite-element region are adopted as the unknowns.

In [40], the direct coupling approach based on MNA for elec-
tric circuit simulation is discussed. The method is applicable to
2-D and 3-D FEM and two new voltage-source-type circuit ele-
ments have been developed for magnetic-circuit coupling. The
only disadvantage of the approach is the loss of matrix sym-
metry due to the nature of MNA. The application of the MNA
for direct coupling of linear systems and solid conductors is also
presented in [41] and [42]. The same method as that of [41] is
used in [43] for nonlinear magnetodynamic phenomena, consid-
ering the existence of stranded conductors.

A general system of coupled equations for the nodal and the
loop current methods is developed in [44]. When the nodal ap-
proach is used, an extra set of unknowns for stranded conductors

is introduced to make the final coefficient matrix symmetric. For
the loop analysis, an extra set of unknowns for solid conductors
is added to the equations to preserve the symmetry.

D. Coupling Based on the State-Space (SS) Approach

The state-space approach is another method to construct dy-
namic equations of an electric circuit. Independent capacitor
voltages and inductor currents are commonly assumed as the
state variables of the system. The SS equations are written in a
matrix form as

(17)

where is the state variable vector and is the source vector, in-
cluding independent voltage and current sources. The SS equa-
tions can be systematically obtained using the graph theory and
Welsh’s algorithm [45]. Also, any output vector of variables
of the electric circuit can be expressed in terms of the state vari-
ables and the vector of sources.

Coupling of the SS and the field equations is usually achieved
by considering the current vector in the EM apparatus as a
source term in the SS equations, as

(18)

The voltages at the terminals of EM apparatus can be written
as

(19)

where matrices , , , , , and are dependent on
the circuit topology and can be obtained by network analysis
methods [7].

Since the vector of voltages across stranded conductors
is not an explicit source vector in the field equations, it can be
omitted from the coupled equations by substituting in (10)
according to (19), and deducing the coupled equations based on
(8)–(10), (18) and (19).

The aforementioned approach is used in [46] for the direct
coupling of field and circuit equations of electrical machines,
taking the external circuit (voltage or current converter) into
account and the eddy currents in solid conductive parts. Only
stranded conductors are assumed to be connected to the external
circuit. Reference [47] simplifies the coupled equations based
on the SS approach by assuming that the rings are all ideal short
circuits for the case of a single phase IM. Thus, variables related
to the rotor bars (solid conductors) are all eliminated from the
coupled equations.

Reference [48] describes a method for direct coupling of field
and circuit simulations in 2-D and 3-D structures. Both of the
loop currents and the SS approaches are discussed for the circuit
analysis.

A more systematic approach to develop the coupling equa-
tions for the case of a converter connected to an EM apparatus
is presented in [49]. The SS equations are built by using the
tree/cotree approach and the Welsh algorithm and, as an ex-
ample, a flyback converter equipped with a snubber and a pot
core transformer is simulated. This method is further developed
to include the control loop in [50] and [51]. The same coupling
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Fig. 5. PM generator feeding a flyback converter analyzed in [56], based on
the SS approach for coupling.

method is also used in [52] and [53] where the inclusion of the
EM device movement in the resolution of field- and circuit-cou-
pled problem is also addressed.

Reference [54] describes an approach to develop the SS equa-
tions of a coupled problem using the signal flow graph (SFG).
The SFG is a weighted and directed graph representing a system
of equations. Only the steady-state condition is discussed in this
paper. The method retains matrix symmetry by multiplying the
equations by specific coefficients. Reference [55] discusses dif-
ferent methods to solve the system of coupled equations ob-
tained in [54]. Automatic calculation of the coupled equation
with the aid of the graph theory and the SS approach is also
addressed in [56]. The numerical example includes a PM gen-
erator feeding a flyback converter, as shown in Fig. 5 where the
indicated capacitor voltages and inductor currents are taken as
the state variables for the circuit equations.

An alternative formulation of the coupled problem in terms
of the SS equations is presented in [57]. This method considers
EM apparatus as voltage sources in the SS equations of the cir-
cuit. Thus, the vector is added to the right-hand side of
(18) instead of . Also, the positions of and are
interchanged in (19). The merit of this approach is that the cou-
pled system can be simplified to include only and as the
independent unknowns. The currents and voltage drops of the
EM apparatus are calculated subsequently by means of the two
output equations.

The SS approach is also used in [58] with special attention
paid to polyphase structures connected to the static converters. It
is shown that stranded conductors should always be considered
as links to ensure the necessary number of linearly independent
equations in the SS model. In situations where this is not pos-
sible, placing a large resistor in parallel with the EM apparatus
to solve the problem has been proposed.

E. Comparison Between Different Direct Methods

All three circuit-analysis methods mentioned before have
been used successfully in coupled field-circuit problems. How-
ever, implementing the loop current method in the existing
finite-element codes is rather difficult compared to the MNA
[40]. Furthermore, in a circuit with a large number of branches
and complicated topology, the MNA provides a more system-
atic process to build the circuit equations. In [44], using the
loop current method is proposed if only stranded conductors

are modeled by the finite-element approach, while the nodal
method is proposed if there are only solid conductors in the
finite-element region.

Two difficulties associated with the inclusion of voltage
sources and stranded conductors in MNA and solid conductors
in the loop current analysis are addressed in [54]. It is concluded
that the best approach of circuit coupling is a description of
circuit equations in terms of the unknown currents and un-
known voltages (SS approach). Both the nodal and loop current
equations can be obtained from the SS equations by eliminating
a specific set of unknowns [55].

The SS approach usually provides a more convenient way
to handle all types of connections between EM apparatus and
circuit elements. However, choosing the type of circuit analysis
in a direct coupling method is still a matter of preference.

IV. INDIRECT METHODS

In indirect methods, circuit and field equations of the cou-
pled system are maintained as different subsystems and solved
separately. To do this, the coupling coefficients should be ex-
changed back and forth between the two subsystems. The indi-
rect methods can be divided into two subcategories according
to the type of the coupling coefficients: 1) the current output ap-
proach and 2) the circuit parameter approach.

A. Coupling Based on the Current Output Approach

In this approach, (8)–(10) are considered as a single sub-
system, representing the FEM-based subsystem. Assuming only
stranded conductors are connected to the external circuit (which
is true for most of the practical cases in electrical machines
and other EM apparatus), the inputs to the FEM-based sub-
system are terminal voltages and the outputs are currents
of the stranded conductors . Thus, for the external circuit,
the FEM-based subsystem acts as a voltage-controlled current
source. Additional outputs, such as flux linkages, solid conduc-
tors currents, and torque (for electrical machines) can also be
calculated inside the FEM-based subsystem. It can be shown
that if voltages at the terminals of EM apparatus are known, the
current output approach is mathematically equivalent to direct
coupling based on simple circuit equations. Fig. 6 shows a block
diagram of an indirectly coupled system based on the current
output approach.

The current output approach is proposed in [59], where
the FEM-based subsystem for an IM is embedded inside
a MATLAB/SIMULINK S-function. The inputs to the
FEM-based block are stator winding voltages and the out-
puts are phase currents, flux linkages, and EM torque. The
FEM-based subsystem is executed with a time step that is larger
than the SIMULINK time step. The connection between the
rotor cage bars is modeled with an impedance network inside
the FEM-based subsystem. The same method is also discussed
in [60]. A data-exchange scheme between a FEM-based pro-
gram (FCSMECK) and a system simulator (SIMULINK) for
the current output approach is presented in [61].

B. Coupling Based on the Circuit Parameter Approach

Another approach for indirect coupling of field and circuit
equations is to define the coupling coefficients in terms of the
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Fig. 6. Schematic of an indirectly coupled field-circuit system based on the
current output approach.

Fig. 7. Schematic of an indirectly coupled field circuit system based on the
circuit parameter approach.

circuit parameters [e.g., inductances and back electromotive
forces (emfs)]. Therefore, the FEM-based subsystem only
includes a modified version of the field (8) which accepts
current densities in all conductors as the inputs and provides
inductances and/or back emfs as the outputs. The coupling
(9) and (10) are also modified and the induced voltages in the
conductors ( and ) are described in terms
of inductive voltage drops and/or back emfs. Fig. 7 shows the
block diagram of an indirectly coupled system based on the
circuit parameter approach.

The coupling based on the circuit parameter approach usu-
ally includes several iterations between the circuit and the field
equations to obtain accurate results. This iterative procedure is
described in [62] for the simulation of a squirrel cage IM in
the steady state. Circuit equations of the machine are developed
in the impedance form for the stator windings and
the rotor bar network. Starting with a set of initial currents, the
nonlinear field equations are solved to obtain the reluctivity of
each element at the operating point. The coupling impedances
are then determined by solving a series of linear field equations,
one for each current, assuming that the reluctivity is constant.
The solution of the circuit equations then gives an improved
estimate of the winding currents which are used to solve the
new nonlinear field equations. This procedure continues until

convergence is obtained. To define the current flow paths in the
rotor, the rotor bar currents are described by a series of harmonic
currents in the rotor frame. The same method is used in [4]
and [63] for the transient study of an IM. The circuit equations
of the stator windings are described as

(20)

(21)

where is the vector of flux linkages of the stator windings,
and is the inductance matrix of the stator winding and the
rotor harmonic current distributions. A similar method for the
coupled simulation of synchronous machines is used in [64]
and [65] where the circuit equations are described in terms of
the stator currents rather than the flux linkages. Reference [66]
provides an alternative way to write the circuit equations of a
coupled system based on the circuit parameter approach. The
circuit analysis method is based on Kirchhoff’s current law at
each node and the equations relating voltage and current of each
branch.

The calculation of inductance values from the solution of
nonlinear field equations is a time-consuming procedure which
places an extra burden on the field solver. In [67], the circuit
parameter approach is used for the analysis of switched reluc-
tance drives. The method is based on iterations between the cir-
cuit and the field equations in each step of the Newton–Raphson
method. In each step, a modified estimate of the currents is ex-
tracted from the circuit equations and used in the next iteration.
The procedure is repeated until changes in node potentials are
below a specified limit. The estimation of the currents is per-
formed based on (10) where the rate of change of is obtained
directly from the field equation; therefore, the inductance calcu-
lation is bypassed. This method is also used in [68] for the sim-
ulation of a generator suddenly connected to a resistive load via
a three-phase bridge rectifier, where the iterations between the
circuit and the field equations are performed in each time step
until convergence is reached. Coupled analysis of a switched
reluctance drive with the aid of the circuit parameter approach
and an iterative loop between the field and the circuit equations
without inductance calculation is also discussed in [69].

References [70] and [71] present an application of the cir-
cuit parameter approach to obtain the steady-state nonsinusoidal
waveforms of electrical machines. The method is based on the
state-space equations of the machine and the estimation of in-
ductance profile over an entire 360 of rotation. Each apparent
self and mutual inductance has a nonsinusoidal periodic profile,
which depends on the instantaneous values of the rotor and the
stator winding currents, at a given rotor position. The combined
magnetic effect of the individual bar currents is represented as
two magnetomotive forces in quadrature angle with respect to
each other. In this method, the SS equation of the machine (in
terms of its voltages and flux linkages) is integrated until pe-
riodic answers are obtained. Then, the currents are calculated
in terms of the flux linkage and the inductance matrix. These
current profiles are then used to update the inductance profile
from a new finite-element solution. The loop equations of the
rotor bars are also incorporated in the SS model. This method is
also used in [72] and [73] with an improved rotor bar modeling;
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in [74], for an inverter-fed IM through binary resistance repre-
sentation of the switches; in [75] for the analysis of a switched
reluctance motor drive system during fault conditions; and in
[76], for a salient-pole synchronous generator under unbalanced
conditions.

The indirect coupling method in [77] is based on handling
the finite-element model as a multiport circuit element. In the
multiport element, voltages and currents of solid and stranded
conductors are treated as the voltages and currents of the other
elements in the circuit. Nodal values of the magnetic vector po-
tential can be seen as internal variables of the multiport element.
The circuit equations are based on the modified loop formula-
tion. It is shown that this method is mathematically equivalent
to the direct coupling method.

Reference [78] uses the circuit parameter approach for cou-
pled analysis of a brushless motor. Inputs to the magnetic-field
block are the line currents and rotor position, and the outputs are
the back emfs and the inductances for the circuit subsystem and
torque for kinematic equations. Field equations are solved once
for several steps of the circuit simulation. A similar approach is
used in [79] for the simulation of a doubly fed induction gen-
erator fed by a frequency converter. In this paper, the effect of
interaction between the stator and the rotor is modeled inside the
emf instead of the inductance matrix for improved accuracy.

Indirect coupling based on the circuit parameter approach
provides a convenient way to implement the coupled system
inside a circuit simulator, or to interface the circuit simulator
with a field simulator program. In [80], an indirect coupled
Simulink-finite-elements model is used for the simulation of a
loaded IM. Magnetizing current, stator leakage inductance, and
rotor impedance are calculated for several values of the slip to
take frequency dependence of the rotor parameters into account.
These parameters are then used in the Simulink model by means
of a lookup table. A coupled model of a switched reluctance
motor inside the PSCAD/EMTDC program is described in
[81] by modeling precalculated dynamic inductances from the
FEM as functions of the rotor position and excitation. All of
the parameters of the motor and drive (such as torque, currents,
etc.) are then calculated from the circuit simulation. Reference
[82] presents a method for indirect (weak) coupling of the field
solvers and the Alternative Transients Program (ATP) software.
The method relies on the computation of differential inductance
coefficients for the magnetic structure, and the communication
of those inductance values to the transient program at each time
step, where the required discretization is used to update the
electrical network parameters. The implementation of the in-
ductance network in ATP is achieved through transient analysis
of control systems (TACS) functions. A numerical example
includes the coupled simulation of a transformer. A more
general approach for the simulation of transformer energization
transients through an interface between the EMTP-RV software
and the FLUX3D software is presented in [83]. The dynamic
link library (DLL)-based interface permits an exchange of any
kind of variables, such as currents, voltages, switching instants,
fluxes, and mechanical forces between the two programs.

In [84], an application of the circuit parameter approach in the
real-time simulation of electrical drives is presented. After the
motor design in the JMAG Studio Sofware, a behavioral model

is generated with the aid of an integrated module (JMAG-RT),
including all nonlinear characteristics of the motor. The new
model of the machine receives the currents and speed from the
circuit simulator, and provides the corresponding precomputed
inductance and flux data from JMAG software.

The coupling approach in [85] is based on extracting the in-
ductances and back emfs from the field simulation and Norton
equivalents from the circuit simulation. The Norton equivalent
circuit parameters include the conductance matrix and source
currents. The FEM-based simulator has an embedded subrou-
tine to support the Norton equivalent representation of the cir-
cuit subsystem.

C. Extraction of Circuit Parameters From FEM

A major step in the coupling method based on the circuit pa-
rameter approach is to obtain the coupling coefficients (induc-
tances and/or back emfs) from the finite-element solution. This
is usually achieved by calculating the flux linkage of windings
from the nodal values of the magnetic vector potential . The
flux linkage can be split into two components.

1) A component which is produced by the coupled inductance
branches and the currents through them. This only models
the effects of coupling between conductors which are di-
rectly connected to the external circuit.

2) An internal flux which is produced by other sources, such
as permanent magnets and induced eddy currents.

There are several methods to split up the flux linkage between
these two components according to the coupling method and the
formulation of the problem. Two of the methods are described
in [79] and [85]. It is to be noted that if the circuit dynamic
equations are formulated in terms of the flux linkage derivatives
rather than the currents derivatives, then the flux linkage can
be entirely described by the inductance matrix and the current
vector. This method is used in [4] and [70] for indirect coupling
of the IM.

Two definitions of inductance are usually used in the technical
literature to formulate the circuit equations of EM apparatus
(i.e., apparent and differential inductances). The apparent induc-
tance is defined as the slope of a straight line that passes through
the operating point and origin of the magnetic flux-current non-
linear characteristic. The differential inductance is defined by
the slope of the nonlinear curve at the operating point. Both
of these inductances could be obtained from the finite-element
solution by using flux-linkage or energy perturbation methods.
Further details, advantages, and drawbacks of each definition
and method are provided in [86]–[88].

D. Comparison Between the Different Indirect Methods

The coupling based on the current output approach is straight-
forward because the FEM-based subsystem is represented by
voltage-controlled current sources to the external circuit. Fur-
thermore, since voltages and currents are passed directly be-
tween the two subsystems, the time-consuming procedure of
extracting circuit parameters (e.g., inductances and back emfs
calculations) is bypassed during the simulation. Thus, the com-
putation time is shorter than that of the circuit parameter ap-
proach.
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However, as reported in [79], the current output approach
might cause problems when inductive or capacitive components
are present in the circuit. The reason is that the FEM-based sub-
system is solved with a larger time step (major) than that of
the circuit model (minor). Hence, the current and voltage wave-
forms at the terminals of the EM apparatus are updated only
at major time steps. The circuit parameter approach overcomes
this problem since the outputs of the FEM-based subsystem in
this method are the inductances and the back emfs, and both
voltages and currents can vary during the circuit simulation.

V. COMPARISON OF DIRECT AND INDIRECT METHODS

Both of the direct and the indirect methods for coupling field
and circuit equations have advantages and drawbacks. Hence,
the selection of an appropriate coupling method depends on the
problem.

Direct methods are usually more reliable and effective in han-
dling nonlinearities of the field and the circuit equations by ap-
plying the multidimensional Newton–Raphson iteration [77].
However, the substitution of the dense and usually negative-def-
inite circuit equations in the finite-element equations results in
the loss of sparsity, symmetry, and positive definiteness of the
final system of coupled equations. These properties are impor-
tant to solve the large number of finite-element equations by ef-
ficiently using sparse solvers. Thus, an extra step in formulating
the direct coupled equations is to modify the equations by multi-
plying the circuit equations with a coefficient [54] or introducing
additional unknowns into the equations [44] to retrieve some of
these properties, or to use conventional dense solvers for rela-
tively sparse coupled equations [49] and [50], which reduce the
efficiency.

Also, increasing complexity of the circuit model feeding the
EM apparatus requires the development of a new set of equa-
tions for each different case, especially in closed-loop control
systems [79]. However, the indirect methods provide the flexi-
bility of implementing the coupled problem inside circuit sim-
ulator programs [80]–[82].

One drawback of the indirect methods is the need for sev-
eral iterations between the field and circuit subsystems due to
the nonlinear nature of the equations [4]. These extra iterations
could make the indirect simulation noticeably slower than the
direct simulation methods [5], [6], and [89]. Several methods
have been proposed to avoid excessive iterations. In [82], the
coupling coefficients are communicated between the two sub-
systems with one time-step delay. The delay decouples the field
and the circuit equations at the cost of using a smaller time step
to preserve the accuracy of solution. The possibility of using
a predictor to approximate the current (input of the FEM-based
subsystem) over the next time step is also mentioned in the same
paper. Another method to avoid the closed-loop iteration is to
add a high-pass filter in the feedback path for drift compensa-
tion in the steady state [79].

An advantage of using the indirect coupling method, as de-
scribed in [66], is that the number of iterations needed for the
nonlinear field solution are relatively small compared to that of

nonlinear circuit equations. Since the number of field equations
are usually much larger than that of circuit equations, this fea-
ture results in considerable time savings. Finally, indirect cou-
pling allows multirate simulation of a coupled system in which
the circuit simulation can be performed with a much smaller
time step than that of the FEM-based simulation, as described
in [79].

VI. TECHNICAL CHALLENGES OF COUPLED

FIELD-CIRCUIT SIMULATION

The growing complexity of EM apparatus and the circuit ele-
ments connected to them, as well as the application of advanced
control algorithms, prompts the use of multidomain simulation
to avoid the costly failure of the whole system after implemen-
tation. The main difficulty associated with the use of a coupled
field-circuit simulation is the large computational time of the
simulation due to the complexity of the field solution. Typical
execution time for a few seconds of simulation of a coupled
system is in the order of several hours, as reported in [90]. This
is especially troublesome during the design stage when repeti-
tive solutions of the coupled system are necessary. Research is
currently ongoing on permeance network models as an alterna-
tive to the FEM-based models for coupled problems due to their
relatively fast solution albeit at reduced accuracy [91].

Although direct coupling of field and circuit equations results
in a robust set of equations to be solved, in practical applications,
it is usually desirable to exploit the features of the available soft-
ware in each domain. Newer commercially available software is
usually equipped with various interfacing utilities to communi-
cate with other programs. Compatibility and synchronization of
different field and circuit simulators are important issues which
have to be fully examined before successful interfacing of the
programs.

VII. COUPLING WITH MECHANICAL EQUATIONS

In the analysis of EM apparatus with moving or rotating parts,
the mechanical equations are also coupled to the EM equations
and can be expressed as

(22)

(23)

where is the moment of inertia, is the electrical torque,
is the load torque, and and are the rotational speed and
angular position of the rotor.

The link between the mechanical and EM equations is pro-
vided through the electrical torque which is calculated
from the field analysis. Several methods, such as Maxwell
stress tensor [47] and the virtual work principle [59] can be
used to deduce the electrical torque. The interpolation func-
tion between the stator mesh and the rotor mesh, in the field
equations, is dependent on the position of the rotor which is,
in turn, a function of the EM torque. Thus, there would be an
interdependence between mechanical equations and the other
system equations [35].
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Fig. 8. Schematic of the iterative procedure between the field-circuit and me-
chanical subsystems.

Another approach is to add the mechanical equations to the
coupled field-circuit equations by introducing rotor position
[11] and [37], or rotor speed [34] or both [30] as the extra
unknowns and then simultaneously solving all of the equations.

If the mechanical equations are separated from the rest of
system equations, an iterative loop between the solution of the
field-circuit equations and the mechanical equations is neces-
sary. Fig. 8 shows a schematic of this approach where the elec-
trical torque and the rotor displacement are passed back and
forth between the two subsystems in each time step until the
convergence is obtained. However, since the time constant of
the mechanical system is usually much larger than that of the
EM system, simplified approaches have been proposed to avoid
or reduce the number of iterations between the large-size non-
linear field-circuit equations and the mechanical equations. In
[33], [35], and [66], predictor-corrector methods are used to es-
timate the displacement of the rotor at the next time step from
the mechanical equations. This value is then used to formulate
and solve the field-circuit equations and obtain the electrical
torque. To decrease numerical errors, the mechanical equations
are solved again by the use of updated torque from the field solu-
tion. If the difference between the estimated and the calculated
rotor displacement is large, the iteration continues. References
[24] and [29] use the same method by choosing an explicit inte-
gration method to solve the mechanical equations of the system
at the first step. Thus, the solution of the mechanical equations
does not directly affect the finite-element equations.

VIII. TIME DISCRETIZATION

One major step in the transient study of a coupled field-cir-
cuit problem is proper discretization of temporal derivatives in
the equations, before proceeding with the numerical simulation.
These derivatives in the field and the coupling (8)–(10) are re-
lated to the induced eddy currents and voltages of the conductors
in the finite-element region. Temporal derivatives also appear in
the circuit equations due to the presence of energy-storing ele-
ments, such as inductors and capacitors.

Almost all of the discretization methods used in the coupled
problems can be described by the general one-step -algorithm
[7]. This method describes variable at the time as

(24)
where is the value of at time , is the time step, and

.
Different values of between 0 and 1 are used in the coupled

problems. Most authors use , which is the well-known
backward-Euler method. This method is simple and stable in
nature, and by choosing a relatively small time step, the solution
accuracy is also preserved [7].

Crank–Nicholson is another method [2], [12],
[24], [27], [35], and [37] for coupled problems. This method
is more accurate than the backward-Euler but needs more com-
putational effort. A detailed stability analysis of the time-depen-
dent eddy current problem, coupled with the loop equation, is
presented in [92]. It is shown that the backward-Euler method
is always stable while the Crank–Nicholson approach generates
undamped or even divergent oscillations in some cases. A single
application of the algorithm with 0.75 for transients of an
IM connected to an adjustable speed drive is presented in [11].

IX. CONCLUSION

Coupled field-circuit analysis is a major step in the accurate
design and simulation of EM devices connected to the com-
plex external circuits. Different direct and indirect methods
of coupling for low-frequency power apparatus are discussed
and compared in detail in this paper. It is concluded that di-
rect methods are more efficient with respect to the accuracy
and speed of the simulation because they preserve the strong
coupling between the equations and avoid the iterative loop
between the field and circuit subsystems in each time step. On
the other hand, indirect methods are more suitable for multirate
simulation and can be easily implemented inside the circuit
simulator programs by defining the FEM-based subsystem
as a user-defined multiport element or by interfacing two
different field and circuit analysis programs. This paper also
discusses the technical challenges in field-coupled simulation,
the coupling with mechanical equations, and time discretization
techniques.
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