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Abstract

The navigation task for unmanned aerial vehicles (UAVs), such as quadro-

tors, in an indoor environment becomes challenging as the global positioning

system (GPS) and the magnetometer may provide inaccurate aiding measure-

ments and the signals may get jammed. The navigation system design in

this thesis integrates a visual navigation block with a inertial navigation sys-

tem block, which adds information about aiding measurements information

for indoor navigation design. The direct visual measurements are feature co-

ordinates that are obtained from images taken from an onboard monocular

camera with different positions in the 3D world space. The scaled relative

pose measurements are generated through vision algorithm implementations

presented in this thesis. The vehicle states are estimated using the extended

Kalman filter (EKF) with inputs from a gyroscope and accelerometer. The

EKF sensor fusion process combines inertial measurements and the visual aid-

ing measurement to get an optimal estimation. This thesis provides two design

results: one navigation system assumes that the 3D world feature coordinates

are known and that the navigation system is map-based for the feature ex-

traction. The other navigation system does not require prior knowledge of the

feature location and captures the feature based on map-less vision algorithms

with geometry constraints.
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Chapter 1

Introduction

An unmanned aerial vehicle (UAV) such as a helicopter or a quadrotor is an

aircraft equipped with onboard processors, sensors, batteries, and other avionic

system components. UAVs are widely used for surveillance and exploration in

the harsh and cluttered environment such as the blast site covered with toxic

chemicals, fulfilling multiple tasks. For example, quadrotors were used in the

Fukushima Daiichi power plant in Japan [17] after the 2011 earthquake and

tsunami. They were used to perform inspection of upper levels of buildings to

check if they were going to collapse and other rescue tasks.

Quadrotor helicopters are becoming a popular platforms for UAV research,

due to their simple structure and vertical taking off and landing (VTOL). A

quadrotor has four rotors located in the vertex ends. The rotors are divided

into two groups with opposite spinning directions, which is illustrated in Fig.

1.1. The quadrotor used for navigation system design from the Applied Non-

linear Control Lab (ANCL) is shown in Fig. 1.2.

Most quadrotors are small remote-controlled vehicles equipped with cam-

eras. Relying on a direct line of sight to fly a quadrotor is problematic because

a UAV can disappear in a house or behind obstacles while exploring an un-

known environment. We want that the quadrotor is able to fly autonomously

without manual control. The goal of autonomous flight is either hovering at

a certain point or following a desired path in a robust and stable way. The

design of autonomous flight relies on various nonlinear control techniques for

indoor flights as well as quadrotor dynamic model identification [3]. One ex-
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Figure 1.1: The schematic of a quadrotor

Figure 1.2: The quadrotor used for the navigation design
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ample of nonlinear control design is to derive and implement a nonlinear back-

stepping controller to stabilize the inner loop of the quadrotor system and

a proportional-derivative (PD) controller with a saturation function for the

outer loop. The quadrotor control design is challenging because the quadro-

tor executes with six degrees of freedom but only obtains four independent

inputs, i.e., four rotor speeds. Thus, quadrotors are inevitably underactuated.

As important as the controller design itself, accurate feedback readings from

sensors become a prerequisite.

The success of quadrotor autonomous flight depends on an accurate and

reliable navigation system, the most essential components of which are the

vehicle pose and motion estimation. The main problem for vehicle naviga-

tion designers is that it is difficult to achieve a highly consistent estimation

of the vehicle state by fusing different sensor information. Typical estimated

variables include positions, velocities and Euler angles. For the sake of suc-

cessful quadrotor autonomous flight, different sensor combinations and their

characteristics are explored in this thesis.

1.1 Background and Motivation

The goal of successful quadrotor navigation is twofold. On one hand, we need

to obtain accurate estimates of the vehicle states, e.g., the positions, velocities

and Euler angles. On the other, we need to force the vehicle to track the

desired trajectories. For example, we want the vehicle to take off, hover or

land in a designated way. The estimation problem for quadrotor navigation is

often referred to as ‘odometry’ as in [15] and [40]. Traditionally, when UAVs

are carrying out tasks in an open outdoor field, navigation systems are working

with onboard sensors to provide state variable estimation. The main sensor

used for obtaining the vehicle state is the inertial sensor, which is known

as the inertial measurement unit (IMU). An IMU typically comprises three

orthogonal accelerometers to measure the acceleration of the vehicle body,

and three orthogonal gyroscopes to measure the rate of change of the body’s

orientation, also known as the angular velocities. By integrating the readings
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of acceleration, we are able to obtain the velocity and thus the position state

(after double integration). The angular velocity of the quadrotor is obtained

directly from the rate gyro. Using the IMU as the core sensor is the best way

to estimate the vehicle state because the IMU commonly has a faster sampling

rate with lower time delays. The disadvantage of using only the IMU is that

the IMU is subject to a slow gradual sensor drift.

It is normally not adequate to use a single sensor for the navigation task

of quadrotors. For example, inertial sensors have significant measurement

uncertainty at slow motion. In addition, when used as the visual sensor for

navigation, the camera can only track detectable features accurately at low

velocities. The indoor navigation occurs at low velocities. When the camera

velocity increases, feature tracking and matching become less accurate due to

the motion blur and the effect of lower camera sampling rates. The increase

of the frame sampling rate that actually adds to the bandwidth may not help

because it would complicate the real-time implementation.

To overcome these shortcomings, complementary filters are used to fuse

different sensor measurements to obtain an optimal state estimation. Fusing

different sensor measurements in an optimal way can maximize the advantage

of each sensor and at the same time defuse each sensor’s deficiency when they

are being used alone.

One of the well-developed complementary filter schemes is to let the nav-

igation system be aided by the Global Positioning System (GPS). Thus, the

pose in the absolute scale [35], or as it is called in metric scale [17], is yielded

through these sensor measurements. However, in narrow outdoor and indoor

environments, the GPS is not fully functional because the signal is often shad-

owed by rock in a valley or tall buildings in urban areas. Also electromagnetic

interference in urban areas can render other global aiding methods, such as

aiding by the magnetometer, useless.

There are ways to overcome those shortcomings. One of the most powerful

and resourceful methods is using visual information. Compared to the global

aiding module, i.e., the GPS module, an onboard vision system involving a

camera and images is more capable of geometry structure reconstruction in
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indoor and urban environments. The onboard vision system imitates the hu-

man eyes and visual perception. It can provide rich sensory feedback and yield

a full understanding of the surrounding environment, which aids the position-

ing and orientation. The current available vision algorithms such as those in

the OpenCV library, allow the vision system to detect visual features in the

real world such as corners, landmarks, lines, edges, bulks and feature motions.

This complementary filter method is based on the fact that the quadrotor

motion parameters can also be inferred from the image optical flow or scene

features and structures. The advantages of this integrated visual-inertial nav-

igation scheme are summarized as follows:

• Fusion of both the inertial sensor information and visual sensor informa-

tion is able to give greater robustness to feature tracking.

• Fewer features are required to recover the camera and vehicle motions,

because using random sample consensus (RANSAC) becomes unneces-

sary.

• The integrated system can reduce the ambiguity involved in recovering

the camera motion. For example, as covered in Chapter 2 and Chapter

3, we can distinguish the correct motion from the essential matrix.

• The integrated system can help with the absolute scale estimation. Us-

ing visual sensors like monocular cameras cannot recover the absolute

position of the camera and the quadrotor vehicle in the 3D world.

There are challenges with using vision as the aiding measurement for vehicle

navigation. One challenge appears to be the limited onboard computation

ability and the constrained storage room, as the most commonly seen pro-

cessor is ARM-structured. Difficulties occur when processing high volume of

visual data, especially the high resolution pictures. Also, in order to perform

the control task in real time, we have to overcome the time delays generated

through the transmission process, which interferes with the synchronization of

the feedback signal for the control design.
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Other challenges may be involved with the features in the scene. The

features detected for the visual algorithm may disappear from the camera

field of view (FOV). Sometimes we can barely detect any distinct features.

For example, when the blue sky is the scenery view, minimum features can be

detected and matched. Furthermore, vision-based method can reconstruct the

observed scene and therefore helps with obstacle avoidance and path planning,

which are more practical applications for the quadrotor vehicle.

The advantage of complementary filter design, i.e., using an integrated

visual-inertial navigation scheme, is that the design can provide redundant

measurements to estimate the state and improve the system reliability. A com-

plementary filter, fusing the inertial measurement and visual measurement, can

be designed in various ways. The integrated visual-inertial navigation system

can be divided into two methods: loosely-coupled (LC) and tightly-coupled

(TC).

The most popular integration method is LC. In this LC integration, the

inertial sensor part and the visual sensor part operate separately, run at dif-

ferent sampling rates and then exchange information. Vehicle states such as

positions, linear velocities and angular velocities are estimated from the iner-

tial navigation block and can be used to predict feature motion. The motion

estimation from the visual navigation block, i.e., typically a structure from

motion (SfM) block, is used to bound the integration error and the inertial

sensor drift in the inertial navigation block.

The tightly-coupled system is also described as a centralized system, which

uses a single optimal filter rather than two filters for each sensor block. The

TC system jointly processes the visual and inertial data in a single optimal

filter for the state estimation. This means that when defining the filter state,

the coordinates of the features are included in the same state vector where the

quadrotor positions, velocities and orientations are stacked.

Since the quadrotor navigation system is nonlinear, we cannot claim that

any of the three filter design methods outperforms the others. The three well-

known filter design methods on state estimation for the navigation system

include the extended Kalman filter (EKF), the unscented Kalman filter (UKF)
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[48] and particle filters.

The first two are the most commonly used nonlinear filters in the navigation

design [7]. The EKF is a classical design which uses the model linearization and

usually serves as a first order estimator for the nonlinear quadrotor navigation

system. When the system is highly nonlinear, the EKF estimator may diverge

quickly. This is because the EKF relies on linearization to propagate the mean

and covariance of the vehicle state.

Unlike the EKF method for predicting the behavior of the navigation sys-

tem, the UKF design uses the Unscented transformation [9] as part of the

estimation procedure. Based solely on estimation result accuracy, using UKF

can provide better results than EKF.

The UKF uses a deterministic sampling approach. The additive Gaussian

white noise is carved using a minimal set of carefully chosen sample points

around the mean. These sample points capture the true mean and covariance

of the error vector.

By using the Unscented transformation, the UKF can describe almost any

nonlinearity up to the 3rd order, which is better than the linearization pro-

cess by calculating the Jacobian matrices. Therefore, by using the UKF, the

estimation results can converge more accurately to the true value.

Nonetheless, the UKF design is not a truly global approximation because it

is executed based on a small set of trial points. And it does not work well with

nearly singular covariance, i.e., with a nearly deterministic system. From the

practical point of view, the UKF design method requires more computations

than the classical EKF method, as we can see that it may requires Cholesky

factorization on every step, which thus limits its application for real-time im-

plementation.

In general, in order to achieve the goal of autonomous flight for the quadro-

tor in indoor or urban environments, it is beneficial to combine an inertial

navigation system block and the vision SfM block. For this procedure, the

sensor measurement data from all parties are processed in a single optimal

EKF design loop.
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1.2 Literature Review

This section provides a review of related work on visual and inertial navigation

systems.

1.2.1 SLAM and Visual Odometry

Motion or pose estimation is a problem in quadrotor navigation. The most

popular solution is called simultaneous localization and mapping (SLAM),

which is an algorithm that aids in motion estimation. SLAM is defined as

the problem of creating a map of the unknown environment while at the same

time tracking the location of the robot vehicle within that map. SLAM is a

process by which a visual map is used to determine the location of the robot

vehicle and that an accurate vehicle pose estimation contributes to the map

building of the unknown environment. One of the most popular methods for

implementing the SLAM algorithm is using the EKF as an approximation

solution [12].

The SLAM method is normally based on the monocular real-time SLAM

method, which is proposed in [10, 11]. In [10], a monocular real-time SLAM

is proposed for SfM work. The SfM work has been done successfully off-line.

The propagated states include the camera position, the camera orientation

represented by the quaternion, and the camera linear and angular velocities.

The camera used is assumed to be a pinhole camera and the measured output

is the image coordinates of feature points. The built map depends on the

3D feature coordinates and the orientation of the feature in the map. If full-

covariance is used for EKF SLAM, the computational complexity of the filter

update is of the order N2
x , where Nx is the number of features in the map.

The SLAM can generally be called structure from motion (SfM) methods.

The SfM is defined as a solution for both the scene structure reconstruction

of the unknown environment and an estimation of the camera poses from un-

ordered image frames. The final solution basically undergoes an offline bundle

adjustment [47]. In addition to SLAM, another method for robotic vehicle nav-

igation, is called Visual Odometry (VO) [39, 31, 40, 30], which estimates the
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vehicle location relative to its mapped environment. The VO method essen-

tially estimates the robot vehicle’s pose states in an incremental way, through

camera motion reflected on the image frames. The VO design keeps recording

the trajectories of the pose states of a robot vehicle. As in [40], the flow chart

of the VO is given as in Fig. 1.3. Since SLAM is aiming at building a map

Image sequence Feature detection 

Feature matching 

Pose estimation Optimization 

Figure 1.3: The flow chart of solving the visual odometry problem

of the unknown surrounding environment, its results are ordinarily considered

as global and consistent estimation. The problem of consistency estimation is

discussed in detail in [22, 31, 20]. As in [1], a state estimator is consistent if

the estimation errors are zero-mean and have a covariance equal to the one

calculated by the filter. In order to achieve the global results, SLAM requires

the robot vehicle to execute in a closed loop trajectory which is used for global

optimization. This loop closure detection contributes to enhancing the robust-

ness of SLAM for the sake of reducing drifts in both the map and the camera

pose state trajectories illustrated in Fig. 1.4. The blue line is the reference

pose trajectory and the red dotted line the estimated pose trajectory. Due to

the incremental error accumulation, there may be a gap in the estimated pose

trajectory when SLAM revisits the same scene. The loop closure detection

then refines the estimated robot map locations within this closed loop and

builds maps as well.

VO, which is considered a more local concept [40] than SLAM with closed-

loop, global optimization, estimates the robot vehicle trajectory incrementally

9



Estimated trajectory 

Reference pose trajectory 

Loop closure correction 

Figure 1.4: Loop closure detection for SLAM

and optimizes the pose estimation through windowed bundle adjustment. As

a result, the closed loop detection becomes unnecessary for VO. The drawback

of VO is that it trades off some accuracy of the vehicle pose estimation. The

visual algorithms for SfM and VO are covered in Chapter 3.

A drawback of using only SLAM is that without the help of the known

map, no absolute pose estimation can be obtained [46], and as a result, the

whole vehicle system is unobservable. [46] assumes that features with known

coordinates are available. The map-based pose estimation algorithm is thus

provided with absolute-scale vehicle pose estimation.

Different versions of the SLAM library have been developed, most of which

are compiled as packages of the Robot Operating System (ROS). The Paral-

lel Tracking and Mapping (PTAM) ROS package is a typical application for

SLAM. It can be modified for VO application and will then run as an SfM

visual navigation block. The PTAM toolkit is presented in [29], proposing

a method of estimating the camera pose in an unknown scene. This toolkit

splits the pose trajectory tracking and mapping into two separate tasks and

thus makes the computation more efficient.

In [50], a visual-inertial navigation system is proposed where PTAM is

integrated with an optical-flow algorithm in the EKF filter loop. Results of

the optical-flow algorithm compared to the ground truth are provided when

the quadrotor vehicle is in an autonomous hover and the camera is pointing

down.
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1.2.2 Combination of Visual and Inertial Navigation Sys-
tems

The combination of visual and inertial navigation system, using the SLAM

framework in the integrated navigation design, can be found in [28, 36, 25, 27].

The work presented in [36] gives the vision-aided navigation design in the EKF

loop and the typical framework for visual-inertial odometry (VIO) where map-

building is not absolutely essential. In this work, the monocular vision is used

to reduce drifts of the pose states and it also performs nonlinear triangulation

of landmarks from multiple camera pose constraints before the EKF filter loop

update. This fusion work is known as the multi-state constraint Kalman filter

(MSCKF). Other works based on the MSCKF include [32, 21, 20].

The visual-inertial combination in the SLAM framework is demonstrated

in [25], where efforts have been made to improve the accuracy of the feature

initialization and estimation. In this paper, the visual-inertial SLAM design

is being used to build a map for an outdoor trajectory for a large area and

the loop closure is detected. This paper gives the motion conditions for the

visual-inertial navigation system under which the gravity, the IMU-to-camera

calibration and other vehicle states are observable and can be estimated in

real time. [27] also presents the visual-inertial SLAM work, but in the UKF

framework. Unlike the observability analysis performed in [25], this work

assigns the nonlinear observability analysis to the navigation system, which

is modeled as a control-affine form using Lie derivatives. It shows that as

well as the pose states, the biases, the camera-to-IMU calibration and the

gravity are observable. Similar to this work, [50, 51] propose an onboard SLAM

implementation on a micro aerial vehicle (MAV), using visual and inertial

navigation system blocks, which can recover the absolute scale factor.

In contrast to the visual-inertial SLAM, one of the fundamental works

for visual-inertial navigation is presented in [38]. This paper gives the real-

time long-run implementation with a robust outlier rejection scheme. Image

features are not tracked through frames but are detected independently. The

matches between features in different frames are picked out. These matches
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can reduce the feature drift. The RANSAC outlier rejection is used to exclude

the false matching.

1.2.3 Stereo Vision Navigation Method

Other than using a monocular vision block, stereo vision has been widely

adopted because a monocular camera cannot yield any depth information for

feature points and has to observe features from more than one key frame. By

adding a redundant camera and thus having a stereo rig, the visual navigation

block imitates human vision and can acquire depth perception, provided that

the unstructured scene is within a certain distance from the stereo camera rig

for the sake of precise feature triangulation. The stereo vision based SLAM

generates a dense map [37].

It is common for the stereo vision method that 3D points are triangulated

for every stereo frame pair. Therefore, the relative motion for the robot vehicle

is solved by determining the aligning transformation that minimizes the 3D-

to-3D distance: i.e., the transformation Tk(Rk, tk) is given as

Tk = argmin
Tk

∑
i

‖X̂ i
k − TkX̂ i

k−1‖ (1.1)

In [41] a quadrotor state estimation design is proposed which fuses the IMU

with a time-delayed stereo vision sensor set. The stereo odometry runs inde-

pendently, which feeds the EKF filter loop in real time. The key frame-based

EKF with VO odometry gives an optimal, local and drift-free navigation and

is computationally economical on onboard computers. In later work [42], the

autonomous navigation design is tested in both indoor and outdoor unknown

environments in the EKF, combining an inertial navigation block with a locally

drift-free visual odometry navigation block.

1.3 Outline of the Thesis and Contributions

Chapter 2 provides the mathematical preliminaries for visual-inertial naviga-

tion system design. These mathematical formulas are used for the derivations
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in the rest of the thesis. The coordinate frames are defined including the nav-

igation frame N , the camera frame C and the body frame B. The coordinate

transformation from between different frames is then introduced, which helps

with the sensor modeling and the dynamic formation. The rotation kinemat-

ics and the properties are explored for the rotation matrix R ∈ SO(3). These

kinematic formulas and properties are crucial to the linearization in Chapter

4. The theory of computer vision, including the definition of the essential

matrix E, the fundamental matrix F and the epipolar geometry are provided,

which are the basic SfM theory used in the thesis. In addition, the modified

eight-point algorithm is presented. The algorithm is used to yield visual aiding

measurement for the visual navigation system block. The windowed bundle

adjustment is also introduced. The windowed bundle adjustment is used to

improve the accuracy of the visual aiding measurement.

Chapter 3 presents the modeling of the inertial and visual sensors. The

modeling of the inertial sensor is based on the PX4FMU inertial platform used

in ANCL lab, which consists of a set of orthogonal accelerometers and a set of

gyroscopes. The inertial sensors are assumed corrupted by the white Gaussian

noise. This noise is modeled by the random walk process rather than the first

order Gaussian-Markov model. Chapter 3 also presents the camera model used

for the visual navigation block. The camera is modeled for the Raspberry Pi

camera module which is a perspective camera. The calibration procedures are

explained in detail for retrieving the camera intrinsic parameters. Chapter 3

includes the method of sensor combination between the inertial sensors and

visual sensors. The visual algorithms for generating the scaled visual pose

measurements are covered for the sake of EKF implementation.

Chapter 4 provides the detailed EKF filter design and simulation results

for both the map-based visual-inertial quadrotor navigation system and the

map-less visual-inertial navigation system. Chapter 4 forms the dynamics for

two kinds of navigation systems and the output equations for each system. As

we use the EKF LC filter design method, the linearization procedure is pro-

vided to obtain the linearized error dynamics and implement the discrete-time

Kalman filter. The observability analysis for the proposed visual-inertial navi-
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gation systems is performed and proves the navigation system is locally weakly

observable. The simulation results are provided and proves the effectiveness

of the proposed navigation methods.

Chapter 5 summarizes the thesis and discusses the future research work

directions. It outlines the scope of the optical flow-based method and the

application of the three-view geometry constraint.
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Chapter 2

Mathematical Preliminaries and
Vision Algorithms

This chapter reviews the premise on mathematics that will be referred to in

subsequent chapters. The chapter starts with the definition of the coordinate

frames and the rotation matrix parameterizations. The mathematical trans-

formation for vectors between different frames is provided elaborately in order

to rigorously define coordinates and help with calibration.

2.1 Coordinate Frames

Because the problems investigated in this thesis are mainly involved with in-

door navigation of a quadrotor, four coordinate frames are considered in which

vectors can be interpreted. The four coordinate frames include the navigation

frame, body frame, IMU frame and camera frame, which are denoted as N ,

B, I and C, respectively.

Navigation frame: The origin of the navigation frame N is located at a

predefined point on the ground surface of the indoor experiment environment.

The basis of {n1,n2,n3} of the navigation frame points to the north, east and

down to the earth. The states of the quadrotor are estimated and expressed in

this frame. The ground truth provided by the Vicon motion capture system

is defined in this frame.

Body frame: The body frame, B, originates at the center of mass (COM)

of the quadrotor. The body frame has its basis of {b1, b2, b3} pointing to the
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front, right and downside of the quadrotor. Due to the symmetric structure

of the quadrotor as a whole, b1 and b2 are defined along two adjacent arms of

the total four. The motion of the quadrotor captured by the Vicon system is

exactly the motion of this body frame.

IMU frame: The IMU frame denoted as I is the frame in which the inertial

sensors output their readings. It is attached to the IMU sets and has the same

orientation as the body frame. In all the simulations in this thesis, it is an

assumption that the body frame and the IMU frame coincide with each other

by placing the IMU at the COM of the vehicle. In practice, because the IMU is

not perfectly located in the COM of the quadrotor, there exists a translational

displacement between the origins of the two frames.

Camera frame: The camera frame C with a basis of {c1, c2, c3} is defined

and rigidly attached to the camera. The origin of the camera frame is located

at the optical center of the camera. The base c1 and c2 are pointing to the

right and down and are parallel to the image plane of the camera. c3 is along

the optical axis of the camera and points out of the camera lens.

2.2 Coordinate Transformations

In this thesis, vectors located in one coordinate frame often need to be ex-

pressed in another frame. This kind of relationship is called the coordi-

nate transformation. This transformation is represented by a rotation matrix

R ∈ SO(3) and a translation vector t ∈ R3. From the theory of computer vi-

sion, this transformation can also be interpreted as the motion between origins

of two coordinate frames.

The rotation matrix R is also called the direction cosine matrix (DCM)

because R consists the of inner product (or cosines) of each basis vector in one

frame and each basis vector in another frame. In the navigation problem, the

orientation from the body frame is described with respect to the navigation

frame. Therefore, if there is no translation displacement between B and N ,

a vector expressed in B, and denoted as pB and the same vector expressed in

N , and denoted as pN , have the following relationship from a rotational point
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of view

pN = RB
NpB (2.1)

The rotation matrix R belongs to the special orthogonal group SO(3) and

thus has the following properties:

• RRT = RTR = I

• ‖R‖ = 1, det(R) = 1

Transforming vectors from one coordinate frame to another requires the

coordinate transformation between vectors. Take a point vector P , for exam-

ple. As seen in Fig. 2.1, the point P ∈ R3 is initially observed in frame C

and denoted as pc. The transformation between B and C is [RC
B tB] where

RC
B stands for the rotation matrix from C to B and tB denotes the translation

vector between two frames, i.e., the origin of B expressed in the frame C.

B

C

N

C
BR

B
NR

C
NR

p 

Figure 2.1: Coordinates transformation between different frames

The point can be expressed in the frame B, namely pB, in the following

form

pB = RC
B(pC − tB) (2.2)

If we denote the origin of C in the frame B as tC , then we obtain the

following alternative formula between pB and pC .

pB = RC
BpC + tC (2.3)
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The orientation from the body frame with respect to the navigation frame,

namely RB
N , is the orientation state that will be estimated in the navigation

system. The parameterization of the rotation matrix RB
N uses the Euler angles.

There are 12 possible Euler angle parameterizations of the rotation matrix such

as rotation axis order x → y → z and y → z → x. However, in this thesis,

the conventional roll-pitch-yaw sequence, i.e., z → y → x, is used to form

the rotation matrix. Specifically, the rotation matrix RB
N is decomposed as a

product of three elemental rotation matrices, i.e.,

RB
N = Rz(ψ)Ry(θ)Rx(φ) (2.4)

where the Euler angle roll φ, pitch θ and yaw ψ are defined as rotations

around the x, y and z axes, respectively. These elemental rotation matrices

are specified as

Rx(φ) =

 1 0 0
0 cosφ − sinφ
0 sinφ cosφ

 (2.5a)

Ry(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 (2.5b)

Rz(ψ) =

 cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 (2.5c)

Substituting (2.5) into (2.4) and after matrix multiplication, the rotation ma-

trix RB
N can be expressed as

RB
N =

 cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ

 =

 r11 r12 r13

r21 r22 r23

r31 r32 r33

 (2.6)

where cφ ≡ cosφ, sφ ≡ sinφ, etc. A special approximation of this matrix

occurs when the Euler angles are small so that the cosine of an angle is ap-

proximated by one and the sine of an angle is approximated by the angle itself.

Thus, we have the following expression of R

R ≈

 1 −ψ θ
ψ 1 −φ
−θ φ 1

 = I3×3 + [α]× (2.7)
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where α ≡ [φ θ ψ]T , I3×3 is an identity matrix and [·]× is the skew-symmetric

matrix such that a×b = [a]×b where a, b ∈ R3. The expression of this matrix

is given as

[a]× =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 (2.8)

And it is straightforward that [a]T× = −[a]×. Getting the Euler angles from

the rotation matrix is an inverse problem of parameterization of the R matrix.

From (2.6), the pitch angle is given by θ = − arcsin r31. The range of this angle

is limited by −π/2 < θ < π/2. The other two angles can then be expressed as

tanφ =
r32

r33

=⇒ φ = arctan 2(r32, r33) (2.9)

tanψ =
r21

r11

=⇒ ψ = arctan 2(r21, r11) (2.10)

The range of the angle φ and ψ is limited in [−π, π]. If θ is set to the value of

±π/2, the rotation matrix would have a singularity problem: different Euler

angle sequences would correspond to the same rotation matrix.

2.3 Rotation Kinematics

The kinematics of the rotation matrix are equally important to the parame-

terization of the rotation matrix. The kinematics constitute a major part of

the navigation system dynamics. First, consider the case of a point vector pB

rigidly attached to the body frame. The point vector shares its origin with

the static navigation frame. The coordinate of the vector expressed in the

navigation frame pN is given by (2.1). Here, we omit the superscript and the

subscript for the rotation matrix RB
N and denote it directly as RB

N ⇔ R for

simplicity. Thus, differentiating the vector with respect to time gives

ṗN = ṘpB (2.11)

where ṗN ≡ vN defines the change rate of the vector pB in the navigation

frame N . This represents the absolute velocity of a point vector pB because

all three of the components are measured with respect to a stationary origin.
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The expression of Ṙ can be obtained from differentiating the first property

of the rotation matrix R, i.e.,RRT = I. So we get

ṘRT +RṘT = 0

=⇒ ṘRT = −RṘT = −(ṘRT )T

which means the matrix term ṘRT is skew-symmetric. The last term−(ṘRT )T

is parameterized using [ω]×, where ω ∈ R3. So we have

Ṙ = [ω]×R (2.12)

Therefore, we can derive that

vN = ṘpB = [ω]×RpB = [ω]×pN = ω × pN

The last term relates the velocity vector vN to the associated point vector pN ,

which are rigidly attached to a body and are connected by a purely rotational

motion. This allows us to see that the parameterization vector used, namely

ω, has a physical meaning: it represents the body’s angular velocity vector

expressed in the navigation frame ωN . The exact kinematics of the rotation

matrix are given as

Ṙ = [ωN ]×R (2.13)

The kinematic equation (2.13) has an alternative equivalence. Due to the

property of R, RT ∈ SO(3), it is straightforward to obtain the relationship of

RT [a]×R = [RTa]×. Thus, it can be derived that

Ṙ = [ωN ]×R = RRT [ωN ]×R = R[RTωN ]×

That is

Ṙ = R[ωB]× (2.14)

where ωB = RTωN is the angular velocity vector of the body expressed in

the body frame B. The vector measurement of each component of ωB can

be retrieved at intervals using measurements from a triad of rate gyroscopes,

which is part of the IMU.
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2.4 Two-View Geometry

Human have two eyes to identify and locate the objects we see. In computer

vision applications, we can recover the structure of the real world using two

perspective images. The two images can be acquired from the two cameras

in a stereo rig or two consecutive images from a monocular camera affixed to

the rigid body. For a stereo rig, both of the cameras as well as the relative

position between them need calibration whereas for the monocular setup, only

the camera used needs calibration. In this thesis, we use the second method,

minimizing the hardware requirement and also reducing the complication of

calibration. The core theory in two-view geometry refers to the epipolar geom-

etry, which provides the image coordinates’ constraint from two image views.

These constraints play a crucial role in recovering the motion of the camera.

2.4.1 Epipolar Geometry, the Essential Matrix and the
Fundamental Matrix

Consider two consecutive image frame pairs, Π and Π′, taken from a monocular

camera. A 3D space point P has its images p and p′ projected on Π and Π′ with

optical centers O and O′, respectively. This creates a relationship between a

certain point in the first image and the matched point shown in the second

image. The plane these five points belong to is the epipolar plane defined by

the span of PO and PO′ shown in Fig. 2.2. O and O′ constitute the baseline in

this epipolar plane, which intersects with the two image planes Π and Π′ at two

points e and e′. These two points are called the epipoles of the two cameras. In

particular, the epipole e′ is the optical center of the first camera O projected

on the second image Π′, and likewise e is the optical center of the second

camera O′ projected on the first image Π. This epipolar constraint plays a

fundamental role in motion reconstruction and pose estimation problems.

It should be noted that the most difficult part of virtually reconstructing

the stereo vision system is matching the correspondences between the two im-

ages. Using the epipolar geometry constraint can restrict the range of searching

for and matching such correspondences. To explain the epipolar constraint, it
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Figure 2.2: Epipolar geometry

is necessary to introduce the essential matrix E and the fundamental matrix

F .

The essential matrix E connects the associated point coordinates in one

equation. Applying the essential matrix requires knowledge of the camera’s

intrinsic parameters, namely the camera calibration matrix K. The point

coordinates processed here are normalized image coordinates. The normalized

image coordinate p̂ is not the same as the image pixel pair p = (u, v, 1), but

in terms of its transformation, p̂ = K−1p.

If R and t are denoted as the relative rotation and translation from the first

camera frame to the second camera frame, the essential matrix corresponding

to R and t is interpreted as

E = [t]×R = R[RT t]× (2.15)

Thus, the epipolar constraint is given as

p̂′
T
Ep̂ = 0 (2.16)

The above equation (2.16) defines the essential matrix, meaning that given

a couple of correct correspondences, the essential matrix can be calculated

from a set of equations. The number of such equations is determined by the

degree of freedom of the essential matrix. It is straightforward to show that
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the essential matrix has five degrees of freedom. We know either the rotation

matrix R or the translation t has three degrees of freedom. Excluding an

overall scale ambiguity and from (2.15), the exact degree of freedom of the

essential matrix is five.

A critical property of the essential matrix is that two of its singular val-

ues are equal and the other one is zero [40]. This means that the essen-

tial matrix can be expressed by singular value decomposition (SVD) as E =

U diag(1, 1, 0)V T . Once we obtain the essential matrix from the point corre-

spondences, the motion between the two frames is extracted. That is to say,

the relative pose between the two camera frames is therefore solvable.

The reconstructed motion of R and t between two frames is up to a scale

and has four pairs of answers. The essential matrix has a property of ET t = 0.

Solving the null space of E can yield the recovered translation vector t. One

of the solutions is obtained from the aforementioned SVD of E and is denoted

as u3, the third column of U and also a unit vector. Thus, t is given as t′ = u3

or t′′ = −u3.

There are also two solutions to the recovered rotation matrix R, namely

R′ = UWV T and R′′ = UW TV T

where

W =

 0 −1 0
1 0 0
0 0 1


So the four pairs of solutions of R and t are (R′, t′), (R′, t′′), (R′′, t′) and

(R′′, t′′). The four solutions are illustrated in Fig. 2.3. In order to get the

physically feasible solution, we need to reconstruct the point in C which is in

front of both cameras.

As the essential matrix is up to either a positive scale or a negative scale,

we have four possible solutions of the rotation matrix R and the translation

vector t. One improved method of extracting R and t from E is the Cayley

transformation [44, 45], which can reduce the range of obtaining the physically

feasible solution. This method can necessarily generate two possible solutions

of R and t rather than four. If the two solutions are generated, we do not
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Figure 2.3: The reconstructed space point from the four possible solutions of
R and t

need to take (at most) four 3D space point reconstruction steps to obtain the

physically correct solution.

The first step in using the Cayley transformation method is to use the

property of the essential matrix, i.e.,ET t = 0. By solving this equation we

can obtain the basis of the null space of the essential matrix E. Denote this

basis as t̃ and we then have that t = st̃ where s is a non-zero scalar. Let t̆ be

the orthogonal vector of t̃. It is easy to see that t̆TE = st̆T [t̃]×R 6= 0. The

scalar s is expressed as

s = ± ‖ t̆
TE ‖

‖ t̆T [t̃]× ‖
, ±s∗ (2.17)

Using the Cayley transformation, we denote t = s∗t̃ and R = I−h×
I+h×

. Sub-

stituting these two transformation into (2.15) can yield

E(I + h×) = [s∗t̃]×(I − h×) (2.18)
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Reforming this equation gives

h×(ET − [s∗t̃]×︸ ︷︷ ︸
[a1 a2 a3]

) = (ET + [s∗t̃]×︸ ︷︷ ︸
[b1 b2 b3]

) (2.19)

which can be equivalently rewritten as

[ai]×h = −bi (2.20)

The least square solution of the above equation is

h(1) = −(
3∑
i=1

[ai]
T
×[ai]×)−1

3∑
i=1

[ai]
T
×bi (2.21)

One of the solution pairs for R and t is

R =
I − [h(1)]×
I + [h(1)]×

, t = s∗t̃ (2.22)

Another solution pair is gained by using t = −s∗t̃

R =
I − [h(2)]×
I + [h(2)]×

, t = −s∗t̃ (2.23)

where

h(2) = −(
3∑
i=1

[bi]
T
×[bi]×)−1

3∑
i=1

[bi]
T
×ai (2.24)

After introducing the essential matrix, it is necessary to interpret the fun-

damental matrix. The epipolar constraint (2.16) works with the normalized

image coordinates. If the camera calibration matrix is known in advance in our

monocular vision configuration, we can write the image coordinate as p = Kp̂

and p′ = Kp̂′. The epipolar constraint is accordingly expressed as

p′TFp = 0 (2.25)

where the matrix F = K−TEK−1 is referred to as the fundamental matrix.

As with the essential matrix, the fundamental matrix has a rank of two. We

often use the singularity property of the fundamental matrix to assist with the

estimation of it, using n ≥ 8 point correspondences. In the next section the

eight-point algorithm that we use is provided.

25



2.4.2 The Eight-Point Algorithm

The eight-point algorithm can calculate the fundamental matrix directly from

image point correspondences and does not require other information such as

camera calibration. This algorithm is one of the most important numerical al-

gorithms in the theory of epipolar geometry. The basic principle for estimating

the fundamental matrix is the epipolar constraint (2.25). Accumulating suffi-

cient points can allow us to compute the unknown fundamental matrix F . To

form enough linear equations with all the entries of the fundamental matrix

F , n ≥ 8 point correspondences are needed from the two image frames. The

constraint (2.25) can be expanded into

u′uf11 + u′vf12 + u′f13 + v′uf21 + v′vf22 + v′f23 + uf31 + vf32 + f33 = 0 (2.26)

where p = (u, v, 1)T and p′ = (u′, v′, 1)T . Denote

f = [ f11 f12 f13 f21 f22 f23 f31 f32 f33 ]

and (2.26) is reformed as

[ u′u u′v u′ v′u v′v v′ u v 1 ]f = 0

For a set of n correspondences, the resulting equations are

Af =

 u′1u1 u′1v1 u′1 v′1u1 v′1v1 v′1 u1 v1 1
...

...
...

...
...

...
...

...
...

u′nun u′nvn u′n v′nun v′nvn v′n un vn 1

 f = 0 (2.27)

If only 8 points are used for minimizing ‖Af‖ and A has a exact rank of

eight, the solution to (2.27) is unique. If n ≥ 9 and A has rank of 9 due to

coordinate noise, a least-squares minimization under the constraint ‖f‖2 = 1

can give a feasible solution. It should be noted that the pixel coordinates of

the corresponding points can have a wide range, which may lead to numerical

instabilities. For example, in a 640×480 image, one feature point may have

a pixel pair of (0.5, 0.5) whereas another feature point may have a pixel pair

of (300,200) in a much larger numerical scale. Thus, in order to improve

the stability of the result, we need to normalize the data before constructing
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the equation (2.27) we are trying to solve. This normalization starts with

the transformation of the image coordinates, i.e., performing p̃i = Tpi and

p̃′i = Tp′i where T and T ′ are transformations for the normalization of the

input image coordinates. To give the exact interpretation of T and T ′, we

first need to define the centroid of the input image coordinates from both of

the images. These coordinates are p̄ = 1
np

∑np

i=1 pi and p̄′ = 1
np

∑np

i=1 p
′
i where

the vector denotations of them are p̄ = [ p̄1 p̄2 1 ]Tand p̄′ = [ p̄′1 p̄′2 1 ]T ,

respectively. The transformation is performed to achieve two goals:

• The centroid of the reference point coordinates is located at the origin

after transformation.

• The RMS distance of the reference point coordinates to the origin is

equal to
√

2.

Denote the scale factor σ and σ′ as

σ =

(
1

2np

np∑
i=1

‖pi − p̄‖2

) 1
2

σ′ =

(
1

2np

np∑
i=1

‖p′i − p̄′‖2

) 1
2

With these definitions according to the above criteria, the transformation T

and T ′ are given as

T =

 σ−1 0 −σ−1p̄1

0 σ−1 −σ−1p̄2

0 0 1

 (2.28)

T =

 σ′−1 0 −σ′−1p̄′1
0 σ′−1 −σ′−1p̄′2
0 0 1

 (2.29)

After we obtain the fundamental matrix F̃ from the optimization process

(2.27), we perform the singular value decomposition of it, which is

F̃ = U diag(r, s, t)V T

We then set F̄ = U diag(r, s, 0)V T and recover the fundamental matrix as

F = T ′T F̄ T .
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The eight-point method is typically used to extract of R and t from the

essential matrix E based on the fact that E = KTFK. This means that

after we obtain the estimation of the fundamental matrix, we can recover the

essential matrix. Because this algorithm directly calculates the fundamental

matrix from pixel coordinates, it is often regarded as the very first step in

processing information from images.

2.5 Sliding Window Bundle Adjustment

We obtain the current pose measurements R and t by frame-to-frame motion

estimation incrementally. The absolute pose of the vehicle is accumulated

from these pose measurements. Meanwhile, errors can be accumulated and

thus lead to a significant drift to the vehicle absolute states estimation. It

is never possible to remove the drift from accumulated pose measurements

in practice, but we want to minimize the drift as much as possible. This

is done in a local optimization over the last m visual pose measurements.

We take m = 5 for the trade-off between the computation complexity and

most optimized results. This process is called windowed bundle adjustment.

Besides the optimization of the pose, the windowed bundle adjustment can also

optimize the reconstructed 3D feature point locations which is useful in map-

building in SLAM. The error function for the windowed bundle adjustment is

to minimize the image reprojection error

arg min
Xi,Ck

∑
i,k

‖pi,k − g(Xi, Ck)‖2 (2.30)

where pi,k is the ith image point of the 3D space features Xi measured in the

kth key frame image. The function g(Xi, Ck) gives the image reprojection from

the estimated 3D space point coordinates Xi based on the current camera pose

Ck.

When the 3D reconstruction is absent from the visual navigation design, it

is more efficient to do the optimization for the relative pose measurement only.

We denote the pose measurement pair (R, t) at the current time as Tk. Tk is

also the transformation between the previous vehicle location and the current
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one. This optimization process involves pose measurements from non-adjacent

key frames. The cost function to be minimized is given as∑
i,j

‖Ci − TijCj‖2 (2.31)

where Tij is the transformation between ith pose and jth pose. The nonlinear

optimization algorithm of Levenberg-Marquardt is used to obtain a solution.
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Chapter 3

Sensors

This chapter elaborates on the modeling of the sensors as well as the related

issues such as camera calibration, vision algorithms and so on. Visual algo-

rithms in regards to detection and matching of feature points are provided and

demonstrated.

3.1 Modeling the Inertial Sensors

The inertial sensor assumed used is the inertial measurement unit (IMU). An

IMU typically comprises three orthogonal accelerometers measuring the ac-

celeration of the vehicle, and three orthogonal gyroscopes measuring the rate

of change of the vehicle’s orientation. When dealing with the inertial system

block of the visual-inertial navigation system, we perform a double integration

of the accelerometer readings to estimate the position. The readings of the

angular velocity from the rate gyros are integrated to obtain the orientation

of the vehicle. The magnetometer is normally integrated as part of the IMU

system. However, due to the irregularity in an indoor environment, the mag-

netometer could not perform well as a bearing sensor for the indoor vehicle.

Thus, it could not be used in the design of the VI navigation system in this

thesis.

The modeling of the IMU is based on the hardware in the Applied Nonlin-

ear Control Lab (ANCL). In particular, the inertial sensor hardware used is

the PX4FMU autopilot platform and the PX4IO interface board. This flight

management unit is one of the latest low-cost IMUs, which has a high per-
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formance suitable for a variety of unmanned aerial vehicles (UAVs) such as

quadrotors and helicopters.

3.1.1 Electronics on PX4FMU

The PX4FMU autopilot is a platform with open-source codes. It uses the

Berkeley Software Distribution (BSD)-licensed NuttX operating system for

command input and output and connection with peripherals. This flight man-

agement unit is used as an inertial measurement unit and enables the con-

trol of an unmanned aircraft using a single-board solution. The PX4FMU

and PX4IO can interface different buses such as universal asynchronous re-

ceiver/transmitter (UART) and I2C. The PX4IO can output pulse width mod-

ulation (PWM) signals to control unmanned vehicles.

The PX4FMU autopilot platform has a processing capability of 168 MHz

and a microSD slot which allows us to fully store the flight data onboard.

The sensor data stored can be transferred to a desktop computer for offline

processing. The platform in use is version 1.7 and it is equipped with a micro

USB port on one edge of the platform board, which is shown in Fig. 3.1.

This enables communications between the autopilot and the ground station

via either a USB cable or, wirelessly, using radio modules. It means we can

inspect the sensor readings on the screen in real time. Also, the processing

speed of the autopilot platform allows us to set the gyroscope sampling rate

to a sufficient high value, for example, up to 200 Hz.

The three axes accelerometers and three axes gyros are integrated as a

block on the platform MPU-6000. The block can output motion data in either

quaternion or Euler angles. When using the gyroscope and the accelerometer

together, the operating current flows at 3.8 mA. There is another gyroscope

L3GD20 backed up at the PX4FMU platform. This gyroscope provides redun-

dancy for an alternative choice. The sensor startup defaults to the MPU-6000,

but users can make modifications such that L3GD20 can publish its topic,

which can be subscribed to publicly. The independent gyroscope has a sensing

element and an IC interface capable of providing the measured angular rate

through a digital interface. The IC interface is produced through a CMOS
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Figure 3.1: The PX4FMU autopilot platform

process that allows a high level of integration to design a dedicated circuit.

This results in a better match of the sensing element characteristics.

The PX4FMU platform is equipped with a variety of libraries, drivers

and controller executives. The built-in feature of the Object Request Broker

(ORB) design pattern provides the framework to share data structures be-

tween threads and applications. The data transmission between the ground-

station and the UAV quadrotor is achieved via the middleware of MAVLink.

MAVLink enables customization of the packet structure, the sequencing, the

identification and the check-sum.

To make the coupled set of the visual-inertial sensor combination, we can

connect associated ports between the FX4FMU and camera sensor board.

The port on the PX4FMU used for such a combination is involved with the

multifunction connector. It has 15 pins on it with I2C, UART and general-

purpose input/output (GPIO) bus ports. These pins are always electrostatic

discharge protected. Three pins are used to connect with the intelligent camera

sensor board. The pins in use are pin 9 (USART2 RX), pin 12 (USART2 TX)

and pin 15 (GND).

3.1.2 Modeling of the Inertial Sensors

The accelerometer of the MPU6000 measures the specific force of the vehi-

cle fB = p̈B − gB in the body frame B and the gyroscope of the MPU6000
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measures the angular velocity ωB. We denote the measurements of these two

sensor readings as yf and yω where y indicates the measurement variable. The

models for the inertial sensors, i.e., for the accelerometer and the gyroscope

are assumed in terms of true values corrupted by the bias and noise based on

work in [2].

yf = f + bf + nf

yω = ω + bω + nω
(3.1)

where nf and nω are white Gaussian noise vectors with zero mean and the

covariance matrix R. In the sensor models the additive terms bf and bω are

bias error vectors. The bias error was modeled as the first-order Guass-Markov

process presented in [14]

ḃ = −ηb+ nb (3.2)

where nb is a Gaussian white noise process. This model inherently has a

stable dynamic term ḃ = −ηb which indicates constant biases corrupted by

additive noise. In this thesis we model the biases as the random walk process

ḃ = nb as in [2]. Fewer parameters are in the random walk process since we

do not include the first order dynamic term for the biases. However, in the

implementation simulations, we assumed the true biases are constant vectors.

The bias models for the accelerometer and the rate gyroscope are respectively

given as

ḃf = nbω

ḃω = nbf

(3.3)

The specific force f vector is a special type of acceleration but not an actual

force applied to the vehicle body. It belongs to the category of acceleration

subject to the free-fall movement of the vehicle. It calculates the difference

between the vehicle’s inertial acceleration and the gravity, i.e., f = a−g. When

the vehicle stands still, the accelerometer will give a measured value of −g.

On the other hand, if the vehicle falls freely, the accelerometer will indicate

the value of 0.
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3.2 Modeling of the Camera

The 3D world is mapped to an image through a visual sensor such as a camera.

The intelligent visual sensor proposed and used in this thesis is the Raspberry

Pi camera platform (model B), shown in Fig. 3.2. The Raspberry Pi is a low-

Figure 3.2: The Raspberry Pi camera platfrom

cost ARM-based computer with a camera module. This module is connected

to the Raspberry Pi board through a flexible flat cable that can be plugged into

the camera serial interface (CSI) connector. The platform supports languages

such as Python, C, C++ and Java. In addition, the platform can connect to a

network from peripheral of a Wi-Fi adapter transmitting the data wirelessly.

The camera module can be easily configured in the Debian-like system, the

Raspbian. This camera platform is modeled as the perspective camera model,

Parameter Values

Maximum Resolution 2592×1944 pixels
Pixel Size 1.4×1.4 µm

Focal Length 3.6 mm
Angle of View 54×41 degrees

Table 3.1: The values of the parameters used in the model.

which is modeled with pixels in its model expression. Other types of cameras

commonly used in the visual-inertial navigation design include the catadiop-
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tric camera and the omni-directional camera. All these camera models are

generalized from the basic pin hole camera model.

The pinhole camera model assumes that the projection center is located at

the origin of the camera frame C. Along the projective orientation, the plane

zc = f , is the defined image plane where f is the focal length of the camera.

In this definition a space point in the camera frame P = [X, Y, Z]T is mapped

to the 2D point p = [fX/Z, fY/Z]T in the image plane, which is shown in

Fig. 3.3. The projection center, namely the origin of the camera, is defined

as the camera center or the optical center. The ray from the camera center

into the image plane and also perpendicular to it is the principal axis. The

cross point of the principal axis and the image plane is the principal point.

In order to generalize the pinhole camera model to the perspective camera

Figure 3.3: The perspective camera

model, we need to use the homogeneous coordinate system. The homogeneous

coordinate system has a property that a coordinate vector (x1, . . . , xn) can

still represent the same vector after multiplying it by a non-zero scalar. This

means that the coordinate vectors (x1, . . . , xn) and (cx1, . . . , cxn) are regarded

as the same vectors where c is a non-zero constant scaler.

Thus, the center projection of a 3D point to a 2D image point is represented
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in homogeneous coordinates as

 fX
fY
Z

 =

 f 0 0 0
0 f 0 0
0 0 1 0



X
Y
Z
1

 (3.4)

Here the projection matrix can be written as diag(f, f, 1)[I|0]. However, in

practice, the principal point may not fall at the center of an image. A more

common setup is that the principal point is located at one corner of the image.

In this case, we have to compensate for the principal point offset. We denote

the coordinates of the principal point as (ox, oy) in pixels. Thus, the 3D to 2D

projective mapping in homogeneous coordinates can be expressed as

 fX + Zox
fY + Zoy

Z

 =

 f 0 ox 0
0 f oy 0
0 0 1 0



X
Y
Z
1

 (3.5)

where the pixels are assumed to be squared. The associated camera projective

matrix can be written as K[I|0] where

K =

 f 0 ox
0 f oy
0 0 1


This matrix K is called the camera calibration matrix. Note that this camera

calibration matrix does not contain the pixel size information. The parameters

contained in the camera calibration matrix K are called the internal or intrinsic

camera parameters. In contrast, those parameters that describe the camera

location in the 3D world and the camera-to-IMU calibration are called the

external camera parameters.

The sensor board of the Raspberry Pi camera module is made of a comple-

mentary metal-oxide-semiconductor (CMOS) camera. From practical consid-

eration, we need to consider the case where the image pixels are non-square.

Thus, there will be new parameters in the camera calibration matrix K, which

represent the scales in both of the camera image directions. If we denote the

mx and my as the number of pixels in each unit distance in the image coordi-

nates for horizontal and vertical directions, the generalized form of the camera
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calibration matrix is given as

K =

 fmx 0 ox
0 fmy oy
0 0 1


where fmx and fmy represent the focal length of the camera in terms of the

pixel dimensions in the horizontal and vertical image directions.

3.2.1 Non-Perspective Camera Models

In this section we introduce two non-perspective camera models for cameras

with different types of lenses because they are commonly seen in the visual-

inertial navigation system design. Those two camera models reviewed in this

thesis include the fisheye lens camera and the catadioptric camera. The mo-

tivation for using such camera lenses is to break through the limited field of

view of the perspective camera. There is an inevitable issue when using a per-

spective camera that the landmarks or the features may exceed the boarder of

the current image view.

The fisheye lens significantly extends the camera’s filed of view. Although

this lens can cause severe image distortion, we can still retrieve valuable visual

measurements by correctly modeling it. One typical feature of the fisheye lens

camera is that the shape of the image view outlines a circle image plot instead

of a square plot. This is illustrated in Fig. 3.4. The shadow in the image

plane is the actual image plot we obtain from the stored image data without

any filter applied to it. In Fig. 3.4, O is the camera center and the origin of

the camera frame. The z-axis is the optical axis pointing out of the camera.

A world feature point P = [X, Y, Z]T is parameterized with the spherical

coordinates (R, θ, φ) in the camera frame where scalar parameters R, θ and

φ are given as

R =
√
X2 + Y 2 + Z2, θ = cos−1 R

Z
, φ = tan−1 Y

X
(3.6)

The projection of P on the image plane is denoted as p and expressed in the

polar coordinates (r, φ). Therefore the Cartesian image plane coordinates

(u, v) of a point p are expressed as

u = r cosφ, v = r sinφ (3.7)
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Figure 3.4: Geometric structure of the fisheye camera

Mapping functions Equations

Equiangular r = kθ
Stereographic r = k tan(θ/2)

Equisolid r = k sin(θ/2)
Sine r = k sin(θ)

Table 3.2: Parameters for different fisheye camera lenses

The radius r is a function of the angle θ and depends on the type of the

fisheye lens. This function r = r(θ) has the following expression options in

Table 3.2.

The following figure, Fig. 3.5, gives an intuitive illustration of how a cube

appears on the image captured by a central perspective camera compared

to how it looks captured by a camera with a fisheye lens. The other non-

perspective camera that is widely used in the visual navigation system design

is a catadioptric camera system. This optical system, which contains a mirror

and a lens, can provide an omnidirectional view of the environment around

the vehicle equipped with the camera. Depending on the mirror type, there

are specific constraint equations for the catadioptric optical system such as

the hyperboloidal mirror, the ellipsoidal mirror and the paraboloidal mirror
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(a) The perspective camera model (b) The fisheye lens camera model

Figure 3.5: Comparison between the perspective camera model and the fisheye
lens camera model

[24]. The most commonly used mirror is the hyperboloidal mirror. This type

of camera system is illustrated in Fig. 3.6. As it is a 360◦ view camera, the

view plot is a circle on the image plane. In Fig. 3.6, the orange curve is edge

Figure 3.6: Geometric structure of the catadioptric camera with hyperboloidal
mirror

of the cross section of the hyperboloidal mirror. The point O is the focal point

of the hyperbola curve. O is the focal point of the camera mirror. Assume a

3D world point is located in the camera frame as P = [X, Y, Z]T . A ray is
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emitted from the point P to the focal point O and is reflected at the surface

of the mirror. The ray goes through the center of the camera lens and forms

an image point at the image plane. The ray has an elevation angle of

θ = tan−1 Z

X2 + Y 2
+
π

2
(3.8)

The reflected ray emitted to the camera center has an angle of ψ with respect

to the optical axis z. According to the tangent of the mirror surface, the

expression of ψ has different terms such as the equianglar function of θ = kψ.

The image point is represented in polar coordinates namely p(r, φ) where the

radius is given as r = f tanψ. The image coordinates in Cartesian form are

u = f tanψ cosφ, v = f tanψ sinφ (3.9)

The bearing angle of the point P is defined as φ = tan−1 Y
X

.

Fig. 3.7 shows a cube subject projected on the image plane using the

catadioptric camera system.
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Figure 3.7: Image example of the catadioptric camera

Since the projected image view with the fisheye lens camera or the cata-

dioptric camera are rounded, the actual image on the screen plot has a black

background around the image view plot. As a result, some image pixels are

wasted. For the catadioptric camera system, there is a black circle in the image

center which is the projection of the mirror itself.
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3.2.2 Camera Calibration

The camera’s intrinsic parameters in K are calibrated and assumed known

before designing the VI navigation system presented in Chapter 4. These

parameters can be formed as augmented parameters of the states and thus are

estimated during the state estimation process in the navigation tasks such as

in the work presented in [33]. However, methods like this still require some

prior knowledge of the range and the initial guess of the camera parameters.

So it is worth doing a calibration before the navigation task. Moreover, for

certain cameras, the calibration job needs to be done only once, as these

camera parameters are inherent and will not drift or change during the state

estimation process. This can reduce the computation consumption onboard

and improve the efficiency of the estimation process.

Softwares such as MATLAB or OpenCV provide special tools for the cam-

era calibration task. The camera calibration toolbox [4] is one of the most

widely used tools for camera calibration. When using the MATLAB toolbox,

it is necessary to prepare a mosaic black-and-white chessboard pattern with

each mosaic square a certain size. The calibration process typically requires

a total of twenty image snapshots created by placing the camera at different

angles facing to the chessboard. Fig. 3.8 shows the sample calibration images.

Apart from the camera’s intrinsic parameter calibration, the camera’s ex-

ternal parameter calibration is also noteworthy. In this thesis, the external

parameter calibration is the camera-to-inertial calibration and we assume that

this transformation is calibrated in advance and thus known. Consider works

in [25, 31] for example. In [25], the camera-to-inertial calibration is identifiable

under the position condition that the motion that the robot vehicle undergoes

is in neither a zero acceleration range nor a constant rotation.

3.2.3 Combination of Sensors

Along the edge of the Raspberry Pi platform board, there are twenty-six pins,

of which seventeen are general-purpose input/output (GPIO) pins and others

are power or ground pins. The voltage for the power pin can be +3.3V or +5V.
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(b) Sample of the extracted corners in a calibration image

Figure 3.8: Two sample images used for camera calibration

42



Fig. 3.9 illustrates how visual and inertial sensors are integrated in the practi-

cal design. When the vehicle is maneuvering, the PX4FMU records the inertial
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Figure 3.9: The schematic for a combination of visual and inertial sensors

sensor data to its MicroSD storage and the Raspberry Pi records the vision

data to its local SD storage. The inertial data obtained by PX4FMU can be

transmitted to the desktop computer and shown through the QGroundControl

(QGC) software in real time.

3.3 Visual Algorithms

In this section the visual algorithms related to the computer vision theory

are provided and illustrated using the MATLAB RVC (Robotic Vision and

Control) toolbox.

3.3.1 Pose Measurement from Vision Algorithms

Eight feature points are assumed with known 3D coordinates, located in the

world frame N. The camera module is realized by a function of central perspec-

tive camera models. The intrinsic parameters are formed as inputs into the

function with a user-defined camera name. We use the parameters from the
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calibration of the Raspberry Pi camera module. Two adjacent image frames

with eight points projected on the image is shown in Fig. 3.10.
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(b) Image after camera pose transformation

Figure 3.10: Images from two camera poses

The epipolar geometry implementation is elaborated in Chapter 4. The

actual transformation between two poses of the camera is set with a translation

vector of t? = [0.3821, 0, 0.1182]T and a rotation with respect to the y-axis of
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the camera frame with the rotation matrix of R? = Ry(−0.6). The camera

movement is shown in Fig. 3.11.
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Figure 3.11: Camera movement between two poses

We collect the feature coordinate data from both images, form correspond-

ing homogeneous coordinates and then store them into two matrices for fun-

damental matrix estimation. The exact transformation using the known pa-

rameters is shown numerically as follows

R? =

 0.8253 0 −0.5646
0 1.000 0

0.5646 0 0.8253

 , t? =

 0.3821
0

0.1182


whereas the estimated pose pair using the eight-point algorithm presented in

Chapter 2 is

R̂ =

 0.8253 0.0000 −0.5646
−0.0000 1.0000 0.0000
0.5646 −0.0000 0.8253

 , t̂ =

 1.2724
−0.0000
0.3936

 .
The estimated Euler angle in radian is [0.0000,−0.6000,−0.0000], which is

much closer to the true value. But the estimated translation vector is not

close to the true value. As was explained in Chapter 2, the vision algorithms

cannot recover the absolute scale. The estimated pose between two camera

locations is up to a constant scale, i.e., t? = 0.3 · t̂. As a result, it becomes

necessary for the filtering process to combine with the inertial sensor readings

to obtain this absolute scale and estimate the quadrotor vehicle location in

the real world coordinate frame N .

45



3.3.2 Optical Flow and Velocity Relationships

The motion of features in the image is defined as the term of optical flow

(OF). The optical flow is a function of the camera’s motion and also the 3D

structure of the surrounding environment. The OF method is associated with

image-based control and does not require the estimation of the vehicle states

for robot control design.

In order to illustrate the OF method, first we assume that an image point

of feature on the image plane is given as p = [u, v]T . The motion of the

camera is defined as both the linear velocity and the angular velocity in the

camera frame ν = [vC , ωC ]T . Assume that the 3D point in the camera frame

is given as P = [X, Y, Z]T . The kinematics [5] of such a feature point are

expressed as

[
u̇
v̇

]
=

[
− 1
Z

0 u
Z

uv −(1 + u2) v
0 − 1

Z
v
Z

1 + v2 −uv −u

]

vC,x
vC,y
vC,z
ωC,x
ωC,y
ωC,z

 (3.10)

Equation (3.10) are the well-known kinematics for the classical image-based

visual servoing (IBVS) method and it provides a relationship between the

image feature velocity in the normalized image coordinates and the camera

velocity. Equation (3.10) can be abbreviated as ṗ = Jν where the matrix J

is defined as the image Jacobian and it can also be called as the interaction

matrix L. In order to perform image based control design, the depth of a

feature point must be known a priori, apart from its image coordinates.

Fig. 3.12 illustrates how the image feature can change in regards to the

camera motion of a translational velocity vC of [0, 0, 3]T and an angular

velocity of [0, 1, 0]T . It should be noted that the OF vision-based design is

using the global feature, whereas the feature motion and feature dynamics used

in IBVS (usually four points features) are in local feature forms. Although the

OF method has a lower image feature motion accuracy, it does not have to

deal with the issue of the singularity in the manipulator Jacobian and the local

minima when doing the IBVS using the feature coordinates.
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Figure 3.12: Optical flow: image plane velocities with camera motion

IBVS is the inverse manipulation problem of getting the image feature

motions, which is expressed in (3.10). This kind of vision-based control is in-

tended to minimize the errors between the desired image feature positions and

the current image feature positions, i.e., e(t) = s(t)−sd where s(t) is a function

of a set of image feature coordinates and the camera parameters. Depending

on the number of feature points, the robot vehicle can be under-actuated,

fully-actuated or over-actuated. In order to fully actuate the robot to move

in 6 DoF, at least three non-collinear feature points are required. As three

points may lead to a square Jacobian and thus the singularity in Jacobian, we

usually add one more redundant point and calculate the pseudo-inverse of the

interaction Jacobian J† in a visual servoing practice. This manipulation func-

tion is often defined as ν = J†ṗ and in error terms as ν = λJ†(p∗ − p), where

the pseudo-inverse is defined as J† = (JTJ)−1JT . The additional redundant

point feature can attenuate the influence from the noise.
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Chapter 4

EKF-Based Vision-Aided
Navigation: Vehicle State
Estimation

This chapter provides two results for vehicle state estimation based on the

theory of the extended Kalman filter (EKF). One result demonstrates the

map-based visual-inertial navigation, which assumes that the landmarks’ 3D

coordinates are known. The visual sensor, i.e., the camera, observes the coordi-

nate pairs projected on the images and then those processed image coordinates

are used as the visual measurements. This result does not have to estimate

the absolute scale since the landmarks are known on a real-world scale. The

other result is based on a computer vision algorithms and uses the scaled

pose measurements after processing the image readings from the camera sen-

sor. The scaled pose measurements are obtained independent of building a

scaled map, which implies a different way of the simultaneous localization and

mapping (SLAM) method and is computationally economical. The nonlinear

observability analysis is also provided in this chapter.

In order to perform the control-related design for the unmanned aerial ve-

hicles (UAVs) in the Applied Nonlinear Control Lab (ANCL), it is necessary

to obtain accurate state variables for those tasks such as visual servoing and

navigation. However, not all the state variables can be measured directly from

onboard sensors. Even though a state variable can be measured through the

related sensor, the result is normally affected by noise and is hardly reusable
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unless more processing is done. The noise effect is largely due to sensors such

as electronic instruments that are affected by electronic disturbance or biases,

which exist in some inertial components. The Kalman filter has widely been

proved to be effective in many areas, especially in navigation design. The

Kalman filter can perform the task of an observer, namely estimation of the

states that cannot be measured directly, and can also smooth the measure-

ments and attenuate the noise effect on the measurements. One of the distinct

advantages is that the Kalman filter gain can be derived rigourously using the

Kalman gain formula.

The dynamics for UAVs such as quadrotors are nonlinear. Therefore, it

is not possible to apply the Kalman filter directly to the quadrotor system

as the Kalman filter handles linear systems only. We need to use the EKF,

which is developed for nonlinear systems. The EKF method assumes the

system dynamic is linearizable and the nonlinear system is linearized by the

first order approximation in implementation.

4.1 Extended Kalman Filter Framework

The EKF adopts the idea that the nonlinear dynamic system is linearized

around the state estimates generated from the EKF implementation and the

state estimate is based on the linearized system. The proposed EKF design

is based on work in [2]. The general form for the nonlinear system considered

with noise input can be written as

ẋ = f(x, u, w)

y = h(x, v)

w ∼ (0, Q)

v ∼ (0, R)

(4.1)

where x is the state, y is the output and u is the control input. The noise

variable w represents the process noise and v represents the measurement noise.

Both w and v are Gaussian white noise with zero means and known covariance.

The nominal trajectory of the nonlinear system (4.1) can be written in the
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noise-free form as
˙̂x = f(x̂, u, 0)

ŷ = h(x̂, 0)
(4.2)

where ŷ is the estimated nominal output. Linearizing the nonlinear dynamic

system (4.1) around the nominal system trajectory, we can get

ẋ = f(x̂, u, 0) +
∂f

∂x

∣∣∣∣
x̂,u,0

(x− x̂) +
∂f

∂u

∣∣∣∣
x̂,u,0

(u− u) +
∂f

∂w

∣∣∣∣
x̂,u,0

(w − 0)

y = h(x̂, 0) +
∂h

∂x

∣∣∣∣
x̂,0

(x− x̂) +
∂h

∂v

∣∣∣∣
x̂,0

(v − 0)

(4.3)

By defining the term of δx = x− x̂, δy = y− ŷ and the corresponding Jacobian

matrices in the above linearized system such as F = ∂f
∂x

∣∣
x̂,u

, G = ∂f
∂w

∣∣
x̂,u

,

H = ∂h
∂x

∣∣
x̂

and L = ∂h
∂v

∣∣
x̂
, we can get the linearized system of (4.1) in the

following form (which will be used in this chapter later)

δẋ = Fδx+Gw

δy = Hδx+ Lv
(4.4)

After that, the Kalman filter formula can be applied to (4.4).

The EKF method for non-vision navigation tasks uses aiding sensors such

as the global positioning system (GPS) and the magnetometer to compensate

for the slow drift of the inertial measurement unit (IMU). In this thesis, we

eliminate the use of GPS and the magnetometer due to their ineffectiveness

in the indoor environment. The visual sensor, namely the camera, is used

alternatively as the aiding sensor for the inertial navigation system.

The vision-aided inertial navigation system in the nominal form (4.2) is first

numerically integrated using the control input to produce the first stage state

estimation x̂− of the nonlinear system (4.1). When the aiding measurement

is available, the nonlinear system is linearized at x̂−. Then, by using the

Kalman filter formula, the state correction is rendered. The corrected state

thus becomes x̂+ = x̂− + δx̂ and is ready for use either for other control tasks

or to propagate the x̂− in the next EKF loop. If the aiding measurement is not

available at the current loop, x̂− is transmitted directly as the initial condition

for the next integration of the nominal dynamics (4.2).
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x
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Figure 4.1: Block diagram of map-based visual-inertial navigation

The block diagram for the map-based visual-inertial navigation is shown

in Fig. 4.1. The visual-inertial navigation system in this scheme gives the

estimates of the vehicle, which include its positions, velocities and orientations

with respect to a fixed world frame, namely the navigation frame N defined

in Chapter 2.

The block diagram for the map-less visual-inertial navigation scheme is

shown in Fig. 4.2.

IMU Navigation
System

Camera
Extended
Kalman
Filter

y
 fy

x̂  x

x̂ 

Features

Vision
Algorithms

Key frames Scaled pose

Figure 4.2: Block diagram of map-less visual-inertial navigation

The visual-inertial navigation system design in Fig. 4.2 renders the esti-

mates of the vehicle states such as positions, velocities, orientations, as well

as an absolute scale factor for the scaled pose generated from the visual algo-

rithm. The position, velocity and orientation are in the absolute scale and are

represented with respect to the navigation frame N .
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4.2 Sensor Models

The sensors used in this thesis involve the IMU and the camera. The modeling

of the sensors is covered in Chapter 3. As modeled in Chapter 3, the equation

set (3.1) describes the inertial sensor model for the IMU, specifically both the

gyroscope and accelerometer. The equation set (3.3) describes the bias model

for those two sensors. The camera model assumed is the perspective model.

The perspective model of central-projection is based on the pinhole model

(3.4). For the visual measurement design, the measurement output equation

is not dealing directly with the pixel. Particularly in the case of the map-based

visual-inertial navigation, the projective equation is defined as

yC,i = π(XC,i) (4.5)

where the projective function is π = {R3 → R2|XC,i = [X Y Z]T → yC,i =

[X/Z Y/Z]T}. XC,i in (4.5) is the absolute coordinates in the camera frame

C. The lower right note i implies the index of the known feature points.

4.3 Navigation Dynamics and Output Equa-

tions

In this section, the dynamics for the integrated navigation system are provided

for the map-based visual-inertial navigation system and the map-less visual-

inertial navigation system. The main difference between the two systems is

in their output equations. The map-based system, which depends on known

maps or known landmarks, observes and reads these fixed features, whereas

the map-less method uses the vision algorithm to detect particular types of

features such as corners or edges and then matches them to estimate the vehicle

motion through scaled relative pose measurements.

4.3.1 Map-Based Visual-Inertial Navigation Systems

The known features are denoted as XN,i. Because we do not intend to build

a map for the current indoor environment, the feature dynamics ẊN,i = 0 are

omitted. No matter what kind of sensor combination method is taken, either
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map-based or map-less, we assume that the IMU unit PX4FMU is placed in

the center of mass of the quadrotor vehicle so that the IMU module is providing

the inertial measurement of the vehicle. We denote the inertial measurement

from the IMU module as the input of the system u = [ωTB fTB ]T where fB is

the specific force. Thus, the dynamics of the quadrotor vehicle are modeled in

terms of (4.1) 
ṫN
v̇N
Ṙ

ḃω
ḃf

 =


vN

RfB + gN
R[ωB]×
nbω
nbf

 (4.6)

In the dynamic equations (4.6), the state variables tN and vn represent the

absolute position and velocity with respect to the navigation frame N in the

real world. The state variables bω and bf are biases for the rate gyro and

the accelerometer that are modeled in (3.3) as a random walk process. As

the rotation dynamic is nonlinear, we cannot use the linear Kalman filter to

estimate the vehicle states directly.

The calibration information, namely the transformation between the cam-

era frame C and the body frame B, is assumed to have been calibrated before

the maneuver process. The relative orientation and translation between B

and C, i.e.,RC
B and tC , are easy to obtain and remain unchanged during any

maneuver process.

By using the normalized image coordinates output equation (4.5), the vi-

sual sensor output equation that depends on system states is given as

yC,i = π(RB
CR

T (XN,i − tN)−RB
C tC) + nC,i (4.7)

where i denotes the feature index i = 1, · · · , nX and nX represents the number

of feature points being processed in the current Kalman filter update loop. nC,i

is the visual sensor noise for the image coordinate yC,i and it is assumed to be

white Gaussian.

4.3.2 Map-Less Visual-Inertial Navigation System

In the map-less visual-inertial navigation system, the camera acts as a real-

time pose sensor and provides aiding measurements in a sensor fusion scheme
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up to a translational scale. Since we assume that the features of the indoor

environment are significant and not hard to detect and match, we do not

need to add any feature dynamics to the navigation system equation. The

scale factor λ is included in the system states because we want to recover the

exact location of the quadrotor vehicle in the absolute scale. The navigation

dynamics of the quadrotor vehicle in the map-less scheme are



ṫN
v̇N
Ṙ

ḃω
ḃf
λ̇

 =


vN

RfB + gN
R[ωB]×
nbω
nbf
0

 (4.8)

The state variable λ represents the scaling between the vehicle’s absolute po-

sition tN in the navigation frame N and the corresponding scaled position

measurement. The relative up-to-scale position is obtained from a monocular

camera and computer vision algorithms. Because the camera’s intrinsic pa-

rameters are not changed during the maneuver, the scale factor is modeled

as a constant number. The calibration between the camera frame C and the

vehicle body frame B is done before the maneuver process, which is the same

as in the map-based design.

The output equations of the map-less visual-inertial navigation system use

the up-to-scale pose measurement as the measurement variables. The scaled

position measurement from the vision algorithm is the incremental amount

added to the camera’s previous scaled position. The scale position of the

camera center is given as

yC,p = (tN +Rtc)λ+ nC,p (4.9)

This is the visual measurement output equation for the relative position. The

other visual measurement equations for the relative orientation are given in

terms of the rotation matrix of the camera center, namely the camera frame

C with respect to the navigation frame N . Thus, the rotational visual mea-

surement is given as

yC,R = NRRR
C
B (4.10)
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where NR ∈ SO(3) is the multiplicative noise matrix. This adds to the non-

linearity of the whole navigation system. The noise matrix is parameterized

as a rotational noise vector NR = exp(−[nr]×) where nr is a Gaussian white

noise vector.

4.4 Numerical Integration

Although there are two visual-inertial navigation schemes proposed in this

thesis, the integrations of their dynamics (4.6) and (4.8) use the same method

at a sampling rate of 120 Hz. The states x̂− are propagated using the input

from the gyroscope in the first phase of the EKF loop. Next, the uncorrected

states are updated periodically, using the aiding measurement in the second

phase of the EKF loop.

The nominal (noise-free) dynamic equations of (4.6) are provided as follows

˙̂tN
˙̂vN
˙̂
R
˙̂
bω
˙̂
bf

 =


v̂N

R̂f̂B + gN
R̂[ω̂B]×

0
0

 (4.11)

where ω̂ = yω − b̂ω and f̂ = yf − b̂f . The input measurements yω and yf

are modeled in (3.1). The nominal system dynamics for the map-less method

simply add the noise-free form of the absolute scale factor dynamic equation

to (4.11), which is given as



˙̂tN
˙̂vN
˙̂
R
˙̂
bω
˙̂
bf
˙̂
λ


=



v̂N
R̂f̂B + gN
R̂[ω̂B]×

0
0
0

 (4.12)

The nominal system is integrated between the time intervals t0 and t1. All

the states are assumed constant during the integration procedure.
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In order to obtain the integration of the rotational dynamic, we post-

multiply it by the integrator e
−

∫ t
t0

[ω̂B(s)]×ds and we have

˙̂
Re
−

∫ t
t0

[ω̂B(s)]×ds = R̂[ω̂B(s)]×e
−

∫ t
t0

[ω̂B(s)]×ds

⇒ d

dt
(R̂)e

−
∫ t
t0

[ω̂B(s)]×ds = 0
(4.13)

Integrating the above equation from the time t0 to t1 in an EKF loop yields

the analytic solution of

R̂(t1) = R̂(t0)e
−

∫ t
t0

[ω̂B(s)]×ds (4.14)

If the above expression is evaluated using the trapezoidal rule∫ b

a

f(x)dx ≈ (b− a)

[
f(a) + f(b)

2

]
(4.15)

we obtain the update equation of the rotation dynamics in the form of

R̂(t1) = R̂(t0) exp

(
t1 − t0

2
[yω(t0)− b̂ω(t0) + yω(t1)− b̂ω(t1)]×

)
(4.16)

The integration of other dynamics is straightforward. For example by using

(4.15), the integration of dynamics for v̂N , t̂N , b̂ω, b̂f and λ̂ is given from the

timestamp t0 to t1 as follows

v̂N(t1) = v̂N(t0) +
t1 − t0

2
(R̂(t0)f̂(t0) + R̂(t1)f̂(t1) + 2gN)

t̂N(t1) = t̂N(t0) +
t1 − t0

2
(v̂(t0) + v̂(t1))

b̂ω(t1) = b̂ω(t0)

b̂f (t1) = b̂f (t0)

λ̂(t1) = λ̂(t0)

(4.17)

4.5 Linearized Error Dynamics

The EKF theory requires the linearization of the current visual-inertial nav-

igation system at the current Kalman filter estimate. After that, the state

estimation is implemented based on the linearized system. In this section the

linearized error dynamics are provided as

δẋ = F (t)δx+G(t)w

δy = H(t)δx+ v
(4.18)
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4.5.1 Linearization for Map-Based Navigation System

The error state of the linearized system is defined as δx = x − x̂. Due to

nonlinearity in the rotational dynamics, a new variable is introduced which

can convert the matrix state variable R to a vector error state variable. In

order to deal with the term δR = R − R̂, we define ωN := dγ/dt where

γ ∈ R3 is a vector that represents the incremental attitude error. By taking

the approximation δR ≈ R − R̂ and dγ = γ − γ̂ = δγ, we can derive from

Ṙ = (ωN)×R and obtain the following approximation:

R ≈ R̂ + [δγ]×R̂ (4.19)

The term δγ is the error state variable that takes the place of δR; the other

states are updated using the normal form of x = x̂+ δx since they have linear

error dynamics.

While using the approximation (4.19) to update the rotation matrix R̂, the

numerical integration of the R̂ matrix may deprive the orthogonal property of

R̂. To solve this issue, we use the method of SVD in [14] to re-orthogonalize

the updated result of R̂. By using the definition of δγ, one of the solutions

that can preserve the orthogonality of the rotation matrix is given in [16].

This solution uses the integration factor e
−

∫ t
t0

[ωN (s)]×ds and the resulting rota-

tional kinematics R(t1) = e
∫ t1
t0

[ωN ]×dsR(t0). With the denotation of R(t0) = R̂,

R(t1) = R, the update of the rotation matrix takes the form of

R = e
∫ t1
t0

[dγ/ds]×ds]R̂ = e[δγ]×R̂ (4.20)

In order to obtain the linearized rotational dynamic, recall the approximation

(4.19) and take the derivative of both sides of the equation. We derive that

Ṙ =
˙̂
R + [δγ̇]×R̂ + [δγ]×

˙̂
R (4.21)

Substituting both the rotational dynamic and the nominal rotational dynamic

yields

R[ωB]× = R̂[ω̂B]× + [δγ̇]×R̂ + [δγ]×R̂[ω̂B]× (4.22)

57



Using the approximation (4.19) again, we have the derivations as follows:

(R̂ + [δγ]×R̂)[ωB]× = (R̂ + [δγ]×R̂)[ω̂B]× + [δγ̇]×R̂

(R̂ + [δγ]×R̂)[ω̂B − δbω − nω]× = (R̂ + [δγ]×R̂)[ω̂B]× + [δγ̇]×R̂

R̂[−δbω − nω]× + [δγ]×R̂[−δbω − nω]×︸ ︷︷ ︸
≈0

= [δγ̇]×R̂

[−δbω − nω]× = R̂T [δγ̇]×R̂ = [R̂T δγ̇]×

−δbω − nω = R̂T δγ̇

The last equation above gives the error dynamic for the rotational part

δγ̇ = −R̂δbω − R̂nω (4.23)

The linearized error dynamics for the bias term δb = b − b̂ are obtained in

a straightforward way. Take the derivative and we have the dynamic for the

bias term as follows

δḃ = ḃ− ˙̂
b = nb (4.24)

In the same way we can get the error dynamic for the position state variable

δṫN = v̇N − ˙̂vN = δvN (4.25)

and the error dynamic for the velocity term δv̇ is given in the following steps

δv̇N = v̇N − ˙̂vN

= RfB + gN − (R̂f̂B + gN)

= RfB −Rf̂B +Rf̂B − R̂f̂B

= −R(yB − bf − nf − yB + b̂f ) + (R− R̂)f̂B

= −(R̂ + [δγ]×R̂)(δbf + nf ) + [δγ]×R̂f̂B

= −R̂δbf − [δγ]×R̂δbf︸ ︷︷ ︸
≈0

−R̂nf − [δγ]×R̂nf︸ ︷︷ ︸
≈0

+[δγ]×R̂f̂B

= −R̂δbf − R̂nf + δγ × (R̂f̂B)

= −R̂δbf − R̂nf − (R̂f̂B)× δγ

Rearranging the last equation renders the error dynamics for the velocity term

δv̇N = [R̂f̂B]×δγ − R̂δbf − R̂nf (4.26)
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The linearized error term for the output equation is obtained by calculate

the difference between the visual measurements and their estimates. This lin-

earized error term generates the correction update for the navigation system

through the sensor fusion scheme of EKF. The linearization process starts

with stacking the image feature measurements into a column vector y =

[ yTC,1 · · · yTC,nX
]T . These visual measurements are corrupted by the white

Gaussian noise randomly present in the images. The noise can be generated

from varying illuminations, which results in errors is visual measurements.

The feature coordinates processed in the stacked vector y are in normalized

image coordinates rather than in pixels. The normalized feature coordinates

then enter into the Kalman filter loop. Based on these assumptions, the error

term is derived in the following steps:

δyC,i = yC,i − π(X̂C,i)

= Hi(x̂)δx+ nC,i
(4.27)

where Hi(·) is the Jacobian matrix of the nonlinear function π(·) with respect

to the current state estimates. In order to calculate this Jacobian matrix, we

denote the ith feature point in the camera frame as XC,i = RB
CR

T (XN,i−tN)−

RB
C tc, which translates the output equation into

yC,i = π(XC,i) + nC,i

=

[
XC,i(1)/XC,i(3)
XC,i(2)/XC,i(3)

]
+ nC,i

(4.28)

The partial derivative with respect to the states in the map-based method is

given as
∂XC,i

∂x
=
[
−RB

C 03×3 [XC,i]× 03×3 03×3

]
(4.29)

This leads to the calculation of the Jacobian matrix for the ith visual mea-

surement as follows

Hi(x) = HXC,i
· ∂XC,i

∂x

=
1

X2
C,i(3)

[
XC,i(3) 0 −XC,i(1)

0 XC,i(3) −XC,i(2)

]
∂XC,i

∂x

(4.30)

where Hi(x) ∈ R2×15. As we stack the feature measurement vector into a

united vector, the error terms of the visual output measurements are also put
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into a joint vector and so are the Jacobian matrices for the output linearized

terms. Thus, the linearized output error dynamic for the map-based visual-

inertial navigation system is given as

δyC = HC(x̂)δx+ nC

=


H1

H2
...

HnX

 δx+


nC,1
nC,2

...
nC,nX

 (4.31)

The linearized error equations are given as
δṫN
δv̇N
δγ̇

δḃω
δḃf

 =


0 I 0 0 0

0 0 −[R̂f̂ ]× 0 −R̂
0 0 0 −R̂ 0
0 0 0 0 0
0 0 0 0 0



δtN
δvN
δγ
δbω
δbf

 (4.32)

+


0 0 0 0

0 −R̂ 0 0

−R̂ 0 0 0
0 0 I 0
0 0 0 I



nω
nf
nbw
nbf

 (4.33)

which can be abbreviated as

δẋ = Fδx+Gw

with w = [nTω n
T
f n

T
bω
nTbf ]T . The noise vector w is characterized by the covari-

ance matrix Q = E < wwT >= diag(σ2
ω, σ

2
f , σ

2
bω
, σ2

bf
) .

4.5.2 Linearization for Map-Less Navigation System

The difference between the linearized map-based and map-less systems is in

the linearization procedure of the absolute scale term and the linearized output

equation. For the map-less visual-inertial navigation system, the error dynamic

with the absolute scale term is given as

δλ̇ = 0 (4.34)

In the map-less method, the scaled pose aiding measurement is a vector of

fixed length and the resulting error dynamics consist of two parts: one with
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the scaled position measurement and the other with the relative attitude mea-

surement. For the scaled position term, the linearized error dynamic is

δyC,p = yC,p − ŷC,p

= (tN +RtC)λ+ nC,p − (t̂N + R̂tC)λ̂

= H ′pδx+ nC,p

(4.35)

where H ′p = [ λ̂I 03×3 −R̂[tC ]×λ̂ 03×3 03×3 −(t̂N + R̂tC) ] that repre-

sents the output Jacobian matrix for the map-less navigation system. Based

on the matrix property (2.7) introduced in Chapter 2, a rotation matrix per-

turbation, namely the associated error term, can be approximated as

δR = 1− δθ× (4.36)

Since a rotation matrix can also be termed as R = exp(−[α]×). The rotational

output measurement yC,R = NRRR
C
B from the visual sensor can be approxi-

mated by

(1− δ[φm]×)ŷC,R = (1− δ[ρ]×)N̂R(1− δ[γ]×)R̂RC
B (4.37)

Because ρ is a zero mean Gaussian white noise vector, it can be concluded

that N̂ = I. For the nominal system, we have that yC,R = R̂RC
B, where the

rotation matrix RC
B is assumed to have been calibrated beforehand. We then

obtain the expression of

1− δ[φm]× = (1− δ[ρ]×)(1− δ[γ]×) (4.38)

By expanding (4.38) and omitting the higher order term, we have

δ[φm]× = δ[ρ]× + δ[γ]× (4.39)

which is equivalent to
δφm = δρ+ δγ

= H ′Rδx+ nC,R
(4.40)

where H ′R = [ I3×3 03×3 03×3 03×3 03×3 03×1 ] and δφm is the incremental

relative measurement computed from yC,R. Note that the term δρ is rewritten

as nC,R which is assumed as a white Gaussian noise vector. By combining
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(4.35) and (4.40) we can obtain the linearized error dynamics for the map-less

visual-inertial navigation system[
δyC,p
δφm

]
=

[
H ′p
H ′R

]
δx+

[
nC,p
nC,R

]
(4.41)

which is abbreviated as

δyC = H ′Cδx+ n′C (4.42)

where H ′C is a combination matrix of the Jacobian H ′p and H ′R. So the lin-

earized error equations for the map-less visual-inertial system are given as

follows 

δṫN
δv̇N
δγ̇

δḃω
δḃf
δλ̇

 =



0 I 0 0 0 0

0 0 −[R̂f̂ ]× 0 −R̂ 0

0 0 0 −R̂ 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




δtN
δvN
δγ
δbω
δbf
δλ

 (4.43)

+



0 0 0 0

0 −R̂ 0 0

−R̂ 0 0 0
0 0 I 0
0 0 0 I
0 0 0 0



nω
nf
nbw
nbf

 (4.44)

where the covariance matrix of the noise vector is defined in the same way as

in the map-based design.

4.6 Observability Analysis

In order to verify that the EKF-based methods in this thesis are able to gen-

erate an unbiased estimate of the true system state, the observability analysis

process is performed. Different observability analysis of either a linear or a

nonlinear model for visual-inertial navigation design is reviewed in the paper

of [25]. If the navigation systems model is nonlinear and in the input affine

form, the observability analysis can be conducted using differential geometry.

The nonlinear system from with affine form presented in [27, 52] is expressed

as
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 ẋ = f0(x) +
nu∑
i=1

fi(x)ui

y = h(x)

(4.45)

where u ∈ Rnu is the input vector and u = [ u1 · · · unu ]. (4.45) is used for

nonlinear observability analysis.

If the system model is linear time-invariant, the observability of the sys-

tem can be determined directly using the rank test of the observability matrix.

In regards to the linear time-varying (LTV) system, we need to numerically

evaluate the corresponding observability Gramian matrix or to regard states

of the LTV system as piecewise constant scalars during the sampling interval

and then use the stripped observability matrix. Directly examining the ob-

servability is difficult because the navigation system in this thesis is not in the

control affine form unless quaternion is used for rotation dynamics.

4.6.1 Definitions

The references [25, 27, 52] examine the observability of the navigation system

based on distinguishable trajectories. We consider the system of (4.1) with

x ∈ X, y ∈ Y , u ∈ U where X, Y and U are open subsets of Rn, Rm

and Rp respectively. In the nonlinear theory, the two states xa, xb ∈ X are

indistinguishable and are denoted as xa∨xb if the output maps are equal, i.e.,

yxa,u(t) = yxb,u(t) (4.46)

for any input u ∈ U and any time stamp in the vehicle maneuver process.

Thus, we define that the system (4.1) is observable for any two states xa, xb ∈

X such that

xa ∨ xb ⇐⇒ xa = xb (4.47)

which means that for an admissible control u ∈ U and a time t ≥ 0 we have

yxa,u(t) 6= yxb,u(t) (4.48)

indicating that the xa and xb are indistinguishable. Therefore, the observ-

ability for the navigation system (4.1) is defined in the following way: (4.1)
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is described as locally observable at xa ∈ X if there exists a neighborhood V

of xa and V ⊆ X such that for any xb ∈ V , the states xa and xb are distin-

guishable. If the system states are restricted in an open set V ⊆ X and this

state-restricted system is locally observable, we say the system is strongly lo-

cally observable. In contrast, the general concept of locally observable is often

defined as weakly locally observable. The visual-inertial navigation system de-

sign in this thesis is designed to show weak local observability of the proposed

VI navigation system.

4.6.2 Observability Analysis for Map-based Navigation
System

Rather than directly examining the observability of the nonlinear system, we

verify the observability of the linearized system, based on the same method

in [2]. Due to approximation in linearization is to omit the second order and

higher order terms, the linearization process can result in information loss.

The error propagation here may add rank to the observability matrix. The

unobservable direction analysis is thus provided after the rank test process.

The theory in [6], which addresses the observability of the LTV system, is

briefly introduced here. The input and output measurements enter into the

Jacobian matrices F , G and HC (omit the subscript C) in the EKF method.

We assume the system is n-dimension. The pair (F (t), H(t)) is observable at

t0 if there exists a finite t1 > t0 such that the observability matrix is of full

rank

rank(O) = rank


N0(t1)
N1(t1)

...
Nn−1(t1)

 = n (4.49)

where N0(t) = HC(t) and the following matrix is defined as

Nm+1(t) = Nm(t)F (t) +
d

dt
Nm(t), m = 0, 1, · · · , n− 1 (4.50)

Because the linearized output equations in the map-based schemes and map-

less schemes are different, the observability analyses are conducted separately.

We denote Omb and Oml as the corresponding observability matrices for the

64



two design methods. As for the map-based navigation design, the system order

is n = 15. Due to each feature’s output Jacobin has the same structure (see

(4.29) (4.30)), only the output Jacobian for the ith feature is considered here.

Starting from N0, we have

N0 = Hi =

[
−aiRB

C 0 ai[XC,i]× 0 0
−biRB

C 0 bi[XC,i]× 0 0

]
(4.51)

where ai represents the first row of the matrix HXC,i
and bi represents the

second row. The second row block matrix is computed as

N1 = N0F (t) + Ṅ0(t)

=

[
0 aiR

B
C 0 −ai[XC,i]× 0

0 biR
B
C 0 −bi[XC,i]× 0

]
(4.52)

Through the nominal system dynamic
˙̂
R = R̂[ω̂B]×, the third row block matrix

is computed as

N2 = N1F (t) + Ṅ1(t)

=

[
0 0 aiR

B
C [R̂f̂ ]× −ai[XC,i]×R̂[ω̂B]× −aiRB

C R̂

0 0 biR
B
C [R̂f̂ ]× −bi[XC,i]×R̂[ω̂B]× −biRB

C R̂

]
(4.53)

N3 is thus computed as

N3 = N2F (t) + Ṅ2(t)

=

[
0 0 aiR

B
C

˙
([R̂f̂ ]×) −ai(RB

C [R̂f̂ ]×R̂ + [XC,i]×
˙

(R̂[ω̂B]×)) −aiRB
C [ω̂B]×

0 0 biR
B
C

˙
([R̂f̂ ]×) −bi(RB

C [R̂f̂ ]×R̂ + [XC,i]×
˙

(R̂[ω̂B]×)) −biRB
C [ω̂B]×

]
(4.54)

Since the form of the next few row blocks requires more complex matrix deriva-

tion, the observability matrix for the map-based matrix is given as

Omb =



−aiRB
C 0 ai[XC,i]× 0 0

−biRB
C 0 bi[XC,i]× 0 0

0 aiR
B
C 0 −ai[XC,i]× 0

0 biR
B
C 0 −bi[XC,i]× 0

0 0 aiR
B
C [R̂f̂ ]× −ai[XC,i]×R̂[ω̂B]× −aiRB

C R̂

0 0 biR
B
C [R̂f̂ ]× −bi[XC,i]×R̂[ω̂B]× −biRB

C R̂
∗ ∗ ∗ ∗ ∗
...

...
...

...
...


(4.55)

As can be seen from the observability matrix Omb, the rotation matrix R exists

in almost every non-zero term of the observability matrix. A rotation matrix
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R implies R ∈ SO(3) and R is invertible. But analytically determining the

rank of the observability is not straightforward.

In order to analyze the rank of the observability matrix, we can recheck

of the problem investigated. The VI navigation system should generate es-

timation of the robot vehicle pose states in a global way. But in fact, the

observability matrix Omb of the linearized error system is rank deficient in

one column. Intuitively, this unobservable direction is the global yaw, namely

the absolute heading of the navigation system, because we cannot obtain any

aiding information about magnetic North. However, a practical consideration

is that since the quadrotor is maneuvering in the indoor environment, it is

not as important to get the absolute yaw aiding as it would be in the outdoor

environment.

Although the yaw angle ψ may slowly diverge, according to Claim 4 in

[25], we use the enforced initial condition that the initial pose pair is set as

(I, 03). By saturating the filter along three visible directions and thus fixing the

global reference in the meantime, the navigation system is locally observable

as a result.

An alternative way of making the system of full observability is to add the

aiding sensor which can provide the yaw, i.e., using the magnetometer. The

magnetometer yaw aiding is proposed in [2] with the magnetometer measure-

ment y = RTmN + nm, where mN is the magnetometer measurement reading

and is corrupted with white Gaussian noise nm. By using the approximation

(4.19), the yaw-only magnetometer output equation is given as

δym = R̂[mN ]×[0 0 E3γ]× + nm (4.56)

4.6.3 Observability Analysis for Map-less Navigation Sys-
tem

The observability analysis for the map-less navigation system follows the same

principle as the map-based navigation system. We compute the observability

matrix for the LTV system (4.43). The difference in the analysis of the map-

less navigation system design includes the system dimension and the linearized
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output equations H ′C . The observability matrix no longer depends on the

constant landmark coordinates. All the output equations are used to evaluate

the rank of the observability matrix. The first matrix block term N0 is simply

obtained from the linearized output equation.

N0 = H ′C =

[
λ̂I 0 0 −R̂[tC ]×λ̂ 0 −(t̂N + R̂tC)
I 0 0 0 0 0

]
(4.57)

Then the following matrix blocks are computed as

N1 = N0F (t) + Ṅ0(t)

=

[
0 λ̂I 0 −R̂[tC ]×λ̂ 0 −(v̂N +

˙̂
RtC)

0 I 0 0 0 0

]

=

[
0 λ̂I 0 −R̂[ωB]×[tC ]×λ̂ 0 −(v̂N +

˙̂
RtC)

0 I 0 0 0 0

] (4.58)

N2 = N1F (t) + Ṅ1(t)

=

[
0 0 −λ̂([R̂f̂ ]× +

¨̂
R[tC ]×) 0 −λ̂R̂ −( ˙̂vN +

¨̂
RtC)

0 0 0 0 0 0

]
(4.59)

N3 = N2F (t) + Ṅ2(t)

=
[

0 0 −λ̂( d
dt

([R̂f̂ ]×)+R̂(3)[tC ]×) λ̂([R̂f̂ ]×+
¨̂
R[tC ]×)R̂ −λ̂ ˙̂

R −(¨̂vN+R̂(3)tC)
0 0 0 0 0 0

] (4.60)

Then we provide the expression of the observability matrix for the linearized

error dynamics of the map-less navigation system as

Oml =



λ̂I 0 0 −R̂[tC ]×λ̂ 0 −(t̂N+R̂tC)
I 0 0 0 0 0

0 λ̂I 0 −R̂[ωB ]×[tC ]×λ̂ 0 −(v̂N+
˙̂
RtC)

0 I 0 0 0 0

0 0 −λ̂([R̂f̂ ]×+
¨̂
R[tC ]×) 0 −λ̂R̂ −( ˙̂vN+

¨̂
RtC)

0 0 0 0 0 0

0 0 −λ̂( d
dt

([R̂f̂ ]×)+R̂(3)[tC ]×) λ̂([R̂f̂ ]×+
¨̂
R[tC ]×)R̂ −λ̂ ˙̂

R −(¨̂vN+R̂(3)tC)
0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗

 (4.61)

The observability matrix (4.61) has the block matrix terms up to N15 and here

we omit the block matrices Ni that have higher order derivatives. The rank

analysis cannot determine the rank of the observability matrix directly from

(4.61), because rotation matrices are commonly distributed and a rotation

matrix is of full rank.

As we discussed in 4.6.2, the global yaw, i.e., the absolute heading, is not

located in the fully observable direction. By enforcing the initial pose pair to
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(I, 03) as in 4.6.2 and fixing the global reference, the global yaw direction is

made locally observable. In fact, there is another unobservable state in the

map-less design, which is the absolute scale. As the visual aiding measurement

are scaled, the absolute scale can only be updated in the state propagation

process. In addition, this absolute scale factor can be jointly observable as in

[52], with the vehicle velocities and the vehicle absolute positions.

4.7 Discretization

Implementing the EKF-based navigation system requires discrete time expres-

sion of the linearized error dynamic system. This section gives the expression

and calculation of the discretized error dynamics

δxk+1 = Φkδxk + wk

δyk = Hkδxk + vk
(4.62)

where the noise vectors wk and vk are described by the covariance matrix

Qk := E < wkw
T
k > and Rk := E < vkv

T
k >.

We denote consecutive sampling time steps as tk and tk+1 and the sampling

time interval is thus τ = tk+1−tk. The state estimate at the time stamp tk is x̂k.

By evaluating the matrices of the error dynamics (4.18) at the timestamp tk

with the estimated states x̂k, we get Fk = F (x̂k), Gk = G(x̂k) and Hk = H(x̂k)

which are assumed constant during the time interval [tk, tk+1]. Therefore the

matrix expressions in (4.62), namely the discrete-time transition matrix and

the process noise vector, are formed as

Φ = eFkτ

wk =

∫ tk+1

tk

eFk(tk+1−t)Gkw(t)dt
(4.63)

The covariance matrix of white noise vector wk is derived as

Qk = E < wkw
T
k >

= E <

∫ tk+1

tk

eFk(tk+1−t)Gkw(t)dt

∫ tk+1

tk

wT (s)GT
k e

FT
k (tk+1−s)ds >

= E <

∫ tk+1

tk

∫ tk+1

tk

eFk(tk+1−t)Gkw(t)wT (s)GT
k e

FT
k (tk+1−s)dtds >
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Moving the expectation inside yields

Qk =

∫ tk+1

tk

∫ tk+1

tk

eFk(tk+1−t)Gk E < w(t)wT (s) >︸ ︷︷ ︸
Qδ(s−t)

GT
k dte

FT
k (tk+1−s)ds

=

∫ tk+1

tk

eF
T
k (tk+1−s)GkQG

T
k e

FT
k (tk+1−s)ds

where δ is the Dirac delta function (also referred to as the unit pulse function)

and the continuous white noise vector is described as a stationary random

process. The autocorrelation of the noise vector is E < w(t)w(t+s) >= σ2δ(s).

Since the covariance matrix Qk involves the integration of the multiplication

of the matrix terms between any two successive sample times tk+1 and tk, we

reevaluate it by using the method introduced in [14]. We start with forming

the matrix of

Γ =

[
−Fk GkQG

T
k

0 F T
k

]
(4.64)

The matrix exponential eΓτ is calculated as

eΓτ =

[
Λ1 Λ2

0 Λ3

]
=

(
e−Fkτ

∫ t
0
e−Fk(τ−s)GkQG

T
k e

FT
k τds

0 eF
T
k τ

)
(4.65)

By using the variable substitution s = tk+1 − t, we have

Λ2 = e−Fkτ

∫ τ

0

eFksGkQG
T
k e

FT
k sds

= (eFkτ )−1

∫ tk+1

tk

eFk(tk+1−t)GkQG
T
k e

FT
k (tk+1−t)dt

(4.66)

Thus, we have the calculation expression of the covariance matrix for the noise

vector wk as

Qk = (Λ3)TΛ2 = ΦkΛ2 (4.67)

As in the linearized error dynamics, vector v is used to denote the visual

measurement noise nC and the discrete version of v is vk. This white noise

vector v is characterized by covariance matrix R = E < v(t)v(t+s) >= σ2δ(s)

and vk is carved by Rd = E < vkvk+ε >= σ2
dδε. In order to calculate vk we

explore the power spectral density of v which is given as

Sc(ω) = Fc(R) =

∫ ∞
−∞

σ2δ(τ)e−jωτdτ = σ2 (4.68)
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The power spectral density of the discrete noise vector vk is given as

Sd(Ω) = Fd(Rd) =
ε=∞∑
ε=−∞

σ2
dδεe

−jΩε = σ2
d (4.69)

It can be derived that

Sd(Ω) =
1

T
Sc(

Ω

T
) =

σ2

T
(4.70)

Therefore, the covariance of the discrete white noise vector vk is given as

σ2
d =

σ2

T
(4.71)

The covariance matrix for vk is derived as

Rk =
1

τ
R (4.72)

The covariance matrix Qk and Rk are used for algorithm implementations.

4.8 Extended Kalman Filter

What actually enter into the filter loop are the states in the discrete-time

linearized error dynamics (4.62). Based on the EKF theory, as the linear

discrete-time Kalman filter is applied to the error dynamics, the error state

is updated, prepared for the update of the navigation system states in the

next filter loop. The linearized error dynamics and the navigation system

dynamics share the noise vectors of the same stochastic process. The noise

vectors wk and vk are assumed to be white zero-mean noise vectors with known

covariance matrices Qk and Rk. They are assumed to be uncorrelated, which

is summarized as
wk ∼ (0, Qk)

vk ∼ (0, Rk)

E < wkv
T
j > = 0

The last assumption is easy to understand because wk and vk are process noise

and measurement noise coming from different sensors.

The Kalman filter commonly contains two steps: the state propagation

and the state correction. At the time stamp k, the updated linearized error

system state is denoted as δx̂−k and the estimated state, corrected by the
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aiding measurements, is denoted as δx̂+
k . In order to simplify the notation, we

omit the superscript + here. The prior updated estimation error is given as

e−k = δxk − δx̂−k and the covariance of this error is P−k = E < e−k · (e
−
k )T >.

The Kalman filter uses the following observer form to perform the post state

update

δx̂k = δx̂−k +Kk(δyk −Hkδx̂
−
k ) (4.73)

where Kk is the Kalman filter gain. The gain Kk is determined by minimizing

the trace of the covariance matrix Pk = E < ek · eTk > of the post state update

error ek = δxk − δx̂k. By substituting the above equation (4.73) into Pk, we

can derive the expression of Pk in terms of corresponding matrices

Pk = E
〈
(δxk − δx̂−k −Kk(δyk −Hkδx̂

−
k )(δxk − δx̂−k −Kk(δyk −Hkδx̂

−
k )T
〉

= E
〈
(e−k −Kk(Hke

−
k + vk))(e

−
k −Kk(Hke

−
k + vk))

T
〉

= (I −KkHk)P
−
k (I −KkHk)

T +KkRkK
T
k

(4.74)

which is in quadratic terms of Kk. Through the matrix derivative formula, the

derivative of Tr(Pk) with respect to Kk is set to zero, which is

d(Tr(Pk))

dKk

= −2(HkP
−
k )T + 2KkHkP

−
k H

T
k + 2KkRk = 0 (4.75)

We can obtain the Kalman filter calculation term

Kk = P−HT
k (HkP

−
k H

T
k +Rk)

−1 = PkH
T
k R
−1
k (4.76)

The state update (4.73) is performed using this calculated Kalman gain. We

prepare the next state propagation for the time stamp k + 1 using

δx̂−k+1 = Φkδx̂k (4.77)

And the new error covariance is

P−k+1 = E
〈
(δxk+1 − δx̂−k+1)(δxk+1 − δx̂−k+1)T

〉
= ΦkPkΦ

T
k +Qk

(4.78)

In the next Kalman filter loop, when the measurement update information

is ready, we calculated the new Kalman gain and perform the state update

correction.
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The system actually updates the state estimations x̂ and ŷ during the EKF

design. In the same way that the error state is defined with superscripts + and

−, we denote the propagated state at time k as x̂−k and the estimated output

as ŷ−k . Then, in connection with the error state definition δxk = xk − x̂−k and

δyk = yk − ŷ−k , the estimated error state is given as δx̂k = x̂k − x̂−k as well as

δx̂−k = x̂−k − x̂
−
k = 0. As a consequence, the navigation state update is given as

x̂k = x̂−k +Kk(yk − ŷ−k ) (4.79)

where Kk and Pk in this navigation state update process are calculated as given

in (4.76) and (4.74), respectively. After the state estimations are updated, the

linearization is executed at the estimated state trajectory x̂k. At this moment

the error state and its estimation are δxk = xk− x̂k and δx̂k = x̂k− x̂k = 0. We

can see the linearized error state propagation becomes trivial and is omitted,

while the error covariance matrix is being updated through the updated x̂k.

The EKF state update in the correction stage may not be periodic because

the filter loop expectation is done with or without the measurement. In an

aperiodic update case, we record the instant time as ta and compute the elapsed

time as τ = t− ta which is used to update Φk, Qk and the error covariance Pk

as well.

So we conclude that we start the EKF loop with the initialization of the

state x̂0 = E < x0 > and the covariance matrix of the state error of P0 = E <

(x0 − x̂0)(x0 − x̂0)T >. It is common to set the matrix P0 as a zero matrix

and the matrix R0 as an identity matrix in practice but they can be tuned.

In order to make the EKF execution more stable, we assign extremely small

value rather than a pure zero matrix to P0. When the aiding variable is ready,

we perform the following update of the state correction:

Kk = P−HT
k (HkP

−
k H

T
k +Rk)

−1

x̂k = x̂−k +Kk(yk − ŷ−k )

Pk = (I −KkHk)P
−
k (I −KkHk)

T +KkRkK
T
k

(4.80)

where P−k has been calculated in the state propagation process using (4.74).

A more practical consideration in implementation is to identify the false

visual aiding information. Here, false means that the aiding measurement
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is either generated by the feature outliers or there are not enough features.

Because we know that in order to estimate the six degrees of freedom for

the vehicle’s full pose states, the minimum points needed are one fewer than

the degree of freedom: in other words, five-point coordinates are required.

The absent point requirement is the unobservable direction of the absolute

scale. In this thesis, as we estimate the full pose of the quadrotor vehicle, we

examine the number of effective points that are used for the EKF design. If

the number of feature points passes the minimum points number requirement

and the features are recognizable, the visual aiding measurements are used for

the state update in the EKF loop. Since the absolute scale is jointly observable

with position states, we calculate it through three position directions, average

the result and weight the result with the initial value.

4.9 Results

This section provides results of state estimation in simulation based on work

and scripts in [26, 2]. First we provide the map-based visual-inertial navigation

results of the quadrotor vehicle states in two cases: taking off and hovering.

After that, we show the results for the map-less visual-inertial navigation sys-

tem with the quadrotor state estimation.

4.9.1 Map-Based Visual-Inertial Navigation Results

The map-based visual-inertial navigation design requires a known map with

recognizable features. The map is built in the same way as the one in [21]

which is shown in Fig. 4.3. We assume that the 3D world coordinates of these

features in the map are known. In Fig. 4.3 the visual features are evenly

distributed in the interior surface of a virtual cylinder with a radius of 2 m

and a height of 2 m. There are thirty-six feature pillars in the figure. Each pil-

lar has twenty-four features, which make a full visual feature environment for

different kinds of tests. The camera is assumed mounted to the vehicle facing

front, so we do not have to generate any features in the ceiling or on the ground.
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Figure 4.3: Generated known map for the map-based visual-inertial navigation

Case 1

We assume the initial position of the quadrotor vehicle is placed in the origin

of the navigation frame N . We first simulate the case of the quadrotor taking

off. The vehicle prepares statically for initialization on the ground surface.

This takes 15 seconds. After that, the quadrotor vehicle takes 5 seconds to

rise up off the ground surface to a height of 1.5 m. The final phase for the

vehicle is to stay still in the air for 20 seconds. The quintic and cubic splines

are used to interpolate values to the positions and attitudes during the tran-

sition. The calibration between the camera frame C and the body frame B

is assumed with zero translation and a fixed rotation matrix in a way that

the camera is mounted facing front. The reference bias is assumed to be con-

stant and corrupted by additive white noise vectors. The constant parts of the

accelerometer and gyro biases are given as [0.1; 0.1; 0.1] and [0.02; 0.02; 0.02],

respectively. The state estimation results are shown in the following figures.

Case 2

The next estimation case study involves the estimation for quadrotor vehicle
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Figure 4.4: Reference and estimated positions for taking off
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Figure 4.5: Reference and estimated velocities for taking off
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Figure 4.6: Reference and estimated Euler angles for taking off

Figure 4.7: Reference and estimated accelerometer biases for taking off
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Figure 4.8: Reference and estimated gyro biases for taking off

hovering. The recognizable visual features are generated in the same way as

the one for the quadrotor taking off. After it takes off at t = 20 seconds, the

quadrotor vehicle turns counterclockwise 90 degrees, following the reference

trajectory. In this transition phase, the quadrotor vehicle also shifts to a new

point of tx = 0.5 and ty = 0.5 in N , while maintaining the height of tz = −1.5.

This transition lasts 10s and then the quadrotor vehicle is assumed to stay

still for 5s at that final point. The camera configuration is the same as in the

first case. The results of this case study are given in the following figures.

The map-based method can yield acceptable results, because the aiding

features are known in 3D world. From the figures, we see all the bias terms are

shown as small constant scalars. The hovering result of position estimation

has offsets, but they are small which still shows the effectiveness of the position

aiding .

4.9.2 Map-Less Visual-Inertial Navigation Results

In this section, we provide simulation results of the quadrotor vehicle states

estimation for the map-less visual-inertial navigation system. As the vehicle

takes off, the state is propagated from the input from the IMU element and
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Figure 4.9: Reference and estimated positions for hovering

15 20 25 30 35

0
0.2

0.4
0.6

Vehicle velocity in N 

 

 
vx reference

vx estimated

15 20 25 30 35

0

0.2
0.4

0.6

[m
/s

]

 

 
vy reference

vy estimated

15 20 25 30 35
−1

0

1

2

[s]

 

 
vz reference

vz estimated

Figure 4.10: Reference and estimated velocities for hovering

78



φ
φ

θ
θ

ψ
ψ

Figure 4.11: Reference and estimated Euler angles for hovering

Figure 4.12: Reference and estimated accelerometer biases for hovering
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Figure 4.13: Reference and estimated gyro biases for hovering

the EKF uses the visual aiding information to correct the estimated state. The

camera is mounted at the vehicle center of mass, i.e., the origin of B, and is

facing front. The bias terms are assumed constant vectors. This navigation

system design does not assume that we have a pre-built feature map with

known feature coordinates. We assume that adequate random features are

distributed in the indoor environment and it is feasible to recognize, extract

and match them. As this design uses the vision algorithms to process visual

information, it stores the feature coordinates from two adjacent frames and

uses the epipolar geometry to generate the scaled pose aiding measurement.

The initial pose pair is set to be (I, 0).

Assume pseudorandom features are distributed in the surrounding envi-

ronment. For example, features are assumed distributed as in Fig. 4.3, but

we do not know their 3D coordinates in the navigation frame N . The vision

algorithm such as the speeded up robust features (SURF) method is used to

detect the features and keeps tracking them in every camera frame snapshot

during the quadrotor taking off and hovering. The features from two con-

secutive image frames are then matched. The matched points are illustrated

in Fig. 4.14, where the detected features are denoted as red circles. In Fig.
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Figure 4.14: Feature matching between two frames taken from adjacent poses

4.14, two images are taken when the quadrotor reaches different heights in

the case of taking off. Features are detected then. Both images catch more

than 200 features. The matching algorithm returns 180 matched pairs of all

the detected features. The coordinates of these matches pairs are recorded as

pa = [x1, y1;x2, y2; · · · ] and pb = [x
′
1, y

′
1;x

′
2, y

′
2; · · · ]. There can be mismatches

of features in the two images. The vision algorithms eventually select the eight

most significant features and their matches image coordinates pairs, because

significant features renders fewer mismatches of their coordinates. Selecting

fewer features also reduces the computational burden. By using the eight-point

algorithm presented in Chapter 3, the fundamental matrix Fab and the essen-

tial matrix Eab are computed numerically, where the MATLAB robot vision

control (RVC) toolbox [8] is used.

After the essential matrix is obtained, the scaled pose aiding measurement

vector is generated from the scale relative pose pair (Rab, tab), which is decom-

posed from the formula of Eab = [tab]×Rab. The false solution pair is eliminated

using the method presented in Chapter 2.

Case 1

The initialization takes around 15 seconds when the initial conditions are de-
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termined. Next, the vehicle starts taking off and it spends 10 seconds to reach

the hover point at [0 0 − 1.5]T in N where the quadrotor vehicle hovers for

5 seconds. The constant accelerometer and gyroscope biases are set as in the

map-based design method. The absolute scale is set as 0.5. The vehicle state

estimation results are given in the following figures.

15 16 17 18 19 20 21 22 23 24 25
−0.2

0
0.2
0.4
0.6

Vehicle position in N

 

 
tx reference

tx estimated

15 16 17 18 19 20 21 22 23 24 25
−0.2

0
0.2
0.4
0.6

[m
]

 

 
ty reference

ty stimated

15 16 17 18 19 20 21 22 23 24 25
−2

0

2

[s]

 

 
tz reference

tz estimated

Figure 4.15: Reference and estimated positions for taking off

From the result figures, we can see that the state variables such as the

positions, velocities and orientations can track the references. There is no end

drift in the x and y positions. The bias values stay close to constants as ex-

pected. However, the absolute scale has an offset between the reference and

its estimation. As the IMU provides the estimation in the real world scale, the

fact that it is not possible to correct the absolute scale from the visual aiding

measurement does not ruin the estimation results of other state estimations.

Case 2

The next estimation case study is the estimation for quadrotor vehicle hov-

ering. The visual scaled pose measurements are obtained using the vision

algorithms described in the first case in this map-less design. After the vehicle
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Figure 4.16: Reference and estimated velocities for taking off
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Figure 4.17: Reference and estimated Euler angles for taking off
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Figure 4.18: Reference and estimated absolute scale factor for taking off

Figure 4.19: Reference and estimated accelerometer biases for taking off
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Figure 4.20: Reference and estimated gyro biases for taking off

takes off, the quadrotor vehicle turns counterclockwise 90 degrees, following

the reference trajectory. In this transition phase, the quadrotor vehicle shifts

to a new point of tx = 0.5 and ty = 0.5 in N , while maintaining a height of

tz = −1.5. The accelerometer bias is set as [0.01; 0.01; 0.01]. The rate gyro-

scope bias is set to be [0.02; 0.02; 0.02]. This transition spends 5 seconds and

then the quadrotor vehicle is assumed to stay still for 5 seconds at that final

point. The camera configuration is the same as in the first case. The vehicle

state estimation results are given in the following figures.

If no aiding measurement is available, the position estimation integrated

from the IMU measurements will drift significantly. There are offsets for the

end values of the position estimates. This occurs because the scale estimation

is not perfect. The initial guess of the absolute scale is 0.6. However, this

value is not corrected much after the filter loop implementation. The inherent

drift of the position estimation is rooted in the double integration to obtain

the value of it. The results show that the velocity estimation remain stable

while the quadrotor is hovering from one point to another. This result shows

the effectiveness of the proposed VI navigation system.
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Figure 4.21: Reference and estimated positions for hovering
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Figure 4.22: Reference and estimated velocities for hovering
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Figure 4.23: Reference and estimated Euler angles for hovering
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Figure 4.24: Reference and estimated absolute scale factor for hovering
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Figure 4.25: Reference and estimated accelerometer biases for hovering
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Figure 4.26: Reference and estimated gyro biases for hovering
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Chapter 5

Conclusion

This chapter summarizes the thesis and provides direction for possible future

work.

5.1 Summary of Thesis Work

The work presented in this thesis focuses on developing a vision-aided naviga-

tion system for a quadrotor in an indoor environment. From a practical point

of view, we focus on the design using monocular vision. The sensors of the

perspective camera platform, Raspberry Pi and the inertial measurement unit

(IMU), PX4FMU are each modeled. The visual odometry (VO) algorithm

based on epipolar geometry is proposed for the Raspberry Pi camera. The

local window bundle adjustment algorithm is used to refine the visual aiding

measurement.

In order to design a vehicle state estimation method with constraint on-

board computation ability, the loosely coupled sensor fusion method is em-

ployed to combine the visual and inertial sensor blocks. The visual and iner-

tial navigation blocks are running independently. The visual navigation block

uses the VO design to store the scales incremental pose trajectories rather

than to build any type of map, as in the simultaneous localization and map-

ping (SLAM) method.

There are two visual-inertial navigation systems designed in this thesis,

which one will be used depends on whether a known feature map is given.

The observability analysis is provided for both navigation systems. The ob-
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servability analysis shows that the proposed navigation systems are locally

observable. The map-based visual-inertial navigation system and the map-less

visual-inertial navigation system are simulated. The results show that the de-

signed navigation systems can effectively estimate the quadrotor vehicle states

with the modeling parameters from the practical sensors.

5.2 Directions of Future Work

This thesis proposes an integrated navigation system for the quadrotor vehicle

using the fusion of IMU and VO. Based on the current work and literature re-

views, several possible directions for future research work and implementation

refinements are given.

5.2.1 Optical Flow-Based VI Navigation System Design

The vehicle state estimation can be completed from the optical flow (OF) using

decomposition of the homography matrix and fusion with the IMU sensor.

Using the optical flow has an advantage in that it provides the camera motion

information directly and can avoid drift effects in the incremental visual pose

measurements.

The optical flow method is used in cases where the robot vehicle is going

to travel a long distance and the camera frames can update at a high rate

of speed. This is in contrast to incremental VI odometry state estimation

where camera motion is assumed to be finite. Assume a world point as X

and the scaled estimation of it as x. Introducing the scale factor λ gives the

relationship X = λx. We thus have the kinematic

Ẋ = λ̇x+ λvx (5.1)

where vx is the point linear velocity measurement from the image. From the

relationship involving the homography matrix H Ẋ = HX we have

vx = Hx− λ̇

λ
x (5.2)

Removing the depth dynamic yields

[x]×Hx = [x]× (5.3)
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which is the continuous homography constraint [34]. From (5.3) we can see by

stacking the reconstructed point and the measured velocity, that the homog-

raphy can be obtained through a numerical estimation process.

In [19], optical flow has been integrated with the IMU block for the quadro-

tors to perform a particular flight task of vertical landing on a textured target.

The optical flow algorithm is not performed onboard. This system design in-

volves measuring and holding a constant rate of image expansion as the surface

target is approached. However, it works best only if the quadrotor approaches

the ground vertically, which makes it easy to create optical flow.

5.2.2 Vehicle States Estimation Using Trifocal Tensor

The uncalibrated visual servoing using the three-view (i.e., initial, current and

target views) is explored in [43]. The numerical constraint of the three-view

geometry is the trifocal tensor, which is independent of the scene structure

and depends only on the relationship between the cameras [18].

In [23], a vision-aided navigation system is proposed using three view ge-

ometry. The vision block develops a trifocal tensor constraint, which is fused

with the inertial IMU block through an implicit extended Kalman filter (IEKF)

loop to generate vehicle state estimation. The work presented in [49] and [13]

uses three-view geometry constraints as well but in a unscented Kalman fil-

ter (UKF) version. The advantage of using three-view geometry is it needs

less computation compared to SLAM and VO methods which use windowed

bundle adjustments.
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