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Abstract 

Helix-25 is a screw-propelled mobile robot designed by Copperstone Technologies® to survey 

hazardous ponds and fields. Currently this robot is manually operated, which may not be feasible during 

various circumstances. The control strategies for screw propelled robots have been limited, with a small 

element of control and they are all focussed on modelling. This project is a first pass effort to automate the 

movement of Helix -25 through waypoint navigation. A preliminary attempt to implement PID controller 

for automation of Helix is made as a first pass method, as dwelling into other sophisticated controllers may 

depend on dynamics of the terrain. In this project, GPS and IMU sensors are integrated into the Helix rover 

and the sensor data is fused using EK3 filter provided in-built by Pixhawk unit to get the pose estimate, and 

the ROS drivers provided by Copperstone Technologies® are used to send feedback-controlled commands 

to the motors based on PID errors. PID algorithms for roll, scroll and omni-directional modes were 

simulated in Gazebo using ZM robot and Helix model before being applied on field tests. Robots were 

made to follow preprogrammed Square, Hexagon and Circle trajectories to validate the robustness of 

control algorithm in various modes.  

A trial field test was conducted on beach sand in a volleyball court, and it was found that Helix needs a 

cohesive medium to exhibit scroll and omnidirectional movement. Based on the inference, field testing is 

moved to hard surface medium to automate way point navigation in roll mode using the PID control on 

field test and the Helix is made to follow a 10 m x 10 m square trajectory successfully to prove the 

appropriate working of the automation controller interface. Later, a refinement in the robotic system and 

electronic design is suggested based on the field test learnings. Further, this proof of concept and 

mechatronic system integration builds a pathway for expanding research as well as facilitating tests of more 

sophisticated autonomous controller development on Helix -25. 
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Chapter 1 : Introduction 

1.1. Background and Motivation 

In recent years, there has been a growing interest in the development of advanced robotic systems 

capable of versatile locomotion in various environments [1] [2]. Mobile robotics face the challenge of 

finding efficient methods of locomotion that can navigate a wide range of terrains [3]. Traditional wheeled 

or legged robots, although suitable for certain environments, struggle to generate traction in many 

challenging terrains such as uneven surfaces, sandy or muddy areas, and bodies of water. Moreover, 

alternative bio-inspired locomotion methods like legged and crawl locomotion are not suitable for cohesive 

muddy terrains [4] [5]. 

To overcome these limitations, researchers and engineers have explored alternative locomotion 

mechanisms that can adapt effectively to different terrains [1]. One such mechanism is the screw movement 

where rotational motion transforms to linear motion. The screw-wheel or screw-propelled wheel, derived 

from the concept of the Archimedes screw conveyor, features a helical surface surrounding a central 

cylindrical shaft inside a hollow pipe [6] [7]. Screw-wheeled movement becomes omnidirectional in 

extreme terrains, including mud, snow, and tailings. By rotating the screw wheels with helical edges on 

their surface, these robots generate a resisting reaction force that provides buoyancy and enables to traverse 

extreme environments [8] [9]. This unique propulsion mechanism opens new possibilities for exploring 

previously inaccessible environments [10].  

Helix – 25 is one such screw-wheeled robot developed by Copperstone Technologies®, an Edmonton 

based startup focused on developing a robot which can maneuver through challenging terrains. Thereby, 

the Helix Robot finds applications in various fields, such as environmental monitoring, and surveying tasks 

in remote, uneven, or hazardous areas [1]. 

1.2. Relevance of Thesis to Industrial partner 

Despite of the promising capabilities of screw-propelled robots, challenges remain in terms of control 

and autonomy. The current control method for the Helix Robot relies on manual operation using an RC 

controller, limiting its autonomy and precision. To fully exploit the potential of these robots, feedback 

control systems are needed, enabling autonomous navigation, waypoint following, and adaptive responses 

to changing environmental conditions. Therefore, the main objective of this thesis work is to enable 

autonomous operation of the screw-propelled robot through waypoint navigation. The objective is to reduce 

the tedium of having a human operator control the rover for many hours while performing repetitive tasks 

such as performing bathymetric surveys on a body of water, thus also eliminates the presence of human in 

extreme environmental conditions.  
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Figure 1. Screw-propelled rover traversing in snow, built by Copperstone® Technologies.  

A major obstacle to achieving autonomy in the screw-propelled robot lies in the lack of reliable 

odometry data; these robots often experience significant slippage, making dead reckoning-based odometry 

unreliable. Considering these challenges, this thesis focuses to enable the robot's autonomy and navigation 

capabilities by implementing a GPS and IMU based pose estimation system by using commercially 

available sensor-fusion solution, establishing reliable communication with the robot's onboard computer 

[7], and applying a basic feedback control algorithm for motion control. 

Another intention behind this thesis is to prepare the Helix robot for development and implementation 

of control strategies, starting with the basic control loop mechanism - PID. The implementation of a PID 

controller serves as a stepping-stone for future developments, enabling the robot to navigate autonomously 

along predefined paths within desired tolerance of accuracy and precision. By fine-tuning the PID 

controller's parameters, the robot can effectively follow waypoints, adjusting its movement based on 

feedback from the sensor fusion-based pose estimation system. This first pass control strategy provides a 

solid foundation and understanding of robot’s physical limitations to be considered for future 

implementation of more advanced control strategies, such as model predictive control, to further enhance 

the robot's autonomy and navigation capabilities, considering its unique mobility characteristics and 

operation in diverse terrains. 

1.3. Thesis Contribution 

The principal contribution by thesis involves bringing up the Helix–25 and preparing it for experimental 

testing of autonomous control, executing a proof-of-concept with a basic control scheme. In this work, a 

set of PID-based autonomous control algorithms are developed and implemented for the Roll, Scroll, and 
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Omni-directional modes of the Helix–25. It also includes installing and establishing an interconnection 

between an off-the-shelf flight management unit (FMU)(PIXHAWK), a single-board computer running 

Linux (Jetson TX2), and the Helix’s motor controller using the widely used communication protocol 

Mavlink® through the MavROS module running within ROS Melodic Morena. The challenging aspect 

during implementation is to fine tune and configure EK3 sensor fusion parameters in PIXHAWK in order 

to fuse data from both GPS and IMU to acquire accurate pose estimate. Prior to testing the entire system in 

an appropriate field, there are a set of simulation tests run that require development of a URDF (Unified 

Robot Description Format) describing the geometry of Helix-25. Through simulations, the control 

algorithms for each motion mode were validated by using an open-source 3D robotics simulator – Gazebo, 

linked with corresponding ROS distribution release version. The successful validation of the control 

algorithm in simulation as well as in a preliminary field testing occurred at a outdoor court near Lister Hall, 

situated near the University of Alberta campus, marking an initial assessment of the Helix – 25 robot’s 

autonomous navigation capabilities. 

1.4. Structure of Thesis 

This thesis is divided into six chapters. The first chapter provides an overview of the project, highlighting 

the thesis objectives. The second chapter gives a comprehensive insight into the earlier works on mobile 

robots and explores the growth of autonomy in navigation for varied kinematic systems over time. Chapter 

3 provides a comprehensive overview of the hardware and software systems integral to the project. Chapter 

4 delves into the simulation of rover motion algorithms within the ROS framework, offering a detailed 

exploration of its key components and functionalities. It also focuses on establishing the conditioning and 

testing methodology on the autonomous waypoint navigation algorithms developed specifically for three 

modes of kinematic operation of the rover. Chapter 5 provides an account of field-testing procedures and 

their corresponding results, shedding light on the real-world performance of the rover and control 

algorithms. Finally, Chapter 6 summarizes the research's findings, concluding with a vision for suggested 

future work for this project. 
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Chapter 2 : Literature Review 

In this chapter, we conduct a review of the existing literature pertaining to mobile robots, with a specific 

focus on three key areas: Screw-Propelled Vehicles as Mobile Robots, Aided navigation systems employed 

in outdoor environments, and flight management units (FMUs) used for fusing sensor data and control of 

autonomous vehicles. By examining these topics, we aim to gain a deeper understanding of the current 

state-of-the-art in autonomy of screw propelled mobile robotics and identify the gaps and opportunities for 

further development. 

2.1. Screw Propelled Vehicles as Mobile Robots 

Screw-propelled vehicles capable of navigating various terrains such as soil, marshes, snow, and ice 

emerged by the mid-20th century [11]. This locomotion transitioned from larger vehicles to smaller mobile 

robots, finding applications in diverse fields [12]. The multi-domain feasibility of screw propulsion 

provides numerous benefits for exploratory mobile robotics in situations where conventional locomotion 

methods are ineffective. Recently, Villacres et al [13] surveyed the history of screw-propelled vehicles 

and its usage in various commercial applications. These studies shed light on the design, performance, 

and possible applications of screw-propelled vehicles. However, despite these explorations, further research 

is needed, particularly in the areas of vehicle-specific dynamics modeling, control systems, and 

optimization strategies [13] [14] [15]. 

Mobile robot research has primarily concentrated on mechanical aspects, dynamic behaviors, and 

autonomous navigation methods. Various methods and techniques have been proposed and utilized on 

different mobile robot platforms with different wheel mechanisms and topologies. For instance, Panah et 

al. [16] introduced a method to reduce slippage errors by using sensors for odometry reading detached to 

the wheels. Stonier et al. [17] addressed the nonlinear dynamic effects of slip. Loh et al. [18]  presented the 

design and kinematics analysis of a three-wheeled OMR with singularity solutions. Muir and Neuman [19] 

proposed a method to enhance dead reckoning by utilizing kinematic and feedback control for wheel 

slippage detection. Wong et al. [20] presented a tracking control method based on GA fuzzy control 

approach for a three-wheeled OMR. Liu et al. [21] developed a linearization method for controlling a three-

wheeled OMR. Huang and Tsai [22] employed Backstepping control method. Velasco-Villa et al. [23] 

formulated passivity control. Model Predictive Control (MPC) and Nonlinear MPC (NMPC) methods have 

been applied to OMR navigation, incorporating potential field-based algorithms, and considering state and 

control variable constraints [24] [25]. Several studies have utilized MPC for OMR applications [26] [27] 

[28]. Araujo et al. [29] implemented a state feedback MPC-based method, while Dinh et al. [30] applied a 

controller based on Differential Sliding Mode Tracking (DSMT). Barreto et al. [31] enhanced an MPC 

approach by using friction compensation techniques. Timothy et al. [32] designed an NMPC structure based 
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on omnidirectional motion. Cuevas et al. [33] proposed an MPC method based on a potential field approach 

for independently controlling three individual Mecanum wheels.  

This review of mobile robot control methods & navigation techniques research to mitigate navigation 

errors due to environmental and dynamic influences, has significantly deepened my understanding of 

advanced control strategies, navigation algorithms, and effective approaches to enhance autonomous 

navigation and control in robotic systems. Despite the valuable contribution made by Thoesen et al [34], 

the references specifically addressing control methods for screw-propelled robots remain limited. Thoesen 

et al. introduced a helical granular scaling law for predicting output velocity and power in a screw-propelled 

vehicle [34]. While their work provides fundamental insights, additional research is required to develop 

and validate more comprehensive and specific control strategies tailored to the unique dynamics and control 

challenges of screw-propelled robots.  

The identified research gap primarily arises from limited exploration into practical implementations and 

validation of these control strategies in real-world scenarios for screw propelled vehicles [35].The main 

limitation is that the handling characteristics and control strategies for screw propelled vehicles [36]  are 

terrain dependent and need a model based controller to appropriately navigate different terrains like water, 

mud and on intermediate grounds [37]. Our project seeks to bridge a gap by focusing on the practical 

implementation of pose estimate and experimental validation of pilot control methodologies for screw-

propelled robots which can setup the basic setup for development of model-based controller in future. 

2.2. Aided Navigation Systems 

Creating a screw-propelled vehicle capable of autonomously navigating various terrains begins with 

localizing the UGV in every environment. After localization, the UGV has the ability to retrieve, 

manipulate, and return a load. Commonly, a Global Navigation Satellite System (GNSS) [38] is used to 

determine a location in an outdoor environment. GNSS is an umbrella term for various satellite navigation 

system kinds. The United States government owns the NAVSTAR Global Positioning System, commonly 

known as GPS, which is one of the most popular GNSS. GPS services are a radio navigation system based 

in space that offers positioning, navigation, and timing services [39]. For GPS localization, at least four 

satellites must be electronically visible to the receiver. A GPS satellite transmits a radio signal with the 

current time and location; the distance across the transmitter and receiver can be calculated using the known 

speed of radio waves and the latency time between signal transmission and retrieval. Using numerous 

satellites and localization algorithms, it is possible to pinpoint the precise location of the receiver [40].   

The accuracy of GPS is limited by the line of sight across satellites and the receiver. 95% of the time, a 

well-designed GPS receiver has a horizontal accuracy of three meters or greater [39]. System accuracies of 
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up to 30 centimetres (about 11.81 inches) have been reported for GPS receivers with enhanced performance 

[41]. Such accuracies are adequate for tasks that do not require a high degree of precision (such as vehicle 

navigation), but they are inadequate for a variety of robotic applications [42]. The second limit of a GPS is 

noise or feeble signals in areas with obstructions. For instance, according to a study, GPS accuracy 

decreases by 29% in juvenile forest conditions (and by 50% under closed forest covers) compared to clear 

open heavens [43].  

In recent years, there has been growing interest in aided inertial navigation systems, driven by the 

emergence of fast and cost-effective microprocessors [44]. Inertial navigation systems determine the state 

estimates of a vehicle or missile through dead reckoning calculations based on data from inertial sensors, 

measuring the vehicle's acceleration and angular velocity at high rates. However, a key limitation of inertial 

navigation is the accumulation of errors over time, leading to unbounded error growth, which cannot be 

self-corrected without external aiding measurements [44].  

State estimates derived from the integration of inertial sensors can be corrected to rectify accumulated 

errors using an aided navigation system [45]. Aided navigation systems, where low-rate sensors like GPS 

correct the state estimates from high-rate inertial sensors, have gained prominence. Since the early 1960s, 

modern navigation has embraced hybrid (integrated) navigation systems, combining various electronic 

sensors to collect data necessary for continuous vehicle position determination and error reduction in 

inertial sensors [46]. Sindlinger [47] explored the optimization of integrated navigation systems, which 

amalgamated independent navigation sensors like inertial measurement units (IMUs), and radar [44]. 

Numerous GPS-IMU integration techniques have been explored in the literature. For instance, Grewal 

et al. [48] extensively discuss INS, GPS, and Kalman filtering, presenting a 54-states Kalman filter model. 

Magnusson delves into sensor fusion models based on the extended Kalman filter, incorporating inputs 

from low-grade GPS receivers, IMU sensors, and odometers to enhance absolute position estimation. 

Vishisht Gupta [49] focused on vehicle localization using IMUs, GPS, and a monocular camera in 

conjunction with an environmental map to bolster localization accuracy. 

Maklouf [50] describes the integration of GPS with INS using a Kalman filter in loosely coupled mode, 

estimating INS error states and navigation states using GPS measurements. Martin [51] explores differential 

GPS methods for automated vehicle convoy positioning, detailing the Dynamic Real-Time Kinematic 

(DRTK) algorithm to estimate carrier phase ambiguity and relative position vectors between GPS receivers. 

Iozan [52] presents a Hybrid Navigation System (HNS) combining the strengths of inertial sensors and 

Global Navigation Satellite Systems (GNSS) for 2D navigation, even during GNSS signal unavailability or 

intermittency. Zhao [53] emphasizes the significance of the bridging ability of standalone IMUs during 

GPS signal outages, greatly influencing the performance of GPS/IMU integrated navigation systems. 
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2.3. Sensor Integration Units 

There are two main components required in controlling a robot autonomously: a microcontroller, also 

termed as the vehicle controller, and sensors connected to the microcontroller. The microcontroller runs a 

control algorithm that uses data from the sensors and commands sent from a radio transmitter or ground 

station to control the robot by varying the speed of the motors [54]. The emergence of small, inexpensive 

and powerful flight management units has made the fusion of sensor data simpler. Some of the popular 

open-source firmware packages include Arducopter, Openpilot, Paparazzi, and Multiwii, flashed into FMU 

such as Pixhawk, Mikrokopter, Kkmulticopter, and Aerocopter [55]. These FMUs also have the capability 

to acquire sensor signals and fuse them to estimate the pose of the vehicle. On this list, the Pixhawk is one 

of the most versatile and advanced FMUs when running the PX4 open-source firmware [56]. It uses a 32-

bit ARM CortexM4 processor [57].  The system includes a programming environment, allowing the 

implementation of complex autopilot functions and sophisticated scripting of missions and flight behavior 

[58]. Being open source, it has a large community of developers constantly improving its functionality and 

adding new features [57].The Pixhawk supports a wide range of application mobile robots, from racing and 

cargo drones to large fixed-wing models, and supports autonomous functionality, a key feature for many 

drone applications. These features make the Pixhawk the final choice for this project implementation. 
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Chapter 3 : Hardware System Overview 

The mechanical vehicle used as the mobile base platform for this project is a screw-propelled omni-

directional robot named HELIX 25. This chapter will focus on the design and build of the robot and the 

kinematics of its movement. It also includes the details of the essential electronics and controllers used for 

upgrading the robot for automation. Further, the software architecture built over the hardware is also 

discussed in this chapter.  

3.1. HELIX 25 Rover and its Build 

The HELIX 25 rover is a multifunctional and amphibious vehicle designed and manufactured by 

Copperstone® Technologies Ltd., a Canadian-based engineering firm in Edmonton, Alberta. The primary 

materials used in its making are aluminum, stainless steel, and plastics. It has four screw-shaped wheels, 

referred as scrolls, that can be independently driven. The construction of these scrolls facilitates amphibious 

capabilities for varied types of terrains and the helical shape enables omni-directional motion capabilities. 

Each 19-inch-long scroll is made of a 13-inch-long cylindrical drum that keeps the rover buoyant, with 

17.3-inch-wide helical flight around the drum, that makes the Archimedean screw design. The movement 

of the rover along the longitudinal axis of the scrolls is called scrolling, while the movement of the rover 

perpendicular to this axis is called rolling (Refer to Figure 2 for fixed-body coordinate frame). 

Figure 2. HELIX 25 Rover – Top View: The coordinate axis of body-fixed frame and the scroll IDs 
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As per the axes shown in Figure 2, the linear forward and backward motion along Y-axis happens in 

Scrolling mode, while the linear forward and backward motion along X-axis happens in Rolling mode. The 

scrolling movement is used for propulsion in water, snow or soft sand, and the rolling movement is used 

for hard surfaces. The rotational movement of rover, which determines the heading angle of the rover, is 

called steering. The steering movement is achieved by maintaining differential speed proportions of 

individual scrolls relative to each other. The coordinate axes considered for our equations and the 

numbering scheme followed for each of the scrolls is also mentioned in Figure 2, which will be used in the 

further sections of this chapter where we explore the kinematic equations of the rover’s movement. 

However, it must be noted in the design of Helix rover that all the four scrolls are mounted such that the 

relative helical winding angle of each scroll complements the adjacent one (Refer to θ1,2,3,4 in Figure 2). 

That makes it more stable and flexible for more control in motion. Scroll 2 is complementary to Scroll 1 

for motion guidance, stability, and more control in motion. That way, Omni-directional movements and 

rotation/turns are made possible. Scroll 4 is similar to Scroll 2, flipped in the opposite direction for reverse 

motion capability. As the HELIX rover is a professionally developed product used for monitoring in 

hazardous environments, it is equipped to be controlled remotely with a manual hand-held transmitter, a 

similar teleoperation unit called Ground Control Station (GCS). All these operations, however, do include 

emergency stop switches for freezing the entire system immediately in cases of any emergency situations.  

3.2. Kinematics of Rolling 

In hard terrains, the scrolls act like wheels where the contact of rover and the terrain surface is only at 

the outer tips of the flights. Irrespective of the helical winding of flights, the resulting velocity of each scroll 

at the point of contact owing to reaction force from the terrain surface is perpendicular to the longitudinal 

axis of each scroll (Refer Figure 4). Therefore, the resultant motion of the center of gravity of the rover is 

also perpendicular to the longitudinal axis of the scrolls, that is in its X-direction, positive for clockwise 

rotation of all scrolls and negative for counterclockwise rotation of all scrolls as shown in Figure 3.  

Figure 3. HELIX 25 Rover – ROLL mode: The dark blue arrows on each scroll represent the 

direction of motion of each scroll and the light blue arrow in the center of the rover represents the 

direction of motion of the rover, effectively. 
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Figure 4. Free-body Diagram of Scrolls during the motion in (a) Roll Mode and (b) Scroll Mode: The 

gray curved arrow represents the rotational direction (ω); The gray arrow represents the direction 

of gravitational force (FG); The orange arrow represents the direction of normal reaction force from 

ground (FN); The brown arrows represent the direction of thrust force (FTh); The blue arrow 

represents the direction of resultant force (FRes) and the effective motion of the rover. 

The rover is steered by skid movement to turn left or right with rotation of one pair of scrolls opposite 

to the rotation direction of other pair. The pairing sets of the scrolls for this action are: {Scroll 1, Scroll 2} 

and {Scroll 3, Scroll 4}. This essentially signifies that the net velocity of rover in Y-direction is always zero 

in ROLL mode of motion. In Figure 4 (a), the free-body diagram of a scroll during the ROLL mode shows 

that the vertical force due to gravity FG acting on the mass of the scroll as well as the loading force on it 

faces a normal reaction force FN at the point of contact on the hard ground. For the given direction of 

rotation of the wheel ω, the frictional force Ff proportional to the normal force acts laterally, leading to a 

resultant force FRes as shown. 

3.3. Kinematics of Scrolling 

In fluidic terrains, the scrolls act like Archimedean screws where the scrolls have contact with the 

medium through the width of flights as well as the drum. In this way, the scrolls are partially or fully 

engulfed in the medium depending on its type, where all the forces cancel each other except for the 

propulsion forces ideally (Refer Figure 4).  

Figure 5. HELIX 25 Rover – SCROLL mode: The dark blue arrows on each scroll represent the 

direction of rotation of each scroll and the light blue arrow in the center of the rover represents the 

direction of motion of the rover, effectively. 
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These propulsion forces need not be purely aligned with the longitudinal axis of scrolls as the 

frictional effect caused by drum movement relative to medium causes slippage and the scrolls are not 

guided. Therefore, more than two scrolls are used for this rover and are also paired for scroll mode such 

that the rotation of scrolls effectively results in net velocity along the longitudinal axis of each scroll, like 

that of the motion of a screw. Consequently, the resultant motion of center of gravity of the rover is also 

along the longitudinal axis of the scrolls, that is in its Y-direction as shown in Figure 5.  

 The rover is steered by skid movement to turn left or right with rotation of scroll in each pair 

opposite to the rotation of other one. The pairing sets of the scrolls for this mode are: {Scroll 1, Scroll 3} 

and {Scroll 2, Scroll 4}. This essentially signifies that the net velocity of rover in X-direction is always zero 

in SCROLL mode of motion.  

In Figure 4 (b), the free-body diagram of a scroll during the SCROLL mode shows that the vertical force 

due to gravity FG acting on the mass of the scroll as well as the loading force on it faces a normal reaction 

force FN and the buoyancy force FB as per the medium of terrain and extent of engagement of the scrolls. 

For the given direction of rotation of the wheel ω, the frictional force Ff proportional to the normal force 

acts parallel to the surface of contact at both the drum surface Ff_D as well as the flight surfaces Ff_FL. 

Further, as per the direction of ω and the helical design of the scroll, the thrust force FTh acting on the flights 

has components along the longitudinal axis of the scroll as well as perpendicular to it. This thrust force 

pushes the scroll in the longitudinal direction, thereby facing a frictional force Ff_l against the thrust 

direction, leading to a resultant force FRes as shown. 

This Helix rover is facilitated with a manual switch for the two modes, ROLL and SCROLL, to be 

supported by the same joystick controls of the remote. The built-in on-board motor-controller on Helix 

rover translates the manual joystick control inputs to respective scroll rotations with the rotational speed of 

each scroll proportional to the magnitude of input. 

3.4. Kinematics of Holonomic Motion: Scrolling and Rolling 

In viscous terrains, the scrolls can be controlled with independent rotational movements to combine the 

mechanics of both scrolling and rolling modes, such that it results in the holonomic movement. The 

resultant motion of the center of gravity of the rover in this mode would be in any quadrant of the XY 

coordinate frame, with a heading direction dependent on the resulting velocity vector of component 

velocities in X and Y direction respectively. Considering the ideal conditions of operation for a controlled 

holonomic motion of the robot, the required movement of the scrolls relative to each other is illustrated in 

Figure 6. 
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Figure 6. HELIX 25 Rover – HOLONOMIC mode: The dark blue arrows on each scroll represent 

the direction of rotation of each scroll and the light blue arrow in the center of the rover represents 

the direction of motion of the rover, effectively. 

Holonomic motion implies that a system can move freely without constraints limiting its motion. While 

commonly discussed in planar motion, the concept can be extended to three-dimensional space and 

generalized to manifolds. Depending on the viscosity and density properties of the media, the scrolls may 

be partially or fully engulfed. Based on the viscosity of the liquid, the thrust force required to move the 

rover varies. All these analyses are applicable only for Newtonian fluids where the viscosity remains 

constant under shear stress. For certain types of media where the scroll is partially immersed, it is possible 

that the propulsion forces along the longitudinal axis of scrolls are accompanied by reaction force of the 

terrain along the length of the flight. That implies forces in two different directions acting on the rover, one 

propelling it longitudinally and the other pushing it sideways laterally. The lateral force direction need not 

be exactly perpendicular to the longitudinal axis; Its magnitude and direction will be highly dependent on 

the specific properties of the medium and a deeper understanding with more experiments is needed to model 

the same. 

Furthermore, with precise control of independent scroll rotational direction and magnitude, variable 

combinations of velocities can be achieved that can lead to steering movements of the rover on the spot 

with zero turning radius, thus making it more flexible and adaptable for hazardous and narrow terrains as 

well, subject to the interaction mechanics of scrolls with the medium. The desired steering speed, the overall 

yaw magnitude along global Z axis, is achieved through appropriate control of proportional speeds of the 

four scrolls as explained for all the practical cases.  

With this basic understanding of direction of movements, the next step is to derive the necessary 

magnitude of movement. The equations governing the kinematics of the HELIX through independent 

movement of the scrolls. Using the X axis, Y axis and Z axis (for rotation in θ) given in Figure 3, the 

kinematic equations for rover movements are given below, considering that the scrolls are paired, and their 

movement is synchronized respectively for each of the modes as additional constraints i.e. 𝑣𝑥 = 0 for scroll, 

𝑣𝑦 = 0 for roll and 𝑣𝜃 = 0 for omni directional mode,  to these equations under no slip condition:  
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𝑣𝑥 =
𝑟

4
 (𝜔1 + 𝜔2 − 𝜔3 − 𝜔4) 

𝑣𝑦 =
𝑟

4
(𝜔1 − 𝜔2 − 𝜔3 + 𝜔4)

𝑣𝜃 =
𝑟

4(𝑙𝑥 + 𝑙𝑦)
(𝜔1 + 𝜔2 + 𝜔3 + 𝜔4)

 … (1) 

Given than all scrolls are identical and of equal radius, 𝑟1= 𝑟2 = 𝑟3 = 𝑟4 = 𝑟 for solving the equations to 

give appropriate command values of 𝜔𝑖 for each scroll, that gives the following final set of expressions for 

each scroll’s rotational speed in equation 2, provided 𝑙𝑥 is the distance between front and back scrolls, and 

𝑙𝑦 is the distance between left and right scrolls as shown in Figure 2. Although, it must be noted that these 

physical parameters do not comprehensively reflect the dynamic parameters that are affected by the media 

properties, such as the effective radius of scroll, effective change in center of gravity of the rover, the 

slippage considerations and so on. That study requires an extensive set of experiments in a set of controlled 

environments to properly identify the interactions between the scrolls and the media.  

 

𝜔1 =
1

𝑟
(𝑣𝑥 + 𝑣𝑦 + (𝑙𝑥 + 𝑙𝑦)𝑣𝜃)

𝜔2 =
1

𝑟
(𝑣𝑥 − 𝑣𝑦 + (𝑙𝑥 + 𝑙𝑦)𝑣𝜃)

𝜔3 =
1

𝑟
(−𝑣𝑥 − 𝑣𝑦 + (𝑙𝑥 + 𝑙𝑦)𝑣𝜃)

𝜔4 =
1

𝑟
 (−𝑣𝑥 + 𝑣𝑦 + (𝑙𝑥 + 𝑙𝑦)𝑣𝜃)

 … (2) 

As per the hardware dimensions and measurements, the values of known physical parameters are:    𝑟 = 

175 mm, 𝑙𝑥 = 565.15 mm, 𝑙𝑦 = 508 mm. Thus, the individual rotational velocity commands to the scrolls 

are given in RPM to the on-board low-level controller when set in GCS mode, for a desired rover movement 

towards a target position, which is computed by the high-level controller as per the current state of the 

rover. The RPM commands to each of the scrolls are sent relative to the maximum capacity of the scroll in 

percentage. It is also essential to note that, in GCS mode of operation, in order to enable Scroll mode of 

motion, the velocity along X-axis is preset to zero, and to enable Roll mode of motion, the velocity along 

Y-axis is preset to zero throughout the operation. In the holonomic mode, the rotational velocity about the 

Z-axis, i.e., for the turns, is set to zero, which implies that there is no heading adjustment enabled. Further, 

the pairing of the scrolls corresponding to each mode and their synchronization is done as mentioned above.  
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The rover also has an additional payload capacity to house essential electronics, sensors and edge-

computational devices required for advanced control. The next section elaborates on the control interface 

hardware developed and integrated for autopilot mode. 

3.5. Electrical Hardware Architecture 

The rover is incorporated with computational units to facilitate real-time pose estimation and control. 

It features onboard GPS and IMU sensors for accurate localization and navigation. At the core of the 

electronic system is the Pixhawk Cube Black flight management unit, which can operate with either PX4 

or Ardupilot® firmware. This unit acts as a hub for collecting sensor data, executing sensor fusion 

algorithms, and managing the overall pose estimation operations of the rover. 

Figure 7. Overview of hardware system with sensors and electronic modules mounted on Helix. 

In addition to the flight management unit, the rover is equipped with an NVIDIA Jetson® TX2 

onboard computer (Refer Figure 7). This computing unit runs ROS Melodic version of ROS framework. 

The Jetson® TX2 is used to read in the pose estimates from the FMU, execute waypoint navigation control 

algorithms, and communicate with the Helix’s onboard motor controller board through MAVROS driver 

provided by Copperstone Technologies®. The software stack run on this computer includes the 

implementation of a waypoint algorithm specifically tailored for the HELIX rover to navigate to the 

waypoint autonomously. 
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Figure 8. Major electronic components interfaced with Helix for remote and autonomous control. 

 The electronic system, as depicted in the provided Figure 8, forms the hardware framework for 

control interface of the Helix rover which has direct access to on-board motor controller. This is being 

controlled either by the program running on Jetson for autonomous navigation or by the human operator 

using RC to takeover functionalities as it allows us to regain control in case of emergency or when the edge 

computer turns off. 

3.5.1. On-board Computing Module 

The onboard computer possesses the necessary computational capacity to execute the software stack, 

which includes a node to receive pose estimates from FMU and control strategies for navigation.  

The Jetson® TX2 module features a dual-core NVIDIA Denver 2 CPU and a quad-core ARM Cortex-

A57 CPU, offering a balance between high-performance and power efficiency. It also includes a 256-core 

NVIDIA Pascal GPU for accelerated computing tasks. With 8 GB of LPDDR4 RAM, the module provides 
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sufficient memory and threads for complex computations and data processing. Operating under a Nvidia’s 

customized Linux-based system, specifically NVIDIA L4T 32.2.3 [59].  

The Jetson® TX2 [59] module is equipped with multiple interfaces, including USB 3.0 ports, Ethernet 

connectivity, and support for display and storage devices. The Jetson® TX2 module is ideal for running 

and processing various tasks, including computationally intensive algorithms. The NVIDIA JetPack 

software, which includes the Jetson® Linux Driver Package and CUDA libraries, enabling efficient 

utilization of the module's GPU for tasks such as optimization, and navigation. 

Figure 9. The edge-computational onboard fast processing unit: NVIDIA® Jetson® TX2 [59]. 

3.5.2. Flight Management Unit (FMU) 

The flight management unit utilized in our case is the Pixhawk Cube Black. This flight controller is 

based on the Pixhawk FMUv3 open-source project and it is used only as a source of pose estimation. 

Pixhawk Cube Black equipped with 32-bit Arm Cortex-M4 running at 168MHz with 2MB of memory and 

512KB of RAM, the processor is capable of handling complex sensor fusion algorithms and calculations. 

[60] 

In addition to the processor, the Pixhawk Cube Black includes three Inertial Measurement Units (IMUs). 

The Pixhawk Cube Black also features a barometer for altitude measurement and a vibration isolation 

system to minimize disturbances from external sources. One of the key advantages of the Pixhawk Cube 

Black is its compatibility with two popular open-source autopilot firmware projects: PX4 and ArduPilot 

[61]. Both firmware options provide a wide range of tools and capabilities for our design solutions and 

applications. Both PX4 and ArduPilot were extensively tested in our rover application, and based on the 

performance evaluation, the ArduPilot is chosen as it allows various customized tuning EKF parameters. 
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The Pixhawk Cube Black flight controller offers sensor fusion capabilities through its EK3 algorithm, 

which combines data from the Inertial Measurement Unit (IMU) and GPS sensors. By integrating these 

sensors, the EK3 algorithm estimates the pose of the rover. The IMU contributes high-frequency 

measurements, while the GPS provides absolute position information at a lower rate. 

Figure 10. Low-level flight controller repurposed for ground rover application for sensor data 

fusion: Pixhawk Cube Black. [61] 

Here are the detailed specifications and descriptions of the sensors integrated into the Pixhawk Cube 

Black: [62] 

IMU. The Inertial Measurement Unit (IMU) integrated into the Pixhawk Cube Black flight controller 

consists of three-axis accelerometers and three-axis gyroscopes. The accelerometers have a resolution of 

up to 16 bits and can measure accelerations with a range of +/- 16g (g = acceleration due to gravity on 

earth). The gyroscopes have a resolution of up to 16 bits as well and can measure angular rates with a range 

of +/- 2,000 degrees per second. These sensors are used by EK3 as one of the sources for motion sensing 

to estimate poses. [60] 

Barometer. The Pixhawk Cube Black flight controller includes a barometer that provides altitude 

measurements and atmospheric pressure readings. The barometer sensor has a typical range from 10 to 100 

Pa, allowing to detect a change in air pressure. It operates based on the principle of barometric pressure 

sensing, utilizing a pressure-sensitive diaphragm to measure the ambient pressure. The barometer's 
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resolution is typically in the range of 0.01 to 0.1 Pa, enabling altitude estimation with a resolution of a few 

centimeters. [60] 

Magnetometer and Compass. The Pixhawk Cube Black flight controller is also equipped with a 

magnetometer and compass sensor, specifically the Honeywell HMC5883L. The HMC5883L is a three-

axis magneto-resistive sensor designed to measure magnetic fields. It has a measurement range of ±8 Gauss 

and a resolution of 2 milligauss. The sensor operates on the principle of Anisotropic Magnetoresistance. 

Figure 11. Interfaced module of two M8N receivers with Pixhawk Cube. Inset: GPS signal 

receiver M8N with a built-in BDS compass module and antenna. 

 The HMC5883L also includes built-in automatic calibration capabilities, which helps in heading 

measurements. This serves as one of the sources of heading angle in EKF to measure yaw. [60] 

GPS Receiver. The M8N GPS receiver module is utilized in the thesis project for precise positioning 

and navigation. The module is based on the u-blox M8N chipset, which provides high-performance 

positioning with a wide range of GNSS, including GPS, GLONASS, Galileo, and BeiDou [63]. 

The Pixhawk Cube Black features dedicated GPS ports, making it easy to connect the M8N module to 

the flight controller. The module communicates with the Pixhawk Cube Black using the Universal 

Asynchronous Receiver-Transmitter (UART) interface, transmitting the GPS data to the flight controller 

for processing. Dual GPS usage is also supported by the Pixhawk Cube Black, it is taken advantage in this 

project to use dual GPS receiver to estimate yaw. It is done because the magnetometer data reading is not 

reliable as it is deep inside the Pixhawk and can miss subtle changes in magnetic field. [60] 
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3.6. Software Architecture 

 In the software architecture of the project, the data from the two GPS receivers, IMU, compass, and 

barometer sensors are fused using the EK3 architecture within the Pixhawk Cube Black flight controller. 

This fusion process provides odometry information about the rover's position and orientation in the physical 

environment. The pose estimate is then transmitted to the high-level Jetson® onboard computer using the 

MAVROS communication interface, which is used to communicate between the flight management unit 

(FMU) and the Jetson® TX2.  

Figure 12. Overview of overall software architecture and the developed nodes of communication. 
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On the Jetson®, a custom programmed and compiled Python ROS node is implemented to utilize the 

global pose estimate and errors for the waypoint algorithm. This algorithm receives the pose updates and 

calculates the motor commands required for the rover's movement towards goal. The motor commands are 

sent from the Jetson® to the scroll motors of the Helix rover, passing via a PID-based motion controller. 

Concurrently, two MAVROS nodes run on the Jetson®: one node receives the pose estimate from the 

Pixhawk, while the other node sends motor commands to the rover. The motion planner or RVIZ 

visualization tool can be used to visualize the rover's trajectory and monitor its motion on real time to know 

if the rover is following given trajectory or not. 

To facilitate communication between the high-level Jetson® and an external laptop or base station, VNC 

protocol or SSH can be employed. This allows for the sending of commands to Jetson® or receiving data 

from it remotely. Additionally, the waypoint algorithm and the rover's behavior can be simulated in Gazebo, 

a robot simulation environment, providing a virtual representation of the robot's model, its kinematics, and 

dynamics, enabling rigorous existential testing and validation before deployment. The overall architecture, 

the tools used for software development, the communication paths connected and how all the systems 

interact seamlessly in relation to individual modules are demonstrated and also shows how the units interact 

with the graphical interface is shown Figure 12. 

3.6.1. Pose Estimation in Pixhawk using EK3 

The Estimation and Control Library (ECL) in Pixhawk uses an Extended Kalman Filter (EKF) algorithm 

to process sensor measurements and provide an estimate of Quaternion defining the rotation from North, 

East, down local earth frame to X, Y, Z body frame [64]. The EKF runs on a delayed 'fusion time horizon' 

to allow for different time delays on each measurement relative to the IMU. The default behavior is to run 

a single instance of the EKF. Depending on the number of sensors it is decided to run 6 instances of the 

EKF to predict the pose estimate as shown in Figure 13. 

 For optimal pose estimation performance, parameter tuning of Extended Kalman Filter (EKF) algorithm 

in mission planner is conducted based on iterative practical experience in the ambient conditions. Below 

Table 1 gives the list of main parameters changes manually based on field experience after loading the 

standard parameters into the Pixhawk. These parameters are the parameters directly depending upon the 

sensor bias, sensor noise and working range. Parameters values are tweaked based on the selected M8N 

GPS sensor module and it is noise range in the ambient environmental conditions. Ranges for the tweaking 

are found from the literature or in the sensor manuals and based on the initial experience in the field when 

working with the sensor system. 
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Table 1. Pixhawk EKF tuned parameters. 

Parameter Name Value Units Range Description 

EK3_ABIAS_P_NSE 0.003 m/s/s/s 0.00001 - 0.02 
This noise controls the growth of the 

vertical accelerometer delta velocity bias 

state error estimate. 

EK3_ACC_BIAS_LIM 1 m/s/s 0.5 - 2.5 
Accelerometer bias state is constrained 

within the specified value. Increasing it 

makes the filter trust the accelerometer 

measurements less and other 

measurements more. 

EK3_ACC_P_NSE  0.35 m/s/s 0.01 - 1.0 
This control disturbance noise controls 

the growth of estimated error due to 

accelerometer measurement errors 

excluding bias. 

EK3_ALT_M_NSE 2 m 0.1 - 100.0 
This is the RMS value of noise in the 

altitude measurement. Increasing it 

reduces the weighting of airspeed 

measurements 

EK3_EAS_I_GATE 400 

 

100 - 1000 
This sets the percentage number of 

standard deviations applied to the 

airspeed measurement innovation 

consistency check. 

EK3_EAS_M_NSE 1.4 m/s 0.5 - 5.0 
This is the RMS value of noise in 

equivalent airspeed measurements used 

by planes. Increasing it reduces the 

weighting of airspeed measurements. 

EK3_ERR_THRESH 0.2 

 

0.05 - 1 
Lane consistency threshold determines 

the necessary error level difference to 

reduce overall relative core error during 

lane switching. 
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EK3_GYRO_P_NSE 0.015 rad/s 0.0001 - 0.1 
This control disturbance noise controls 

the growth of estimated error due to gyro 

measurement errors excluding bias. 

EK3_POS_I_GATE 500 

 

100 - 1000 
This sets the percentage number of 

standard deviations applied to the GPS 

position measurement innovation 

consistency check. 

EK3_POSNE_M_NSE 0.5 m 0.1 - 10.0 
This sets the GPS horizontal position 

observation noise. 

EK3_VEL_I_GATE 500 

 

100 - 1000 
This sets the percentage number of 

standard deviations applied to the GPS 

velocity measurement innovation 

consistency check. 

EK3_VELD_M_NSE 0.7 m/s 0.05 - 5.0 
This sets a lower limit on the speed 

accuracy reported by the GPS receiver 

that is used to set vertical velocity 

observation noise. 

EK3_VELNE_M_NSE 0.7 m/s 0.05 - 5.0 
This sets a lower limit on the speed 

accuracy reported by the GPS receiver 

that is used to set horizontal velocity 

observation noise. 

EK3_YAW_I_GATE 300 

 

100 - 1000 
This sets the percentage number of 

standard deviations applied to the 

magnetometer yaw measurement 

innovation consistency check. 

EK3_YAW_M_NSE 0.5 rad 0.05 - 1.0 
This is the RMS value of noise in yaw 

measurements from the magnetometer. 

Increasing it reduces the weighting on 

these measurements. 
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Figure 13. Flowchart of the Integrated Navigation Solution with updated EKF output of data fusion 

from multiple sensors. 

 

The Estimation and Control Library (ECL) in Pixhawk uses an Extended Kalman Filter (EKF) algorithm 

to process sensor measurements to give pose estimates. The first three instances are for getting prediction 

for each of the available Inertial Measurement Unit (IMU) in Pixhawk and the fourth one to merge the 

results of all the IMU and fifth one to merge GPS position and last Extended Kalman Filter is to merge 

barometer. It is designed in this way because EKF can still give the prediction even if any one of the input 

sensors is not available for a period due to any reason. For optimal pose estimation performance, parameter 

tuning of EK3 is done using the above 15 parameters mentioned in Table 1. These parameters are tuned to 

affect accuracy of the EK3 and the band for modifying each of them is finalized based on operating range 

and they are tuned on trial-and-error method to come up with best set of parameters to get acceptable 

accuracy for this system.  
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3.6.2. Robot Operating System - ROS 

The software architecture used in this project is ROS Melodic. ROS Melodic, released in May 2018, is 

designed to work under Ubuntu 18.04. The Robot Operating System (ROS) serves as the underlying 

software architecture for interfacing and communication within the HELIX robot's system. In this thesis, 

ROS is utilized to communicate between the Pixhawk Cube Black flight controller, the high-level Jetson® 

computer, sensors and motor control unit. 

 ROS is used to receive pose estimates from the Pixhawk FMU, run a control loop for waypoint 

following, and issuing commands to the Helix’s onboard motor control board. 

3.6.3. MAVLINK / MAVROS 

MAVLink®, also known as Micro Air Vehicle Communication Protocol, is a lightweight 

communication protocol originally designed for unmanned systems. MAVLink® enables the exchange of 

data between the ground control station (GCS) and the unmanned vehicle (UV). It provides a standardized 

format for sending and receiving messages related to vehicle state, sensor data, control commands, and 

more. [65] 

For our purposes, we employ MAVROS, a ROS package that allows sending and receiving MAVLink 

messages. (Refer Figure 14). 

By utilizing MAVROS [65], the high-level computer Jetson® is able to receive pose estimates and other 

relevant data from the Pixhawk Cube Black FMU. This data is used by the control algorithm running 

onboard the Jetson. Moreover, MAVROS allows sending commands from the Jetson® to the rover's motor 

control board. Two MAVROS nodes are used, and one is designed by us for sending pose estimates to the 

Jetson and MAVROS node is provided by Copperstone technologies® for communicating with the motor 

drivers. 

Figure 14. Communication flow between the MAVROS nodes and the Controller. 

3.7.  High-Level Logic and PID Control for Waypoint Navigation 

The goal of the algorithm is to navigate the rover to a series of predefined waypoints by using the current 

position and heading of the rover and creating a command for onboard motor controller to move the rover 
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towards the target waypoint. The algorithm utilizes a PID (Proportional-Integral-Derivative) controller as 

the base controller for the rover's motion control. 

The main loop of the algorithm loops around constantly checking the distance error between the rover's 

current position and the goal waypoint. If the distance error is below a certain threshold, the algorithm 

considers the goal waypoint has reached and proceeds to the next one; Else, the core command-velocity 

algorithm comes into operation. This core velocity-command algorithm is developed for different modes 

of rover movement: ROLL mode and SCROLL mode that give twist command based on calculated heading 

and distance error, OMNI directional mode that also gives twist command with no heading adjustment but 

only for the x and y axis. 

For the ROLL and SCROLL modes, the command-velocity algorithm calculates the heading error by 

comparing the rover's current orientation with the desired heading towards the goal waypoint as shown in 

below equations. (𝑥ref, 𝑦ref) and (𝑥, 𝑦) are the coordinates of goal position point and current position point 

respectively. Whereas 𝜃ref 𝑎𝑛𝑑 𝜃 are heading goal angle and current yaw angle of the rover. 

 
𝜃ref = atan2(𝑦ref − 𝑦, 𝑥ref − 𝑥) … (3) 

 𝐸𝑌𝑎𝑤 =  (𝜃ref ⊖ 𝜃) … (4) 

 𝜃ref ⊖ 𝜃 = (𝜃 − 𝜃ref + 𝜋)𝑚𝑜𝑑(2𝜋) − 𝜋 
… (5) 

Heading error is calculated based on shortest angular distance algorithm given below. This calculates 

the shortest angular distance between the current yaw and the heading goal angle in a unit circle. 

Figure 15. Shortest Angular Distance Logic 

 
𝐸𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √(𝑥ref − 𝑥)2 + (𝑦ref − 𝑦)2 

… (6) 
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 Distance error is calculated based on equation. Depending on the magnitude of the heading error, this 

algorithm determines the appropriate action for each of the modes. If the heading error is more than 0.2 rad, 

the rover is instructed to turn in place until the error becomes smaller than 0.2 rad. The objective of turn is 

what differentiates the ROLL mode from SCROLL mode, where the target axis of alignment in each case 

is rover’s X-axis or Y-axis respectively as shown in Figure 17. Once the heading error is within a prescribed 

threshold of 0.2 rad, the rover then moves forward while correcting the heading error using the PID 

controller law as given by below equations). 

Figure 16. Control Strategy of rover to generate velocity command. 

The PID controller at the base motion-control stage considers the proportional, integral, and derivative 

terms of the error in distance and heading of the rover from its real-time feedback sensors to generate 

appropriate linear velocity and angular velocities to minimize the real-time error. 

 
𝑣 = 𝑘𝑝

𝑣 ∗ 𝐸𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + 𝑘𝑑
𝑣 ∗

[𝐸𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 − 𝑃𝑟𝑒𝑣 𝐸𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒]

∆𝑇
+ 𝑘𝑖

𝑣 ∗ ∫ 𝐸𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ∆𝑇 
… (7) 

 
𝛾 = 𝑘𝑝

𝛾
∗ 𝐸𝑌𝑎𝑤 +  𝑘𝑑

𝛾
∗

[𝐸𝑌𝑎𝑤 − 𝑃𝑟𝑒𝑣 𝐸𝑌𝑎𝑤]

∆𝑇
+  𝑘𝑖

𝛾
∗ ∫ 𝐸𝑌𝑎𝑤 ∆𝑇 

… (8) 

  As the control algorithm is linear and based on Corke’s algorithm it can go into the limit cycle based 

on the goal points it’s following. Goal points should be selected in such a way that it won’t go into cyclic 

error and end up executing limit cycle. Pre-alignments were taken care to decrease the chances of 

encountering a limit cycle in the system when control logic is performed. This forward motion along 

positive X-Axis is referred to as forward movement in ROLL mode, while the similar forward motion along 
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positive Y-Axis is referred to as forward movement in SCROLL mode when the rover approaches the goal 

waypoint from the current position. 

Figure 17. Heading angle error for roll mode and scroll mode, aligning X and Y axes, respectively. 

Throughout the execution of the overall algorithm, the rover's individual scroll rotational velocities are 

calculated based on the global velocity commands to the rover, and the individual motor commands are 

published to the appropriate topic for controlling the scroll motors as a percentage of maximum RPM; 

maximum RPM of motors in helix -25 can go up to 195 RPM at no load condition. The algorithm continues 

to execute until all waypoints have been reached. Once the goal has been reached, the algorithm stops the 

rover, publishes the status that goal is reached, and saves the trajectory data for history and overview. 

Finally, the rover is disarmed, and the program ends. Figure 18 given below shows the algorithm used for 

PID way point navigation in this thesis. This forms the core of control strategy for way point navigation in 

reaching goals autonomously.  
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Figure 18. Helix PID Control Algorithm 
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Figure 19. ROLL-Mode Algorithm Flow: Align the front heading towards goal and move forward 

(X). 

    This waypoint algorithm provides a fundamental framework for autonomous navigation of the rover 

using PID controller for motion commands based on pose estimates. It enables the rover to follow a 

predefined path efficiently and accurately with tolerable deviations. 
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3.8. Experimental Set-up 

3.8.1. Lab Set-up – Helix on Block 

The storage location for the Helix rover is typically on the 4th floor of the Mechanical Building at the 

University of Alberta. Given the dimensions of the rover, approximately 4 feet by 4 feet, and its weight of 

approximately 250 pounds, a minimum team of five individuals is necessary to facilitate its transportation 

from the 4th floor to the ground floor using the building's elevator. These logistical constraints have led to 

the majority of the rover's functional testing being conducted within the confines of the laboratory facility, 

where the rover is securely mounted on a support block. All testing needs to be done in outdoor settings to 

obtain a GPS signal for the pose estimation system. This is particularly relevant due to the laboratory's 

location, surrounded by tall buildings adjacent to the Mechanical Engineering Block within the University 

of Alberta campus.  

Figure 20. Fully Assembled Helix Rover on Block: The Helix rover, equipped with a comprehensive 

array of electronic components and hardware interfaces, stands ready for testing and 

experimentation in the controlled laboratory environment. 

The proper working of all the individual scroll modules and electronics modules were tested mounting 

the helix on block here before moving on to the field. Figure 21 shows the setup of the system for field 

testing. 
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Figure 21. The setup of the system for field test includes – A) Fully assembled and control interface-

integrated Helix rover, B) Safe loading and unloading of rover from a truck at the desired location 

by at least two persons, and C) The internal communication architecture for interacting with the 

edge-computer on rover from a remote laptop carried by the user via internet or intranet modem. 

 

 

 

 

A B 

C 
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Chapter 4 : Simulation of Rover Motion Algorithms in ROS 

The algorithms programmed for the developed control logic need to be examined closely to ensure 

correctness and comprehensive flow of instructions. Simulations in robotics are, therefore, deemed as 

essential mode of such evaluation and verification of the algorithms, wherein the system kinematics are 

also modelled for direct implementation tests as required. This chapter will focus on the kinematics of robot 

movement in the simulation environment, the implementation of algorithms and the testing for various 

trajectories. Further, the software architecture used for simulation is replicated to be same as the one built 

over the hardware as discussed in the previous chapter, except for the sensors and actuators that are 

transformed into imitation modules. Since the software architecture is built on ROS framework, the 

simulation tool used is a built-in simulator called Gazebo™. 

4.1. ZM Mecanum Robot and its Kinematics 

To begin with the development of algorithms for a holonomic vehicle, we employ an open-source model 

of ZM Mecanum Robot. This mobile robot is made of four independently driven mecanum wheels, which 

enable the robot to practice omni-directional movement [66] (Refer to  Figure 22). As the locomotion 

behavior of the HELIX rover is conditionally holonomic (as explained in Chapter 3 :), paring wheels 

structure and the kinematics are similar to that of ZM’s omni-directional movement and thereby, the 

simulation is first run on ZM model for initial verification. 

Figure 22. 3D Simulation model of four-Mecanum-wheeled robot platform 
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Figure 23. The 3D model of ZM Mecanum robot, spawned at origin in Gazebo™ simulation 

environment launched in ROS. 

The decision to employ the ZM robot with mecanum wheels for the autonomous waypoint PID control 

algorithm pilot test within the Gazebo simulation framework was driven by the need to verify the 

implementation of the control algorithm before hardware testing. While the ZM robot and the Helix rover 

differ in their physical attributes, both share similar mechanics for holonomic movement, although it is only 

conditional for Helix rover to exhibit holonomic movement. This shared characteristic enables the ZM robot 

model to provide a deeper understanding of simulation framework to repurpose the software package for 

Helix rover as well for its own inertial parameters and dimensions which would affect its performance. 

Although not a direct replica of the Helix, the ZM robot's mecanum wheel design and omnidirectional 

functionality effectively facilitate the algorithm's validation, ensuring its correctness and functionality for 

varied trajectories prior to application on the 3D model of Helix rover. It also expedites the algorithm's 

development, allowing for parameter tuning, scenario exploration, and behavior analysis without the 

logistical complexities associated with real-world testing. 

4.1.1. Simulation Environment Set-up 

The Gazebo simulator uses the URDF (Unified Robot Description Format) file to load the 3D model of 

the ZM robot, capturing its visual and inertial properties. It also launches required ROS controllers, the so-

called fake controllers to enable interaction with the simulated robot. These controllers translate algorithm-
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generated commands into actions within Gazebo simulation environment for thorough control algorithm 

assessment and enhancement. 

The Forward Command Topic ('/cmd_vel') serves as the mode for transmitting motion commands from 

the control algorithm to the simulated robot. The real-time feedback is carried by Odometry Feedback 

('/odom'), that gives detailed position and orientation data, that is used for calculating distance and heading 

errors with respect to desired values for dynamic trajectory tracking. We developed a controller module in 

Python that subscribes to odometry (/odom) and publishes commands to the robot (/cmd_vel). It must be 

noted that the odometry information obtained from simulation is always perfect as Gazebo™ simulator 

version used here is limited to kinematics only with no force dynamics included. That makes the actual 

process pipeline oblivious to errors in hardware trials, where the data quality depends on the sensors used. 

Therefore, in the field tests, the accuracy of the pose estimates by Pixhawk will have significant influence 

on controller’s performance and thereby determines the tolerance in execution. 

4.1.2. Experimental Methodology 

The primary objective of this study is to comprehensively assess the efficacy of the three control 

algorithms: ROLL, SCROLL, and OMNI directional modes. To thoroughly examine the versatility and 

performance of these methods, a deliberate choice of diverse trajectory patterns was made. These 

trajectories encompass a 10m x 10m SQUARE, a HEXAGON with each side measuring 2m, and a 2m-

radius CIRCLE centered at (2, 2). This trajectory selection aims to evaluate the algorithms across a range 

of transition movements and shapes, providing insights into their adaptability and robustness to also 

determine the feasible waypoint distance for ZM as well as Helix rover. To ensure accurate comparisons, 

the maximum velocity was constrained to 0.6 m/s. During simulation, we log all the signals, including 

odometry and control inputs for offline plotting, that aids visualizing and troubleshooting. 

4.2. Motion Planning Algorithms Testing – Plots and Results 

In this section, we delve into the key observations derived from the data and corresponding visual 

representations, as depicted in the accompanying plots and figures. We study the robot's trajectory tracking, 

looking for any deviations and variations against the expected paths. Thus, we examine the error in the 

simulation, that could be attributed to issues with the logic and/or its program to be corrected accordingly. 

We also delve into detailed analysis of the algorithm's performance, to interpret its strengths and limitations.  

4.2.1. Trajectory 1: Square 

We use a 10mx10m square as the reference trajectory. In Figure 24, we outline the critical dimensions 

and parameters of our square trajectory, a fundamental testing scenario for our autonomous navigation 

algorithms. 
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Figure 24. The definitive details of square trajectory movement: the start point, the stop point, the 

position of four waypoints, and the direction of motion. 

This geometry simplifies the analysis of the robot's performance and error accumulation during 

traversal, with four key waypoints where the robot changes its heading. The robot moves in a 

counterclockwise direction. Table 2 presents a comprehensive overview of our simulation results for the 

execution of three distinct algorithms - Roll, Scroll, and Omni-directional modes - when applied to a square 

trajectory movement scenario. 

Table 2. Simulation results for execution of three algorithms for (i) roll, (ii) scroll and (iii) omni-

directional modes, respectively for square trajectory movement, which includes: (a) resultant 

trajectory followed, (b) position variation with time, (c) velocity variation with time, (d) error in 

position and angle with time, (e) wheel power (proportional to wheel rpm). 

Algorithm-1  

ROLL Mode 

Algorithm-2  

SCROLL Mode 

Algorithm-3 

OMNI-DIRECTIONAL  

TRAJECTORY    

START 

STOP 

WAYPOINT 
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POSITION (X, Y, Theta) 
  

VELOCITY (X, Y, Theta)   
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ERROR (X, Y, Theta)   

WHEEL POWER / RPM 
  

 

(a-i, a-ii, a-iii): Resultant Trajectory Followed –  

This set of figures visually represents the paths followed by the robot when executing the Roll, Scroll, 

and Omni-directional algorithms. In the case of the Roll algorithm (i) and the Scroll algorithm(ii), the 

robot's trajectory produces a near-perfect square trajectory, indicating superior precision at the corners that 

results in smoother turns with fewer deviations. Indeed, the roll and scroll modes are identical to each other 

except for the 90-degree rotation difference. Conversely, the Omni-directional mode (iii) exhibits relatively 

sharp corners but with significant adjustments and noticeable deviations from the ideal square shape.  

(b-i, b-ii, b-iii): Position Variation with Time –  

This set of figures illustrates how the robot's position evolves over time during each algorithm's 

execution. For the Roll algorithm (i) and the Scroll algorithm (ii), the rover shows stable position 

maintenance with respect to X and Y axes that display minimal position deviations, indicating precise 

control, and a deterministic show of yaw angle adjustments at each waypoint where the heading is adjusted. 
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The Omni-directional mode (iii) stands out with significant oscillations in yaw angle that indicates 

continuous heading adjustments throughout the trajectory, and it also shows deviations in X and Y axes 

that attribute to the noticeable deviations observed in resultant trajectory is visible from the position plot 

variation with time. 

(c-i, c-ii, c-iii): Velocity Variation with Time –  

This set of figures provides insights into how the robot's velocity changes throughout the simulation. In 

the Roll algorithm (i), we observe synchronous pulses when the linear X motion and rotational motion are 

complementarily active, and zero velocity along Y-axis as expected. The Scroll algorithm (ii) exhibits 

similar velocity transitions as for the Roll algorithm, leading to graceful motion with Y-axis heading for 

the entire trajectory and zero velocity along X-axis. Omni-directional mode (iii) shows frequent and abrupt 

changes in velocity, resulting in jerky movements along both the X and Y axes, ensuring no adjustment in 

its heading with zero rotational velocity throughout. 

(d-i, d-ii, d-iii): Error in Position and Angle with Time –  

This set of figures tracks the errors in both position and orientation (angle) of the robot over time. In the 

Roll algorithm (i) and the Scroll algorithm (ii), position errors are identical, and angular errors are present 

only during sharp turns. The Omni-directional mode (iii) shows completely alike behavior for variations in 

both X and Y axes, with the peak variation only at the waypoints.   

(e-i, e-ii, e-iii): Wheel Power (Proportional to Wheel RPM) –  

This set of figures displays the power consumed by each wheel, which is proportional to its rotational 

speed, theoretically for a given torque consumption. All the modes clearly demonstrate the pairing of the 

scrolls for each movement and their synchronized power distribution at equal magnitude is very visible 

from the wheel power plots.  

4.2.2. Trajectory 2: Hexagon 

We now use a 2-meter sided hexagon as the second reference trajectory. This trajectory brings in more 

waypoints at closer distance to each other and a shorter change in heading angle at each waypoint, compared 

to previous trajectory. This helps us understand how the control algorithm behaves if the goal points are 

closer to each other when navigating from one to another goal. In Figure 25, we outline the critical 

dimensions and parameters of our hexagon trajectory, along with the positions of six waypoints at its 

vertices. The rover again moves in a counterclockwise direction to navigate through all the six points of the 

hexagon. 
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Figure 25. The definitive details of hexagon trajectory movement: the start point, the stop point, 

the position of four waypoints, and the direction of motion. 

Table 3. Simulation results for execution of three algorithms for (i) roll, (ii) scroll and (iii) omni-

directional modes, respectively for hexagon trajectory movement, which includes: (a) resultant 

trajectory followed, (b) position variation with time, (c) velocity variation with time, (d) error in 

position and angle with time, (e) wheel power (proportional to wheel rpm). 

Algorithm-1  

ROLL Mode 

Algorithm-2  

SCROLL Mode 

Algorithm-3 

OMNI-DIRECTIONAL  

TRAJECTORY    
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POSITION (X, Y, Theta)   

VELOCITY (X, Y, Theta)   
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ERROR (X, Y, Theta)   

WHEEL POWER / RPM   

 

The figures in Table 3 above provide a comprehensive analysis of the three control algorithms (Roll, 

Scroll, Omni-Directional) applied to the Hexagon trajectory. 

The Roll and Scroll modes present precise trajectory tracking with minor heading adjustments along the 

edges, while the Omni-Directional mode showcases a sharper trajectory with minimal deviations at 

waypoint 2 and waypoint 5, where the offset is distinguishable.  

In comparison to square trajectory omni-directional mode (iii) shows more frequent changes in velocity 

as the waypoints are closer, resulting in jerky movements along both the X and Y axes, while ensuring no 

adjustment in its heading with zero rotational velocity throughout. All the three modes show similar position 

errors in X and Y directions at each waypoint, except that the Roll/Scroll modes demonstrate smoother 

transitions through sharp turns than the other. However, in the angular deviations, the Omni-Directional 

mode shows incremental behavior unlike the Roll mode or Scroll mode, as expected from its kinematics.  
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4.2.3.   Trajectory 3: Circle 

The Circle trajectory shown in Figure 26, consists of a 2-meter radius circle traversed in 

counterclockwise direction. The starting point of the Circle trajectory is at coordinates (4m, 2m), while its 

center is at coordinates (2m, 2m) in the workspace. This trajectory consists of 25 waypoints to make it 

smooth and continuous, which expects rover to adjust its position and heading more frequently, while 

navigating in a confined environment. Table 4 presents simulation results for the execution of three 

algorithms across Roll, Scroll, and Omni-Directional modes, focusing on the Circle trajectory. 

Figure 26. The definitive details of circle trajectory movement: the start point, the stop point, the 

position of four waypoints, and the direction of motion. 

Table 4. Simulation results for execution of three algorithms for (i) roll, (ii) scroll and (iii) omni-

directional modes, respectively for circle trajectory movement, which includes: (a) resultant 

trajectory followed, (b) position variation with time, (c) velocity variation with time, (d) error in 

position and angle with time, (e) wheel power (proportional to wheel rpm). 

Algorithm-1  

ROLL Mode 

Algorithm-2  

SCROLL Mode 

Algorithm-3 

OMNI-DIRECTIONAL 

TRAJECTORY    
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POSITION (X, Y, Theta)   

VELOCITY (X, Y, Theta)   
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ERROR (X, Y, Theta)   

WHEEL POWER / RPM   

 

The Omni-Directional mode exhibits occasional path adjustments after finishing each semi-circle. Both 

the modes display negligible velocity variations about the heading angle, signifying the reorienting behavior 

at every waypoint. Omni-Directional mode showcases smooth and precise velocity control. It also shows 

gradually incremental and significant yaw error. The synchronization of wheel movements for each 

movement is more prominent in circular trajectory plot and demonstrates the adaptability of the algorithm 

for close waypoints as well. For all the three trajectories, the only source of error in tracking trajectory is 

from the PID tuning in such simulation environment where every other sensor/feedback source is ideal. 

4.3. HELIX Screw-Propelled Rover – Model and its Kinematics 

4.3.1. Digital 3D Model and Robot Description 

In Gazebo simulations, the URDF and model’s inertial parameters are crucial for an accurate kinematics 

simulation. The inertial parameters include the mass, center of mass location, and the moment of inertia 

matrix of all links. An accurate simulation requires physically plausible inertial parameters, which directed 

us to develop the standard robot description for Helix rover as well. The moments of inertia in URDF are 

https://classic.gazebosim.org/tutorials?tut=inertia
https://classic.gazebosim.org/tutorials?tut=inertia
https://classic.gazebosim.org/tutorials?tut=inertia
https://classic.gazebosim.org/tutorials?tut=inertia
https://classic.gazebosim.org/tutorials?tut=inertia
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expressed as the components of a symmetric positive-definite 3x3 matrix, with 3 diagonal elements, and 3 

unique off-diagonal elements. For custom structures like Helix rover, the best approach to obtain these 

parameters is from its 3D digital model, created as shown in Figure 27.  

The design and modeling of the Helix rover are facilitated through an application called SolidWorks®, 

a computer-aided modeling software. The rover's dimensions are based on physical measurements, enabling 

its seamless integration into simulations with direct export of parameters in URDF format to Gazebo™. 

The Helix rover's design is represented in the. sldasm format. This combination of SolidWorks® and 

Gazebo™ enables acceptable kinematic simulations to understand the Helix rover’s performance 

requirements, owing to its size, structure, and mechanics. This conversion process is accomplished using a 

specialized URDF converter designed to transform the. sldasm file into a .urdf file. During this conversion, 

particular attention is given to specifying the control and limiting variables that are integral to the robot's 

behavior and movement, as shown in Table 5.  

 

 

Figure 27. Digital 3D Model of Helix Screw-Propelled Rover. 

 

https://classic.gazebosim.org/tutorials?tut=inertia
https://classic.gazebosim.org/tutorials?tut=inertia
https://classic.gazebosim.org/tutorials?tut=inertia
https://classic.gazebosim.org/tutorials?tut=inertia
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Table 5. Input limits added to Helix Rover URDF, varying from ZM robot. 

 

Properties Base Link Scroll 1 Scroll 2 Scroll 3 Scroll 4 

Center of Mass X 

Coordinate (m) 
0.0014244 0.24964 -0.26396 -0.26388 0.24915 

Center of Mass Y 

Coordinate (m) 
0.026935 -5.1047E-07 -5.1047E-07 -5.2268E-07 -5.657E-07 

Center of Mass Z 

Coordinate (m) 
-0.079565 3.7589E-07 3.7589E-07 3.6946E-07 4.6229E-07 

Mass (kg) 48.194 17.19 17.19 17.19 17.19 

Moment of Inertia 

Ixx (kg.m2) 
1.4866 0.62344 0.62344 0.62344 0.62344 

Moment of Inertia 

Ixy (kg.m2) 
0 0 0 0 0 

Moment of Inertia 

Ixz (kg.m2) 
0 0 0 0 0 

Moment of Inertia 

Iyy (kg.m2) 
2.587 0.62344 0.6234 0.6234 0.6234 

Moment of Inertia 

Iyz (kg.m2) 
0 0 0 0 0 

Moment of Inertia 

Izz (kg.m2) 
5.053 1.0424 1.0424 1.0424 1.0424 

Joint Name base_joint jointLF jointLB jointRB jointRF 

Joint Type Fixed Continuous Continuous Continuous Continuous 

Joint Origin X (m) 0 0.25396 -0.25409 -0.25391 0.25404 

Joint Origin Y (m) 0 0.01 -0.0165 0.01 -0.019 

Joint Origin Z (m) 0.5 -0.3429 -0.3429 -0.3429 -0.3429 

Joint Origin Roll 

(rad) 
0 0.22071 0.22071 1.864 0.67383 

Joint Origin Pitch 

(rad) 
0 0 0 0 0 

Joint Origin Yaw 

(rad) 
0 1.5734 -1.5734 -1.5734 1.5734 

Limit Velocity 

(rad/s) 

 
1.5 1.5 1.5 1.5 
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Limit Lower (rad) 
 

-3.1412 -3.1412 -3.1412 -3.1412 

Limit Upper (rad) 
 

3.1412 3.1412 3.1412 3.1412 

 

 This model can be further enhanced with actual 3D design models used for fabrication of Helix rover, 

and thereby could be made more comprehensive of its physical properties to run more advanced simulation 

tests that may include evaluation of force dynamics and assist for simulated testing of more sophisticated 

motion controllers. 

4.3.2. Motion Planning Algorithms Testing  

Extending the simulation tests for the Helix rover is important to ensure that the test requirements and 

control algorithms align with the physical and inertial properties of Helix rover. Since the algorithms have 

undergone correctness verification in ZM simulations, covered in the previous section, this set of tests also 

allows us to validate the developed digital model and its robot description. 

The behavior of the Helix rover, although identical to ZM robot, may differ in control requirements and 

geometric capacities due to varied physical parameters and input limits for the same set of algorithms and 

trajectories. With that limited purpose, the simulations are only conducted on ROLL mode for the same set 

of three trajectories. 

4.3.3. Helix Simulation – Plots and Results 

The simulation tests for the Helix rover encompassed three distinct trajectory shapes: Square, Hexagon, 

and Circle, as shown in Figure 28. Each trajectory brought forth unique challenges and insights into the 

rover’s expected performance. The square trajectory is 10m x 10m path, starting from the origin (0,0) with 

4 waypoints. The hexagon trajectory is a 2m sided path, starting from the origin (0,0) with 6 waypoints. 

The circle trajectory is of radius 2m, centered at (2,2) with 25 waypoints. All the movements are in a 

counterclockwise direction.   

Figure 28. The definitive details of A. Square, B. Hexagon, and C. Circle trajectory movements, 

respectively: the start point, the stop point, the position of four waypoints, and the motion direction. 

START 

STOP 

WAYPOINT 

A. 

... 

B. C. 
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Comparing the results across the different trajectory shapes allowed for an evaluation of the ROLL mode 

control algorithm and Helix’s expectations. The square trajectory provided insights into the rover's ability 

to navigate sharp turns, while the hexagon tested its performance on a path with numerous angles. The 

circle trajectory, being continuous, assessed the rover's precision in maintaining a curved trajectory with 

constant heading adjustments required. Table 6 presents a detailed analysis of the simulation results. 

Table 6. Simulation results of Helix rover for execution of Roll mode algorithm for three different 

trajectories (i) Square, (ii) Hexagon, and (iii) Circle, respectively for square trajectory movement, 

which includes: (a) resultant trajectory followed, (b) position variation with time, (c) velocity 

variation with time, (d) error in position and angle with time, (e) wheel power (proportional to 

wheel rpm). 

Trajectory-1  

SQUARE 

Trajectory-2  

HEXAGON 

Trajectory-3 

CIRCLE  

TRAJECTORY  
  

POSITION (X, Y, Theta)   
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ERROR (X, Y, Theta)   

VELOCITY (X, Y, Theta) 
  

WHEEL POWER / RPM   
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Position Variation with Time (Table 6-a): In the Square trajectory, the rover exhibits relatively steady 

position tracking with minimal deviations except for the overshoot the end of third goal point, which can 

be mitigated by tuning 𝑘𝑖. The Hexagon trajectory introduces more complex curves compared to the Square. 

As a result, there is a slight increase in position variation, but it still remains within acceptable limits. The 

Circle trajectory introduces continuous curvature, resulting in slightly increased position variation. 

However, the rover maintains a generally smooth path. 

Velocity Variation with Time (Table 6-b): The velocity profile for square shows that the rover maintains 

consistent speeds along the straight sections of the path and executes smooth deceleration and acceleration 

at the corners. The rover adeptly adjusts its speed during the sharper turns of the Hexagon, maintaining 

controlled movement. It also shows controlled speed adjustments, particularly during the transition from 

straight sections to curved segments in circle trajectory. 

Error in Position and Angle with Time (Table 6-c): The error in position and angle remains low throughout 

the trajectory, indicating the rover's high precision in navigating the Square path. While there is a modest 

increase in error compared to the Square trajectory, the rover effectively manages to follow the Hexagon 

path. There is a further slight increase in error in both position and angle, which is expected given the 

continuous curvature of the Circle. 

Wheel Power (Figure Table 6-d): This curve mainly confirms the synchronization and pairing of the scrolls 

for respective motions corresponding to each movement.  

The results for all three trajectories confirm that the Roll mode algorithm successfully enables the Helix 

rover to navigate different path shapes effectively, confirming that the results are similar to those observed 

for ZM Mecanum robot. 
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Chapter 5 : Field Testing and Results 

In order to evaluate the control logic developed for autonomous waypoint navigation, the closed-loop 

control needs to be tested for its adaptability to real-world terrains and practical scenarios. Although 

Gazebo® simulations offered verification of correctness for the algorithm, they are constrained in 

simulating environmental complexities and system dynamics of real scenarios. Consequently, the outcomes 

of control and behavior of Helix rover are sought to be validated through real-world implementation, 

elaborated upon in this chapter. The initial objective encompasses testing of the pose estimation module to 

ensure it attains the requisite accuracy before embarking on control algorithm assessments. Subsequently, 

the focus shifts to field trials on varied terrains.  

5.1. Location and Ground Truth 

The selected evaluation site is the volleyball field situated at Lister Hall Field (Street Address: 8709 117 

St NW, Edmonton, AB, Canada). This well-defined area serves as a model outdoor environment for 

assessing and showcasing the accuracy of pose estimation, while also enabling the testing of the all-terrain 

capabilities of the Helix rover. The rectangular shape of the field serves as a ground truth for our testing. 

Geolocation is measured using Google maps measure feature.  

Figure 29. Aerial View and Field Illustration: The figure provides an aerial view of the field test 

location, revealing the court's distinct shape. Source: Google Maps 

5.2. Pose Estimation 

Firstly, it is important to ensure that the location chosen for the field-testing has good GPS signal 

reception. For that reason, a place with an open ground area with less obstruction from buildings or any 

other tall construction entities or trees is chosen. To verify this, the pose estimation module, made of two 

GPS receivers, connected to the Pixhawk system, is manually carried along the periphery of a volley-ball 

field. This also enables us to determine the accuracy and reliability of the pose estimation module.  

The pose estimate values are relayed from the Pixhawk Flight Management Unit (FMU) to a local PC 

via MAVROS messages. This communication is established through a USB connection between the local 

PC and the FMU.  

138.03 ft (42.07 m) 

91.34 ft 

(27.84 m) 



52 

 

 

Figure 30. The stand-alone pose estimation module connected to local PC for initial evaluation. 

The evaluation of the pose estimation module involved a manual traversal in a counterclockwise 

direction. This method was repeated multiple times for verifying its repeatability and reliability. The 

resulting estimates are shown in Table 7. 

Table 7. Pose Estimation Verification Test results, which includes: (a) trajectory followed, (b) yaw 

angle error, and (c) accuracy summary per test. 

Test 1 Test 2 Test 3 

   

   

Position Accuracy: -2.07 m to +1.70 m 

Yaw Accuracy: 6 degrees 

Human Error: ± 1 m 

Position Accuracy: -1.36 m to +2.16 m 

Yaw Accuracy: 3 degrees 

Human Error: ± 1 m 

Position Accuracy: -2.30 m to +0.83 m 

Yaw Accuracy: 5 degrees 

Human Error: ± 1 m 
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The accuracy of the pose estimation module is approximately 1 meter with an error margin on absolute 

values at ± 2 meter; This error margin accounts for the human error that is expected to be within 1 meter, 

considering an average human stride length. The verification results also include a yaw plot that shows the 

90-degree turns at each corner of the rectangular trajectory and the measured yaw error of the system that 

is within 10-degrees.  

Although it is not ideal, it is reasonable to expect such results from a setup that does not use RTK or 

DGPS technology. However, they are still repeatable and fall within the acceptable accuracy range. It is 

important to note that the accuracy of the pose estimation setup may limit the accuracy of the closed-loop 

algorithm results.  

5.3. Field Tests 

The field test attempts to implement the control algorithms developed on the hardware and examine the 

system integration of the sensors/control interface by observing the system behavior and its response. 

Ideally, the plan is to test the control logic for all the modes of rover movement. The primary objective of 

the initial test is to assess the rover's capability to autonomously follow a designated trajectory 

encompassing the perimeter of the field. The trial takes place in dry sand, a cohesionless medium, chosen 

to evaluate the feasibility of motion control.  

5.3.1. Field Test 1 – Sand Medium  

The trial attempted for the first test is to run the rover inside the volleyball court to check the feasibility 

for SCROLL mode. The rover was placed inside the sand court and the autonomous algorithm was 

instantiated for a square trajectory within the internal periphery of the sand court as shown in Figure 31.  

The recorded observations set includes the same set of parameters traced across time and trajectory. 

Figure 31. The illustrative details of square trajectory movement of dimensions 10 m x 10 m: the 

start point, the stop point, the position of four waypoints, and the direction of motion, defined 

within the dry sand court. 

S

S
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In the attempt to perform SCROLL movement in the sandy terrain, the rover encountered challenges 

as depicted in the figures of Table 8. It managed to progress in a straight line up to a certain point. However, 

as it approached the designated waypoint where a 90-degree turn was expected, issues arose. The rover's 

rotation within the SCROLL mode failed to execute effectively, preventing the desired change in direction 

at this critical juncture as shown in Figure 32.  

Despite our best efforts, the rover encountered persistent difficulties during its SCROLL movement 

on the sandy terrain. Even manual intervention to adjust the rover's orientation proved ineffective in 

facilitating forward progress. A closer examination of the situation unveiled a crucial issue; The rover's 

scrolls encountered difficulties due to their interaction with the sandy surface. It became evident that the 

scrolls were not able to gain traction and were instead digging themselves into the sand. It is due to the lack 

of cohesion in the medium, which caused it to displace sand. This behaviour created a 'pit' behind the scrolls, 

as illustrated in Figure 32 (b). Consequently, the rover could not effectively turn at the spot, effectively 

restricting experimentation in SCROLL mode impeding the rover's ability to execute precise rotational 

movements. This behavior highlighted the limitations of the current version of SCROLL mode in similar 

terrains with less cohesion. It also emphasizes the need for more feedback and more features to be added to 

the control algorithm for dynamic adaptation such as: to control individual scroll movements, to optimize 

the turn radius, and/or to automatically retune the PID values based on the behavior.  

Figure 32. The results of scroll movement implementation in sand medium for a square trajectory: 

(a) Left image shows the start point and the direction of motion of rover along one edge of the 

square trajectory, (b) Right image shows the first waypoint out of the four waypoints at which the 

rover is expected to make a 90 degree turn on-spot to traverse along the adjacent edge of the 

trajectory. 
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Table 8. Field Test results for execution of SCROLL mode for square trajectory movement in sand 

medium, which includes: (a) resultant trajectory followed, (b) position variation with time, (c) 

velocity variation with time, (d) error in position and angle with time, (e) wheel power 

(proportional to wheel rpm). 

Experiment-1  

SCROLL Mode 

TRAJECTORY  

 

VELOCITY (X, Y, Theta) 

ERROR (Distance, Heading) 

POSITION (X, Y, Theta) 

WHEEL POWER / RPM 

Table 8 elucidates the rover's limitations and performance challenges in kinematic plots when operating 

in a sandy environment as discussed previously. In trajectory plot, it can be clearly seen that the rover 

initially exhibited commendable straight-line movement, adhering to the desired trajectory within the sand 

medium. However, when attempting to execute a 90-degree turn at the waypoint, it encountered substantial 

difficulties. Notably, it indicates how the rover initially struggled to make the turn in the trajectory plot, 
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leading to substantial positional and heading errors. The rover's scrolls struggled to gain traction for 

rotation, effectively stalling the rover's motion forward. Due to the limited approach of control algorithm, 

the rover is severely hampered to complete the desired trajectory. As discussed in Figure 4 for scroll 

mechanics, the effective result of frictional forces versus the thrust force components reflects on the 

movement of the scroll and its slipping conditions. Those dynamics are completely determined by the 

interaction mechanics of the medium, which are caused by its specific physical properties during execution. 

For instance, in this case, the extent of dryness of the sand inherently affects its cohesiveness, which could 

be dependent on specific time of day, weather, and/or external interventions.  

This initial field test conducted within a sand medium provided valuable insights into the rover's 

requirements from motion control algorithms, particularly in the SCROLL mode. However, the results of 

this test highlighted significant challenges and limitations that warrant a shift in our testing approach.  To 

ensure more controlled and reliable evaluations of our autonomous motion control algorithms, we have 

chosen to conduct tests solely within hard, solid mediums.  

5.3.2. Field Test 2 

Figure 33. The start point, the stop point, and the direction of movement are displayed in this image 

of a square trajectory of dimensions 10 m x 10 m, where the ground truth dimensions are measured 

and marked for validation. The inset pictures show the dimensions taken for other edges of the 

square trajectory for reference. 

Given the objective of conducting a series of three comprehensive tests, it becomes apparent that the 

sand medium chosen for the initial trial does not provide the necessary cohesion to effectively support the 
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SCROLL locomotion of the rover within the limitations of the algorithm that outputs only explicit control 

actions for straight-line movements or turns. Therefore, we move ahead to testing the ROLL mode.  

In Figure 33, we provide a visual representation of the experimental setup for ROLL mode testing on a 

grassy, hard surface. The Figure 33 includes the starting point, the stopping point, and the direction of 

movement, all of which define a square trajectory with dimensions of 10 m x 10 m. To ensure the accuracy 

of our testing, the ground truth dimensions are measured and marked within the trajectory. 

The rover is run for an initial set of tests on a 5 m x 5 m square trajectory on grass with default values 

for proportional (KP), integral (KI) and derivative (KD) gains. For reducing the deviations of the rover from 

desired path, KP is set to 1.2 and 8 for X and Z axis respectively. With the CG of Helix rover being at a low 

position and close to ground, the rover is quite stable within the operational limits. So, the effect of KI is 

focused to reduce steady-state accumulation errors only and hence set to its minimum value of 0.0002. For 

further dampening the oscillating error rates for positional and heading adjustments, KD is set to 0.05. The 

goal was to strike a balance between maintaining proximity to the desired trajectory while avoiding erratic 

behaviour.  

The acceptable tolerance values were determined through empirical testing. Having systematically tuned 

the PID parameters to fine-tune the rover's control, we tested the rover on a 10 m x 10 m square trajectory 

on a grassy, hard surface.  

Table 9. Field Test results for execution of three experiments for ROLL for 10m x 10m square 

trajectory movement on grass, which includes: (a) resultant trajectory followed, (b) position 

variation with time, (c) velocity variation with time, (d) error in position and angle with time, (e) 

wheel power (proportional to wheel rpm). 

Experiment-6  

ROLL Mode 

Experiment-7  

ROLL Mode 

Experiment-8 

ROLL Mode 

`TRAJECTORY  
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POSITION (X, Y, Theta)   

VELOCITY (X, Y, Theta) 
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ERROR (Distance, Theta)   

WHEEL POWER / RPM 
  

 

In this final field test on the 10 m x 10 m square trajectory, as depicted in Table 9, we observed an 

improvement in the rover's performance after fine-tuning the PID control parameters. The resultant 

trajectory showcases a square path, closely adhering to the intended route. As we delve into the specifics, 

the positional variations with time and the velocity variations exhibit consistent behaviour. The errors in 

position and angle remain well within the acceptable tolerance limits, signifying the control exerted by the 

PID system. 

The wheel power, which proportionally imitates the scroll revolutions per minute, offers a glimpse into 

the synchronization of scrolls. This representative curve serves as a reference to desired power consumption 
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to track the actual log of the current consumption or torque exertion by motor, which can serve as 

additionally valuable feedback to further identify the scroll’s dynamic behaviour during slippage or pitting 

in any terrain such as the one observed for sand medium in Field Test 1. This deviation data between 

expected and actual power consumption could be most useful feedback for advanced versions of control 

logics developed in this project, and for more sophisticated Model-based Predictive Control methods as 

well, without needing to add extra sensors for the same. It must be noted that this still serves only in the 

synchronized curve behaviour tracking but not the magnitude of power consumption as it varies with media 

properties. 

Overall, these outcomes assess the practicality of the developed motion control algorithms and highlight 

the limitations of their preliminary versions. It is the first step towards facilitating Helix rover for further 

research and practical applications in the realm of autonomous navigation and terrain-adaptable control. 

In conclusion, this on-field testing of our motion control algorithms in a real-world setting, as detailed 

in this chapter, marks the first milestone towards practical implementation of basic control logic. While the 

initial challenges in the sand medium revealed limitations in the SCROLL mode and hindered the tests for 

omni-directional mode as well, the ROLL mode could still be tested for proof-of-concept on hard grass 

terrain. The rover successfully navigated the 10 m x 10 m square trajectory, closely mirroring our simulation 

expectations. This outcome underscores the adaptability and accuracy of our control algorithms and 

highlights their seamless transition from simulated scenarios to the real world.  
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Chapter 6 : Conclusions and Future Work 

This thesis studied the development, simulation, and real-world validation of control algorithms for the 

Helix rover. The foundation of this work rests upon the controller integration in hardware and the control 

algorithms developed for different modes of motion, initially tested on a simulation environment with a 3D 

model designed using SolidWorks® for verification, and thereafter implemented on hardware for on-field 

testing.  

The integration of FMU, PIXHAWK, rover, and local PC demonstrated effective communication and 

collaboration, laying the groundwork for on-field applications. The reasonable success of the Helix rover 

tests was fortified by the acceptable precision of the pose estimation module, a fusion of GPS and IMU 

technologies. This module exhibited proof-of-concept in guiding the rover's autonomous movements for 

outdoor environment with a few conditional requirements. 

This thesis validated that by interfacing the Helix rover system with a basic controller setup, it could 

serve as a promising starting point for Copperstone Technologies®, an Edmonton-based startup, to venture 

into autonomous on-field operations within adverse environments. While the scroll and omni directional 

modes remain untested, the results achieved in the Roll mode lay a proven framework for more 

investigations into various terrains and control modes. These outcomes serve as a testament to the system's 

viability, demonstrating that with a suitable testbed and refined PID tuning, other algorithms can 

confidently follow suit and also be more successful with adaptive mechanisms, provided it has access to 

more feedback. In conclusion, this study successfully demonstrates the fundamental functioning of the 

autonomous waypoint navigation of helix rover for a predefined trajectory in roll mode. 

6.1. Scope for Future Work 

1. Advancements in Localization: 

• LiDAR and Motion Cam Integration: To enhance pose estimation accuracy and reduce 

reliance on GPS, a shift to high-precision sensors like Velodyne LiDAR or vision camera 

such as Intel RealSense T265 could significantly improve localization performance. This 

transition would mitigate errors associated with GPS, such as atmospheric disturbances 

and multipath reflections, enabling the Helix rover to navigate with higher precision and 

reliability.  

2. Refinement of Robotic Systems: 

• Resolution of RC Transmitter Signal Loss: Rigorously examine and address the issue of 

the rover entering hold mode due to signal loss from the Remote Control (RC) transmitter. 
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Potential causes, such as antenna performance, should be thoroughly investigated to ensure 

uninterrupted rover operation. 

• Weather-Resistant Pose Estimate Systems: Implement comprehensive weatherproofing 

measures for exposed add-on electronic components such as GPS and FMU units of the 

Helix rover. This protection will mitigate risks associated with sudden rain and dust 

exposure during field testing, enhancing the rover's robustness. 

• On-line parameter estimation of interaction forces: Having a method to estimate 

interaction force can help in improving control strategy. This can serve as one of the 

feedback items for the control strategy to decide the output of controller. 

• Sensor Fusion with Visual Cue: It can help in classifying the terrains while driving when 

the robot navigates through various terrain and can help in selecting control strategy based 

on the terrain in which the robot is moving now. 

3. Thorough On-Field Testing: 

• Testing in Cohesive Soil Environments: Testing of control algorithms across diverse 

terrains, including cohesive soil like mud or snow, will provide insights into the Helix 

rover's capabilities in challenging environments.   

• Fine Tuning PID for Scroll and Omni Directional mode: Further fine-tuning and testing 

of PID controller parameters for each algorithm mode will optimize performance and 

stability during autonomous operations.  

4. Advancements in Control Strategies: 

• Multi-Axis Control Testing: Test control algorithms which enable the Helix rover to 

perform multi-axis movements. 

• Intermediate Path Planning Integration: Enhance control algorithms by incorporating 

intermediate path planning between waypoints. This strategic approach reduces cumulative 

errors and elevates the accuracy of trajectory tracking and overall motion control. 

• Dynamic Formulations: Modelling of the dynamics of the system and implementing 

control strategies based on them. 

• Exploration of Model-Based Predictive Control (MPC): Delve into the implementation 

of Model-Based Predictive Control techniques. Also gain scheduling or MPC for adaptive 

control in different terrains with variable soil interaction forces and torques. 
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• Additional Feedback Interface: Despite of modelling the scroll interactions in sand, we 

may not be able to confidently predict the rover behaviour without the aid of additional 

sensors to be aware of slip, topple or non-contact situations of individual scrolls. 

By venturing into these areas, the research will advance the Helix rover's capabilities. This will lead to a 

more capable robotic platform, capable of relieving the tedium of performing missions such as sampling 

and surveying currently carried out entirely by a human operator.  
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Appendix A: Launch File for Helix Simulation 

<launch> 

 

  <!-- these are the arguments you can pass this launch file, for example 

paused:=true --> 

  <arg name="paused" default="false"/> 

  <arg name="use_sim_time" default="true"/> 

  <arg name="gui" default="true"/> 

  <arg name="headless" default="false"/> 

  <arg name="debug" default="false"/> 

 

    <!-- Set the robot_description parameter with the URDF file --> 

  <param name="robot_description" textfile="$(find 

helixfinal)/urdf/helixfinal.urdf"/> 

 

  <!-- We resume the logic in empty_world.launch, changing only the name of 

the world to be launched --> 

  <include file="$(find gazebo_ros)/launch/empty_world.launch"> 

     

    <arg name="debug" value="$(arg debug)" /> 

    <arg name="gui" value="$(arg gui)" /> 

    <arg name="paused" value="$(arg paused)"/> 

    <arg name="use_sim_time" value="$(arg use_sim_time)"/> 

    <arg name="headless" value="$(arg headless)"/> 

    </include> 

  

  <node 

    name="tf_footprint_base" 

    pkg="tf" 

    type="static_transform_publisher" 

    args="0 0 0 0 0 0 base_link base_footprint 40" /> 

  <node 

    name="spawn_model" 

    pkg="gazebo_ros" 

    type="spawn_model" 

    args="-file $(find helixfinal)/urdf/helixfinal.urdf -urdf -model 

helixfinal" 

    output="screen" /> 

  <node 

    name="fake_joint_calibration" 

    pkg="rostopic" 

    type="rostopic" 

    args="pub /calibrated std_msgs/Bool true" /> 

  <!-- send fake joint values --> 

  <node name="joint_state_publisher" pkg="joint_state_publisher" 

type="joint_state_publisher"/> 

</launch> 
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Appendix B: URDF File for Helix Simulation 

<?xml version="1.0" encoding="utf-8"?> 

 

<robot xmlns:xacro="http://www.ros.org/wiki/xacro" name="helixfinal"> 

 

  <!-- Used for fixing robot to Gazebo 'base_link' --> 

  <link name="base_footprint"/> 

 

  <joint name="base_joint" type="fixed"> 

    <parent link="base_footprint"/> 

    <child link="base_link"/> 

    <origin xyz="0 0 0.5" rpy="0 0 0"/> 

  </joint> 

 

  <link 

    name="base_link"> 

    <inertial> 

      <origin 

        xyz="0 0 0" 

        rpy="0 0 0" /> 

      <mass 

        value="48.194" /> 

      <inertia 

        ixx="1.4866" 

        ixy="0" 

        ixz="0" 

        iyy="2.587" 

        iyz="0" 

        izz="5.053" /> 

    </inertial> 

    <visual> 

      <origin 

        xyz="0 0 0" 

        rpy="0 0 0" /> 

      <geometry> 

        <mesh 

          filename="package://helixfinal/meshes/base_link.STL" /> 

      </geometry> 

      <material 

        name=""> 

        <color 

          rgba="0.79216 0.81961 0.93333 1" /> 

      </material> 

    </visual> 

    <collision> 

      <origin 

        xyz="0 0 0" 

        rpy="0 0 0" /> 

      <geometry> 

        <mesh 

          filename="package://helixfinal/meshes/base_link.STL" /> 

      </geometry> 

    </collision> 

  </link> 

  <link 

    name="frontleft"> 
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    <inertial> 

      <origin 

        xyz="0.001 0 0" 

        rpy="0 0 0" /> 

      <mass 

        value="17.19" /> 

      <inertia 

        ixx="0.62344" 

        ixy="0" 

        ixz="0" 

        iyy="0.62344" 

        iyz="0" 

        izz="1.0424" /> 

    </inertial> 

    <visual> 

      <origin 

        xyz="0 0 0" 

        rpy="0 0 0" /> 

      <geometry> 

        <mesh 

          filename="package://helixfinal/meshes/backleft.STL" /> 

      </geometry> 

      <material 

        name=""> 

        <color 

          rgba="0.79216 0.81961 0.93333 1" /> 

      </material> 

    </visual> 

    <collision> 

      <origin 

        xyz="0 0 0" 

        rpy="0 0 0" /> 

      <geometry> 

        <mesh 

          filename="package://helixfinal/meshes/backleft.STL" /> 

      </geometry> 

    </collision> 

  </link> 

  <joint 

    name="jointLF" 

    type="continuous"> 

    <origin 

      xyz="0.25396 0.01 -0.3429" 

      rpy="0.22071 0 1.5734" /> 

    <parent 

      link="base_link" /> 

    <child 

      link="frontleft" /> 

    <axis 

      xyz="1 0 0" /> 

     

    <dynamics damping="25.0" friction="30.0"/> 

  </joint> 

  <link 

    name="backleft"> 

    <inertial> 

      <origin 



73 

 

        xyz="0.001 -0 0" 

        rpy="0 0 0" /> 

      <mass 

        value="17.19" /> 

      <inertia 

        ixx="0.6234" 

        ixy="0" 

        ixz="0" 

        iyy="0.6234" 

        iyz="0" 

        izz="1.0424" /> 

    </inertial> 

    <visual> 

      <origin 

        xyz="0 0 0" 

        rpy="0 0 0" /> 

      <geometry> 

        <mesh 

          filename="package://helixfinal/meshes/backleft.STL" /> 

      </geometry> 

      <material 

        name=""> 

        <color 

          rgba="0.79216 0.81961 0.93333 1" /> 

      </material> 

    </visual> 

    <collision> 

      <origin 

        xyz="0 0 0" 

        rpy="0 0 0" /> 

      <geometry> 

        <mesh 

          filename="package://helixfinal/meshes/backleft.STL" /> 

      </geometry> 

    </collision> 

  </link> 

  <joint 

    name="jointLB" 

    type="continuous"> 

    <origin 

      xyz="-0.25409 -0.0165 -0.3429" 

      rpy="0.22071 0.0 -1.5734" /> 

    <parent 

      link="base_link" /> 

    <child 

      link="backleft" /> 

    <axis 

      xyz="-1 0 0" /> 

     

    <dynamics damping="25.0" friction="30.0"/> 

  </joint> 

  <link 

    name="backright"> 

    <inertial> 

      <origin 

        xyz="0.001 0 3.6946E-07" 

        rpy="0 0 0" /> 
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      <mass 

        value="17.19" /> 

      <inertia 

        ixx="0.62344" 

        ixy="0" 

        ixz="0" 

        iyy="0.6234" 

        iyz="0" 

        izz="1.0424" /> 

    </inertial> 

    <visual> 

      <origin 

        xyz="0 0 0" 

        rpy="0 0 0" /> 

      <geometry> 

        <mesh 

          filename="package://helixfinal/meshes/backright.STL" /> 

      </geometry> 

      <material 

        name=""> 

        <color 

          rgba="0.79216 0.81961 0.93333 1" /> 

      </material> 

    </visual> 

    <collision> 

      <origin 

        xyz="0 0 0" 

        rpy="0 0 0" /> 

      <geometry> 

        <mesh 

          filename="package://helixfinal/meshes/backright.STL" /> 

      </geometry> 

    </collision> 

  </link> 

  <joint 

    name="jointRB" 

    type="continuous"> 

    <origin 

      xyz="-0.25391 0.01 -0.3429" 

      rpy="1.864 0 -1.5734" /> 

    <parent 

      link="base_link" /> 

    <child 

      link="backright" /> 

    <axis 

      xyz="-1 0 0" /> 

     

    <dynamics damping="25.0" friction="30.0"/> 

  </joint> 

  <link 

    name="frontright"> 

    <inertial> 

      <origin 

        xyz="0 0 4.6229E-07" 

        rpy="0 0 0" /> 

      <mass 

        value="17.19" /> 
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      <inertia 

        ixx="0.62344" 

        ixy="0" 

        ixz="0" 

        iyy="0.6234" 

        iyz="0" 

        izz="1.0424" /> 

    </inertial> 

    <visual> 

      <origin 

        xyz="0 0 0" 

        rpy="0 0 0" /> 

      <geometry> 

        <mesh 

          filename="package://helixfinal/meshes/backright.STL" /> 

      </geometry> 

      <material 

        name=""> 

        <color 

          rgba="0.79216 0.81961 0.93333 1" /> 

      </material> 

    </visual> 

    <collision> 

      <origin 

        xyz="0 0 0" 

        rpy="0 0 0" /> 

      <geometry> 

        <mesh 

          filename="package://helixfinal/meshes/backright.STL" /> 

      </geometry> 

    </collision> 

  </link> 

  <joint 

    name="jointRF" 

    type="continuous"> 

    <origin 

      xyz="0.25404 -0.019 -0.3429" 

      rpy="0.67383 0 1.5734" /> 

    <parent 

      link="base_link" /> 

    <child 

      link="frontright" /> 

    <axis 

      xyz="1 0 0" /> 

     

    <dynamics damping="25.0" friction="30.0"/> 

  </joint> 

    <!-- Add the mecanum drive plugin --> 

 

    <!-- Import Plugin --> 

  

 

  <gazebo> 

    <plugin name="joint_state_publisher" 

filename="libgazebo_ros_joint_state_publisher.so"> 

      <robotNamespace>helixfinal</robotNamespace> 

    </plugin> 
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    <plugin name="mecanum_drive_controller" 

filename="libgazebo_ros_mecanum_drive.so"> 

      <legacyMode>false</legacyMode> 

      <alwaysOn>true</alwaysOn> 

      <odometryRate>20.0</odometryRate> 

      <updateRate>1000.0</updateRate> 

       

 

      <LeftRear>jointRB</LeftRear> 

      <LeftFront>jointLF</LeftFront> 

      <RightFront>jointRF</RightFront> 

      <RightRear>jointLB</RightRear> 

      <WheelSeparationL>0.565</WheelSeparationL> 

      <WheelSeparationW>0.565</WheelSeparationW> 

      <wheelRadius>0.175</wheelRadius> 

      <wheelDiameter>0.35</wheelDiameter> 

      <wheelAccel>5</wheelAccel> 

      <WheelTorque>30.0</WheelTorque> 

      <commandTopic>cmd_vel</commandTopic> 

      <publishOdom>1</publishOdom> 

      <publishWheelJointState>1</publishWheelJointState> 

      <publishWheelTF>1</publishWheelTF> 

      <odometryTopic>odom</odometryTopic> 

      <odometryFrame>odom</odometryFrame> 

      <robotBaseFrame>base_link</robotBaseFrame> 

      <isRollerModel>true</isRollerModel> 

    </plugin> 

  </gazebo> 

  <!-- base_link --> 

  <gazebo reference="base_link"> 

    <selfCollide>false</selfCollide> 

    <gravity>true</gravity> 

    <mu1>10</mu1> 

    <mu2>10</mu2> 

    <kp>1e30</kp> 

    <kd>1e20</kd> 

    <material>Gazebo/Orange</material> 

  </gazebo> 

</robot> 
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Appendix C:  Launch File for Helix Controller 

<launch> 

 

  <!-- Launch data_collection_csv node --> 

  <node name="data_collection_csv" pkg="pose_estimation" 

type="logging_1_pose.py" output="screen"/> 

 

  <!-- Launch data_collection_bag node --> 

  <node name="data_collection_bag" pkg="pose_estimation" 

type="logging_2_pose.py" output="screen"/> 

 

  <!-- Launch main_node --> 

  <node name="robot_move" pkg="pose_estimation" 

type="Helix_way_point_1.py" output="screen"/> 

 

  

</launch> 
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Appendix D:  Python Node – logging_1_pose.py 

#!/usr/bin/env python 

 

import rospy 

import pandas as pd 

import matplotlib.pyplot as plt 

from geometry_msgs.msg import Twist 

from nav_msgs.msg import Odometry 

from sensor_msgs.msg import Imu, NavSatFix 

from nav_msgs.msg import Odometry                                                                                                                                                                                                                                                                                                                                             

from geometry_msgs.msg import PoseStamped, TwistStamped 

from tf.transformations import euler_from_quaternion 

import numpy as np 

from std_msgs.msg import Float32, Bool 

import os 

import signal 

import sys 

from datetime import datetime 

import math 

 

 

# Get the current date and time 

current_time = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") 

 

# Create the folder path 

folder_path = '/home/helix/ros_ws/src/pose_estimation/data/Plots_data_' + 

current_time 

 

# Create the folder 

os.makedirs(folder_path) 

 

 

# Initialize data arrays 

time_data = [] 

local_odom_x_data = [] 

local_odom_y_data = [] 

local_odom_yaw_data = [] 

body_odom_x_data = [] 

body_odom_y_data = [] 

body_odom_yaw_data = [] 

yaw_imu_data = [] 

global_odom_x_data = [] 

global_odom_y_data = [] 

global_odom_yaw_data = [] 

twist_linear_x_data = [] 

twist_linear_y_data = [] 

twist_angular_z_data = [] 

wheel1_rpm_data = [] 

wheel2_rpm_data = [] 

wheel3_rpm_data = [] 

wheel4_rpm_data = [] 

wheel1_power_data = [] 

wheel2_power_data = [] 

wheel3_power_data = [] 

wheel4_power_data = [] 

distance_error = [] 
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yaw_error = [] 

lat = [] 

lon = [] 

alt = [] 

 

global 

goal_reached,vx,vy,vw,wheel_rpm,x_l,y_l,x_g,y_g,x_b,y_b,yaw_b,yaw_g,yaw_l

,yaw_imu,d_error,wheel_power,y_error,latitude,longitude,altitude 

 

goal_reached = False 

x_g = 0 

y_g = 0 

yaw_g = 0 

x_l = 0 

y_l = 0 

yaw_l = 0 

yaw_imu = 0 

x_b = 0 

y_b = 0 

yaw_b = 0 

vx = 0 

vy = 0 

vw = 0 

wheel_rpm = np.zeros(4) 

wheel_power = np.zeros(4) 

d_error = 0 

y_error = 0 

latitude = 0.0 

longitude = 0.0 

altitude = 0.0 

 

 

# Define callback functions 

def odom_callback(data): 

    global x,y,yaw 

    x = data.pose.pose.position.x 

    y = data.pose.pose.position.y 

    orientation = data.pose.pose.orientation 

    (_, _, yaw) = euler_from_quaternion([orientation.x, orientation.y, 

orientation.z, orientation.w]) 

     

 

 

def twist_to_wheel_rpm(twist): 

    global goal_reached,vx,vy,vw,wheel_rpm,wheel_power 

    # define the mecanum wheel properties 

    wheel_radius = 0.175  # in meters 0.35 m diameter 

    wheel_sep_x = 0.508   # in meters axle to axle 

    wheel_sep_y = 0.565   # in meters left to right 

     

    # calculate the wheel speeds from twist message 

    vx = twist.linear.x 

    vy = twist.linear.y 

    vw = twist.angular.z 

 

     

    wheel_rpm = np.zeros(4) 
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    wheel_rpm[0] = (1/wheel_radius) * (vx + vy + (wheel_sep_x + 

wheel_sep_y)*vw) 

    wheel_rpm[1] = (1/wheel_radius) * (vx - vy + (wheel_sep_x + 

wheel_sep_y)*vw) 

    wheel_rpm[2] = (1/wheel_radius) * (-vx - vy + (wheel_sep_x + 

wheel_sep_y)*vw) 

    wheel_rpm[3] = (1/wheel_radius) * (-vx + vy + (wheel_sep_x + 

wheel_sep_y)*vw) 

 

    wheel_power = np.zeros(4) 

    wheel_power[0] = (1000.0 /195.0) * wheel_rpm[0] 

    wheel_power[1] = (1000.0 /198.0) * wheel_rpm[1] 

    wheel_power[2] = (1000.0 /195.0) * wheel_rpm[2] 

    wheel_power[3] = (1000.0 /198.0) * wheel_rpm[3] 

 

    if abs(wheel_power[0]) >= 900: 

        wheel_power[0] = wheel_power[0]/abs(wheel_power[0])*900 

    if abs(wheel_power[1]) >= 900: 

        wheel_power[1] = wheel_power[1]/abs(wheel_power[1])*900 

    if abs(wheel_power[2]) >= 900: 

        wheel_power[2] = wheel_power[2]/abs(wheel_power[2])*900 

    if abs(wheel_power[3]) >= 900: 

        wheel_power[3] = wheel_power[3]/abs(wheel_power[3])*900 

     

    return wheel_rpm,wheel_power 

 

def distance_error_callback(msg): 

    global d_error 

 

    d_error = msg.data 

 

def yaw_error_callback(msg): 

    global y_error 

 

    y_error = msg.data 

 

def get_gps(msg): 

 

    global latitude,longitude,altitude 

    latitude = msg.latitude 

    longitude = msg.longitude 

    altitude = msg.altitude 

 

     

 

def goal_callback(msg): 

    global goal_reached 

    goal_reached  = msg.data 

 

def get_rotation(msg): 

    global yaw_imu 

    orientation_q = msg.orientation 

    orientation_list = [orientation_q.x, orientation_q.y, 

orientation_q.z, orientation_q.w] 

    (_, _, yaw_imu) = euler_from_quaternion(orientation_list) 

    # print('yaw_imu = ', yaw_imu * 180.0 / 3.142) 
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def get_localpose(msg): 

 

    global x_l,y_l,yaw_l,x_b,y_b 

 

    position = msg.pose.position 

    x_l = position.x 

    y_l = position.y 

 

    orientation_q = msg.pose.orientation 

    orientation_list = [orientation_q.x, orientation_q.y, 

orientation_q.z, orientation_q.w] 

    (roll, pitch, yaw_l) = euler_from_quaternion(orientation_list) 

    # print('local_pose =', x,y, 'yaw =', yaw_l * 180.0 / 3.142) 

 

def get_localodom(msg): 

 

    global x_l,y_l,yaw_l 

 

    position = msg.pose.pose.position 

    x_l = position.x 

    y_l = position.y 

     

 

    orientation_q = msg.pose.pose.orientation 

    orientation_list = [orientation_q.x, orientation_q.y, 

orientation_q.z, orientation_q.w] 

    (roll, pitch, yaw_l) = euler_from_quaternion(orientation_list) 

 

    # print('l_odom =', x_l,y_l, 'yaw =', yaw_l * 180.0 / 3.142) 

    # print('l_odom =', x,y,z) 

 

def get_globalodom(msg): 

 

    global x_g,y_g,yaw_g 

 

    position = msg.pose.pose.position 

    x_g = position.x 

    y_g = position.y 

    z_g = position.z 

     

 

    orientation_q = msg.pose.pose.orientation 

    orientation_list = [orientation_q.x, orientation_q.y, 

orientation_q.z, orientation_q.w] 

    (roll, pitch, yaw_g) = euler_from_quaternion(orientation_list) 

 

    # print('g_odom =', x,y,z, 'yaw =', yaw * 180.0 / 3.142) 

    # print('g_odom =', x,y,z) 

 

 

# Main loop 

def listener(): 

 

    # Initialize ROS node 

    rospy.init_node('data_collection_csv') 

 

    # Initialize time variables 
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    start_time = rospy.Time.now() 

    prev_time = start_time 

 

    # Define loop rate 

    loop_rate = rospy.Rate(10)  # 10 Hz 

 

    # Initialize publishers and subscribers 

    cmd_vel_sub = rospy.Subscriber('/cmd_vel', Twist, 

twist_to_wheel_rpm,queue_size=10) 

    odom_sub = rospy.Subscriber('/odom', Odometry, 

odom_callback,queue_size=10) 

    error_sub = rospy.Subscriber('/distance_error', Float32, 

distance_error_callback,queue_size=10) 

    yaw_error_sub = rospy.Subscriber('/yaw_error', Float32, 

yaw_error_callback,queue_size=10) 

    goal_sub = rospy.Subscriber('/goal_reached', Bool, goal_callback, 

queue_size = 10) 

    imu_sub = rospy.Subscriber('/mavros2/imu/data', Imu, get_rotation, 

queue_size = 10) 

    local_pose_sub = rospy.Subscriber('/mavros2/local_position/pose', 

PoseStamped, get_localpose, queue_size = 10) 

    local_odom_sub = rospy.Subscriber('/mavros2/local_position/odom', 

Odometry, get_localodom, queue_size = 10) 

    global_odom_sub = rospy.Subscriber('/mavros2/global_position/local', 

Odometry, get_globalodom, queue_size = 10) 

    gps_sub = rospy.Subscriber('/mavros2/global_position/raw/fix', 

NavSatFix,get_gps) 

 

    i = 0 

    while not rospy.is_shutdown() and not goal_reached: 

        # Get current time 

        current_time = rospy.Time.now() 

 

        # Compute time elapsed since last loop iteration 

        dt = (current_time - prev_time).to_sec() 

 

 

        # Record Position message data 

        local_odom_x_data.append(x_l) 

        local_odom_y_data.append(y_l) 

        local_odom_yaw_data.append(yaw_l) 

 

        global_odom_x_data.append(x_g) 

        global_odom_y_data.append(y_g) 

        global_odom_yaw_data.append(yaw_g) 

 

        yaw_imu_data.append(yaw_imu) 

 

        if i <= 10: 

            x_b = -(local_odom_x_data[i] - x_l) 

            y_b = -(local_odom_y_data[i] - y_l) 

            yaw_b = yaw_imu - yaw_imu_data[i] 

            # print (yaw_imu_data[i],yaw_imu, yaw_b) 

            if(math.fabs(yaw_b) > math.pi): 

                yaw_b = yaw_b - (2 * math.pi * yaw_b) / 

(math.fabs(yaw_b)) 

        else: 
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            x_b = -(local_odom_x_data[6] - x_l) 

            y_b = -(local_odom_y_data[6] - y_l) 

            yaw_b = yaw_imu - yaw_imu_data[6] 

            if(math.fabs(yaw_b) > math.pi): 

                yaw_b = yaw_b - (2 * math.pi * yaw_b) / 

(math.fabs(yaw_b)) 

            # print (yaw_imu_data[6],yaw_imu, yaw_b) 

 

         

 

 

        body_odom_x_data.append(x_b) 

        body_odom_y_data.append(y_b) 

        body_odom_yaw_data.append(yaw_b) 

 

        # Record twist message data 

        twist_linear_x_data.append(vx) 

        twist_linear_y_data.append(vy) 

        twist_angular_z_data.append(vw) 

 

        wheel1_rpm_data.append(wheel_rpm[0]) 

        wheel2_rpm_data.append(wheel_rpm[1]) 

        wheel3_rpm_data.append(wheel_rpm[2]) 

        wheel4_rpm_data.append(wheel_rpm[3]) 

 

        wheel1_power_data.append(wheel_power[0]) 

        wheel2_power_data.append(wheel_power[1]) 

        wheel3_power_data.append(wheel_power[2]) 

        wheel4_power_data.append(wheel_power[3]) 

 

         

 

        # Record Error message data 

        distance_error.append(d_error) 

 

        yaw_error.append(y_error) 

 

        lat.append(latitude) 

        lon.append(longitude) 

        alt.append(altitude) 

 

        # Wait for next loop iteration 

        loop_rate.sleep() 

 

        # Record current time 

        time_data.append(current_time.to_sec() - start_time.to_sec()) 

 

        i=i+1 

 

         

 

        # Update previous time 

        prev_time = current_time 

         

        # Register the signal handler for the interrupt signal (Ctrl+C) 

        signal.signal(signal.SIGINT, signal_handler) 
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# Define the signal handler function 

def signal_handler(signal, frame): 

    global goal_reached 

    print("Ctrl+C pressed. Stopping...") 

    goal_reached = True 

 

     

if __name__ == '__main__': 

    try: 

        listener() 

    except rospy.ROSInterruptException: 

        pass 

 

# Convert data to pandas DataFrame 

 

# print (distance_error) 

 

time_data[0] = time_data[1] 

local_odom_x_data[0] = local_odom_x_data[1] 

local_odom_y_data[0] = local_odom_y_data[1] 

local_odom_yaw_data[0] = local_odom_yaw_data[1] 

global_odom_x_data[0] = global_odom_x_data[1] 

global_odom_y_data[0] = global_odom_y_data[1] 

global_odom_yaw_data[0] = global_odom_yaw_data[1] 

body_odom_x_data[0] = body_odom_x_data[1] 

body_odom_y_data[0] = body_odom_y_data[1] 

body_odom_yaw_data[0] = body_odom_yaw_data[1] 

yaw_imu_data[0] = yaw_imu_data[1] 

twist_linear_x_data[0] = twist_linear_x_data[1] 

twist_linear_y_data[0] = twist_linear_y_data[1] 

twist_angular_z_data[0] = twist_angular_z_data[1] 

wheel1_rpm_data[0] = wheel1_rpm_data[1] 

wheel2_rpm_data[0] = wheel2_rpm_data[1] 

wheel3_rpm_data[0] = wheel3_rpm_data[1] 

wheel4_rpm_data[0] = wheel4_rpm_data[1] 

wheel1_power_data[0] = wheel1_power_data[1] 

wheel2_power_data[0] = wheel2_power_data[1] 

wheel3_power_data[0] = wheel3_power_data[1] 

wheel4_power_data[0] = wheel4_power_data[1] 

distance_error[0] = distance_error[1] 

yaw_error[0] = yaw_error[1] 

lat[0] = lat[1] 

lon[0] = lon[1] 

alt[0] = alt[1] 

 

# print 

(np.size(time_data),np.size(odom_x_data),np.size(odom_y_data),np.size(odo

m_yaw_data),np.size(twist_linear_x_data),np.size(twist_linear_y_data),np.

size(twist_angular_z_data),np.size(wheel1_rpm_data),np.size(wheel2_rpm_da

ta),np.size(wheel3_rpm_data),np.size(wheel4_rpm_data)) 

data = pd.DataFrame({ 

    'time': time_data, 

    'local_odom_x': local_odom_x_data, 

    'local_odom_y': local_odom_y_data, 

    'local_odom_yaw': local_odom_yaw_data, 

    'global_odom_x': global_odom_x_data, 

    'global_odom_y': global_odom_y_data, 
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    'global_odom_yaw': global_odom_yaw_data, 

    'body_odom_x': body_odom_x_data, 

    'body_odom_y': body_odom_y_data, 

    'body_odom_yaw': body_odom_yaw_data, 

    'yaw_imu' : yaw_imu_data, 

    'twist_linear_x': twist_linear_x_data, 

    'twist_linear_y': twist_linear_y_data, 

    'twist_angular_z': twist_angular_z_data, 

    'Wheel_1_rpm': wheel1_rpm_data, 

    'Wheel_2_rpm': wheel2_rpm_data, 

    'Wheel_3_rpm': wheel3_rpm_data, 

    'Wheel_4_rpm': wheel4_rpm_data, 

    'Wheel_1_power': wheel1_power_data, 

    'Wheel_2_power': wheel2_power_data, 

    'Wheel_3_power': wheel3_power_data, 

    'Wheel_4_power': wheel4_power_data, 

    'distance_error': distance_error, 

    'yaw_error': yaw_error, 

    'latitude': lat, 

    'longitude' : lon, 

    'altitude' : alt, 

}) 

 

# Save data to CSV file 

csv_file = os.path.join(folder_path, 'data.csv') 

data.to_csv(csv_file, index=False) 

 

# Plot charts 

# Plot x position 

plt.figure() 

plt.plot(data['time'], data['local_odom_x'], label = 'local_x') 

# plt.plot(data['time'], data['global_odom_x'], label = 'global_x') 

plt.plot(data['time'], data['body_odom_x'], label = 'body_x') 

plt.xlabel('Time (s)') 

plt.ylabel('X position (m)') 

plt.title('X position over time') 

plt.grid() 

plt.legend() 

plt.savefig(os.path.join(folder_path, 'x_position.png'), dpi=300) 

 

# Plot y position 

fig = plt.figure() 

plt.plot(data['time'], data['local_odom_y'], label = 'local_y') 

# plt.plot(data['time'], data['global_odom_y'], label = 'global_y') 

plt.plot(data['time'], data['body_odom_y'], label = 'body_y') 

plt.xlabel('Time (s)') 

plt.ylabel('Y position (m)') 

plt.title('Y position over time') 

plt.grid() 

plt.legend() 

plt.savefig(os.path.join(folder_path, 'y_position.png'), dpi=300) 

 

# Plot orientation 

fig = plt.figure() 

plt.plot(data['time'], data['local_odom_yaw'],label = 'local_yaw') 

# plt.plot(data['time'], data['global_odom_yaw'], label = 'global_yaw') 

plt.plot(data['time'], data['body_odom_yaw'], label = 'body_yaw') 
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plt.plot(data['time'], data['yaw_imu'], label = 'imu_yaw') 

plt.xlabel('Time (s)') 

plt.ylabel('Orientation (rad)') 

plt.title('Yaw position over time') 

plt.grid() 

plt.legend() 

plt.savefig(os.path.join(folder_path, 'yaw_position.png'), dpi=300) 

 

# Plot x velocity 

fig = plt.figure() 

plt.plot(data['time'], data['twist_linear_x']) 

plt.xlabel("Time (s)") 

plt.ylabel("linear Velocity (m/s)") 

plt.title('X velocity') 

plt.grid() 

plt.legend() 

plt.savefig(os.path.join(folder_path, 'x_velocity.png'), dpi=300) 

 

# Plot y velocity 

fig = plt.figure() 

plt.plot(data['time'], data['twist_linear_y']) 

plt.xlabel("Time (s)") 

plt.ylabel("linear Velocity (m/s)") 

plt.title('Y velocity') 

plt.grid() 

plt.legend() 

plt.savefig(os.path.join(folder_path, 'y_velocity.png'), dpi=300) 

 

# Plot angular velocity 

fig = plt.figure() 

plt.plot(data['time'], data['twist_angular_z']) 

plt.xlabel("Time (s)") 

plt.ylabel("Angular Velocity (rad/s)") 

plt.title('Angular velocity') 

plt.grid() 

plt.legend() 

plt.savefig(os.path.join(folder_path, 'z_velocity.png'), dpi=300) 

 

# Plot trajectory 

fig = plt.figure() 

plt.plot(data['body_odom_x'], data['body_odom_y'], label = 'Robot 

Position') 

plt.xlabel("x position (m)") 

plt.ylabel("y position (m)") 

plt.title("Trajectory") 

plt.grid() 

plt.legend() 

plt.savefig(os.path.join(folder_path, 'trajectory.png'), dpi=300) 

 

# Plot Distance error 

fig = plt.figure() 

plt.plot(data['time'], data['distance_error'], label = 'Distance Error') 

plt.xlabel("Time (s)") 

plt.ylabel("Error (m)") 

plt.title("Distance Error") 

plt.grid() 

plt.legend() 
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plt.savefig(os.path.join(folder_path, 'distance_error.png'), dpi=300) 

 

# Plot yaw error 

fig = plt.figure() 

plt.plot(data['time'], data['yaw_error'], label = 'Heading Error') 

plt.xlabel("Time (s)") 

plt.ylabel("Error (m)") 

plt.title("Heading Error") 

plt.grid() 

plt.legend() 

plt.savefig(os.path.join(folder_path, 'heading_error.png'), dpi=300) 

 

# plot wheel rpm data 

fig = plt.figure() 

plt.plot(data['time'], data['Wheel_1_rpm']) 

plt.plot(data['time'], data['Wheel_2_rpm']) 

plt.plot(data['time'], data['Wheel_3_rpm']) 

plt.plot(data['time'], data['Wheel_4_rpm']) 

plt.legend() 

plt.title('Wheel RPM Data') 

plt.xlabel('Time (s)') 

plt.ylabel('RPM') 

plt.grid() 

 

# Save the figure 

plt.savefig(os.path.join(folder_path, 'wheel_rpm_data.png'), dpi=300) 

 

# plot wheel power data 

fig = plt.figure() 

plt.plot(data['time'], data['Wheel_1_power']) 

plt.plot(data['time'], data['Wheel_2_power']) 

plt.plot(data['time'], data['Wheel_3_power']) 

plt.plot(data['time'], data['Wheel_4_power']) 

plt.legend() 

plt.title('Wheel Power Data') 

plt.xlabel('Time (s)') 

plt.ylabel('Power') 

plt.grid() 

 

# Save the figure 

plt.savefig(os.path.join(folder_path, 'wheel_power_data.png'), dpi=300) 

 

 

# Create subplots 

fig, axes = plt.subplots(2, 2, figsize=(10, 8), sharex=True) 

 

# Plot wheel RPM data in subplots 

axes[0, 0].plot(data['time'], data['Wheel_1_rpm']) 

axes[0, 0].grid(True) 

axes[0, 1].plot(data['time'], data['Wheel_2_rpm']) 

axes[0, 1].grid(True) 

axes[1, 0].plot(data['time'], data['Wheel_3_rpm']) 

axes[1, 0].grid(True) 

axes[1, 1].plot(data['time'], data['Wheel_4_rpm']) 

axes[1, 1].grid(True) 

 

# Set labels and titles for each subplot 
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axes[0, 0].set_ylabel('Wheel 1 RPM') 

axes[0, 1].set_ylabel('Wheel 2 RPM') 

axes[1, 0].set_ylabel('Wheel 3 RPM') 

axes[1, 1].set_ylabel('Wheel 4 RPM') 

axes[1, 0].set_xlabel('Time (s)') 

axes[1, 1].set_xlabel('Time (s)') 

axes[0, 0].set_xlabel('Time (s)') 

axes[0, 1].set_xlabel('Time (s)') 

 

# Set overall title and grid 

fig.suptitle('Wheel RPM Data') 

 

# Adjust subplot spacing 

plt.subplots_adjust(hspace=0.4, wspace=0.3) 

 

# Save the figure 

plt.savefig(os.path.join(folder_path, 'wheel_rpm_sub_plot_data.png'), 

dpi=300) 

 

 

# Create subplots 

fig, axes = plt.subplots(2, 2, figsize=(10, 8), sharex=True) 

 

# Plot wheel RPM data in subplots 

axes[0, 0].plot(data['time'], data['Wheel_1_power']) 

axes[0, 0].grid(True) 

axes[0, 1].plot(data['time'], data['Wheel_2_power']) 

axes[0, 1].grid(True) 

axes[1, 0].plot(data['time'], data['Wheel_3_power']) 

axes[1, 0].grid(True) 

axes[1, 1].plot(data['time'], data['Wheel_4_power']) 

axes[1, 1].grid(True) 

 

# Set labels and titles for each subplot 

axes[0, 0].set_ylabel('Wheel 1 Power') 

axes[0, 1].set_ylabel('Wheel 2 Power') 

axes[1, 0].set_ylabel('Wheel 3 Power') 

axes[1, 1].set_ylabel('Wheel 4 Power') 

axes[1, 0].set_xlabel('Time (s)') 

axes[1, 1].set_xlabel('Time (s)') 

axes[0, 0].set_xlabel('Time (s)') 

axes[0, 1].set_xlabel('Time (s)') 

 

# Set overall title and grid 

fig.suptitle('Wheel Power Data') 

 

# Adjust subplot spacing 

plt.subplots_adjust(hspace=0.4, wspace=0.3) 

 

 

# Save the figure 

plt.savefig(os.path.join(folder_path, 'wheel_power_sub_plot_data.png'), 

dpi=300) 

 



89 

 

Appendix E:  Python Node – logging_2_pose.py 

#!/usr/bin/env python 

import rospy 

import rosbag 

from geometry_msgs.msg import Twist 

from nav_msgs.msg import Odometry 

from std_msgs.msg import Float32, Bool 

from sensor_msgs.msg import Imu, NavSatFix 

import signal 

import sys 

import os 

from datetime import datetime 

from cst_msgs.msg import RawMotorCommand, MotorFeedback 

 

# Initialize the bag variable 

bag = None 

 

# Get the current date and time 

current_time = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") 

 

# Create the folder path 

folder_path = '/home/helix/ros_ws/src/pose_estimation/data/Bag_' + 

current_time 

 

# Create the folder 

os.makedirs(folder_path) 

 

# Define callback functions 

def cmd_vel_callback(data): 

    bag.write('/cmd_vel', data) 

 

def odom_callback(data): 

    bag.write('/odom', data) 

 

def distance_error_callback(data): 

    bag.write('/distance_error', data) 

 

def yaw_error_callback(data): 

    bag.write('/yaw_error', data) 

 

def imu_callback(data): 

    bag.write('/mavros2/imu/data', data) 

 

def gps_callback(data): 

    bag.write('/mavros2/global_position/raw/fix', data) 

 

def localodom_callback(data): 

    bag.write('/mavros2/odometry/in', data) 

 

def globalodom_callback(data): 

    bag.write('/mavros2/global_position/local', data) 

 

def goal_callback(data): 

    bag.write('/goal_reached', data) 

 

def motor_feedback_callback(data): 
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    bag.write('/helix/motor_manager/feedback', data) 

 

def motor_command_callback(data): 

    bag.write('/helix/motor_manager/raw_command', data) 

 

# Main loop 

def listener(): 

    global bag   

    # Initialize ROS node 

    rospy.init_node('data_collection_bag') 

 

    # Create a ROS bag file 

    bag_file = os.path.join(folder_path, 'data.bag') 

    bag = rosbag.Bag(bag_file, 'w') 

 

    # Initialize subscribers 

    cmd_vel_sub = rospy.Subscriber('/cmd_vel', Twist, cmd_vel_callback) 

    odom_sub = rospy.Subscriber('/odom', Odometry, odom_callback) 

    distance_error_sub = rospy.Subscriber('/distance_error', Float32, 

distance_error_callback) 

    yaw_error_sub = rospy.Subscriber('/yaw_error', Float32, 

yaw_error_callback) 

    goal_sub = rospy.Subscriber('/goal_reached', Bool, goal_callback) 

    imu_sub = rospy.Subscriber('/mavros2/imu/data', Imu, imu_callback) 

    #state_sub = rospy.Subscriber('/mavros/state', State, state_callback) 

    local_odom_sub = rospy.Subscriber('/mavros2/local_position/odom', 

Odometry, localodom_callback) 

    global_odom_sub = rospy.Subscriber('/mavros2/global_position/local', 

Odometry, globalodom_callback) 

    gps_sub = rospy.Subscriber('/mavros2/global_position/raw/fix', 

NavSatFix,gps_callback) 

    motor_feedback_sub = 

rospy.Subscriber('/helix/motor_manager/feedback', 

MotorFeedback,motor_feedback_callback)  

    motor_command_sub = 

rospy.Subscriber('/helix/motor_manager/raw_command', 

RawMotorCommand,motor_command_callback)  

     

 

    # Spin ROS node 

    rospy.spin() 

    # Close the bag file 

    bag.close() 

 

# Define the signal handler function 

def signal_handler(sig, frame): 

    rospy.sleep(2) 

    # Close the bag file 

    bag.close() 

    rospy.loginfo("Bag file closed.") 

    sys.exit(0) 

 

if __name__ == '__main__': 

    try: 

        listener() 

    except rospy.ROSInterruptException: 

        pass 
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Appendix F: Python Node – Helix_way_point_1.py 

import rospy 

from geometry_msgs.msg import Twist, Point, PoseStamped 

from nav_msgs.msg import Odometry 

from tf.transformations import euler_from_quaternion 

#from gazebo_mecanum_plugins.msg import gazebo_mecanum_plugins_vel 

import math 

from std_msgs.msg import Float32, Bool 

import numpy as np 

import matplotlib.pyplot as plt 

from mavros_msgs.srv import CommandLong 

from sensor_msgs.msg import Imu, NavSatFix 

from cst_msgs.msg import RawMotorCommand 

 

#WAYPOINTS = [[0,5],[5,5],[5,0],[0,0]] 

 

WAYPOINTS = [[4,0.0],[4,-4],[0,-4],[0,0]] 

 

class ZmRobotController: 

    def __init__(self): 

        rospy.init_node('zm_robot_controller') 

         

        # Initialize the publisher for the Twist commands 

        self.twist_pub = rospy.Publisher('/cmd_vel', Twist, 

queue_size=10) 

        self.motor_pub = 

rospy.Publisher('/helix/motor_manager/raw_command', RawMotorCommand, 

queue_size=10) 

 

        self.distance_error_pub = rospy.Publisher('/distance_error', 

Float32, queue_size=10) 

        self.yaw_error_pub = rospy.Publisher('/yaw_error', Float32, 

queue_size=10) 

         

        # Initialize the subscriber for the odometry messages 

        # rospy.Subscriber('/odom', Odometry, self.odom_callback) 

        # rospy.Subscriber('/mavros/local_position/odom', Odometry, 

self.odom_callback, queue_size = 10) 

        rospy.Subscriber('/mavros2/local_position/odom', Odometry, 

self.odom_callback) 

        imu_sub = rospy.Subscriber('/mavros2/imu/data', Imu, 

self.get_rotation, queue_size = 10) 

 

        # Subscribe to the mecanum wheel velocities topic to get the 

current wheel velocities 

        rospy.Subscriber('/cmd_vel', Twist, self.vel_callback) 

 

        self.goal_reached_pub = rospy.Publisher('/goal_reached', Bool 

,queue_size=10) 

         

        # Initialize the goal point 

        self.goal = Point() 

        self.goal.x = WAYPOINTS[0][0] 

        self.goal.y = WAYPOINTS[0][1] 

        self.goal.z = 0 
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        self.max_vel = 10 

 

        self.trajectory = list() 

 

        self.counter = 0 

        self. i = 0 

        self.x_temp = 0 

        self.y_temp = 0 

        self.yaw_temp = 0 

         

        # Initialize the PID parameters 

        self.kp = 1.5 

        self.ki = 0.0002 

        self.kd = 0.05 

        self.kp_z = 8 

        self.ki_z = 0.0 

        self.kd_z = 0.05 

        self.integral = 0 

        self.prev_error = 0 

         

        self.wheel_radius = 0.175  # in meters 0.35 m diameter 

        self.wheel_sep_x = 0.508   # in meters axle to axle 

        self.wheel_sep_y = 0.565   # in meters left to right 

 

        self.yaw_imu = 0 

 

        # Set the control rate 

        self.rate = rospy.Rate(100) # 50 Hz 

         

        # Initialize the flag for indicating whether the goal has been 

reached 

        self.goal_reached = False 

 

    def set_rover_mode(self,mode): 

        rospy.wait_for_service('/mavros/cmd/command') 

        try: 

            command_long = rospy.ServiceProxy('/mavros/cmd/command', 

CommandLong) 

            command_long(False, 176, 0, 0.0, mode, 0.0, 0.0, 0.0, 0.0, 

0.0) 

        except rospy.ServiceException as e: 

            print("Command call failed: %s"%e) 

 

    def get_rotation(self,msg): 

         

        orientation_q = msg.orientation 

        orientation_list = [orientation_q.x, orientation_q.y, 

orientation_q.z, orientation_q.w] 

        (_, _, self.yaw_imu) = euler_from_quaternion(orientation_list) 

        # print('yaw_imu = ', yaw * 180.0 / 3.142) 

 

         

 

    def vel_callback(self, data): 

        # Get the wheel velocities from the mecanum wheel velocities 

message 

        #fr_1, rr_2, rl_3, fl_4 
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        vx = data.linear.x 

        vy = data.linear.y 

        vz = data.angular.z 

         

        fr = (1 / self.wheel_radius) * (vx + vy + (self.wheel_sep_x + 

self.wheel_sep_y) * vz) 

        rr = (1 / self.wheel_radius) * (vx - vy + (self.wheel_sep_x + 

self.wheel_sep_y) * vz) 

        rl = (1 / self.wheel_radius) * (-vx - vy + (self.wheel_sep_x + 

self.wheel_sep_y) * vz) 

        fl = (1 / self.wheel_radius) * (-vx + vy + (self.wheel_sep_x + 

self.wheel_sep_y) * vz) 

 

        fr_p = (1000.0 /195.0) * fr 

        rr_p = (1000.0 /198.0) * rr 

        rl_p = (1000.0 /195.0) * rl 

        fl_p = (1000.0 /198.0) * fl 

 

        if abs(fr_p) >= 900: 

            fr_p = fr_p/abs(fr_p)*900 

        if abs(rr_p) >= 900: 

            rr_p = rr_p/abs(rr_p)*900 

        if abs(rl_p) >= 900: 

            rl_p = rl_p/abs(rl_p)*900 

        if abs(fl_p) >= 900: 

            fl_p = fl_p/abs(fl_p)*900 

         

        # Publish the velocity commands to the robot 

         

        # print (fr,rr,rl,fl,vx,vy,vz,fr_p,rr_p,rl_p,fl_p) 

 

        return fr,rr,rl,fl,fr_p,rr_p,rl_p,fl_p 

 

    def normalize_angle(angle): 

        if(math.fabs(angle) > math.pi): 

            angle = angle - (2 * math.pi * angle) / (math.fabs(angle)) 

         

        return angle 

         

    def odom_callback(self, msg): 

        # Extract the robot's current position and orientation from the 

odometry message 

        position = msg.pose.pose.position 

        x_l = position.x 

        y_l = position.y 

 

        orientation_q = msg.pose.pose.orientation 

        orientation_list = [orientation_q.x, orientation_q.y, 

orientation_q.z, orientation_q.w] 

        (roll, pitch, yaw_l) = euler_from_quaternion(orientation_list) 

 

        self.i = self.i+1 

        # print(self.i) 

 

        if self.i <= 10: 

            self.x_temp = x_l 
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            self.y_temp = y_l 

            self.yaw_temp = self.yaw_imu 

            return 

        else: 

            x = -(self.x_temp - x_l) 

            y = -(self.y_temp - y_l) 

            yaw = self.yaw_imu - self.yaw_temp 

            if(math.fabs(yaw) > math.pi): 

                yaw = yaw - (2 * math.pi * yaw) / (math.fabs(yaw)) 

 

            # print(self.x_temp,self.y_temp,x_l,y_l) 

            # print (yaw_imu_data[6],yaw_imu, yaw_b) 

        # x = msg.pose.pose.position.x 

        # y = msg.pose.pose.position.y 

        # orientation = msg.pose.pose.orientation 

        # (_, _, yaw) = euler_from_quaternion([orientation.x, 

orientation.y, orientation.z, orientation.w]) 

         

        # Calculate the error between the robot's current position and 

the goal position 

        dx = self.goal.x - x 

        dy = self.goal.y - y 

        distance_error = math.sqrt(dx**2 + dy**2) 

        self.distance_error_pub.publish(distance_error) 

     

         

        # Check if the robot has reached the goal point 

        if distance_error < 1.0 and not self.goal_reached: 

            # Stop the robot 

            twist = Twist() 

            twist.linear.x = 0 

            twist.linear.y = 0 

            twist.angular.z = 0 

            self.twist_pub.publish(twist) 

 

            fr,rr,rl,fl,fr_p,rr_p,rl_p,fl_p= self.vel_callback(twist) 

 

            self.motor_pub.publish([fr_p,rr_p,rl_p,fl_p]) 

 

            # Set the flag to indicate that the goal has been reached 

            # track a sequence of waypoints 

 

            self.counter = self.counter+1 

 

            print("Action done.",self.counter, "th Way point reached") 

 

            if self.counter == len(WAYPOINTS): 

                self.goal_reached = True 

                # Print a success message 

                rospy.loginfo('Goal reached!') 

                self.goal_reached_pub.publish(self.goal_reached) 

            else: 

                self.goal_reached = False 

                self.set_goal(WAYPOINTS[self.counter][0], 

WAYPOINTS[self.counter][1]) 

                rospy.sleep(1) 
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        else: 

            # Calculate the heading angle to the goal 

            heading_goal = math.atan2(dy, dx) 

             

             

            # Calculate the heading error 

            #heading_error = heading_goal - yaw 

 

             

            # # Normalize the heading error to the range [-pi, pi] 

            # if heading_error > math.pi: 

            #     heading_error -= 2*math.pi 

            # elif heading_error < -math.pi: 

            #     heading_error += 2*math.pi 

 

            heading_error = heading_goal - yaw 

 

            if(math.fabs(heading_error) > math.pi): 

                heading_error = heading_error - (2 * math.pi * 

heading_error) / (math.fabs(heading_error)) 

              

 

            # print("a",heading_goal,heading_error,distance_error) 

 

            self.yaw_error_pub.publish(heading_error) 

             

            if math.fabs(heading_error) > 0.2: 

                # If heading error is large, turn in place until it's 

small 

                twist = Twist() 

                twist.linear.x = 0 

                twist.linear.y = 0 

                twist.angular.z = self.kp_z*heading_error 

                if abs(heading_error) > self.max_vel: 

                    twist.angular.z = 

self.kp_z*(heading_error/abs(heading_error)*self.max_vel) 

                self.twist_pub.publish(twist) 

                fr,rr,rl,fl,fr_p,rr_p,rl_p,fl_p= self.vel_callback(twist) 

 

                self.motor_pub.publish([fr_p,rr_p,rl_p,fl_p]) 

                self.trajectory.append([x,y]) 

                rospy.loginfo("odom: x=" + str(x) + ";  y=" + str(y) + ";  

theta=" + str(yaw)) 

            else: 

                # If heading error is small, move forward while 

correcting heading error 

                proportional = distance_error 

                self.integral += 

distance_error/self.rate.sleep_dur.to_sec() 

                derivative = (distance_error - 

self.prev_error)/self.rate.sleep_dur.to_sec() 

                pid = self.kp*proportional + self.ki*self.integral + 

self.kd*derivative 

 

                # Save the current error for use in the next iteration 

                self.prev_error = distance_error 
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                # Create the Twist message 

                twist = Twist() 

                twist.linear.x = pid 

                twist.linear.y = 0 

                twist.angular.z = self.kp_z*heading_error 

 

                if abs(pid) > self.max_vel: 

                    twist.linear.x = pid/abs(pid)*self.max_vel 

                if abs(heading_error) > self.max_vel: 

                    twist.angular.z = 

self.kp_z*(heading_error/abs(heading_error)*self.max_vel) 

 

                # Publish the Twist message 

                self.twist_pub.publish(twist)  

                fr,rr,rl,fl,fr_p,rr_p,rl_p,fl_p= self.vel_callback(twist) 

 

                self.motor_pub.publish([fr_p,rr_p,rl_p,fl_p])    

                self.trajectory.append([x,y]) 

                rospy.loginfo("odom: x=" + str(x) + ";  y=" + str(y) + ";  

theta=" + str(yaw)) 

             

    def set_goal(self, x, y): 

        # Set a new goal point for the robot 

        self.goal.x = x 

        self.goal.y = y 

        self.goal.z = 0 

 

        # Reset the PID variables 

        self.integral = 0 

        self.prev_error = 0 

     

        # Reset the goal reached flag 

        self.goal_reached = False 

     

    def run(self): 

        # Run the main loop of the controller 

 

        self.set_rover_mode(3) 

        print("Rover armed") 

        while not rospy.is_shutdown() and not self.goal_reached: 

            self.rate.sleep() 

     

        # Stop the robot 

        twist = Twist() 

        twist.linear.x = 0 

        twist.linear.y = 0 

        twist.angular.z = 0 

        self.twist_pub.publish(twist) 

        fr,rr,rl,fl,fr_p,rr_p,rl_p,fl_p = self.vel_callback(twist) 

 

        self.motor_pub.publish([fr_p,rr_p,rl_p,fl_p]) 

        rospy.sleep(1) 

 

        # Print a message indicating that the program is ending 

        rospy.loginfo('Program ended.') 

 

        self.goal_reached = True 
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        self.goal_reached_pub.publish(self.goal_reached) 

 

        # plot trajectory 

        data = np.array(self.trajectory) 

        np.savetxt('trajectory.csv', data, fmt='%f', delimiter=',') 

        plt.plot(data[:,0],data[:,1]) 

        plt.show() 

        twist.linear.x = 0 

        twist.linear.y = 0 

        twist.angular.z = 0 

        self.twist_pub.publish(twist) 

        fr,rr,rl,fl,fr_p,rr_p,rl_p,fl_p= self.vel_callback(twist) 

 

        self.motor_pub.publish([fr_p,rr_p,rl_p,fl_p]) 

        self.set_rover_mode(0) 

        print("Rover disarmed") 

     

 

if __name__ == '__main__': 

    controller = ZmRobotController() 

    controller.run() 

    


