National Library
of Canada

l* ‘'du Canada

T

Canadian Theses Service '

_Ottawa, Canada
K1A ON4

CANADIAN THESES

NOTICE

.The quality of this microfiche is heavily dependent upon the
quality of the original thesis submitted for microfilming. Every
effort has been made to ensure the hlghest quality of reproduc-
tion possible.

If pages are mrssmg contact the university whrch granted the
degree .

Some pages may have |nd|st|nct print especially, af the original
pages/iwere typed with a poor typewrrter ribbon or if the univer-
slty sem us anp. inferior photocopy.

i ' . v

Previously c pyrrghted materrals (jourhal amcles publrshed
. tests>etc.) ardnot fi Imed

‘ Reproductiohi
Canadlan Copyright Act RS.C. 1970 ¢. C-30.

> ' THIS DISSERTATION
HAS BEEN MICROFILMED
EXACTLY AS RECEIVED -

©

NL-339(r.86/06) : ' T e

Bibliothéque natienale.

Services des théges canadiennes

ull or in pan of this film is govemed by the -

HESES CANADIENNES

AVIS | .

La qualrte‘de cette mrcrofrche dépend grandemem dela quamé

de-la thése soumise Au. microfilmage. Nous avons tout fait pour

assurer une qualité subérreure de reproduction

S'il manque tfes pages,. veulllez communrquer avec lunlver- .

sité qui a contéré le grade

La qualité drmpressron de certaines pages peut: Iaisser a

désirer, surtout si les pages ong‘ipales ont-été dactylographiées

a f'aide d'un fubin usé.ou si I'université nous a failt'!parvenlr
une photocopie de qualrté inférreure

Les documents qui font déjar ob]etd un droit d'auteur (articles

-de revue, examens publiée etc.) ne sont pas microfilmés.

La reproduction, méme partielle, de ce microfilm est soumise

4 la Loi canadignne sur le droit d'auteur, SRC 1970,-c. C-30.

LA THESE A ETE -
MICROFILMEE TELLE QUE
NOUS L’AVONS REGUE

THE UNIVERSITY OF ALBERTA

" PERFORMANCE OF RESILIENT SYNCHRONIZATION
MECHANISMS FOR DISTRIBUTED DATABASES
oy |
- TSEMENKOON TITMING *

©

| A THESIS

SUBMIT'ED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE
OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTING SCIENCE ‘

EDMONTON, ALBERTA
e SPRING, 1986

Permission has been granted
to the National Library of
Canada to microfilm ‘'this
thesis and to -lend or sell
copies of the film.

The author (copyright owner)
“has reserved other
publication rights, and
neither the thesis nor
extensive extracts from it
mdy be printed or otherwise
reproduced without
written

his/her
permission..

L'autorisation a &t& accord&e
a la Biblioth&que nationale
du Canada de microfilmer
Cette th@se .et de préter ou
de vendre des exemplaires du
film. o '

L'auteur (titulaire du droit
d'auteur) se réserve les
autres droits de publication;
ni la/ th&se ni de longs
extraits de celle-ci ne
doivent @&tre imprim&s ou
autrement reproduits sans son
autorisation &crite.

ISBN @-315-30282-8

THE UNIVERSITY dF ALBERTA
N

RELEASE FORM T =

\

.

‘ ~3

NAME OF AUTHOR: TSE-ME; KQON TIT MING |
TITLE OF THESIS: PERFORMAKCE OF RESILIENT SYNCHRONIZATION
MECHANTSMS FOR D;STEHBUTED DATABASES
DEGREE FOR WHICH THIS THESIS WAS PRESENTED: MASTER OF SCIENCE
YEAR THIS DEGREE GRANTED: SPRING 1985 |
Permission is hereby gra_nted to THE’UNIVERSITY- OF ALBERTA LIBRARY to

reproduce single copies of this thesis and to lend or sell'such copies for private, .
scholérly or scientific research purposes only.
The author reserves other publication rights, and neither the thesis nor

extensive extracts from it may be printed or otherwise reproduced without the

-~

author's written permission.

_ : (SIGNED) W{UO'M ‘

PERMANENT ADDRESS:

”‘_ S Impasse Adam
Curepipe Road

Mauritius
(-3

=

Date:..-.jﬁ.-...:...., 5.(.)7.1986

. THE UNIVERSITY OF ALBERTA
FACULTY OF GRADUATE STUDIES AND RESEARCH

-,

The undersigned certify that they have read, and recommend to the Faculty of

, -

Graduate Studies and Research, for acceptance, a thesis entitled PERFORMANCE OF

RESILIENT SYNCHRONIZATION MECHANISMS FOR DISTRIBUTED DATABASES submitted by
TSE-MEN KOON TIT MING in partial fulfilment of the requirements for the degree of ™\

'MASTER OF SCIENCE. = °

s s 'Abstract

&

_ This thesis is concerned with the consistehcy, re_siliietj’ccy,?nd _perform"ance issues

“in distributed databases. The consistency and resiliency problems are dischsse‘d and
the various ’tzchn.ique:s that are évaiiéble to hax‘ldflé these problems are suf\;eyed. A
perfon.‘pa-nce‘qv"aluation methodology for distributed database systems‘baset‘i on the’

‘simulation of systems expressed as extended Petri nets is presented. The modeling

E] * s

formalism is described and the tool that is developed to exploit this formalism for
performance evaluation purposes is explained. Performance’ results obtained for two
- popular resilient update synchronization mechanisms for distributed ‘da‘tabasé"s a“pe

[

_ presented and analyzed. ;

el

Acknowledgements

I wish to express my deep gratitude and appreciation to my supervisc;r, Dr. M.
Tamer Ozsu, whose patience, guidance, encouragement, and advice have made this.
thesis possible. 1 am esp'eci'ally grateful to him for trusting me with his invaluable *

collection of books and research papers and for providing a very friendly environment

\

for research.

I would like to thank the mgmhers of my examining committee, Dr. W.W.

Armstrong, Dr. D.A. Szafron, and Dr. J. Mio‘wchenko, for their useful suggestions and

[}

-

comments.

Thanks are also due to David Meechan for his useful criticisms on an initial draft

of some of the chapters.

’/—-"

—
] am very grateful to the members of my family; ‘espeuaﬂrﬁ“tw\ slsters Yam

' and Choye for their uuselﬁsh and devoted support botb spmtually and ﬁnancnally

]

Vo

-

g

vi

15

- Table of Contents
'ébépt:r & Page
Qh. 1: Intr(;auctiop ’ e 1
1.1 What is.a Distribqted Database? s reeernaens] 2
. 7\) 1.2 Beneﬁts of DDBs e e e - ‘ 2
l“.3“0,pen Problems in DDBMS R R A P 4
1.4 Need for Rer:fqrmix;q;e Analysis Workcccoeeeeniiiilonnnn. evenenens ., 5
15 Search for B‘eéizr I\;odeling Tools et et e et e e S 8.

"1.8 Thesis Objectives and Pla;n ORI S . -8
’Ch. 2: Cdncur;e’ncy ~Cont,x't_)l and 4Re’silien_cy in Distributed Datab.ages oo 10
| 2.1 Tgrpinology SR rtveeinen “ rereees | 10
2.2 bistributed Détﬂ"f’»e Consistency Problems ‘ 11
2..3 Int,e'rna‘.l‘ Consistenc;' Mechanisms ' ‘ e i4

2.4‘Mﬁtua'I Consistéﬁc); Mechanisms e ‘
2.4.1 Centralized Lockingooolororirmorce S AT TS

| ‘é-.a.'z_ni;tf;buze_d Locking e o et e

Vil

2.5 Deadlock oo Y e 16
s ‘2.6 Resiliency .. Fevnermiaereaaetannernenraeaaaanaes 18
2..6.1 Types of Failures Yo e enenere ey etataeeraraaarenertrataatiesartaaarnrrans 19
2.6.2 Site Failure Detection e © 20
.2.6.3 Redo/Undo Logs JRR S e 20
‘ 2.6.4 Two-Phase Commit Proto;ols 21
2.6.5 S}étem Reconfigyration and Transactions Termination 24
2.7 Site Recovery > i UUUT 25
. 'Ch. 3: Petri Nets and Extended Place/Transition Iv\lets%.‘." 26
3.1 Petri Netsccooevviviiiiiieieinne et ettt aaa e e ' 26
3.2 Modeling of Systems Using Petri Nets TPy 29
3.3 Extended Place/Transition Nets Ve et .30
’ 3.3.1 Precondition _.. e enaeniees 32
3.3.2 Traqsition Time .oooooeviiiiiieis {.j et < 33
3.3.3 'fransitibn Proceduxge- 33
3.3.4 O‘utpurt'Restolution (.............. - 33 |
3.4 Modeling of Systems Using EPTN ..o 34
3.4.1 ’Termina'l Site. Model B RTINS 35
342 Pljocessof“Site Modevl‘...’ rerraeerees et e 36
3.4.3 Network Mbdei; 37
" Ch.’4: SIMNET: An EPTN Model Si;nulzfi‘gr OO S 41
4.1 Design OBje@ifes }, 42
‘. 4.2A Shqri I,ntroanction to},{SII\‘AULA’ 43 ,- |
421 Class st g B
‘ C : .) ~ S ;}c .

4.2.2 Prefixed Class ... ‘

4.2.3 CODLEXL eeeeeeeee e e ...

—

4.3 Programming in SIMNET e T e Teeetrane e arias

4.3.1 Program Structure R ettt ettt ettt et e et e aaae s
4.23.2 Performance Model and ASSUMPLIODS .evvviiiiinneiiiiiiiiieevanneans
4.3.3 Declaration of Global conStants .:.......oooceovevreeeueerieeeeeeereen..
4.3.4 Declaration of Global Variables e
4. 3 5 Declaration of Data Objects SO RE
4.3.6 Declaratlon of Addmonal Classes and Procedures
4.3.7 Declaration of Transitions TR

{ ’

4.3.8 Declaration of Subnets ettt ageaeaenen '

4.3.9 Net Creationicococeeeeeverneeneeneennns SO S SO '

4:3.10 Simulation Control SLAteMENS «...vveeeeeeeeeeeeeeeeeeeeeeeeeeneeenenns

Ch. 5: The algorithms O OO U SO OO UUTR e :
5.1 Assumptions ettt ettt et b e ettt oottt rae e e etet e ne e e e "

5.2 The Resilient Centralized Locking Algorithm s teeeeeeatneaas

5.2.1 Site Model for‘CL algorithm ceerrrereveeeeeeernebrerreeeirennnns e
- . 5.2, 2 Network M/iel fbr CL Algorn,hm ererereerranesransas e TR

ki

5 2.3 Fallure Cohuderatlons rreeireessiatearaaesranaeennae — e, e

]

. 5:3 Thé,'_Rersiﬁ’eﬁt D_isiributed Lockfng Algorithmccoviecnnn. S

5. 3‘ 1 -Site'Model for DL algorithm Téreeseens - B
5.3: 2 Network Model for DE algox:thm ceeeareeene & .
e 5 3 3 Fallure Conslderatlons fﬁ/

o i

5.2.4 Recovery Considerationsc.c.cceo.. deereivaresTressenrresseeneaens ioenis |

44
45
45
45\

46

. 46

47

48

48

5
51
51
52
55
55
57
58

62

- 63

85

65 .

67 -

10

71

5.3.4 Recovery Considerationsc..couuvees S e, L

5

Ch. 6: Simulation Model cemmerbssrnere e s ST

6.2 Input Parameters e e e ——— '

6.3 Performance Metrics et n e

6.4 Conflict Resolution O RSO URRROTRRTO SUUPRPRO O

'

Ch. 7: Simulation Results e et e e ettt e e e e et e e tr et et e aaanas

)
o
=
[=3
o
(2]
Lad
o
S,

Z
c
2]
4

2]
o
e,
12!
<>
2
2

7.5 Effect QHI//O Syunchronization Time e e

7.6 Effect o/f"lDatal':ase Size

7.9 Eﬂ'éc/t//of Mean Time Between Failuresc...ccooeiii. Fereerenene ‘

7.8 EF/?""I‘N Simulation Versus bisqrete Event Simulation et el

A

Ch. 8: Conclusion:coveeeriniiiieiineisiciieeeeceneaeees o eresnnenerenenveranennons errerereeeneres

/

'8/1 Suggestions for Future Research sesasessereienarrasessisasspranes

/

Blbh?graphy et ——aaea @ e
3 / ' ') :

-

Appendlx 1: SIMNET User's Manual . ' reeereenend alheeraniorniionaes
/\ppendlx 2: SIMNE’I‘ Implementatlon of. On Line !nformatlon System et
: /' Appendlx 3: Centrahzed Lockmg Algorlthm ‘

Y.
,/ .

Appendlx 4: Dlstrnbuted Locking Algonthm v ’

Appendlx 5: Performance Results R UPUSOSRI S SO SOOI revrinienee

[N

P S '

el) IR
IX .. o o

76
76
'78
78
81

83

- 84

88

88

89

)

95

7

08
104,

181
R 136
139

141

®
.List of Figures
\ .
Figure Page -
Sl .M , LT
. 21A deadlock situation in-a qatabasq system e e 17
2.2 Two-'pilase commit prot@col e SOV et e 22
3.;\An\exémple of‘a LPetri'net e et —a————— revaans | 27
.}%ﬁef;res&mapion of concui-renc& in a Petri net eeeeeeneeaes reieeesveernssees 28
3.3 Bepr;;en,taiiqﬁ;‘i)f conflict ip a-Petri net s eeeereeerreeerena—— 28
34 A Petri net; model of a“simpl‘e compu;er system ettt eneranann 30
3.5;_Te‘rminal_sitg model reaenens ,. 36)
, 38 Prbcesééréhe Fi,oﬂél evetenerasasassensinsiinereses 3‘7
3.7 lnt;:fbre;ations"fbr On-line In'for;xxatioh System M’ddel 39>
- 3.8 EPTN model of On-lme Inform"tnon System 40] .i
5.1 S»lte model for CL algonthm ' — | ’ 40
: 5 2—Ne{work model for CL algonthm .."j.,'._ | | ::'.,.’
5 3DL algonthm slte model ‘f,.‘ i 69 -
8.4 Network model fqr DL algomhm. ,

7.1 Effect of mean ix-ner'arr.i‘val time 'qn mean response tiﬁle '\ 79)
/éEﬁect of mean interarrival til‘ne.on I/0 uti;;i;tion et (..... .(‘ ,') 80
' 73 Eﬂ'ec‘t‘ of mean i4nterarf'iav.ai time on_CPU utilization TR ? 80 \
7.4 Effect o{ mean interarrival time on mean number of messages o ‘81 |
7.5 Effect of n;é_an base-set size oD mean response tiMeiccocceeeeeens. eveeenes : 82
7.8 Effect of mean basé-;et size on 1/0 utilization ...c..occevreevemiriereeeeee — 82
7.7 Eﬁ’ect— of number of sites on mean yre.s;‘)onse timeooeveeennnnes e 8:'3
7.8 Effect of nt.ixvxi‘ber of sites on I/O utilization 84
7.9 Effect of tr'ansmlsslon time on mean response tlme‘ - 85
' 7.10 éﬁe‘ct of 1/O synchromzat‘lon time on mev‘a'n response tim'é [86
7.11 Eﬂeg:t of I/C synchronizatioﬁ tinie on I/O utilizaii‘On 1~87
712 Efféct of mterarrw:ﬂ timé on response tlme (10s = 0) _ 8T
713 Eﬂect of mterarrlval time on /O utilization (lOs - 0) é&_
- 7.14 Effect of database size‘ouq m;amggs_ponse'time : ‘nd | -89
" 7.15 Effect of Iur_leanv;i;ne betwe-en-;aﬂu;é'é oﬁ»respoﬁée timé 90
7 16 Eﬂ'ect of mean time Between fallures on I/O utlhzatlon H ﬁO.
7 1 Effect of mean tlme betwe&n failures on, avallablhty teveeriren 91
Al 1 An EPTN model of a snnple transltlcn | l . '“4«
AL An EPTN model of bnet s 1185
: SRS N e PR
AL3 An EPTN model of anet” S SO R § I
[N . v\'
& | ’ :
X =

&£

. "Table

5.1 Input parameter valuescccciviiiiiiiiiiiiiiiiiei et e

7.2 Comparison of EPTN and DES. Effect of intetarrival timé on mean

respom‘a’:‘time O R e et e et es s ae s e e eans eaen
" 7.3 Comparisonuof'éPT.N' ’ah&it‘\D‘ES. Effect of interarrival fme on I/O utiliza-
» : B ‘ ~

tion for CL algorithm UUSUUUTRR S e preeeeaens

~

-7.4 €omparison of EPTN and DES. hEﬂ’éét‘qf hin.terarrivgl time on 1/O utiliza- -

v
. - R

. L. @

"A5.1 Effect of interarrival ‘tim%‘on response time T g

* A5.2°Effect of mean vixnt'ei'a,rriv%l time on]J/O utilization"....... g £

,, .

N A5.3.Effect of mean i\hterai'rivartimc.'op CPU utilizationccceeerunnees S

I

e e . A - . .
7\5,4 Effect of mean interarrival4ime on mean numba'. of messages

- A5.5 Effect of mean base-sey-size on mean response time SOPTE Y

s °

AS5.8 Effect of mean base-set size on 1/O utﬂizatipn cerere bbb v g

a

4

Lr B) » - i @ A .
4 .o : .

A il . ;

: w8 EI DR :
B s . . ; \

. .f‘!‘ . v“ “ . o b e
R T S % P

tion for DL algotithmioi heereennas sl Tt steennas

. 'AS.7 Effect of number of sites-on mean response time v Deveeesiatond]

-A5.8 Effect of ‘pumber of sites on I/0 utilizagion #.....iveruveerereererennnen ST

List of Tables‘

-Page

142

142 ¢

143%

-3

143

144

‘144

145

145 °

11

=

A5.9 Effect of transmission time on mean response time
N :

A5.10 Effect of I/O synchronizat.ioﬁ time on mean response tir?e

. A5.11 Effect of 1/O synchronization time on [/O u

, A5.12 Effect of interarrival time on mean }esponse time (I0s = 0)

e

tilizationc.........

- A5.13 Effect of mean interarrival time on 1/O utilization (I0s = 0)

A5.14 Effect of database size on mean résponse time;cc.coeennne..

" AS5.15 Effect of interarrival time on response time for different MTBFs

‘A5.16

a

¢

Effect of mean interarrival time on I/O utilization for different MTBFs:

145
146
146
146
147
147
148

148

Cpépter 1

Introduction

Distributed database management 'systems (DDBMS), that i.s, the organizational
structt;re of distributed data and the support software, have been the focﬁs of inten-
sive research duriﬁg the past few years. If we follow the trend, we can easily foresee
that their importance will rapidly grow. "There are several technological and organiza- -

~——tional reaSons for this trend: (1) recent advanccs‘ in microelectronics technology have
made computer hardware affordable that previously was too expensive to be dupli-
cated; (2) increased user demands for information'have_strengthened ‘the need .for fas-

ter information retrieval %systems;’ (3) developments in computer networks have mgde -

' computer communi}cat}ions cost effective and eﬁicient; (4) advances in database tech-
nology have provided a solid fqundation for'the development of distributea databases;

‘and (5) distributed databases seem to fit more naturally to today's large decentralized

¢

types of organizations [CeP84].

In spite of the fact that the field of DDBMS is still in its iﬁfancy'and that there is -
yet ho well established methodolo@ that could bc; used for the development of distri-

buted database systems, some-large corporaﬁons have already invested léu-ge amounts
of money in and are relying heavily on large databases distributed over worldwide.

i ' | 2
| 7
networks of co)anuters [Gra78], and [Che81]. Due to the vast. amount of data that are

usually stored

e

dence of the institutions on the accuracy, avallabllny and promptness.of the data, the

|
!

system must on the one hand be reliable and efficient and on the other hand ensure the

/ . .

consistency of the data. This thesis is concerned with the problems of consistency,

. reliability, and performance of distributed database syatcmg'.

| L

o "\

1.1. What Es a Distributed Database?
\

Sincel tll‘e field of distribpted databases is relatively new, 'it is usually g'ivc‘n
different niezlnings and defined differently by diffcrent resc‘archcrs. Thus, in order to
have a comn{{)n frame for discussion, we will first attempt to deﬁne and explain what,
we mean by b distributed database. A n‘utnbutcd database (DDB) is defined a:a col-
lection of loglcally interrelated data items distributed over two or'more computer sites
interconncctéﬁd by a network [O2s82]. There are two clements of signiﬁcancc in the
above deﬁnAitko.n.' First, the sites are gcogfa-phically scparated andv can communicate
with each other only over some commumcatlon petwork. This is a necessary condition

- ¢

since by having a network as the only mcdmm of communication anothcr level of com-

'plexitly is added to the problems of data distribution that otherwise might not be

present. These problems are discussed in Section 1.3 and Chapter 2. Second, the data

‘ should have a certain amount of logical brelz'n,ionship which ties them together. This -

distinguishes a distributed database 'from a set of local databases or files located at
. : ~ 5 ‘
different sites of a computer network.

» .1.2.‘ Benefits of DDBs

Besldes technological and organuatxonal reasons, there are several other factors .

‘.that have motlvated the development of distributed databases. These are the

retrieved, processed and transferred on these systems and the depen- |

-

numqrou.s potential benefits that they offer ov.cr the conventional centralized data-

bases. The most commonly'mentioned benefits are:’

1. Reliability and Avaﬂubility - By having duplicate data at several aiteé, higher
reliability and availability can be achieved. Failure of any one site does not
necessarily cause a total system failure sfnce the data can still be accessed from
another site. Even in cases where a combination of site crashes causes part of the

data to be inaccessible, the operational sites can still provide limited service.

2. Improved Performance - With the distributed-system, it is possible to decom-
pose the database and store portions at locations‘where they are most frequ'ent,ly
used, thus reducing the time to access the data. Performance can also be
lmproved by taklng advantage of the inherent parallelism, for example, by
decomposing queries so that searches can be performed concurrently at different
sites. '

3. Loéal Al;tonomy and Security - By partiﬁoning the database, each site can be

.given entire control over its own data while being able to share it w%h other

users. This results in better security, privacy and management of the data.
4. E‘cpnomy‘- In a geographically distributed database where the type ol applica-
tions is highly localized, a lot of the processing can be done locally, thus reducing

_ 1
the communication cost usually involved in accessing a remote central database.

5. Expansibility - In a di;tributed environiment, it is much easier to make incre-
mental'chahges with a minimum impact on the already existing units.
6. Sharability - In addition to the ability to share datéa among the si‘tes that are

interconnected, it also possible to share expensive peripheral devices.

1.3. Open Problems in DDBMS
A |
However, the benefits mentioned above are only potential benefits, and before

.) dm
t“hey could be fully realized scv)eral problems need to be overcome. Tliese problems

include query processing, database design, directory management, deadlock, con-

B) .
S .

currency control, and resiliency.
.

1. Query Processing - The objectlve is to develop algorlthms that will attempt to
optimizé the processmg of queries taking into conslderauon the mherent parallel-
¥ B33

* ism of distributed systems, the transmission delay, the communication cost, etc. :

Various algorithms are dlscussed in [SaY82], and (AHY83]

2. Database Design - The research in this area: essentrally m‘vochs the use of
operations research tcchnlques to determine tlre optlmal placement of data under

| : : : :
different constraints. A review of the work in this area can be found [ChA80]. %

, . , S E
3. Directory Management - This problem is related to the database design prob—-»

lem in the sense that the same technlques are -applied tos determlne the opmnal

placement of directories. These problems are dlscussedﬂn [ChN75] o

4, Deadlock - This problem is similar in pature to that encountered in operating":’-
systems. The research in this area. is concerned mainly thh the development of

mechanisms for the preventnon, avoidance, dctectlon and resolut.:on of deadlocks

3

in distributed database systems ([Ch074], [Mal80), and [Obe82}).

5. Concurrency Control - Concurrency control is concerned wnh the synchronlza—
tion of concurrent accesSes to’a distributed database so that the conslstency of
the database is preserved. Most of the research effort lnﬂ_thla“‘aré_;a, so’far, has been

~geared towards the design of new al'gorithrns Only recently has ih&e lbeen’ a

small shnft towards the analysxs and performance of the algorlthms A survey snd

an analysis of this problem could be found in [BeG81]

0. Res.ilicnc-y - This problem is also known as the crash rccopcry problem. In a drs-
tributed system with a large number of independent components, there is alwa):s
the chance that one or more of the components may fail.. Whenever a failure
occurs it is ver} important that the database consistency is not violated. In order

to achieve this, the system must be resilient, that is, appropriate mechonisms
should be provide hto*allow the system to detect and recover from failures.
Furthermore it is \Qesirable that the system “allows ‘'some query vapd update
actlvnty to occur at the operatlonal sites during a failure. Most of the work i in this
~ared is concerned with the deslgn of procedures that w‘ould allow partial operabil-

ity of the system while presérving the consistency of the database in the presence

) : ;
of failures, detect errors and failures, prepare sites for recovery, and recover a site

from a failure. The crash recovery techniques are surveyed in [Koh81]..

1.4. Need for Performance Analysis Work

Unoloubtedly, the problenl that has receiveti the most ‘attention yb‘during the last
few years js concnrrency_control. Unfortunately, most of the work‘;h‘as eoncenLratjed
-on the"deve.lopment of new algorithms ([ElI77], [Lan78], {BaP78] and [Tho79]), and pot
as much attention’ has. been paid to performance ana[ysis. Froxn ’tne current literature,
one‘can pame dozens of suéh nlgorithms thot have been proposea, most of them with
unproven v:vorkabili,ty and performance (in fact, it has been claimed that many of them |
uore“incorrect [BeG81]) Thus, what is needed nowii\s some performence ‘analysie‘work
t.hpt wou!d,anol_yze and compare the performance_of ‘these algoritnms.‘Some research-
ers he_ve olrgdy' taken ﬁrsp steps towords this goal, but there is still mueh work to be

done.

The few performance related work on concurrency- control algorlthms mcludes -

those by barcla—Mohna [Gar79], Rles [Rle79] Cheng [Che81] Lin and Nolte [LlN83]

o~

and Ozsu [Oz385b]. Garcia-Molina has developed analytic models for three_locking-
based algorithms — the cen‘tralizcd scheme, the roting scheme, and the ring scheme —_
and verified the results ueing simulation. Ries has developed simulation studies pri-
marily aimed at finding the eﬁect“ of locking gianulari@y on syst‘em performance.
Cheng has used Garcia-Molina’s analytical methodology to gnalyze various resilient
algorithms. Lin and Nolte have studied the relationship between the read/wri‘te ratio
of transactions and system performance Ozsu has developed ;nd used an fztcnded

Place/Transstion Net (EPTN) formalism, a derivative of Petri-nets, to model and

* analyze some two-phase locking algorithms.

In the area of distributed databases, the problems of_concurrency control,

deadlock resolution, and resiliency are strongly lnterrelated For example, a good con-

Pebae
’x.

currency contro} algonthm in addition to bemg eﬂicnent in synchronizing updat,e tran-

saction, must provide satisfactory (if not optimum) performance in the areas of
deadlock resolution and resiliency. However, due to the complexity of the ;)roblem asa
whole, most of the performance analysis work, with the eJrception\ of Cheng’s work, is
based on the simplifying assumption that s}stem failures do‘ not occur. This allows
the crash recorery problem to be ignored. The major criticism aéainst this abproach is
that oversimpliﬁcation'may lead to unrealistic resul!t,s Thus, what is also needed in _‘
.the area of performance analysrs, isa study of the performance of concurrency control

‘ deadlock resolution, and resnhency mechamsms as an integrated problem

1’{“:§ Search for Better Modeliné Tooln L
- One ‘of the .main reasons for the lack of .performance related work in this ‘q‘r'e_a' '
»%i'gm be the un‘m‘vanability of good modeling tools. Peormance snalysis based on-

-queumg theory, which. is quite adequate for slmple systems, becomes t.oo comphcated :

to. handle as the. eystems become more complex Dlscrete event. sxmulatlon methods,

.although providing an altefnative to queuing analysis when the system is too complex,
are only appropnate{‘ for conventional sequentlal systems, and are hot adequate for
» today’s complex concurrent systems [Age78]. Some researchers have'delved into the
-.problem-hppi‘ng to come up with a suitable modeling_ tool. The tool would lend itself

easil}; to the performance evaluatioh and possibly verification of these complex sys-

tems. One model that is being considered is Petri nets.

Petri nets, also called Place/Transition nets, have evolved from the wdrk‘of Carl
Adam Petri [Pet62], A.W. Holt [HoC70] and many others, and were found to be partic-
ularly suitable for represehting and studying systems that contain asynchronous and
concurrent activities. Some of the ¢ommonly mentioned features of Petri nets are
[Age78]: (1) the ,graph‘ical and precise nature of therepresentation scheme often makes
the overa‘lrlhsystem easier to understand and to commumcate to other people (2) Iéetn
‘nets are analytically powerful and a growing body of knowledge exists on the use of

_ Petri nets theory for analyzing the 'behavior of ‘systenis,‘ and (3) due to the structured-
hess o‘f the scheme, Petriv nets can be synthesized using either bottom-up or top-down

‘ a'pproaches, 'thus," making it possible to systematically design systems from known or
eaeily verihable sub-systems.

'u,‘ E However, as a tool for the performance modeling of systems, Petri nets have many
shorte,omings. These will be discussed in Chapter.3, after an introduction to Petri nets.
Many attempts have beerd made to solve these problems, and these have resulted in’

_various Petrl “net derlvatlves such as Evaluatlon Nets [Nut72] Pro—new [Noe79], ,
'Predncate/Transxtlon nets [GeL79] and Extended Place/Transmon nets (EPTN)
[OszSa] Among these derivatives, the EPTN formahsm has been developed partlcu-‘

v

Iar‘ly for the modehng and analysis of dlstrlbuted database systems, although it is also_' ‘

-

! aultable for dlst.nbuted systems in general
v

\(: » ‘ " '
AY B .

<R

16 Thesis Objectives and Plan

The primary object,‘ive of this thesis is. to study the performancer of resilient
locking-based ccncurrency control algorithms, namel‘y, the centralized locking and dia-
tributed locking algorithfns, in an environment where site failures could occur. The
study is carned out using two dlﬁerent approaches In the first approach, discrete’
event sxmulatlon (DES) is used to obtam performance results. In the second approach,
a new methodology based on the simulation of systems modeled as EPTN is used for
the performance analysis. 'ln doing so, we hope (1) to show the appropriateness of the-
EPTN formalism as a perfocmance modeling tool for asynchronous and concurrent sys- |
tems, (2) to uncover some of the underlying factors that should be taken into con™®
sideration when designing a resilient distributed concurrency distributed .co"él;ﬁurren‘cy

control algorithm, (3) to draw some useful conclusions regarding the tradeofls that are

>

‘involved in selecting a concurl'ency control algérithm for a distributed database, and

(4) to clear up some of the controversies that have surrounded these two algorithms in

the past. | P

3

In order to facilitate the i,mplcment'atiotf"_and simulation of systems expressed as
extended Petn ncts a simulation package SIMNET, hosted by the simulatioh langix‘age

SIMULA ([DaN66) [Fra77],,§[B|XrSIa] [Lam83], and [DMN84]) is developed SlMJVET is
designed so that'it could be’ used to implement and simulate not only concél;éncy coﬂ-

s for dlstnbuted systems. but also any type of systems thaf can 4?\,7

trol algoritell
e *;- . |
expressed‘ as an extended Petn net. .;‘ . e
‘ L | ' C
ﬂa

>

Ky

Tlus thesns is orgamzed as follows ln chapter 2, we présent a review of tlge back-

ground material oL dlstnbuted databases and introduce the’ baslc tcchmqucs that are

Petri nets and the extended Petri pet formalism. In Chapter 4, SIMNET is introduced. "

1 v

Chaptecs presents the tyo',algorithms ‘that are studied along with the EPTN models

-

used for concurrency control and resiliency. In chapter 3, we prescnt an overview of -

B

for the algorithms. Chapter 6 describes the simulation model, the input parameters to
the model, and the performance metrics that are used. In Chapter 7, the simulation

results are presented together with an analysis and discussion of the results. Finally,

in Chapter 8, we give a summary of the results obtained from this study, and make

.

some suggestions for further research.

Chapter 2‘
Concurrency Control and Resiliency in

Distributed Database Systems

G

This chapter introduces some of the problems that are commonly encountered in

designing resilient distributed database systems and surveys several of the techniques

that are commonly used to handle these problems, Among the topics that are discussed
: : - : ‘

are concurrency control, deadlock resol{nion, and resiliency. At the same. time, the -

A Y P

-

database model for this study is introduced. - P

o

e

-

2.1. Terminology ‘ > —

-

_In a distributed database, each data’item may be stored at any site in the system
or stored redundant]y at several sites. A distributed database is said to-be.‘parlih’aned :
if there aré no duphcate items; partmlly rcplu:atcd if part of the data ls-dupllcated and '

N

fully rcplscatcd lf the ent:re database is dupllcated at all sites. In thl‘s_vstudy; we are

"'¢oncerned malnly wnth\h\lly rephcated dat.abases ~

A distributed dat,abase is sald to be conmi’mt lf all rephcatcd portlons of the
database are both internally consistent and mutually :omutcnl Internal consnstency,
which is fundament.al to both centrahzed and dlstrlbuted database syatems, unplles '
10

11

that thé_entity values in any copy of thg database satisfy" a set of integrity constraints.
lnte'grity constraints refer to cor;gctpbca assertions that are associated with the values
Cof every data item in the dat’abasb. An example of such assertions is: ‘The _salariés of
employees in department z should be begv;)een 2,000 dolular's and 80,000 dollars’.
Mutual cobsis‘tency, which is specific to distf;bﬁtéd database systems, meanb that all
the values-of multiple copies of any data item converge to the same ﬁbal value -should
the system stop receiv{ng ‘new transactions.

A user interacts ’with a database by means of transactions. IA transaction is
defined as a sequence of primitive atomic operations, for‘ex‘ample, reads,‘computés and

writes, that maps the database from a consistent state to another consistent se{\te

[Lam78): A transaction is thus a larger unit of atomic action on the database state.

Transactions could be categorized into two types: read-only transactions and
update transactions. In this thesis, we are interested mainly in update transactions.

- An update transaction is assumed to consist of ‘the following steps:*
1. Read - the items needed by the transaction are read.

L 2. Co’mpbte - new valugs are computed.
3. Write - the distributed database is updated, tbat i;, all duplicate‘i'temsth-at‘, nbed -

~ to be modified are updated to réﬂec}t the new values. o .
Two traqéac‘tions aré conflicting if they operate on the same data item énd' one of

tvh_e‘m isa wfi&e.

2. 2 Dutnbuted D;tabue Consutency Problems

Ina dlstnbuted database tbere are basncally two types of problems: (1) the inter-

nal consnstency problem and. (2) the mutual conglstency problem

v

' 12

') «

Internal Consistency Problem: The iﬁteraal consjstency problem arises when
several conflicting transactions attempt to modify a copy of the database at the same E

- A S .
time. This éi\tﬁuation is illustrated by the following example. Consider only one copy of

a distributed database and the following two conflicting transactions:

T1 : Read x; T2 ;: Read x; .

x]l := x + a; . . x2:=mx-b;
Write x1 into x; ‘ : . Write x2 into x;
’ - t

y -

If the two transactions are executed cdoncurrently, it is possible for the transac- -
" tions to read the data item z, compute the new value for z, and then store the new’

value into the database at approximately the same time; as shown below.

T1 : Read x; y
’ T1:x1:= x + a;
: T2 : Read x; . . 4 \
' o T2:x2:=x-b; . : s
" ‘ TL : Write x1 into x; ‘
: T2 : Write x2 into x; & i
i ' L}
\Y .

If this happt;ns the final vaiu‘e of z is iﬁcorreét Asince the effect of one transaction is
overwritten by the other transaction. In the example abbve, the effect of Tl on z is
lost and the ﬁnal value of z is z-b mstead of z+a—-b or z-b+ a, as one would N
_ expect. ‘Thxs is known as the loat ypfia;e anomaly and is ane of _thc several types of‘ L ‘_ :
'interha:I';in‘consisténcie‘s '[BéIGSI]V that could occur in both the >cent‘1_'ali_~zed and diQt.ri-
'buted databaSe sttémé. .‘ : \ R ‘ | o ,. |
Mutual Comutcn‘cy Problcra The mutual consnstency aroblem occurs |n. fully or.

’parually rephcated databases because of the reqmrement that coples of the database

must be |dent|cal In order t,o keep all copxes |dent.x¢al each upd .t,ra_nsactl_on must

‘be apphed umformly and snmultaneoualy to every copy. of t -data‘baéé'::l;ldw'é’viea,

_because of commumcatlon delays and fallures, |t could happcn that updates are
*.x : /

- 4 ‘ :) v
e .o . . . ! P 13

h.,. ‘ N . ' , e s . v/t) . . .
‘. applied to differedt copies at diflerent times snd in different 'orders. If this otcurs and v
R ™

s the gpq?tes are‘ nqt c@ntrolled the mutual conslstency, of the databa& could be :

A
k)

=y . @

ﬁﬂec‘t.ed .This sfﬁmtlon is lllustrated in the followmg example Conmder two' sites A

] i) ’

‘ and B, geographlcally separated and linked 'together:by‘a,network, each one wnh a-
., . ' # . ’

uplicate copy of the database. Asshme that two tradsactions are received by site A’

v

" ¥
and that the transacuons are similar to Tl and T2 above except that before a new

2.
: *

;x

Lmlq,e is vhltten m'to a copy ¢ of the database, the value ig sent to the other ‘site ‘to be
Giw' 1 .
- storéd in the other copy as wej. Now, although we assume that an internal con-
9 : . -
¢ a
sistency check is performed and T1 and T2 are executed sequentially to prevent lost
' S o . . .

updates, the consistency of tlig{d,i;h'ibu’ted database is still not éuaranteed. Incon-

sist‘ency could occur if, the .m.essages sent by one site are not received and processed in

g

» I - \
the same order by the other site. Note that in a distributed system, there is ng guaran-
'tee Lhat tb(: messages will be recewed m the same order that they wére sent This is
‘ Lllustrated be)bw’ ' . h ~ - T

”
g

&

y . .(SifeA o \ S_ite? ' -

"T1:Read x; * Receive x2 from site A;
_ x1 = x + a; . ’ Write x2 into x;
; - Send x1 to site B; oo Receive x1 from site A;
o Write x1 into x; . . Write x1 into x;
T2 : Read x; o
X2 = x-2a;
S Send x2 to site B; ’ L 2
S "Write x2 into x; R
Final value of x fx-i-a-b . Final valﬁe"of X :x+a

' ’ * - ‘. . .
When'this occurs the final state of the database is inconsistent since the transac-
tions af® not executed in the same order at the two sites and the value of a more

"recent update is ovérwritten by an older update. In the example above, the final value

of z at site Bis z+ a instead of z+ a—b which is the final value of z at site A.

) 14

"2.3. Internal Consxstencnyechamsms

.One obvious solution to. the internal consistet‘xcy problem is to run the t;ans‘ac;
tions serially,. that is, one at a time in any order. Since a transaction is a unit of con-
si;tency, aﬁy sequence of transactions executed serially without interference from
other transactions also preserves consistency of the database. However, this is not a
good solution since there ére transactions, for.example, those that dcu;;l access the

same data items, that can be executed in para]lel or concurrently without affecting the
: databa‘sle consistency. Therefore, what would be more appropriate is a mechanism
that would -allow traPsactions t; be executed coxicurrently with;)ut viqlating tixe con-
sistency of the dat;\base'. In formal terms, the mechanism would ensure that the execu-
tion of concurren{i tréns?ctions is serializable ([BeG81], [Pap79]); that is, even though
the transactions are executed concgrrently the overall eflect on the database is
equivalent to what would have resulted if the transactions were executed in some serial
érder. Such a mechanism is provided by céncurrency contfol alg;rithms. Ma’ny:algo-

rithms have been propose\d in the literature, and two mechanisms that are most com-

monly used are two-phase locking and timestamp ordering. In this paper, we will be

concerned mainly with. t;o-phase locking algorithms.)
Two-phase locking achi.ev"es serialiiability by using locks to isolate conflicting
~transactions from each other and by requiring that locking and unlockmg of items be
done in two phases, known as the growing phase and the shrinking phaac During the
growing phase the transaction can only request locks, anci during the shnnklng phase
the transaction can only, relggse lacks and cannot request any additional locks. It has

formally been proven thafp two-phase locking is a correct concurrency control method

[CeP84].

15

2.4. Mutual Consistency Mechanisms

The problem of maintaining the mutual consistency of distributed databases has
also received a lot of attention in the past few years, and an abundance of algorithms
exists in the literature. One common solution is to modify the 2-phase locking
mechanism so that it preserves the mutual eonsistency of 'the distributed databases as
well: The two basic strategies that are usually incorporated with the mechanism are
known as: centralized locking and distributed locking. The hwo algorithms studied in

this thesis are actual implementations of these two strategies.

2.4.1. Centralized Locking

In this strhteg‘y, one of the sites, called the central site, is chosen a priori (ueing
~ an election protocol [Gar79], [see Section 5.4 also]) to control the allocation and deallo-
cation of locks to transaehione. Before a txf'a'nsaction‘ can access data at any site the
appropriate locks must be requested and obtained from the central site. For example,
if a fransaction wants to update, let's say, an item z, the site where the transaction
originates must send a lock request for z to the central site, wait for the lock granted.
message from the central. site, and then proceed with the update of item z. After the
| hpdate is completed at all the sitee, a message to unlock the item is sent to the central

site. This mechanism ensures a total ordering among conflicting transactions so that

both internal and mutual consistencies are preserved.

The common critieisms against this strategy are: (1) the central site could be a
performance bottleneck since all the jupdate trensactiene must visit the site to obtain
the locks, and (2) the reliability of the entire sy‘stem.is too depehdent on one site: a

.
: central site failure causes a total system fallure Some approaches to lmprove the relia-

blhty of the scheme have been suggested. Alsberg and Day [AID?G] have shown that by

keeplng a backup of the central snte, any desirable Ievel of reliability can be achieved.

: 16

However, Cheng [Che_81] has carried out performance studies and has foﬁnd that the
performance of the resulting scheme is affected considerably due to the additional
overhead incurred. Carcia-Molina [Gar79] has suggested ap alternative approach that
uses election protocols to rapidly recover from a“central site failure, but no studies
bave yet been carried out to find how this scheme would perform. In this thesis, we
will attempt to study this scheme and we hope to draw some definite cénqlusions

s

regarding its performange.

2.4.2. Distributed Locking

Instead of having the lock ma;lagement duties performed at only one site, these
duties coulcj be performe'd at every site in the system. However, in this strategy,
before a trﬁlnsacﬁ’t‘ion could update a data item at any site, locks for the items must be
requested and obtained from every site in the ;ystem. Similarly, after the completion
of tbt; update at every site, the locks for the item should be released at every site. The -
maj.or difference between this strategy anci the centralized locking strategy is that, in
this strategy, a lock table is kept at every siie so that: (1) the read-write or write-read
conflicts between transéc“ti;ns cquld be céntrolled locally, and, as a result, only write
locks need to be requested from the other sites; and (2) failure of any site does not
cause a total system failure since the vlock table rcould still be accessed f‘rom aﬁy opéra-

tional site.

The distributed locking srategy has been criticized mainly _because of the com-
plexity of the algorithm and the extra overhead that is incurred during normal opera-

tion.

2-.5. Deadlock '

.

One problem with locking-based mechanisms is that they are subject to deadlock

‘and therefore need dead\l'&k resolution mechanisms. A dcad{ofk is said to have ’f

.

17
occurred in a database system when a transaction ¢; is holding a lock for an item d,

- and is waiting for an itém d, locked by a transaction ¢; which is directly or indirectly
waiting for item d,. A simple example of a deadlock is illustrated in Figure 2.1. An
"arrow from a transaction, depicted as a regtangle, to an item, shown as a circle, indi-

cates that the transaction is waiting for the item. An arrow from an item to.a transac-

tion indicates that the item is locked by the transaction.

y

Figure 2.1. A deadlock situation in a database system. /

There are three schemes that are commonly used- for handlmg deadlock These
include dcadlock prevenhon dcadlock avocdancc and dcadlock dctcchon

In the deadlock prevention sphéme, if a transactio’n‘ti rcquests a re’sourc{\that is
»alr::ady held by an\dtﬂher transaction ¢,, a deadlock "pre§entioh test” is run. If the test‘f
indi.cates(gh@t the;e, is a possiBiliiy of deadl®ck, either ¢, is canceled (non-— prccmptn'vc)l
or ¢y is-abqrtéd-h(prccmpiv‘vg). o | |

ln the dcadlock avondance acheme, trapsactlons are requlred‘t.o request their

.resonrces ln some predeﬁncd order and a transactlon can only wait for an.item which

’

g ' 18

is held- by an older tramsaction (or oné with a higher priority). In this scheme

deadlocks cannot occur. The algorithms studied in this thesis are based on this

scheme.

In the deadlock detection scheme, deadlocks are detected and resolved 'aft,e'r they
occur. Two mechanisms coufd be used to detect a deadlock: tsimeout and Wast-For-
Graph (WFG). If the timeout mechanism is used, a deadlock is assumed to have .
occurred if after a timeout period a transaction. is still waiting for an item. \"thn tilis
situation occurs, the transaction is aborted. This mecha'nism can gause unnecessary
| aborts. A WFG deplcts the waiting sequence of transactions for access to a data item.
If the WFG mechanism is used, deadlocks are detected by searching for cycles in the

graph and then resolved by aborting; one or more of the transactions involved to break’

_ tl{e cycles.

/

In a centraljzed daltabase system, deadlocks could easily be detected since éll the
information about the .WFG is lpcated at one plaée. However, in a distributed data-
base systeﬁm, deadlock detection is much harder since the information is dispersed
amo.ng the sites and, furthermore, dveadlocks caﬂ occur not only locally (that' is, involv-)
‘ing only one ..;site) bﬁt also_globally (that is, involving more than one site). Detection
. and resolution of deadloéks in distributed systems are discussed in [Mal80] und
[Obes2). * | |
2.8. Resiliency -

| ‘One of the cominonly mentioned benefits of 'distribu'te"d da'tab-z;se systems is its

. rellabllny/avaxlablhty However, in order for this. beneﬁt to be achleved the system

. must ‘be reaslient, that is, t.he systemn must be able to operate corrcctly even in tbe

preSencc of fallurcs. In the followmg‘ sectlons, we will look at some types of failures

that could occur in a d‘igtrib‘uted database system, how they could be detected, and -

‘19

how resiliency against some of them could be achieved.

~

2.8.1. Types of Failures

»

There are several types of failures that could occur in a distributed system

'[Gar80}‘c Four main categ'or-ieos are: (1) comnd}unication failures, (2) site failures, (3) -
v - v

-

transa;tion failures, and (4) network partitipning. .

Communication failures can occur because of lost/duplicate messages or link
failures. This category of fz?ilufes is the simplest and does not pose any problem at the
DBM-S level. Lost messages can easily be replaced by repeti@iie transmission of mes-
sages until an acknowledgment is received. Link failures could be bypassed by re-
routing messages. However, this ﬁ)iéht not be possible if the ne‘two;‘k is partitioned or
the type of link is a bus.. o . "

The second category (;f failures, site failures, can occur because lof a serious sys-
tem errof at a site, for example, processor mal'func-tioni‘ng or memory failure. This ty‘pe
of failure can affect the consistency of the dat%base and is dealt with in the upcomiﬁg

N

sections. .

A transaction failure occurs when a transaction kas to be aborted because of
_vrat , ! Lavorteq” :

«

incorl:ect_ computations,’ inv'éflid access requests, or deadlocks.. Tr'ansacti'on failures
coqld be handled i?y kef;ping enough information to allow the tra?saction to be undone
“or fedéne at a later time. | | ' |
Network partitioning is a .combination of link failures that splits the ﬁétwork into
,twolc.)r hxore’ subnetworks's'ucvh that sites in the s#me'subnetwork can communicate
with each c;thér Bﬂut ;ites in one subnetwork Qannbt cbm_municate with _sites_in _another
euBnet/w’ork. Network ‘part.it.it')ning- is an éitr‘c'me_ly hard problvém 'Qnd has»not beeh we“ :
studied in the litgrSture. We ill not deal with network partitioning i this study.

N

~ T . .
? I

20

2.6.2. Site Failure Detection

-~

'(vlmproper' detection of a failure could severely impact the correct functioning of a
distributed data’base system.. Thus, it is pnecessary to have a mechanism that could
detect a site failure when it occurs and notify the database system. Since failure detec-
tion/ and notification protocols usually reside in the cortxmunication subsystem, we will
oxlly brieﬂy'discuss one mechanism that is commonly used, and then assume that
whenever a failure occurs, the dalabase system is properly _notiﬁed by the communica-

tion subsystem. ‘ ‘

The mechanism that is usually used to detect that a site has failed is based on
.) e ’ ’ !
timeout and retry [Lam78]. A site s, detects that another site s, has failed if a
required message is not received within a timeout period ¢t and possnbly after some

retnes Oné problem with this mechamsm is choosing the rlght, value for ¢. Too small

?

a timeout value and ‘number of retries could lead to false failures and too large a

timeout value and number of retries could lead to longer delays. In this study, we

assume that a failure is correctly detected within a reasonsble time period.

2.6.3. Redo/Undo Logs

~

If a site falls whnle an update is in progress the database might be left in’ an

9

inconsistent state. To protect agalnst this type of mconslstency, Gray [Gra78])

I3 o

describes a- techmque that makes use. o undo/rcdo logs and write ahead prolocola
~ Before modlfymg a data ltem in ninvolatxle storage, a log record contammg the old

_and new value of the updated item is written m a log that is then forced in ctablc
storage [LaS76]-. Stable storage is assumed to be robust to failures and can be con-

. 'S ‘) Lo . \.‘. . . ae .
structed~by replicating the same information on several dlsks wnth independent failure

modes Slnce the. log is written in a safe place before the data is actually updated thls

techmque guarantees that enough mformatlon will always be available about the

21

update to undo or redo the update completely at any time. Now if the system fails
while executing an update, the recovery routine could inspect the undo/redo log at res-

tart and undo/redo any incomplete updates.

Other methods that could be used to reconstruct a consistent state of a distri-

buted database include differential files [SeL76], and checkpoints and before images

[Asa79], [Gra78], [Ver78].

2.6.4. Two-Phase Commit Protocols

If an update transaction is not performed uﬁiformly at all sites, the consistenéy of '
the database could be violafed. This migilt happen, for exampi'e, if a site fails while
sending update messages to the other sites. Those sites that receive the message would
commit the transaction while the other sites might abort ihé transaction thus causing
mutual inconsistency in the database. A partial solution to this';;roblem is pravided
by the lwotphqac commit protocol [Gra?8]. The two-phase commit protocol ensures

that an update is eitﬁer cc;mmi.tted at all‘sites or not commithted at all (aborted at all

>

sites), even if failures occur during its execution.

In the basic two-phase commit protocol, there is a special site called the coordina-

.--!\tor. The coordinator is ;espoﬁsible for controlling the éxecution of the transaction and
for taking the ﬁpél deciéion on whether to commit or abort a transaction. The other
;iieg that"ﬂpﬁi"‘ti’c'ipate in:t;he executioh of thé transaction‘aré called cohort sites or parti-
cipants. An informal dggci'iption of the"p“rot-ocol:.is ‘as‘follov:s (see Figure 2.2). "

Initially, the coordi.n;tor'records ‘the, trans;ict,ion update ‘values in stable storage

. and sends a prépare-to-commt't message to all cohort sites. Recall that the coordinator

is notified of any site failure by the communication subsystem. - \A_{_’l{gh a cohort site

_receives a prcparc-to~c?>mmit mesﬁsage, it checks if it could commit the transaction. If

the transaction could be committed, the site saves the trail_sact,ion's‘upda'te values in

22

Y
Coordinator: Record transaction update values in Iog,

Write "prepare” in log;
Send prepare-to-commst message to all cohort sites;

Cohort site: Receive prepare-to-commst message;
If transaction could be committed then begin’
Record transaction update values in log;
Write "ready” in log;
Send agree to coordinator
end
. else begin
~Write "abort” in log;
Send abort to coordinator
end.

-’

Coordinator: Receive replies (abort or commit) from all cohort sites;
If at least one abort message or faslure signal is received then begin
Write "abort” in log;
Send ‘message abort to all cohort smes
Cancel transaction
end ‘
else begin
Write "commit” in log;
Send message commit to all sites;
Perform update on local database; .
end.

.
t

Cohort site: Receive commit or "abort message from coordmator
If commit message is received then begin
Write "commit” in log;
Perform updateon local database;
Write "complete” in log;
. Send acknowledgment to coordinator;
end
else begin
Write "abort™ message in log,
Cancel transaction’
Write "complete” in log;
Send acknowledyment to coordinator;
end.

Coordinator: Receive aclmowlcdgmcntc from all cohort sltes
If a faslure signal is received then
Save-information for failed site;
Write complete in log; ‘

Figure 2.2. Two—bhasé commit protocol.

® e ., . , Coe) 4
he cpo'rdmator; othcmlse, the site sends

stable memory and sends an agree njcss’age“t
an. abort message to thé 'coordinator After the c rdinator has recelved a reply from

every operatnonal SItc, it decides on whethcr to commlt, or abort the transactlon lf at’

23

least one site has decided to abort the transaction or a failure signal is received, the

coordinator sends an abort message to all sites and cancels the transaction locally; oth-

erwise, it sends a commit message to all sites and updates the local database. At the

3

cohort sites, if an abort message is received, the transaction is canceled; if a commit

message is received, the local database is updated and the transaction is terminated. In

either: case, an acknowledgment is sent.to the coordinator. When the coordinator

received the acknowledgments from all the cohort sites, it completes the transaction

locally. If a site has failed, the decision is saved for the failed site.

1. ° If a cohort site fails before the ready record is written in stable storage, the coor-,

‘The behavior of the protocol in the presence of failures is as follows:
T

dinator will be notified about the failure and the transaction will be aborted at all

sites. At restart the failed site could safely abort the transaction.

!

~If a cohort site-fails after the’ready record is written in stable storage, the

recovery routines should inquire about the outcome of the transaction at restart

and then perform the apprdpriate action. ¥

If the coordinator fails after the prepare record is written in stable storage, but

before the ecommit or abort record is written, the recovery routines at restart

A

should restart the transaction from the beginning.

X

If the coordinator fails after the commit or abort record is written in stable

) 3 - » ‘ ' . = .
storage, tle recovery routines at restart should send the decision again to ensure

that the decision is received by all sites.

S

If the-éoordinatdr fails after the complete rec_ora \is-written in stable storage, no
. - I . Q

~ further action heeds to be taken since the transaction has already been com-

- .
a-

pleted. - o o o) :

BT

ES

*

2.6.5. Sysiem Reconfiguration and Transactions Termination

’ -,

One problem with the two-phase commit\protocol isthatitisa blockind protocol,
that is, if the coordinator fatls after sending a prepare message the operational sites
AN .
have to wait for the failure to be repaired before they could terminate the pending

»

transaction. This could be very inconvenient since other transactions that require
access to the items held by the blocking transaction will also have to wait. In some
situations, however, it is possible to design a termination protocol to terminate pend-

’

ing transactions. The protocol would behave as follows:

1. _If at least one of the cohort sites 'has received the decision, the other cohort sites
a8

would be told of the decision and could terminate the transaction.

2. If none of the cohort sites has received thedecisio}n, and only the coordinator site
has crashed, the cohort sites could regroup and elect a new coordinator to ter-

minate the pending transaction.

In both of the above situations, the transaction would be terininated correctly at
all operational sites. However,‘if pone of the cohort sites has rec-eived‘the decision and
at least one participant has also failed, termmatlon is impossible, smce the o.geratnonal‘

sites cangot know what the site has decnded and cannot take an mdependent decusnon

To eliminate the above problem, a lhrec-phaae commst protocol has been propo’sed
\ ,

by Skeen [Ske81] The protocol has been developed based onthe followmg observation.
The operatlonal site in the two-phase commlt are blocked bccause the partlclpants go“

~ directly from the ready state to the abort or commit state For thls reason, even if all

_‘_the operational sites‘ have not received any decisions thcvfalled’slte ‘mlght alrcady h“ave'
performed some deﬁmte actlon (abort or commlt) that caunot be undone. Tlm prob-

lem is solved in the three—phase commlt protocol by havmg a prcparc-lo-commll state

and a prcparc-to -abort state between the ready and the commlt and abort states,_

li . Lo .

25

respectively. In this case, if none of the operational sites have received the decision,
they can still go abead and abort the transaction. The failed site will also abort the

transaction at restart/Notnce that even if the failed site has re@ched the prepare-to-

[n

comm:l state the transaction could still be aborted since the ﬁnal commitment has not
1

been reached yet.

2.7. Site Recovery

When a site recovers from a failure, the database at that site should be brought
‘up-to-date, that s, tlie. updates that it missed while it was down should be executed. A
brute ferce aphfoach of acixieving this is to copy the entire database from another up-
to-date ;peratioﬁal site. A.more reesonable approach'is to keep a log of all updates
that the failed site may miss. The recovery routines at ‘the failed site could then
request and use this log to restore the consistency of its (iatabase at fe;tart. The log
could Be maintained by a ce;tral site, by the site where the transaction 6riginates, by

“.

e .
some specially selected sites, or by every site.

‘ An dlternative approach is based on a technique called persistent cemmunication
[AID78]. In tbis\techniq\xe, the responsibility of remembering the. nﬂssed ‘'updates is
vgiveﬂh to the'communication‘ subsystem. Once a megsage is accepted'by the vcommu'ni-
cation su”bsystem the message is guaranteed to be delwered to the destlnatlon snte‘

/ .

eventually This is usually aclneved by keepmg the message to be sent to a falled snte "

in. a,rehable buffer at the orlgmatlng s_l-te.:

é

Chapter 3
-Petri Nets and

' ‘Extended‘ Place/Transition Nets f

J , : v ;
P In this chapter, we present an overview of Petri nets and the Extended

Place/Transition Net (EPTN) formalism. For a more co-morehensive study on these

topics, the reader can refer to [Pet81] and [Ozs853].

- 3.1. Petri Nets

A Petri nct .can be consndered asa structure consmtmg of three components a sct

/-~
of placea (P) a sel of tram:t:ona (T), and a set o{ dsrectcd arca (A) whrch connect the e
'transrtlons and the places Plctonally, a Petrl net isa dsrcctcd bsparmc graph as shown ’

‘_ in Flgure 1 (adapted from [Age78]) The places are represented by clrcles, transrtnons'

by bars, and tokens by small black dots ms:de the c1rcles

The markmg of a P /tn net. represents the number of tokens that reslde in each' 1

@

| ‘place of the net Each marklng can be constdered as representmg a state of tbe Petn- ,-_.

net, o ~.
S s

A Petn net executes by changmg from one state to another accordmg to certaln -

' _‘nmulataon rules. The change in state is controlled by the ﬁnng of transmons AV:_ IR

-

Y

'E-;‘

&

° Token .
O Place -, ‘ , N . \
. i B 3 ,
Tranastion s '

‘ “,\ . Figure 3.1.- An example of a Petri net.

.

S

transition may fire only if it is enabled. A transition is enabled if each of its input

places has at least one token ".in_ it. A transition fires by removing one token from each

. ' ‘. - .
- 'of its input places and depositing a token into each of its output places.

LY
il T

In Figure 3.1, the only transition that is enabled and can therefore fire is ¢,. Tran-

sition t, fires by removing a token from p, and depositing tokens into p, and p, result- -

ing in the new markmg shown in Figure 3.2. o : L d)@

.

At thxs stage both t2 and ¢, are enab,]\d and can fire concurrently After the @rmg

of both ¢, and ts, the new marklng shown in Fxgure 3.3 is.obtained. Thls situation

jvﬁsents a conﬂact both ¢, and t; are elﬁbled and can fire, however, the firing of
elther one of thenf dlsables the other. The decmon as to whlch one ﬁres is comp‘letely |

arbitragy. It is thls abxhty to easnly repreaent both concurrency and conflict that makes ‘

. Pem new a powerful modelmg tool. e 8

-

Figure 3.3. Representation of conflict in a Petri net.

28

29

3.2. Modeling of Systems Using Petri Nets

Petri nets have been specifically devised for the modeling of systems, especially

systems with concurrent and parallel activities. In this section, we illustrate how to
model systems using Petri nets. i ,

In order to use Petri nets for system' modeling, one must view a system in terms
of cvcnte and conditions. Events represent actions that occur in the system. Conditions
represent the states of the system. For an event to-occur, one or more conditions must
be true. These are called the preconditions of the event. The occurrence of an event
could change the state of the system and thereby cause some other conditions to

become true. These new conditions are called the postconditions of the event.

As an example, consider a simple computer system with one CPU. The conditibns
for the system are: . |
p,:a jbb has arrived ang is waiting
2 : CPU is available
i)a': job is being processed
p, : job is completed
The events for the system are:

t, : CPU starts processing of job* - -

ty: CPU comple_tes- processing of job

The postcondmon of event ¢, is (Ps) job is being processed For event t, to occur,

.. the precondmons Py and p, must be true, that is, for the CPU to start processmg of a

job, a job must be wamng and the CPU must be avallable Slmllarly, event 12 (CPU
completes processmg of job) can oceur only after precondmon Pa (job is belng pro-

>

cessed) is true. The occurrence~of this. event will cause condmon p,to become true.

\

30

Based on this view of the system, a Petri net mode! could be constructed 'for the
_ system. Conditions are modeled by places in the net, even.ts are modeled by/transi-
tions; and the holding of a condition is represented by a token in the place correspond-
ing to tbé condiéion. The input places of %transitilon represent the preconditions of the
corresponding event; the output places represent the postconditions. The firing of a
transition is equivalent to the occurrence of the corresponding event. When a transi-
tion fires, tokens from the input places are removed thus ceasing the holding of the
preqopdi}ions, and new tokens are placed in the output places causing the postcondi-

tions to become true.

The Petri net model of the simple computer system 13 shown in the Figure 3.4.

—

\
\
A

Figure 3.4. A Petri net model of a'simple computer system.
\ ‘ R .

u |
3.3. Extended l’_lnce/Tx]'arf?i;t,,ipn Nets

As we'have mentioned in'the introduction, Petri nets have many shonc'omings

*

’when it comes to the performanle modehng of systems. These mclude [o::ssa] (l) the“

lack of the tlme concept -in Pet\n nets, transltlon ﬁnngs are lnstantaneous, meanlng

. \\A -) . :7 }) .
< \ : R I

‘ : 31

that events do ﬁo‘t take any time, (2) the absence of a mechanism whereby tokens
which may be interpreted as repr‘e'axentinig jobs in the system are allowed to carry data,
and (3) the ingistence that all the input places of a transition must be full before the
transition could fire; similarly, a transition firing implies ﬁhat all the output places of

- a \
the transition are affected by the firing.

Several derivatives of Petri nets that attempt to solve these problems have been
proposed in the literature, and the one that is particularly suitable for distributed
database systems is. the EPTN formalism. In this section, we briefly describe a sﬁbset .
of the formalism that is supported by the current implementation of the ;1et simulator

SIMNET. A more complete treatment of the formalisufls gnven in [Oz385a]

Deﬁmtlon 3.1: An EPTN can be identified as a triple E=(P T,A) where
P'{pl,pz,...,p_,,} is a set of plag:c', P+
. T={t,,t,,..,t,} is a set of transitions, T# ¢
A C {TxP} U {Px T‘}Vis a set of directed arcs.
Definition 3.2: A marking M of an EPTN, E-(P,T,A), is a mapping
. | M:P - N U{0}
wherev'N'i_s tﬁe set (;f patural numbers.

The mar'k.in‘g‘of a place p;, dendted by M(p;) represenis the number of tokens that
reslde in place p; of the net Tokens in EPTN have the abxhty to carry data A token
. that is carrying data is called. a data token, else the token is called a umplc tokcn The
' ’data tokens.represent the system temporary entltles, for example, jobs, transactlons,

etc. The simple token is used to mdlcate the satlsfact.lon of some condition, for exam-

ple, the avallablllt,y of a resource. R o .

Definition 3 3: leen an. EPTN E (P T ,A), the set of input placca I(1,) and the set

of wtpul placu O(t) for each transmon t; are given by

*

32

l(ti)q{_pj I (pjvti) € A}

O(t‘)"‘{p‘ I (‘npl) € A}

'
Definition 3.4: Each transition ¢, € T is defined as a 4‘-tuple t,=(pr, z, q, r) where pr
is the prcco;aditfon that has to be satjsﬁed for transition ¢; to be activated, z is the
' Itranaition time for ¢, q i3 tixe transition procedure specifying the effects of activating
transition ¢;, .and r is the output resolution procedure indicating the procedures to be

followed in routing the tokens to alternative places in the set of output pjaces of ¢,.

The above definition contains the major extensions to Petri nets. The following

sections discusses these extensions and their implications and uses in-more detail.

3.3.1. Precondition

In the modeling of systems, more than just conjunctive logic is needed in the
: sp‘eciﬁcatiox; of the precondition that has to be satisfied before an event could occur. lﬁi
EPTN, ai'Bitr_ary logic arrangements on the input places of a transition can be
specified using the ﬁrecondi@ion attribut‘e. For example, assume a transition ¢; such
that 1(t,)=1{p,,ps}- The AND, and OR logics can be specified on the inputs as follows:
1. pr(t))= (M(2;)>0) A (M(p,)>0) |

2. pr(t)=(M(p,)>0) V (M(ps) >0)

. When the precondluon of a transition ¢, is true, a set of mput places is chosen to"
participate in t.he firing of the transition. This set is denoted by #r(¢;) and is obtqmed
as follows. If pr(f) = (M(p,))O A M(pt)SO)' is . true, . t.he«n 'IP.'(l,-) - {ﬁj,p,). o If
| \pr(t)-‘('M(p,))O VM(§5)>O) is true, then -there are -threé possibilitie?@ ()
M(p;)>0 and M{p,)=0, then I(r) = o (2) It M(p;)=0 and M(p,)>o u.en .
I77(t;) = {p;}, and (3) If M(p,)>0 and M(p;)>0, then IP'(t)= {p,} or l"(t)= {p‘}

and the choice is random wnth equal pro blllty

AL

33

3.3.2. Transition Time

Since the formalism is to be used as a performance modeling analysis tool, it is
necessary to be able to associate sv'ith_each event the time it takes. This is achieved in

EPTN by including'a delay with each transition through the tran@tion time attribute.

. Aye transition time may be a constant value for all firings of the transition, or a value

rom a stochastic function, or a function of a data attribute from the data token that

enabled the transition.

3.3.3. Transltxon Procedure

7

One of -the features of EPTN is t,he ablllty of the tokens to carry performance

related data. In view of this fact, it.is also necessary sometimes for a tramsition to

-

manipulate and modify these data or perform other operations when it is activated.
This is made possible in EPTN by incorporating a transition procedure attribute. This

" attribute gontains instructions on how the data should be manipulated or what other

'

operations should be performed.

3.3.4. Output Resolutlon

'S

’

‘Unlike Petri nets, EPTN allows a subset of the output places to be used in the

firing of a transmon Whlch suBset is to be used is usually dependent on some condi- - 1

tions. These condmons, which are expressed in terms of data attributes of data tokens
and their ‘respectwe actions on the output ‘places are specified in EP'J_,‘N using the out-

¢ put resolution preced'ure._ “For example, if O(t;) = {p;,p;,p;s} and if the output resolu-

~ tion procedure r(t;) is to place a token in p; wnen, say, condition A is true and to.

places p, and p‘ nf lt is false could be speclﬁed as follows:

{p;} |f condmon A is'true;)
(')= {{p,,p‘} if condition Alis false;

FERS

34

_In the above specification, O'(¢,) indicates the output places that are chosen when

T(t,) is evaluated.

- With regard to the above notation and terminology, the transition firing rules can

pow be defined.

Definition 3.4: A transition ¢;=(pr, z, g, r) of an EPTN is enabled for a marking Mif
, oo /
and only of pr(t;) is true for marking M. .

Definition 3&\:\'1;he firing of a transition t; € T of an EPTN, E=(P,T,A), under a
marking M in which it is enabled, results in a new marking M’ defined as

M(p,)+1|f pl£0'(t)Ap, I’"(t)
M'(p,) = M(p,) 1if p; € I?"(t;) A p; € O'(8,)
M(p,) otherwise ,

4

4. Modeling of Systems Using EPTN

"In this section, we make use of.a simple but quite realistic example to illustrate
the modeling of systems using EPTN. In the discussion, we consider only the modeling
aspects and leave out the performance issues. These will be discussed'in detail in the

next chapter.

In this example, we want to model an on-hne mformauon system The systcm
consxsts of a number of remote terminals each capable of lnterrogatmg a slngle proces-
" sor. A cus’?mer with a query arrives at, one of the terminals and wa:ts in line, if neces-

sary, to use it. When the terminal is avallable , the customer cnters hls request and

awglts his reply.

‘Requests from the terminals are transferred over a network into an input bﬁﬂ"er at:
the processing site where they wait for the C'PU. Whenever the CPU is> availablc anc'i

there is a request wamng, the CPU removes the first request from the buﬂ'er, proccsses
[
the query, and places the answer lnto an output buﬁer where it valts to be transmmed

'

/.

i 3.7'rtinuk tpplles to the other me transitions and places.
4

§

35

over the network to the destination terminal. The customer reads the reply and quits
his terminal. ‘

Logically, the enti;'e system could be view%s consisting of three distinct subsys-
tems: the terminal site subs'ystem, the network subgystem, and the processor site sub-
system. In order to model the system using EPTN, the entire system must be viewed.
as a net which consists of three subnets 4eac.h one corresponding to a _subsystemv. Each
subnet 'must in turn be viewed in terms of transitions and places which correspond to

the events and conditions that occur in each subsystem, respectively. The places and

\

, transitions, with their corresponding interpretations for each -subnet are described in

this section. We assume that there are n terminal sites in the system.

. >~
3.4.1. Terminal Site Model -

The events that take place at a terminal site s -are: the user enters his request

(transition ¢t,)t, and the user reads the reply from the terminal (¢¢,).

)

The condmons that need to be fulﬁlled for event tf; to occur are: a user has
arrived and is waitirng for a terminal (place tp,), and a termin:;Vlls available (¢p,). The .

conditions for event ft, are: a user is waiting for a reply (ip;), and the reply has

~arrived (gp,,). Note that we have given a different designation to the condition

represeﬁting the arrival of the reply. This is because the reply will be coming from the

processor which will be modeled as a dlﬂ'erent. subnet So, this place will be shared

between two subnets and is.therefore deslgnated as a global pla.ce

‘The condmons that become true as a result of the occurrence of event tt, or tt,

_are as followa When tl, occurs, thc new condmons are: the user is waltmg for a

4

_respdnse' (w_hlch we_designated by lps), -apd there is a'request waiting to-be delivered

+For convemence, tyi is used instead of “1 R unless t.here is a chance of mxsunderstandmg The same

¢ .

36

to the processor (gp, ,). Notice that the second place is global. When event tt, occurs,
that is, the customer reads the reply, th‘ék‘on.dition that the customer leaves the termi-

1

nal (tp4) becomes true.

The subnet for the terminal site model is shown in Figure 3.5. Note that in this
model the preconditions and the output resolutions for both events are simple, in the
sense that only conjunctive logic is ¢employed. Therefore, we do not specify them expli-

Cltly o : | 11“;%%

S — — S . GE— — — — ——— — S— — —— — —

Figure 3.5. Terminal site model.

i3.4.2. Processor Site Model

The events-that take placé at the processor site are the following: a request is

received by the CPU froxh the input buffer (pt;), a réquest is processed (pt,), »an‘d s

) ¢ >) . .
‘reply is sent to the output buffer (pt;) to be transmitted to the terminal. .

3

H

37

The conditions that need to be satisfied for pt, to occur are: the CPU is available
(pp,), and a request has arrived and is waiting in the input buffer (gp,). The condition
~ for-transition pt, is that a request has been received by the CPU (pp,). Finally, the

condition for pt; is that the request has been processed by the CPU (pp;).

The output resolution of event pt, is pp, and that of transition pt, is pp,. The

occurrence of event ptg results in a reply being placed in the output bufler to be
. o

delivered to the terminal (gp,), and the processor is available again (pp;). The model is

depicted in Figure 3.6.

Figure 3.8. Processor site model..

- 3’.4,3. Network Model w - _ - R
Since this is an on-line information system with remoteé terginéls, we need a facil-
ity to deliver messages back and forth between the procéssor and the terminals. This

3 -

‘ facility is 4usu;ally provided ;b;a ‘comix‘mnication network which we are going to model

38

as a subnet as well. .

The events that take place on the network are: a request is transmitted fiom a
terminal to the processor (nt,), and a reply is transmitted from the processor to a ter-
minal (nt,). For event nt, to occur the network must be available (np,) and there

-

must be a request waiting to be transmitted at a terminal site (gp, ,). The occurrence
of the event results in the following conditions becoming true: a request is waiting in
the input buffer at the processor (gp;), and the netwbrk is available again(np,). Simi-

larly, for event nt, to occur the network must be available (np,) and there must be a

reply waiting to.be transmitted at the processor site (gp,). The occurrence of the event

causes the network to become available again (np,), and a reply to be delivered to a

~ .

o

terminal (gﬁ2’,).

Figure 3.7 lists all the bllacés and transitions together with t;heir interprgtz;tiohs
for the eﬁtiré model, and Figure 3.8 shows the entire model with the network connec-
tions between the terminal sites and tﬁe processor site. Notie that w‘he'n"theré_ is more
than one terminal, the subnet for the terminal model is replicated. The figure is drawn
to clearly show this feplication. Also note that the plus sign (+) ':i;L‘ transition inputs

and outputs signifies a disjunction while the omission of a sign represents conjunction.

: ‘ o

Data Token: Customer Information
terminal_ID: The customer terminal number.~ - .,
time_sn: The time the customer entered his request.

»

Net: On-Line Information System ‘ -
. gP1,: A request from terminal & is waiting to be transmltted over the o
network to the processor site. ’
gp2,: A reply from the processor- site has been transferred over the net-
work' to termmal site a.
gpy A request froln the network has amved and is wamng in. the input
buffer at the processor site. - o
gp4: ‘A reply from the processor is waltlng in the output buffer: at the ter-
minal site to be transmitted over the network toa termlnal snc

7

Subnet : Prgeessor Slt,e : g
/_\M is available. SN\

Pt
NS
I ~a&

" 39

Subnet : Terminal Site s
tp,: A terminal Is available.
tpy: A\customer has arrived and is waiting for a terminal.
tp;: A'cus r is waiting for a reply.
Py \/‘\ customfr qmts his terminal.

tt,: A customer enters his request.
ttr A customer reads the reply. .

”

< opr(tty) = (M(‘p1)>0) A (M(tpy)>0)
O'(tty) = {tp,} ‘
pr(tty) = (M(tpy)>0). A (M(gp, .)>0)
or(tt;) = {tp,, tp,}

"Subnet : Network

np,: Network is available. -

nt, A request is transmitted from terminal site to processor site
over the network.
nt,: A reply is transmitted. from processor site to terminal site over

the network w\

P'("tx) = (M("P1)>0) A (V{\Al(gpl z)‘?o | 1535"})
O'(nt,) = (npl, 9 .} where o= term:haUD of data token.
s

\

, PPy A request has been received by\(\7PU ' 67
‘PP3: A request has been processed by CPU }Q _

~ pt;: A request is received by CPU from i&;put buﬂ'er\,
- pty: A request is processed by CPU. \ Y
pls: A request is sent to output buffer. \ oy

\
prpt;) = (M(gp) >0) A (M(pp))>0) N
0'(pty) = {pp,} A\ .
pr(pty) = M(pp;) >0 S A
O'(pty) = {pps} S \
pr(pts) = M(pp;)>0 ' - SN :
07(pts) = {opy, pp1} o s L

anure 3 7. lnterpretatlons for On-Llne Informatlon System Model

e N

terminal ¢

Figure 3.8. EPTN model of On-line Infqrméiion Sys.t,em. '

3

network

processor -

40

Chapter 4

SIMNET: An EPTN Model Simulator

. ' [' ' ‘ !
SIMNET is a simulation package developed to facilitate the implementation and
simulation of systems expre;sed as extended._place/tranSition nets. SIMNET is imple-

mented as yet another context (see Section 4.2.2) prefixed by the SI.MULATION con-

t’text“in SIMOLA, and therefare inherits‘all the features oﬁ’ered‘by SIMULA as ‘well as

those pr;vided by the SIMULATION context. Although all those features are available
' ‘ -~

“to the user, only a few of them need to be used .in any SIMNET program.',ln fact, it is .

possible: forsomeone with no previous experience in SIMULA to write a SIMNET pro-
grim SIMNET is very portable and could run on any computer system with. a

SIMUL.ﬁ compller SIMNET is currently runmng under MTS on an. Amdahl 7860 and

under UNIXT on a VAX 7801

«

‘2
The purpose of thls chapter is to provnde an overview of SIMNET. For a more

4-':

‘formal descnptlon of the language, the reader can refer to the User’s Gulde in Appen-

~dix 1. The ﬁrst sectlon lists' the desngn objectlves of SIMNET After a short overview

. ',of the SIMULA language, several features of the SIMNET context are brleﬁy discussed .

~

tUNIXis s trademuk of AT&T Bell Laboratories.
t VAXisa trpdemark of Dlgltal Eqmpment Corpontlpn

4

42
via a complete example.

4.1. Design Objectives '

In the design of SIMNET, we had several obje‘ctivés in mind; most of them have
successfully been achieved in the implementation. These objectives are summarized as

follows:

1. User Interface - The user 'intyrface should be friendly, simple and easy-to-use
and yet flexible enough to allow any system modeled as EPTN to be fully

described.

2. Random Number Génerators - Different types of number generators should be
prov'ided for the simulation of stochastic models.

3. Accumulating and Reporting of Statistics - Collecting and reporting of
statistics should be automatic. A user should also be provided with the option of
writing his own report routine if he/she is not satisfied with either the contents or

format of the standard output.

4. Error Checking and Debugging Facilities -"‘I‘he simulator should provide.
error-checking and debugging feavtvurgs to assist the user in the development of the
simulation model. A tracing facility should be provided to help trace through the

_program execution for model verification and for identification of obscure errors.

5. M_odularif.y and Structuredness - The user should be able to build models

from basic building blocks in a structured fashion.

6.. 'Control of Slmulatlon Commands must. be avallable to allow users to control

*

the lnternal and external components of the model;. to dynamlcally change the

status:of the model and to make several runs sequcntlally

43

'

4.2. A Short Introduction to SIMULA‘

This section contains z;shon introduction to the main features of SIMULA. More
detailed description of the language could be found in {DaN66}, [Fra77], [Bir81a),
[Lam83], and [DMNB84|. SIMULA is a general purpose language based on ALGOL. It
e_xtcnds ALGOL by adding two new major language concepts : the class and the con-

‘ tezt. ‘

4.2.1. Class

A elass’in SIMULA is used to define concepts that closely resemble those of an
abstract data type. Class instances are called objects and several objects of the same

class can exist and operate at the same time in the program.

A class declaratlon is slmllar to that of a procedure that i Is, it has some formal
parameters a local variable declaration and optionally a class body. The general

structure for a class declaration is as follows:

class class-name(formal-parameters);
Parameter-specification; :
begin - :
Locally declared variables and procedures;)
Class body statements;
end

The formal parameters and locally declared variables and procedures are called
e

~the attnbutes of the class. An mstanc&of a class could be created by a call-to the

operator new which has the following general structure:
new class-name(actual-parameters);

When this statement is executed an instance of the class is created and the class
body stat.ement.s are executed. At the end of the executlon, the object is dlscarded,
unless there is a pointer referencing it. Referencing is ~accolnplished by first declaring

a reference variable for the class and then assigning the object instance to it. This is

‘

44

illustrated below.

ref(class-name) reference-variable;

reference-variable :- new class-name(actual-parameters);

Current data values or procedure definitions of the class attributes could then be

accessed from outside the class body by using the dot notation, as follows:

reference-variable.class-attribute;

4.2.2. Pfeﬁxed Ciass

In SIMULA it is possible to build a hierarchical structure of classes by prefizing. .
For.example, a class B can be made a subclass of a class A by prefixing class B by A as

follows:

class A (formal parameters for A);
Parameter specification;
begin '
Attributes in A;
Statements in A;
end; :

A class B (formal parameters for B);
Parameter specification;

- begin ,
Attributes in B; C ‘
Statements in B; ' 2

end; K ;

The resulting class obtained is a compound object which is the union of the for-
mal parameters, attributes and statements of the classes in its prefixed sequence

~t,oget.her with the structure defined in its own main body. Thus, in the example above,

statements in A are executed before statements in. B.

4.2.3. Context

A cogtext [Bir81.b] is a collection of predefined classes, procedures, and data attri-
butes, and statements all contained in a "super class”. By prefixing a block with t_l{e
élass name, all these predefined facilities are made accessible within the block body,
| giving the block“a built-in environment in which to operate. SIMULA provides two
stan;inrd contexts: SIMSET and SlMULATlON. SI.MSET con}égns‘some facilities for
ist processing. SIMULATION provides some dnscrete-event simulation features and
the process cohcept. SIMULA'HON is prefixed by SIMSET, and therefore contains the

list processing features of SIMSET as well.

4.3. Pi’ogr'amming in SININET

SIMNET is imple.jmented as a SIMULA context preﬁked by SIMULATION. SIM-
NET contains, in addition to the discrete-event simulation ’i'aciiities provided by
SIMULATION, predefined classes, procedures and data definitions that could be used :
(1) to declare and generate instances of cntities, places, t;ax;sitions, subnets, and nets,

(2) to assist the user in finding bugs in a net construction, (3) to simulate 4 net, (4) to

- trace the execution of a net, and (5) to automatically collect and report statistics :

'In this section, the structurg of a' SIMNET program is brleﬂy described and the

main features are xllustrated by means of a programmlng example o

4.3.1. Program Structure

A v

A >SlIMNET program isAnothiug more than a SIMULA program writ'ten ‘us»ing thé
. net -sim\.llation primitives’. provided by the SIMNET context. A SIMNET prqgfam can
| b§ di\.rided‘ into two major par@é: a"de.cl.arzlttioh pa;lf1»-and the main program. The
decl'arat.ibn ipa'rt', itse’ilf‘ comsists. of six ditstincvt' pins:'déclardtion of global bonsiants,

- - declaration of global variables, declaration of other classes and procedures, declaration

40,

of transitions, and declaration of subnets. The main program consists of the net crea-

»

tion statements, and the simulation control statements. o

In the rest of this chapter, we will describe these different parts by implementing

our On-Line Information System, modeled as an EPTN in the previous chapter, step

by step. A complete listing of the program is included in Appendix 2.

In the description, the following conventions will be used: SIMULA .keywords will
be set in bold, SIMNET reserved words will be set in stalics; user-defined identifiers

will be set in UPPER CASE, and comments vgi[l be enclosed by '!" and ’;'.

s

4.3.2. Performance Model and Assumptions K !

First of all, we list tﬂherperl'ormance‘ model iﬁpuf, p;rameiers and assumptions.
The input parameters are: rhean interarrival time of customerq at each terminal site _
(MIT), mean time to type in a request (MTR), mean time to read a reply (MRR),
number of terminal sites in the system (N), messagé transmission time (T), CPU pro-
cessing time togPeceive/transmit a message (P), and mean CPU tinie to V;Srocess a

request (MTP). . ‘ o X .

The interarrival time of customers, the time to type in a ;equest,;thg time to read
- areply, and the CPU‘t_,ime to ‘process a request are as:;ﬁmed to be negative ex‘p.onexll-'_
tially _distributed, The numl;er of terminal sites, the mes;ige transmission time, and
the CPU‘time to réceiv'ed/trans‘mvit a message are assumed to be constant throughout a -
: .si.m‘ulation. .‘ | |
4.3.3. Dec’larat_:iqn' of G‘lob'fa.l éoxvx‘i'tu.n.ts : : o L
The'decléréﬂid'n‘of global constants is included after thé'bgginﬁjng of the program,
‘and b-efo;-c the SIMNET prefixed block. It usually c'optains_ the decl;_rétioxi and initiali-

v

" zation of input parameters and other global constants used in the simulation. The fol-

\ | .

lowing SIMNET statements declare the input parameters for our on-line information

* system and initialize the parameters to values obtained from the standard input file.

begin ! Beginning of main program ;

! Declaration of input parameters ; °
integer N; :
real MIT, MTR, MRR, T, P, MTP; , °
! Initialization of input parameters ;
Inimage; N := inint; ‘
Inimage; MIT := inreal;) TN
- Inimage; MTT := inreal;
Inimage; MTR := inreal;
Inimage; T := inreal;
Inimage; P := inreal;
Inimage; MTP := inreal;; ' o,

SIMNET begin ‘ , L

4.3.4. Declaration of Global Variables *

SIMULA and therefore SIMNET are strongly typed whlch means that every glo-
bal variable used in the program must be declared before it is used. Thls 18 done in the
’global yvariable declaratlon part. ln our example, we peed to declare the global vari-
" ables GP1, GP2, GP3 and GP4. GPXand GPf are two arrays consist;ing ef N places
each that Iilrk the terminal sites wrt the netrvork. ’i‘he places GP3 and GP4 are«. to
global places that lin,k the neiwork with process()r site We also nee;i to. declare a

reference vanable CUST of the class CUSTOMER (see next sectlon) to reference the

: currentx customer in the system

ref(place) array GP1(1:N), GP2(I N);
. ref(place) GP3, GP4; L oL
N ref(CUSTOMER) CUST, o | : o

48

4.3.5. Declaration of Data Objects -

As mentioned in Chapter 3, in El;TN tokens are allowed to carry data objects
which usually represént temporary \entities, for example, transactions, jobs, customers,
etc. In a SIMNET_program,. these data objects are declared in the data object déclart;-
tion 'pz‘xrt. As shown below, class CUSTOMER declares a data object that is used to
represent a customer in our on-line information system. A CUSTO‘MER objeft con;
tains two real value attributes that correspond to two properties of a customer: the
time taken to type in a request (TTR) and the time taken to read a reply from the ter-

minal (TRR) Wlthm the object body, TTR and TRR are lmtlallzed to random values

-

" obtained from negatlye exponential dlstnbutlons with means MTR and MRR, respec-

tively. Seed! and seed? are SIMNET predefined integer”variabl'evs.

“

dataset class CUSTOMER;
begin
real TTR, TRR;

TTR := Negexp(1/MTR, scedl);
TRR := Negexp(l/MRR accd3),
end; .

4.3.8. Declaration of Additional Classés and Procedures

~ This part of a SIMNET program usually contains those additional classes and :
, proc‘edures that are required.for the simulation or by the user for some s,peci‘ﬁlé pur-
posés. In our éiample this part contains the declaration of a class called SOURCEI

and the redéﬁnmon of a SIM NETfiJrocedure nlcurcnv

source clasa SOURCEI
begin
ref(CUSTOMER) procedure ncwdata, .
. .newdata :- new CUSTOMER ‘
. real procedure disf;
 dist ;= Negexp(l/MIT, sced);
end; - o

* procedure setcurenv;

/ : 5 19
\ .
CUST :- curdata;

‘ <
Class SOURCE] is declared as a subclass of the SIMNET predefined class source
to generate customers for the simulation according to a negative exponential distribe-

tion. Source contains two predefined procedures: newdata and dist. Newdats and dist

could be redefined to specify the type of data objécts that need to be generated and}

the distribution that is to be used for the generation of the data objects, res%,ectively.
% : : Ty

Procedure setcurenvis a dummy SIMNET procedure that is invoked by the SIM-
NET simulator every time a transition is activated. In our example, this procedure is

>

redefined so that the global variabfe CUST always points to the current data object.

4.3.7. Declaration of Transitions

. . - ‘ » i .
All transitions that are used to built up a net model are defined in the transition

declaration part. A new transition is declared as a subclass of the SIMNET predefined
transition class. The transition class contains three predefined .procedure attributes
which could apprppria&ely be redefined to suit any EPTI\%_}ti‘@nsition procedure struc-
tures. These px;oceduresl are called precond, work apd‘ o,u‘l”rca' and have the following
" ‘meanings and default definitions: T | |

1. Prcco.nd - t!]js boéléan function i’l'np,lem.e.nt,s. the precondition-attribute (pr) of an

‘QEPTN transition. lThe de‘fault. deﬁﬂition is the coﬁjunction (A) of the marking

(M) of all the input plaées to the transition, that is, i'f I(t;) = {éi,gj'p,} then
precond = A(A(M(p;)>0,M(';iji>0),M(Pk)'>o)_ ' : _

2. Work - vth.is f_{mctiqn proce‘dkureﬂ is an ‘implementatic.m of two EPTN ftran'sitioﬁ

attributes: t_rénsitiou tinje (z) and transition procgdﬁre (g)- The body of the

WORK procedufé implements the EPTN transition ‘procedufe ivhi‘le the value

_retufnqd fepréﬁe_n_ts the EPTN transition i.fme. The default definitions are: empty

‘ .- for transition précedure and zero for transition time.

i}

s

<

= 50

3. Outres - this function implements the EPTN output resolution attribute (r). The
" default definition is the union (U) of all the output places from the transition,
that is, if ‘O(4,)={p/,Pm,Pa} then outres -= U(U(p,,pn).P,)). U is a SIMNET

predefined function that rcturns a bag of places obtained from the union of its

\
- two arguments.

In our on-line information example, we need to declare seven different transitions.
We have chosen to illustrate the declaration of only one transition to demonstrate the
use of the transition class. The other transitions could be declared in a similar fashion.
Notice that preconditions and output resolutions with only conjunctive logics need not

be specified although they are specified here for the sake of presentation.

tranasstion class TT1(IP1, IP2, OP1, OP2);
ref(place) array IP1; &
ref(place) IP2, OP1, OPQ,
begin
integer I;) -
! Precondition attribute ;
boolean procedure precond;
begin
boolean COND;
COND := FALSE;
for I := 1step 1 until Ndo
COND := O(COND, M(IP1(1))>0);
precond := A(COND, M(IP2)>0)
. end;
! transition time and procedure attnbutes ;
real procedure work;
work := T;
! output resolution attribute ;

“ref{ bag) procedure outres;
- outres := U(OPI OP2);

! speclﬁcauon of mput places
tnpl :- None; .
for 1:= I step 1 until N do
snpl :- U(snpl, IP1(1));
inpl - U(inpl, 1P2);
! specification of output places ;
outpl :- U(OPI OP2);
' end :

oo\ ~ o 51

N
@ ‘ .
4.3.8. Declaration of Subnets \

The next class of objects that could be defined is subnet. A subnet in SIMNET
represents a higher-level construct, which could be compared to a subroutine in a pro-
gram, and is declared in terms of more primitive constructs such as places, transitions
and some other facilities such as sources, sinks and resources that are used for perfor-
mance evaluation purposes. Thege facilities need to be generated and connected to the
appropriate places. In the example shown below, only the declaration of the subnet

, . f '
TERMINAL is illustgated; the other subnets could be declared in a similar way. The
actual parameters used in the transition instance generation statements repregent the

Iz

places that link the transitions together. ‘ o .

subnet class TERMINAL(IPL, OPI)
ref{place) IP1, OP1;
begin
ref(place) array TP(1:4);
integer I;

for]:= 1step 1 until 4do
TP(I) :- new place;

| CER(TP(1), TP(2), TP(3), OP1);
~ -MTP(S), IP1, TP(1), TP(4));
new SOURCEI.conncct(TP(?));
riew sink.connect{ TP(4)); f

new rcaource(l "TERM").connect{ TP(1)); -
end; ~ '

4.3.8. Net Creation

Aftei' t& necessafy subnets have been decla.red instances of the subdﬂs are gen-
: Acrated and linked together uslng global places if necessary, into the ﬁnal net. ThIS is
done in the net construcuon part of the main program In the example below the net,

: ,for our on-line lnformatlon system is constructed from N lnstances of the subnet TER- ,
MINAL, one mstance of the subnet NETWORK and one instance of the subnet PRO-
CESSOR. e - ,

§2
! Creation of global places ; . ' e
“for 1:= 1.step 1 untidN do (
begin \
PG1(l) - new place; ‘ ! ,
PG2(1) :- new place; ' !
end; -

PG3 :- new place;
PG4 :- new place;
! creation of subnets ;
rl :=] step | until N do
‘new TERMINAL(PG2(I), PG1(I));

new NETWORK(PG1, PG4, PG3, PG2);
nelw PROCESSOR(PG3 PG4);

4.3.10. Simulation Control Statements

Now that the net is constructed, it is time to check the ne)/for bugs, start the
simulation, validate the model by tracmg the execution, and l&gport the statistics.
These could easily be done by |nvok1ng the predeﬁned SIMNET prq\cedures chcck_ﬂct‘
‘display_net, acmula'tcv trace, and report. Invocatiow of the procedt}re chcck_nct causes
the net to be checked for any unconnected phaces and/or transmons and slmllar syn-
tactic errors. The pr.ocedure duplay_nct causes the structure of the net to be listed,
The simulation can be started b); the command simulate . Parts'of the simnlation can
be traced by turning the trace feature on ns'ing the trace command. The dutnut is

reported using the report command. The use of these procedures are illustrated in the

example below.

. check_net;
display_net;
trace(l, 25, J);
simulate(60, 'T’);
report, '

sl

A sample of the output produced is as follows:

--- NET IS APPARENTLY OKAY ---

NET STRUCTURE

.............

PLN = LOCAL PLACE N; PGN = GLOBAL PLACE N

TT1 IN TERMINAL 1: IN'{PLI ,PL2}, OUT={PL3,PG1}

TT2 IN TERMINAL 1 : IN={PL3,PG2}, OUT={PL1,PL4}

TT1 IN TERMINAL 2 : IN={PL1,PL2}, OUT={PL3,PG3}

TT2 IN TERMINAL 2 : IN={PL3,PG4}, OUT={PL1,PL4}

TT1.IN TERMINAL 3 : IN={PL1,PL2}, OUT={PL3,PG5}

TT2 IN TERMINAL 3 : IN={PL3,PG6}, OUT={PL1,PL4}

NT1 IN NETWORK 4 : IN={PG1,PG3,PG5,PL1}, OUT={PG7,PL1}
NT2 IN NETWORK 4 : IN={PG8,PL1}, OUT={PG2,PG4,PG6,PL1}
PT1 IN PROCESSOR'S. : IN={PG7,PL1}, OUT={PL2}

PT2 IN PROCESSOR 5 : IN={PL2}, OUT={PL3}

PT3 IN PROCESSOR 5 : IN={PL3}, OUT=~{PG8,PL1}

s

. TRACE BEGINS . .-.

TIME

2.8314

3.6609

- 4.6665

- 5.7664 -

5.7671

62181

7.1589
8.8589

TRACE ENDS

EVENT(S) -

TERMINAL 2 - CUSTOMER 1 ARRIVES

TERMINAL 2 - TT1 IS ENABLED BY CUSTOMER 1

TERMINAL 1 - CUSTOMER 2 ARRIVES
TERMINAL 1 - TT1 IS ENABLED BY CUSTOMER 2

| TERMINAL 3 - CUSTOMER 3 ARRIVES

TERMINAL 3 - TT1 1S ENABLED BY CUSTOMER 3
TERM]NAL 2 - TT1 FIRES - -
NETWORK 4 - NT1IS ENABLED BY CUSTOMER 1

- .NETWORK 4 - NT1 FIRES
PROCESSOR § - PT1'IS ENABLED BY CUSTOMER 1 -

PROCESSOR 5 - PT1 FIRES |

PROCESSOR 5 - PT2 IS ENABLED BY CUSTOMER 1
PROCESSOR 5 - PT2 FIRES

PROCESSOR 5 - PT3 IS ENABLED BY CUSTOMER 1
PROCESSOR 5 - PT3 FIRES

" NETWORK 4 - NT2 IS ENABLED BY()USTOMER 1
'NETWORK 4 - NT2 FIRES :
* TERMINAL 2 - TT2 IS ENABLED BY CUSTOMER 1

TERMINAL 2 4 TT2 FIRES -
TERMINAL 2 - CUSTOMER 1 T’ERMINATES
TERMINAL 8- CUSTOMER 4 ARRIVES
TERM]NAL 1-CUSTOMER 5 ARRIVES

53

SIMULATION TIME : 60.00

RESOURCE " USAGE TPUT QLENGTH
TERM - TERMINAL 1 76.79582 0.23333 - 1.78333
TERM - PERMINAL 2 79.92789 (.26667 1.96667
TERM -TERMINAL 3 71.45123 0.16667 0.71667
NET - NETWORK 4~ 0.00333 0.66667 0.00000
CPU - PROCESSOR 5 0.01085 1.00000 0.00000

NUMBER OF CUSTOMER RECEIVED = - 31
NUMBER OF CUSTOMER COMPLETED = 20

- NUMBER OF CUSTOMER IN QUEUES =" 11
MEAN RESPONSE TIME = 11.76761)
VARIANCE = .89.90717

54

QTIME. -
7.64286

7.37500
4.30000

- 0.00000

0.00000

Chapter 5

-, : o _ The Algorithms

The two locking-based céncurrency control algorithms studied in this thesis are
presented in this chapter. Thec first one is the Ccntralszcd Locking Algorithm wzth Hole

lists of Gar¢ia-Molina [Gar79] and th’nd one js a modified version of the Distri-

buted Lockmg Algorithm due to Gardarln and Chu [GaCSO] R

’

| 6.1. Auumptions

.
* »

' s
Before describing the algorithms, we list the assamptions under which the two
algorithms were ‘designed to operate reliably. ‘Some of the assumptions have already

* been mentioned in the previous chapters, but we list them here for completeness. \

1. The database is static, that is, no data items are added . to or deleted from the

- . .database. .
- 2. Messages are not lost or duplicagec.i‘in‘ the network.

. . 3 i P
“3. Intersite message transmission is error-free. T,

BN}

"~ 4. . 'Network partitioning never occurs. - : ‘ e)

56

B ’ .
- 5. Site failures are "clean”, that is, when a site fails it halts all activities; when it

recovers, it always detects the failure and initiates the recovery routines.

8. Site failures are detected by the communication subsystem within a reasonable
time period. . , _ P
7. Transactions initially specify the items that they will reference. This permits the

deadlock avoidance technique to be used for deadlock resolution.
8. Undo/n:édo logs and write-ahead protocols are used to ’preparé sites fqrecovery
9. The daiabase is fully replicated at all sipes.
>10." A point-to-point type of network is used.

" In the following algorithms, the site where an update transaction originates is
called the originating site and is also the coordinator for the transactions that ori-
. ’ 2

ginate at the site; the other sites that cooperate in the execution of the transaction are

referred to as the cohort sites or participating sites.
’ ‘ o

In the centralized locking algqriphm, the site which\is responsible for the alloca-
tion and deallocation. of locks to transactions is called the central a_o'tc.‘ The done-sef
refers to the set of all the updateé that have been completed at that site. The hole-sct
is the set of all transactions thét are active, that is, hay’e obtained their locks but have

1

" not yet released all of them. z v,

The transaction base-set is the set of all items that are referenced by the transac-
tion. The transaction write-set is the set of data items that are modified by the tran-
saction.

We now describe the two algorithms. Several of the techniques d’iscus_s‘ed in the
Chapter 2 are being applied.. Since we are mainly interested .in the performance of the

algorithms 'rather than in the analysis of their corfectness, some of the'details are

- 1
. N : R\
omitted. s

o7
65.2. The Resilient Centralized Locking Algorithm
The main techniques that are used in this algorithm are:
1.) Two-phase locking is used for concurrency control.
2. Lock management is centralized.

3. A two-phase commit protocol is used to achieve resiliency against failures.

sentral site if the central site fails.

. 4. An election protocol is used to .elect a new
A brief description of the aI‘goriLPm follows and a more fpr_gn [pton is given
in A@ppendix 3. / v o
Algorithm 044 .

\\

Step 1. When a transaction arrives at a site s, the site requests locks for all the items

" in the transact‘ion‘rbase-set from the central site.

Step 2. The central site checks all the requested locks. If an item lock has already
been granted, the request is queued in the item queue; otherwise the item ‘is
locked by the request. 'In_order to avoid deadlock, requests are made in some

predefined order on the items and requesis can wait for only one item at a

'

r

time.
Step 8. When all the reques;ed locks have been gran”ted, the central site assigns a
| sequence number to t,he ;,ransaction, appends it to a‘copy of the h'ole-set; and
seﬁds everything togéther with a locks-granted message to the ;)riginating site

2. |
Step 4. When the originating s‘itel receives the locks-granted message, it checks'the
hole-set and the site done-set to see if there is an older conflicting transaction
(that is,‘with smaller sequence nuzﬁber ;,hat is not a member of the union of

the hole-set and the done-set). If so, the transaction is delayed until all older

58

conflicting transactions are completed; otherwise the base-set for the transac-
tion is read and the new update values computed. site s then sends a ready-

to-commil message together with the new update values to the cohort sites.

Step 5. When a cohort site receives a ready-to-commit message, it checks if the tran-
saction can be committed. If so, it saves the transaction’s new update values
in stable storage and ackno%ledges receipt of the message to site s; 6therwisdy

it sends an aborf message to site s.

Step 6. If all up sites have'. agreed to commit, site s sends a commit message to all
cohort sites; otherwise it sends an abort message to all sites and releases all the

locks held by the transaction. ¢
Step 7. If an abort message is received by a cohort site, the site aborts the transaction.

N
Step 8. If a cohort site receives a commit message, it performs the update on ity'local

: . ‘ B
database. The central site also releases the locks held by the transaction.

Step 9. The transaction terminates.

,

. o
5.2.1. Site Model for CL algorithm)

= .

The EPTN model for a site & is shown in Figure 51 In the modél, we do not dis-
t.ingu.is“h" between a central site and a non-central site. Every site in the system can be
. a central site. However, it is .only whén a site is acting as a éentral site that the central
site events -(fhat is, ei/énts that take place at the central site only) could occur. The
events that take place at;each-site‘ are described below. In the descrip-tionj central _giic‘
events are indicat_éd with a sup;:rséript c(€) |

The events are : request locks (st,), check éoﬂnﬂi‘ct (afg),_’ put ln item qugue'(atg),
remove from item queue (at.§) iock'data ite’ﬁls (alg), send locera!.l'ted "mcs‘sagc"’ to ori-

ginating site (82§); check if hole 'vs.et contains aﬁy older conflicting transaction (s¢,), put

(

,,,,,,

L Figjure 5.1. Site model for CL algorithm. S

59

1

60

’

in wait queue (atg), remove from wait queue (st;), read read-set (at;O), compute new
update values (."‘“)’ log update values (at,,), broadcast intend to update mespage to
all sltes (st;3), receive intend to update message (ﬂat“), send acknowledgment {aty5),
receive ackn&lwledgment (st,¢), broadcast commit message (8t), receive commit mes-
sage (atm»), update database (a.t,g), unlock data items (st,), and terminate transaction

(8t3).

The conditions are.as follows:‘ a local transaction has arrived (sp,), CPU is avail-
able (apz) lock request is waiting to begsent over the network to the central site (gp,),
a local lock request is waiting (sp;), a global l'orelgn lock request has arrived (gp, ,)

conflict does not exist (ap,), conflict exists (apb), transaction is wamng for locked items

. (spg), data items are unlocked (sp;), l/O is available (apg), data items are locked (apy),

¢ ' - - 0 Y

lock granted message is waiting to be sent to originating site (gp), local transaction
. >

. ‘ . C] N .
has received all required- locks (sp,), lock granted message has arnved‘ﬁl'bm central
site (gp, ,), hole set contains no older conflicting transactions (sp,,), hole set contain

al , ,
older conflicting transactions (#p,,), transaction is waiting for older conflicting tran-

saction to complete' (sp,;), older conflicting transaction has completed (2py4), read-set-

is read (sp,s), new update values are computed (sp,¢), update values are stored in log

(#py7), intend to update messagev is waiting to b'e transmitted to all sites (gp5), a lock .

L

A

granted message has arrived (gps,). lock granted message is recelved (ap,,,), update V
values are sto;'ed in log (ap,,,) acknowledgment is wamng to be transmltted to Ol'l-
gmatmg site (gp-,) an acknowledgme’nt has arnved (gps, ,), an acknowledgment is

received (apm), transactlon is ready to be commltted locally (spz,) a commlt message s

s waltlng to be transmntted to all sites (gpy), a commit’ message has arrﬁed (gp,o ,)‘

transactlon is_ commltted (opzz), database is updated (4p23) data 1tems are unlocked

(a‘p“), and transactlon has termlnated (apgs)

61

Given T={st,,...,at5} and\P-{apl,...,apzs'yp,,rh. . ,9P10} then the following are

» -
true about the preconditions of the transitions :

1. pr(aty) = ((M(gp,,) >0 A M(sp,) >0) V M(sp;)>0)
2. pr(aty) = ((M(gp,,)>0 A M(sp;)>0) V M(ap,0)>0)
3. VateT(s €{2,7}>pr(at) = A {M(p;) >0 | pjel(at;)}) - -

- Given T and P as defined above, the following are true about the output resolu-

tion-of the transitions:

{gpn"Pz} if transactnon is local
1..0" (") = {sap;} - otherwise .
or - {8P213P‘4} if conflict exists
2.0 (”?) {sps} otherwise ' \

or {‘Ph’Pzr’P7} if more transactions are wamng for data items
=
3‘ (sty) {sp,,8p,} otherwise

!
. J
, {9ps,ep2} it transaction is local
4. 07(ste) {sp;o} = otherwise
} ¢
5 o {sp)2} if hole set contains no.older conﬁlctmg transactlons
- 07(aty) {sp;,9p,;} otherwise : T

i or - {#p10:9P14} if more conﬁlctmg transactlons are waiting
- 07(aty) . {apz,aplo} otherwnse

1 or - {eppst if site is central
K (atyo) {aps,‘apé"} ot.herwise)

8Osl {3P5,5P7»8P24} if transactxons are wamng for data 1tems
- (8 20) {’Pss‘Pu} otherwnse

)

9. Do) = {‘Pw‘hs} |f younger conﬂlctmg transactnons are wamng
S (' 21) ap2,0p23} otherwise

\

5.2.2. Network Model for CL Algorithm

The network model that connects the sites together is shown in Figure 5.2.

-

)
— gp, ‘
. . n‘l

7~
e

.
@ 9P10.0 W’:‘,-\\ .
| _ ‘ N
nty- +. \ \\
. ' \

/ 9pg

0 Q@
A ¥ 8 \ |

\9rs,

o RV Y
-\ B /
o, -+ 9P - ;
< R GEPT Cl 2
- .

. Figure 5.2. Network model for CL alg_qrithli;.

' (* The symbol (double circle) represenés a replication of n places.
The plus sign (+) on the link indicates disjunctive logic on the'n places.)

I3

+ Only two types of events can occur on a net(work send a messagc from a site to -

-another site (nt,), and send a message from a sxte to all the o\ther sites (nlz)
\;The co‘nditions are: the netivork is 'availabl'e'(np,) a mcésage is'waiting»to be
' Y
;transferred '‘to’ the destmatnon snte (ﬁp,,gps,gps,gp-,,gpg)t and the message bas becn R

Q

transferred (gpg .,9P4 nﬂPo .,ﬂPs .)

" $ These places ue\’;ulobxl ia'nd h#ve‘qbe same im“qrp'reutionl as thm’dqlcribéd Tor the site model.

‘ ' o 63

]

Given T={nt,,nt,} and P={np,,gp,,0p,0,}, then the following are true about the
precenditions and output resolutions of the l:-ansitions.
1. prst,) = (M(np,) >0) A (V{M(p,)>0 | p, € I(nt,)}
2. pr(nty) = (M(np,)>0) A (VIM(p,)>0 | p; € I(nt,)})
3. b'(nl,) = {p,} where p, is the destination place

4..07(nt,) = O(nt,)

5.2.3. Failure Cons@rations

Faislure of a Coordinator Site: When the central site discovers that the coordinator for
a transaction { has failed, it starts a termination protocol which allows the transaction
to be terminated and its locks freed. The termination protocol is fully described in

[Gar79] and consists of three phases: one phase to inquire about the transaction at all
x4
sites and two phases to actually caneel or force execution of the transaction at all sites. .

. . .- [ea)
Below we give a very brief outline of the protocol. R

In the ﬁrst,lphase the central sile sends a have-you-seen-t message to all sites. »
When a site s receives the message it checks if it has received a commit message for '
transacuon t or has actually performed t and replies to the central site with enther a
‘ _ha‘vc-sccg or a havcmot-occn message. The site also makes a c\mmlpment not to ack-
nowledge any ready‘-lo-commil’message for t it might receive later.

l‘f tlJe cenl_ral site receives at leasnt oae have-seen message, it will férce the perfor-
mance of ktrap.sacvti.o'n t at all sites in’ t.lle system. To .'achik'eve tu.his, lt uses\ a two-phase
commi‘t pro_t?eol,' First,"'the central site sends a forec-czccutfon message ;fnd the' new
'apdate valt;es for t,ioblai;d frem’the-sites_ that lxave'seep’ tlle transactien, -tdall‘ sites.
When a site Jre‘ceivés the messa‘ge, it saves ith‘e update‘» vﬁ;lues in stable memdr} and
sends an acknowledgment to the central slte After the central site has received ack-
nowledgments from all the up sites, |t sends a commit message to all the sites. lt also

. .‘" ‘ E \\

64
) ‘ ' '
performs. the update locally and releases the locks held by the transaction. All the

other. sites perform the update on their local database when they receive the commit

message. ’ . S, ' ©

If the central site ‘receives have-not-seen messages.fron‘x all the up sites and only

the coordinator has failed, it will cancel the tronsaction at .all sites. Canc‘ella‘tion of a

~ transaction is ablvso'perfornlled in two phases. In the first pixase,"the‘central site sends a
ready-to-cancel message for transaction ¢ to all sites. When a site receives such a mes-
sage, it records in'its log that transaction ! is to be canceled and acknowledges to the :
central hslite. After every site has acknowledged, the central site sends a cancc_l message
to all si;es and ‘releases the locks. The other sites also can‘cel the transaciion locally

v

after receiving the cancel message or after the timeout period expires.

Fasliire of a Cohort site: Failure of a cohort site does not pose any.problem to the

correct operation of the algorithm. The operational sites will continue to operate nor-

-

- mally.

Fazlurc of the Ccntral Satc When the central site falls t.he entlrc system crashes.
Every site goes. into a failure mode and stops receiving transactlons The operatlonal
- sites then group together and start an election protocol to elect a new ccntral slte.
| Electlon protocols are dlscussed in [Gar79] and [Gar82] A brief descnptlon of the pro-

\tocol is as follows

When a site z discovers that the central site has failed, it goes into failure mode

and stops receiving transactions. Then after every ¢, seconds it sends an are-gou-up .
ﬁmessage to f‘all sites and consfructs.an "active. table" from thc acknowledgmenta

recelved (the other sites might be donng the same process slmultaneously) If the site

thinks that lt is a. candldate for the central sg&&at is, it has the hlghest slte number
)

among the functlonal sltes, lt. aends a prapou-to-bcco c-central-mc message to all
g j(g

. snes. When a site receives such a,:n_.xcsuage, it sends a v87e to sit€ zi R 'hink’ that z

-

¢

65

can become a central site. It also makes a commitment not to vote for any other sites.

If after t, seconds, site z has been able to collect a majority of votes, it sends an
I-am-the-new-central-aste to all sites and waits for ac‘kn'owledgn)entsg otherwise, it
sends an /-did-not-make-st message to all sites'and starts the election protocol all over
agnin. When a site necgives an l-nm-thc-ncw-ccntrnl-ailc message it stores the nnmber |
of the new centrnl site in its conﬁguration table and acknowledges receipt of the mes-
sage. If an l-did-nol-mak?-it message is receined or a site faiié during theﬂ election, the
election protocol is restarted. .

After the election, the new central site terminates all unfinished transactions

before it resumes normal operation. .

5.2.4. Recovery Considerations

v, u
.

‘Rccovery of a. non-central site: When a non-central site s recovers from a failure4, it
inspects its log and undoes/redoes any unfinished transactions. Then it sends a I-
would-ls'kc-tq-r,ccovcr message to all sités. If the sites afe in the middle of ap election,
the recovering sit:é will be told to dnfer. its'recovery until the ele_:dion is over. Other-

wise, the central site sends to the site the log of all updates that it missed while it was

down. All the other active sites also start sending messages to site s.
‘ . & _

Recovery of a ccntral astc. When a central snte recovers from a failure, it stops acting

as a central site and followa exactly the same recovery procedures as for a non-c -ntral

¢ .

A sit.i;.
5.3. The Resilient Distributed Locking Algorithm -

| The n;ain tech‘n’iques‘ that are usedz in this algorithm are:

I W Management of locks ls done at all sites. In order to achleve synchromzatlon

- among snte , global lqestamps are. used (global tlmegtamps are constructed by -

66

concatenating the local time with the site nurber).
2. Two phase-locking is used for concurrency control.
~

3. A twdphase commit protocol is used to achieve resiliency against site failures.

14

A brief description of the algorithm follows. A formal description is included in.
Appendix 4.
&
Algorithm DL

Step 1. When a transaction ¢ arrives at a site s, it is assigned a unique global time-

stamp. . ’ ~
p “f f p

Step 2. Site s then requests locks for all the items in the transaction write-set from all

the other active sites. At the same time it attempts to lock the items in the

AY

transaction base-set locally.
c

: A L :
Step 8. When a site attempts to grant locks to transaction ¢, it checks all the

requested locks. If an item is already locked, it checks the timestamp and

state of the transaction holding the lock. If'it is younger than transaction ¢,

and it is not in the ready-to-commit or commit state, it is‘can'cevled and tran-

'

saction ¢ obtains the Jock for the item. Otherwise, ¢ is inserted in _the'ncm

bf timestamp value to avoid dead@; &
: : \ . . ,

wait queue in ascending order
v Rt :

Step' 4. When all the locks requestéd by a transaction could be granted, the site sends
a locks-granted mesgage to\he originating site . .

Stc< 5. Wher site 'cka-granlcd'mess_ages from all the up sites, it reads

the transaction bade-set ghd computes the new update: values. Stte s then %
sends a ready-to-commit mcasage'together with' the newly computed upda‘t,e:

values to all the cohort sites.

67

i

Step 6. When a cohort receives a' ready-to-commit message, it saves the update values

in stable memory and acknowledges receipt of the message to site s.

-

Step 7. When site s has received acknowledgments from all the up sites s, it decides

® - .
on whether to commit or abort the transaction and sends its decision to the

cohort sites.

Step 8. If a cohort site receives a commit message, it performs the update on its local

)

database and releases the locks held by the transaction.

Step 9. 1f an abort message is received the transaction is aborted and its locks released.

Step 10.The transaction terminates. -

5.3.1. Site Model for DL algorithm
The site model for the DL algorithm is sl;own in Figure 5.3. The events that take
vplace at each site aee as follows: request locks (at,), check cohﬂict (st,), out-in item
queue (at,), retdove from i_tem queue (at,), lock data items (s¢5), send lock graoted mes-
sage (atJ, ‘receive lock gra.ntedb messages (at7), eead read-set (stg), compﬁte 'n‘eﬁvj
upddte values (alo), log update values (atl(,), broadcost intend to update ;nessage to all
sites (at"), receive abort message (al,z) cancel tranSactlon (at13) receive intend to

_ update message (at“), send ackn,owledgment (atls), recenve acknowledgement (atw)

" broadeast commlt,'message_(at”), receive commlt message (ai,a)~, update database

v

" (atyg), unlock data items (0.1'20‘), and termihate transsctions.(ttm).
. k’l‘he condltlons are as follows a local transactlon has arrm:d (apl), CPU is avail-
BP3), Iock request is waltmg to be sent over, the network to all sites (gp,), a local

f g ' o i
re’ﬁuest is waltmg (ap,), s global forelgn lock request has arrlved (gp2 ,), abort

- message is wantmg to be aent to all sntes (gpa) transactnon ls to be aborted locallyA

(ap,), conﬂlct does not exnst (‘m), conﬂlct exlsts (ap,), transactlon is wamng for locked -

S s

S e U T e e

— e St w—,

S
<o

CY

. . Fxgure 53 D»l\._..‘allgprit_‘h.t_ﬁ"'siﬁeﬂl_p‘o‘q_elv.:‘ B T

69

v
L

—

“items (sp;), data items are released (spg), 1/O is available (spy), data items are locked Q’J
) - . o A
(2p0), lock granted message is waiting to be semt to originating site (gp,), local tran-

saction has acquired all required locks (sp,,), lock granted message has arrived from a
sité (gp; ,), lock granted meséages have been received from all up sites (sp,,), read-set

is read (ap,3), new u‘pdate values are computed (epy4), update Values are stored i1 log

4 ' _
(apys), lntend to update message Is wamng to be transmxtted to all axt,es (gl’s) an s abort
. message, has amved (gp7) transacuon is to be canceled (ap,s) a lock granted messa §‘§
w .+ has arrived (gpai,), lock granted message is rec‘elved"(ap”), update;vva]ues are store
) .vlog (apys), acknoevledgme'nt is waiting to lie transpitted_to origida ing site (gp,). an .
’:.ae‘kno‘wledgth'ent,hhe arri'ved (9p10,), an alcknowledigment is rece‘ived (ep,y), transac:
"t‘ion is ready t'o}‘.lze‘com‘mitt'ed locally (spy), a Camlflit ;essa;e is waitipg to be
~_ transmvitted to al‘l sites (gpn) a cotﬁn\lﬁk lﬁessage has 'arrived‘(gplzx), gransaction is-
commltted (apzl) ?atabase is updated (apzz) data items are unlocked (ap23) and tran- .
'sactlon has termlqated (ap24) R : ' N_ |
Tt a, ')
- 'G"iven T='{at,, ,8t5,} and P={opl, ap‘{,;g}p‘,\‘,_.j. . ,GPI;',} then t'he"jfdllov;'ing“area
| ,t.rue about the’ precondmons of the transxt:;ds: t v . . l. - o
Lpr(st;) = (M(gp;,,) >0 VM apa)>0)'A M(apz)>0)) P !
) 2. P'(z“7) = (M(ﬂps J>0A M(‘Pz)>0) v M(‘Pu)>0)) T e '; “
s pr(alm (I”M(am .)>0 v M(ap4)">0)A M(opz)>0))
)l 4.V, eT(a 4{2 7} > pr(at) = A{M(p,)>0) | p,el(at)}) -]
lean T and P as defined above, the followmg are- . true about the output resolu-
tlonoftﬁe transitions: 'v PRI ’ " , S v . ..
AR 'L _.; (ﬂPa:'Pu‘Pa} if abo;-t | ' v;. .. : ‘
- ' _,._.‘:._‘~ 1. 0'(“2)- {aps} . if conflict - o L : .. o o -a“~
A : {‘Pmips} otherwxse "._i e

’ 2 0 , {p 5’”’ o} if more tr&nﬁpctlons are wamng for data items
R . 1‘ {OPS OP-,-} othennse RATCH

, . R .

N

3 O {sp1} if transaction is local
. O'(stg) = l{gp,,8p,} otherwise

o - {sp2} if lock granted messages have arrived from all up sites
4. 0'(aty) {sp,} otherwise

5 o {spg.2p5} if more transactions are waiting for data items
- 0"(aty5) Hopg} otherwise

R rp\"«
6. O"(st {spg,2P,3,890} if transactions are waiting for-data items
= . .

- O'(aty) = {sp,3,0p0} otherwise

5.3.2. Network Model for DL algorithm

- The network m‘odel. for the DL a'lgorithm is shown in Figure 5.4.

~

go,

oL

/’—h\\—
P12

70

®
N gpy NS
. .‘ \ 9}77"/ s
. \ /
N\ + /
\\f}?s,- ,‘ 9Py / ¢
. @ nt2 L ﬂ'l
. E 9Pe gpSJ

" Figure 5.4. Network model for DL ,algoxjithvm:." : -

+

71

Vs
* The events, conditions, and preconditions and output resolutions for the transi-

tions are similar to those described in Section 5.2.2.

65.3.3. Failure Considef&tions

Failure of a coordinator: When a coordinator fails, the cohort sites elect a new coordi-
nator to terminate unfinishcd transactions. The same election and termination proto-’
cols used in the centralized locking algorithm (see Section 3.1.1) could be used to elect-

- a new coordinator and to terminate unfinished transactions respectively.

Failure of a cohort sste: Failure of a cohort site does not pose any problem to the

correct operation of this algorithm.

5.3.4. Recovery Considerations
Q

When' a site recovers from a failure, it ‘first. reconstructs a consistent database ky

-

ﬁndoing/redoing unﬁnishedr transa‘ctiong recorded in its log. It then chooses an opera-
tive. site which has an up;tOédate version of the repli,cate_d dét_a"and sends ai I-would-
like-to-regover m-essage to that site. When lhé site regeives such a message, it sends
“the log of missing- updg))tes, the léqk }ai)lcs and the xﬂéssage queues to the recoveriﬂg.

Ve .] - . . o
site. It also informs all the other sites thatl site s is up. The other sites will resume

start sending.messages to it. .

«

communication with site s and

Chapter 6

\ Simulation Model

N '

In this: chapter, we present “the snmulatlon model the input parameters for the

model, and the performance metrics that are measured.

n

6.1. Simulation Models

L e -
In order to obtain performance results for the two algorithms, simulation model

" programs for the algorithms are developed and the_n_executed oD a computer. In thls
study, two diflerent simulation approaches are used: discrete event simulation (DES)

([Fra77] and [Gor78]) and EPTN simulation.

ln the DES approach sngnlﬁcant events in. the algorlthms are ﬁrst ldentlﬁed The.

action that takes place in. each event is then unplemented as a process in SIMULA

T) plcal events afe: arrival of a job, sendlng a lock request. to another slte, settmg Iocks o

o

on some data nems, etc. ln SlMULA a8 llst of eve,nts ordered by the t.lme of occurrence‘, .

is malntamed Whenever a process is scheduled, the process is entered on t,he event list
T

to be actnvated at ‘the approphate time. Wh sim '!ation |s~ run, ,t.he program :

cycles through the hst of events and performs the followmg operauons (l) select the -

‘e
'

event wnth the earllest tlme, ("ﬁ) set the simulation clock to thls tlme, and (3) frform |

79

73

the action. Sometimes the action performed by one evexlt could cause another evenl:‘to“

be scheduled. The simulation continues as long zls tl)ere are events to be executed. To |

| drive the simulation a job generator is used. The generator creates and echedules new
evcnts‘w_hich repreeent the arrivol of new jobs in the system.

In the EPTN simulation approach, the tasks are much simpler‘. All that need to

/ be déné are: (1y using SIMNET, |mplement the EPTN models for the algorithms by V.

" declaring the subnets for the sites and networks y¥nd\then linking them together as

described in Chapter 4; (2) declare and generate the sources, si resources, that

IS

are needed for performance evaluation purposes, and connect them to the appropriate

places; and (3) run the simulation to obtain performance results. -

v o N '
In this study, the following assumptions about the simulation models are made.

Every'site in the system has ly one CPU server and one 1/O server. The-servers are
l- N
implemented at a very high level and are visible only through the processing time t,hey
- 4

take to process a request. Each server has an assoclated queue and exgcutes requests
one at a time using a FCFS (Flrst-Come-Flrst-Served) discipline. Requests for service
can arrive at a site from three sources: the users at the snte the network, and the site

itself: Requests that«.need both CPU and I/O services are processed f the order 1/0

La

servu:e followed by CPU service. wnt,h no mterleavmg between the two. For the net- '

i

work model, we assume that there is a communication lmk between every two sites

ok . ™

and t’ﬁat the bandwidth is large enough to handlé several messages at one time.
Co [. . . S e : .

s

74

8.2. Input Parameters
The model input parameters are:

1. Mean snterarrival time of transactions (/,) : The arrival time of transactions to
each site is considered to be negative exponentiallx distributed with a .mean

' i'ntera\rri 1 time /,.

2. Mean base-sef size (B,) : The base-set represents the set of items that are refer-
enced by a transaction. The base-set size is assumed to be negative e-xponentially
distributed with a mean base-set size of B,. The write-set size refers to the set of

items that' are modified by a transaction. The write-set size is assumed to be uni-

3

formly distributed between]l and the base-set size.

3. Number of sites in the system:(N) : The number of sites in the system is ‘q‘ss}ilned g

to be N. o v
4. Meaabagc processing time (P) : g‘he message processing time is the CPU time it 4
" takes to transmit\ or received n‘message over the networ‘k.~ o T ' P
5.# Me.soagc teanamlaanon time (T) : The message transmlsswn time repl:esents the

delay that is mcurred in transmitting a_ message from a site to. another site. The :

transmission time is assumed to be constant regar‘d!ess of the message]cngth,of

- - network load. | L
8. CPU time slice (C,) : The CPU time slice is the time it takes a CPl{ sehyer to do

vy .
-] . e

soT computations, for example, to modify or. check a loek or to compars two
values.. . TN i - "' o

7. CPU compute tsme () Thxs,xs the amount of tlme that is needed per base-set E

*ltem to compu%e a.new update value For example, lf Bi is the base-set size of a
. r

transactlon, the total tlme reqmred to compute all the updste values for the tran-

~saction is ng,. ' R Lo g

- R = 75

d

¥ 8 1/0 time slice (10;) : The 1/0 time slice is the time needed to read or writ:a lock

or a timestamp fyom/to the secondary st,o.xfage.

9. 1/0 update time (10,) : This is the time it takes to read orowrite an item from of
to the secon;iary' storage. ”

10, Databasce size (D) : The database size is the potal number of data items in the
aatgbase. | 7

11 Mean time bctwc.cn' faslurce (M-I;BF) : The time between failures for a site is
‘assumed go be negative exponentially distributed wit‘h a/mean of I}'ITBF. ;

12. Mean timc‘ to'\&pair (MTTR) : Tfie time it taked a site to rqco;er from a failure is

‘5533’:[&1_;:{1. to be negative exponentially distributed with ymean of MTTR.

S

" The default value and range for each parameter are listed in the table below. A series

~

of dots "..." is used to indicate that the parameter value is not varied.

. I + | 10seconds . 1-20 seconds |
'f B, . .| 2dataijtems ..’ [2-15 dataitems o
o - Bsites - .| 2-15sites . Tk
. 0.003 second .- ‘ - v
s 0.1 second . | 0.005-0.25 second o
o 0.001 second e ' .

g .0.00001 second ~ | ... = "
0.025 second .| 0.0-0.05second
. : 1000 data items | 25-1500 items
e | MTBF | 37 hours - |.5-37 hours - -
AT | MTTR_ 3480 seconds R L

Table 8.1. Input parameter values.’

Parameter Default value . | Range

6:5 _g Q ,".3' vZ

6.3. Performance Metrics

t

_ The performance metrics /that are observed during each simulation run jnclude

the foliowing:

1. Mean response time : The response time of a t’ransaction is defined as the interval
of time i)etween the 'arriv;xl‘ of the ti'ansaction at a site and i’vts compleﬁion ;t the
:same site. A t:}ansacti(l)n is assumed to be completed when the originating site has
succeséfuﬂ’y"ﬁdone all the work requested by thertransaction.tT’he mean response

3 . .

time is the average of the response times for all successfully complctéd transac-

tions. -~

2. 1/0 and CPU utilizations : The utilization of a server at a site is defined as the

~percentage of the available time that the server is busy.
r 8 :

*

3. ’-Avail&bil\a’ty : In this study, the availability is defined as the percentage of the

‘total time that the systei is available for the processing of update transactions.

[
-
1

4. . Mean number of Measages This represents the avérage number of messages that
R - P) L6 7 S
are exghanged among sites per update transactiqn. , . C:

8.4. Conflict Rébolutjon .

-~

Dunng a snmulatlon, a conﬂlct bet,ween a3 new transactlon T; and a currenbl—y

(B

active transaction in the system occurs xf the followmg relational expressmn[OszSa] is

-, . ‘o A))
o . . : v

‘true: . : . e N

. + : : ¢

77

B, is the base-set size of transaction T, \

:
AT is the total number of data items locked by active transactions in the sys-

tem,

"

D is the database size, and

(;) represents the number of ways y items chn-be chosen from z items.

!

,

Whenever a cpnflict occurs, one of the currently active transactions is randomly
1/

chosen as the blocking transaction. The action taken after a conflict depends on the

/—*\ . . -
algorithm being simulated. In the centralized locking algorithm, the new transaction
is delayed until the blocking transaction terminates. In the distributed locking algo-
rithm, either the new transaction is delayed until the blocking transaction terminates
) ' . T ey,

“or ﬁxe blocking transactioﬁ is preenﬁgted by the new transaction.

*

Chapter 7

| i . Simulation Results

.

-

. : o N .. R
The simulation results are presented and analyzed in this chapter. The results

. ; .] .
have been obtained using both discrete event simulation and EPTN simulation and are

L4 ' N r L4 .
also reported in [KoO86). ° Y N

[. N - . . . 2

7.1. Effect of Ineerarl]ival Time -

o
'y

Figure*7.]"shois's'tllc effect of meSn interarrival time on the mean response time ol“
»tra\msaetions We notice fhat in Jnost _cases, except under very heavy load itl:at is, for
1, < 5 sets), the CL algorlthm performs better than the DL algorlthm The higher
response tlme obt,anned for the DL algonthm is due mamly to the extra delays that are

incurred ‘by (1) having to wait for locks to be granted by -all s}/ and’ aving to

wait (or locks to be released locally before the transactlon could be te;
R | ”
that in the CL algorlthm locks are granted by one slte only and

mated. Recall |

at transactions do

not have to want, for them locks to be released bqfore they co‘uld complet.e unless tbey’ s

E orlgmated at the central Slte When I, decreases below 5 seconds there is.a. more sud-

‘den upturn m-the CL curve than in the DL curve The sharper mcresse m responﬁe :
| t,lme for: the CL algorltbm 1s eaused by the lngher demand on the 1/0" resources at-the - |

ce-mgsl site as the system 'becomes saturated wnh transsctlons (bot.tleneck eﬂect) ’

r«' ‘ . ‘. N O ',‘ - . v ’ <, . . g
. f . . « . . - . . v I)

v 79

This is depicted in Figure 7.2. The CPU utilization, presented in Figure 7.3, showsra
similar behavior to the l/O ut‘ilization.\‘ However, the CPU utilization is 30 low com- -

pared with the I/O utilization that its eflect on the mean response time is negligible.

-

The average number of messages per update transaction as a function’of interar-

rival time is presepted in Figure 7.4. The horizontal lines obtained suggest that the

-

~mean number of ﬁgessages for both algorithmé is indep%ndent of the load. The extra

a v
~

messages for the DL algorithm are due to the additional lock requests that are sent to
. , . ' . .
all sites. Recall that we assume a point-to-point type of network for the network -

 J

model, which means that broadcasting a message to N sites is equivalent to sending N
‘4 L J
‘;separate messages. For a"broaqcast type of network, we expect the results for both
(. :

) & v
~ algorithms be very similar since the same rounds of messages would be exchanged o

before a transaction is committed.- o . CL v
.o] , » LN
S o ’ : .

. ‘L " f ‘ ‘ k|
3
- .
(3
L 4
"
Y s
-
T
r4
e
0
w B
| ' z i i .u‘ -: ' - ERE .. ’
. ~ ‘ z . © . g - N
[0 o T L DR N Ty 1 5 . | Ny "’A1 '—"‘ SIS S T L) .')
0 1. 2 4 576 7 B9 10 11 12 13 14 1516 17 18 19 20 v
"\ " INTERARRIVAL TIME (sec) .- . ~
JFigure 7.1. Effect of mean interarrival time on meap response time. = - °

o

£ 80
§ 4 ot
100
¥ :
-, 80“ Legend . R N
el o ‘ O CL - CENTRAL
N orv 70 : ‘\ ' V . o _C_L_:__OH"_E_R___
O 604 B
2 .
N 50+ *
' i 5 .
‘s ;:«,‘40-_ '
.‘. p."‘
Ay o4 * s
. L , ‘
,_ v 204
< 0
L4 o . k] T T ¥ T ‘l;_—‘ 1 L) ¥ L] LN T r L} ¥ L) L] L =
0 1 2 3 4 5.6 7 8 9 10 11 1213 14 15 16-17. 18 19 20
INTERARRIVAL T'tME»(sec)] .k
‘ res anure 7.2. Effect of‘mean mterarnval tlme on I/O utlfgatnon
"\‘_; . X . . . -~ - NN R
0.6
- . |) ‘ . |
¢ | . '
¢’ 98 : | Legend
= 1 0. CL - CENTRAL
R . @ r
~ . 0. CL~OTHER _
o 0.4 . .
Yo} ° 2'-...-.._-_ e
= 3
<
N 0.34
S
” . 5 | | ‘7'%‘ v ;'
Bl] 0.24 a
v
Q.
- ‘o.‘.- u
'$6. 7 8910 u:zuu:surzunzo PR
INTERARRIVAL TIME (sec) e S :
=" Figure 7.3. Effect of mean _lntcrarr;val vnme pn'GPU utn_h_z;auoq.. o

81

-

30 . o

[FS)
= .
o 254 O ~0- 0= 0 =00~ 0~0 =0~ ~0— 0 =0 ~0— -0~ O —O =
a , .
> .
z o
& 20 .

4,\‘:\/;[\‘ 2 O—-—(‘.)—(H)—O——O—O-—(}—O—()—O—O—-()—O——()——O—J [
vn 1% _ ,
7 : . ‘
;,‘ :
o 1o . uLegend
o} o cL ‘ » .

5 o Bt __. .
g 54 .) . 2,
o 1. Tl
z
N 0 T T p—
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17, 18 19 20

INTERARRIVAL TIME. (sec) . v

. ~
B

Figure 7.4. Effect of mean interarrival‘ti‘me on mean numl’krpf'messages.

[E L}

72 Effect of Bue-set Size ¢

.+ . The eﬁ'ect of base-set size on the mean response time of transactnons is shown in
a7 o :

Flgure 7 5 Increasing the baseosct size causes an mcrease in the mean response time

’

. I‘or both algorlthms For CL the mcrease i llnear untnl the base-set size reaches 5

' nems where the rate of mcrease starts to rise rapndly For DL the change in the rate of

i

‘ mcrease occurs at a hlgher base-set size. The increase in mean response tune is caused

. mmnly by the mcrease in l/O uuhzatlon, shown i in anure 7 6 and the longer delays '

"fthat are. 1ntroduced due to the i lncrease in number of conﬂlcts among transactlons

3

&I‘he rnpld mcrease in response tlme is accountéd for by the fact that the delays due to

A

conﬂlcts are fneghglble when the baseoset size is. small but l;ecome more domlnant as B -

; ‘the base-set me gets large

— ; T e . O S .
: Lo . e : R B A

MEAN RESPONSE TIME (sec)

»

s\

“1/0 UTILIZATION (%)’

.

-
-

-
o o
L)

Figure.7.5. Effect of mean base-set size on mean response time. -

7
BASE SET SIZE (itens) .

L

1]
8 9

lO

T
"

L4

12

13 - 14

15

80 m———r— -
Legend * ;
. [., : 7
70§ -€9¢€! ‘ ' 2e”
o e- CENTRM. o
cod O CL-OTHER | . e ‘
4 2'-..-..__'.._“' Cs ;
” -
sod— e
. ‘ : X
a0 .
SVO'* ” E : ')
20 SO

a"Ase sn SIZE (Ihms)

.qr "
ity oy . ,:.‘! ”
6 7 B9 100 a2 13_- 1

CeTe

7.3. Effect of Number of Sites _

-

The eflect of the number of sites on the performance of the algorithms in terms of

mean response time of transactions is shown in

re 7.7. For both algorithms,
'in‘creasing the number of sites in the system degrades the performance. For the CL

" algorithm, the mean response time increases slo at fipst until N reaches about 12

sites where it starts to rise rapidly. For the DL algori , the response time inc¢reases

steadily. In both cases, the increase in response time is due to the fact that as the
I3

number of sites increases the overall rate of arrival of transactions into the system also

increases causing addmonal _delays on the processing of the transhctjons. The sharp

increase in the CL curve occurs as a result of the high demand on the 1/0 resource at

the central site which is swamped by transactnons (Fxgurc 7 8). For the DL algorithm,

the increase is not as dramatic since the Joad is distributed among the sites.

“

K

4

e
w
3

:
-
o

Q
o
3
o

N
v
3

...
©»
3

MEAN RESPONSE TIME (sec)
*

. 0.5 . sty .
) o L T N T ¥ v L] 1 L L] L4 L] i
0 t -2 3 4 k-] [] 7 l J_lo 1" vl! 13 14 15
/. NUMBER OF SITES

[

- Figure 77 Effect-of m'xmber.vof‘sitcs oD mean response time.

v

84

12N

90
804 : [
: Legend .
701 O CL - CENTRAL coL
N i? ',0
g- ; 60 Q.:_OI_H_KL_.),0’
o ‘
O 1 |7 Sheeaeeoa- 7N
L 50-
N -
= 40-
; At -
30 -
O o
g oo
20 .
10 - o Lo - .
o7 .
Y Y P — ' Y Y - -y -y -

o

0 1 2 3 4 S5°6 7 B 9 10 11 12 15 1s 15
- NUMBER OF SITES

&

Figure 7.8. Effect of number of sites on I/O utilizat/ion.

« s .

-

7.4. Effect of Transmission Time

~The eflect of the_transmissi()n time, T, on the mean respclmse time is depicted-in
Figure 7.9. An increaﬁg in transmission dela):s affects the DL algorithu\l more than tﬁe,
CL algorjthm. Th-is is reasonable gince -'on the average more iness‘age'sya.re excl;anged
“b;tweeln sites in the DL algorithm tixan in the CL a]gorithm (see Figure 7.4).

~

R ' . oom

- ,
pﬁ’@]
3 —
\, { 4 ’ \—
/| ' ‘ :
2.5 Legend
o CL " <>
o bL ___. A
2. - _ o—"— s

MEAN RESPONSE TIME (sec) -
- i

-]
N3
vl

(4

o T L4 = T Ll
0.00 0.05 0.10 0.15 0.20 0.2%

TRANSMISSION TIME (sec)

. Figure 7.9.. Effect of transmission time on mean response time.

7.5. Effect of I/O Synchronization Time

The 1/O synchronization time is the time it takes to read/write an item lock. An

!

’ |
1/0 synchronization time of O seconds/represents a system where the lock tables are

kept in main memory. The effect of this"parameter on the mean response timg is

shown in Figure 7.10. There is a considerable 'improvément in the performance of both

.

algorithms as the'1/O synchronization time is decreased. This result is very important

*for distributed database designers. It indicates that better performance could be.

-

- _ achieved by reducing the overhead due to 1/0 synchvronization.to a minimum.

‘;"I:h'e'f effect of the I/O‘synchronization time on the l/Ofutilization is shbwn in Fig-
ure 7:11. One v-ervy intefesting_oblservatioh is tha;t the 1/O utilizations at the central
site and -t.he other sit‘e‘s‘ for the GL algorithm: converge to the same value as the 1/0
synchronizat,ion'approaciles teré The_éxplanatioﬁ for this is sin:ple. The only 1/O

processing that is done at the central site and is not done at the other sites is the

86

-~ '

locking and unlocking of items; when the cost for this is reduced to zero, the I/O utili-
. A,z_a\uon/ at the central site should be equal to that at the other sites. One mteresting

—
conclusion is: in a system ere the 1/0 synchromzation time is equal to zero, the

.

bottleneck cﬂ'ect (see sectiofis 7.1 and 7.2) caused pnmanly by the higher 1/Q utiliza-

tion at the central site would not oc}cur. To verify this, we set the 1/0 synchronization
’

time to zero and ran the simulation for the two algorithms under different loads. As

shown in figures 7.12 and 7.13, the results confirm what we anticipated. Notice that

the CL curve overlaps the DL curve indicating that the 1/O utilization for reading and

updating data items is the same for both algorithms.

3.5
3 Legend ' ' 2
~ ¥ €g ,
8 o CL : ,/’ s
[. .
~ 2.5
Wt
=
[
w 2+
v
g .
a 1.54
n
| Y]
@
z 17 ’
(1)
(V8]
X
. 0.5
-1
o ; 1 LN y T T T .
- 0.00 0.01 0.02 0.03 0.04 . 0.05 0.06

1/0 SYNCHRONIZATION TIME (sec)

Figure 7.10. Eﬂ;ect of l]O synchronization time on mean respense time.

T -

MEAN RESPONSE TIME (sec)

70
so{ | Legend .
"1 0 L - CENTRAL 1
— O CL - OTHER
Ie 504 -
~ I]
z - -
2
<
N
= 30+
[
>
o
<\ ‘204
, ‘ J:
w¥
Po 00 0.01 0.02 0.03 0.04 0.05

1/0 SYNCHRONIZATION TIME (sec)

4

Figure 7.11. Effect of 1/0O syluchronization‘ time on 1/O utilization.

0.5

0.4+ I o Legend |
o34 | ' | .
0.2 10, =0 S‘C.‘ _ ' V D~ A, .

&

[0.1-

a

0 14 1 r}

o,li 4507aomutz'sulsunuuzo.'
' INTERARRIVAL TIME (sec)

°

"y

Figure 7.12. Effect of iinte'r,ax;rivai time on response time {10,=0). |

87

88

S0
. (3 . e
_ N

404 ’
= Legend
E_\, ['t o CL -
Zz © .
O 30- oL ___.
<
N
:j.
- 204
: J
'o .
~ .

10 - 10, = 0 Sec.

o T 14 T

O 1 2 3 4 5 B 7 8 9 10 11 12 13 14 15 16 17 15 19 20
INTERARRIVAL TIME (sec)

Figure 7.13. Effect of interarrival time on 1/0 utilization (70,=0).

76 Effbct of D;tabue Size | . 7

~ - \ .

Flgure 7. 14 shows the efféct of t.he database slzeﬁon the mean response ‘timie. For

¥ «

large databases the response time for both’ the DL and the CL algomhms is constant

The DL curve shows a hngher mean response time as expected As the number ohtems

t

. m the database is reduced below 100, the' mean response tlme lncreases very rapldly

‘This wcaused by the larger number of conﬂlc‘ts that occur when the transactlons have N

e
s .

to competejjor a smaller number of items.
.y B .

89

(sec)

Q e

\ : —_—

v

~0-0- 04~ o — oo .

0= 0= 0= -0~ 20~ 0= =0 =8

-
w
L

MEAN RESPONSE TIME

: : “Legend [o .
R o . o cL .~ B AW
0.5- Co|e oL

LR T v LB L v L LI

34 5 6 1.8 8 1001 12 18 u
‘ _ . DATABASE SlZE (liemstOO)

o
-
N -

Figure 7.14. Effect’of database slze on fnean response time.

7.7.'Eﬂéct of Mean Time Between Failures. ‘ : 1 L o

\J

Flgure 7.15 shows the relat:onshlp between the lnterarnval tu{{the Inean ume

between fallures and the mean response nme. ln most, cases, the’centrahzed locklng

‘7

algorithm performs better than the distrnbuted ‘version. - As the mean time between '

-fallures is decreased the upturn in the curVes becomes Iess sharp Thns is due to t,he
decrease in I/O utlhzatlon as shown in anure 7. 16 which results from ‘a decrease in .
the tota] number of transacuons t,hat are bemg recelved and processed by . the func-’
“tnonal sites. Notlce that’ at large mteramval tlmes, the rcsponse time is not aflected
much by a change in, the farlure rate since that tlme represents the mlnlmum average _
AR

ume that a transactlon takes to complete e

¢ .
. s |
~ 51, Legend .
& O CL-MTBF=37hrs |
h Y o CL~MTBF = 15hrs
(‘z 49 - -
E ~_»o~6£7-MTBF=5hrs
w . O DL = MTBF = 37 hrs
w P /)y |9 DBL-MIBE=231hrs
z 34 . 4 DL -MTBF =15 hrs
8 DL-MT_BE";') hrs
-2 I\ N I
& 2
z . el
g 14 At
-0 y .

P 1 2 3 4 5 6 7.8 9 10 11 12 13 14 15 16 17 18 19 20
. INTERARRIVAL TIME (sec) :

Figure 7.15. Effect of mean time between failures on response time.
‘ ' |

100
90+
804 . Legend _
— : O CL=MTBF = 37 hrs~
. (8] b
8 704 o ©. CL-—MTBF =15 hrs
z V“ -o - -
3 o W CL-MTBF =Shrs
T X O . DL - MYBF = 37 hrs
ﬁ $04 A)
S .
i~ 404 v
=
Q 304
R 30
" 20-
1014
0

S0 1.2 3 4.5 6 7 8 9 10 1112 13 14 13 16 17 18 19 20
INTERARRIVAL TIME (sec) v

' Figure 7.18. Effect of meah time between fai]ur’es on l /O utilization.

90

rn 91

The effect of mean time between fallures on the avallablhty of the centrallzed
lockmg algonthm is sho}n in the table below, Contrary to what we expected, the
availabi n,y of the GL algorithm is extremely high.¢ This is explalned by the fact that
although the system is vultrerable to central site failures; the availability of the entire

_ system is not affected much since the time it takes to elect a new central site and to

‘resume normal operation is usually very short.

Table 7.1. Effect, of mean time between failures on availability.

. Availability (%)
M.TBF (Hours)» CL DL
1 .97.86 98.16
S 2. 99.98 | 100.0 .
3 99.99 -('100.0 -
' 4 99.99 | 100.0
5. 99.99 | 100.0
10 99.99 100.0°
15 - 99.99 | 100.0
A N o

7.8. EPTN Simulatiorl Versus ﬁ'a'erete Event Simulation

In the introduetion, we Ig_cnjti.ei'ned r,hat ene of ltvhe 6bjectivesiof ti)is atudy is to
show. the apprepriateness of the EI;TN formhalism as a performenc'e ‘modelirig 'iool To
acbleve thls some of the d:screte event sihulation (DES) experiments were repeated

. using EPTN sxmulatlon The results and complexmes, in terms qf ease of lmplementa-

S

5 .
tlon and s:mulatlon cost, are ¢ompared in thls sectlon -Our experiences |n usmg the

rx"s

tool and plans for fut,ure 1mprove,ments are also presented.

: The results obtamed from ,:both DES and EPTN slmulatlon for dlﬂerent interar-
rival times are hst,ed in the t,ab]es below. As can easily be deduced from thc values the-

‘results are very slmllar

. “L“-‘

With regard to the pase of lmplementatlon, |mplement|ng 3 system using DES is

’far more complex and dntﬁcult than using EPTN and SIMNET 'l‘hls is pamcularly'

'z)_; —

, : : . .

t

Table 7.2. Companson of EPTN and DES. Effect of mterarnval time on

mean response time.

' Mean Response Time
Interarrival ~ CL DL
Time DES | EPTN | DES' | EPTN
4 5.332 | 5.233 | 3.518 | 3.732
5 2.350 | 2.414 | 2.451 | 2.748
6 1.807 | 2.010. | 2.055 | 2.090
7 1.590 | 1.601 | 1.849 | 1.948 | . .
8 1.465 {~1.502 | 1.723. | 1.812 p
9 - 1.389 | 1.462 | 1.635° | 1.691 |
10 1.335 | 1.384 | 1.570 | 1.558
12 1.270 | 1.335 | 1.476 | 1.525
14 1.228 | 1.289 | 1.420 | 1.474
16 - | 1.203 | 1.267 | 1.382 | 1.438
18 1.185 | 1.242 | 1.352 | 1.379
£ 20] 1170 | 1.216 | 1.331 | 1.335 |

Table 7.3. Comparison of EPTN. and DES. Effect of interarrival time on

- 1/0 utxhzatlon for CL aigornthm

v
’

o

: MO Utilization
Interarrival ‘ DES ‘ ' EPTN

Time Central Site Dther Sites | Central Site | Other Sites

4 ' 87.445 31.331 89.264 31.966
5 60.965 | 25.070 . 69.985 <£5.786
8 58305 | 20.893 59.988 21.480
7 | - 49.979 17.909 ' "49.95'2 “ . 17.289

- 8 43.735 15.671 44953 | 16.103
9 - .. - 38.875 13.928 | °39.958 . 14.314
10 | . 34.988 . 12.536 35.937 12.882.
12 | 2057 | 10447 | 29.935 10.735
14 . 24,992 | 8955 - | - 25.660 9.196
18 . 21.868 7835 | - 22.448 8.043.
18 19.438 | ~6.985 19.938 ~ | 7.146 "
20 ° 17.494 v 6.268 . 1 17.934 - - 6.430

92 |

93

Table ? 4. Companson of EPTN and DES Eﬂ'ect. of lnterarnval time on
I/O utilization for DL algonthm)

“wmt——

. o o110 Utilizgation , ' -
Interarrival | 'DES "EPTN |- :
Time All Sites. | All Sites :
 § 73.100 | 72.677 : : T
-5 ~ 58.322 | 58.387 |
6 . 48.555 48.631°\ ‘
N 41.608 | 41547 [~—7 T~
] . 8 ' | 361402 | 36.453 :
9 32.362 | 32.346
ST~ | 49.112 29.149
, ; 12 | 24.256 24.226 | |
R 14 - | 20.791 20.760 ,
16 7 18.188 18.203 '
18 : 16.167 16.163

20 14.551 - 14.550

’

(true when the syslem contains asynchronous and concurrent activities snnce the. baslc ;'
| mechamsms for controllm'g'the lnteractlons among concurrent actlvnles need to be
mplemented in DES whereas, in EPTN thesé are embedded in the net structure in the |
way the ;zl-ansmons and places are llnked together As an lndlcatlon of the complexny
mvolved the. amount of code and amount of work requlred in both caaes are compared
Usmg DES with SlMULA as the ‘base language, the CL algonthmwnly was, wntten ln
anp/l'oxlmately 1500 lines of code and took about 2 months to complete while usmg
IVEPTN as the modeling formallsm and SIMNET as the lmplemeutatxon language, both-
) the CL and DL algomhms were lmplemented in less than 900 lmes of code and took

: less than 2 weeks to complete' However, I should point out tbat 1 |mplemented thc ’

, algonthms in SIMULA before lmplementlng them in SlMNET' tberefore ‘part of the
large, dnﬂ'erence in tlme mlght be due to my inexperience wnh SlMULA and the algo-

r:thms :mtlally

As for the snmulauon cost EPTN slmulatlon is about two to three tlmes more

| ‘expenswe to run than DES Thls is mamly due to the fact that in EPTN slmulauon,

A
‘

94

&y

o
'e§eiy time a token is d;:posited in a place, the preconéition for all the output tran;if
-tions of that place' Shot‘xld‘ be-\checl;gd for trueness. This process us’uall'y involvés
| severali procédnx_'e calls a"nd is véry expg_nsive in SIMULA. However, work to improve
~ the sinhiu.la'.i‘o‘r.is under v?ay. We are cur;éntly planning either to implemént a prepro-
écssor that would attempt to optimize the code before a simulation is run or io impl'e’-

.;'ne‘nt SIMNET in a "lower level™ language, such as C, which probably would give us -

more control over the primitive operations.

“”"Cbapter'8

. - Conclusion

>’ » ~

& *. In this thesis, we have used two different methodologies to study the performance :

1

of two resilient concurrency control algorltbms for distributed databases in the pres-'

a

ence of site failures. The ﬁrst methodology is based on tradltlonal dlscrete-event slmu- ‘

rz

latlon ?S) and the secon one is-a new methodology based on the snmulatlon of sys-

ce/transntlon nets (EPTN) In domg so, we' bave madc o
A . . Y . ll

tbe followmg contrlbutlons L ST LT <
* - . . X . . ' : L

tems m deled. asg extended :

We have mvestrgated the problems of mamtammg conslstency and rellabtllty lnv .

dlstnbuted databases and we have outllned in some detall several ol‘ the alternatwes
that are avaalable to the desngner of rehable dlstrlbuted databases
'c.

'\We have developed’ and implem.ented a simulator (called SIMNET) 'fo’r tbel‘EPTlNl

. Y N
l'ormallsm The snmulator could be used for obtalnmg perl'ormance rcsults for distri--

4
t

buted systems in general and dlstnbuted systems in partacular We havc experumented
LY

thh the snmulator, and have found that whale the results obtamed are very slmllar to ’

1]

those obtamed usmg DES tbe tune and eﬂ'ort requlred are-much Iess

We have stud:ed two very. popular concurrency control algorlthms for dm}pbuted

databases, namely tbe centralucd locknng algorlthm (CL) and~the dlstnbutcd lockmg

25

96

-
;

algorithm (DL), and we have reached several new conclusions concerning the two algo-
¢

rithms. Earlier work by Garcia-Molina [Gar79} and Ozsu [Ozs85b] has-shown that the

CL algorithm performs much better than the DL algorithm in a failure-free environ-

ment. However, because of the vulnerability of the scheme to central site failures there

were some doubts regarding the performance in environments with failures. More

recent work by Ciacng [Che81] has tried to use a backup central site to improve the

felLaBility. of the scheme but has found.that the resulting scheme performs much worse

&

than a dlstrlbuted scheme. In this study, we have taken another approach. lnstead of

using a backup site, we have chosen to use an election protocol as suggested by

Garcia-Molina [Gar79) ln_a resnhent version of the CL algornhm,\&o rapidly elect a new
. :

".central site and to reooveﬁrom a central site crash. The results we have obtained are

>

qune surpnsnwe have folmd that E . I .

1.

v

2

3." “The CLvﬁlgorithm' still out;)erforms the DL :algorithfn in most cases. The perfor- -

L

1\

<

-

invoked.

s : E ' ' '

The avallabxhty of the C'L algonthm is qmte hlgh abi§fis comparable to that of

“

" the DL algonthm Thls result is. reasonab]e |f we consnder the fact that central

‘site fallures do not occur very often and the ume it normally takes to elect a new

9

cen}ral site and to recover from a fallure in cise pf a central site fallure is rela-

° I3

. . .. a
- A N N ¢

uvely ‘small. LT , _) | X
4 ¢ - . , » . .

- The CL algorithm“does not incur any additional o_verheaa during normal opera-
4 , Dot incur 4 p

tion: since it i$ only during central site fa.lluresthz‘tﬁ the election protogol is
3) .) . '\’ - .

o . 3

l) .
.

mance of the CL algon&hm deterlorates only under very heaVy load, since - the
deniand on the I/O resourqe at the central site is heavy in that c;rcumstance .

.(bo%tleneék eﬂ*ect) Hohever, if the I/O syﬁnchromzatlon time is reduced to zero by
. .

keeping the lock table in main memoq, the CL algomhm outpe,fforms tbe DL.

'algori-thm in ﬁy\ type of. sntupuon Thus, the bottleneck ‘effect in the C‘Lv a

.‘t , - ¢ li.1
s -

» 9
i 2 . 3 . LU Q N

A ,‘i?

8.1.

graphical display of the net.

3.

97

algorithm is not a major problem since it can be alleviated by keeping the lock

’ ™~ . .
table in main memory for fast access.

Suggestions for Future-Research
There are several extensions that could be made to the work presented here.

The user interface for the net simulator could be extended to incorporate a

graphics-based net editor. The editor would allow ‘the control structures of the

r

‘models to be "drawn™ rather than described. This would considerably increase the

[

ease-of-use of the tool. Some of the information, for example, the transition pro-

cedures, would still have to be specified textually, but the major portion of the

description could be done graphically. The tracing of the net execution could also
£ .

be animated by showing the firing of transitions and the movement of tokens on a
o .)

., Another area that needs further research involves the development of analytical

solution for EPTN. Some work has already been done in this area for some res-

o

tricted tj:pes of Petri nets ([Sif77], [Mol82]). However, analytical solutions for

.‘ . ,
general' net structures have yet to be developed.

Another direétion of research i3 to remcﬁe some of the snmplnfymg assum%tlons

. , o~ .. o

made in this study This perhaps would provide more realnstlc results For exam-

. oA -

ple, the network model could be lmproved to reflect the charactcnstlcs‘of some

'ex1st|ng commumcatlon network systems lt wodld also, be interesting to analyze

the performance of the algonthms on a’ broadcast-type of network

-

. In this study, we studied only Iockin"g-based concurrency control algorithms. This

v i

research could be extended t.o encompass other types of algorlthms, such as,

Bl - [y
¢

tlmestamp-based and optlmlstlc methods.

’ s .
v

- .
P “)

>

Bibliography

.

[Age78] T. Agerwala, " Putting Petri Nets to Work", IEEE computer 12, 12 (Dec.

<

1978), 85-94. . ,

[AIDT6] P.A. Alsberg and J.D. Day, " A Principle for Resilient Sharing of

Distributed Resources”, Proc. Second Intl. Conf. on Software Engineering,

L
: Oct. 19786.

.

[AHY83] P.M.G Apers, A.R. Hevner and S.B. Yao, " Optimization Algorithms for
Distributed Queﬁes,", IEEE Trans. on $oﬁware Eng: SE-9,1(1983), .
[Asa79]‘ M.M. Astrphan and et al., " System R: A Relational Data Base Management
System”, Computer 12,5 (May 1979), 47-48.
(BaP78] D.Z. B‘adal" and G.T. Popek, . A .Proposal for Distributed Concurrency
Control for Partially Redundﬁnt Distribyted Database Systems™ , Proc.
; e

' ;
Thitd Berkeley Workshop on Distrbuted Data Management and Computer

.

Networks, -Aug. 29-31, 1978, 273-288.
[BeG81] P.A. Berhstein and N. Goodman, " Concurrency Control in'pistributed »
Dat*ase Systems"”, Cbmﬁuh’ng Surveys 13, 2 (June 1981), 185-222.
[Bir81a) G Birtwistle, - " In@roducti‘on 'to. Demos”, IEEE Winter ‘Simulation '

Conference Proceeding, 1981, 559-571.

[Bir81b]
[CeP84]
[ChAg0]

[Che81]

[ChO74)

[ChN7S]

1D‘ai\1601

.

[EIV®)

[Ff’a7,7]

543-545.

99

' N

°

G. Birtwigtle,‘ Demos. Implementation Guide and Reference Manual,

Research Repo;'t No. 81/70/22, University of Calgary, Nov. 1981.

S. Ceri and G. Pelagatti, Distributed Databases: Principles and Systems,

McGraw Hill Inc., 1984. ‘ 7\‘
. ' ¢ ‘\‘

P.P.S. Chen and J. Akoka, " Optimal Design of Distributed Information

'
Systems”, IEEE Tranb. on Computers C-29, 12 (1980), .

W K. Cheﬁg, Performance Analysis of Update Synchroni:zation Algorithms
for ﬁz’alribytcd Datébaaea, Ph.D. Thesis, Department of Co'mbuter Science,

University of Illinois at Urbana-Champaign, Urbana, Illinois, 1981.

W.W. Chu and G. Obhlmacher, " Avoiding Deadlock in Distributed

Databases™, ACM National Symposium, 1974, 156-160.

3

W.W. Chu and E.E. Nahoraii, " File Directory Design Considerations for

Distributed .Databasés", First Int'l Conf. on Very Large Databases, 1975,

[}

‘

O. Dahl and K. Nygaard, " SIMULA - An Algol-Based Simulation
Language”, Comm. ACM 9,9 (1966), 671-687. '

O. Dahl, B. Myhrhaug and K. Nygaard, SIMULA 67 - Common Base

Language, Norwegian Computing Center, Feb. 1984. o

C.A. Ellis, ™ A Robust Algorithm for Updating .Duplicated Dvatabases",')
Proc. Second Bcrl;clcy‘ Workshop on Distributed Data Management and

Cémpulcr Networks, May 25-27, 1977, 1'46-158.

W.R. Fl:anta, The Process view of Simulation, North-Hol]ahd Inc., New-

I\ o -
York, 1977. Lo

100

'

[Gar79] H. Garcm-Molma Performance of Update Algoruhmo Jor Replicated Data in
| a Dsstributed Databaac, Ph.D. Thesis, Department of Computer Science,

Stanford University, Stanford, California, 1979.

{Gar80] H. Garcia-Molina, " Reliability Issu¥s For ‘Com;ﬂetely Replicated
Distributed Databases”, Proc. COMPCON , 1980, 443-446, '
[Gar82] H. Garcia-Molina, " Elections in a Distributed Computing Systems”, I[EEE

Trans. on Computers C-31, 1 (Jan. 1982), 48-59.

[GaC80] G. Gardann and W.W. Chu " A Dlstnbuted Control Algonthm for
Rehably and Consistently Updatmg Replicated Databases” ,,IEE'E Trans. on

Computers-C-29, 12 (Dec. 80), 1080-1068-

[GeL79) H.J. Genrich and K. Lautgnbach, " The Analysis of Distributed Systems by
Means of Predicate/Transition Nets”, in Semantics of Concurrent

Computation, G. Kahn (ed.), Springer«Verlag, 1979, 123-146.
' [Gor78] G. Gordon, System Ssgdulation, Prentice Hall, 1978.

[Gra78] J.N.'Gray, Notes on Database Operating Systems, in Operating Systems, An

Advanced Course, R. Bayer; R.M. Graham and G. Seegmuller (éd.),

Springer-Verlag, New-York, 1978, 393-481.
, [HoC70]. A.W. Holt and T. ‘Com_moner, " Events and Conditions”, Record of the
Project Mac Conference on Concurrent Systems and Parallel Computation,

1970, 3-52.

[K6h81] . W.H. Kobler, " A Survey of Techmques for Synchronlzatlon on Recovery in
Deceﬁtrallzed Computer Systems”, Computmg Survcya 18, 2 (June 1981)‘ ‘

150-183. = ' | : o :

_T.M. Koon and M.T. Ozsu, " Performance Comparison of Resilient

'Conci'nrrencyl Control Algorithms for Distributed Databases”, Proc. 2nd

-,

[Lax{ﬂ&)
<[lﬁam83]

[LaS76] .

[Lan78]

[LiN83]

[MalSO]. |
[Mol82]
[Noe79]

 [Nut72]

101

FUE]
—

International Conference on Data Engineering , Feb. 4-6, 1986, (acceptedv for
publication).

-y

L. Lamport, " Time, Clocks and the Ordering of Events'in ;Distributcd
%

System™, Comm. ACM 21,7 (July 1978), 558-565. : o

G. Lamprecht, Introduction to SIMULA 67, Fried. Vieweg & Sohn

Velagsgesellschaft mbH, Braunschweig , 1983.

»

B. Lampson and H. Sturgis, " Crash Recovetry in Distributed Data Storaée '

System”, Technical Report, Xeroz Palo Altp Res. Ccﬁt"c’f, Pdlo Alto, Ca.,

1976.

G. Le Lann 4" Algorithms for Distributed Data S'h‘arin. Syste’ms Which use
Tickets”, Proc. Third Bcrkclcy. Workshop on Dt'alributif Data Management

and Computer Networks, 1978, 259-272.) - » “u,
. ’ ?

W.K. Lin and J. Nolte, " Basic Timestamp, Multip‘e Version Timestamp, -

"and Two-Phase Locking”, Proc. 9th International Conf. on Very Large Data

Bases, 1983, 109-119.

T.A. Marslapd and S.S. Isloor, * Detection of Deadlocks in Distributed

Database Systems” , INFOR 13, 1 (Feb. 1980}, 1-20.

M.K. Molloy, " Performance Analysis Using Stochastic Petri pets”, IEEE

Transaction on Computers C-31, (Sep. 1982), 913-917.

J.D. Noe, " Nets in Modelling and Simulation”, in Net Theory and

Applications, Springer-Verlag, New York, 1979, 347-368.

G.J. Nutt, The Formulation and Applicah'oqn of Evaluation Nets, Ph.D.
.) 7 .

Th.egis, University of Washington, Seattle, Washington, 1972. »

s T

-

- | 102

s

[Obe82]. R. Obermack, " Distributed Deadlock Detection Algorithm™, ACM Trans.

Database Systemis *\,'2 (June 1982), 187-208.

N

[O2s82] M.T. Oazsu, "&An Introduction to Distributed Databases”, Proc. 2nd
Regsonal Scmin>r on Migroproccuoty/Mt'crocomp‘ulcra and Distributed

Computer Systems, Aukara, Turkey, Oct. 1982, 304-319.

[N

\,
hY

[Ozs85a] M.T. Ozsu, " Modeli{xg and Analysis of Distributed Database Concurrency

Control Algorithm Using an Extended Petri Net Formalism", IEEE Tran\a\l.\\

\\ on Software E'ng SE-11,10(1985), 1225-1240.

~

~— ,

’[OszSb] MT Ozsu, ” Performance Coxppanspn of Distributed vs Centralized
Locking Algorithms in Distributed Database Systems”, Proc. 5th

International Conference on Distributed Computing Systemas, M?% 1985.
: '

[Pap79} C.H. Papadimitriou, " The Serializability of Database Updates’ﬁ; J. ACM 26,
4 (Oct. 1979), 631-653. °

[Pet81] J.L. Peterson, Petrs -Net Theory and the Modeling of Syatcma Prentice Hall,

Englewood Cliffs, NJ, 1981

‘[Pet62] C. Petn Kammumkatmn mit Automaten, Ph. D Thesns Umvers:ty of Bonn,

Bonn, Federal Repubhc of Germany, 1962
' \

N

)[Rie79] " D.R. Ries, The Eﬂ'ecu of Concurrcncy Control on Database Managemcnt
Syatcm Paformancc, Ph.D. Thesis, Department of EECS Umversnty of

California at Berkeley, Berkeley, California, 1979
[SaY82] G.M. Sacco and S.B. Yao, " Query Optimization in D‘istribqted Database
Systems”, in Advance_a in Compulm, vol. 21, Academic Press, New Ybrk_,

T 1082, 225-273,

[SeL76]' D.G. Severance and G.M. Lohman, * Differential Files: Their Application to.

" the ‘M‘gimenance of L#rge Da;tabases*, ACM Trans. Database Systems 1,

1

iy,

.

103

(Sep. 1976), 256-261.

. ‘ ,
[Sif77] J. Sifakis, Use of Petri Nets for Performance Evaluation, in Measuring,
Modelling and Evaluating Computer Syalem;, H. Beilner and E. Gelenbe

(ed.), North-Holland Publishing Co., 1977, 75-93. 4

'[Skeél] D. Skeen, " Non-Blocking Commit Protocols”, Proc. ACM/SIGMOD
International Conference on Management of Data, Ann Arbor, Michigan,

. 1981, 133-142.

{

[Tho79) . Thomas, " A Majority Consensus Approach to Concurrency Cox}trol' "
ACM Trans. Databdse Systems 6, 2 (1979), 180-209‘,‘ "
[Ver78] J.S. Verhofstad, " Recovery Techniques for Database Systems”, Computing

Surveys 10, (June 1978),’.168-195.

| Appendix 1

SIMNET User’s Manual

s
s

This manual describes the use of the SIMNET simulation package available under

the Michigan Terminal System at the University of Alberta.

In the description that follows, SIMNET reserved words will be set in stalics and

VSIMULA keywords will -be set in bold; and user-defined i;ientiﬁers will be set in
UPPER CASE. Angle-brackets ("<" and ">") will be used to represent portlons of
SIMNET statements that are to be replaced by approprlate user constructs ~For
example, J<l‘dent1ﬁcr> indicates that the user is to insert an identifier. at thg place.
'Sqﬁare braékets“ wilI'MQ:&'to indicate a portion of a statement that i's*‘optio‘xtlal.
Vertical Bars ("I") will be used to separate alternative prodéctions; Any .;;ynthc'tié units

referred to, but-not defined in this manual, i-efer‘to the syntactic definitions given in

the SIMULA Common Base Languag‘e.nﬁénual [DMN84].- Construction of the:form

<S|MULA some syntactic class> stands for ‘the syntactxc deﬁnltlon of <some¢

' ;syntactlc class> given in [DMN84}
A .

o

106

1. Invokmg SIMNET

¢

The SIMNET context is invoked as an external class by placmg the following

statemem nfter the beginning of the program but before the prefixed block as follows:

begm
externa] class SIMNET=KOOM: SIMNET
S]MNET begin o
T()'"coﬁ!Pile the program the following MTS c‘ommand could be used: e

RUN *SIMULA SCARDS= <source program> PAR= NOWARN -

f‘;_‘ The parameter NOWARN suppresses the printing of the warning messages which

: c‘an ‘be ignored when running 3 SIMNET pr,ogram!

If there is no syntax errors_ in the program, the object. code will be placed i in the

&

‘temporar) file SIMLOAD The object program could then be run as follows: -

K . _ * . . ’ o v-f,:tv"’
" RUN -SIMLOAD+ SIML%B;_H_ |) ye

gé'

. . g '; ;
- For more mformatlon regardmg the MTS SIMULA compiler, refer to the SJMUM

v _Areference gul ﬁ475 0884 released by the Department of Computlng Servnccs 3 ' 4

> -
.- . % .

& R

" 2. Net Model Cons'truction- , ST e
- ' et

.~ This section of the manual describes the use of the predefined SIMNET classes
and procedures to declare and construct a snmulat,lon model from .an” Extended

Place/Transnt.lon net. Each class is described accordmg to the followmg format:

'Cla.ss class-name
A briéf descr‘-iptionbof: the class.
Outhne. o o » v . v

Any attrlbutes of the class t,ha.t, the user needs to know wnll be outhned

here.
3

R R

106

Subclass Declaration Syntax: N . <

If a subclass of the class should be declared before it could be used, the syn-
tax for the subclass declaratlon will be given here. , PN

Example:
A completé example on how to use the class will be presented here.

3. Class Dataset

v
N

!

The SIMNET class dataset could be used to declare the data objects to be carried
by data tokens. - -

Outline: N ! o)

~ N e

class dataset; . ‘ , ~
begin S ‘ :
refIaubncl) snet; _‘ : "
integer num; . ' . o
end;

_ Snet refers to the subnet where the dataset ongmated Num represents a unique

|denuﬁcat,lon number that has been assigned' to the data object

' Subclass Decla.ra.tioh Sy‘ntax:

’

dataset class <data object name> |(<formal parameter part>),
<specification part>|; .
begin ‘
<SlMULA class body>
end;

2

<data object, name> - Qldentlﬁer>

Example:

transaction should have the following attributes:

\

107

1. TIMEIN - the time that the transaction enters the system,‘

2. BASESET - the number of items being referenced by the transaction, and
v '

3. WRITESET - the number of items being modified by the transaction.

«Also, assume that the value for BASESET: is to be obtained at the moment of
. : . o ' _
transaction generation from a negative exponential distribution with a mean value
. i i . —

(MEAN) which is passed as a para-meter, and that WRITESET is equal to the greatest
integer less than or equal to BASESET divided by 2. The transaction class declaration

‘in’SlMNE.T is as follows.

dataset c]a.ss TRANSACT!ON(MEAN)
integer MEAN;
begin
integer BASESET \‘VRITESET
real TIMEIN; ‘

_ TIMEIN := Time;
BASESET := Negexp(1/MEAN, sced1);
WRITESET := Entler((BASESET+1)/2)
end;

Time is a SIMULATION built-in"func.tion returning the current simulation time.
Negexp is a.SIMULA random number generator returning a dra.win"g from a ﬁegative

exponential distribution (see Sectlon 13. 2). Seedlisa SIMNET global mteger varlable. .
containing a predeﬁned seed value (see Section’ 13, 1)

\ » - .
4. Clase_ Source ' o f/;_.

This facility could be used to automatically generate neiv'data tokens for the net

simulation according.to a given stochastic function.

, . ‘ ‘. “' .. .,
Outline: T~

class source; »
‘virtual ref(dataset) procedure newdata; : _ ’ RN
' real'procedure dist; _ S :
begin . ' , ' S

108

integer obs;

/ real resetat;

procedure connect{pl);

ref(place) pl;
begin

end;
end; ‘ _ ‘ ' /
Newdata and dist are two procedures that need to be redefined in a subclass of the

class source if this facility is to be used. Newdata specifies the type of data object that

should be generated and dsst specifies the type of distribution that should be used. Obs

and resetat keep track of some performance statistics about. this facility. Obs keeps
¢ '

track of the total number of data objects.that have been generated since the last reset
(.
.. { .
time. The last reset time is kept-in resetat and represents the time the source was last
reset. The procedure connect is used to connect the source to the place that will be

receiving the data tokens.

Subclass Declaration “S)"nta.x:

class source <source name>;
begin - :
. ref(dataset) procedure newdata;
newdata - new <data object name>;

real procedure dist; .
dist := <stochastic function>;
" end; ' ; .

- <source name> := <idepntifier> = .- T -
' <stochastic function> = : ‘ I
Draw(<real>, <seed>)] Negexp(<real>, <seed>) |
Normal(<real>, <seed>) |Randint(<real>, <seed>)|
Poisson(<real>, <seed>) | Erlang(<real>, <real>, <seed>) |
Uniform(<real>, <seed>) | Histd(<array>, <seed>)| .=
- Discrete(<array>, <seed>) | Linear(<array>, <array>, <seed>)
 <real> :i= <real value expression> ' ‘ S
<array> 1= <array identifier> L .
<seed> ::m seed! [seed?|seeds | seedf | seed5 | secd6 | seccd? |

 seed8|sced?d | seed10| <integer variable identifier> -

109

L 3
See Section 13 for more details about seeds and stochastic functions.
Example:) ‘) S
-The following example shows how to dec/lare a source NEWSOURCE that would

generate transactions at interarrival times obtained from .a' negative exponmential

distribution with a mean MIT. The new data tokens are to be deposited in & place
, _

referenced by variable PL.

ref(place) PL; - .

source class NEWSOURCE;
begin .
ref(dataset) procedure rewdata; &
. newdata :- new TRANSACTION;

o \
real procedure dist; :
-dist := Negexp(1/MIT, seedl);
" end; .

+

Later on in the program, a new source is created and connected to PL by:

new NEWSOURCE. connect(PL); !

5. Class Sink

Class sink is a facility provided by SIMNET to ébsorb, used data tokens ﬁ;oﬁ,.. a
place in the net. : v . : Co /.

Outline:
_class aink; I o o R ,
_integer obs; ,
- real resetat, sum, sumag;

- end;

s S
R'Q
[
B
8
[l
4
L)
4

N - s ’ -
}'me rcaclal Sum aud pumag store the sum and the ‘sum of t.he squares of the times (

& K
Wmce time = resetat. oo ° . .
7 .':g,‘ ‘ .) , °
BE . PO E K - ° .
. -v'f,,’_r','" i -
Esgimple: ‘ 1 ’
o %
The followmg example illustrates how a sink is usedto absorb tokens from a place
referenced by, let’s say, varmblg PL (see Sectlon 9 a.lso) 3
ref{place) PL;. L T A . | ’)
Re) [o \ ' -)
new sink.connect{ PL), . o oo)
6. Class Resource | - N . ' .

D)
& o ?

. N N L S . ’ . hE -
. Class- resource is'a facility -that is provided by SIMNET to keep track of

performance re(a’téd statistics, such’as, usage, queue length, thr;ughput, etc.
", . .

Outline:
class resource(nounits, nam)
value nam; s ’ : .
‘text nam; . ' :)
*yinteger nounits; o ' : a
+ “begin o ' ﬂ
RO ol ’ . o
" real procedure usage; ' . LA R
-real'procedure tput; B
: real prqcedure gtime;- ... :
" 'real procedure g¢length;
-geal procedure gad; .
procedure connect{pl); -
. ref(place) pl;
. ~ begin.

end; ‘ : ’ - ‘ ‘ e

’ : . . ‘ 1t

Nounits is an integer parameter specifying the number of units of the resource to
be created. Nam is a text value parameter representing the name of the resource. The

-

name is-used by the tracing facility and the report routine.

Y

The locally defined functions usage, tput, gtime, gqlength, d return the
utilization,, throughput, mean queuing time, mean queue length and the standard

déviation for the mean queue length, respectively. Procedure connect could be used to
v .
- connect the resource to the appropriate place.

Example:

‘
\

s

The following example ilustrates the use of the class resource to generate 1 unit
of a resource named "CPU" which is then connected to a plac‘e referenced by PL.
Q b | ' E -)
ref(place) PL;

new resource("CPU",1).connect{PL);

7. Class Place

i

The class place contains everything that is necessary for setting up a place object.
. ~

Exam ple:

To create'an instance of the class place and a reference variable to the object, the

following statements are sufficient.

ref(place) PL; e - :
PL :- new place; ‘ |
/ . ' ’

8. Class Transition
[T TSUCIUUURNIVINR AR . L.

The class trapsition could be used as a template to declare new transition objects.

3

112

Qutline:

class tranaition;
virtual: boolean procedure precond,;
real procedure work;
ref(bag) procedure outres;
begin ‘
ref{subnet) snet;
ref(bag) inpl, outpl,
boolean procedure precond,
! precond := TRUE if p, € INPL & M(p,)>0,
FALSE otherwise;
real procedure work;
wark := 0;
ref(bag) procedure outres;
! outres :- union of all the output places in outp! ;

end;

'I"he procedure work implements two EPTN transition attributes: transstion time ,
(z) and transition procedure (q). Thé procedure BOdy implemen.ts the transition
proceb ure, whife. the real value returned by the procedure represents tihe transition
ay. 'i‘he procedure deﬁu‘itions, given informally and enclosed by "!" and ";",
represent the &éfault definitions for the transition ‘attributes. Variable anet references

the subnet where the transition is located.

Subclass Declaration Sy n‘t}lax:

~transstion class <transition name> (<place list>);
rel(place) <place list>;
begin -
[boolean procedure precond;
precond := <boolean postﬁx expr> ;]
[real procedure work; _ :
begin .
< procedure body>;
work :™ <transition time>;
s endj]
~» |[ref{bag) procedure outres;
outres :- <bag expression>;]

_inpl - <bag expression>; o
outpl .- <bag expression>;
end; ' :

113

0

<transition name> ::= <identifier>
<place list> ::= <place> | <place>, <place list> ‘
<place> ::= <|dent|ﬁer> ‘
< boolean postﬁx expr>
A(<simple boolean expr> <simple boolean expr> |
O(<simple boolean expr>,<simple boolean expr>
<simple boolean expr> ::= M(<place>) <boolean operator> <integer> |
<boo1ean postfix expr> | TRUE o
<boolean operator> = < | > | =
<transition time> ::= <real value expresslon>
< bag expression> : ' v -
U(<simple bag expressnon) <simple bag expression>)
<simple bag expression> ::= < place> | NONE | <bag expression>

A is a SIMNET built-in boolean function equivalent to a SIMULA AND operator
with the side-effect of keeping track of the input places that will be participating

in the firing of the trapsition.

@) ‘is, a SIMNET built-in boolean function equivalent to the SIMULA boolean
operator OR with the side-eflect of keepin‘g track of the input places that'will be
. p:;rticipating in the firing‘of the transition.
M ‘isa SIMNET built-in function returaing the cardinality (marking) of a place.

U is a SIMNET built-in function which returns the union of its two arguments as its

value. The result is of type bag which is a predefined SIMNET class.

Example:
The following example shows how to use the transition class to declare a
e, ' . : Ca o . ‘ . N S
transition with the following structure and semantics. We will ‘not be concerned with

.

the interpretations since they are éppligation dependent.

L&

114

Figure A1.1. An EPTN model of a simple transition.

pr(TR) = AND(OR(M(p,)>0, M(P2)>0) M(Pa)>0)
{p,.p;}if COND_1

r(TR) = {ps.ps} otherwise

¢(TR) = SOME_STATEMENTS

z(TR) = SECS

where COND_] is a SIMULA boolean expression, SOME_STATEMENTS is some

. SIMULA statements and SECSisa real value. ' d

transsiion clus TR(IP1, IP2, IP3 OP1, OP2, OP3);
- ref{place) IP1, IP2, IP3, OPl OoP2, OP3
begin
boolean procedure precond;
precond = A(O(M(IP1)>O M(IP2)>0) M(IP3)>O)
real procedure work;
begm :
SOME_STATEMENTS
work := SECS;
end;
ref(bag) procedure outres; o .
outres :- if COND_] then U(OP2, OP3) ' N
- ‘then U(OP2, OP3);

L

“inpl -U(U(IPI IP3), IP3);
outpl :- U(U(OP1, opz) opa)
wend

115

8. Class Subnet ‘ : o

+

A subnet in SIMNET represents an implementation of one part of the net model,

but it could also represent the entire system as well. Subnets are declared in terms of
: ‘ : ' o

places, transitions and other facilities that are required Tor performance phrposes. All
‘the basic mechanisms that are needed to set up a subnet in SIMNET are provided by

the class subnet. '

Subclass Declaration Synta*:

subnet class <subnet mme> (<place hst>) .
ref(place) <place Iist>;
begin ~
ref(place) <place list>; ‘ \
< place generation statements>; ' g o
<transition generation statements>; {
. <facility generation statements>; - . s
end; /

<subnet name> ::= <identifier> , - . "\{k
<place generation statements> = <place> :- new place; | N
<place> :- new place; <place generauon statements > - '
"< transition generation statements> : : .
-new <transition name>(< place list>) | new <transition name>
(< place lis’t>) <transition generation statements>
<facility generation statements> ::= <simple facility generation> |
<simple facility generatlon> <fac|llty generation statéments>
<simple facility generation> ::= <source generation statement> |
<sink generation statement> | <resource generation statement >
<source generation statements> ::= new <source name>.connect{ < place>);
<sink generation statements> ::= new asink.connect{ <place>); ’
<resource generation statements> = new rcaourcc((noumts> <nam>)
connect{ <place>);
<nounits> = <integer>
" '<nam> = <string> -

-Example: . | R
" This example shows how to use the SIMNET class aulmct to declare a%%net with

R

the followmg EPTN structure

116

/4
l
é}rcz

—————ee e

\————-—_-—-———.&7.—_——_—__—_/ N

Figure A1.2. An EPTN model of a subnet.

In this exam’ble we are mainly interested in the syntax rather than in ‘the

mterpretatlons We asume the followmg

PL1 is connected to Source NEWSOURCE. o ey
- - : &Y ' |
PL2 is COnnectcd to ‘resource CPU. . ’ ‘ | .

- PL§ is connected to resource IO,

PLG is conneéted to'sink SNK.

g

The SlMNET code l'or the subnet called system is as follows

mbncl clul ayatcm(PGl PG2),
ref(pllce) PGl1, PG2 :
“begin
“reflplace) PLL, PL2 PL3 PL4, PL4, PLS, PL6

117

\

-~ PL1 - new p‘lace; PL2 :- new place;
. PL3 :- new place; PLA4 :- new place;
APL5 :- new place; PL8 :- new place;

‘new T1(PG1, PL1, PL2, PG2, PL3);

new T2(PL3, PL4, PL2);
new T3(PL4, PL5, PL6, PL5);

new SOURCE.connec{PL1);
ne(rb:?:xvcc("CPU", 1).connect(PL2);
new resource("IO", 1).connect(PL5);

new sink.connect{ PL6);
end;

Alternatively, PL1,...,PL8 could be declared as an array of places as
ref(place) array(1:6);

and a for loop construct could be used to generate the places.

10. Procedure Setcurenv

" Procedure setcurenv is a dummy predefined procedure that is invoked by the

SIMNET simulator every time a transition is activated. It can be redefined to set up a

[

workin environment for the active transition or to do some user-defined functions.

Proqeduré Redefinition Syntax

procedure setcureny;
< procedure body >

' E)ﬁample:

~, In the following example, procedure setcurenv is redefined so that the reference

_ varial;le TRANSACTION always refers to current‘data object, and the reference

N

iariablé'SNET 'always refers to the current subnet. The attributes éf the data object
could then be reinotely accessed through TRANSACTION within the active transition,

and the cufrent subnet c,oﬁld be feféi'réd to as SNET.

' 118

ref(dataset) TRANSACTION;
ref{subnet) SNET;
procedure sctcureny;,

- begin _
TRANSACTION :- curdata;
SNET :- cursubnet,

end; .
- &

Curdata is a SIMNET global variable that always refers to the data object for the

o

currently active transition, and cursubnet is a global variable that always refers to the

current subnet.

’

11. Net Construction
After all the necessary subnets have been declared, the net can then be.

constructed by generating and linking together the subnets. This is done in the net’

|
t

construction part of the main program.

Net Construction Syntax: * , : ,
[<global place generation>|;
<subnet generation>"

<global place generatlon> = <place generation statements>.
<subnet generation> ::= <simple subnet generation> | ®
<simple subnet generation>; <subnet generatlon>

<simple subnet generation> ::=
new <subnet name> [('<parameter speclﬁcatxon >)
< parameter specnﬁcatlon > um < place list>

N
Example:
The followmg examp!e shows how to construct a net. from two predeﬁned subnets
h S, and 52 linked together by two global places PGl and PGQ-asashown in the structure

”

below. The inner structures of the subnets are omitted.

K 4

P

119

.
e :'P\\ ,/ —————————— \< ,
' I }

1 | |
} I !

\ ' ~ I
: A\ PG1 |
} S1 1 S2 . {
| - PG2 l

B
i H | -
| 11 y
| L |
\ /\ /
N e e e e e e e e e e — e e g

Figure A1.3. An EPTN model of a pet.

ref(place} PG1, PG2;

PG1 :- new place;
PG2 :- pew place;
new S1(PGl, PG2;;
new S2(PG1, PG2

’.

)

o 12. Net Model Simulation

o The procedures that are available for (1) debugging_a net,‘co.nstruc*tion, (2)
simulating, tracing and controlljhg the execution of a net model, and (3) reporting the ‘

performance statistics are presented in this section.

-

‘

12.1. Checking for Errors in the Net Construction

'To help the user find bugs in the net construction, two facilities are provided: (1)

chcc[:_pcl;aﬁd (2) display_net.

120

P
Check_net:

"The ‘check_net procedure could be used to find some major bugs in the net

construction. The types of errors that could be reported are listed below, with

4

explanations for those that are not very clear.

+++ PLACE PL1 IN SNET 1 - NOT LINKED TO A\JY TRANSITIONS

'1.

2. +4°-+ PLACE~PL4 IN SNET 2 - WILL NEVER BE USED)

'i“his means that the place PL4 in subnet SNET 2 does not have any input
* transition or source connected to it, so that the place could never receive a token.

3. +++ PLACE PL2 IN SNET 3 - NO INPUT TRANSITION L
This message is usually obtained if a place that js connected to a resource has at
least one output transition‘bu‘t no input‘vtram()ition. .

4. +++ PLACE PL3 IN SNET 2 - NO OUTPUT TRANSITION
'I“his means that the place has at least one input transition but no output
transition.

5. +++ TRANSI/TION TR1 II\f SNET 3 - NOT LINKED TO ANY INPLACES

6. +++ TRANSITIQN TR2 IN SNET 4 - TRYING TO ﬁEQUEST MO‘RE THAN
'ONE RESOURCE . o o

v"This messége is ysually oEtained if a transition has mo’;e’ than one.of its ivnput
. ' placés co(nnvec;ed toa résou‘&e’. |
Display;ngt: .

‘N

If the us‘er“ wants to verify the met structure to see whether the places and

-

transitions are properly linked, the display_nct ,précedure could be used. This

procedure will output the structure of the net in a_‘form’at similar to the following:

R}

121

NET STRUCTURE - : —

PLN = LOCAL PLACE N; PGN = GLOBAL PLACE N
TR IN SNET 1 : IN={PG1,PL1}, OUT={PG2,PL1}

" TRIN SNET 2 : IN={PG2,PL1}, OUT={PG1,PL1} -
TR IN SNET 3 : IN={PG2,PL1}, OUT={PG1,PL1}

The bag of input places to a transition are given by IN={ ... } and the bag of output

places by OUT={ ... }.

12.2. Event Tracing

Sometimes it is necessary to tface through the a program step by step to justify ’
the model or to identify obscure errors. SIMNET provides an event tracing facility for
. this purpose. Event tracing is initially off and could be switched on by a call to the

trace routine within the main program. The format for the procedure call is as shown

.
-

. below: | . ‘ - ‘ L ged
. N ¢ o ,‘4:‘—:7

Trace(lFROM, TO, UNIT);

] ‘ /
where) ‘ /
FROM is an integer value representing the starting point,
TO is an integer value representihg the finishing point, and

UNIT is a character value 'T' or 'J’ specifying t;l}e type of unit to be used for the above

valuges. 'J? represents Jobs while 'T" represents Time.
U = ,)

Examples: -
Trace(50, 100, 'T");

prints a trace of all events that occur during the time interval between 50 and 100.

- Trace(25, 100, ’;I')'; :

r

prints a trace-of all events that occur during the interval after the 25th job enters ihc.”

system and before the lOlstvjob leaves the system. o ‘ ;)

122
/

If trace is on, a message is sent to the standard output device whenever one of the

following events occurs:
1. anew job enters the system from a source.

2. ajob leaves the system through a sink.
.) ,
3.. atransaction is enabled.

4. atransaction fires.

As the amount of printing produced by trace could be enormous, one should

normally restrict the duration of a trace to a minimum. A sample of the output

produced by trace is shown below.

'TRACE BEGINS . .
TIME EVENT(S)

34.5493 SNETS5- TRANSACTION 16 ARRIVES
' " SNET 5 - TR11S ENABLED BY TRANSACTION 16
SNET § - TR1 FIRES
' . SNET 7- TR1IS ENABLED BY TRANSACTI’ON 16
34.6496 SNET 7 - TR1 FIRES
SNET 1 - TR2 IS ENABLED BY TRANSACTION 16
34.6502 SNET 1 - TR2 FIRES
' "SNET 1- TR3IS ENABLED BY TRANSACTION 16
34.9502 SNET 1 - TR3 FIRES
: SNET 1- Ti#4 IS ENABLED BY TRANSACTION 16
SNET 1 - TR4 FIRES
SNET 7 - TR1 IS ENABLED BY TRANSACTION 16
~ 35.0505 SNET 7-TR1FIRES . :
-7 . +SNET § - TR5 IS ENABLED BY TRANSACTION 16
' SNET 5- TR5FIRES ‘
) SNET 5 - TR6 IS ENABLED BY TRANSACTION 16
35.0787 SNET 3 - TRANSACTION 17 ARRIVES
: ‘SNET 3-- TR7 1S ENABLED BY TRANSACTION 17
SNET.3- TR7 FIRES - -
-+ SNET7-TR1IS ENABLED BY TRANSACTION 17
35.1770 SNET 7 - TR1 FIRES ' : ,
o SNET 1-TR3 IS ENABLED BY TRANSACTION 17 o

TRACE ENDS

123

12.3. Request for Simulation

After the net for a éystem has been set up, t;h.e‘model could be simulated by
ir;voking the procedure ssmulate. The format 'for the procedure call is as follows. .
Y ,
Simulate] DURATION, UNIT); *
where
D-URATION is an intéger value representing the length of the simulation run.
UNIT is a charactex; value ’-J’ or'T repxjesent,ing the unit for the duratién.

')’ indicates ,that the unit for DURATION is Job whereas 'T’ indicates that the Time

unit is to be used.

Examples:

Simulate{5000, "T"); "

would stop the simulation after 5000 time units have elapsed. -

e

" o Stmulate(5000, 'J’); .

would stop the simulation after 5000 jobs have been processed. -

~

" 12.4. Clearance of ‘Accut:nulafed Statistics

The reset routin‘e»coul’d‘be' used to clear all~spat_istics and reset the simulation

clock to zero without modifying the status of the model, that is, without altering-the - o

* tokens in the systeth. This is -usually uséd to remove the initial bias caused by‘ the .
transient state bf a éimulatiqn_',
Example:

"’Rcact;

would reset the simulation model.

124

£i§l25 Clearance of the Model’

L

The clear routine, if invoked, removes all data tokens from the model,
rt:’l'v 'Y

reinitializes the resource (simple) tokens -to their available places, reset the

: 3)
“accumulated statistics.. and reset the simulation clock to zero. In brief, clear

-

 reinitializes the model as it was when the simulation first started but does not reset

v
the random number generators.

‘Exlam;')le: - . :) | L

Clcar;

would reinitial_ize the si_mu,latlon model.
:' 1‘2.8:{?“& C‘ollectibn l)evices

In addition to providing facilities to automatically record the profiles of resources

and mput sequences SIMNET also provndes data ¢pllection devices that could be usé(d

. whenever necessary to collect statistics l'or the places and transitions. However, these =

facilities should be used with care since the cost involved in the data collection could

be very high. These facllltles are initially off and'could be switched on by a call to the

procedure meter_on. The format for the procedure call is as follows: - ' & &bﬁ '

) 'Mctcr_on(NAME); o \

. NAME is the name of the transition or place whose data collection device is to be

'
< - : -

4 Once the data collection device for a place or transition is on, the statistics will

Ki v

: automatica%, be recorded and could remotely be accessed at the end of the simulation.

e’

The statistics that are recorded ire as follows: ' : .

«

-

K

125

Places

E]

-

1. Integer stat.obs - records the total number of tokens received.
2. Real stal.resetat - records the time the device was last reset.

- 3. Real stat.sumt - records the time integral of the number of tokens residing at the

o "

place since stat.resetat.

4. Real stat.sumagt - records the time integral of the squares of the number of

tokens residing at the place since stat.resetat.

5. ' Real stat.min - records the least number of tokens that have resided at the place, -

[

or zero if no tokens has been received.

6. Real stat.maz - records the largest number of tokens that have resided at the

place, or zero if no tokens has been received. .

Transition:
1. Integer stal.obs - records the total number of transition firings.

2. ®*Real stat.resetat - records the time the device was last rest.

-

12.7. Reporting of Statistics

Al

A standard output of all statistics collected could be produced by a call to the

| re;ort procedure. A sample of a typical report is shown below.

TIME : ‘ 363.02

RESOURCE USAGE TPUT QLENGTH QTIME
CPU - SNET 1 0.20755 4.20087 0.00000 0.00000
IO-SNET 1 - 32.29683 2.30841 0.04683 0.02029
CPU-SNET 2 0.14908 3.03564 0.00000 0.00000
IO - SNET 2 10.64622 1.20379 0.00000 0.00000

. CPU-SNET 3 0.12787 ' 2.86485 0.00000 ..0.00000
IO - SNET 3 10.35701 1.18451 0.00275 0.00233
CPU-SNET 4 0.10715§ 2.75467 0.00000 = 0.00000
10 - SNET 4 '9.99891 1.17073 _ 0.00000 0.00000
CPU-SNET 5 0.12996 2.95300° ‘, 0.00000 0.00000

126

IO - SNET 5 10.27437 1.19553 0.00000; 0.00000
CPU - SNET 6 0.13081 2.97504 0.00000 0.00000
10 - SNET 6 10.26747 1.19828 0.005651 0.00460 P

NUMBER OF TRANSACTIONS RECEIVED = 200
NUMBER OF TRANSACTIONS COMPLETED = 200
NUMBER OF TRANSACTIONS IN QUEUES: 0
MEAN RESPONSE TIME = 1.31676
VARIANCE = 0.83067

-However, a user who is not satisfied with either the contents of the output or the
““way in which the information is presented could write his own report routine using

SIMULA. The code for the standard repori routine is as follows.

procedure report;
begin
ref(resource) RES;
ref{source) SRC;
ref(sink) SNK; -

integer I, NUMREC, NUMCOM;
real TMP1, TMP2, SUMRES, SUMSQRES, VARES;
real MEANRES, CPUTIL IOUTIL;

Outtext("TIME : 7); Outﬁx(SIMTlME 2 10) Outlmage

Outtext("RESOURCE"); -

Setpos(23); .

Outtext{("USAGE = TPUT -~ QLENGTH QTIME);

Outimage; '

| zyqresq.first points to the first resource ***;
- ' P***in the resource queue. ‘/ - A

RES - zygresq.first; ‘

while RES = /= pone do

begin .

if RES.meter then begin
Outtext(RES.nam);
Outtext("-"); = ,
Outtext(RES.snet.nam); S .
Outint(RES.snet.s1d,3); '
Setpos(20); *
Outfix(RES.usage * 100,5 10)
Outfix(RES.tput,5,10); -
Outfix(RES.glength,5,10); ‘
Outfix(RES. qh’mc,5,10); '

e A

Outlmage,
end; |
RES RES.nczl; -

end; °
1** sygarcq.first points to the first source **;

LY

127

1% 2%

in the source queue. : ;

SRC :- zyqsrcq.first; _

while SRC = /= none do begin
NUMREC := NUMREC + SRC.OBS;

SRC :- SRC.NEXT;

end;
1%

-~

zyqankq.first points to the first sink **;

1** in the sink queue. *.
SNK :- zyqankq.first, ‘
while SNK = /= pone do begin
SUMRES := SUMRES + SNK.sum;
SUMSQRES := SUMSQRES + SNK. sumag,
NUMCOM := NUMCOM + SNK.obs;
SNK :- SNK.neazt;
end;
‘ MEANRES 1= SUMRES/NUMCOM,;
if NUMCOM > 1 then
VARES := (SUMSQRES- (SUMRES"2)/NUMCOM)/(NUMCOM 1)
else
VARES := 0.0;
Outtext("NUMBER OF TRANSACTIONS RECEIVED = ");
Outint(NUMREC,7); Outimage;
Outtext{"NUMBER OF TRANSACTIONS COMPLETED =");
Outint(NUMCOM,7); Outimage;
Outtext("NUMBER OF TRANSAC'IWﬁS IN QUEUES:");
- Outint(NUMREC-NUMCOM,5); Outimage;
Outtext("MEAN RESPONSE TIME =");
Outfix(MEANRES,5,1C); Outimage;
Outtext("VARIANCE =");
Outfix(VARES,5,10); Outimage;
Outimage; ‘
Outimage;
end;

—

13. Utilities

3

Thls section .describes the utllmes that are avallable in SlMNET The random

3
\,,

seed generatlon function newseed 'is adapted from [B|r8lb] The random number

generators are inherited from the ho?t language SIMULA.

13.1. Well-Spread Seeds . \

Ten well-spread seeds are availal\x\le in SIMNET in the global variables: ':ccdl,
seed?, seeds,..., seed10. Each time SIM\'ET is set up, the seeds are initialized to the)

following values:

128

Seedl 6229297

Seed? 836027 : Ped
Seed8 3027628

Scedf 2663670

Seed5 4497811

Seed6 668092

Seed7 1370973 .

Seed8 6575705

Seed9 4953148

Seed10 831231

The seeds could be reset to any values provided by the user or to a randomly

chosen seed by a call to the fungtion newseed.

An outhne of the function newseed which is adapted from [Bir81a] is listed
below The global integér vanables zyqseed and zygmodulo are mltlahzed to,g07 and

67099547 respecuvely, when SIMNET is set up.

mteger zyqseed, zygmodulo; , .

integer procedure newseed;
- begin
integer k;)
for k :=7,13,15,27 do
. begin
zyqseed := zyqaced * k; . :
if zyqeeed > = zyqgmodulothen . - - - . g
' zyqaccd ;= zyqseed mod zyqmodulo; ‘
, end; ' T
™ newseed := zyqaced
end;

.
*

Ncw‘accd generates well-spread seeds in the_'foll‘c‘)wing order:

3059270
;6107043
. 3264518
. 2626272
6502562
1888495
320133

.sloch_.uww.—

129

Each seed has its own portion of the basic cycle of length 120833, that is, after

120833 drawings, the underlying r* distribution will start to overlap with r+1¢

Jistribution‘ More information about the seed generator could be obtained from

[Bir81al.

13.2. Random Number Generation

There are ten random number generators available in SIMULA that could also be

used in SIMNET. These generators require basic drawings from a stream U, and have

4

the side eflect of advancing the stream U by one or more values. Below we give the -

headings and brief descriptions of these functions [DMN84|.

1.

-Real prqcedp’re normal(a,b,U); name U; real a,b; int.egerU U, |

‘Boolean procedure draw(a,U); name U; real a; integer U;

The function returns TRUE with probability a, FALSE with probability 1-a.:

The value returned is always TRUE if a21, and'FALSE if as0.

Integer‘pr‘oceq,gre randint(a,b,U); name U, integer a,b,U;

_The valu®returned is an integer from one of the integers @, a+1,..., b—1, b, each

one with equal probability. The value b must be greater or equal to a.

Real procedure uniform(’a,b,Ud); name U; real a,b; intege‘r U;

‘The' flincti_on returns values uniformly distribuied in the intervals[a,b]. The value

‘b -must be greater th‘an a. ‘ o o

‘The function returns values normally distributed according to the mean value a

I3

and the standérd deviation b.' - .

Real 'proceaﬂ_re nveg,exp(a,‘U); name U; real a; integer U; - -

The value returned is a drawing from a megative exponential distribution with

‘mean 1/a.

—

6.

130

Integer procedure poisson(s,U); name U; real a; integer U; @

i
(.
' //l'he value returned is a drawing from a Possson distribution with parameter a.

7.

Real procedure erlang(s,b,U); nafme U;' value a,b; real a,b; integer U;

The function returns a value drawn from an Erlang (Gamma) distribution with

" mean 1/a and standard deviation ll(a\/;). Both ¢ and b must be greater than

10,

Zero.

Integér procedure discrete(A,U); name U; array A; integer U;
Here, A is one-dimensional array of type real, augmentea by the element 1 to the
right, is interpreted as a step function of the subscript defining a discrete

(cumulative) distribution function. The value returned is. an integer in the range

[lsb, usb+ 1], where lsb and usb are the lower and upper subscript bounds of the ;

~array. It is defined.as.the smallest § such that Alf]>U, where U is a basic

drawing and A[usb+1] = k.

Real procedure linear(A,B,U); name U; array A,B; integef v'U;y The funct_iop

returns a value drawn from a (cumulative) distribution, F,(z), obtained by linear -

intérpolation in a non-equidistant t‘able. defined by A and B, such that
A[= F(B[i]). It is assumed that (1) A and B are one-dxmensnonal real arrays of
the same léngth (2) the first -and last elements of A are equal to 0 and l

respectlvely, and (3) A[t]zA[J] and B[a]Z B[J] for 8>] .

Integer proceduré histd(A,U); name U; 'arl_-ay A; .inte_gér’ U-;‘u

The value returned is an integer in the range. [lab ' uab] whéfe iab and"é'ub are the

lower and upper subscnpt bounds of the one-dnmensnonal array A. The latter-. is.
. "D i

LN

mterpreted an a hlstogram deﬁnmg the relative frequ@ncles of the values

Appendix 2
SIMNET Iniplem'entation ‘of

. On-Line Information System

This appendix describes the implementation of our On- Lme lnformatlon syst.em

(see Section 4.3.1) in SIMNET

begin ' Beginning of main program ;
‘ external class. SIMNET’B KOOM: SIMNET

! Declaratlon of i lnpul parameters

" integer N;
"real MIT, MTT, MTR T,P, MTP

< Inltlahzatlon of input parameters
‘ lnlmage N := inint;
.lmmage MIT := mreal
mlmage MTT := mreal 3
inimage; MTR ;= lnreal, Y
~ inimage; T := inreal;
inimage; P := inreal;
inimage' MTP{"- inreal;

SIMNET begm o

. ref(place) array GPl(l N) GP2(1 NJ;

~‘ref(place) GP3, GP4; - |
ref(CUSTOMER) CUS \

. mteger] : . , 4

! Data object declaration ;
. dataset.class CUSTOMER;

.
) i
t . ' [\\

131 R

begin
real TTR, TRR;

TTR := Negexp(1/MIT, seedl);
TRR := Negexp(l/MTR seed?);

end;

! Source declaration ;
source class SOURCE],
begin
ref(CUSTOMER) procedure newdata;
’ newdate :- new CUSTOMER;
real procedure dist;
dist := Negexp(1/MIT, seed$);

end;

! Redefinition of a SIMNET setcurenv procedure ;
procedure sefcureny;
CUST :- curdata; ‘
! Declaration of Enter Request transmon
transition class TT1(IP1, IP2, OP1, OP2)
ref(place) IP1, IP2, OP1, OP2;
begin
real procedure work
work := CUST.TTR,;

snpl :- U(IP1, IP2);
outpl :- U(OP1, QP2);
end;

! Declaration of Read Reply. transition ;
transition class TT2(IP1, IP2, OP1, OP2);
ref(place) IP1, IP2, OP1, OP2
begin-
real procedure work;
. work := CUST.TRR;

inpl :- U(IP1, 1P2);
outpl :- U(OPl OP2);.

end e g .

-1 processor transition
transition class NT1(IP1, IP2, OPl OP2)
ref(place) array IP1; .
ref(place) IP2, OPl OP2
begin
" integer I;
boolean procedure precond;
begin
/boolean COND;

! Declaratlon of send requesz from terminal to ;

132

133

COND := FALSE;
forl:= I step 1 until N do
COND := O(COND, M(IP1(I))>0);
precond := A(COND, M(IP2)>0);
end; ‘

real procedure work;

work:= T;

inpl - none;
for I := 1 step 1 until N do
snpl - U(snpl, IP1(1));
snpl - U(snpl, IP2);
outpl - U(OP1, OP2);
end;

! Declaration of send reply from processor to ;
! terminal trampsition.
transition class NT2(IP1, IP2 OPl OP2)
ref(place) array OPI;
ref(place) IP1, 1P2, OP2, ot
begin
integer I;
real procedure work;
- work:= T,

ref(bag) procedure outres;
oulres :- U(OPI(CUST origin.sid), OP2)

tnpl :- U(IP1, 1P2);
outpl :- none; ‘ ‘
for 1 := 1step 1 until N do : .)
outpl :- U(outpl, OP1(1)); '
outpl :- U(outpl, OP2);
end; '

! Declaration of Réceive Request transition ;-
transition class PT1(IP1, IP2, OPI) v ,
ref(place) IP1, IP2 OP1; o
begin ‘ :
real procedure work; . ‘
work := P;

' »
. inpl :- U(IP1, IP2);
outpl :- U(OPI none};
end;

! Declaration of Process Request transition ;
transition class PT2(IP1, OP1);
~ ref(place) IP1, OP1;
* begin
real procedure wofk'

work := Negexp(1/MTP, sced); ‘ -

inpl :- U(IP1, none);
outpl :- U{(OP1, none);
end;

! Declaration of Send Reply transition ; Fo
transition class PT3(IP1, OP1, OP2); oy
ref{place) IP1, OP1, OP2; ’
begin - ‘
real procedure work;
work ;= P,

inpl - U(IP1, none);
outpl.:- U(OP1, OP2);
- end; : :

! Declaration of tegg al site subnet ;
subnet class TERMWAL(IPI, OPl)
ref(place) IP1, OPI .

begin
ref(placc) array TP(l 4);
integer I; .

for 1:= 1 step 1 until 4 do
. TP(1) :- new place;

new TT1(TP(1), TP(2), TP(3), OP1);
new TT2(TP(3), IPl, TP(I), TP(4)); ‘

new SOURCEL. conncct(TP(?))

new sink.connect{ TP(4));

new resource(l, "TERM"). conncct(TP(l))
end;

! Declaration of network subn
subnet class NETWORK(I!ﬁi’? OP1, OP2);
-ref(place) array IP1, OP2;
ref(place) IP2, OP1;
. begin -
.ref(place) NP1;-

NP1 :- new place; .

- new NTI1{IP1, NP1, OP1, NP1);
. new NT2('IP2' NP1, OP2, NP1});

new ruource(S "NET") conncct(NPl)
end

! Declaration of processor site subnet ;
subnet class PROCESSOR(IP1, OP1);

134

ref(place) IP1, OPJ;
begin
ref(placc) array PP(1:3);
integer I;

for1:= 1step 1 until 3 do
PP(I) :- new place;

new PTI(IP1, PP(1), PP(2));
new PT2(PP(2), PP(3));
new PT3(PP(3), OP1, PP(1));

new rcaource(1, CPU").conncct(PP(1)):

end;

! NET CONSTRUCTION STATEMENTS
! creation of global places ;

- forl:= 1 step 1 until N do

end;
end;

begin v
GPI(I) :- new place;
GP?.(]) - new rplacc

end;

GP3 :- new place;
GP4 :- new place;

I'creation of net from subnets and global places ;

for1:= 1 step 1 until N do-

new TERMINAL(GP2(1), GP1(I));
new NETWORK(GP1, GP4, GP3, GP2);
new PROCESSOR(GPB GP4)

I SIMULATION CONTROL STATEMENTS

check_net;
d:aplay_nict
trace(1, 5, 'J");
umulate(GO ’T)
rcport

-

135

Appendix 3

Centrallzed Lockmg Algorlthm

Y Ny

\ =N
& ot sho o
In ths appendix, we give a shghtly formal descnptlor}\of the. cen}s‘rahzed locking

algonthm. In the descnptlon we dlstlngusg the central s:te\(unctlons from the non-
b 5

\
~ central site functions since they are quite different. The algonth‘\lt{ is descrlbed in a

Pascal-like notation. - ' S A

The concurrency control algorithm executed at all non-central sites is as .folhlows.
. ' . E “\;h-‘ .
S
Procedure Cohortce;)
Begin
Wait for an event to occur, ‘
‘Case.event of :
"new transaction”: ' o
Send lock request for all items in trans. ba&set to central site; S
"locks granted”: begin . : : o \
If (there exists an older transaction whxch is not in the A
“site done-set and the transaction hole-set) then - .
- Insert transaction in waiting, queue : ‘ ¢
-~ else begm L e : . . '
Read transaction base-set s . :
Compute new update values for transaetlon‘
Save new valuesinlog; . - ‘ :
~Write "prepare” in log; - | LA
Send mtend-to-update message & new update values to all Sltes, ‘ T
- end; '
end;.
acknowledgmcnt begin
. Increment number of ack's received for transaetlon by l
lf all up sites have acknowledged then begm

. Fe

.+ Write "complete” inlog; =

-

. A ¥

Write "commit” in log;
Send commit message to all sites;
Perform update on local dat,abase,
Write "complete” in log, ’
Restart transactions in waiting queue waiting for this transaction
to complete;
end;
end;
"intend to update”: begin .
If transaction can be committed then begm .
Save transaction new update values in stable memory;
Write "ready” in log; -
Send acknowledgment to ongm’ating site;

o R

-~ Send abort to ongmatlng site;
end;

"commit": begln

If (there exists an older transaction which is not in the site
done-set and the transaction hole-set) then
Insert transaction in waiting queue;
else begin
Write "commit’ in log; .
'Perform updatedon local database; -
"Insert transaction id. in site done-set; -
Restart transactlons wamng for thls transactlon t0 complete
. end ¢
end;

"abort.

Wnte "abort" in log;

"central site failure™: begin

Go into failure mode; -)
. Start electlon protocol° o ’ s
end; - :

end . . o) . . : A

AN

‘end; ' ‘ ') co R .

{The followmg algorithm is executed at the central site only } ST

Procedure centralcc; ,

Begin
Wait for an event to occur, S A
Caseeventof - , : , S

"new transaction™ - ' ' : o o '
Request locks for ltems in transactlon base-set locally, o
lock request”: begin. -
" While (transactlon has not received all its locks) do begm
“If next transaction item is already locked. then
Insert transactlon in item queue, o
elae :
lock ltem for transactlon'

138

end;

Insert transaction in site hole- set;

If transaction is local then

Read trapsaction basetset;

Compute new update values;

Save New updéte values in log;

Write "prepare” in log;

Send intend-to-update message & new update values to all sites;

, end
else =
Send Iocks-granted message and hole-set to originating site;
- end; '
. "intend to update”: begin .

., If transaction could be committed then begin

s

Save new update values in log;
. Write "ready” in log;
Send acknowledgment to ongmatlng site;

end
else .

Send abort message to ongmatlng site;

end;

,"acknowledgment : begin-
Increment number of ack’s received for transaction by 1;
IT all up sites have agreedto commit then begin

A

Write "commit” in log,
Send commit message to all sites;- .o ‘
Perform update on local database Ve

.write "complete™ in‘ log,

Insert transaction id. in site done-set ' .

Release all'locks held by transaction; o '

Restart transactipns waiting for this transaction to complete;

Restart transactions in item queues waiting for locks held by
tramsaction;

‘end »

end; ‘
"abort”; begin =
" . Write "abort" in log; .
Send abort to all sites;
end; ' '

14

"coordinator failure™:
Start termination-protocol;

end;
end;

Appendix 4

Distributed Locking Algorithm

This appendix contains a formal descriptionr of the distributed locking

concurrency control algorithm. The algorithm executed at every site is as follows.

’

Procedure allcc;
Begin
Wait for an event to occur
Case event of ,

"new transaction”: begm . :
Request locks for all items in transaction write-set from all sites;
Request locks for all items in transaction base-set loca]ly,

end;

lock request”: begin :

While (transaction has not obtained all its locks) do begin
If next transaction item is already locked AND conflicting
‘transaction is younger than transaction requesting lock AND
is not in a‘ready-to-commit OR commit state then
Insert transaction in item queue in ascending order of tlmestamp,
else]
R ~ Lock item for transaction; "\
end; ' ‘
If transaction is local then s
- Read transaction read-set;
‘Compute new update values;
Write "prepare” in log; -
Save new update values in log;
Send mtend-to-update message and new update values to all sites;

end

»

1

-

1390

140

. else
Send locks-granted to transaction originating site;
end; . '
"intend to update”: begin .

If transaction can be committed then

Write "ready” in log;

Save transaction new.update values in log;

send acknowledgment to originating site;

end ‘
else
Send abort to originating site;
end; 4
"acknowledgment”: begin
Increment number of ack’s received for transaction by 1;

If all up sites have agreed to commit then begin
Write "commit” in log;
Send commit to all sites;
Perform update on local database; ’
Write "complete” in log; _ o -
Release all locks held by transaction;
Restart transactions in item queues waiting for locks held by
transaction; ‘ ‘
end;
end;
"abort™: begin
Write "abort” in log;
Releage locks held by transaction;
Restart transactions waiting for locks held by this transaction;
end; ’ g
. "coordinator failure”:
Elect new coordinator to terminate unfinished transactions;
end; :
end;
end.

Appendix §

Performance Résults

The performance results obtained for the CL and DL algorithms are listed m this

appendix. " /\
- e

The results were obtained from simulation runs of about 10,000 transactions each
after the system has reached its steady state. To give an accuzy of the results, 95%

confidence intervals are computed for the mean response times R as:

. — 82 = S 82

R - 196 —, R + 1.96 . —
_ ‘ . n n)
where 2% is the sample variance obtained from the simulation and n is the total .
number of samples. The above equation assumes that the n samples are independent.
In réality,,the samples obtaingd from simulation runs are_usually correlated. That is,
the samples are not quite independent since the value of one sample can affect the
values of some other samples. However, if the pumber of samples is large, which is.
quite true in our case, we can assume that the samples are independent and obtain

satisfactory results ([G‘or78]rand [Gar79)).

3

e o A

Table A6.1. Effect of interarrival time on response time.

CL

DL
Interarrival Response Confidence Response Confidence
Time Time Interval Time Interval
4 5.332 0.680 3.518 0.049
5 .2.350 0.024 2.451 0.032
6" 1.807 '0.017 2.055 0.026
q 1.590° 0.012 1.723 0.021
8 1.465 0.012 1.723 0.021
9 1.389 0.011 1.635 0.020
10 1.335 0.010 1.570 0.019
11 1.298 0.009 1.5615 0.018
12 - 1.270 0.009 1.476 0.017
13 1.247 0.009 1.445 0.017
14 1.228 0.009 1.420 0.016
15 1.213 0.008 1.400 0.016
16 1.203 0.008 1.382 0.016
17 1.192 0.008 1.365 0.016
18 1.185 0.008 1.352 0.015
19 1.177 0.008 1.340 0.016
20 0.008 1.331 0.015

1.170

Table A5.2. Effect of mean interarrival time on 1/O utilization.

: - CL DL
| Interarrival | 1/O Utiliz. at | 1/O Utiliz. at | 1/O Utiliz. at
Time Central Site Other Sites All Sites
4 - 87.445 -31.331 73.100
5 69.965 25.070 58.322
6 58.305 20.893 48.555
7T 49.979 17.909 '41.608
8 43.735 15.671 36.402
-9 38.875 .- 13.928 32.362
10 34.988 12.536- 29.113
11 31.808 11.396 26.466
12 29.157 10.447 24.256
13 26.915 9.643 '22.388
14 24.992 8.955 20.791
15 23.326 8.358 - 19.402
16 21.868 7.835 . 18.188
17 20.582 7.374 17.118
18 19.438 6.965 16.167
19 18.415 6.598 15.316
- 20 17.494 6.268 14.551

142

Table A5.3. Effect of mean interarrival time on CPU atilization.

CL DL
Interarrival CPU Utiliz. at CPU Utiliz. at CPU Utiliz. at
Time Central Site Other Site All Sites
4 0.584 0.452 - © 0.468
5 0.392 0.324 0.374
6 0.316 0.264 0.311
7 0.268 0.224 0.267
8 0.233 0.195 0.233
9 0.206 0.173 0.207
10 0.185 0.156 0.187
11 0.168 0.141 0.170
12 0.154 0.129 0.155
13 0.142 0.119 0.143
14 0.132 0.111 0.133
15 0.123 - 0.103 0.124
16 0.115 0.097 0.117
17 0.109 0.091 ° 0111
18 0.103 0.086 0.104 -
19 0:097 0.081 0.098
20 ~0:092 0.077 0.093

.4) .
Table Ab.4. Effect of mean interarrival time on mean number of messages.

s }
_CL DL
Interarrival Mean Number of | Mean Number of
Time Messages . - Messages
4 16.674 25,099
.5 16.672 - 25.048
6 16.670 25.022
7 16.671 25015
8 16.669 25.019
9 16.669 25.018
10 16.669 25.013
11 16.669 - 25.012
12 16.669 25.003
13 116.669 25.001
14 16.669 25.001
15 16.669 25,001 .
16 16.669 26.000
17 - 16.669 25.000
18 ° - 16.669 ° 25.000° Lo
19 16.669 125.000 oo
20 16.669 +25.000

O143

Table A5.5. Effect of mean base-set size on mean response time.

CL DL
Base-set Response~ | Confidence | Response Confidence
Size Time Interva) Time Interval
1 0.642 0.002 0.712 0.002
2 0.771 0.003 0.864 0.007
3 0.926 0.005 1.059 0.009
4 . 1.112 0.007 1.290 0.014
5 ¢ 1.335 0.010 1.570 0.019
6 1.594 0.013 1.849 " 0.021
7 1.929 0.018 2.283 0.031 -
8 2.341 0.024 2.747 0.040
9 2.869 0.032 3.301 0.051
10 3.579 0.043 3.966 0.060
11 4.591 0.069 4763~ 0.070
12 6.113 0.086 5.69 0.071
13 9.001 0:121 6.995 ~0.080
) T O ,8.625 0.092
15 | ... i 10.736 0.130

Table A5.6. Effect of mean base-set size on 1/O utilization.

. _CL : DL
Base-set | I/O Utiliz. at | I/O Utiliz. at | I/O Utiliz. at |
Size Central Site Other Sites All Sites
1 < 11.637 5.582 11.492 -
2 17.166 7.278 15.855
3 23.130 4 9.017 20.305
4 29.130 . 10.774 24.834
5 34.988 12.536 29.348
6 | ¥ 40.963 14.295 33.863
7 46,954 16.058 38.340
8 52.948 17.824 42.855
9 58.944 19.580 47.364
10 64.959 21.343 “51.931
S11 70.978 23.109 56.453
12 76.957 24.857 60.991
13 - e e 65.620 -
14 | 1 . .70.165
A5 1 e b 74.662

144

Table A5.7. Effect of number of sites on meaﬁ response time.

. CL DL
Number of Response Confidence Response Confidence
Sites Time Interval Time Interval
2 1.164 0.008 1.271 0.014
4 1.245 0.009 1.411 0.017
6 1.339 0.010- 1.570 0.019
8 1.477 0.011 1773 0.021
10 1.676 0.016 2.054 0.026
11 1.832 0.020 2.196 0.030
12 2.040 0.025 2.385 © 0.035.
13 2.341 0.030 2.830 0.040
14 2.878 0.035 3.225 0.046
15 3.776 0.042 © 3.225 0.051
¢ /
Table A5.8. Effect of number of sites on I/O utilization.
b
¢ CL ‘ L DL
Number of | I/O Utiliz. at | I/O Utiliz. at{ | 1/O Utiliz. at
Sites Central Site Other Sites %] Al Sites
2 12.877 5101 11.465
4 24.804 8.989 20.465
6 36.304 12.860 - \ 20.348 .
g8 " 48.945 16.943 ;i -38.845
10 . 60.817 20.891 \ 48.057
11 65.922 22.617 \ 52.129
12 ~71.400 24.409 - ~.56.451
13 77.143 26.261 60.818
14 82.360 , 27.961 - 65.068
15 88.150 ; 29.880 69.705

.

Table A5.9. Effect of transmission time on mean response time.’

a

: _CL - ; DL
Message Trans. Response | Confidence Response | Confidence
-__Time Time Interval __Time ‘Interval
0.05 1.135 0.009 1.389 - 0.019
0.100 1.335 0.010 -1.570° - 0,019
0.15 . 1.450 0.010 - 1.760 -.0.019
-0:20 1.600 0.011 : : 0.018 -
.0.25 1.750 . 0.012 / . 2.153 . 0.018

145.

\

Table A6.10,. Effect of 1/O synchronization time on mean response time.

.. . CL DL

1/O Synchroni. Response Confidence Response Confidence
Time Time Interval Time Interval
0.00 0.739 0.003 0.006 0.010
0.01 0.934 -0.005 1 1.037 0.010
0.02 1.335 0.010 1.570 0.019
0.025 1.335 0.010 1.570 0.019
0.03 1.508 ° 0.012 1.805 0.023
0.04 1.948 0.017 2.362 0.032 .
0.05 2.550 0.026 3.089 0.043

/

Table A5.11. Effect of 1/O synchronization time on /O utilization.

N CL , DL
| 1/O Synchroni. I at | 1/0 Utiliz. at 1/0 Utiliz. at

Time Central Site . Other Sites All Sites
0.00 11.466 11.469 11.747
0.01 20.973 11.896 18719
0.02 30.465 12323 .} O 25733
0.025 34.088 12.536 29.113
0.03 39.897 12749 32.653
0.04 49.335 13.177 39,561

58.759 13.603 - 46:920

’/"ﬁ

Table A5.12. Effect of interarrival time on mean response time (10, =0).

0.722 0.003

CL ‘ ‘DL
Interarrival | Response | Conﬁdé};&ce Response Confidence
Time ~Time | Interval Time Interval
3 0.883 - "0.870 1.015 0.047
4 -.0.829 * 0.670° 0.928 0.045
5 " 0.798 0.014 10.882 0.030
6 -0.781 0.016 0.853 0.024
7 - 0.769 10.011 0.833 - 0.020
8 0.759 0.010 0.821 0.019
10 - 0.747 - 0.008 0.803 0.018
12 0.738 .. 0.007 0.791 0.016
14 .0,733 0.006 10,783 g 0.014
16 0.730 . 0.005 0.777 0.013
20 0.769 0.011

146

Table A5.13. Effect of mean interarrival time on 1/0 utilization (/0,=0).

CL . DL
Interarrival | 1/O Utiliz. at | I/O Utiliz. at-
Time All Sites All Sites
3 38.993 39.286
4 29.357 29.453
5 23.529 23.576
6 19.808 19.638
7 16.806 16.826
8 14.723 14.729
10 11.781 11.783
12 9.820 9.810
14 8.412 8.417
16 7.362 7.365
- 20 5893 %

5.889

Table A5.14. Effect of database size on mean w/ponse time.

CL DL
Interarrival Response Confidence Response Confidence
Time Time Interval Time Interval
25 2.100. 0.018 2.171 0.076
50 1.527 0.014 1.877 0.063
100 1.441 0.012 . 1682 0.056
150 1.407 0012 ' 1.643 0.045
200 1.391 0.011 1.631 0.041
250 1.376 0.011 - 1.618 - 0.035
300 1.368 0.011 1.601 -0.030
400 1.356 0.010 1.595. 0,027
500 . 1:349 0.010 1.580 0.026
600 . 1.342 0.010 1.573 0.024
. 700 1.339 0.010 1.569 0.021
800 1.337 - 0.010 1.568 0.019
900 1.335 ° 0.010 1.566 0.019 .
1000 -1.335 ©0.010 1.565 . 0.019
1100 1.333 0.010 . 1.563 0.019
1200 1.333 0.010 ' 1.562 0.019
1300 1.332 0.010 1.561 0.019
1400 _1.329 0.010 1.560 .

- 0.019

147

Table A5.16. Effect of interarrivaltime on response time
for different mean time between failures.

!} CL DL
MTBF Interarrival Response Confidence Response Confidence
Time Time Interval ~ Time Interval }
S 4 2.938 0.214 2.775 0.059
7 1.432 . 0.006 1.696 0.006
10 1.285 © 0.006 1.469 0.006
15 1.206 0.006 1.369 0.006
20 1.178 0.006 1.317 - 0.006
15 4 3.346 0.216 3.047 0.019.
, 7 1.458 0.006 1.744 0.006
10 1.298 0.006 1.501 0.006
16 - 1.214 - ° 0.006 1.377 0.006 .
20 '1.830 0.006 1.315 ' 0.006
37 4 5.332 0.680 3.518 0.049
‘ 7 1.590 - 0.012 1.723 0.021
10 1.335 0.010 1.570 0.019
15 1.213 0.008 1.400 0.016
20 1.170 0.008 1.331 0.015

’

Table A5.18. Effect of mean interarrival time on I/O utilization
- for different mean time between failures.

s

- 11.881

Interarrival CL DL.
MTBF -1 Mean IfO: | Meanl/O
Time Utiliz. - Utiliz.
5 4 53.426 " 63.712
7 32.808 36.457
10 23.085 25,553
15 15.577 17.24)
20 11.800 13.075
15 4 - 56.681 67.172
7 33.069 38.391
10 23.280 26.652
15 15.641 18.112 .
20 "~ 11.859 13.726
37 4 59.388 73.100
7 ©.33.944 41.608
10 - 23.762 - 29.113
‘15 +165.842 - ©19.402
20 14.551

148

