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ABSTRACT

This thesis concerns the construction of robust designs for linear and approxi-
mately linear models with correlated errors. These designs are robust against small
departures from both the assumed linear regression response and the usual assump-
tion of uncorrelated errors. A minimax approach and an infinitesimal approach are
used to derive these designs. The use of the infinitesimal approach is new in robust
design theory.

Using the minimax approach, we discover that a design which is asymptotically
(minimax) optimal for uncorrelated errors retains its optimality under autocorrelation
if the design points are a random sample, or a random permutation, of points from
this distribution. Furthermore, minimax designs are obtained for approximately linear
models when the errors follow a first order autoregressive process. The results suggest
that the design points must follow certain patterns which depend on the sign of the
autocorrelation parameter.

For the infinitesimal approach, we define the Change-of-Bias Function (CBF) and
the Change-of-Variance Function (CVF) to be the Gateaux derivatives of the mean
squared error of the estimated response, in the direction of a contaminating response
function and in the direction of autocorrelation structure respectively. Then robust
designs minimize the mean squared error of the estimator at the ideal model, subject

to a robustness constraint formulated in term of CBF and/or CVF. Specific examples

are considered, and new robust designs are developed.
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Chapter One

Introduction

This dissertation concerns the construction of robust regression designs for linear
and approximately linear models with correlaied errors. The work is presented in
three papers which have been prepared for pub.ication. From Chapter Two to Chapter
Four, each chapter is an independent paper. This chapter gives a brief review of robust
designs in the literature and summarizes the entire thesis.

We begin with a short introduction to classical regression design problems in Sec-
tion 1. This introduction serves as a motivation which helps readers understand the
robust design problems presented in this dissertation. For a more detailed presen-
tation of classical regression designs we refer to, for example, Pukelsheim (1993),
Fedorov (1972) or Box (1987). Following this introduction, two examples of classical
optimal designs are presented in Section 2, which leads to a systematic discussion of
the necessity of studying robust designs in Section 3. In the literature, two types of
robust designs (designs robust against small departures from the assumed regression
response and designs robust against autocorrelation of errors) have been investigated.
After reviewing these designs in Section 4 and 5, we summarize the robust designs
studied in this thesis in Section 6. Examples of practical situations in which our
robust designs can be applied are given in Section 7. Finally, further research topics
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in this area are discussed.

1 Classical design problem

For simplicity, a single variable design problem is considered first. Suppose
there are two related variables z and y; 7 is an explanatory variable, y is a response

variable, and
Elylz) = 0o+ b1z, T € [a, 8],

where 6, and 6, are unknown parameters. In practice, we often want to estimate 6o
and 6. so that we can predict the y value at a certain = value or make some other
inferences about y or E[y|z].

Estimates of 6, and 6; are usually computed from observations on y obtained
through experimentation. Suppose that zi,Zs, -+, are the n points at which we
observe yi, ¥z, - * ,Yn. Because of the experimental errors, the observations (z1,91),

(€2,92), "+ » (Tn, yn) follow a statistical linear model,

yi=0+orit+e i=1,-,n, (1.1)

where ¢; are the experimental errors with mean 0 and variance o?.

Let 815 = (fo,6;)T be the Least Squares estimate in (1.1):

brs = (X7X)” X7y,



where

(1 2 ()

1 z2 Y2

Sy \ o

How efficient is 8157 From regression analysis, if the errors are uncorrelated, then

E[f.s] = 6,

COV([d.s] = o? (X’-”X)’1 :

To appraise the efficiency of the design, the right measurement is the covariance
matrix of 5. The “smaller” the covariance matrix is, the more efficient the estimate.
We notice that the covariance matrix only depends on X. So the choice of the z;’s
determines the efficiency of rs. Therefore, in this case, the design problem is to
choose an “optimal” set of z;’s before the experiment in such a way that we have the
most efficient estimate (i.e. COV[@LS] is minimized). The z;’s are called the design
points.

In general, the classical design problem with multiple variables can be summarized

as follows. We consider the regression model:

yi = 27 (x:)0 + €, i=1,---,m; (1.2)
x; € S C RY, z(x;) € RP, 0 € RF;
Ele] =0, Varle]=o?,

3



where S is a given design space and z(x) is a given function of x. For instance, if
z(x) = (1,x7)7, then (1.2) is the usual multiple linear regression model; if z € R!
and z(z) = (1,z,2%--- ,zP~1)T, then (1.2) is the polynomial regression model.

Furthermore, two classical assumptions are made for model (1.2):
Al: The regression response E[Y|x:] = z7(x;)8 is exactly correct.
A2: The errors ¢; are uncorrelated.

Based on Al and A2, the classical design problem is

min L (COV(D)) (1.3)

Xy Xn

st. x; €8, 1=1,-+--,n,

where @ is an unbiased estimate (not necessarily the LS estimate) in (1.2) and £
is a scalar function ( loss function ). The function £ can be the determinant, the
trace or some other function of positive semidefinite matrices, monotonic increasing
with respect to the usual ordering by positive definiteness. This design problem has
been studied extensively in the literature, and many optimal designs are obtained for

various linear models and loss functions. See Fedorov (1972) and Pukelsheim (1993).

2 Examples of classical optimal designs
Example 2.1. Let us consider the simple linear regression model

yi=0p+0z;+€, 7, €S, 1t=1,---,n

4



Without loss of generality, the design space S is assumed to be [—0.5,0.5]. We use
the Least Squares method to estimate 6y and 6,. Let L = Determinant, so that the
optimal design is called the D-uptimal design. Suppose € is the empirical distribution

function of 1.+ -+, Z» and that n is even. Solving (1.3), one gets the D-optimal design
1
f.(—0-5) == 6.(0.5) = 5.

The answer means that half of the optimal design points have to be placed at —0.5

and another half at 0.5.

Any implementable and discrete optimal design for finitely many design points is
called an exact design, such as & in Example 2.1. However, sometimes cortinuous

optimal designs are constructed. These designs must be approximated by discrete

designs in practice.

Example 2.2. We consider the linear model with two explanatory variables:

yi = 0o + 0121, + 0232, — €5 t=1,---,n.

(1, T2,i) € S = [—-0.5,0.5] X [—0.5,0.5].

Suppose that £ is the empirical distribution function of ($1,1,$2,1),"',(-’Bl,n,zz,n),

then one can show that the D-optimal design is

R

£.(—0.5,—0.5) = £.(—0.5,0.5) = £.(0.5,—0.5) = £.(0.5,0.5) =

This 22 factorial design is very useful in practice, see Montgomery (1991).



3 Why do we need robust designs?

We notice that the classical optimal designs in Example 2.1 and Example 2.2
place all mass at extreme points of the design spaces. In fact this is a general phe-
nomenon of the classical optimal designs, which is problematic if the two assumptions
Al and A2 (on page 4) are not exactly true. If Al and A2 hold, the optimal designs
yield the most efficient Least Squares estimates consistent with the phenomenon.
However if there are any violations of Al and/or A2, some caution is called for. In
many cases, three major reasons indicate that the classical optimal designs should
not be used at all.

First we consider the case in which Al is violated, i.e. the linear model (1.2) is
not exactly correct. This is the model departure from linearity. In this situation, the
Least Squares estimator is biased, and the classical optimal designs usually yield large
bias (comparing with the variance). The classical optimal designs which minimize the
variance alone are not optimal anymore because of the cantribution of the bias. Box
and Draper (1959) made apparent the dangers of designing a regression experiment
under Al. They found that very small departures from Al can eliminate any supposed
gains arising from the use of a design which minimizes variance alone, see Wiens
(1992). Huber (1981) points out “hat “deviations from linearity that are too small
to be detected are already large enough to tip the balance away from the ‘optimal’
designs, which assume exact linearity and put observations on the extreme points of

the observable range, toward the ‘naive’ ones which distribute the observations more



or less evenly over the entire design space.”

Also, when Al is violated we cannot do model adequacy testing by using the
classical optimal designs. Since we only make observations on the extreme points of
S, no information is available in the interior of S. As in Example 2.1, optimal design
requires observations only at two points: —0.5 ard 0.5. Through observations at two

points we can only fit a straight line. Any curvature in the design space S cannot be

detected.

In the case in which A2 is violated, i.e. the errors are correlated, the model depar-
ture from nncorrelated errors occurs. In this situation, the exact correlation structure
of the errors is usually unknown, so that COV(@) is unknown. The classical optimal
designs which minimize £ (C OV(@)) for uncorrelated errors do not minimize the true
value of £ (COV(@)).

Therefore, there is a need to study optimal designs under possible small violations
of Al and/or A2. These designs are called robust designs. In general, robust designs
are those which are not sensitive to small departures from model assumptions. More
discussion of the need to robustify classical designs can be found in Wiens (1990,
1992, 1994).

In practice, the relationship between a response variable y and explanatory vari-
ables x is usually only approximately modeled. This often results in the violation of
Al. The violation of A2 can be caused by, for example, serial or spatial correlation or

repeated measures. With respect to different kinds of model violations (departures},



different kinds of robust designs can be studied. In the next two sections, some robust

designs in the literature are briefly reviewed. In Section 6, we outline the types of

robust designs derived in this dissertation.

4 Robust designs for approximately linear models

When Al fails, the linear model (1.2) is not exactly correct. This is the model

departure from linearity. In this case, the approximately linear models are introduced,
Yi = zT(x;)O + f(x,-) + ¢, 1=1,---,m (4.1)

where f is an unknown disturbance function and belongs to a certain class F, and
¢; are still uncorrelated. So departures from linearity are modeled in (4.1). Then a
robust design for (4.1) is usually obtained by minimizing maxses L(MSE(,/n8)), for

some scalar loss function L.

Huber (1975) and Wiens (1990, 1992, 1993, 1994) take

Fe{ k= ([ Fooa)" <n [sfix=0}, (22

where the radius 7 is assumed known and “small”. The first condition in (4.2) says
that the disturbance function f is small, so the linear term z7(x;)8 is still the leading
term in (4.1). The second condition ensures the identifiability of 6 in the model as
long as that fg zz”dx is non-singular.

In Huber (1975), robust designs are obtained for the situation of p = 1, z(z) =
(1,z)T, § = [—0.5,0.5], and the loss functicn being the integrated mean squared

8



Figure 1: Optimal density function m(z) when nL:,- =1

-

rrrrrrrrrr

error of y(z):

L(MSE(/m)) = n- [ B{(3(z) - Elyle])’lda

= trace(MSE(v/n@)- A), with A= /sz(:c)zT(:v)da:.
The optimal robust design has density function
m(z) = a(z? + b)*, a >0,

where a and b depend on the ratio nl,;,- When % — 0, m(z) — 1—the uniform dis-
tribution on [—0.5,0.5). When ;1"722- — 00, M(z) (distribution function corresponding

to m(z)) converges to the classical optimal design £, in Example 2.1. Figure 1 is a

plot for m(z) when {% =1, a=3.810 and b =0.178.

This robust design and the classical optimal design in Example 2.1 are similar
in a sense that both designs put heavy weight towards the boundary of S. But the

9



robust design puts some weight in the interior of the design space, which allows us
to do model adequacy testing. So in practice, if we suspect any nonlinearity of the
regression response, the robust design should be applied.

In Wiens (1990, 1992, 1993, 1994), robust designs are obtained for various es-
timators, various linear models and different loss functions. Wiens (1990) studies
robust designs for multiple linear regression with z(x) = (1,x7)T, x € R? and
z(x) = (1, z1, T2, T1 . 2,)T in (4.1), with £ =integrated mean squared error. Wiens
(1992) derives robust designs for (4.1) for various loss functions corresponding to the

classical D-, A-, E-, Q- and G-optimality criteria. They are
1. £ = Determinant;
2. L = Trace;
3. £ = The largest characteristic root;
4. £ = Integrated mean squared errors;

5. £ = The maximum (over §) MSE of j(x).

In Wiens (1993), robust designs are derived by maximizing the minimum coverage
probability of confidence ellipsoids. Robust designs for M-estimators are considered
in Wiens (1994).

Marcus and Sacks (1976), Sacks and Ylvisaker (1978), Pesotchinsky (1982), Li

and Notz (1982), Li (1984) and Liu and Wiens (1994) take

}-={f||f(x)ls¢(x)a VxeS}h, (4.3)

10



with various assumptions being made about ¢. The optimal designs constructed in
these papers appear to be sensitive to the assumed form of ¢.

In Pesotchinsky (1982), the following model is considered,

p
yi =00+ Y Oizii + f(xi) + €,

i=1

and

F={flIfx)<é(x), xe&}

where ¢(x) is a convex function of ||x||? = (zZ+ - -+22). The Least Squares estimate

is used. The loss function is

1
L= = [p+1

1/k
tr(MSEk)]

p+1j=0

1/k
1 4
= {——-Z,\f} , 0<k< oo,
where Mg < A\; < --- < ), denote the eigenvalues of MSE. Then
b x Anaz{MSE} — E-optimality;
®, « Trace — A-optimality;

& x Determinant — D-optimality.

Pesotchinsky limits his consideration to the class Z(m) of all symmetric designs §
with fixed E¢(z?) = m. Then any symmetric design {, € Z(m) supported only by
the points of sphere Sg of radius R = \/mp is D-optimal in =(m). Unlike the D-
optimal design, A- and E-optimal symmetric designs are unique and correspond to

the uniform continuous measures on appropriate spheres.

11



Li and Notz (1982) take F to be a subclass of measurable functions with respect

to Lebesque measure on S,

F={fl Ifx)<¢, ¢>0, Vx€S}
for the following approximately linear model,

yi =00+ 07x; + f(xi) + €, X €SC RE.
The optimality criterion is minimax weighted MSE:

k
minsup E[B3(6 — 60)* + Z BX(6; — 6:)%],
£ jerF

i=1

where the §; are specified constant. If S is the (k — 1) dimensional simplex, i.e.

k
S={(:z1,---,:ck)TE72", Z:v,-:l, z; >0 for all i},

i=1

and B =0, By = --- = B = 1, then the optimal design puts point mass 1/k
on each of the k extreme points of S, i.e. the points x(1) = (1,0,--- 0T, x(2) =
(0,1,0,---,0)7, ---, x(k)=(0,---,0, NT. IS =[-1, 1J%, then the optimal design
puts point mass 1/2% on each of the 2% corners of the cube S. This kind of robust
designs still has support on the boundary of S.

The class F in (4.2) is adopted for approximately linear models in this thesis,
since the motivation of (4.2) is very clear. Suppose that E[ylx] is an approximately

linear function of 8q:

E[le] ~ ZT(X)OO’

12



where 0 gives the “best” approximation in the sense of minimizing
JABlylx] - 2" (x)0}dx.
Define
f(x) = Elylx] — 2" ()80,
then we have the model (4.1) and f(x) satisfies
/S 27 (x) f(x)dx = 0.

This is the second condition in (4.2). The first condition in (4.2) is to balance the

bias and the variance. In one occasion, (4.3) is used for one example in Chapter Four.

5 Designs robust against autocorrelation of errors

When errors €, -, € in (1.2) are correlated, we denote by P, the autocorre-
lation matrix. If P, is known, then the oplimal design can be derived by minimizing
the covariance matrix COV(8). Here we assume that Al is true. In most cases,
however, P, is unknown or known only up to certain forms, such as weak stationarity
or the first order moving average (MA(1)) autocorrelation. Then we cannot minimize
the covariance matrix COV(8) to get optimal designs, since COV(8) contains the
unknown parameter P,. Instead we seek robust designs which safeguard against a

range of autocorrelation structures.

13



In Constantine (1989), robust designs are derived for the linear model Ely] = X0
and the covariance matrix COV|[y] = V = I + M, where I is the identity matrix
and M = (my;), with m;ip1 = Miy1i = Pi; and m;; = 0 otherwise. The criterion
is to maximize the trace of the inverse of the covariance matrix ir ((C’OV(@))'I) =
tr (XTV“IX), here § = (XTV’IX)_l XTV-1y is the BLUE (Best Linear Unbiased
Estimate). Constantine starts with an optimal, or efficient, design under the usual
model with uncorrelated errors and modifies that according to the sign of the correla-
tion that may be introduced at each step of an experiment. The modification does not
change the optimality of the design under the uncorrelated model, but it increases its
efficiency if nonzero correlations are indeed present. Using a linear approximation to
a matrix expression XTV~1X, he finds (assuming all p;s are equal to p) that a robust
efficient design matrix has as many sign changes as possible within each column of X
if p is positive, and, on the other hand, requires as few such changes as possible if p
is negative.

In Berenblut and Webb (1y74), robust designs are derived for the linear model
y = X0 + ¢, where X is the design matrix, the covariance matrix of errors is o2V/(p),
p is the parameter of first-order autocorrelated process, and V(0) = I is the identity
matrix corresponding to uncorrelated errors. Both non-stationary and stationary
first-order autocorrelated error processes are considered. The criterion is to minimize
the determinant of the covariance matrix of the BLUE. They first determine the set

of optimal designs which minimize det((X TX )"1)-—fhe determinant of the covariance

14



matrix of the BLUE for independent errors, and then they select a subset which
minimize det((XTV~!(p)X)~!)—the determinant of the covariance matrix of BLUE

for V(p).

So in the literature, robust designs for correlated observations are usually obtained

through two steps.

Step 1. Find a class C{£) of designs which are optimal for uncorrelated errors;

Step 2. Find a optimal design £* € C(£) (usually by a proper ordering of the

design points ;) which minimizes the covariance matrix of the estimate under

correlation.

Therefore these robust designs are still classical optimal designs. Robustness against
autocorrelation of errors is achieved by proper ordering of classical optimal design
points X;; see also Kiefer and Wynn (1981) and Jenkins and Chanmugam (1962).

In a time series context seve: i authors - Sacks and Ylvisaker (1966, 1968), Bickel
and Herzberg (1979), Bickel, Herzberg and Schilling (1981) and Ylvisaker (1987) -

have studied the problem of determining time points ¢; at which to observe

Y(t) = ia,-z,-(t) + €(t), (5.1)

i=1
under various assumptions on the process {e(t).

In Bickel and Herzberg (1979), the error process in (5.1) is assumed to be weakly

stationary:

Ele(t)] =0,

15



Varle(t:)] = o°,

Corr(Y (t:), Y (t;)) = vp(ti — t5),

where —T < t; <t <+ <t, <T,0< <1 and p is the correlation func-
tion of a nondegenerate stationary process. Then the autocorrelation matrix of the
errors is U = (yp(t; — t;) + (1 — 7)éi;). Bickel and Herzberg establish an asymp-
totic theory of the variance-covariance matrix ¥ of the least squares estimates to
study the effect of dependence of the observations in experimental design, where
= o? (ZTZ) - zZTuz (ZTZ) ' Robust designs are constructed for simple cases
of model (5.1), i.e. estimation of location (k =1, z1(t) = 1), regression through the

origin (k = 1, z1(t) = t) and simple linear regression (k = 2, z(t) = 1, z(t) = t).

Two optimality criteria are considered:
1. Minimize n¥ over designs (t1,-*+,%n);
-1
9. Minimize nX over designs ({1, -,tn) subject to n (ZTZ) < AT, (A>1).

In this thesis, we use these and other approaches to derive robust designs against
autocorrelation of errors. We do not confine ourselves to the class of classical optimal
designs to search for robust designs. By introducing the Change-of-Variance function
into design theory, we have derived robust designs which -minimize the determinant
of the covariance matrix for uncorrelated errors subject to a robustness constraint.

So far we have discussed robust designs which are robust against only one kind

of model departure, i.e. violation of Al or A2. If there is a violation of both Al and
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A2 in the linear model (1.2), then how do we construct robust designs? This is a

major topic studied in this thesis. Both the minimax approach and the infinitesimal

approach are used to construct robust designs.

6 Robust designs derived in this thesis

In the second chapter of this thesis, titled “Minimax Regression Designs for
Approximately Linear Models with Autocorrelated Errors”, we study the constructior
of regression designs, when the random errors are autocorrelated. Our model of

dependence assumes that the spectral density g(w) of the error process is of the form
g(w) = (1 - a)go(w) + ag1(w),

where go(w) is uniform (corresponding to uncorrelated errors), & € [0,1) is fixed,
and g;(w) is arbitrary. We consider regression responses which are exactly, or only
approximately, linear in the parameters.

Our main results are that a design which is asymptotically (minimaz) optimal for
uncorrelated errors retains its optimality under autocorrelation if the design points
are a random sample, or a random permutation, of points from this distribution.
Our results are then a partial extension of those of Wu (1981), on the robustness of
randomized experimental designs, to the field of regression design.

In the third chapter, titled “Minimax Designs for Approximately Linear Models

with AR(1) Errors”, we obtain designs for linear models under two main departures
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from the classical assumptions: i) the response is taken to be only approzimately lin-
ear, and ii) the errors are not assumed to be independent, but to instead follow a first
order autoregressive process. These designs have the property that they minimize the
maximum Integrated Mean Squared Error of the estimated response, with the maxi-
mum taken over a class of departures from strict linearity, and over all autoregressive
parameters p, |p| < 1, of fixed sign. The same design is optimal for the Best Linear
Unbiased Estimate and for the Ordinary Least Squares Estimate.

In Chapter four, titled “Robust Designs Based on the Infinitesimal Approach”, we
introduce an infinitesimal approach to the construction of robust designs for linear
models. These designs are robust against small departures from the assumed linear
regression response and/or small departures from the usual assumption of uncorre-
lated errors. Subject to satisfying a robustness constraint, they minimize the mean
squared error of the estimator at the ideal model. The robustness constraint is for-
mulated in terms of boundedness of the Gateaux derivative of the mean squared error
of the estimated response, in the direction of a contaminating response function or
autocorrelation structure. These notions are closely related to those of V-robustness
and B-robustness of estimators, as formulated by Hampel et al (1986). Specific ex-
amples are considered. If the aforementioned bounds are sufficiently large, then the
classically optimal designs, which minimize variance alone at the ideal model, meet

our robustness criteria. Otherwise, new designs are obtained.
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7 Application

We consider the yield-density model in agriculture from Seber and Wild (1989,
p360). The model is used for quantifying the relationship between the density of crop
planting and the crop yield. Because of competition between plants for resources, the
yield per plant tends to decrease with increasing density of planting. The agronomist
tends to be interested in yield-density curves for prediction, for finding the density of
planting to maximize yield, and for the comparison of relationships under different
conditions. Let w denote the yield per unit area, z the density of planting, and

y = w/z the average yield per plant if all plants survived. The most commonly used

model is Shinozaki and Kira (1956):
Ely|z] = (a + Bz)™Y, = >0, (7.1)

where a and f are unknown parameters.
Let [a, b] be an interval of interest, over which E[y|z] is approximately linear. The

nonlinear model (7.1) can be linearized by the following two methods.

Method 1. Let y' = y~!, 2’ = #, 8o = @+ 2(a+b) and 6 = (b — a)B, then
(7.1) gives
E[y'|z'] = 0o + 0:2', z' € [-0.5,0.5]. (7.2)

Method 2. Let zo = %ﬁ and h = b—;-g, then (7.1) becomes

Elylz] = (a+ Bzo)™" — Bla+ Bzo)~*(z — zo) + f(z), z € [a,b],
= 0o+ 6:z'+ f(z'), 2z’ €[-0.5,0.5], (7.3)
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where 8o = (a + Bzo)™", 61 = —2Bh(a+ Bzo)~? and =’ = 0.

Since (7.2) is only approximately true, it (i'gnore the 7 on y) can also be written in
the form of (7.3). Now suppose we are going to do an experiment on a piece of land.
The purpose of this experiment is to estimate the relationship between the density
of crop planting and the crop yield for a given crop of interest. In order to do so, we

first divide the piece of land into n plots at the beginning of the planting season, such

as the following.

On each plot i, we plant certain numbers of plants of the crop (this is the density of
crop planting z;). When harvesting the crop, we record the total yield w; for each plot
;. Then y; = w;/z; is the average yield per plant (if all plants survived) corresponding
to the crop density z;. Now based on the n observations (z1,91)s** + (TnyYn), We can
estimate 0y and 6, in (7.3). So the experimental design problem is to choose optimal

z;’s at the beginning to plant the crop such that the estimates for 6y and 6; are
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the most efficient. It is usual that there exist certain correlations between the crop
yields for the neighbouring plots, which are called the spatial correlations. The spatial
correlation between two plots depends on the distance between the two plots. Usually
the closer the two plots are, the stronger the correlation is. In the following examples,

we give robust designs for density = on [a,b] according to various spatial correlations

of the crop yield.

Example 7.1. Suppose we only know that the experimental errors are weakly
stationary. Then, from Theorem 2.5 in Chapter Two, the minimax design for z’ is

attained by randomly sampling design points from £.. From Huber (1975), &4 has

density function

, 1 \*
m($)=-(Tt'2—c)§ 1—;:3 y T E[—0.5,0.5],

where ¢ depends on the ratio fnzg- When ;":—2 — 0, m(z') — 1, which is the uni-
form density function on [—0.5,0.5]. In this case, design points may be chosen as
follows. Let M be the distribution function corresponding to m. Select n points
M "1(1'2"%), i =1,--+,n, whose distribution function tends weakly to M. Then we
take a random permutation of these points. A set of design points selected in such a
manner for n = 16 when -':’,7—2-2 =1, m(z') =5.358(1 — 2%1)*, and 0.284 < 2| < 0.5
is:
(0.390, —0.491, —0.413, —0.390, —0.363, 0.473, —0.473, —0.435,

0.435, —0.325,0.325, 0.363, —0.455, 0.491, 0.455, 0.413).
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Then the design points for z are computed from z; = (b — a)z! + “—‘2*—1’

Example 7.2. Suppose that the experimental errors follow a first order autore-

gressive process with parameter p. Then, from Theorem 3.1 in Chapter Three, the

minimax design &. for z’ has density function
m(z') = c(z? + d)*, '€ [-0.5,0.5],

where ¢ and d depend on the ratio nL:f In the limiting case as n%:; — 0, the design

¢. converges to the uniform distribution on [—0.5,0.5]. When p >0 (presumably the
case), a set of n = 16 design points for z’ is:
(—0.5,0.5, —0.433, 0.433, —0.367, 0.367,-0.3,0.3,

_0.233,0.233, —0.167,0.167, —0.1,0.1, —0.033,0.033)-

A plot of these design points is the following.
!

i 3 5 7 9 11 13 15 16 14 12 10 8 6 4 2 x
T * * * * ¥ * * i * * +* * * > - 1 !
-0.5 0 0.5

These designs points alternate between negative values and positive values.

When p < 0, a set of n = 16 design points for z’ is:

(~0.5,—0.433, —0.367, -0.3,-0.233,-0.167, 0.1,

—0.033,0.033,0.1,0.167,0.233,0.3, 0.367, 0.433,0.5)-

A plot of these design points is the following.
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10 11 12 13 14 15 16 X
] * o - *» L3 * + ’

2 3 4 56 7 8 9
* » * hd * ” * | - l
5 0 0.5

o

The first half of these design points are negative, and the another half are positive.

So in this example the order of design points is very important and only depends on

the sign of p.

Example 7.3. If we assume that the experimental errors follow a first order
moving average process with positive correlation, then the M-robust design (robust
against small departures from both assumed regression response and uncorrelated
errors) can be applied. For some appropriate robustness bounds on the Change-of-
Variance Function and the Change-of-Bias Function, design points should be chosen
according to Proposition 6.1 in Chapter Four. The optimal design ¢” is computed

from Fxample 5.1 in Chapter Four, which, for instance, has density function
go(z') = 122, 2’ € [-0.5,0.5].

Now we select n points Gy*(:=22) whose distribution function tends weakly to Go.

These design points should be arranged in such a way that

n = 16, a set of design points is

(—0.489,0.489, —0.467,0.467, —0.441, 0.441,-0.413,0.413,
—0.380,0.380, —0.339,0.339, —0.286,0.286, —0.198, 0.198).
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If we are only interested in a design robust against autocorrelation of errors, then

the most V-robust design can be used. From Theorem 4.5 in Chapter Four, the most

V-robust des. n is

For n = 16, design points are

(0.092, —0.181, 0.264, —0.338, 0.401, —0.449,0.483, 0.5,

0.5, —0.483,0.449, —0.401,0.338, —0.264, 0.181, —0.092).

8 Conclusion

In this thesis, we have studicd robust designs when errors are correlated. But

there is more work to be done in the future study.

We only focus on the case of straight line regression in Chapter Three. For mul-
tiple regression, minimax designs can also be studied when errors follow a first order
autoregressive process (AR(1)). Of course, one can also consider the construction of
minimax designs for other kinds of error processes such as AR(p) or MA(p).

In Chapter Four, the infinitesimal approach is introduced to derive robust designs.
Special cases are considered there. Further study is needed to construct more designs

robust against autocorrelation of errors.
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Chapter Two

Minimax Regression Designs for
Approximately Linear Models

with Autocorrelated Errors

1 Introduction

In this paper we study optimal designs for regression models under certain de-
partures from the classical assumptions. The usual formulation of the fixed-regressors

linear regression model, which we write as
Yi=2T(x;)0+& i=1,...,m; (1.1)
x; € S CIR%,z(x;) € IR?,0 € IR%;
E[e)=0,C0OVe] = oI (1.2)

employs the following assumptions.

0A version of this chapter has been submitted for publication. Douglas P. Wiens and Julie Zhou,

1994. Journal of Statistical Planning and Inference.
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1) The regression response E[Y|x;] = z7(x;)8 is exactly correct.

II) The errors ¢; are uncorrelated.

The optimal design problem is then to choose values x; of the independent variables

in such a way as to minimize some scalar valued function of the covariance matrix of

the Ordinary Least Squares estimate 6.
Beginning with Box and Draper (1959), numerous attempts have been made to

relax I) above. A possible alternative assumes only that E[Y|x] is approximately

linear:

E[Y|x] = 27(x)60
where 8, minimizes
/S {E[Y]x] - 27 (x)0) dx.

Then with

f(x) := n!A{E[Y|x] - 27 (x)80}
the model (1.1) becomes instead
Y; = 27(x:)80 + n~ 2 f(xi) + €, (1.3)
/S 2(x) f(x)dx = 0. (1.4)

If f(x) above is non-zero then the regression estimates are typically biased. In order

that the bias not dominate the variance, f(x) is constrained by a condition such as

[, Fedx <o’ (15)
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for some constant 7. The optimality problem is then based on the minimization of a
function of the Mean Squared Error matrix. See Huber (1975), Wiens (1992, 1993) for
details and special cases. For other approaches to the weakening of I) see Marcus and
Sacks (1976), Sacks and Ylvisaker (1978), Pesotchinsky (1982), Li and Notz (1982),
Li (1984), Notz (1989) and Liu (1994).

The literature concerning optimal design theory under departures from II) is some-
what more sparse. In a time series context several authors — Sacks and Ylvisaker
(1966, 1968), Bickel and Herzberg (1979), Bickel, Herzberg and Schilling (1981) and
Ylvisaker (1987) - have studied the problem of determining time points ¢; at which
to observe

Y(t) = ; 0;z;(t) + £(t),
under various assumptions on the process {e(t)}. Constantine (1989) obtained designs
for a special case of (1.1) under a lag-one serial correlation model for the errors. See
also Cox (1951) and Kiefer and Wynn (1981, 1983).

Here, we study designs both for (1.1) and for (1.3), with (1.2) replaced by
Ele] = 0,C0V[e] = o*P (1.6)

where P is a positive semi-definite Toeplitz matrix with unit diagonal, i.e. the auto-

correlation matrix of a weakly stationary process. Thus, if

p(s) = Eles€4s}/0”
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then P;; = p(]i — j|). We assume throughout that

3 1o(s)] < oo. (L7)

==

In Section 2 we obtain the asymptotic form of the covariance matrix of \/7—15,
under (1.1) and (1.6). We then consider a broad class of departures from (1.2) under
which

P=(1-a)+aQ (1.8)
for an arbitrary (subject to (1.7)) autocorrelation matrix @ and fixed « € [0, 1). For

any scalar valued function L of covariance matrices, monotonic in that
V, < V, (w.r.t. positive definiteness) => L(V;) < L(V3) (1.9)

we consider the problem of choosing a design to minimize the maximum loss L, with
the maximum evaluated subject to (1.8).

We show that this problem has the following asymptotic solution. Suppose that
the corresponding optimal design problem under (1.2) has an asymptotic solution
described by a particular design measure, i.e. a probability measure {, on the design
space S. Then a minimaz strategy under (1.8) consists of randomly sampling design
points from &. Alternatively, one may take a random permutation of design points
whose empirical distribution function (e.d.f.) tends weakly to &. The latter strat-

egy typically amounts to designing the experiment for uncorrelated errors, and then

randomizing the order of implementation.
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We also show that if £ is a minimax design for (1.3) under (1.2), where the
maximum is evaluated over f satisfying (1.4) and (1.5), then &, retains its optimality
under (1.6) — (1.8) as well, if the design points are randomly sampled from &. or if
they constitute a random permutation whose e.d.f. tends weakly to &..

It has long been argued that the proper use of randomization in experimental
design is a source of robustness against model inadequacies. Wu (1981) gave this
notion a formal treatment and rigorous justification. The present work can be viewed

as a partial extension to the field of regression design.

2 Derivations

We first list several assumptions which are made on the sequence of designs.

Assume
(A1) lim > > z(x;) = 0.
n—o00 ‘=l

For 0 < s < n — 1 define matrices

Bo(s) = = 3 20xi)a” (i)

i

|
»

1
-t

and define B,(s) = BI(—s) for s <0. Assume

(A2) For each s, Bn(s) tends to a limit B(s) asn — oo, and B(0) is positive definite.
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For the approximately linear model, i.e. if p > 0 in (1.5), we define

b, = z(x;) f(xi)

1

~EE

n

and assume
(A3) There exists nlg& b, =: b;.

Note that (A3) imposes no restriction on the exactly linear model (7 = 0), since then

By (1.7), there exists a symmetric spectral density g(w) on [—m, ] satisfying

o) = [ eglw)do = [ cos(aw)g(w)de,

— -

() = @07 3 A = @n) T X plsheos(sw).  (2)

§=—C0 8=~=00

Under a set of assumptions implied by (A1) and (A2), it is proven in Grenander
and Rosenblatt (1957) tbat there exists a regression spectral distribution function
H(w) (w € [~m,7]) - a symmetric pxp matrix whose increments H(wy)—H (w1)(w1 <

w,) are pcsitive semi-definite - satisfying

B(s) = / T e dH (w). (2.2)

-1

Lemma 2.1. Define C, = COV[/r8) and M, = MSE [\/nB)]. Under assumptions
(A1) - (A3) there ezist lim Cn =: C and lim M, =: M. The limit matrices have

representaiions

C=aB )Y, A(s)B(s)]B™(0), (23)

§=—00
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C= zm23-1(0)[ I g(—w)dH(w)]B"(O), (2.4)
M = C + B~(0)b;b7B7}(0). (2.5)
Proof: Let Z be the n x p design matrix with i** row z7(x;). Let n be large enough

that B,(0) = %ZTZ is non-singular. By standard regression theory,

Lty (LaTPz)(>272)"

n n n

C., = o

— B0 T #)Bus)] B0 (2.6)

ls|<(n-1)

Let || - || denote the Euclidean norm. Then
| Ba()ll < tr(Ba(0)) < 2 trB(0) (2.7)

for sufficiently large n. This, the Dominated Convergence Theorem and (1.7) applied
to (2.6) yield (2.3). Now substitute (2.2) into (2.3), use (1.7) and the Dominated
Convergence Theorem to interchange the summation and integration, then apply

(2.1) to obtain (2.4). A simple calculation using (1.4) gives
M, = C, + B;'(0)b,dI B;*(0),
whence (A2) and (A3) yield (2.5). 0

Suppose now that the error process {e;} is the sum of two uncorrelated processes

{e'} and {€"}. where {€/} is white noise with variance (1 - @)o? for a € [0,1), and
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{e""} is weakly stationary with variance ao? and absolutely summable autocorrelation
function p1(s). Then (1.6) and (1.8) hold, with Q;; = pi(}¢ — j|). Furthermore,
1, s=0;

p(s) = (1 - Q)Po(s) + apl(s), where po(s) =
0, s#0.

Denote by ¢i(w) the spectral density corresponding to pi(s), and let go(w) =
(27)~*I(jw| < 7). Then p(s) has spectral density
9(w) = (1 — &)go(w) + agr(w)-

See Bickel and Herzberg (1979) and Samarov (1987) for other instances of this model

for {¢;}. From Lemma 2.1,

C = oH{(1- B (0) +aB70) 3 m(s)BG)|BO) (28

3=—0C0

A consequence of the following lemma is that C' is non-singular for all « € [0,1).

Lemma 2.2. If pi(s) is absolutely summable then the matriz § p1(3)B(3) is

positive semi-definite. o
Proof: In the same manner that (2.2) led to (2.4) we obtain
3 w(@)Bla) =2 [ ai(-)dHE)
so that for any p X 1 vector a,
a7[ £ n(s)B(s)]a=2r [ gi(~w)d(aTH()a) 2 0. :

35



Grenander and Rosenblatt (1957) give conditions under which the LSE 8 is fully

efficient. In particular, these hold if
H(w) = (27) 'wB(0) (2.9)

in which case it is obvious from (2.2) that B(s) = 0 for s # 0. If the design points x;
constitute a random sample from a particular design distribution, then (2.9) holds.
In this case however the effect on cov[ﬁ@] of the sampling variation must be taken
into account. It is not clear that the conclusions of Lemma 2.1 continue to hold.
Lemma 2.3 below shows that the effect of this sampling variation is asymptotically

negligible. For this lemma we assume that design points Xi,...,Xs are randomly
sampled from a distribution function { on S. Define

B(¢) = [ 2(x)2" (x)d(x),

bs(€) = [ 2(x)f(x)dE(x).

Replace assumptions (A1) ~ (A3) by:

(B1) The design points {x;}-; are randomly chosen from £, and are uncorrelated

with {E,‘}?=1.
(B2) E[z(x)] = 0.

(B3) B(¢) is positive definite.
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(B4) The eigenvalues of B,(0) are bounded above, and away from zero, as n — oo.

(B5) f(x) is bounded on S.

Note that by (B1), (B2) and the Strong Law of Large Numbers,

B, (0) — B(¢)(a.s.), (2.10)
B,(s) — 0(a.s.) for s # 0, (2.11)
b, — bs(€)(as.). (2.12)

Then (B3) and (2.10) imply that (B4) holds with probability one as n — oo.

Lemma 2.3. Assume (B1)-(B5). Let C, and M, be as in Lemma 2.1. Then the

conclusions of Lemma 2.1 hold, with B(0) = B(£),by = by(€) and H(w) as in (2.9);

i.e.

Cn — C¢ = a’BY(¢), (2.13)

M, — M ¢ :=C¢+ BT (6)bs(O)b] ()BT (¢). \4-14)

Proof: Define random matrices D, and random vectors d,, by

D, = B0 X pl9)Bals)|B70)

ls]<(n~1)

d. = B;'(0)b,.
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By conditioning on {x;}%, and using the orthogonality asserted in (B1) we obtain
C, = 0*E[D,], M, = C, + E[d.d}). (2.15)

We claim:
i) D, — B7!(¢) (as.),

i) d, — BT (£)bs(£) (as.),
iii) ||Dxll,lldx]] are bounded.

By iii) we may take limits inside the expectation signs in (2.15); applying i) and ii)
will then yield (2.13) and (2.14).
For i), let § > 0 be arbitrary and let N be large enough that ¥, |p(s)| < 8. Denote
s2N

by A1 and Apn the largest and smallest eigenvalues of B,(0). Then for n > IN we

have, using (2.7),

IDn = B;X ) < 2 3, le(s)l 1B71(0)Ba(s) B (O

1<s<N

+ 2 % 1p(s) 1B (0)]I* tr(Ba(0))- (2.16)

N<s<n

The first sum above tends to 0 (a.s.) by (2.10) and (2.11). The second is bounded by

2 (Mn/20) 3 Ip(s)] < K

N<s<n

for some constant K independent of n, by (B4). Letting first n, then N tend to oo

n (2.16) gives i).
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Claim ii) above is an immediate consequence of (2.10) and (2.12), using (B3). For

iii), note that

1D < IBZXO 32 1) < 2 /2om 3o 1o(s)],

3$=--00 =00

which is bounded by (B4). Also
- J N
lldall < 1B O teBa(0)/*(= 35 £2(xi))"*,
1=1
which is bounded as above, using also (B5).

Remark: Lemma 2.3 continues to hold with (B1) replaced by

(B1’) The design points are a random permutation {Xx(;)}%; of {x;}i=;, where the

e.d.f. £, of the {x;} tends weakly to .

To see this, note that the proof of Lemma 2.3 goes through essentially unchanged

under (B1’), with (2.11) replaced by

E.[Bn(s)] =0 fors#0.

This follows from

n—s

E”[Bn(S)] = 7'?" Z Ew[zw(i)zZ(i+a)]
i=1
n—s

n(n —1)

= "B, [a(x)) Eea[s" (x)] -

B,(0),

where the second equality is obtained by first conditioning on (3).
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Now consider the problem of choosing a design measure § to minimize the supre-
mum — over all absolutely summable p;(s) - value of L(C) = L(C; p1,£), where
L is monotonic in the sense of (1.9). Suppose that £ minimizes L(C;po, &) =

L(6®B~(£)), i.e. is an optimal design under (1.2). We then have

Theorem 2.4. An asymptotically minimaz design in the ezactly linear model (1.1)
is attained by randomly sampling design points from &, if this design measure and

the sampling mechanism satisfy (B1) or (B1') and (B2)-(B4).

Proof: For any design measure £, we have
sup L(C; p1,€) > L(C; po,€) = L(@*B7(£)) 2 L(0* B™' (&) = sup L(C; p1, o),
where the last equality follows from the randomization. a

For the approximately linear model (1.3), denote the loss L(M) by L(M; py, f;£)
and consider the problem of minimizing the supremum, over all absolutely summable
p1(s) and all f satisfying (1.4) and (1.5), of L(M; p1, f;€). Suppose that &. minimizes
the supremum, over f, of L(M; po, f;£) = L(M ), i.e. is a minimax design for the

approximately linear model under (1.2).

Theorem 2.5. An asymptotically minimaz design in the approzimately linear model

(1.9) is attained by randomly sampling design points from the design measure (.,
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provided that this design measure and the sampling mechanism satisfy (B1) or (B1')

and (B2)-(B4), and that sup; L(M; po, f;£.) is attained at a bounded f.

The proof of Theorem 2.5 is very similar to that of Theorem 2.4 and so is omitted.
Note that (B5) is required to hold only when sampling from & — only the least
favourable f need be bounded. This is typically satisfied - see the examples in Huber

(1975) and Wiens (1992, 1993).

Remark: Assumptions (A1) and (B2) each preclude fitting a response with an
intercept. For an intercept model however, one may write the design matrix in parti-
tioned form as [1/Z], and the parameter vector as (65,67 )T. Then if this Z satisfies

the above assumptions our optimality results continue to hold for the estimation of

8., since the columns of Z are orthogonal to 1.

3 Examples

Example 1. We consider the approximately linear regression model with
zT(x) = (1,z) and 8¢ = (65,6,)T in (1.3). Without loss of generality, the design

. space S is taken as [—0.5,0.5]. The optimality criterion is minimax MSE of 6;:

min max E(él - 6,)%
frpl
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From Huber (1975), the minimax design for the approximately linear model with

uncorrelated errors has density function

1

mo(z) = e \! T 2

(1—-22—)+, 0<a<l, —-05<zZL05,

where a depends on the ratio %;— When %;— —~ 0, a — 0 and mo(z) — 1. Then from
Theorem 2.5, an asymptotically minimax design for the correlated error model is
attained by randomly sampling design points from mo(z). The design points may be
chosen as follows. Let M, be the distribution function corresponding to mo. Select n
points My (¥=23), i=1,---,n, whose empirical distribution function tends weakly

to M,. Now take a random permutation of these points. A set of design points chosen

in such a manner for n = 16 when a = 0 is:

< 0.218,0.0v ., —0.281, —0.156, —0.406,0.469, —0.094, 0.344,

0.031, —0.344, —0.031, 0.219,0.406, —0.219, 0.156, —0.469 > .

Example 2. We consider the approximately linear regression model with 27 (x)
(1,z1,22) and 6o = (60,0,)T in (1.3). The design space S is the sphere of unit area:
{ x| ||x]] < r =1/+/r }. The loss function is the determinant of the MSE matrix of

6,, so that the optimality criterion is

mjn max det (E[(61 - 61)(6: - 8:)7]).

fvpl
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From Wiens (1992), the minimax design for uncorrelated errors is the spherically

symmetric design £. in which [|x]|| has density function

b\t
gdu):?n‘au(l—m) , a>0, 0<b<l, 0<u<lr,

where a and b depend on the ratio f}; By spherical symmetry, II_J’EI_I is uniformly

distributed over the boundary of the unit circle, independently of ||x||. Then from
Theorem 2.5, an asymptotically minimax design for the correlated error model is
attained by randomly sampling design points from £.. As in Example 1 we take
a random permutation of design points whose empirical distribution function tends
weakly to £,. This may be done as follows.

Define a probability distribution by

po=1-

2
[\/:] , piz[__\’"], i=1,2,---,[vn)
Define

j=0

where Gy is the distribution function corresponding to the optimal density function
go. Divide the design space S = { x| ||x|| < r } into [\/n] +1 annuli Ao, 4y, - - -, Arm)
with

Ai = { X l ”X” € (ai-lvaf] }a
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Figure 1: Design points for Example 2. Order of implementation is alphabetical.

X
1

04

0.2

06

06 0.4 02 00 02 04 06

x1
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so that
Pg,(x € A;) = pi.

In each A; we select np; points equally spaced over [|x|| = 2:oi4% - We then have
n — [/7)? points in Ao and [{/n] points in each A; fori =1,---, [v/n]. It is easy to
verify that the empirical distribution of the design points tends weakly to &..

Figure 1 gives a set of random design points for n = 16 when %; = .01, go(u) =
7.8477(u — 0.0159/u)*, 0.126 < u < 0.564.
Remark: The implementation of the design of Example 2 requires that the model
be transformed in such a way that a spherical design space becomes appropriate. In
practice, a transformation to a square design space may be less problematical. For ro-
bust minimax designs in the approximately linear model with z7(x) = (1, 1, 22, 2122)

and S = [-0.5,0.5] x [—0.5,0.5], see Wiens(1990).
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Chapter Three

Minimax Designs for Approximately

Linear Models with AR(1) Errors

1 Introduction

In this paper we study optimal - in the minimax sense - designs for linear models
under two main departures from the classical assumptions: i) the response is taken to
be only approzimately linear, and ii) the errors are not assumed to be independent,
but to instead follow a first order autoregressive (AR(1)) process.

In Wiens and Zhou (1994), minimax designs were studied for the approximately
linear model with errors obeying a very general model of dependence. A main result
of that paper is that a design distribution which is asymptotically (minimax) optir. al
for uncorrelated errors retains its optimality under autocorrelation if the design points
are randomly sampled from this distribution.

In the aforementioned pape. the error process was allowed to vary over a neigh-

bourhood of the uncorrelated error process and was otherwise assumed only to be

OA version of this chapter has been submitted for publication. Douglas P. Wiens and Julie Zhou,

1995. Biometrika.
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weakly stationary. If additional information is available, one can improve on the

designs described above.

We consider the following approximately linear model with AR(1) errors.

Yi = 00+x?01 +n 2 f(x) 4+ €&, i=1,...,n,
x; € 8 C R¥, /sdx=1, 6o € R, 0, € R*; (1.1)
E[] =0, COV]e|=0*Pa, Puli,j)=p"", —1<p<l; (1.2)

feF={f1 [Foixsr, [ fodx=0, [x/)x=0}. (13)

The purpose of this paper is to derive minimax designs for the model described by
(1.1), (1.2) and (1.3), with loss taken to be Integrated Mean Squared Error. This is
in analogy to the classical Q-optimality criterion.

For exactly linear models - i.e. f = 0 in (1.1) - design problems for (1.2) (or
other models of dependence) have been studied Ly Bischoft (1992,1993), Berenblut
and Webb (1974), Constantine (1989), Jenkins and Chanmugam (1962), Kiefer and
Wynn (1981, 1984) and Pukelsheim (1993).

The class F of disturbance functions was used in Huber (1975), Wiens (1991,
1992, 1993, 1994), and Wiens and Zhou (1994). The rationale for using this model
of departures from linearity is discussed in Wiens (1992). The normalization of the
volume of the design space § in (1.1), and the La-orthogonality of the regressors

to the disturbance f in (1.3), may be assumel without any loss of generality. The
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orthogonality then ensures that the regression parameters are well-defined. The n=1/2

rate of decrease of the effect of f(x) on the response is necessary in order that errors
due to variance and to bias remain of the same order of magnitude.

For (1.1) and (1.3) with uncorrelated errors, robust (minimax) designs were stud-
ied by Huber (1975), and Wiens (1991, 1992, 1993, 1994) using various estimators
and various loss functions. Other robust designs for approximately linear models
with uncorrelated errors can be found in Box and Draper (1959), Li and Notz (1982),

Pesotchinsky (1982) and Liu and Wiens (1994).

Let @ be an estimate of & = (65,87)7. Then the normalized Integrated Mean

Squared Error for the response Efy|x] = 8o + xT60; + n~ /2 f(x) is

IMSE, = n /S E[(6o + 8] x — Ely|x])}dx
- / (1, xTYM SEn(1,xT)Tdx + /S FH(x)dx

= trace(MSE,- A)+ /5 FA(x)dx, (1.4)

where
MSE, = E[(v/n8 — /n8)(v/nb — v/n8)"] (1.5)

is the Mean Squared Error matrix and A = [g(1 x7)T(1 xT)dx.

We shall focus on the case k = 1 (straight line regression). The estimate 8 is taken
to be either the Best Linear Unbiased Estimate (BLUE) or the Ordinary Least Squares

51



Estimate (OLSE). In the former case, both best and unbiased refer only to properties
of the estimator in an exactly linear rnodel with a correctly specified autocorrelation
process. The experimente:r intends to fit a straight line, and anticipates AR(1) errors.
The autoregression parameter p may be estimated from the data through, e.g. the
Cochran-Orcutt procedure. In the latter case, p is not estimated. In either case,
should the assumption of exact linearity not be realized, the experimenter desires a
design that will afford a measure of protection against the consequent increases in
IMSE. We note that in order to implement the designs constructed here, only the
sign of p need be known.

As limiting cases we obtain ‘most bias-robust’ designs as %; — 0. Let {u;: 1=
1...n} be points equally spaced over S and increasing in value. If p < 0, then this
design has z; = u;, i.e. the experiment is carried out at equispaced, increasing loca-
tions. If p > 0, the design instead has < z1,T2,T3,Tqy-.- >=< Uy, Un, U2, Un—1,+ -+ >
so that the design points alternate in sign (relative to the centre of §) but decrease
(weakly) in absolute magnitude. If instead %;— — oo then the designs of Jenkins
and Chanmugam (1962) and Constantine (1989), with all mass at the endpoints of
the design interval and with the number of sign changes minimized or maximized as
above, are recovered.

In Section 2 L-elow, we obtain the asymptotic values of IM SE, for the two types

of estimates. In Section 3, we construct minimax designs and give strategies to
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implement these designs.

2 Asymptotics
We use the notation

x=(z1,--,22)7, 1o=(1,...,1)T, Z=(1n,%),

y= (yla--- ayn)Ta f= (f(xl)s "’f(xﬂ))T'

We first consider the BLUE. Assume that p is consistently estimated so that, asymp-

totically,
bpiw = (27P7'2) 2T Yy,
where
( 1 —p 0 0 0 \
—p 1+p* —p 0 0
i 1 0 —p 14p? 0 0
n = 1—[72
0 0 0 14+ p2 —p
\ 0 0 0 —p 1 }

Then from (1.5),

T p-1 -1 T p-1 Tp-1p\T T p-1 -1
MSE, = (Z P; Z) (Z P; f) (Z P f) (Z P; Z)

n n n n

+o? (-——————ZTP"—IZ) B .

n
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Without loss of generality, the design space S is taken as [-0.5,0.5]. Then
1 0

A=/S(1 2)T(1 2)dz = L (2.1)

12

We denote by ¢, the empirical distribution function of the paired design points

(zi,Tip1), ¢ =1,...,n— 1, 1e.

1 n—1
€n(v1,v2) = n—1 Z Iz, cvy mig1<2)s V1> V2 € S.

i=1

The following regularity assumptions are used for the asymptotics.
Al: limpooo Yoe zif/n = 0;
A2: ¢, converges weakly to a design measure { on SxS;
A3: |f(z)| is bounded on S.

A4: ﬁfﬂz converges to a limit Q(, p) as n — oo.

Define
bif6p) = (L=p) [ f(=)dE(e0),
bf6p) = [ [(1+p)2f(z) ~ pf(e)o = paf(v)lde(,v),
e = [ 101+~ 2pmolde(z,0),

b(fvé‘vp) = (bl(fvévp)va(f’f,p))T’
(1-p? O

0 r(&p)

B(¢,p) =

o4



Straightforward calculations using assumption Al give

ZTP7'z 1

n 1~

528 p) +o(1),

so that A2 and the boundedness of |(1 + p?)z? — 2pzv| on S give

. ZTP7'Z 1
lim = = s B(&, p)- (2.2)

n—oo n 1 p

In a completely analogous manner, using A3, we obtain

. ZTP7f
lim =

n—oo n 1

U6 p). (2.3

We define IMSE(f,£,p) = lim,—co IMSE, and MSE(f,£,p) = lim;_.oo MSE,.

Combining (2.2) and (2.3), we have
MSE(f,&,p) = B (€, p)b(f,&,p)bT (f,€,p)B7 (£, p) + 0*(1 = p*) BT (£, p)-

Then from (1.4) and (2.1) we obtain
/

1 0
IMSEBLU(f1§’p) = trace LMSE(f’E,p) +[sf2(X)dX
0 5
— (bl(Jf7€7p))2 + (bZ(f7£’p))2
- (1=-p) 12r2(€, p)
1+p 1-p°
+o? ( =, + T2r( f,p)) + /s FA(x)dx. (2.4)

Similarly, using A4,

IMSEOLS(f)é.a p) = (bl(f1€’ 0))2 + (t;.22(7&(€£”0())))

2 (1+p , Qu(ép) 2
+o (1 te, Guls 0)) + [P (29)
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3 Minimax designs

We shall redefine the loss as
IMSE'(f,€,p) = IMSE(f,€,p) - azi—f—,’; - [ Pe)dx. (3.1)

The subtraction of the first term - the variance of the intercept estimate, which
cannot be controlled by the design - ensures that the maximum loss is finite in the
case p > 0. In the case p < 0 this step 1s without loss of generality, since in this case
both IM SE'(f,€, ), when evaluated at the optimal design, and 0‘2%{-% are maximized
at p = 0. The subtraction of the second term is completely without loss of generality,
since maz jerIMSE(f,&, p) is always attained at an f for which f5 f3(x)dx = 7*.

A minimax design is then a distribution function £* which minimizes the maxi-
mum, over f € F and all |p| < 1 of fixed sign, of IMSE'(f,£,p). Denote by M; and

M, the marginal distributions of ¢:
Ml(z:l) = 6(221,0.5), Mz(mg) = 5(05,1‘2)

Note that

1
n—1

€n(z,0.5) — £a(0.5,2) = (Iny<z — Izn<s)

— Qasn — oo.

It follows that Mi(z) = M,(z) at any continuity point of M(z) and M;(z), = €

[-0.5,0.5].
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We now restrict to the class C(¢) of design measures which have absolutely contin-
uous marginal distributions. This condition of absolute continuity of the marginals is
required in order that sup ;.- IMSE'(f,, p) be finite - see Wiens (1992). From the
above observation, M;(z) = M;(z) for all z € [—0.5,0.5]. Let m(z) be the common

density function.

Before giving the solutions to the problems minge - (ymaxy,, IMSE'(f,€, p), we

define

an) = /;x2m(z)d:z:,

0,2

L(m) = nz/;(m(z)—1)2d1'+12ro(m).

Let mo(z) be a density function on S which minimizes £.(m):
L.(m) 2 L.(mo) for all densities m(z) on S. (3.2)

We state r main result in the following theorem, whose proof is given in the Ap-

pendix.

Theorem 3.1 Fiz the sign of p. Suppose that £* has marginal density mo(z) satis-
fying (3.2). If as well, for any f € F,
[st zvdf*(z,v) = -—sign(p) J{; z?my(z)dz, (3.3)
[ ef0)de @) = [ i) (@)
= —sign(p) [ af(@)mo(z)de, (34)
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then £* is a minimaz design for the BLUE. If
Q22(€°, p) < Q22(€7,0) for all p: of the given sign, (3.5)

then £* is @ minimaz design for the OLSE.

The density mo defined by (3.2) was obtained by Huber ( 1975) and is of the form
mo(z) = a(z?* + b)*, a>0, z¢€[-0.5,0.5],

where a and b are chosen to satisfy the conditions that mg be a density function and
minimize £.. They depend on the parameters n* and o only through the ratio f}—:—
Table 1 gives some representative values. Note that mo(z) = 0 on [—v/=b,/=b] if
b < 0.

We now give strategies by which design points may be chosen to satisfy (3.3)-

(3.5). For this, let Mo(z) be the distribution function corresponding to mo(z) and

define

t—0.5
n

ui = Mg (

), t=1,...,m,

with usy1 = 0 if n is odd. We first discuss the case p < 0, for which (3.3) and (3.4)

require
1 n-1
lim Do riTip = / r*mg(z)dz, (3.6)
n—oop —1 i=1 §
1 n—-1 1 n—1
Jim —— > zif(ziv) = lim —— ; zip1f(zi)

=1

= [ zf(@)mo(a)ds (3.7)
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Table 1: Constants a and b for minimax marginal density mo(z)

Variance Ratio :—: a b
0 0 o)
.0001 .0006 | 1666
.001 .0060 | 166.6
.01 .0595 | 16.72
A1 .5580 | 1.709
1 3.810 | .1780
10 15.55 | -.0240
100 90.23 | -.1487
1000 737.0 | -.2136
10000 6886 | -.2379
oo co -.25
and (3.5) requires
lim ! Z z;:z:]-pli'-;' <0.
BN
Define design points by
Ti=u,t=1,...,n

Then M, is the marginal design distribution, asymptotically. To verify (3.6) and
(3.7), note that
zip =z +0(n7Y)
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for all but at most two values of 7, corresponding to the interval on which My(z) = .5

if 5 < 0. Thus

1 n-—-1 1 n-1
Z TiTiy = Z z} 4+ 0(n™")
- n—1

n"‘].'-_ i=1

— /szmo(:r)d:c, as n — oo.

This gives (3.6), the verification of (3.7) is similar. For (3.8) we take n = 2m and find

that, upon re-arranging terms, the left-hand side becomes limp—oo(L!, — L), where

9 .
Ll =— Z u;ujp2m+1'1—>0, as n — 00,

™M 1<i<i<m

and

> uup”
<i<igm
1

—

k
p ek

1

3l 3w
3

k

with % = Z}’;k wurs;. The sequence {ck} is positive and decreasing, and (3.8)
fLLuOWS.

If 5’"; = 0 the optimal density is mo(z) = 1, the continuous uniform design. The
design points chesen as above are then equally spaced and (weakly) iucreasing. As
%;— — 00, the optimal design tends to P(X = 0.5) = PIX = —~0.5) = 0.5 and the

above prescription calls for the first half of the design points to be placed at —0.5,
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the last half at 0.5 if n is even. If n is odd there is as well a design point Topr = 0.
We remark that both here anu below one may change the signs of all of the design

points without affecting the optimality.

Now consider the case p > 0. In a similar manner to that above we ‘ind that
(3.3)-(3.5) are satisfied asymptotically by the design with

uit1,if 7 is odd,
2
I =
unH__%,lf 1 is even.

The design points then alternate in sign and decrease in magnitude. If Zz — 0 the u;
are equallv spaced. In the limit as ‘;—; — o0, the design tends to
(—0.5,0.5,—0.5,0.5,...,—0.5,0.5) for even n, with as well z, = 9 wheu n is odd.

In the case of even n, the limiting designs as ‘:’—: — oo were also given by Jenkins
and Chanmugam (1962). Constantine (1989) gave these designs as well for the BLUE

and MA(1) errors. For the OLSE it is easy to see that Theorem 3.1 also applies to,

and yields the optimality of, ¢ for MA(1) errors.

4 Appendix: Proof of Theorem 3.1
First consider the BLUE. By (3.3) and (3.4) we have

b(f,€00) = (1= p)? [ fla)mo(z)de,
blf,€,0) = (1+ 16l)? [ 2f(@)mo(=)ds,
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r(€",p) = (1 + |l)*ro(ma),

so that by (2.4) and (3.1)

(Js 2f(z)mo(2)az)? a’(1—12l)
12rg(mo) 12(1 + |pl)ro(mo)

IMSEy,(£,6.0) = | feymo(a)dz)” +

Huber {88!, pr. 247-249) showed that

raasger (( ] floma(ods) + 4 gg;z;ggdx)z) = 1 [(mo(a) ~ Dz (41)

so that
max IMSEpLy(/,€", p) = max IMSESy,y(f,€,0) = L.(mo). (4.2)
For any other £ € C(£), put
fe(z) = n{ [ (m(e) — 1dz} ¥ (m(z) - 1).

Note that [s fe(z)dz = 0, [szfe(z)dz = 0, and [s f{(z)dz = n?, so that fe(z) € F

Then
maz; JMSEg y(f. & p) = IMSEpiy(fe.é,0)

2 (bfe &0 + 55y

= L.(m),
and the result follows by (4.2) and (3.2).
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For the OLSE, note that Q22(¢,0) = ro(m) for £ € C(£), so that

mam/-PIMSE(’J‘,S(f’ £ap) 2 IMSE,OLS(fEa€7 0)

2 PR
> 2/ _1\2 4 Q22'(_-1:_‘_-'_/
> 7 [(mla) - e+ T2

= L.(m). (4.3)
By (4.1) and (3.5) we have
maz s, IMSEqs(f,€%,p) = Lu(mo)

and the result follows by (4.3) and (3.2). o.
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Chapter Four

Robust Designs Based on the

Infinitesimal Approach

1 Introduction

In this paper we introduce an infinitesimal approach to the construction of
robust designs for linear models. These designs are robust against small departures
from the assumed linear regression response and/or small departures from the usual
assumption of uncorrelated errors. Sutiect to satisfying a robustness constraint, they
minimize the mean squared error of th~ estimator at the ideal model.

The infinitesimal approach and the minimax approach ure two basic approaches
in robust estimation theory. The infinitesimal spproach was first introduced by F.
Hampel (see Hampel (1574)), and the minimax approach was proposed by P. Huber
(see Huber (1964)). In robust design theory, the minimax approach has been adopted
by. e.g., Huber (1975), Kiefer and Wynn (1984), Li and Notz (1982), Liu (1994), Pe-

sotchinsky (1982), Tang (1993), Wiens (1991, 1992), Wiens and Zhou (1994, 1995).

0A version of this chapter has been submitted for publication. Douglas P. Wiens and Julie Zhou,

1995. Journal of the Ar.-rican Statistical Asseciation.
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It is perhaps surprising that the infinitesimal approach has not been previously in-
vestigated with regard to robust design theory.

The infinitesimal robustness of an estimator can be investigated by means of the
Influence Function (IF) of the estimator and by the Change-of-Variance Function
(CVF) - see Hampel et al (1986) and more recently Hossjer (1991). While the IF
provides an intuitive measure of the local robustness of the value of an estimator, the
CVF quantifies the local stability of the variance.

The bias and the variance of the resulting estimates are two important measures in
the process of choosing an optimal design. If the true nature of the model is unknown,
it is important not only that the bias and variance be sn:all at the ideal model, but that
they remain small in a neighbourhood of this model. To this end, we introduce the
Change-of-Bias Function (CBF) and the Change-of-Variance Function (CVF) as basic
components of an infinitesimal approach to robust design theory. The CBF (resp.,
CVF) is the Gateaux derivative, evaluated at the ideal model, of the bias (resp.,
variance) functional of the estimator in the direction of a contaminating response
function (resp., autocorrelation structure). Based on the CBF and the CVF, various
optimality criteria are proposed. Correspondingly opt:iial designs are obtained.

An outline of the paper is as follows. In Section 2, the CBF and the CVF are
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defined for approximately linear models with correlated errors:

3\

yi =27 (x)0 + f(xi) + &, i=1,...,m;

x; €S C RY, z(x;) € R?, 8 € RP; > (1.1)

E[e) =0, COV[e]= o?P. J
In (1.1), f(x) is assumed to be constrained in a manner ensuring that the regression
parameters are well-defined - see Section 5 below.

Roughly speaking, the CBF measures the rate at which the bias of the regression
estimates changes as f(x) departs from the zero function. Similarly the CVE measures
the rate of change in the variance as the autocorrelation matrix P departs from the
identity matrix. The Change-of-Bias Sensitivity (CBS) is defined as an upper bound
for the CBF when the disturbance function f varies over a neighbourhood. Similarly
the Change-of-Variance Sensitivity (CVS) is defined as an upper bound for the CVF
when P varies.

In Section 3, three classes of optimality criteria for robust designs are given. We
define a V-robust design as one which minimizes a scalar valued function of the mean
squared error matrix, subject to the constraint that the CVS not exceed a pre-assigned
bound, and a most V-robust design as a V-robust design for which the minimum upper
bound is attained. A V-robust design is robust against increases in the variance caused

by autocorrelated errors. In an analogous manner, based on the CBF we define B-

robust and most B-robust designs. A B-robust design is robust against biases caused
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by departures from the assumed regression response. Finally, M-robust designs, for
which bounds on both the CBS and CV35 are given, are proposed. These designs are
robust against both of the above types of model violations.

In Sections 4 to 6, V-, B- and M- robust designs are obtained. Explicit V-robust
designs for two particular error processes are constructed in Section 4. In Section 5
we note that B-robust designs coincide with the Bounded Bias designs of Liu (1994)
and Liu and Wiens (1994). Examples with respect to two different neighbourhood
structures for f are given. The marginals of the M-robust design distributions studied
in Section 6 coincide with those for B-rchust designs. However, the order in which the

design points are allocated determines the robustness against autocorrelated errors.

2 The CVF and CBF for designs

Let £ be the design measure, i.e. the empirical distribution function of the

design points, and define

27(x1) (o) [ e

27 (x2) Y2 f(x2)

27 (xn) \ ¥n \ f(xn) )

B¢(m) = 1 > z(x;)z7 (Xi4m), for 0<m<n—1,

n =1
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B¢(m) = B} (-m), for m <0,

n

bse = % > a(x:) f(xi)-

i=1
In the hopes that f = 0 and P = I in (1.1), the experimenter will compute
the Ordinary Least Squares Estimator 6.5 = (ZTZ)'ZTy. Should these hopes not

be realized, a design is desired that will afford a measure of protection against the

consequent increases in bias and/or variance.

As a measure of the accuracy of 0 s we shall use a sczlar-valued function of the

mean squared error matrix

MSE(/nbys, f,6,P) = E[(vnBLs — Vn8)(v/nbrs — /nb))

ZTPZ

- B;1(0) + nB;'(0)bs¢b7 B (0). (2.1)

= o¢’B;(0)

The first term in (2.1) is the variance-covariance matrix, and the second arises from
the bias. The MSE depends on the autocorrelation matrix P only through the
variance-covariance matrix, and on the disturbance function f only through the bias.

For a convex class F of disturbance functions and a convex class P of autocorre-

lation matrices, define

fs = (1—8)f9+3f1, fOEOa flej:-v

Pg = (1 —t)P0+tP], Po =I, P1 € P,

where 0 < s5,t £ 1.
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2.1 Change-of-Variance Function

Let £ be a non-negative, twice differentiable function of p.s.d. matrices, in-

creasing with respect to the usual ordering by positive definiteness.

Definition 2.1 The Change-of-Variance Function CVF(£,1,P1) for a design & at I

in the direction P, is

a £(M9E(\/Hé1457 an 6’ Pi))|t=0'

CVF(¢,L,Py) = e

The CVF measures the rate at which the MSE changes under infinitesimal l=par-
tures from the ideal model, in the direction of a particular autocorrelation structure.
We take £ = determinant througho.t this paper, and fin «

ng‘(O)). (2.2)

CVF(¢,1,P) = o%det(B;(0)) - trace(

Gf particular interest is the supremum of CVF, as P varies.

Definition 2.2 Let P be a convez class of autocorrelation matrices. The Change-of-

Variance Sensitivity CV S(€,1) of € over P is

B CVF(¢,1L,P)
CVSED = 0 MSE(Jrbzs, for &)

The normalizing matrix in the denominator is

MSE(v/nbLs, fo€,1) = a’Bg(0), (2:3)
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the covariance matrix of \/r_zéLs under uncorrelated errors. From this and (2.2), we

find that for L = determinant,

TP —
CVS(¢]I) = ls)tég {trace (—Z—(I—);—QZ—B?(O))} . (2.4)

2.2 Change-of-Bias Function

Definition 2.3 The Change-of-Bias Function CBF (€, f1) of £ in the direction f, is

2 .
CBF(E, i) = 5 o3 COMSE(VBrs, f1, & D)o

The use of the second derivative is motivatec by the observation that
MSE(\/néLs,sfl,ﬁ,I) is a linear function of s?. The CBF measures changes in MSE
due to increased bias, as one moves away from the ideal model in the direction of a

particular disturbance function. For £ = determinant,
CBF(¢, f) = 0®det(B;*(0)) - (—:%b}:{BE“(O)b fe

Note that the CBF is always positive, whereas the CVF may be negative. This

reflects the feeling that one generally wants a design which decreases the variance of

the estimator.

If f varies over a class F, we define the Change-of-Bias Sensitivity as the supre-

mum of CBF.
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Definition 2.4 Let F be a convez class of disturbance functions. The [‘hange-of-

Bias Sensitivity CBS(€) of € over F is

B CBF(¢, f)
CBS(§7 fo) - Sflel.};_ C(MSE(\/-ﬁéLS’fmévI))

For L = determinant,

CBS(¢, o) = sup {2 b7 7 0)bre ) - (25)

3 Optimality criteria

3.1 V-robustness

For given o, we say that a design ¢ is V-robust if it minimizes (2.3) subject to

the constraint

CVS(EI) < a. (3.1)

If o is the infimum of the CVS over a given class of designs, then the V-robust design

is called most V-robust in this class. In Section 4 we construct V-robust and most

V-robust designs for two classes P.
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3.2 B-robustness

For given 3, we say that a design £ is B-robust if it minimizes (2.3) subject to

the constraint

CBS(£, fo) < B. (3-2)

If B is the infimum of the CBS over a given class of designs, then the B-robust design is
called most B-robust in this class. In Section 5 we note that when £ = determinant,

B-robust designs coincide with the Bounded Bias designs of Liu (1994) and Liu and

Wiens (1994). Examples are given for two classes F.

3.3 M-robustness

We say that a design is M-robust if it minimizes (2.3) subject to both (3.1) and
(3.2), and most M-robust if it is both most V-robust and most B-robust. We consider

M-robust designs in Scction 6. It is not known (to us) il most M-robust designs exist.

4 V-robust designs

Let = be a given class of designs and let p be ihe autocorrelation function

corresponding to P € P. Upou substituting

P(Z, )=p(|2—]|), 2?]=171n
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into (2.4) and using (2.3), the V-robust design problem for {Z,P} becomes

max [Be(0)], subject to

CVS(EX) = suppep{ Y. p(s) trace(B¢(s)B;*(0))} < c. (4.1)

0<|s|<n-1

In this section we obtain V-robust aud most V-robust . signs for the classes

Py ={P| p(s) =0 for |s! > 2 and o < p(1) < 1 with ¢o > 0}

P, ={P| p(s) =0 for |s]| >2and — 1< p(1) < —c; with ;> vy.

These classes correspond to MA(1) processes wit'., esp  tively, positive and negative
lag-1 correiations bounded away from 0. The mosi. . -robust designs presented her
do not depend on the values of ¢ and ¢;. We coansider str  ht line regression, i.e.
g = 1,p =2 and z(z) = /1,z)7 in (1.1). Denote by x the vector (21,...,2,)7 of
design points. Without !~z of generality we take & = [—0.5,0.5] as design space. We
restrict to the class = - f designs with Y., z; = 0.

For this model we find that

n P
=1 T§

B:(0) = diag (1——-——)

n

2n —1) 250 x;x;+1)

2 n

diag(Be(1) + B(~1)) = |

\

so that

CVS(&,1) = sup2p(1) (_n — 1 + F(")) )

p(1) - R
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where

n-1_ ..
Flx) = Z=ffin

i=1 Ti

xTMx
xTx ’

and M % the  x n tridiggonal matrix with (7, 7)* element m;; = 3I{|i — j| = 1).

%or P1 the CV5 is thep
[

01'151(5,1) = {

(

whiie for Py iy 15

—2a (L + F(x)), if F(x)> -2,

n

O‘Sz(EvI) =
—2(3zL 4 F(x)), ij Fix) < =%

Propositioyg 4.1 and 4.2 below show that if a is cuficiently large, then (4.1)

imp0ses 1O reggriction.
Pfoposit;on 4.1 Letn pe even.
(i) Ifa20aq V-robust design for P is
X =< 0.5,-0.5,0.5,-0.5,...,0.5,—~0.5 >

with Cvsl(fal) = 0. This design minimizes CVSy(€,1) among thosc designs in =

whith MaTimy, 1B¢(0)] = L?

(ii) Ifa=z “%ﬁ‘ﬁz a Virobust design for P, is

x =< 0.5,...,0_.2,:‘0.5,...,——‘ >

~

—

nf2 n72
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with UV i5q(€,1) = —dei 22, This design ainimizes CV S3(€,1) among those designs

in = which mazimize |B¢(0)] = %

Proof: Each design maximizes x7x unconditionally, and has the stated value of
CVS(€,1). That each design minimizes CV S(€,I) among designs in = which maxi-

mize xTx is obvious. O

Remark: i1 (z;,...,%,) is a V-robust design, then —(zy,...,z,) is also V-robust.

The designs in Propositi- .. 4.° . given in Jenkins and Chanmugam (1962)
and Constintire (1989). Jenkins and Chanmugam (1962} minimize car(fLs) =
XTX) ' XTPX(XTX)™! cver ~ subset of the set of all possil-le designs carried out
at two levels only. The subset consists of all discrete ‘square wave’ designs ‘n which a
run of m experiments at one level is followed by m experiments at the other and so on.
Then the design problem hecomes that of choosing the block size m. In “onstintine
(1989), the goal is to maximize - . \COV(BLuE))?) = trace(XTP~1X) over Z.

A ear approximation to XTP~1X is used to derive the optimal design.

Proposition 4.2 Let n be odd.

(i) If a > ?(7;2——1) a V-robust design for Py is
x =< 0.5,-0.5,0.5,-0.5,...,0.5,-0.5,0 >

with CV51(€,1) = Tff:l_) This design minimizes CV S1(,1) among those designs in

= which mazimize |B¢(0)| = X—ZZ
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(i) If o > —9¢, 22=8ntl 4 Virobust design for P; is

n{n—1}

x =< 0.5,....0.5,0,-0.5,...,-0.5 >

e ~——
(o2l (n—-1}/2
w.th CVSy(E,X) = —Ze 2—’:—(;5_—’;;:’—. This design minimizes CV S2(€,I) among those
xTa

designs in Z which mazimize |Bg(0)] = *>.

Proof: First we show that each design maximizes x7x in Z. This seemingly obvious
result does not appear to be in the literature.

Let x* be any one of the V-robust designs and x° be any other design in =. By
replacing x° by —x° and permuting th ' clements if necessary we may assume that
2?>0for1 <i<m,z) <0form+]1 < i < n for some m > . Since 22 < .5

and ¥ z¢ = G we have

n n 1
Y < 3o s5lell
=1 =1
-3 (E- 2 )
i=1 t=m+1
= - ) ¥ < (n —m) i
i=m+1 2
n—1 LA
< 2oy
i=1

It is easy to check that CV.S(€,1) is as stated for each design, and is a minimum

among designs which maximize xTx. a

In order to gei the most V-robust designs, it is necessary to evaiuate the rninimum

values of CV$,(€,1I) and CV Sy(¢,X) over Z. This requires an investigation of the
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extrema of F'(x) over the hyperplane x71, = 0. These extrerna turn out to correspond

to characteristic roots of M.

Lemma 4.3 For even n, the matriz M has characteristic roots
A>..>22>0> Az >0 > A,

and corresponding orthonormal chare.teristic vectors x;, given by

j=17""n; (4.2)

A; = cos 7r’
n+1

— .
2 . kyr

. s k—- P . . ]
(x;)x \,/n sty k= l,...,n (4.3)

We have
T
mz'n,u_li(n:]}—/bE = x;ern = A, (4.4)
XX
™ . .
ma:z:xux T X = XZMXg = A,. (45)
xTx
Proof: The verification of (4.2) and (4.3) is straightforward. We then calculate
T 2 _'7'7r 7
x; 1= cot - 1(j odd). (4.6)

n+l 2(n+1)
Then (4.4) is immediate, since x,, is orthogonal to 1 and is the unconditional mini-

mizer. For (4.5), let x 1 1. Define
Uy = xJTx, i=1.3....,n=1; = Zuf (=0:if n=2);
i23

v =x%, j=24,...,n wj=x,1, j=1,3,...,n—1

79



By (4.6) we have Y w? = n and Y u;w; = 0 so that, applying the Cauchy-Schwarz

inequality,

2
Uy

_ (=Zpawwi)” o (_n_ 3 1) .

- 2 2
wy wy

Then

n

(4 = Ao)(x] %)’

j=1

= (/\1 - /\g)ug + Z(/\J - )\2)'11? + Z(/\J - AQ)UJ?.

i23 322

xT(M — A I)x

This is zeroif n = 2;if n >4 it is

S (/\1 - /\2)C2 (% - 1) + CQ(/\;; - /\2),

1

which is < 0 as long as

2 n(/\l - /\2‘}
" > —_——l,
R W
This is easily cthecked, so that
xT(M - AI)x <0 for all x 1 1. )

Lemma 4.4 For odd n, the matriz M has characteristic roots
M '>.,.>)\1;_1 >)\g¥ '~‘0>/\32L3 >...> An,

and rorresponding orthonormal chavacteristic vectors x;, given by (4.2) and (4.8).

We have
T
. x'Mx T
min. 1 —— = X, 1 MXn_1 = An-1,
T
x* Mx
MaTxil Tx = ngx2=/\2.
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The proof is similar to that of Lemma 4.3 and is omitted.

Theorem 4.5 With notation as above, we have

2co - (cosnl_i_’% "—;l) , n even,

2¢g - (cosi-’:—l}lll’i + -"—;fl) , n odd.

The most V-robust desigr. for P; - unique up io sign changes - is given by

sin Lt

( , i
(—1)‘+1 n("!.i:l) '0-'3’ 1=1,...,n, n even,

Siﬂ—;“;)—-

(—1)i+1——"in-';_’ 0.5, i=1,...,n, n odc.

For T, we hav:z

. y AN n—1
min CV &2 (¢, 1) = —2¢;- (cos-n T+ )

The most V-robust design for P, - unique up to sign changes - is given by

( )
ax'n-'%’-""-}~ - .
——i@- S5, t=1,...,n, n even,
sin

n+l

.20
S!H:l——l' 05 .
—at_ . (. i=1,...,n, n odd.
n b b b k)

Proof: For P, we are to maximize x7x, subject to F(x) being a minimum. But

by Lemmas 4.3 an¢ 4.4 any minimizer of F(x) is 1 scalar multiple cx*, and then

maz;lcz}| < .5 requires [¢| < 1. For such ¢, the maximum is attained at ¢ = 1. The

proof for P, is similar. a
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Figure 1: M st V-robust designs for P, and Py; n = 9,10,19,20. Design points z;

plotted against the index 1.
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Table 1: Most V-robust designs for P; and P»; n = 9,10, 15, 20.

P | n | Most V-robust designs 1,22, ,Tn

9 | 0.309, -0.5, 0.5, -0.309, 0, 0.309, -0.5, 0.5, -0.309

10 | 0.142, -0.273, 0.382, -0.459, 0.5, -0.5, 0.459, -0.382, 0.273, -0.142

P, | 19 | 0.155, -0.294, 0.405, -0.476, 0.5, -0.476, 0.405, -0.294, 0.155, 0,

-0.155, 0.294, -0.405, 0.476, -0.5, 0.476, -0.405, 0.294, -0.1%5

20 | 0.075, -0.148, 0.218, -0.282, 0.341, -0.392, 0.434, -0.467, 0.x.3, -0.5,

0.5, -0.489, 0.467, -0.434, 0.392, -0.341, 0.282, -0.218, 0.148, -0.075

9 | 0.309, 0.5, 0.5, 0.309, 0, -0.309, -0.5, -0.5, -0.309

10 | 0.273, 0.459, 0.5, 0.382, 0.142, -0.142, -0.382, -0.5, -0.459, -0.273

P, [ 19 | 0.155, 0.294, 0.405, 0.476, 0.5, 0.476, 0 405, 0.294, 0.155, 0, -0.155

-0.294, -0.405, -0.476, -0.5, -0.470, -0.405, -0.294, -0.135

20 | 0.148, 0.282, 0.392, 0.467, 0.5, 0.489, 0.434, 0.341, 0.218, 0.075, -0.075,

-0.218, -0.341, -0.434, -0.489, -0.5, -0.467, -0.392, -0.282, -0.148

Remarks:

1. The designs x* and x** are also most V-robust for regres< n through the origin

with respect to P; and P, respectively, and then

, ( nt (n—1)m
-9 oS- . —_—
mingCVSi(€,I) — 2o \\.oen T3 I(n even) + cos 1 I(n odd))

and minCV 5,(¢,1) = --2clcosni_ﬁ. The proof of this entails only minor modifica-

tions to those above, and so is omitted.
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9. For each ~. ti:= unordered vector: ~* and x™* are equal - the designs differ only
with respect to the order in which the ::7ats are allocated.

3. The cinpirical distribution functions of the design points of the most V-robust
designs above are easily seen to converge weakly, asn — oo, to the arcsine distribution
with distribution function  + ﬂ_—;—(z—rl and density ;VTZ-T?’ |z| < 1. An asymptotic
description of the V;robust designs is then given by this limit together with the order
in which the design points are to be applied. For P the design points altecuate in
cign. For n even these points increase in magnitude over the first half, then decrease.
For n odd each half (after omitting the middle zero) is identical and oscillates like
the design on [2] points. For P; the first haif (for n odd omitting ihe middle zerv) of
the points are positiv., J} ~second h. 1egative. Within each half the points increase
and then decrease in ra:gnnude. Figure 1 shows the most V-robust designs for P
and P, when n =9, 10, 19, 20, and numerical values are in Table 1.

It is interesting to note that the arcsine design w0 .rise. 'n another context -
that of optimal polynomial regression design, as the degree ot he fitizd polynomial
tends to 0o. See Pukclcheim (1993) for a discussion.

4. As v — 400, CV 51 (€*,1) — 0 and CVSy(€,T) — —dar.
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5 B-robust designs

By virtue of (2.3) and (2.5), the B-robustness problem is that of constructing
a design to maximize |B¢(0)], subject to a bound on Supfe_rb}:eBe_l(O)bf'E. Such

designs then coincide with the Bounded Bias designs of Liu (1994) and Liu and Wiens

(1994).

Example 5.1: Consider the case of approximate multiple linear regression with an
intercept and with uncorrelated errcrs, i.#. (1.1) with z(x) = (1,x)7 and P = L. Let
S be a g-dimensional sphere centred at the origin, with radius r determined by the

requirement that § have unit velume. Tal«

F={yJ| [Sz(x)f(x)d;x =", ;l FRidx <ot b

S

Minimax designs for this model are considered in Wiens (1992), and in Huber (1975)
when ¢ = 1. Bounded Bias designs are constructed in Lin (1994) when ¢ = 1.

It is shown in Wiens (1992) that only absolntely crntinuous designs are adinissible
for this problem. A convexity argument then gives a further reduction to spherically
symmetric measures. The maximization of b}:EBEI(O)bf’f over F can be carried out
as at Theorem 1 of Wiens (1992); the methods of Section 3 of that paper then show

that the B-rcbust desigs is the solution to the problem

mazimize Eg[U?) subject to a bound on Eg[g(U)],
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where g is the density and G the distribution function, under £, of U ::= {|x||. This is
2 standard variational problem whose solution is as follows. Let 8 be given by (3.2),
and set B = -‘;—f,é’- Define v = E[U/?])/q. For the B-robust design the density of U is of

the form

w(uw) = Au?+8)T, A>0, uelo,r],

where A and § are chosen to make go a proper density, and to attain the required

bound on E[g(U)].

1. 0<pf <2

- q(q+4):
go(w) =14 (=~ EEAE
° Yo 4 Ny T
where
2 461
= = +
“fo g Y=Y T7% q(q+4)

21 - b3+Y)

Ky(b) = (1 -4 = 23

Determine b and v from the equations




Then

go(u) = [(g)2 —b/K,(b), Vb<u<r.

The minimum value of CBS is 8 = 0. This is attained only by the Uniform distribution

on S, which is then most B-robust.

2

Example 5.2 For the approximate polynomial regression model - 27 (z) = (1, z,2?%, ...

in (1.1) - with uncorrelated errors, Liu and Wiens (1994) construct Bounded Bias de-

signs for the clas:

F={f11t""f(2)] £ p«) Vz € 5 = [-1.1]},

where ¢ is a given non-negative function. Liu (1994) considers the case ¢ = 1. The

designs are similar to the classically optimal designs which minimize variance aione,

in that they have all mass at ¢ + ! symmetrically placed points. For ¢ = 2 and

#(z) = 1 the solution is

Iy
I

¢

.

b0+ M, Jor 0SB <

1
2

(1—p"60 + B'611, for ;<P <3

26+ 2644, fer /> %

where §' = "—;ﬁ and §, is pointmass at a. In this case theu, the concept 'most B-robust’

leads to the clearly impractical design do.
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6 M-rcbust designs

In this section we outline an approach to the construction of M-robust desig
Let ¢ be a B-robust, design for {Z,F}. The B-robustness is unaffected by a p
mutation of the design points. Suppose then that there is a permutation for wh
the corresponding design £** has CVS(€™", 1) < a. Then £ satisfies both (3.1) a
(3.2). It minimizes (2.3) in the class of designs satisfying (3.2), hence a fortioriin {

smalle: class of designs satisfying both (3.1) and (3.2). It is thus M-robust.

Pr--  ..n 6.1 Consider ihe model {F,P\} with F, S and z(x) as in Ezam

a.l. el a 2 2 (1‘—;1) and suppose that £* is B-robust. If there is a permutat:

<X X > of < XYy, x> for which

n—1 e s 2
i=1 Ty jTit1,5
n gl
i=1 "1

<0 Vjy=1,...,9

T =
then the corresponding design £** is M-robust.

Proof: As in Section 4 we iind

q

CVS(™=,1)= sup 2p(1) [n; -+ ZT_;‘ < a.

co<p(1)<1 j=1

Simiiarly, we have

Proposition 6.2 Consider the model {F, Py} with F, S and z(x) as in Fzram
5.1. Let o 2 —2¢ ("—;1) and suppose that £* is B-robust. If there is a permuiat
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<X, LXE > of < Xi,..., X, > for which 7; >0 for all j = 1,...,q then the

corresponding design £** is M-robust.

In the following example we propose ways of implementing the requirements of

Propositions 6.1 and 6.2 asymptotically, for ¢ = 2.

Example 6.1: To implement Proposition 6.1 asymptotically, suppose that n is a

multiple of 4 and that we are given design points
{x] € quadrant Jji=1,..., %; Je{I,II,1II,1IV}}.
Now apply the design by alternating between quadrants I and I1I for the first % points,

and then between quadrants II a~d IV for the remaining § points:

e __ I rr 1 I I mnr ir v Ir IV 1 1v
Xl —< Xl,xl ,X2,X2 ,...,x_‘_n,)(% ,Xl ,Xl ,X2 ,X2 ,.--,X%,XL‘I_ > .

It is readily checked that 7; < 0 for j = 1,2; the design is then asymptotically M-

robust if the empirical distribution of the x; tends weakly to £*. This can be arranged

as follows.

Define a probability distribution by

po=1-

[\/7’?2, p'.._-[_@, i=1,2,---,[\/7_7,].

n

Define

J=0

a_i =O, a,-=G51 (ij), i=0111"'7[\/7_i]a
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where Gy is the distribution function corresponding to the optimal density function

go of Example 5.1. Divide the design space S = { x | [|x|| < r } into [{/n] + 1 annuli

Ao,Al,-“,A[\/ﬂ with
Ai = { x| {Ix]| € (ai-s,a] }, and Po,(x € Ai) = pi.

| = %=1t We then have

In each A; we select np; points equally spaced over ||x
n — [v/n]? points on Ag and [/n] points on each A; for i = 1,---,[y/n]. It is easy to
verify that the empirical distribution of ||x|| for the n peints converges weakly to Go.
Also lﬁﬁ is, under £*, independent of ||x|! and uniformly distributed over the unit
sphere. It follows that the empirical distribution of the design points tends weakly to
£

Similarly, we obtain an asymptotically M-robust design for P, by applying the

design points quadrant-by-quadrant:

o __ I I I r Il r Iv 1v
Xa —-<x1,...,x%,xl ,...,x?,xl ,...,X_:_l 1 X3 sy Xn >,

so that 7; > 0 for y =1,2.
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