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Abstract 

Today’s users are spending more time on web applications. Many users browse 

web applications and navigate through different web pages. They may have 

different interests, especially when it comes to large-scale applications. The more 

the developers of the applications know about their users’ needs and interests, the 

smarter choices they will make for their application’s development. Inferring a 

behavioral model from users’ navigation patterns in a web application helps 

application providers to understand their users’ interests. A navigational pattern is 

a record of where a user visits; the pattern is extracted from the start to the end of 

a user session. User navigation information is obtained by collecting the data in a 

log file.  

Some studies instrumented the application’s web pages to collect data and then 

model user navigational behaviors. To instrument a web page, the source code of 

the program is modified with additional commands. However, this can be difficult 

when the source code is inaccessible. Ideally, a user behavioral inference process 

should not be required to instrument the application’s web pages to generate a user 

behavioral model.  

Also, a model generation approach needs to support the evolution of web 

applications. A behavioral model should be generated incrementally during its 

evolution and should play a role in the application’s evolution (upgrading) 

procedure. This can help sustain web applications. 

Inferring a model by predicting and analyzing users’ navigational behaviors is 
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necessary to understand users’ interests. Developers can identify interesting (from 

users’ perspective) or problematic pages of applications and therefore improve the 

application design. Analyzing the behavioral model helps to detect design 

anomalies such as dead-ends; pages in which users are being prevented from 

leaving the page without closing it. Detecting dead-ends can significantly help in 

addressing design anomalies and providing solutions to retain users. Satisfied 

customers are more likely to stay with the company and contribute to its success.  

It is ideal to analyze web pages to model user behaviors. Web page analysis 

methods utilize web page segmentation which is the process of segmenting a web 

page into different blocks, where each block contains similar components in terms 

of structural, visual, or contextual similarity. Current segmentation methods use 

the Document Object Model (DOM) structure of a web page and vision-based 

techniques to segment a web page. However, current methods do not consider 

semantic analysis to categorize pages. Semantic analysis includes extracting text 

from segmented blocks, computing textual similarity, and regrouping blocks. 

In this research, we attempt to bridge several gaps in all the above-mentioned 

areas. Firstly, we provide an automated approach, with no instrumentation, to 

generate user behavioral models. We evaluate the utility of our approach by using 

it on a large-scale mobile and desktop application. Also, we evaluate the evolving 

properties of interaction patterns against the inferred behavioral models using an 

analysis engine.  

Next, we present a new combination model of web page segmentation, namely 
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Fusion-Block, by dividing the content of a web page into blocks by initially 

considering human perception (inspired by Gestalt laws of grouping) and 

subsequentially re-segmenting initial similar blocks using semantic text similarity.  

Hence, in the next part of our research, we improve the segmentation model, 

namely Integrated-Block, by merging the DOM structure, vision-based, and text-

based similarity metrics of web pages. Finally, to verify the effectiveness of our 

approach, we applied it to the public datasets and compared it with the five existing 

state-of-the-art algorithms. We demonstrate the value and novelty of the presented 

solutions using extensive evaluations throughout the thesis.  
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Chapter 1 

Introduction 

As a detailed list of articles is provided in the preface, in this section we elaborate 

on the motivation and a brief overview of our research. Moreover, this section also 

summarizes the primary contributions of our overall thesis followed by a 

discussion on the organization of the thesis documentation. 

1.1 Motivation 

Nowadays users are spending more time on web applications. They browse web 

pages and navigate through different pages. They may have different and evolving 

interests and preferences, especially when it comes to large-scale applications. 

Knowing and predicting the different user behaviors are crucial factors that may 

directly affect the success of the application. Underestimating the importance of 

these factors may lead to software limitations which can easily lead to lost 

audiences; dead-ends and navigational anomalies are some examples of the 

limitations. 

However, the presence of a huge number of users with different behaviors makes 

it almost impossible to accurately predict and model all of them, and to design 

applications that can answer all possible needs. Moreover, the population of users 

is seldom homogenous and, typically, several classes of users with distinct user 

behaviors coexist at the same time. Also, no matter how well they are initially 

captured, user behaviors change over time. This leads to the need for learning and 

refining our understanding of how users interact with the system. 

The mainstream approach towards capturing the user behaviors consists of 

monitoring the usage of the system and subsequently mining possible interaction 

patterns [1]. Some existing solutions instrument web pages to track users’ 
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navigation actions, for example, Google Analytics [2], while others analyze log 

files such as [3]. However, current solutions suffer from several limitations. Some 

approaches lack general applicability, for example, they need to infer users’ 

navigational behaviors to support specific tasks [4, 5]. On the other hand, the 

general frameworks simply return a set of statistics or patterns that are useful to 

understand the preferences of the system’s users but cannot be directly used to 

evaluate and analyze the web page design.  

Inferring a model by predicting and analyzing users’ navigational behaviors 

(trajectories) is necessary to understand users’ interests. Developers can identify 

popular or problematic pages of applications and therefore improve the application 

design and retain users. In addition, a model generation approach needs to support 

the evolution of web applications. A behavioral model should be generated 

incrementally during its evolution procedure. This can help sustain web 

applications.  

The mainstream approach to model user behaviors is to analyze web pages of 

applications. Web page analysis methods utilize web page segmentation that is the 

process of segmenting a web page into different blocks, where each block contains 

similar components in terms of structural, visual, or textual similarity [6]. Current 

segmentation methods use the Document Object Model (DOM) structure of a web 

page and/or vision-based techniques to segment a web page [7-11]. However, 

these methods do not consider semantic analysis to categorize pages. Semantic 

analysis includes extracting text from segmented blocks, computing textual 

similarity, and regrouping blocks.  

1.2   Research Overview 

In this research, we attempt to bridge several gaps in all the above-mentioned 

areas. At first, we study different behavioral model generation techniques. Some 

research utilizes user navigational behavior in mobile applications. For example, 

[12] and [13] exploit application usage records to characterize patterns and 
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discover user behavior. Some other research models mobile and desktop 

application usage patterns such as [14, 15]. The rest of the research uses web usage 

mining on desktop applications [16, 17].  

Next, we generate user behavior models using Markov models and Reinforcement 

Learning to automatically and incrementally, learn users’ interests. We evaluate 

the utility of our approach by using it on a large-scale mobile and desktop 

application. Then, we analyze the models using a model checker. By analyzing the 

inferred model, the application limitations are found. Next, we perform a survey 

of different academic behavioral model generation’s algorithms and choose the 19 

most popular algorithms to compare our proposed approach in terms of 9 factors 

such as whether an approach supports real-life application or not, or whether or 

not a method uses an instrumenting approach. A detailed list of factors is proposed 

in Section 3. It is ideal to analyze web pages of an application to model user 

behaviors. Web page analysis methods utilize web page segmentation to 

categorize the structure and content of a web page.  

In the next phase, we shift our focus towards the challenges associated with web 

page segmentation. There are two major factors in segmenting a web page into 

different blocks, (1) how the content of a web page is extracted and (2) how the 

extracted content is processed to retrieve distinct information [7-10]. In this 

research first, we study different web page segmentation algorithms. There has 

been much research that focuses on segmenting a page based on the DOM 

structure of an HTML page [8, 18]. Some researchers prefer to segment web pages 

using visual information in a web page. This vision-based segmentation method 

focuses on the analysis of visual features of the document content as they are 

perceived by a human reader. It exploits visual clues such as font size, font color, 

background color, spaces between paragraphs, etc. [19]. Some segmentation 

methods have been carried out using Natural Language Processing (NLP) 

techniques [10, 20]. These methods consider text density metrics such as text 

formats and words’ frequency of a document but do not consider the semantic 
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analysis to categorize pages. Semantic analysis includes extracting text from 

segmented blocks, computing textual similarity, and regrouping blocks.  

Next, we propose a new method of web page segmentation (Fusion-Block) by 

combining the DOM structure, visual features, and text similarity metrics to 

improve the segmentation performance. Our approach generates a segmentation 

model by utilizing human perception and semantic analysis of a web page. To 

achieve this, our model merges the content of a web page into basic-blocks and 

identifies similar blocks using text similarity, and regroups these similar blocks as 

fusion blocks. Thus, a fusion block is composed of related blocks in terms of 

similar text contents using NLP techniques. To evaluate the accuracy of our 

approach, we apply the approach on three datasets and compare the approach with 

4 state-of-the-art methods.  

In the next phase of this research, we focus on improving the web page 

segmentation algorithm. Towards achieving this goal, we provide a new semantic 

method of web page segmentation named Integrated-Block by merging the DOM 

structure, vision-based, and text-based similarity metrics of web pages. To 

improve the segmentation accuracy, we demonstrate the utility of transformer 

technology as a vehicle for the text-based process [21].  

Finally, we evaluate our approach on three datasets and compare the approach with 

5 state-of-the-art methods. The results represent that our proposed approach 

outperforms 5 other existing web page segmentation methods, in terms of higher 

accuracy. 

1.3   Summary of Contributions 

The primary contributions of this research are as follows: 

 This research represents the first to our knowledge, ‘state-of-the-art’ 

automatic, non-instrumented behavioral models that have been applied to 

a mission-critical, real-world large-scale application (cf. Section 3.4).   
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 This research compares our model with the 19 popular behavioral model 

inference algorithms in terms of 9 factors (cf. Section 3.2). 

 This research presents Fusion-Block, a novel algorithm that can provide a 

new method of web page segmentation by combining the DOM structure, 

visual features, and text similarity metrics (cf. Section 4). 

 To improve the segmentation accuracy, this research presents Integrated-

Block that provides a new semantic method of web page segmentation by 

merging the DOM structure, vision-based, and semantic similarity metrics 

of web pages. Also, this study demonstrates the utility of transformer 

technology as a vehicle for the semantic similarity process (cf. Section 4).  

 Finally, this research evaluates our approaches on three public datasets and 

compares the approach with state-of-the-art methods. The results represent 

that our proposed approach (Integrated-Block) outperforms other existing 

web page segmentation methods, in terms of higher accuracy (cf. Section 

4.4). 

1.4   Thesis Organization 

This thesis has been prepared in a paper-based format and is organized as follows: 

Chapter 2 of this thesis provides background information about the Gestalt laws 

of grouping that are used in Chapter 3 and Chapter 4. 

Chapter 3 of this thesis presents a new method to infer probabilistic user 

behavioral models using Markov models and Reinforcement Learning (RL). A 

probabilistic model checker is used to analyze the inferred models. The proposed 

method is applied to and evaluated on a mobile and desktop application.  

Chapter 4 presents two new methods of web page segmentation named Fusion-

Block and Integrated-Block, by combining the DOM structure, visual features, 

and text similarity metrics. These methods are applied to three datasets and 

evaluated by comparing the approach with 4 state-of-the-art methods. 
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Finally, Chapter 5 concludes the thesis and presents a set of directions for future 

work.  
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Chapter 2 

Background Information 

In this section, we explain the Gestalt laws of grouping that have been used in web 

page analysis in Chapter 3 and Chapter 4. In this research, the Gestalt laws of 

grouping are interpreted as the rules for block detection in web page segmentation. 

During interpretation, the normalized Hausdorff distance, the CIE-Lab color 

difference, the normalized compression distance, and the series of visual 

information are used the same as [22] to operationalize these Gestalt laws. 

People can recognize related web page content fast and correctly even before 

reading it, regardless of the complexity of the web pages. According to Gestalt 

psychology, this is because that humans group objects based on a series of laws – 

the Gestalt laws of grouping [23-25]. 

The original Gestalt laws of grouping include eight items (each item represents a 

single law), i.e., the Gestalt laws of (a) simplicity, (b) closure, (c) proximity, (d) 

similarity, (e) continuity, (f) common fate, (g) symmetry, and (h) past experience 

[25, 26]. In the context of web page similarity, the Gestalt laws of symmetry and 

the Gestalt laws of past experience are not employed. This is because the former 

considers symmetric elements that are in widely scattered locations (which are 

very rare in web pages), and the latter refers to a higher level of human perceptions 

(i.e., it requires knowledge that is beyond the scope of web page analysis). Hence, 

we focus here on the remaining six laws the same as [22].  

Xu and Miller [22] propose the Gestalt layer merging (GLM) model for merging 

web page content into semantic blocks based on human perception. Three 

components are included in this model, namely, the layer tree constructor, the 

Gestalt laws translator, and the web page block identifier. 

According to the first component of this model, a layer tree is constructed to 
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remove hierarchical inconsistencies between visual layout and DOM tree of web 

pages. The DOM tree is a fast and precise representation of a web page; however, 

it cannot be directly used as the input in this model [22]. People read only visible 

content from the web pages, so the invisible DOM elements are useless, i.e., they 

are noise to this model. Meanwhile, the visual hierarchy of a web page sometimes 

differs from the corresponding DOM hierarchy, causing perception errors to this 

model. Such noise and errors must be eliminated before analyzing. Thus, the layer 

tree constructor takes the DOM tree of a web page as a prototype to build up its 

layer tree. The construction includes removing the invisible DOM elements and 

fixing the hierarchy. 

Definition: Given a web page 𝑊𝑃, the layer tree 𝐿𝑇 of 𝑊𝑃 is a finite set where 

each element 𝑛 (that is, layer tree node) of 𝐿𝑇 is a layer representing a visible 

element 𝑒 from DOM tree 𝐷𝑇 of 𝑊𝑃 (𝐿𝑇 = {𝑛 | 𝑛 ← 𝑒, 𝑒 ∈ 𝐷𝑇}) and all elements 

follow the visual hierarchy of 𝑊𝑃 [22]. 

The second component of the GLM model is the Gestalt laws translator. In this 

step, the Gestalt laws of grouping are translated to computer-compatible rules that 

can train a classifier to combine the laws to a unified rule to detect semantic blocks 

(the last component of the GLM model). Thus, these laws need to be converted 

into machine-compatible rules using a Gestalt laws translator. 

2.1 Gestalt Laws Translator 

The Gestalt laws translator interprets the Gestalt laws of grouping into machine 

compatible rules within the domain of web pages. The Gestalt laws explain the 

mechanisms of how humans perceive and understand things. The Gestalt laws of 

grouping contain 6 laws described in the following paragraphs [22]. 

2.1.1 Gestalt Law of Simplicity  

This law states that people tend to break down content into the simplest units when 



 

 

 

9 

 

reading a web page. Although a web page can be split as small as a single pixel, 

we will not follow this method. This is because when we read the page, we focus 

on useful information such as a single image or a piece of text instead of pixels. 

The useful information corresponds to the DOM elements of a web page. Figure 

2.1 shows the logo of the University of Alberta, “https://www.ualberta.ca”. The 

logo contains multiple parts: the figure, the phrase “UNIVERSITY OF”, and the 

big bold “ALBERTA”. However, these elements have different types and styles, 

they are considered as a single group according to the Gestalt law of simplicity. 

This law helps to make the process of reading and understanding a page more 

straightforward.  

 

Figure 2.1: Gestalt Law of Simplicity (“www.ualberta.ca”) 

As another example, Figure 2.2 shows a part of the page of “cbc.ca/news/”. In this 

figure, the middle image between the texts contains multiple elements (i.e., the 

text “FOR BREAKING NEWS”, an image, and video). However, they have 

various styles, they are grouped as a single image.  
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Figure 2.2: Gestalt Law of Simplicity (“www.cbc.ca/news/”) 

2.1.2 Gestalt Law of Closure 

This law states that humans tend to perceive incomplete shapes as complete ones. 

As an example, Figure 2.3 represents the homepage of FedEx, 

“https://www.fedex.com/”. However, the middle part of the background image is 

covered by a search and three other boxes, it is believed that the background image 

is complete [22].  

 

https://www.fedex.com/
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Figure 2.3: Gestalt Law of Closure (“www.fedex.com/”) 

As another example, in Figure 2.4 (“ualberta.ca/admissions-programs”), the 

middle part of the background image is covered by a search box but according to 

this Gestalt law, the image is considered as a complete one. 

 

Figure 2.4: Gestalt Law of Closure (“www.ualberta.ca/admissions-programs/”) 

2.1.3 Gestalt Law of Proximity 

According to this law, humans tend to group close objects. This law groups 

elements based on their distances. To determine proximity, the distance in the 

GLM model is defined as the Normalized Hausdorff Distance (NHD) between 

layers, which provides the best performance as a proximity estimation [27]. NHD 

aims to group elements if their distances with adjacent elements are similar. 

Further details can be found in [27].  
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𝑁𝐻𝐷(𝐿1, 𝐿2) = max{(
ℎ𝑑1,2

𝑅𝑒𝐿1
,
ℎ𝑑2,1

𝑅𝑒𝐿2
)}   (2.1) 

𝑅𝑒𝐿1 and 𝑅𝑒𝐿2 are the relevant lengths of layers 𝐿1 and 𝐿2, and ℎ𝑑1,2 and ℎ𝑑2,1 are 

the Hausdorff distance from 𝐿1 to 𝐿2 and 𝐿2 to 𝐿1, respectively. Using the sign-in 

page of LinkedIn (https://www.linkedin.com/) as an example shown in Figure 2.5, 

the two boxes regarding sign-in (“Email or phone number” and “Password”) are 

regarded as a group. 

 

Figure 2.5: Gestalt Law of Proximity (“www.linkedin.com/”) 

As another example, considering the sign-up page of Instagram 

(https://www.instagram.com /accounts/emailsignup/) shown in Figure 2.6, the 

four boxes regarding sign up (“Mobile Number or Email”, “Full Name”, 

“Username”, and “Password”) are related and regarded as a group. 
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Figure 2.6: Gestalt Law of Proximity (“www.instagram.com 

/accounts/emailsignup/”) 

2.1.4 Gestalt Law of Similarity  

The Gestalt law of similarity indicates that humans perceive similar elements as a 

single group. To compare elements, this law considers their visual features such 

as background similarity, foreground similarity, and size similarity. Background 

similarity includes both the color and the image; foreground similarity compares 

textual and paragraph styles; and size similarity checks if the two blocks share the 

same width or height. A more precise set of definitions can be found in [28].  

In this research, we use CIE-Lab color space in the same manner as [27] to 

simulate human vision. We select ∆𝐸00
12 as the color difference metric same as [27], 

calculated by Equation (2.2). The parameter list can be found in [27], and it is 

omitted in this work for brevity.  

     ∆𝐸00
12 = √(

∆𝐿′

𝑘𝐿𝑠𝐿
)
2

+ (
∆𝐶′

𝑘𝐶𝑠𝐶
)
2

+ (
∆𝐻′

𝑘𝐻𝑠𝐻
)
2

+ 𝑅𝑇 (
∆𝐶′

𝑘𝐶𝑠𝐶
) (

∆𝐻′

𝑘𝐻𝑠𝐻
)                      (2.2) 
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Structural Similarity Index (SSIM) [25] is employed to calculate digital image 

comparison to imitate human understandings. SSIM is capable of distinguishing 

between similar pages and dissimilar pages [27]. This research uses SSIM in the 

same manner as [27]. Figure 2.7 shows six objects grouped into three groups in 

terms of styles. The top two objects are in one group, the next two objects are 

included in a second group, and the bottom two objects belong to a third group. 

 

Figure 2.7: Gestalt Law of Similarity 

2.1.5 Gestalt Law of Continuity 

This law expresses that humans tend to judge the elements on a web page as related 

in a situation where they are aligned, and as dissimilar when they are not aligned. 

Using a part of the homepage of the University of Alberta 

(https://www.ualberta.ca/) as an example shown in Figure 2.8, the paragraphs in 

the orange rectangle (“Student Information”, “Register”, “Student Union”, etc.) 

are left-aligned and categorized as a single group, indicating they are related 

content. To evaluate continuity, we compare the left, top, right, and bottom 

coordinates of the two elements. If any of the four coordinates of two elements are 

the same, we conclude that they are related and that they are dissimilar, otherwise 

[27]. 
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Figure 2.8: Gestalt Law of Continuity (“www.ualberta.ca”) 

2.1.6 Gestalt Law of Common Fate 

This law describes that people tend to regard elements with the same motion trend 

as related. For example, the upper ribbon with the blue background color in Figure 

2.9 (the homepage of World Health Organization, “www.who.int”) hangs at the 

top and does not move with scrolling the page, but other content moves 

accordingly.  

 

Figure 2.9: Gestalt Law of Common Fate (Homepage of “www.who.int”) 
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According to these six laws, a model can allow elements to be categorized whether 

in a group or not. This group of similar elements includes the results of six laws 

merged. Such merged groups represent the blocks. In this research, we use these 

laws in Chapter 3 and Chapter 4 as part of the web page analysis. 
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Chapter 3 

Automatically Inferring User Behavior 

Models in Large-Scale Web Applications  

Nowadays users are spending more time on web applications [29, 30]. Many users 

browse these applications and navigate through different web pages. They may 

have different interests, especially when it comes to large-scale applications. 

Software limitations can easily lead to lost audiences; dead-ends and navigational 

anomalies are some examples of the limitations. However, it is almost impossible 

to accurately predict and address all of the users’ interaction expectations. 

Inferring a (behavior) model by predicting and analyzing users’ navigational 

behaviors (trajectories) is necessary to understand users’ interests. By analyzing 

the inferred behavior models, developers can identify interesting or problematic 

pages from applications; and therefore, improve the application’s design. For 

example, consider an application that has an unidentified dead-end page. By 

inferring and analyzing behavior models of this application, developers can 

identify and remove the dead-end page and hence improve the application design. 

User navigation information is obtained by collecting the data in a log file. 

Google Analytics1 is a state-of-the-art approach to infer user behavior models and 

track users' actions. It infers user navigation behavior by instrumenting web pages. 

Google Analytics uses a page tagging approach to gather website traffic data. In 

this case, a snippet of JavaScript code needs to be manually added to every page 

of the application. It identifies popular (most visited) pages by instrumenting web 

pages. However, Google Analytics cannot automatically analyze the user 

navigational behavior of an application. 

                                                
1 https://www.google.ca/analytics/ 
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Aside from Google Analytics, several studies have also proposed approaches to 

model user navigational behaviors. Applying data mining techniques on the data 

collected from the user side, or proxy servers, to extract usage patterns is one of 

the proposed approaches [1]. Additionally, client-side data can be collected using 

JavaScript or by modifying the source code of browsers; for example, [4, 5, 31-

34] generate probabilistic user behavioral models from log files. 

However, addressing many questions can remain problematic despite having an 

accurate user navigation behavioral model. Augmenting this model with 

appropriate metrics (reward values) is required to address those questions. For 

example, (1) How to infer and analyze users’ interests in a behavioral model? (2) 

Which pages of a web application are more interesting from the users’ perspective? 

and (3) Which pages of an application may have design limitations? 

Later we show that the web page’s reward (user interest) value [34], [35] can be 

mapped to the popularity of a web page. 

In this research, we provide an automated approach [36] to generate reward 

augmented behavioral models to answer these questions. This research contributes 

to current research in behavioral models in the following ways:  

 It provides a new method to infer probabilistic user behavioral models 

using Markov models and Reinforcement Learning (RL) to 

automatically and incrementally, learn reward values. 

 It is applied to and evaluated on a mobile and desktop application 

(www.ualberta.ca). It is believed that this is the first time such 

behavioral models have been applied to a mission-critical, real-world 

large-scale application.  

The chapter is organized as follows: In Section 3.1 we explain our research 

motivations while Section 3.2 reviews related work. The steps of the proposed 

approach are overviewed in Section 3.3. A detailed description of our approach is 

provided in Section 3.4. Section 3.5 discusses an empirical evaluation of the 

proposed approach while Section 3.6 explains the implications for practice and 



 

 

 

19 

 

Section 3.7 concludes the paper and provides some future work directions. 

3.1 Problem Statement and Research Motivation 

User behavior models, generated from navigational patterns, provide solutions to 

several software engineering problems. A navigational pattern is a record of where 

a user visits; the pattern is extracted from the start to the end of a user session. The 

derivation of such a model is non-trivial and has seen many previous attempts [34], 

[35]. This research seeks to improve on those previous attempts in several ways 

which are outlined below. 

 Ideally, a user behavioral inference process should not be required to 

instrument the application’s web pages to generate a user behavioral 

model. To instrument a web page, the source code of the program is 

modified with additional commands. The purpose of instrumenting web 

applications is data collection. Providing a non-instrumented inference 

approach is preferable if it can achieve appropriate results. In this work, 

Google Analytics is used as an example of a state-of-the-art 

instrumentation-based approach. 

 Web application evolution can be done by upgrading an application 

already in service or by releasing a new version or derivative. It is 

required that any model generation approach supports the evolution of 

web applications. This can help sustain web applications.  

 When users interact with a web application, the history of their requests 

is stored in server logs. In large-scale web applications, log files will 

have millions of entries per day. Any model generation approach must 

support the utilization of such large-scale data entries. 

The following paragraphs provide further discussion on how each of these items 

is essential in a user behavior model inference process. 

Behavioral models are normally generated by collecting data either from the 

client’s system instrumentation or the server’s log files. To instrument a web page, 
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it is necessary to insert additional code fragments into the source code. However, 

this can be difficult when the source code is inaccessible. Many software systems 

still in use were developed using technologies that are now obsolete; these legacy 

systems may continue to be used for a variety of reasons. It is not always possible 

to comprehend and take over source code in case instrumenting is problematic. 

Legacy code can be very difficult to read since it is written without exploiting 

modern programming techniques. These outdated approaches lead to lengthy and 

complex code that is difficult to understand and instrument. Another likely 

scenario is when an application is being licensed to a company without providing 

the source code. In such a case, instrumenting the source code is not feasible. 

However, it is still possible to generate behavioral models for these systems from 

their log files. 

Google Analytics is a state-of-the-art approach to infer user behavioral models. 

However, it should be noted that generating such models using Google Analytics 

needs instrumenting of the source code. Google Analytics is a web 

analytics service offered by Google that tracks and reports website traffic. It can 

also be used to identify poorly performing pages preventing a web application 

from reaching its defined goals. Goals are used to measure how well the web 

application is targeting the predefined objectives like sales, lead generation, 

viewing a specific page, or downloading a particular file. Since 2019, Google 

Analytics is the most widely used web analytics service on the web [37]. It is 

currently used by 29,134,826 live websites, for instance, Google, YouTube, and 

Twitter use Google Analytics [38]. Also, it is used by 85.56% of the top 10,000 

most popular websites. In addition, among the top 100,000 and a million most 

popular websites, 85.18% and 62.28% use Google Analytics, respectively [38]. To 

evaluate the correctness of our proposed inference approach, we considered the 

compatibility of our approach with the results extracted by Google Analytics from 

an instrumented website. (Further details are provided in Section 3.5 which 

discusses the evaluation of the proposed approach on a large-scale case study and 

presents the empirical results.)  

https://trends.builtwith.com/websitelist/Google-Analytics
https://www.similartech.com/websites/youtube.com
https://www.similartech.com/websites/twitter.com
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A model generation approach needs to support the evolution of web applications. 

A behavioral model should be generated incrementally during its evolution and 

should play a role in the application’s evolution (upgrading) procedure. Consider 

an application in which, a specific link needs to be added to the main page. By 

adding the link, a new behavior model should be generated incrementally. This 

approach makes the model generation process quick, flexible, and possible in the 

early phases of the application life cycle. This may become clearer in the context 

of a simple example. As an example, consider a car dealership web application. 

By analyzing its users’ behavioral model, pages that have more visitors will be 

determined. Adding some related ads which show information about car insurance 

or car appliances would be helpful for customers. Therefore, related 

advertisements will be added to the target pages. Subsequently, a new model will 

be created incrementally. 

Analyzing the model also helps to detect design anomalies. For instance, there 

might be some pages, in which users are being prevented from leaving the page 

without closing it. Such pages are called dead-ends [39]. Detecting dead-ends can 

significantly help in addressing design anomalies and providing solutions to retain 

users. This is because the difficulties in navigating through the web application 

can result in losing the audience. Therefore, incrementally generating behavior 

models and analyzing them regularly play an essential role in the evolution of a 

web application.   

The more the developers of the applications know about their users’ needs and 

interests, the smarter choices they will make for their application’s 

development. Large-scale web applications use behavior models to investigate 

how engaged users are with content and identify potential content issues. For 

instance, imagine a commercial company’s web application that has a huge 

number of entries per day. By analyzing and tracking its behavioral model, it can 

be detected that users prefer to see “maintenance instructions” about a product on 

the same page that the product is placed on, or they prefer to click on the 

“maintenance instructions” link to see the information on a separate page. 
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Developers can easily address such issues and increase users’ satisfaction levels. 

Satisfied customers are more likely to stay with the company and contribute to its 

success. Google, Microsoft, and Facebook are examples of large-scale companies, 

which are using behavior model generation approaches to understand the behavior 

of their users [40-45]. 

This work automatically generates user behavioral models from the application’s 

log files; it does not require instrument the web pages. The proposed approach 

supports large-scale mobile and desktop applications. Besides, the evolution of the 

application is supported by our method. In this study, the user behavior model is a 

model that infers and analyzes users' interest from the users' interaction with an 

application. 

 is a model that generates and analyzes users’ navigational behaviors (trajectories) 

and is necessary to understand users’ interests. By analyzing the inferred behavior 

models, developers can identify interesting or problematic pages from 

applications; and therefore, improve the application’s design. It should be noted 

that our approach is not about the logfile analysis. It only uses the logfile’s data to 

generate behavior models. 

3.2 Related Work 

Mining of web application usage discovers user navigation behavior based on their 

interests. The goal of web usage mining is to capture, model, and analyze usage 

patterns and understand the behavior of users through the process of data mining 

of web access data [46]. This has been used for a variety of purposes, including 

personalized recommendation, user intention prediction, detecting problematic 

pages, web design enhancement, etc. Some papers utilize user navigational 

behavior in mobile applications. For example, [12], [13] exploit application usage 

records to characterize patterns and discover user behavior. Zhu et al. [47] propose 

a recommendation model by recording these usage patterns. The model considers 

the popularity of applications and the personal interests of users. Lu et al. [48] 
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propose a framework for behavior mining in an application. It discovers users’ 

spatial and temporal usage patterns from users’ trajectory histories.  

Other papers model mobile and desktop application usage patterns. For example, 

Kawazu et al. [14] propose an analytical method to classify web user behavior 

based on user interest. Wang et al. [15] propose a clickstream model to characterize 

user behavior in online services. This helps service providers identify unexpected 

user behaviors and predicts future actions. It uses a Markov chain to analyze click 

transitions. Vassio et al. [49] propose an approach to model user navigational 

behavior using clickstream graphs.  Usage patterns are characterized by taking into 

account both the temporal evolution and the impact of the device used to explore 

the web pages [49]. 

The following papers use web usage mining on desktop applications. For example, 

Samarasighe et al. [16] predict user intention using a KNN classifier method from 

the user's historical behavior. User behavior patterns are predicted and analyzed 

using a decision tree by Prakash et al. [17]. Gan et al. [50] propose a model to 

adaptively learn users' interests from their navigational behaviors. This 

emphasizes recent click-through behavior via a neural network architecture. Chu 

et al. [51] build a model that can predict user interest from browsing history. The 

method is inspired by the Word2Vec (word embedding) concept. Langhnoja et al. 

[52] study user behavior from access patterns captured in a weblog. Web usage 

mining includes three phases namely pre-processing, pattern discovery, and 

pattern analysis. Their method combines the technique of clustering and 

association rule mining to extract significant user behaviors. Jagli et al. [53] 

describe web usage mining to analyze the behavioral patterns and profiles of users 

interacting with a Website. The discovered patterns are represented as clusters that 

are frequently accessed by groups of visitors with common interests. Zhou et al. 

[54] introduced the concept of utility in the web path traversal mining model to 

express the significance of web pages in terms of browsing time spent by the user. 

Furthermore, user interest is discovered using the browsing patterns by Lei et al. 

[55]. This approach demonstrates that the browsing time and the number of visits 
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are two key behaviors revealing the user interest in web pages [55]. A user interest 

model is proposed using the browsing behavior collected by a self-written browser 

plug-in [56]. A decision tree that uses linear regression at leaf nodes [56] is used 

to analyze the users’ browsing histories and calculate the user interest value. A 

user behavior model is generated focusing on how users navigate the web pages 

[57]. Additionally, Xuefeng et al. [58] propose a personalized recommendation 

model from weblogs using a fuzzy cluster algorithm. Association rules are mined 

to provide a recommendation model for users of a website.  

Probabilistic Markov models of navigational behaviors are generated from the 

interaction history given in the form of a log file by Ghezzi et al. [33]. It manually 

“annotates” the states of the models with numerical values that represent rewards. 

Rewards indicate the impact of the state on some (undefined) metric of interest. 

All of these approaches represent methods for web application usage mining to 

discover user navigation behavior. However, according to Table 3.1, these studies 

do not automatically calculate user interest value in mobile applications.  

Our approach dynamically generates a set of probabilistic Markov models from 

the users’ interactions with a large-scale application and automatically augments 

the state of the models with reward (user interest) values using an RL strategy. 

Rewards can be mapped to the popularity of a web page. These pages tend to focus 

on particular contexts (topics) that users are more interested in. Later we show that 

higher reward values are assigned to popular pages.  

To show that our approach is assigning meaningful values to the model, we use 

Google Analytics as a standard. We consider it to be state-of-the-art amongst 

commercial applications deriving behavioral information. Additionally, our 

approach uses an automatic model analyzer to check and analyze the generated 

models. Our work stands out in three factors from previous work, represented in 

Table 3.1. Firstly, it is believed that this is the first time such behavioral models 

have been applied to a mission-critical, real-world large-scale mobile and desktop 

application. We have used 70,595 users’ records to analyze our approach. 
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Secondly, it does not require any instrumentation of a web page. Finally, our 

method supports the evolution of an application. Although some of the related 

works represented in Table 3.1 consider some of these mentioned features, they 

do not include all of them together. Moreover, the previous works do not check 

and analyze their models using an automatic model analyzer. Our proposed 

approach considers all of the features represented in Table 3.1 which results in 

automatic user behavior models’ generation from a real-life, mission-critical, 

large-scale mobile and desktop application that supports the evolution of the 

application. 

Table 3.1 provides additional details and a comparison of the related work. It 

specifies both mobile and desktop applications. “Real-life” denotes whether an 

application is real or not.  (N/D is used when it is not clearly defined in the paper.) 

A “mission-critical” application is an application that is essential and must 

function continuously for a business or segment of a business to be successful. 

The “number of users” indicates the number of users of the application. 

Furthermore, it is shown whether or not a method uses an instrumenting approach. 

“User Interest” indicates whether an approach calculates the users’ interest value 

of visiting a web page. It also specifies the methods automatically or manually 

calculated these values. Finally, the table includes whether a method supports the 

evolution (or maintenance) of an application. 
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3.3 Augmenting Behavioral Models by Reward 

Values 

In this section, a short introduction about the current user behavioral model 

generation procedures is given to provide an overview of our inference approach. 

3.3.1 User Behavioral Model 

Users behave differently in their interactions with web applications. They browse 

web pages based on their interests. Therefore, providing a model representing 

possible user behavior and latent patterns with a graphical and traceable 

representation can be helpful. Several techniques are suggested to track users’ 

actions and generate models containing the paths users have taken through a 

website. Some of these approach instrument web pages to collect user interaction 

history, while others mine server-side log files to extract interaction patterns. 

Moreover, inferred models are also represented in various ways from tree-based 

data structures [59] to different types of probabilistic models [33], [4], [60]. To 

allow the universal application of this approach, we only assume the availability 

of server-side log files as the system input. This assumption also implies that the 

system requires no modification of the existing configuration, which is often a 

barrier to adoption. In terms of the output from the system, we are extracting 

probabilistic (state-oriented) models, analyzing them, and augmenting their states 

with reward values to accurately represent the user behavioral patterns. 

3.3.2 Proposed Model Inference Approach 

Our framework was designed and implemented to incrementally generate reward 

augmented user behavioral models for large-scale web applications and to 
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overcome the limitations of former approaches. The main steps of the proposed 

framework are shown in Figure 3.1 and briefly discussed in the following 

paragraphs. It is worth noting that steps 2 and 3 are intertwined and do not occur 

sequentially, but for the sake of clarity they are explained separately. Each step 

will be elaborated upon in a separate section. 

1) Identifying the initial parameters: each row of a log file includes a 

requested URL submitted by a user. At the first step, a set of Atomic 

Propositions (APs) is used to associate semantics to the URLs occurring in 

the data entry. APs can be defined by the system expert or automatically by 

considering the URL of the page as a proposition. Also, a system expert can 

define a set of user-classes to characterize different groups of users. For 

example, users’ agents (internet browsers used to view the web pages) and 

locations could be considered as two user-classes. Classes categorize users 

based upon a set of common features. However to automatically infer a 

reward-augmented model, which is not limited to a specific scope, defining 

user-classes can be ignored. Also in this step, input data are processed and 

classified. Each of them is clustered into groups univocally identified by the 

sets of atomic propositions. 

2) Generating the behavioral model: the model inference engine analyzes 

the processed entries and generates a Discrete-Time Markov Chain (DTMC) 

for each “user-class”, defined in the previous step. 

3) Calculating and assigning reward values: concurrently with generating 

each state of the DTMC, the corresponding reward value is also 

incrementally calculated using a reward function, and assigned to the state. 

An RL-based approach is applied to automatically estimate the reward 

values for each state (i.e. web page). 

4) Analyzing the model: when the DTMCs are generated and annotated with 

reward values, the analysis engine evaluates the properties of the interaction 

patterns against the inferred models using probabilistic model checking. The 

probabilistic model checker not only evaluates the correctness or 
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incorrectness of a property but also provides insights into the users’ 

behaviors and the impact of these behaviors on the reward values [39].  

 

Figure 3.1: The Framework of the User Behavioral Model Inference Approach 

3.3.3 Running Example 

To define and demonstrate the proposed approach throughout the work, we 

introduce a real-world, large-scale mobile and desktop computing application 

called “MyUAlberta”. This application includes several features for helping 

students and staff at the University of Alberta, enabling them to gain access to 

campus-related information through an easy-to-browse dashboard. The 

application has been active since September 2014 and more than 100000 app 

installs and more than 40000 monthly page views have been reported since then.  

Users can view university news, events, and maps; and search for people who are 

registered as students or staff at the university. Students and academic staff can 

view course details including seat availability and check their timetable. These 



 

 

 

32 

 

features along with several other features are represented in the MyUAlberta 

application. 

This application has 58,498 iOS and 12,097 Android registered users with unique 

mobile devices. It is worth noting that these numbers do not include web users 

who only use the application through the web portal. Also, the application contains 

18 main modules; each provides a link to an external resource (e.g. link to the 

university website) or represents an in-app feature. As an example of an in-app 

implemented feature: students can use this application to log in to the university 

authentication system and see their class schedule, and course lists (Registrar 

module). They can also review course content and take quizzes online using the 

eClass module. Library, Events, Student Services, Find a Person, ONEcard, News, 

Athletics, Social Media, and Photos and Videos are other modules that provide 

different services to university students and staff. Transit and Campus map 

modules are also two popular features in this application; they help users find out 

the departure time for several bus and LRT routes, as well as the campus-wide 

geographical map. Users can receive emergency push notifications or send 

feedback about their experiences in browsing the application. Therefore, 

according to the large scale of the application and its numerous users, analyzing 

the behavior of the users would provide information that could lead to the fruitful 

future of the application in terms of improvements.  

To examine our approach we use the server log files of this application. We 

extracted the server log files of two different months (January and March 2018), 

each composed of more than 120,000 lines. It can be easily anticipated that the 

generated behavioral model using such log files would be massive and complex, 

so manually extracting the behavioral patterns and assigning the reward values to 

them is neither possible nor accurate. 

 

 

 



 

 

 

33 

 

 

3.4 Inference Details 

In this section, we elaborate on the inference steps briefly discussed in the last 

section. 

3.4.1 Identifying Initial Parameters  

To infer user behavioral model, the inference approach needs a list of the 

interactions between the users and the webserver of the application in the Common 

Log Format (CLF), where each row represents a request submitted by a user to the 

webserver and contains the IP address, timestamp, requested URL and client’s 

device information.  

In large-scale web applications, log files will have millions of entries per day. Web 

usage mining offers system administrators and web designers the ability to analyze 

the massive volume of log files [61]. It targets minimal human intervention for log 

file processing [62]. Web usage mining has three main stages: data preprocessing, 

pattern discovery, and pattern analysis. Data preprocessing involves the removal 

of unnecessary data. Pattern discovery includes data mining techniques to extract 

usage patterns from log files [61, 63]. Pattern Analysis extracts the interesting 

patterns from the output of the pattern discovery process by eliminating the 

irrelative patterns [61, 64]. In web usage mining, users’ behavior or interests are 

revealed by applying data mining techniques on log files [63]. A preprocessed log 

file improves the efficiency and effectiveness of the other two steps of web usage 

mining such as pattern discovery and pattern analysis [63, 64].   

Due to a large number of irrelevant entries in a log file, the original log file cannot 

be directly used in the web usage mining process [63, 64]. Raw log files have some 

rows that belong to resources that are irrelevant to the users’ interactions with web 

applications.  
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Our proposed inference approach clusters each row of the log file into the groups 

identified by a set of Atomic Propositions(𝐴𝑃𝑠). It uses several code fragments 

called filters to indicate the set of atomic propositions, which can be associated 

with the relevant requested URLs in the log files. Filters are parameterized with a 

regular expression to only identify the URLs matching the expression. For 

example, the proposition “home” is going to be used as a label for a row in the log 

file, which contains the requested URL that will lead the user to the homepage of 

the application. This procedure helps in: (1) Identifying the requests corresponding 

to the same URLs and clustering them into the same group. And, (2) detecting and 

filtering out rows that belong to CSS source code, JavaScript source code, or any 

resources that are irrelevant to the users’ interactions with the web application.  

Our inference framework also contains two default classifiers to classify users 

based upon (1) the user-agents (e.g. Firefox) and (2) the users’ location extracted 

by geolocating the IP addresses [33]; more classifiers can be easily added. 

Classifiers help designers/analyzers to extract domain-specific information about 

the users by classifying users into several different customizable classes. For 

example, using this approach, we would be able to analyze specific users’ 

behavioral patterns for clients who logged into the application using Chrome. 

3.4.2 Generating the Behavioral Model 

In the model inference step, the inference engine incrementally generates a set of 

Discrete-Time Markov Chains (DTMCs). DTMCs are probabilistic finite-state 

automata, which follow a Markovian property and represent the users’ behavioral 

patterns. They are suitable options for representing user behavioral models, 

because: 

 The transition from one state to another state in the model only depends 

on the current state. Therefore, in a user behavioral model, the 

probability distribution of the next page (the user might visit), only 

depends on the links and content provided in the page that the user is 

currently browsing. This perfectly matches the user behavior pattern 
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definition, which illustrates the users’ movement flow from one state 

(page) to another. 

 The system evolves through discrete time steps. In user behavioral 

modeling, we are interested in analyzing user behaviors at discrete time 

intervals to predict the next movement of the user solely based on the 

current state. Therefore, changes to the system cannot occur at any time 

along with a continuous interval. 

In our study, DTMCs are also annotated with a numerical value called a reward. 

Rewards indicate the quantitative value (benefit) of visiting a specific page on the 

website or being in a specific state of the model. In research conducted by Ghezzi 

et al. [33], rewards are manually determined and assigned by the system designer 

to the states of the models. (It is argued that such a manual approach is unrealistic 

given the huge number of decisions that would be required to be made 

continuously.) Accordingly, a DTMC which is augmented with rewards is a tuple 

(𝑆, 𝑃, 𝐿, 𝜌) where: 

 𝑆 is a set of states, and 𝑠0 ∈ 𝑆 indicates the initial state; 

 𝑃: 𝑆 × 𝑆 → [0,1] is the probabilistic matrix indicating the probability of 

the occurrence of a transition between two connected states. 

 𝐿: 𝑆 → 2𝐴𝑃 is a function which maps a state to a set of atomic 

propositions. 

 𝜌: 𝑆 → ℝ≥0 is a reward function that associates a non-negative number 

to each state. 

In this study, we also infer a DTMC for each class defined by the classifiers.  

To start the model inference process, an initial DTMC is generated. The initial 

DTMC consists of (1) two initial states: 𝑠0 (start state) and 𝑠𝑒(end state); (2) a zero 

transition matrix 𝑃 indicating the probability transitions between states; (3) a set 

of state labels indicating the start and end labels 𝐿 = {𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑} and (4) a reward 

function 𝜌 which assigns 0 to both start and end states as an initial reward value. 

Assigning 0 as a reward value to the initial states illustrates that the value of states 



 

 

 

36 

 

is not calculated yet. Then, the initial DTMC will be incrementally developed by 

processing each row (r) of the log file and adding more states and transitions to 

the model. The following paragraphs provide more details about this procedure: 

 First, when a row r is processed, the algorithm assumes that the IP 

address in the row corresponds to a new user unless the IP address has 

been previously detected within a predefined time-window.  A time 

window is the minimum time span between timestamps that is defined 

by the system expert to identify the requests that are issued by two 

different users but the same IP addresses. When the time-window for a 

certain IP address expires, the algorithm assumes that the user associated 

with that IP address left the system. In this study, we assumed that the 

time-window is equal to 1 minute, which is equal to the minimum 

session timeout in Google Analytics. This should not be confused with 

the default session duration in Google Analytics, which is equal to 30 

minutes. 

 If the previous step considers r as a request issued by a new user, the 

algorithm adds a new state to the model and labels it by the set of 

propositions associated with r. At this point, it considers the start state 

𝑠0 as its parent state. But if the request belongs to a known user, the 

algorithm still builds the new state with the same labels but considers 

the latest state associated with the previous request as its parent state. 

 Then the transition probability 𝑝𝑖𝑗 is assigned to the transition between 

𝑠𝑖 and𝑠𝑗. 𝑝𝑖𝑗 is equal to the ratio between the number of transitions 

between 𝑠𝑖 and 𝑠𝑗, and the total number of transitions with the source 

state 𝑠𝑖 [65]. 

 During the inference procedure, if the time-window expires for a certain 

IP address, the algorithm generates a transition from the latest 

discovered state to the end state 𝑠𝑒 and updates the transition probability. 

 The previous steps will be repeated until no new request is found in the 

log file. 
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Table 3.2: An Excerpt of the Myualberta Log File 

 

 

Figure 3.2: An Excerpt of the Model Inference Procedure for Myualberta Study 

Instance 

Table 3.2 shows an excerpt of the MyUAlberta log file containing users’ IP 

addresses, the requests’ timestamps, and the requested URLs. This log file 

represents the interaction of a user with the application. 

Figure 3.2 depicts implementing the above step on the MyUAlberta study instance. 

In this case, as the log file is processed, the initial DTMC is generated by building 

start and end states (See Figure 3.2 section (1)). When the first line of the log file 

is read, since this is the first time a request to the homepage is getting processed, 

a new state labeled home is generated. Since the IP address of this request has not 

been already encountered, the algorithm connects it to the start state (Figure 3.2 

section (2)). At the same time, the inference engine assigns a probability of 1 to 

this transition. This is because there is no other state with the source of start state 

yet. As the algorithm processes the second row of the log file that contains the 
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same IP address, it adds a new state labeled transit to the DTMC and considers the 

home state as the source state for it. The transition probability of the new 

connection is also 1 (see Figure 3.2 section (3)).  

The third row of the log file again belongs to the same IP address but containing a 

request to load the social media page. Therefore, the algorithm adds the new state 

called social to the model in the same way as previous states and connects it to the 

transit state (see Figure 3.2 section (4)). 

When the time-window for a specific IP address expires, the algorithm assumes 

that the user left the application. Therefore, it generates a new transition that 

connects the latest discovered state (which is associated with this user) to the end 

state. Figure 3.2 section (4) depicts this step. 

During the inference process, the reward values are also calculated and assigned 

to the states of the model, but for the sake of clarity, we present the remaining 

steps in the next section. 

3.4.3 Calculating and Assigning Reward Values 

As mentioned previously, the necessity for manually producing the reward signal 

is a major problem with previous inference approaches, such as [33].  

To illustrate the use of rewards in user behavioral models clearly, we first provide 

an example related to a sell-and-buy website. Assuming that the goal of the 

website is to increase the number of advertisements, the designer can assign 

reward values to states by considering the number of advertisements on each page. 

For example, if there are 10 advertisements on the homepage, the system expert 

associates the reward value 10 with the proposition homepage. Accordingly, other 

states of the model also get annotated by the number of advertisements their 

corresponding proposition contains. Depending on the website’s goals and 

missions, designers only define one technical or non-technical metric of interest 

and assign rewards based upon this metric only once during the setup phase of the 

inference procedure. Therefore, to recalculate reward values based on the new 
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metrics: (1) system experts should recalculate reward values, and (2) models 

should be regenerated. In such situations, defining an approach that can represent 

the reward values of the states, from a general perspective, can be very useful. 

Therefore, automating the calculation process makes the approach more effective 

specifically for large-scale software systems. 

The following paragraphs outline our proposed technique to solve this issue. We 

utilize an RL strategy to automate the estimation of the rewards signal. Therefore, 

we first provide a quick background about the applied techniques and definitions. 

3.4.3.1 Reinforcement Learning 

This section provides an overview and definition of Reinforcement Learning. 

RL is located between supervised and unsupervised learning to learn what to do to 

maximize a numerical reward signal [66]. The learner does not know what actions 

to take to reach the goal of maximizing the reward signal and only can pick and 

try actions to detect those increasing the accumulative reward [67]. 

Reinforcement learning algorithms are defined iteratively not by characterizing 

learning methods, but by characterizing a learning problem. The agent and the 

environment are interacting continually: the agent selects actions and the 

environment responds to the actions, presents new states to the agent which gives 

rise to rewards. This cycle is repeated as part of a Markov Decision Process (MDP) 

[66], [68]. MDPs are used as stochastic extensions of finite automata or Markovian 

processes to model the decision-making process and solve optimizing problems. 

They are augmented by actions and rewards so that they consist of actions, 

transitions, labels, and states. In the following paragraphs, some definitions are 

introduced that help demonstrates our proposed approach in the next section. 

Definition 1. Markov decision process (MDP) 

MDPs provide a mathematical framework to model the decision-making process 

in situations where outcomes are partly random and partly under the control of a 

decision-maker. They are useful in addressing a wide range of optimization 
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problems solved via dynamic programming and reinforcement learning [66]. 

MDPs are an extension of Markov chains; the difference is the addition of actions 

(allowing choice) and rewards (giving motivation). Conversely, if only one action 

exists for each state and all rewards are the same (e.g. "zero"), an MDP reduces to 

a Markov chain.  

More precisely, an MDP is a discrete-time stochastic control process. In other 

words, an MDP contains:  

1. A set of possible states S. 

2. A set of possible actions A. 

3. Transition function, T: S × A × S → [0,1] giving for each state and action. 

It computes the probability of reaching state s′ by performing action a in 

state s and is denoted as T(s, a, s′), s, s′ ∈ S, a ∈ A.  

4. Reward function, R(s, a, s′) specifies rewards for transitioning from state s 

to state s′ due to action a. 

Therefore, an MDP has a set of states. These states will play the role of outcomes 

in the decision-making approach as well as providing information, which is 

necessary for choosing actions.  

An MDP also has a set of actions. At each time step, the process is in state s, and 

the decision-maker may choose any action a that is available in state s. The process 

responds at the next time step by randomly moving into a new state s′, and giving 

the decision-maker a corresponding reward R(s, a, s′).  

To indicate the order of different states and actions during agent and environment 

interaction, they should be denoted according to the time at which they occur. So, 

st ∈ S denotes the state at time t [69]; according to this definition of a Markovian 

process, we would have: 

     P(st+1|st, st−1, st−2, … ) = P(st+1|st) = T(st, at, st+1)         (3.1) 

So, it specifies the probability that the next state will be st+1 for each state st ∈

Sand action at ∈ A. The probability that the process moves into its new state is 
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influenced by the chosen action.  

This process is called Markov because it has what is known as the Markov 

property; that is, the next state s′ depends on the current state s and the decision 

maker's action a. Therefore, the next state is independent of all the previous states 

and actions. The current state captures all that is relevant about the world to predict 

what the next state will be.     

Finally, there is the Reward function. The agent's utility is defined by the reward 

function. The goal of the reward function is to specify the reward for each action 

that the agent performing. So, R: S × A × S → ℝ gives rewards for particular 

transitions between states. The reward function plays an important role in an MDP. 

At each discrete time, an agent observes state st ∈ S and chooses action at ∈ A 

and receives immediate reward rt ∈ R. Then state changes to st+1. The immediate 

reward indicates the immediate feedback value of reaching a certain state. An 

agent tries to maximize its total reward in the long term view. So an MDP can be 

denoted by the tuple 〈S, A, T, R〉 depicting it as a state transition graph [68]. 

Definition 2. Policy  

The goal in an MDP is to find a function, called policy, which determines which 

action to take in each state, to maximize the reward function. Policy π gives the 

probability of taking action a when in state s: 

𝜋:𝑆 × 𝐴 → [0,1] 

𝜋(𝑠, 𝑎) = 𝑃(𝑎𝑡 = 𝑎|𝑠𝑡 = 𝑠)                           (3.2) 

Definition 3. Next-State Function  

At each discrete time, an agent receives an immediate reward rt by choosing action 

at from state st and then the state changes to st+1. Markov assumes that st+1 =

δ(st, at) and rt = R(st, at, st+1). rt and st+1 depend only on the current state and 

action. The next-state function δ for state s maps the state s at time t to the state at 

time t+1 that follows the action. The value of reaching state s through action a is 

computed using the action-value function which is defined in the following 
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paragraph. The next-state function δ and reward function R may be 

nondeterministic and not necessarily known to the agent.  

If the next-state function is known, dynamic programming can be used to learn 

value functions like V(S), defined below, to obtain the policy. If the next-state 

function is unknown, Q-Learning can be used to learn action-value functions like 

Q(S, A). The value function is described in the following paragraphs. 

Definition 4. State-Value Function 

The state-value function returns the value, i.e. the expected return for selecting a 

certain state s. Return means the overall reward. We can define the value of a state 

under a policy π, formally Vπ(s), as [68]: 

Vπ(s) = Eπ{rt + rt+1 +rt+2 +⋯|st = s}                    (3.3) 

The sum in equation (3.3) is typically infinite. In a more realistic setting, rewards 

in the future get discounted, and equation (3.3) becomes [67]: 

Vπ(s) = Eπ{rt + γrt+1 + γ2rt+2 +⋯|st = s} = 

Eπ{∑ γkrt+k+1
∞
k=0 |st = s}  ,γ ∈  [0, 1]           (3.4) 

Where Eπis the expected value by following policyπ and discount factor γ, which 

determines the importance of future rewards. The state-value function Vπ(s) 

specifies the value of a state is equal to the total amount of rewards a learner can 

accumulate, starting from that state. γ = 0 indicates that it is only concerned about 

immediate rewards. 

Definition 5. State-Action Value Function  

The state-action value function returns the value, i.e. the expected return for using 

action a in a certain state s as:  

Qπ(s, a) = Eπ{∑ γkrt+k+1
∞
k=0 |st = s, at = a}   , 

γ ∈  [0, 1]                (3.5)  

Where Eπis the expected value by policyπ. 
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The Bellman-Equation expresses the relationship between the value of a state and 

the value of a successor state. 

Vπ(s) = 

∑ π(s, a)a∈A ∑ T(s, a, s′)(R(s, a, s′)+γVπ(s′))s′∈S                  (3.6)  

WhereR is the reward for passing from state s to successor state s′. Vπ(s′) returns 

the state-value of the successor state s′. T is the probability to access state s′ when 

choosing action a in state s. π(s, a) is the probability of choosing action a in 

state s. The Bellman-Equation calculates the value of a state by considering all 

available options and assessing each by its likelihood of appearance. 

An agent aims to find the optimal policy. There is at least always one policy that 

is better than or equal to all other policies. This policy is called the optimal policy 

π∗.  

π∗ = argmax
π

Vπ(s), ∀(s)                (3.7)                                                                                                      

There is only one optimal-value function, which is the base for an optimal policy. 

The optimal value function chooses an action a in a state s not by following a 

policy but by choosing the maximum. We attempt to learn the value function of 

the optimal policy π∗, denoted by Vπ
∗
 (which we write as V∗). It can then do a 

look-ahead search to choose the best action from any state s. The optimal-value-

function can be noted as follows:  

V∗(s) = max
𝑎∈𝐴

∑ T(s, a, s′)(R(s, a, s′)+γV∗(s′))s′∈S              (3.8) 

As aforementioned, this works well if the agent knows next-state function δ:S ×

A → S, and R:S × A × S → ℝ. When the agent does not know δ, the Q-function 

which is very similar to V∗ is defined as: 

Qπ(s, a) = R(s, a, s′) + γV∗(s′)                 (3.9)     

If the agent learns Q, it can choose an optimal action even without knowing δ.  

π∗(s) = argmax
a
[Q(s, a)]                           (3.10)                                                                                                    
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Where Q is the action-value function the agent will learn. Q and V∗ are closely 

related as: 

V∗(s) = max
𝑎

Q(s, a)              (3.11)                                                                                                               

This allows us to write Q recursively as:  

Qπ(st, at) = R(st, at, st+1) + γV∗(δ(st, at)) = R(st, at, st+1) +

γmax
𝑎

Q(st+1, a)                                             (3.12) 

All RL-based algorithms are based upon providing an approach for appropriately 

estimating state-action value functions. This has led to the exploration and 

production of several different estimating methods and techniques. One of the 

most popular of these is Q-Learning [70], which is an off-policy Temporal 

Difference control algorithm. In other words, Q-Learning can estimate Q-value 

functions (Q-learning-based estimations of the state-action value function) 

without requiring an initial model of the environment. 

Additionally, Q-learning can handle problems with stochastic transitions and 

rewards without requiring any adaptations. It has been proven that for any finite 

MDP, Q-learning eventually finds an optimal policy. This means that the expected 

value of the total reward that has been returned over all successive steps is the 

maximum achievable. 

In this situation, because of the lack of known transition and reward models, the 

algorithm handles problems with stochastic transitions and rewards and uses 

exploration and sampling approaches to learn the required model. Therefore, Q-

learning finds an optimal policy for any finite MDP and estimates the agent’s Q-

value function based on the Q-value estimation of an action. In other words, using 

the above definitions equation (3.13) is inferred. This process is incrementally 

evaluated as follows [68]: 

𝒬𝑘+1(𝑠𝑡, 𝑎𝑡) = 𝒬𝑘(𝑠𝑡, 𝑎𝑡) + 

𝛼 (𝑟𝑡 + 𝛾max
𝑎

𝒬𝑘(𝑠𝑡+1, 𝑎) − 𝒬𝑘(𝑠𝑡, 𝑎𝑡))                       (3.13) 
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Where, 𝛼 (0 < 𝛼 ≤ 1) is the learning rate, which determines the extent to which 

new information can override old information and how fast we modify our 

estimates [71]. In the next section, we illustrate how we use Q-value functions to 

incrementally calculate reward values. 

3.4.3.2 Automated Reward Calculation Algorithm 

Since the Q-value function is proven to converge to an optimal policy [69] and 

estimate the state-action value function in model-free problems [70], we have used 

Q-learning to estimate the reward values in this study. The problem of estimating 

the reward values for the user behavioral model needs to be addressed using an 

approach, which: (1) can incrementally learn reward values from the current state 

of the model; and (2) can easily get configured to generate meaningful reward 

values for web applications. Therefore, a Q-value function is an appropriate option 

to address this issue. 

To present a Q-value function, which fits the behavioral model generation process, 

we have modified the Q-value function (equation (3.13)) similar to [65] as below: 

Equation (3.14) illustrates how the Q-value function has been used in this approach 

to calculate the value of state 𝑠𝑖, which is called 𝜌(𝑠𝑖): 

             𝜌(𝑠𝑖) = 1 − 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑝𝑎𝑔𝑒𝐴, 𝑝𝑎𝑔𝑒𝐵) + 𝛾max 𝜌(𝑠𝑖+1)        (3.14) 

A discount factor γ determines the importance of future rewards. 

In this study, we suggest using a function (diff) to calculate reward and then Q-

values: Given two-state labels (web application pages), 𝑠𝐴and 𝑠𝐵∈ S, we define 

the diff function that computes the degree of change between states. diff can be 

defined as 1 − 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑝𝑎𝑔𝑒𝐴, 𝑝𝑎𝑔𝑒𝐵) where, 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑝𝑎𝑔𝑒𝐴, 𝑝𝑎𝑔𝑒𝐵) 

is computed based upon one of the following approaches. A detailed description 

of the algorithmic process is described in Algorithm 3.1. 
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ALGORITHM 3.1: Reward Calculation Algorithm 

Input: Model states (𝑠𝑖, 𝑠𝑖+1) ∈ 𝐴𝑃; 𝑖 = 0; 𝜌 = 0 
Output: Reward value (𝑅𝑒𝑤𝑎𝑟𝑑 ∈ ℝ ≥ 0) 

begin 
For each state 𝑠0 𝑻𝒐 𝑠𝑁−1 do 
        urlA⟵StateMatcher(𝑠𝑖) 
        urlB⟵StateMatcher(𝑠𝑖+1) 
        pageA⟵Extractor(urlA) 
        pageB⟵Extractor(urlB) 

         𝜌(𝑠𝑖) ← 1 − 𝑺𝒊𝒎𝒊𝒍𝒂𝒓𝒊𝒕𝒚 (𝑝𝑎𝑔𝑒𝐴, 𝑝𝑎𝑔𝑒𝐵) 
        𝑚𝑎𝑥 ← max 𝜌(𝛿(𝑠𝑖+1)) 
        𝜌(𝑠𝑖) ← (𝜌(𝑠𝑖) + 0.9 max)/100 
        For each (𝑠𝑖, 𝑠𝑗) ; 𝑠𝑗 ∈ 𝑆𝑒 * 
               merge (𝑠𝑖, 𝑠𝑗) if 
               (𝑠𝑖 = 𝑠𝑗) AND (Reward (𝑠𝑖)=Reward (𝑠𝑗)) AND  
                (Adjacent (𝑠𝑖)= Adjacent (𝑠𝑗)) AND  
                (Reward(Adjacent (𝑠𝑖))= Reward(Adjacent (𝑠𝑗))) 
        Repeat Until no new 𝑠𝑗 ∈ 𝑆𝑒 is found 
  Repeat Until no new 𝑠𝑖 ∈ 𝑆 is found 
 end 

* Se is the set of states which are already labeled with the reward 
values 

As it is mentioned, the reward calculation algorithm has been synchronized with 

the model-inference process. It is executed every time a new state is generated. 

Accordingly, the rewards are calculated and updated incrementally during the 

model generation process. This is essential as it allows the algorithm to work in 

real-time. Therefore, each step of the automated reward calculation algorithm is 

elaborated in the following paragraphs. 

1. While states are created, a function (StateMatcher) searches in the regular 

expression library to find the requested URLs matching these states. For 

example, if the state label is “eclass”, the method detects the corresponding 

URL that has been requested by the users; in this case, that is 

“www.eclass.srv.ualberta.ca/”. 

2. When URLs are retrieved, another method (Extractor) is called. This 

function extracts the information of the detected URLs. In this research, we 

used the following approaches for information extraction of a detected URL 

which are described in the next section. 
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 Visual-based  

 Text-based (character or word–level) 

3. After storing the extraction results, the difference between the two URLs’ 

content is calculated using similar methods based on the type of information 

(visual-based or text-based) extracted from the requested URLs.  

4. To eliminate any redundancies in the model, the merging step of the gkTail 

inference algorithm is applied to merge the equivalent states [72]. 

According to this state-merging procedure, two states are considered 

equivalent if they have the same future of length k (in our study k=1). 

Therefore, two states can be merged if they share the same label, rewards, 

and immediate future, which means their adjacent states also have the same 

labels and reward values. This procedure prunes the model of redundant 

states with the same values. 

3.4.3.3 Reward Calculation Algorithm - Information 

Extraction of a Web page 

As mentioned in Section 3.4.3.2, the Extractor function collects the information 

of the retrieved URLs. In this study, we used the following approaches for 

information extraction of a detected URL which are described in the subsequent 

paragraphs. 

i. Visual-based (Visual information extraction)  

ii. Text-based (character or word–level) 

i. Visual Information Extraction 

To extract the visual information of a web page, we use the semantic blocks in the 

web pages using Gestalt laws of grouping technique; this technique is described 

in detail in [28]. The Gestalt laws of grouping explain the mechanism of how 

humans perceive and understand things. To construct each block for the block tree, 

these laws need to be translated into computer-compatible rules using Gestalt laws 

translator. The laws are described in Chapter 2. We provide a quick background 
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about the semantic blocks in the following paragraphs. 

Semantic Blocks 

The semantic blocks, nodes of a semantic block tree, are achieved by merging 

semantically correlated rendered blocks with the Gestalt laws of grouping [28]. A 

rendered-block tree model represents retrieved visual information of a web page 

by taking a web page’s DOM tree as the input instead of parsing the source code. 

This is because the DOM tree contains all the visual information of a web page 

[28].   

Two major ways, explored by researchers, to represent a web page for visual 

similarity evaluation are screen shots (images) and DOM trees. The advantages of 

the two methods are combined [73], and it proposes a new web page representation 

method, a block tree. It only extracts visible DOM elements and merges these 

elements into separate groups according to their semantic meanings. 

 To construct blocks, separate rendered objects are merged into semantically 

related groups based on the Gestalt laws of grouping [73]. Given a web page, WP, 

the rendered object maps to a visible DOM element 𝑒 of the DOM tree DT of WP. 

The object contains all visible CSS properties of 𝑒 as the visual features and serves 

as the merging candidates to build the blocks of the Block-Tree (BT) [73]. 

The Gestalt laws of grouping explain a human’s mechanism for the perception of 

related objects. To construct each block for the block tree, these laws need to be 

translated into computer-compatible rules [26, 28].  

Among all the six Gestalt laws, the first two show us how to extract rendered 

objects from the DOM tree, and the remaining four laws regulate the way of 

merging the extracted rendered objects into groups (that is, the blocks in the block 

tree) by the visual features [73].  

The block tree takes the previously merged blocks as tree nodes and follows the 

DOM tree’s hierarchy to organize these nodes. In the beginning, the first visible 
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DOM element is the “BODY”, so the root node of the block tree will be a block 

that holds it. Next, it follows the bottom-up rule. From the root block onwards, all 

the direct child rendered objects of a block are evaluated by the Gestalt laws and 

split into one or more groups. Each of the laws is then applied to create a block. 

These blocks will maintain their hierarchy in the DOM tree [73].  

The Tree Edit Distance (TED) is defined as the minimum cost of editing operations 

(“insert”, “delete”, and “relabel”) when shifting from a block tree to another 

different block tree [74]. This reflects the structural similarity between two 

different block trees by mapping node pairs. The pseudo-code [74] represented in 

Algorithm 3.2 details this step’s calculations and is described in the following 

paragraphs. 

Assume 𝑇𝑖,𝑗
𝑝

 represents a subtree (block-tree) of 𝑇𝑝 rooted at 𝑇𝑖
𝑝
 which is mapped 

to an identical subtree (block-tree) of 𝑇𝑞 rooted at 𝑇
𝑗′
𝑞
, namely 𝑇𝑗,𝑖

𝑞
. Accordingly, 

computing the extended subtree similarity 𝑆(𝑇𝑝, 𝑇𝑞) has four following steps 

according to [74]. 

Step 1: Identify all the mappings: It finds all the possible mappings and stores two 

lists of nodes for each mapping, one for each subtree. 𝑇𝑝 and 𝑇𝑞 are the inputs to 

this step and 𝑉𝑝 and 𝑉𝑞 are the outputs. The GetMapping(i,j) function produces 

two lists of nodes (𝑉𝑝[𝑖][𝑗] and 𝑉𝑞[𝑗][𝑖]) for a mapping. Its objective is to detect 

the largest possible mapping. 𝑇𝑖𝑎
𝑝

 denotes the 𝑎th child of the 𝑇𝑖
𝑝
 node, where 1 ≤

𝑎 ≤ 𝑑𝑒𝑔(𝑇𝑖
𝑝), and 𝑖𝑎 represents the index of the 𝑎th child of the 𝑇𝑖

𝑝
 node. 

𝑑𝑒𝑔(T) represents the degree of T, which is the maximum number of children of 

any node in the tree, and 𝐸 is a matrix that indicates how the children of 𝑇𝑖
𝑝
 and 

𝑇𝑗
𝑞
 are matched. 

Step 2: Identify each node’s largest mapping: To compute this step, first, assume 

two arrays, namely 𝐿𝑆𝑝 and 𝐿𝑆𝑞, of size |𝑇𝑝| and |𝑇𝑞|, respectively. 𝐿𝑆𝑝[𝑖] 

indicates the largest subtree that 𝑇𝑖
𝑝
 belongs to by the indexes of root nodes of the 

mapping, denoted by 𝐿𝑆𝑝[𝑖]𝑚𝑖 and 𝐿𝑆𝑝[𝑖]𝑚𝑗. As indicated in Algorithm 3.2, 



 

 

 

50 

 

filling 𝐿𝑆𝑝 and 𝐿𝑆𝑞 with appropriate values is the objective of this step. 

Step 3: Compute the weight of each subtree: This step calculates 𝑊(𝑇𝑖,𝑗
𝑝 ) and 

𝑊(𝑇𝑗,𝑖
𝑞) for all the subtrees in the mappings. In Algorithm 3.2, they are denoted by 

𝑊𝑝[𝑖][𝑗] and 𝑊𝑞[𝑗][𝑖]. It goes through 𝐿𝑆𝑝 and increases the weight of a subtree 

when it is reported as the largest subtree of a node in 𝐿𝑆𝑝. This procedure is 

repeated for 𝐿𝑆𝑞 as well. 

Step 4: Calculate 𝑆(𝑇𝑝, 𝑇𝑞): It can calculate 𝑆(𝑇𝑝, 𝑇𝑞) according to 𝑆(𝑇𝑝, 𝑇𝑞) =

𝛼√∑ 𝛽𝑘 ×𝑊(𝑚𝑘)𝛼𝑚𝑘∈𝑀 , where 𝛼, 𝛼 ≥ 1, is a coefficient to adjust the relation 

among different sizes of mappings. 𝛽𝑘 is a geometrical parameter. Further, 𝑚𝑘 is 

the weight of subtree 𝑘 in the mapping [74]. 

To extract the visual content of two web pages, the Extractor function collects 

visual information and stores them in two trees (𝑝𝑎𝑔𝑒𝐴, 𝑝𝑎𝑔𝑒B). To compare web 

pages and evaluate their visual similarity, we use a block tree edit distance (B-

TED) [28]. Since a web page can be ultimately represented by a semantic-block 

tree (or simply block-tree), and each block contains all the visual information, 

visual similarity between two web pages can be reflected by B-TED [28].  
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By encoding the content of each block into its label, the mapping procedure in 

TED calculation compares the blocks by their visual information [28]. In this 

research, we used the same properties as [28] to compare the visual similarity 

between two web pages. 

ii. Text-Based Information Extraction  

The following two approaches are used to extract a web page’s context-based 

information.  

 Character-based extraction of a web page 

 Word-based extraction of a web page  

Character-Based Extraction of a Web page  

We used Crawljax [75] to extract the content of a web page as a String. Crawljax 

has a method for extracting elements from the DOM tree of a web page. It can 

extract candidate elements from the current DOM tree in the browser, based on 

the tags defined by the user. In this research, Crawljax is not used for deep 

crawling. It is used to extract characters from a web page’s context. The Extractor 

function collects all words and links on the pages as characters and stores them in 

two Strings, (𝑝𝑎𝑔𝑒𝐴, 𝑝𝑎𝑔𝑒B).  

Algorithm 3.3 shows the similarity function works by calculating the Levenshtein 

distance between these Strings. The reason for applying the Levenshtein distance 

is its proven capability in measuring the similarity between two strings. The 

similarity function plays the role of the Q-value function to initiate the Q-value 

(𝜌(𝑠𝑖)) for state 𝑠𝑖, so when the user sends another request URL from the current 

state (the web page the user is currently viewing), the algorithm calculates the Q-

values of upcoming states (web pages) and chooses the maximum amount to learn 

the current states’ reward.  
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Word-Based Extraction of a Web page 

We used a word-tokenizer in NLTK [76] to split the text into words and store them 

in two arrays (𝑝𝑎𝑔𝑒𝐴, 𝑝𝑎𝑔𝑒B). Also, we used three different methods to compare 

the similarity of web pages based on the words’ extraction of each page: 

1 Basic word’s comparison 

2 Doc2Vec 

3 TF-IDF 

As shown in Table 3.3, for simplicity, we name the Basic word comparison, 

Doc2Vec, and TD-IDF methods as Word-1, Word-2, and Word-3, respectively. 

Table 3.3: Simple Terms for Text-Based Methods Used in This Study 

WORD-1 Basic word’s comparison 

WORD-2 DOC2VEC 

WORD-3 TD-IDF 
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1 Basic Word’s Comparison 

In this method, we compare the words of the web pages with each other. It is a 

basic comparison of two pages without considering semantic relationships among 

words (See Algorithm 3.4 for the similarity function).  

 

2 Doc2Vec Word Embedding 

It is also known as word representation, plays an increasingly vital role in building 

continuous word vectors based on their context in a large corpus. Word embedding 

captures both semantic and syntactic information of words and can be used to 

measure word similarities, which are widely used in various NLP tasks [77].  

The idea that words occurring in similar contexts have similar meanings [78] has 

provided the basis for many methods that use word co-occurrences to create vector 

representations of words (i.e. word embeddings), such that words with similar 

meanings have similar vectors [79, 80]. Le and Mikolov [81] proposed Doc2Vec 

as an extension to Word2Vec [82] to learn document-level embeddings. The goal 

of Doc2Vec is to create a numeric representation of a document, regardless of its 

length. After the model is trained, the word vectors are mapped into a vector space 

such that semantically similar words have similar vector representations (e.g., 

“strong” is close to “powerful”) [81].   

So when training the word vectors W, the document vector D is trained as well, 
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and at the end of the training, it holds a numeric representation of the document. 

While the word vectors represent the concept of a word, the document vector 

intends to represent the concept of a document.  

 

We used gensim’s [83] implementation of Doc2Vec to determine the similarity of 

the web pages (See Algorithm 3.5).  

3 TF-IDF 

Another way to create a numeric representation of a word is by using TD-

IDF (Term Frequency-Inverse Document Frequency) [84], which is designed to 

reflect the importance of a word to a document in a corpus.  

Term Frequency is the number of times a word has occurred in the document. TF-

IDF scheme is used for extracting features or important words which can be the 

best representative of the document. It lowers the weight of the words that occur 

too often in all the sentences such as ‘a’, ‘the’, ‘as’ and increases the weight of the 

words that can be important in a sentence. 

TF-IDF is used to convert a document into a structured format. The TF-IDF value 

increases proportionally to the number of times a word appears in the document 

but is offset by the frequency of the word in the corpus, which helps to control for 

the fact that some words are generally more common than others [85]. 

https://rare-technologies.com/doc2vec-tutorial/
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We also used gensim’s [83] implementation of TF-IDF to obtain the similarity of 

the web pages (See Algorithm 3.6 for the similarity function). 

 

We applied several methods to compare the content of the web pages in our 

approach. The result (Table 3.4) shows that the models inferred using the Word-3 

approach (TF-IDF) perform better when compared to the models implementing 

Word-1, Word-2, character-based and visual-based extraction of a web page, in 

terms of a measure of the strength of the association between two variables. 

Further details are provided in Section 3.5. 

3.4.3.4 Automated Reward Calculation with an 

Example 

We initialize the reward calculation process to give all the states the same reward 

value (zero) and the same chance of being observed (requested by users).  

Using this procedure, all reward values are calculated incrementally during the 

model generation process. Eventually, the inference engine assigns the rewards of 

states as the sum of the reward values of the propositions associated with the states. 

Our proposed reward calculation process not only automatically incrementally 

computes the reward values, but also uses the server-side logs as the only source 

https://rare-technologies.com/doc2vec-tutorial/
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of the input. Moreover, the empirical evaluation (provided in the next section) 

shows that the reward values calculated by our proposed approach correctly 

represent the benefits or losses associated with the states. 

 

Figure 3.3: An Excerpt of the Reward Calculation Procedure for MyUAlberta 

Study Instance 

Figure 3.3 shows the initial steps of the reward calculation process for the 

MyUAlberta study instance. As depicted, the model generation process initially 

goes through the same approach discussed in Section 3.4.2; and when a state is 

generated, the reward value is also calculated incrementally. Therefore, first, the 

content of the current state is extracted and compared with the new state’s content 

using 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑠𝑡𝑎𝑟𝑡, ℎ𝑜𝑚𝑒). Then, the maximum amount of previously 

initialized or calculated values for the next state is considered. Therefore, in this 

case, 𝛾max 𝜌(𝑠𝑖+1) = 0, because there is no already traversed state after the 

“home” state. So, for instance, in a case that the user browses only one page, the 

model contains at least 3 states: start, browsed page, and end; and the reward value 

of the considered page would be 1. After browsing the “home” page, the user visits 

another page called “transit”, so its state is generated in the model. Then, the 
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similarity of these browsed pages is calculated using 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(ℎ𝑜𝑚𝑒, 𝑡𝑟𝑎𝑛𝑠𝑖𝑡) 

and since there is no traversed state after “transit”, then 𝛾max 𝜌(𝑠𝑖+1) = 0, and 

the reward value would be 0.69 which shows the similarity value of the pages. As 

shown in Figure 3.3 the user browses another page called “social” which is 

traversed from “transit”. The reward is calculated by comparing the content of the 

current (social) and the last visited page (transit) and it would be 0.13. Because 

there is no traversed state after the “social” state, then  𝛾max 𝜌(𝑠𝑖+1) = 0 and the 

reward value is calculated according to the similarity function 

(𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑡𝑟𝑎𝑛𝑠𝑖𝑡, social)). Finally, there is no further state which means the 

user session has timed out; therefore, there would be a transition to the end state 

which has a reward value of 0. 

3.4.4 Analyzing the Model 

To analyze the behavioral model, it is necessary to identify one or 

more properties of the model, which can be evaluated by a probabilistic model 

checker (e.g. PRISM). In this step, the system expert defines properties of interest 

using a reward-augmented Probabilistic Computation Tree Logic (PCTL). This 

approach helps to identify the set of DTMCs, which are more relevant to the 

specified property [33, 86, 87]. 

In this study, we are more interested in properties that are specifying reward values 

of different states in the final model. Therefore, this approach analyzes properties, 

which are related to the expected values of the rewards. This is achieved using 

the ℛ operator.  

The ℛ operator in a model checker can be used in a Boolean-valued query: 

𝓡 𝑏𝑜𝑢𝑛𝑑 [𝑟𝑒𝑤𝑎𝑟𝑑𝑝𝑟𝑜𝑝] or a real-valued query: ℛ 𝑞𝑢𝑒𝑟𝑦 [ 𝑟𝑒𝑤𝑎𝑟𝑑𝑝𝑟𝑜𝑝 ]. 

Where bound takes the form < 𝑟,  <= 𝑟,  > 𝑟, or >= 𝑟 for an expression r 

and query is =? ,  𝑚𝑖𝑛 =? or 𝑚𝑎𝑥 =?.  

rewardprop represents the reward property. There are various types of reward 

properties: 
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Reachability reward ℱ: Reward accumulated along a path until a certain point is 

reached; 

Cumulative reward 𝐶 <= 𝑘: Expected state reward cumulated after k steps; 

Instantaneous reward 𝐼 = 𝑘: Expected state reward to be gained in the state 

entered at step k; 

Steady-state reward 𝑆. 

For example, to consider the reward value of all the states up to the state labeled 

as “news”, the following property can be used: 

{}ℛ =? [ℱ𝑛𝑒𝑤𝑠]                                       (3.15) 

Inside the bracket {}, the web application development or operations team can 

also specify the scope of the property for a defined user class (e.g. a user agent) or 

simply leave it empty (no limit). 

Given a property and a set of inferred DTMCs, the algorithm identifies DTMCs, 

which are relevant to the scope of the property. For instance, if the scope of the 

property is limited to users who browse the application with Chrome, the inference 

engine only selects the DTMC, which are associated with this specific user class. 

In situations where the algorithm selects more than one DTMC for the specified 

scope, the extracted DTMCs need to be merged to build a single DTMC.  

To build a single DTMC  by merging selected DTMCs (if there are multiple 

DTMCs) we used the merging approach suggested in [33] as follows. It is used in 

the property analysis step of this study. 

 The set of states in the new DTMC consists of the union of the states of 

the DTMCs required to be merged.  

 The transition probabilities in the new DTMC are calculated using the 

law of total probability: 

𝑃𝑇(𝑠𝑖, 𝑠𝑗) = ∑ 𝑃𝑘(𝑠𝑖, 𝑠𝑗) × 𝑃𝑖(𝑢𝑘)1≤𝑘≤𝑛                      (3.16) 

where, 𝑃𝑖(𝑢𝑘) is the probability of belonging to the user-class 𝑢𝑘 when 
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transitioning from 𝑠𝑖 to 𝑠𝑗. 

 Labels of the states in the new DTMC are the same as labels in their 

corresponding input DTMC. 

 Reward values of the states in the new DTMC are the same as reward 

values in their corresponding input DTMC. 

As it is previously mentioned, our approach evaluates the specified property for 

the final DTMC using PRISM. PRISM is not only able to evaluate the truth or 

falsity of a property but also can compute the reward functions using the reward 

properties. Additional details are provided in Section 3.5.7. 

Therefore, our framework passes the property and the DTMC to PRISM and 

receives the results of the evaluation. In the following section, we empirically 

evaluate the performance of this approach in a real-life, enterprise-critical study 

instance. 

3.5 Empirical Evaluation  

3.5.1 Empirical Study  

To evaluate the performance of the proposed approach, we apply it on two separate 

log files obtained from MyUAlberta, a large-scale mobile, and desktop 

application. Our approach generates user behavior models based on these log files.  

3.5.2 Privacy 

The data collection process has been discussed and approved by the University of 

Alberta, IST department. We undertook all possible actions to protect the leakages 

of private information and the identity of users. In particular, the IP addresses of 

users are anonymized, and only the data that is strictly needed for our study is 

retained. 
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3.5.3 Research Goal 

The goal of this research is to generate a behavior model from users’ navigation 

histories recorded in a log file to understand the users’ interests in browsing pages 

of web applications. Augmenting behavior models with appropriate metrics 

(reward value) is required to address questions such as: (1) Which pages of an 

application may have design limitations? (2) How can a model identify and 

improve these limitations? And (3) Which are the most and the least interesting 

pages of the application? (less interested by users)? 

3.5.4 Results 

Regarding our proposed approach, the most interesting (popular) pages in terms 

of the amount of differentiation they provide, are labeled with the highest reward 

values. Therefore, it makes it possible to have a comparison with the results of 

users’ behavioral-flow from Google Analytics. We use Google Analytics as the 

state-of-the-art approach for web analytics and tracking users’ navigations. 

We use log files of two months (January and March 2018) of the MyUAlberta 

application; each has 23 modules (states) as shown in the first column of Table 3.4 

as “URL”. The second to sixth columns of Table 3.4 (a) show the results of 

calculating reward values using the automated reward calculation algorithm, 

which is built based on the first log file (January). The second to sixth columns of 

Table 3.4 (b) show the results of the reward values based on the second log file 

(March). The rewards are calculated according to the character-based, visual-

based, and three different ways of word-based extraction of a web page. 
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Table 3.4: Results of Running Reward Calculation Algorithm on MyUAlberta 

Case Study 

URL 

(Jan) 

Character-

Based 

(Jan) 

Visual-

Based  

(Jan) 

Word-1  

(Jan) 

Word-2 

(Jan) 

Word-3 

Reward 

Value 

Reward 

Value 

Reward 

Value 

Reward 

Value 

Reward 

Value 

…/home/ 0.8328 0.5886 0.8916 0.6322 0.8720 

…/athletics/ 0.1875 0.3423 0.3052 0.2376 0.2485 

…/social/ 0.2180 0.1962 0.3248 0.2354 0.2267 

…/trnst/ 0.5014 0.4098 0.4556 0.4142 0.4360 

…/news/ 0.1395 0.2180 0.2485 0.3575 0.2442 

…/video/ 0.1264 0.4033 0.2790 0.2180 0.2202 

…/uaemergency/ 0.1744 0.1984 0.1962 0.1962 0.2354 

…/calendar/ 0.1264 0.0218 0.2790 0.2420 0.2551 

…/people/ 0.1395 0.3423 0.2376 0.1591 0.2202 

…/login/ 0.4338 0.1962 0.4316 0.2420 0.3793 

…/eclass.srv.ualbe

rta.ca/portal/ 
0.4578 0.4098 0.4360 0.4360 0.4098 

…/campusmap.ual

berta.ca/ 
0.3161 0.2136 0.3030 0.2202 0.3314 

…/myonecard.ualb

erta.ca/ 
0.2354 0.2245 0.3096 0.2158 0.2616 



 

 

 

63 

 

URL 

(Jan) 

Character-

Based 

(Jan) 

Visual-

Based  

(Jan) 

Word-1  

(Jan) 

Word-2 

(Jan) 

Word-3 

Reward 

Value 

Reward 

Value 

Reward 

Value 

Reward 

Value 

Reward 

Value 

…/capsconnection

s.ualberta.ca/ 
0.1461 0.2376 0.2376 0.1962 0.2180 

…/stustrv/ 0.3662 0.1962 0.4273 0.3379 0.3989 

…/customize/ 0.2049 0.2180 0.2376 0.1788 0.2180 

…/MyUAlbertaFe

edback/ 
0.0000 0.0000 0.0000 0.0000 0.0000 

…/search/ 0.1875 0.3946 0.3052 0.2245 0.2529 

…/photos/ 0.2049 0.4142 0.2376 0.1940 0.2333 

…/ualberta.ca 0.2136 0.3662 0.2921 0.2289 0.2485 

…/kurogoerror/ 0.1657 0.2180 0.2878 0.0262 0.1635 

…/library/ 0.2354 0.4120 0.3357 0.2747 0.2790 

…/registrar/ 0.3880 0.1962 0.4251 0.3335 0.3706 

 

 
 

(a) 
   

URL 

(March) 

Character-

Based 

(March) 

Visual-

Based  

(March)

Word-1 

(March)

Word- 2 

(March)

Word-3 

Reward 

Value 

Reward 

Value 

Reward 

Value 

Reward 

Value 

Reward 

Value 

…/home/ 0.8393 0.5886 0.8916 0.6496 0.8764 
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URL 

(March) 

Character-

Based 

(March) 

Visual-

Based  

(March)

Word-1 

(March)

Word- 2 

(March)

Word-3 

Reward 

Value 

Reward 

Value 

Reward 

Value 

Reward 

Value 

Reward 

Value 

…/athletics/ 0.2267 0.3423 0.2267 0.2463 0.2333 

…/social/ 0.2180 0.1962 0.2398 0.2376 0.2071 

…/trnst/ 0.4360 0.4316 0.4404 0.4033 0.4142 

…/news/ 0.2267 0.2180 0.2289 0.3314 0.2180 

…/video/ 0.1482 0.4033 0.1570 0.2224 0.1918 

…/uaemergency/ 0.1482 0.1984 0.1526 0.2180 0.1918 

…/calendar/ 0.2289 0.0218 0.2289 0.2572 0.2202 

…/people/ 0.2420 0.3423 0.2594 0.2354 0.2442 

…/login/ 0.3880 0.1962 0.3750 0.2245 0.3270 

…/eclass.srv.ualbe

rta.ca/portal/ 
0.4316 0.4273 0.4316 0.3859 0.4120 

…/campusmap.ual

berta.ca/ 
0.2289 0.2136 0.2376 0.2311 0.2180 

…/myonecard.ualb

erta.ca/ 
0.2572 0.2245 0.2616 0.2790 0.2463 

…/capsconnection

s.ualberta.ca/ 
0.2071 0.2376 0.2115 0.2354 0.2027 

…/stustrv/ 0.3662 0.1962 0.3706 0.2594 0.2398 

…/customize/ 0.2115 0.2180 0.2158 0.2180 0.1962 
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URL 

(March) 

Character-

Based 

(March) 

Visual-

Based  

(March)

Word-1 

(March)

Word- 2 

(March)

Word-3 

Reward 

Value 

Reward 

Value 

Reward 

Value 

Reward 

Value 

Reward 

Value 

…/MyUAlbertaFe

edback/ 
0.0000 0.0000 0.0000 0.0000 0.0000 

…/search/ 0.2180 0.3946 0.2485 0.2507 0.2420 

…/photos/ 0.2202 0.4142 0.2180 0.2398 0.2180 

…/ualberta.ca 0.0000 0.0000 0.0000 0.0000 0.0000 

…/kurogoerror/ 0.1657 0.2180 0.1134 0.2180 0.1766 

…/library/ 0.2354 0.4120 0.2485 0.2507 0.2289 

…/registrar/ 0.3880 0.1962 0.3771 0.3488 0.2834 

 

 

 (b)    

Note: (a): Reward values using the automated reward calculation algorithm for the 

first log file. (b): Reward values using the automated reward calculation algorithm 

for the second log file. 

These results illustrate that some pages (URLs) have higher reward values in each 

extraction category compared to others, which indicates that these pages provide 

more varied content. We implement several extractor functions in our approach. 

As shown in Table 3.4, the homepage of the application has the maximum 

recorded reward value; the “transit” and “eclass” modules are ranked second and 

third in terms of reward values. The reward value indicates a user’s interest in 

visiting a web page; higher reward values represent popular pages.  

The MyUAlberta application was launched for the first time in 2014 and it has 

been continuously attached to a Google Analytics account since then. Thus, 
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historical data from actual interacting users is stored accurately. To indicate the 

interesting (popular) pages from users’ perspective, Google Analytics’ data along 

with users’ behavioral flows is helpful. Google Analytics shows page views that 

represent the total number of pages that visitors looked at on the website. 

Table 3.5 provides the number of page-views for each considered page (URL) in 

January and March. According to Table 3.5 (a), the maximum number of viewers 

belongs to the homepage which equals 35,385 page-views in January. The 

“transit” page has the second maximum number of viewers at 10,563 page-views 

comparing to other pages. Table 3.5 (b) shows that the homepage of the application 

has been viewed 35,267 times which had the maximum number of viewers 

amongst all other pages. Also, the “transit” page was the second more viewers 

page compare to other pages. It had been viewed 10,382 times in March. 

A user flow is a series of web pages and includes the steps that a user performs to 

complete the task, during a website visit or other process. The Users’ behavioral 

flow report extracted from the Google Analytics account illustrates the paths users 

take through an application’s content. The web application developers can use the 

flow reports to see how users enter, engage, and exit the application. Developers 

can also use these reports to troubleshoot the application’s content by finding any 

unexpected place users exit or loopback. Figure 3.4 shows the users’ behavioral 

flows representing the most engaging content in the web application for the two 

mentioned months. Figure 3.4 (a) shows the behavioral flow in January; and, 

Figure 3.4 (b) illustrates the users’ behavioral flow in March. Unlike a map, which 

displays possible and known routes, a flow visualization reveals the actual path as 

it was traveled step by step, including any detours or backtracking that happened 

along the way.  
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Table 3.5: Number of Page-Views for Each Considered Page (URL) on 

MyUAlberta Study Instance 

Index     URL 
(a) January 

Page-views  

(b) March 

Page-views  

1  …/home/ 35385 35267 

2 …/athletics/ 419 339 

3 …/social/ 290 222 

4 …/trnst/ 10563 10382 

5 …/news/ 507 378 

6 …/video/ 241 66 

7 …/uaemergency/ 109 60 

8 …/calendar/ 640 546 

9 …/people/ 271 1369 

10 …/login/ 4881 4689 

11 …/eclass.srv.ualberta.ca/portal/ 7871 8171 

12 …/campusmap.ualberta.ca/ 2001 898 

13 …/myonecard.ualberta.ca/ 1356 1435 

14 …/capsconnections.ualberta.ca/ 123 137 

15 …/stustrv/ 1747 1878 

16 …/customize/ 140 181 

17 …/MyUAlbertaFeedback/ 15 0 

18 …/search/ 937 1264 

19 …/photos/ 267 333 
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Index     URL 
(a) January 

Page-views  

(b) March 

Page-views  

20 …/ualberta.ca 1159 0 

21 …/kurogoerror/ 282 118 

22 …/library/ 1100 1166 

23 …/registrar 4113 2324 

 

The top path is the most common user flow. It is the series of pages seen by typical 

visitors. Figure 3.4 shows the homepage in the MyUAberta application is the point 

of entry or the starting page, where users mainly start browsing the application. 

Then, during the first engagement (interaction), “eclass” and “transit” pages 

receive the highest portion of the traffic going out from the homepage. Following 

the connections and nodes through different engagement levels demonstrates the 

overall traffic flow in the web application. 

To choose the best extractor function in this study, we compare the reward values 

calculated using different extractor functions with the Google Analytics’ page 

views considering the correlation coefficient value between them. 
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Figure 3.4: User Flow Extracted from Google Analytics, (a) in January; (b) in 

March 
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3.5.5 Correlation Coefficients 

To determine which extractor function is performing better than the others, we use 

correlations between the reward values and the page view metric, extracted from 

the Google Analytics account. Since the variables are not normally distributed, we 

calculate the Spearman correlation between them. The correlation 

coefficient matrix of two random variables (X and Y) is the matrix of correlation 

coefficients for each pairwise variable combination: 

𝑅 = (
𝑟(𝑋, 𝑋) 𝑟(𝑋, 𝑌)

𝑟(𝑌, 𝑋) 𝑟(𝑌, 𝑌)
)                                      (3.17) 

Where: 

𝑟(𝑋, 𝑌) = 

(1 (𝑁 − 1⁄ ))∑ ((𝑋𝑖 − 𝜇𝑋)/𝜎𝑋)
𝑁
𝑖=1 ((𝑌𝑖 − 𝜇𝑌)/𝜎𝑌)               (3.18) 

if each variable has N scalar observations. 𝜇𝑋 and 𝜇𝑌 are the mean and 𝜎𝑋 and 𝜎𝑌 

are the standard deviations. 

Table 3.6 shows the Spearman correlation coefficient matrix of different reward 

values of five extractor functions and page views for January and March; 

designated 𝜌1 and 𝜌2, respectively. 𝜌1 and 𝜌2 indicate the positive correlation 

between the two variables is statistically significant especially in the Word-3, 

Word-1, and character-based extractors which are 0.9345, 0.9088, and 0.8400 for 

January and 0.9040, 0.9010, and 0.8986 for March, respectively.  
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Table 3.6: Spearman Correlation Coefficient Matrix 

Spearman Correlation 

Coefficient 
𝑹𝟏 (𝑱𝒂𝒏𝒖𝒂𝒓𝒚) 𝑹𝟐 (𝑴𝒂𝒓𝒄𝒉) 

Character-Based (
1 0.8400

0.8400 1
) (

1 0.8986
0.8986 1

) 

Visual-Based (
1 0.3273

0.3273 1
) (

1 0.3031
0.3031 1

) 

Word-1 ( 1 0.9088 
0.9088 1

) ( 1 0.9010 
0.9010 1

) 

Word- 2 (
1 0.8003

0.8003 1
) ( 1 0.7256 

0.7256 1
) 

Word-3 ( 1 0.9345 
0.9345 1

) ( 1 0.9040 
0.9040 1

) 

 

Figure 3.5 (a) depicts the Spearman correlations between Google Analytics’ page 

views and character-based, visual-based, Word-1, Word-2, and Word-3 reward 

extractors in MyUalberta study instance during January. The order of the states 

(pages) represented in this figure is based on the index from Table 3.5. The peak 

in all plots belongs to the homepage, which has the highest reward value and page 

views. The “strong” correlation between the variables (reward values and Google 

Analytics’ page views) is represented in the word-3 reward extractor shown with 

red color. As it is shown in this curve (word-3), there is a pretty strong positive 
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correlation as the slopes and peaks in the fitting polynomials can be visually 

compared. 

Figure 3.5 (b) shows the Spearman correlations between Google Analytics’ page 

views and character-based, visual-based, Word-1, Word-2, and Word-3 reward 

extractors in MyUalberta study instance during March. Again, the peak in all plots 

belongs to the homepage, which has the highest reward value and page views. It 

is illustrated that there is a strong correlation between the Word-3 extractor reward 

values and Google Analytics’ page views. 
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Figure 3.5: Spearman Correlations among Google Analytics’ Page Views and 

Different Reward’s Extractors (a) for the First Log File (January) (b) for the 

Second Log File (March) 

We also calculated the Pearson correlation coefficient to indicate the correlations 

between the reward values calculated using our approach, and the page view 

metric, extracted from the Google Analytics account. 

Table 3.7 shows the Pearson correlation coefficient matrix of reward values of the 

extractor functions and page views for two months of January and March 

determined with R1 and R2, respectively.  

R1 and R2 indicate the positive correlation between the two variables is 

statistically significant especially in Word-3, Word-1, and character-based 

methods which are 0.9115, 0.8850, and 0. 8606 for January and 0.9162, 0.8804, 

and 0.8672; for March, respectively. However, the correlation coefficient between 
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the rewards based on Word-3 and the Google Analytics’ page-views has the best 

result amongst the other extractors; it is illustrated that there is a strong correlation 

between the Word-3 extractor reward values and Google Analytics’ page views. 

This result again shows the importance of calculating reward values in user 

behavioral models especially in the cases that Google Analytics data does not exist 

or is not available.  

Table 3.7: Pearson Correlation Coefficient Matrix 

Pearson Correlation 

Coefficient 
𝑹𝟏 (𝑱𝒂𝒏𝒖𝒂𝒓𝒚) 𝑹𝟐 (𝑴𝒂𝒓𝒄𝒉) 

Character-Based (
1 0.8606

0.8606 1
) (

1 0.8672
0.8672 1

) 

Visual-Based (
1 0.5543

0.5543 1
) (

1 0.5716
0.5716 1

) 

Word-1 ( 1 0.8850 
0.8850 1

) ( 1 0.8804 
0.8804 1

) 

Word- 2 (
1 0.7801

0.7801 1
) ( 1 0.7751 

0.7751 1
) 

Word-3 ( 1 0.9115 
0.9115 1

) ( 1 0.9162 
0.9162 1

) 
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As shown in Figure 3.5, Table 3.6, and Table 3.7 there is a strong correlation 

between the Word-3 reward values and Google Analytics’ page views. Therefore, 

we use the Word-3 extractor for calculating the reward values in our approach. All 

future discussion in this study is based on the Word-3 extractor. For clarification, 

Table 3.8 (a) and (b) show the reward values using the Word-3 extractor for two 

log files.  

Table 3.8: Reward Values using Word-3 Extractor for Two Log Files 

URL 

(a) 

January- 

(b) 

March- 

(c) 

January- 

(d) 

March- 

Reward 

Value 

Reward 

Value 

(Error-

rate) 

(Error-

rate) 

…/home/ 0.8720 0.8764 0.0491 0.0258 

…/athletics/ 0.2485 0.2333 0.9887 0.9906 

…/social/ 0.2267 0.2071 0.9922 0.9939 

…/trnst/ 0.4360 0.4142 0.7162 0.7132 

…/news/ 0.2442 0.2180 0.9864 0.9896 

…/video/ 0.2202 0.1918 0.9935 0.9982 

…/uaemergency/ 0.2354 0.1918 0.9971 0.9983 

…/calendar/ 0.2551 0.2202 0.9828 0.9849 

…/people/ 0.2202 0.2442 0.9927 0.9622 

…/login/ 0.3793 0.3270 0.8688 0.8705 

…/eclass.srv.ualb

erta.ca/portal/ 

 

0.4098 0.4120 0.7885 0.7743 
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URL 

(a) 

January- 

(b) 

March- 

(c) 

January- 

(d) 

March- 

Reward 

Value 

Reward 

Value 

(Error-

rate) 

(Error-

rate) 

…/campusmap.ua

lberta.ca/ 
0.3314 0.2180 0.9462 0.9752 

…/myonecard.ual

berta.ca/ 
0.2616 0.2463 0.9636 0.9604 

…/capsconnectio

ns.ualberta.ca/ 
0.2180 0.2027 0.9967 0.9962 

…/stustrv/ 0.3989 0.2398 0.9531 0.9481 

…/customize/ 0.2180 0.1962 0.9962 0.9950 

…/MyUAlbertaF

eedback/ 
0.0000 0.0000 0.9996 0.9996 

…/search/ 0.2529 0.2420 0.9748 0.9651 

…/photos/ 0.2333 0.2180 0.9928 0.9908 

…/ualberta.ca 0.2485 0.0000 0.9689 0.9680 

…/kurogoerror/ 0.1635 0.1766 0.9924 0.9967 

…/library/ 0.2790 0.2289 0.9704 0.9678 

…/registrar/ 0.3706 0.2834 0.8895 0.9358 

 

Regarding Table 3.8 (a) and (b), the homepage of the application has the maximum 

amount of reward values compared to all the other pages which are equal to 0.8720 

and 0.8764 for the first and the second log files, respectively. It means that users 

are mostly going to the homepage of the application. Therefore, it is the most 



 

 

 

77 

 

popular page and users are more interested to visit the page. The second and the 

third ranks of maximum reward values include “transit” and “eclass” modules 

which are equal to 0.4360, 0.4142, and 0.4098, 0.4120 for the first and the second 

log file, respectively. 

As it is shown with red color (word-3) in Figure 3.5 (a) and (b), there is a “strong” 

correlation between the rewards of our approach and the page-views of Google 

Analytics. It indicates that there is an association between pages with higher page 

views and pages with higher reward values. Pages with higher page views have 

higher corresponding reward values. It shows that users are more interested to visit 

these pages. 

Pages with higher reward values are pages with more varied content compared to 

the previously viewed page. The results also indicate that such high reward values’ 

pages are offering different links and text rather than the previously viewed page. 

So, the users are more interested and, subsequently, apt to explore the pages 

containing varied contents.  

According to the results, the homepage has the maximum reward value. Users may 

be brought to the homepage indirectly, for instance, a user can be in /library/ page 

and go to the homepage by clicking on “UAlberta Home”. However, many users 

directly visit the homepage without referrals from other pages. Therefore, in many 

cases, there is no actual URL exists to be compared to the homepage. As a result, 

the homepage receives more accumulated rewards (Equation 3.14). This can easily 

explain the reason for the high reward value of the home state. Our proposed 

approach not only automates the reward calculation process but also produces 

results, which are technically explainable and compatible with the data extracted 

from Google Analytics (as the proof of the concept). The difference between 

Google Analytics’ page views and reward values as “Error-rate” is normalized and 

shown (per page) in Table 3.8 (c) and (d), for two log files. Regarding this table, 

the homepage of the application has the minimum amount of error rate compared 

to all the other pages which is equal to 0.0491 and 0.0258 for the first and the 

second log files, respectively. The second and the third ranks of minimum error 
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rate include “transit” and “eclass” modules which are equal to 0.7162, 0.7132, and 

0.7885, 0.7743 for the first and the second log file, respectively.   

The results (Table 3.8 (a) and (b)) also indicate that such high reward values’ pages 

are offering different links and text rather than the previously viewed page. So, the 

users are more interested and, subsequently, apt to explore the pages containing 

varied contents. 

As it is shown in Table 3.8, the reward value of the “/ualberta.ca” page is 0.2485 

and 0, respectively for the first and the second log file. It indicates that during 

March it was not possible to reach the main page of the University of Alberta web 

application from other pages of the application. It was found that there was a 

design anomaly in the UAlberta application and users were not able to go to the 

homepage of the application by clicking on the “UAlberta Home” during March. 

(For instance, a user can be on the “eclass” page and go to the homepage by 

clicking on “UAlberta.ca”.) Also according to Table 3.5, we can see that the page 

view of the “ualberta.ca” page is 1159 and 0 for January and March, respectively. 

It indicates that users could not be brought to the homepage from the other pages 

of the application during March. This also shows that our proposed approach for 

calculating the reward values is compatible with the data extracted from Google 

Analytics. 

 It is possible to analyze users’ behaviors of a web application from its inferred 

model. By analyzing the behavior of the inferred model from the MyUalberta 

application, it is represented there is not any transition from the “registrar” module 

to the other pages and see courses users have registered. It indicates that there 

could be an anomaly in the “registrar” module where there are not any transitions 

that come out from this state. It was found that a dead-end occurred in the 

“registrar” module of the application. Users are being prevented from leaving the 

“registrar” page without closing it. Therefore, there is no transition from this 

module to others. This shows that our proposed approach can detect design 

anomalies and dead-ends.  
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Figure 3.6: The Entire User Behavior Model of “MyUAlberta” Study Instance 

with 23 States (Also Two States as Start and End) and 486 Transitions 
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3.5.6 Real-Time Simulation 

To demonstrate the flexibility of our approach, we mimic a new dataset. We merge 

these two log files and create a single log file containing the information of both 

log files. The entire model is shown in Figure 3.6 which has 486 transitions, 23 

states, and two states for starting and ending the model. In the following 

paragraphs, we empirically evaluate the performance of our approach on the 

merged log file. The source code was implemented on Intel(R) Core(TM) i7-3770 

CPU, 16.0 GB RAM.   

The Spearman correlation coefficient matrix of reward values and page views for 

the merged log file is presented as follow: 

Spearman Correlation Coefficient = (
1 0.8861

0.8861 1
) 

It states that there is a “strong” correlation between the reward values and Google 

Analytics’ page views. Again, these results are consistent with the previous 

analysis. 

As it is aforementioned in this work, to eliminate any redundancies in the model, 

the merging step of the gkTail inference algorithm is applied to merge the 

equivalent states. According to this state-merging procedure, two states are 

considered equivalent if they have the same future of length k (in our study k=1). 

This procedure prunes the model of redundant states with the same values. The 

result shows that 971 merges are found during these experiments.  Hence, the 

approach is certainly impacting model production and is helping to eliminate 

redundancies. 

3.5.7 Model Analysis Using Probabilistic Model Checking 

Probabilistic model checking refers to a range of techniques for calculating the 

likelihood of occurrence of certain events during the execution of systems that 

exhibit such behavior.  PRISM, a probabilistic model checker, first parses a model 
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description and constructs an internal representation of the probabilistic model, 

computing the reachable state space of the model and discarding any unreachable 

states. This represents the set of all feasible configurations which can arise in the 

modeled system. Next, the specification is parsed and appropriate model checking 

algorithms are performed on the model by induction over syntax. In some cases, 

such as for properties that include a probability bound, PRISM will simply report 

a true/false outcome, indicating whether or not each property is satisfied by the 

current model. More often, however, properties return quantitative results and 

PRISM reports, for example, the actual probability of a certain event occurring in 

the model. 

One of the most important operators in the PRISM property specification language 

is the P operator, which is used to reason about the probability of an event's 

occurrence. PRISM also includes support for the specification and analysis of 

properties based on reward structures. It can analyze properties that relate to 

the expected values of these rewards. This is achieved using the R operator, which 

works similarly to the P operator. 

Our proposed approach infers behavior models of a system and incrementally 

calculates reward values for each state of the model. By using a model checker 

(e.g. PRISM), questions such as “What is the probability of reaching the “eclass” 

web page in the next state?”, “What is the probability of eventually visiting the 

“full web” state not followed immediately by “goal” state?”, “Is there a path 

between the “registrar” and “social” web pages?”, or “What is the probability of 

reaching the “transit” web page in the next second state?” can be answered. Also, 

model checking not only deals with correctness but also with incorrectness, often 

providing a counterexample in case the program does not meet the specification.  

To analyze the behavioral model that has been inferred, we use PRISM to evaluate 

the inferred model’s efficiency using the merged log file. Also, we express some 

queries which can be evaluated by PRISM as follows: 

 To consider the reward values of all the states up to the state labeled as 

“goal” (end), the following property can be used:{}ℛ =? [ℱ𝑔𝑜𝑎𝑙]. It 
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calculates the reward values of all the states. The evaluation results are 

the same as the reward values calculated using our approach.  

 According to the reward values and Google Analytics’ page views of the 

application, it is illustrated that “home”, “eclass” and “transit” pages of 

the application have the maximum amount of reward values. Therefore, 

users mostly prefer to visit these pages. By using PRISM, we calculate 

the probability of going to these pages in the next state using 

{}𝑃 =? [𝑋ℎ𝑜𝑚𝑒], {}𝑃 =? [𝑋𝑒𝑐𝑙𝑎𝑠𝑠] and {}𝑃 =? [𝑋𝑡𝑟𝑎𝑛𝑠𝑖𝑡] 

queries. So, the probability values are 0.5434, 0.2168, and 0.2142 for 

“home”, “eclass” and “transit”, respectively which indicate a high 

probability of visiting these pages. 

 We used a query to show the probability of eventually visiting the 

“registrar” state followed immediately by “goal” (end) which is 

{}𝑃 =? [𝐹(𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑎𝑟&(𝑋𝑔𝑜𝑎𝑙))]. It shows the probability of not 

visiting the other states from the “registrar” which is 0.1493. 

 As it is mentioned in Section 3.5.5, users could not be brought to the 

homepage from the other pages of the application in March. 

{}𝑃 =? [𝐹(𝑓𝑢𝑙𝑙𝑤𝑒𝑏&(𝑋! 𝑔𝑜𝑎𝑙))] shows the probability of 

eventually visiting the “full web”state not followed immediately by 

“goal” which is 0.1896.  

 To realize the probability of reaching “home” in the next state and 

“news” in the next second state, we can use 

{}𝑃 =? [(𝑋ℎ𝑜𝑚𝑒)&(𝑋𝑋𝑛𝑒𝑤𝑠)]  which results in 0.042. 

So, our approach can evaluate specified properties for the final DTMC using 

probabilistic model checkers such as PRISM. As previously mentioned, PRISM 

can compute the reward functions using considered reward properties. We used 

some queries to check the model and the evaluation results indicate its 

compatibility with the inferred model. Also, we used PRISM to realize the 

probability of reaching from a specific starting state to a particular finishing state. 

Although we used PRISM, other probabilistic model checkers such as Storm [88] 
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could be used instead. 

3.5.8 Threats to Validity 

In empirical studies like ours that involve model inference analysis, a set of threats 

exists that can raise questions about the validity of the research outcome. In this 

section, we present a set of such threats to the validity of our research that were 

addressed during this work. The first of such possible threats can be content 

validity. In the scope of this research, content validity refers to a subjective 

assessment that checks whether all reasonable evaluation metrics were considered 

during our study or not. To mitigate this threat, we composed them from an 

extensive review of the related literature. 

To maintain the internal validity of the experiments, we not only formally defined 

the evaluation metrics, but we also carefully controlled the experimental 

environment and simulate them to fulfill all their desired assumptions. 

Furthermore, our method is a non-instrumented-based approach that minimizes 

the threats to internal validity. Also to evaluate the accuracy of our results, we not 

only compare them against the state-of-the-art approach but also an analyst from 

the University of Alberta, IST department, verified the correctness of our methods; 

and thus we believe in the adequacy of our accuracy measures.  

Also, we plan to mitigate the threats to the external validity of the experiments that 

is to safeguard that our experimental results could be generalized outside the scope 

of this study. However, in this study, we have chosen a web application with multi-

user processes. 

3.6 Implications for Practice 

We propose an approach to fully automate the behavioral model generation for 

web applications. The main learning points of this approach are explained in the 

following paragraphs. 
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At the first step, a set of Atomic Propositions (APs) is used to associate semantics 

to the URLs occurring in the data entry. APs can be defined by the system expert 

or automatically by considering the URL of the web page as a proposition. Our 

proposed inference framework uses several code fragments to indicate the set of 

atomic propositions for the MyUAlberta application, which can be associated with 

the relevant requested URLs in the log files.  

Also, a system expert can define a set of user-classes to characterize different 

groups of users. Our inference framework contains two default classifiers to 

classify users based upon the user-browsers (e.g. Firefox) and the users’ location 

extracted by geolocating the IP addresses. However to automatically infer a 

reward-augmented model, which is not limited to a specific scope, defining user-

classes can be ignored. 

As mentioned in Section 3.3, the reward calculation algorithm has been 

synchronized with the model-inference process. Accordingly, the rewards are 

calculated and updated incrementally during the model generation process. When 

the models are generated and annotated with reward values, the analysis engine 

evaluates the properties of the interaction patterns against the inferred models 

using probabilistic model checking (PRISM). 

To construct probabilistic models (such as DTMCs) with PRISM, it must be 

specified in the PRISM language, a state-based language, based on the Reactive 

Modules formalism. To analyze these probabilistic models, it is necessary to 

identify one or more properties of the models; a property is the formal 

specification of a requirement to be checked. Properties of these models are 

written in the PRISM property specification language which is expressed in one 

of the probabilistic logics, a probabilistic extension of temporal logics. For 

instance, Probabilistic Computation Tree Logic (PCTL) is used for specifying 

properties of discrete-time models such as DTMCs.  

Our approach integrates PRISM with our code, therefore, the model can be 

generated and analyzed in one single framework. However, the model and the 

http://www.prismmodelchecker.org/manual/PropertySpecification/Main
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properties can be separately written in the PRISM tool. The analysis engine of our 

approach processes PCTL properties relying on the PRISM probabilistic model 

checker; we present the PTCL properties in the PRISM syntax. The model checker 

then automatically checks if the model satisfies the given specification.  

More precisely, a property is composed of a statement in curly brackets and a 

PCTL expression. The scope of the property is defined by the statement that can 

be ignored (void), while the PCTL expression specifies the formula to be verified 

with the model checker. The scope of the property identifies the user-classes the 

PCTL formula refers to. 

As an example, as shown in Table 3.4, the reward value of “UAlberta.ca” is 0 in 

March. This issue can be identified by analyzing the model using the following 

property: 

{}𝑃 =? [𝐹(UAlberta. ca&(𝑋! 𝑔𝑜𝑎𝑙))] 

This property shows the probability of eventually visiting the “UAlberta.ca”state 

(UAlberta Home) not followed immediately by “goal” is 0. This means that users 

were not able to go to the homepage of the application by clicking on the 

“UAlberta Home” during March that is compatible with the page views from 

Google Analytics. 

Although probabilistic model checking tools have been used to verify various 

systems, this usually has been done by software engineers who have a good 

understanding of DTMCs and are familiar with the syntax of both modeling and 

property specification languages. Indeed, the engineers can set properties in the 

analysis engine of our framework to describe the expected behaviors of either all 

or specific classes of users, as well as the impact of changes in the navigation 

attitude of users. They can set different properties to analyze the model. For 

example, they can use properties to check whether or not the model has dead-end 

or any other problematic pages and therefore, improve the application’s design. 

Hence, a limitation of this modeling framework is that software engineers utilizing 

this system need to have a strong background in formal methods. 
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3.7 Conclusions and Future Research 

In this research, we present a novel stochastic approach to (1) generate user 

behavioral models for mobile and desktop web applications, (2) automatically 

calculate the states’ rewards, (3) annotate and analyze the models to verify the 

quantitative properties, and (4) address some limitations found in existing 

approaches. Our proposed approach not only builds a fully automated inference 

framework but also provides the following advantages as compared to other 

behavioral model generation methods: 

 Our proposed approach is not only applicable to any new web application 

of any size and scale, but also legacy applications since it is not dependent 

on the specific input data. In other words, a server log file would be 

sufficient to start the modeling procedure. 

 This approach provides the capability to evaluate and verify the property 

of the inferred models. 

 Reward values can easily add semantics to inferred behavioral models. 

They help in interpreting model behaviors and detecting anomalies. 

Calculating reward values and assigning them to the states of the model 

during the inference procedure would be a more accurate and time-saving 

approach as compared to manually assigning them by systems experts. The 

proposed technique uses RL to incrementally calculate the value of the 

reward measure using the information extracted from browsed web pages 

in different states. The proposed approach adds meaningful reward values 

to the model, explaining the real users’ interest or willingness in browsing 

web pages. 

 It is easy to apply this procedure to calculate domain-specific reward 

values and identify different measures. 

 It makes the dead-end or anomaly detection procedure faster and more 

meaningful by limiting the search space to the states with low reward 

values. 
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Besides, the empirical results approved that the proposed inference approach 

applies to large-scale mobile and desktop applications with many web pages and 

large volumes of interactions (data entries) per day, and can generate meaningful 

and compatible reward values in the considered study instance. We are extending 

the approach to be applicable on any probabilistic timed automata to calculate the 

reward values. 
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Chapter 4 

Two New Semantic Approaches (Fusion-

Block and Integrated-Block methods) to 

Improve Web page Segmentation 

The World Wide Web has become a massive repository of information. The 

content and layout of web pages are getting more complex. Thus, identifying, and 

categorizing distinct informational elements from web pages has become 

increasingly difficult. Web page segmentation provides a solution to this problem. 

Web page segmentation is the process of partitioning a web page into blocks 

(visually and semantically coherent segments of a web page), in a manner, where 

each block contains distinctive content. Also, humans tend to segment a web page 

based on their understanding, thus, it is important to generate a segmentation 

model to segment a page by simulating human perception. Segmenting a web page 

into meaningful components (blocks) is one of the substantial pre-processing steps 

of web page analysis and contributes to several applications’ domains such as 

information retrieval, web archiving, and mobile applications [6]. For instance, in 

the context of information retrieval, segmentation can be used to extract specific 

parts of a web page.  

There are two major factors in segmenting a web page into different blocks, (1) 

how the content of a web page is extracted and (2) how the extracted content is 

processed to retrieve distinct information. Most research extracts and organizes 

content relying on the DOM (Document Object Model) structure of an HTML 

page using heuristic or machine learning-based approaches [7-10]. The DOM 

structure considers a web page document as a tree structure, where each fragment 

of the document is related to a particular node of the tree. Therefore, DOM 

represents the structure of web page design. However, the information available 
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in the DOM is very limited. Additionally, full-text content is not extracted from 

the complex DOM structure which results in lacking the impressive feature 

extraction process [18]. To overcome these difficulties, some researchers prefer to 

segment web pages using visual information in a web page.  

This vision-based segmentation method focuses on the analysis of visual features 

of the document content as they are perceived by a human reader. It exploits visual 

clues such as font size, font color, background color, spaces between paragraphs, 

etc. [19]. Considering the visual information allows these techniques to achieve a 

higher segmentation accuracy in comparison to DOM-based approaches [6], web 

pages are structured more flexibly now. 

Some research presents segmentation methods based on both DOM-based and 

text-based approaches [89-91]. They focus on properties of the text content, such 

as density (number of characters in a text), to detect the content segments. 

However, current methods do not consider semantic analysis to categorize pages. 

Semantic analysis includes extracting text from segmented blocks, computing 

textual similarity, and regrouping blocks. A fusion approach that combines 

different analyses (DOM, vision, and text-based segmentation) is required to 

obtain higher segmentation accuracy.  

Human tends to classify ambiguous objects based on their understanding. So, they 

group visually similar elements in a category. As an example, assume a page of a 

newspaper. Our mind automatically categorizes this page into separate groups 

without reading the text according to different features of the page such as the size 

of each column, font size, aligned lines, images, etc. This idea is proposed by 

Koffka et al. [25] and is known as Gestalt laws. According to Gestalt laws, humans 

group visually similar objects together based on several rules known as Gestalt 

laws of grouping [23-25, 92].   

We propose two new combination models of web page segmentation by dividing 

the content of a web page into blocks by initially considering human perception 

(inspired by Gestalt laws of grouping) and subsequentially re-segmenting initial 
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similar blocks using semantic text similarity. This research contributes to current 

research in web page analysis in the following ways: 

 To improve the segmentation accuracy, this study provides two new 

semantic methods of web page segmentation by merging the DOM 

structure, vision-based similarity features, and text-based similarity 

metrics of web pages. 

 Specifically, can a low-level visual-based segmentation be augmented with 

a high-level segmentation process that provides a semantic analysis of 

textual features?  

 Further, we demonstrate the utility of transformer technology as a vehicle 

for this text-based process.  

 By evaluating the system on three datasets and by comparing it with state-

of-the-art studies, the results represent that our proposed approaches 

(Fusion-Block and Integrated-Block) outperform the other existing web 

page segmentation methods, in terms of higher accuracy. 

The chapter is organized as follows: In Section 4.1 we explain the challenges and 

our research motivations; while Section 4.2 reviews and presents the related work. 

A detailed description of our approach is provided in Section 4.3, whereas Section 

4.4 presents an evaluation of the proposed approach. In Section 4.5 we discuss 

some limitations and future work opportunities for our study and conclude the 

chapter. 

4.1 Problem Statement and Research Motivation 

It is quite easy for humans to recognize related web page content fast and correctly 

from complex pages. However, with the huge number of web pages, it is 

impossible to identify and segment related information manually. Web page 

segmentation models generated from different page features provide solutions to 

several web page analysis problems. To segment web pages based on human 

perception, it is essential to employ laws that simulate human understanding. Also, 
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it is required to utilize semantic text similarity to segment web pages. This study 

segments web pages by simulating human perception and utilizing structure, 

vision, and text-based methods. Web page segmentation is often carried out for 

various purposes such as to retrieve or cluster information [6]. This research seeks 

to improve on these previous attempts in several ways which are described below. 

The DOM structure of a web page is used in most of the existing research on web 

page segmentation. This segmentation model can only gain limited information 

from web pages. To improve the segmentation method, some research has been 

carried out using visual features of web pages. To simulate human perception in 

the segmentation process, a series of laws are presented, the Gestalt laws of 

grouping. According to these laws, humans group visually similar objects together. 

However, Gestalt laws do not consider the text similarity of web pages. To 

consider the text similarity, we use semantic text similarity metrics in addition to 

these laws to segment web pages into blocks. Thus, each block has related content 

in terms of both visual and textual features. In this research, semantic segmentation 

includes dividing the content of a web page into blocks by initially considering 

human perception (inspired by the Gestalt laws of grouping), and subsequentially 

re-segmenting these initial similar blocks using semantic text similarity. Further 

details of Gestalt laws and text similarity metrics are provided in Section 2 and 

Section 4.3, respectively. 

The shortcomings of the DOM structure lead to performance limitations of the 

structural-based segmentation methods; typically, the (long) text of a web page 

results in several short or scatter text segments [18]. However, these scattered text 

sections have related content; and hence, need to be grouped into a single block. 

It is hypothesized that to regroup small blocks and obtain longer text segments in 

larger merged blocks, a semantic analysis that uses Natural Language Processing 

(NLP) techniques is required. 

Some segmentation methods have been carried out using NLP techniques [89-91]. 

These methods consider text density metrics such as text formats and words’ 

frequency of a document but do not consider the semantic text similarity of blocks. 
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Two sentences can have the same meaning regardless of the choice of word and 

hence should be grouped in a single block; for example, consider the following 

two sentences that are grouped in two different blocks using a segmentation 

method. 

“I read more books than Sarah”, and “She reads fewer books than me”.  

Although these sentences have different words they have the same meaning. The 

segmentation method that segments these two blocks does not consider the 

semantic similarity of the sentences. Most of the segmentation methods focus on 

the structural and visual features of a web page. The semantic similarity of 

documents determines the probability of the relatedness of the documents [93]. 

Generally, documents are semantically similar if they convey the same meaning. 

 

Figure 4.1: A Part of the Page “www.journalregister.com” 

As another example, consider some parts of the web pages 

“www.journalregister.com” and “www.fishdevon.co.uk” as shown in Figure 4.1 

and Figure 4.2, respectively. The existing segmentation methods that we used in 

this research to compare with our methods, segment the paragraphs shown in 

Figure 4.1 and Figure 4.2 into four and five separated blocks, respectively, while 

these blocks are semantically related and need to be grouped in a single block. 

These methods use DOM structure and visual properties of web pages to segment 

pages. Most of the segmentation methods do not use semantic text similarity of 

blocks. Thus, some paragraphs with similar subjects are segmented into different 

blocks based on their text formats, instead of employing the semantic text 



 

 

 

93 

 

similarity of blocks.  

 

Figure 4.2: A Part of the Page “www.fishdevon.co.uk” 

Some research use textual features of web pages, for instance, Jiang et.al [18] 

propose a segmentation method that uses logical and visual features of content. 

Also, this method uses text density (the number of words in a block of text) to 

segment web pages. As mentioned in [10], this method does not consider semantic 

text similarity metrics of blocks. In this research, we propose two segmentation 

methods (Fusion-Block and Integrated-Block) that use structural, visual, and 

textual features of web pages. The first method uses the Doc2Vec technique and 

the second method uses the transformer to compare the text similarity of web 

pages. 

Doc2Vec is an NLP technique for representing documents as a vector and is a 

generalization of the Word2Vec method. The Word2Vec technique assigns a single 

word embedding vector to each word in a text corpus based on the frequency of 

words. For example, the word “goal” in “last-minute goal” and “life goal” has the 

same word embedding representation vector. However, Doc2Vec does not use the 

relation of the word to the other words in a document by considering the meaning 

of sentences. Thus, we propose the Integrated-Block method to deeply compare 

the text similarity of web pages. 

Google has proposed the Bidirectional Encoder Representations from 

Transformers (BERT) method for NLP techniques such as text classification, 

summarization, generation, and similarity [94]. BERT is a neural network-based 

https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Word2vec
https://en.wikipedia.org/wiki/Word2vec
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technique to represent text. It uses the transformer encoder to learn a language 

model [95]. The transformer uses a sequence of tokens as an input and returns a 

sequence of vectors as an output, where each vector corresponds to an input token. 

A token is an instance of a sequence of characters in a document that is grouped 

as a semantic unit for processing [96]. First, the transformer randomly masks some 

of the input tokens to train a deep bidirectional representation and then predicts 

the masked tokens [94]. For example, consider this sentence “Sarah reads more 

books than me”. BERT represents “reads” using both its right and left words by 

masking the word in the input as “Sarah xxx more books than me”. Then, it runs 

the entire sequence through a bidirectional transformer encoder and predicts the 

masked word. More information can be found in [94]. (This research investigates 

the application of BERT in the Integrated-Block method as a mechanism to 

improve semantic web-based segmentation). To overcome the shortcomings of the 

structural-based and the NLP-based segmentation methods, this research uses 

BERT to deeply compute the semantic textual similarity between the basic-blocks 

and regroup the related blocks in merged blocks. This similarity regrouping model 

leads to more stable semantic features. Further details are provided in section 4.4; 

Figure 4.11 (d), (e) and Figure 4.12 (d), (e) show the results of web page 

segmentation using our methods on some parts of the web pages represented in 

Figure 4.1 and Figure 4.2. 

To achieve a high-performance segmentation model, it is required to merge the 

visual and textual content of a web page into a single model. By using the latest 

semantic NLP techniques, such as BERT, we can produce a superior model. We 

demonstrate the validity of this conjecture by an empirical comparison against the 

current state-of-the-art techniques. 

4.2 Related Work 

In this section, we briefly review the relevant literature on web page segmentation, 

which can be divided into three categories: DOM-based, vision-based, and fusion 



 

 

 

95 

 

approaches. The fusion approaches combine the DOM-based, vision-based, and/or 

text-based approaches to obtain higher segmentation accuracy or for specific 

applications. The related work of each category is explained in the following 

paragraphs.  

Most segmentation methods follow a DOM-based approach that divides a page 

into blocks. For example, the DOM tree representation of a web page is created 

by using an HTML parser to analyze and extract content, as described by Gupta et 

al. [97]. The content extractor uses filtering techniques to navigate the DOM tree 

and modify specific nodes, eliminating non-content nodes in the process. This 

method, it should be noted, does not perform well on rich format web pages in 

comparison with textual pages. 

Chen et al. [98] propose a method that identifies content blocks using a partitioning 

algorithm that divides a single content block into several smaller ones. This 

approach considers the whole page as a single block that it then partitions into 

constituent subcomponents such as a left sidebar, a right sidebar, a header, a footer, 

and the main content. Fan et al. [99], meanwhile, propose a Site Style Tree (SST) 

to capture web page content. In this method, information-rich content is extracted 

from each node of the SST using entropy thresholding. 

Some methods segment web pages using vision-based properties. For example, 

Kong et al. [100] propose a segmentation approach by using the Spatial Graph 

Grammar (SGG) without relying on DOM structures. This method directly 

interprets a web page from its image, instead of DOM structures. Image-

processing techniques are used to divide an image into different regions and 

recognize and classify objects, such as texts, buttons, etc., in each region. 

Other methods segment web pages using fusion approaches. In this study, we 

divide them into two categories of (1) DOM-based and vision-based, and (2) a 

combination of DOM-based, vision-based, and text-based approaches.  

The first category of fusion methods segments web pages using structural features 

and visual properties. For example, Sanoja et al. [101] propose the Block-O-Matic 
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strategy, inspired by visual-based content segmentation techniques and automated 

document processing methods. This method includes three phases—analysis, 

understanding, and reconstruction of the web page. It combines the logical, visual, 

and structural features of web pages to understand and analyze the content. 

Manabe et al. [102], meanwhile, propose a method—called HEPS (HEading-

based Page Segmentation)—to extract logical structures of web pages. This 

method uses the HTML tags, computed style calculated by Web browsers based 

on several factors, and the image height to determine the visual style of the DOM 

tree nodes of a web page.  

A Vision-based Page Segmentation (VIPS) algorithm is proposed by Cai et al. [11, 

103]. This algorithm divides a page into fragments based on the visual properties 

and logical structure (i.e., DOM) of the page. Once again, although this method 

performs well on traditional pages, it does not perform well on modern web pages. 

The box clustering segmentation model, introduced by Zeleny et al. [6], uses 

visual properties of web pages, the distance between elements, and their visual 

similarity, and follows a three-step procedure: box extraction, computation of 

distances between boxes, and clustering of boxes. Cormer et al. [104] propose a 

hierarchal segmentation method that similarly uses the visual properties of the web 

page to achieve segmentation. The method presented by Mehta et al. [105] uses 

the VIPS algorithm to divide pages into small fragments based on visual 

properties, it also uses a pre-trained Naive Bayes classifier to create bigger blocks. 

Liu et al. [106] propose the ViDE approach that primarily utilizes the visual 

features human users can capture on the web pages to perform deep web data 

extraction, including data record extraction and data item extraction. By using 

visual features for data extraction, ViDE avoids the limitations of those solutions 

that need to analyze complex web page source files.  

Kumar et al. [107] propose a web page segmentation algorithm that re-DOMs the 

input page to produce clean and consistent segmentations. The algorithm includes 

four stages. First, each inline element is identified and wrapped inside a <span> 

tag. Next, the hierarchy is reshuffled. Third, redundant nodes that do not contribute 
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to the visual layout of the page are removed. Finally, the hierarchy is supplemented 

to introduce missing structure which is accomplished by computing a set of VIPS-

style separators across each page region and inserting enclosing DOM nodes 

accordingly. 

To segment blocks accurately in a manner that simulates human perception in 

identifying related content, Xu and Miller [22, 27, 28, 73] propose the “Gestalt 

Layer Merging” (GLM) model, premised on the Gestalt laws of grouping. This 

method can be used to segment blocks in complex modern web pages. In the 

research presented in this study, we use this method to generate the basic-blocks. 

The second category of fusion methods combines the structural, visual properties, 

and textual content of a web page to achieve segmentation. For example, Jiang et 

al. [18] propose a web page segmentation method that uses both visual and logical 

features of content. Their method uses text density (the number of words in a block 

of text) as its segmentation algorithm. The densitometric approach proposed by 

Kohlschütter et al. [10] uses the text density metric to identify blocks of a web 

page. These approaches, it should be noted, do not consider semantic text 

similarity metrics, but instead, focus on the structural and visual features of the 

web page. Table 4.1 represents a comparison of the related work. It specifies the 

categories of each method. Deep semantic specifies whether or not a method uses 

the relation of the word to the other words in a document by considering the 

meaning of sentences. 

There is a lack of standard procedures to compare the accuracy of web page 

segmentation methods [6]. However, to compare the accuracy of segmentation 

techniques, some research has been carried out. For example, Blustein et al. [108] 

design experiments to compare web page segmenters by proposing some questions 

that a segmentation method should answer. The questions are about the purpose of 

web page segmentation and the dataset used in an experiment. Some studies utilize 

precision, recall, and F-measure metrics to evaluate the performance of their 

segmentation approach. For example, Kovacevic et al. [109] and Xu and Miller 

[22], evaluate the performance of their segmentation approach using these metrics. 
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Table 4.1: Comparison of Properties of Different Segmentation Methods 

Method 
DOM 

Based 

Vision 

Based 

Fusion Approaches 

DOM 

& 

Vision

Based 

DOM & Vision & Text-based 

No 

Semantic 

Text 

Similarity 

Semantic Text 

Similarity 

Non-Deep 

Semantic 

Deep 

Semantic 

Gupta et al. [97]       

Chen et al. [98]       

Fan et al. [99]       

Kong et al. [100]       

Sanoja et al. [101]       

Manabe et al. 

[102] 
    

 
 

Cai et al. [11, 103]       

Zeleny et al. [6]       

Cormer et al. 

[104] 
    

 
 

Mehta et al. [105]       

Liu et al. [106]       

Kumar et al. [107]       

Xu and Miller [22, 

27, 28, 73] 
    

 
 

Jiang et al. [18]       

Kohlschütter et al. 

[10] 
    

 
 

Current Approach 

(Fusion-Block) 

[110] 

    

 

 

Current Approach 

(Integrated-

Block) 

    

 

 

 

Our proposed approaches (Fusion-Block [110] and Integrated-Block) combine the 

DOM-based structure, vision, and text-based segmentation techniques. As 

mentioned above, they generate the basic-blocks using the Gestalt laws of 
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grouping and then employ a semantic text similarity method to regroup these 

related basic-blocks into larger fusion or integrated blocks. In other words, each 

fusion block or integrated block is composed of a group of basic-blocks with 

similar text content. It is expected that these enhanced semantically-based, 

visually-initiated blocks will deliver superior performance across a wide array of 

tasks on modern, multi-media web pages. 

4.3 The Proposed Fusion Web page Segmentation 

Approach 

Web page segmentation keeps related content together as blocks, where each 

block contains distinctive content. To facilitate the description of our approach, an 

overview of the segmentation procedure is given in the following paragraph.  

4.3.1 Overview 

The DOM elements represent the structure of web pages [101]. So far, most of the 

studies have utilized the DOM elements to segment web page content. Relevant 

content groups together as blocks; each block contains distinctive content. The 

goal of web page segmentation is to construct a content structure from web page 

features that groups the elements of a web page using metrics such as distances, 

locations, and semantic context. A fusion model which includes DOM, vision, and 

text-based segmentation approach is required to achieve a superior segmentation 

result. 

4.3.2  Proposed Approaches 

Our frameworks are designed and implemented to generate web page 

segmentation models for different web pages and to overcome the limitations of 

the former approaches. The main steps of our proposed frameworks are shown in 

Figure 4.3 and Figure 4.4. 
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Figure 4.3: The Framework of the Fusion-Block Approach 

 

 

Figure 4.4. The Framework of the Integrated-Block Approach 

As shown in Figure 4.3 and Figure 4.4, our models are mainly categorized in two 

steps; (1) they identify basic-blocks in web pages to segment a web page using the 

Gestalt laws of grouping technique, and (2) both of the models compare text 

similarity of basic-blocks identified in step 1 and regroup the semantically related 
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blocks as fusion or integrated blocks using a semantic analysis approach. These 

steps are explained in the following paragraphs. 

4.3.2.1 Step 1: Basic-Block 

For the first step, our models segment web page content into basic-blocks inspired 

by human understanding. This study uses Gestalt laws to simulate human 

understanding and perception. To present a web page, a “layer tree” is designed 

[22]. Nodes of a semantic block tree (layer tree) indicated as basic-blocks are 

constructed by merging correlated blocks with the Gestalt laws of grouping. The 

Gestalt Layer Merging (GLM) model includes three components: (1) the layer tree 

constructor, (2) the Gestalt laws translator, and (3) the web page block identifier 

[22]. The DOM tree of a web page is taken as a prototype by the layer tree 

constructor to build up its layer tree. Constructing layer tree nodes is done 

simultaneously with building up the layer tree and starts from adding the root node 

to the layer tree, and then executes recursively until all visible DOM elements are 

extracted and added to the layer tree. Further details of constructing a layer tree 

can be found in [22].  

The layer tree is built by removing hierarchical inconsistencies between the DOM 

tree representation and the visual layout of the web page. In the DOM tree, child 

elements are located inside their parent elements by default; however, some CSS 

rules can manipulate locations, such as “position”, “float”, etc. These rules 

sometimes cause the DOM hierarchy to be misaligned against the visual hierarchy. 

Therefore, such an inconsistency must be eliminated in the layer tree construction. 

Also, invisible elements existing in the DOM tree are removed when constructing 

the layer tree. An invisible DOM element is either an element with an area of 0 

(including the borders and shadows), an element without any actual content (text, 

image, background, etc.), or an element that is completely covered by its visible 

child elements. A modification is necessary to be done on a layer tree according 

to [22]. Therefore, a layer tree only extracts visible DOM elements and merges 



 

 

 

102 

 

these elements into separate groups according to their semantic meanings. The 

details of this modification can be found in [22].  

The Gestalt laws explain the mechanisms of how humans perceive and understand 

things. To construct each block of the layer tree, the Gestalt laws translator 

interprets the Gestalt laws of grouping into six machine compatible rules which 

are expressed in Chapter 2. Further details can be found in [22].  

According to these six laws (Gestalt laws of simplicity, closure, proximity, 

similarity, continuity, and common fate), a model can allow elements to be 

categorized whether in a group or not. This group of similar elements includes the 

results of six laws merged. Our models use a naïve Bayes classifier same as [30] 

to merge these laws. Figure 4.5 shows the basic-blocks of two web pages (the 

homepage of the United States Consumer Product Safety Commission 

“https://www.cpsc.gov” and FindLaw “www.findlaw.com”), where for each basic 

block, a different background color is assigned. Step 2 of our models is presented 

to complete the segmentation process by considering semantic textual analysis 

explained in the following paragraphs.   
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Figure 4.5: An Example of the Basic-Blocks of the Two Web pages, (a) 

“www.cpsc.gov”, (b) “www.findlaw.com” 

4.3.2.2 Step 2: Fusion-Block and Integrated-Block 

Human understandings are simulated using Gestalt laws of grouping to identify 

basic-blocks. According to the Gestalt law of similarity, the similarity between 

blocks includes three features, (1) background, (2) foreground, and (3) size 
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similarity. Block features such as color, textual styles, width, and height are 

compared regardless of considering the semantic analysis. Hence, objects may be 

segmented in different blocks, even though they have semantically related text. It 

is required to utilize semantic analysis to address this problem. This study utilizes 

semantic text similarity to identify semantically related blocks and regroup them 

as a single block. A description of semantic analysis is explained in the following 

paragraphs. 

Natural language processing (NLP) is a series of techniques simulated human 

techniques of processing and analyzing a language. NLP system inventions are 

associated with the semantic analysis of linguistic structures [111]. Semantic 

analysis within the framework of NLP evaluates and represents human language 

and analyzes texts with an interpretation similar to those of human beings. 

Recently, text analysis is of one the popular topic of research. It plays an important 

role in NLP and aims to numerically represent unstructured text documents into a 

structured form that can be processed and analyzed by computers [112]. Many 

methods have been proposed to transform raw data (a series of symbols and words) 

into the form of a vector at character, word, sentence, or document level to express 

the similarity and dissimilarity between textual elements [113]. Text 

representation methods are mainly divided into two types: context-free and 

contextual representation models. 

The main step of non-contextual text representation is to map discrete language 

symbols into a distributed embedding space [114]. Each word of the document is 

mapped into a vector. Vector representations of text can be constructed in many 

ways. For example, Mikolov et al. [115, 82] propose Word2Vec, an effective tool 

for learning word representations from a corpus, which implements two models: 

Continuous Bag-Of-Words (CBOW) and Skip-gram [116]. The CBOW model 

scans the text with a context window and learns to predict the target word [117]. 

The Skip-gram model predicts the words in the context of the target word [93]. 

Word2Vec uses local neighboring words as context [117]. It can learn word 
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vectors in a short time from a large-scale document and has been applied in 

different aspects of text processing such as text representation [118].  

Another text representation is TD-IDF (Term Frequency-Inverse Document 

Frequency) [119], based on the bag-of-words philosophy, which involves the 

assumption that a document is simply a collection of words, and thus, the 

document can be vectorized by computing the relative importance of each word, 

i.e., by considering the word’s frequency in the document and its popularity in the 

corpus. TF-IDF and bag-of-words do not consider the semantics of the words and 

also the ordering of the words is lost, which are the major weaknesses of these 

methods. For example, assume that the three words of “Country”, “City”, and 

“Flower” are equally distant in a document even though the first two words are 

semantically more related than “Flower”. 

Pennington et al. [120] propose Global Vectors for word representation (GloVe) 

that directly captures global corpus statistics. Comparing to GloVe, the word 

embeddings trained from Word2Vec can better capture the semantics of words 

and exploit the relatedness of words. FastText is an extension of Word2Vec 

proposed by Facebook [121]. Instead of using individual words, FastText breaks 

words into several n-grams (sub-words) [113].  

Some research utilizes word embedding [122-124] to understand the semantic 

logic of the text. Doc2Vec was proposed by Mikolov et al. [81], inspired by 

Word2Vec. The neural-network-based document embedding known as Doc2Vec 

extends Word2Vec from the word level to the document level [81]. Each 

document has its vector values in the same space as words. Thus, the distributed 

representation for both words and documents is learned simultaneously. Some of 

the major weaknesses of the bag-of-words models are addressed by Doc2vec. 

Doc2vec method can be applied to variable-length pieces of text regardless of their 

length. Furthermore, it does not rely on the parse trees and does not require task-

specific tuning of the word weighting function [81].  
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Doc2Vec starts with training the model, subsequently, a vector space is built based 

on the word vectors [81], therefore, semantically similar words show similar 

vector representations (e.g., “City” is more related to “Country” than to “Flower”). 

By training the word vectors, the document vector is trained, and the document’s 

numeric representation is held at the end of the training. The document vector 

represents the concept of a document as the concept of a word is represented by 

the word vector. Some studies have represented that Doc2Vec results in better 

classification accuracy than other representation methods in different domains [81, 

125-127]. 

These non-contextual methods have two major limitations: (1) However, the 

ordering of words in a text is meaningful, these representation models are 

insensitive to word order and only capture the relations between words [117], and 

(2) they only obtain a single global representation for each word and ignore their 

context [95]. Thus, they fail to capture higher-level concepts in context. To address 

these issues, contextual representation is proposed. 

Contextual representation models assign each word a representation based on its 

context [127]. These models are divided into two categories of unidirectional and 

bidirectional representations. Unidirectional representation of a word is generated 

based on the left or right surrounding words in a document [94]. For example, the 

unidirectional representation of the word “goals” in the sentence “I have three 

goals in my life”, is based on “I have three” or “in my life”, not both of them. 

Bidirectional representation of a word considers the left and right surrounding 

words in a text corpus [94]. For example, a bidirectional representation of the word 

“goals” in the sentence is generated based on “I have three” and “in my life”. The 

bidirectional representation model has a deeper sense of context than 

unidirectional models since it considers the context of a word based on all of its 

surroundings [117]. 

Different from non-contextual word representations, contextual representations 

move beyond word-level semantics where each token is associated with a 

representation that is a function of the entire input sequence [95]. These 
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representations can capture many syntactic and semantic properties of words 

under diverse linguistic contexts [117]. Some studies have shown that contextual 

embeddings, pre-trained on a large-scale unlabeled corpus, can achieve high 

performance on a wide range of NLP tasks and can avoid training a new model 

from scratch [95]. Some other studies express those contextual embeddings can 

learn useful and transferable representations across languages [95]. The contextual 

representations are better suited to capture the semantics of text [117]. They have 

some model architectures such as transformer [21]; a neural network architecture 

based exclusively on attention mechanisms [117]. The neural attention mechanism 

aims to capture long-range dependencies and is inspired by how humans read and 

understand longer texts. The neural representation learning can be treated as a pre-

training step or language modeling step for NLP downstream tasks [117]. Many 

methods focus on learning contextual word embeddings such as ELMo [128], GPT 

[129], and BERT [94]. ELMo and GPT do not consider the left and right 

surrounding words in a text corpus [95]. Google proposes an improved method, 

BERT (Bidirectional Encoder Representations from Transformers) [94], which 

can effectively exploit the deep semantic information of a sentence. Deep 

bidirectional means that it is conditioned on every word in the left and right 

contexts at the same time [117]. It works by masking some percentage of the input 

tokens at random and then predicting those masked tokens. Several studies 

reported that contextualized embeddings such as BERT better encode semantic 

information of a text [96]. Also, according to [94], BERT obtains state-of-the-art 

results in numerous benchmarks. Figure 4.6 shows the explained representation 

models in a timeline since 2013.  

 

Figure 4.6: A Timeline of the Recent Text Representation Models Since 2013 
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BERT has set an advanced performance on sentence-pair regression tasks such as 

semantic textual similarity [130]. A shortcoming of the BERT network structure 

is that it maps sentences to a vector space that is rather unsuitable to be used with 

common similarity measures like cosine-similarity. To address this limitation, 

Reimers et al. [130] modify the pre-trained BERT model and propose Sentence-

BERT (SBERT), which uses Siamese and triplet network structures to derive 

semantically meaningful sentence embeddings [130]. It uses cosine-similarity to 

compare the similarity between two sentence embeddings. SBERT is trained on 

the SNLI [131], Multi-Genre NLI [132], and STS benchmark dataset. It is fine-

tuned with a 3-way softmax-classifier objective function for one epoch. More 

details can be found in [130].  

In this research, we compare the semantic similarity of nearby blocks using two 

methods: a non-contextual and a contextual method. In the first approach, we use 

the Doc2Vec technique to captures both semantic and syntactic information of 

words and can be used to measure text similarity. We used gensim’s [83] 

implementation of Doc2Vec to determine the semantic similarity of the blocks’ 

text content. Therefore, related blocks are regrouped into a fusion block, which 

not only forms based on visual features by simulating human perception but also 

utilizes semantic analysis of blocks to improve web page segmentation.  

In the second approach, we use SBERT technique in the same way as [130] to 

identify semantically related blocks and regroup them as an integrated block. 

Therefore, integrated blocks form based on visual features by simulating human 

perception and also utilize semantic analysis. 

As it is mentioned earlier, the performance of structural-based segmentation 

methods can be restricted by the shortcomings of the DOM structure itself. The 

complex DOM structure leads to shortening or scattering of the long text of a web 

page content that is hard to extract useful features. Therefore, it is difficult to 

extract useful features from short text content, which challenges semantic analysis. 

https://rare-technologies.com/doc2vec-tutorial/
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Also, paragraphs with similar subjects are separated into different blocks because 

they contain text with different formats such as different font sizes, font colors, 

etc. Our proposed approaches (Fusion-Block and Integrated-Block) address these 

problems using semantic analysis and regrouping the related scattered blocks into 

a fusion block or an integrated block that contains the longer text. Our semantic 

regrouping methods are presented in Algorithm 4.1 and Algorithm 4.2 for Fusion-

Block and Integrated-Block methods, respectively. In these algorithms, there are 

two inputs, neighboring (adjacent) basic-blocks, and text difference limit 𝑡. (Text 

difference limit threshold can be set as 𝑡 = 0.5 and 𝑡 = 0.4 for the Fusion-Block 

and Integrated-Block methods, respectively, which are based on the empirical 

results presented in section 4.4) These algorithms semantically regroup basic-

blocks based on the text similarity and the Gestalt Laws of grouping (proximity 

and continuity). We used Doc2Vec and SBERT to evaluate the text similarity of 

the basic-blocks. Our model employs Gestalt Laws of grouping (proximity and 

continuity) same as [30] to regroup the basic-blocks. The following highlights 

represent the reasons for using these two laws in the second step of our approaches. 

 The Gestalt laws of simplicity, closure, and common fate are already 

translated and employed in the first step. They are not changed in the 

second step. 

 The Gestalt law of similarity considers the visual features such as 

background similarity, foreground similarity, and size similarity of blocks. 

Since our algorithms regroup the related basic-blocks regardless of the text 

format, the Gestalt law of similarity is not used in this step. 

 To group related neighboring blocks, the distance of these blocks needs to 

be considered. Thus, the Gestalt law of proximity needs to be used in the 

second step. 

 To group related neighboring blocks in terms of considering human 

perception in segmenting the content of web pages, the Gestalt law of 

continuity is used in this step. 
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We will continue with an example to explain our proposed approach. Figure 4.7 

shows a part of the homepage of Highampton Lakes-Trout and Coarse Fishery 

(www.fishdevon.co.uk). According to part (a) of this figure, the paragraphs with 

similar subjects are separated into different blocks by current segmentation 

methods since they contain the text in different formats. Using the semantic 

analysis method, our models consider these similar paragraphs as a single group 

regardless of the different text formats as shown in Figure 12 (b).   
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Figure 4.7: A Part of the Homepage of “www.fishdevon.co.uk”, (a) Segmented 

Blocks using Current Segmentation Methods (b) Segmented Block using Our 

Approach 

To semantically segment the part of the web page (www.fishdevon.co.uk), firstly, 

our model identifies basic-blocks according to the Gestalt laws of grouping. These 

paragraphs have related content; however, they are separated into different basic-

blocks. In the second step of our models, the semantic similarity of the extracted 

basic-bocks are calculated and the semantically textual related blocks can be 

grouped according to Gestalt laws of proximity and continuity as shown in 

Algorithm 4.1 and 4.2. Our models regroup these basic-blocks as a single block 

since the text difference limit of these basic-blocks is greater than 𝑡. We utilized 

the Gestalt laws in addition to the text similarity of blocks to segment a web page 

according to human perception. After regrouping, the blocks are transformed into 

bigger fusion or integrated blocks that contain much more stable semantic features 

than before. These features can be extracted more accurately due to the bigger 

blocks and longer text sentences and can thus be used to achieve better 
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performance on web page segmentation. Thus, our approaches (Fusion-Block and 

Integrated-Block) combine DOM structure, visual and textual features of web 

pages to improve the segmentation accuracy.  

4.4 Evaluation  

This section presents experiments we have performed to verify the effectiveness 

of our proposed approaches (Fusion-Block and Integrated-Block). To verify the 

effectiveness of our approaches, we apply them to open-source datasets. Also, we 

compare our methods with four existing well-designed algorithms. We use four 

evaluation metrics for evaluating the performance of our methods: precision, 

recall, F-1 score, and the Adjusted Rand Index (ARI). Our approaches (the Fusion-

Block and Integrated-Block methods) segment a web page into fusion and 

integrated blocks. The experiments and the results are presented and discussed 

below. 

4.4.1 Research Goal 

The goal of this research is to propose a new model of web page segmentation by 

combining the DOM structure, visual features, and semantic text similarity metrics 

to achieve better segmentation performance. Our methods (Fusion-Block and 

Integrated-Block methods) merge web page content into basic-blocks by 

simulating human perception using the Gestalt laws. Our methods subsequentially 

identify similar blocks using semantic text similarity and regroup these basic-

blocks as fusion and integrated blocks, respectively.  

4.4.2 Dataset 

The effectiveness of our proposed approach is evaluated against the following 

three datasets. These datasets are utilized to segment the content of web pages 

according to human judges (by using the semantic analysis approach).  
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1. DSpopular, a public dataset of 70 homepages of popular Websites such as 

“www.foxnews.com”, “www.gnu.org”, “www.google.com”, etc., with 

manually labeled ground truths for segmentation collected in 2014 [133]. 

This dataset contains three versions of each page including (1) the basic 

HTML, (2) a serialized version of the DOM after all external resources are 

loaded, and (3) a DOM page with manually labeled semantic blocks. 

2. DSrandom, a public dataset of 82 homepages of random Websites such as 

“www.honda.dk”, “www.aiact.org”, etc. with manually labeled ground 

truths for segmentation collected in 2014 [134]. Each page includes three 

versions the same as DSpopular.  

3. DSnew, a dataset of 50 homepages of Websites from Alexa Topsites (the 

first 50 pages) [135] collected in 2017 such as “www.wikipedia.org”, 

“www.facebook.com”, etc. These pages are viewed and labeled according 

to human judges.  

The number of web pages, the average, and the median number of blocks in each 

dataset are shown in Table 4.2. It is crucial to have a ground truth, validated by 

human assessors to check algorithm correctness. Thus, the accuracy of our 

proposed methods is evaluated using the manually labeled ground truths provided 

for each dataset. These datasets are collected from a real-world environment and 

include type-rich content; therefore, they are suitable for evaluating our method of 

web page segmentation.  

Table 4.2: The Statistics of the Datasets 

Dataset 
Number of Web 

pages 

Average Number of 

Blocks 

Median Number of 

Blocks 

DSpopular 70 12.59 16 

DSrandom 82 8.46 13 

DSnew 50 18.33 12.5 
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4.4.3 Comparison Methods 

We compare our proposed methods (Fusion-Block and Integrated-Block) with the 

following four well-known existing web page segmentation algorithms. The 

results show that our methods (Integrated-Block) are superior to all these 

algorithms in terms of semantic web page segmentation based on human judgment 

(ground truth).  

1. VIPS [11], a well-known approach to segmenting a web page content 

structure based on its visual representation. This study is used the open-

source implementation of VIPS [136] which was utilized in other papers 

[6, 137]. As the default setting of the tool permitted Degree of Coherence 

parameter in VIPS is set to 8 the same as [18]. 

2. BoM [101], a hybrid web page segmentation method that combines 

structural, visual, and logical features of web pages. This method consists 

of three phases; analysis, understanding, and reconstruction of a web page.   

3. A web page segmentation method [18] combines visual, logic, and features 

of the content on a web page. For simplicity, we name this segmentation 

method as SegBlock in this research. 

4. Semantic-Block [22], a web page block identification algorithm utilizing 

the Gestalt laws of grouping to simulate human perception.          

4.4.4 Segmentation Accuracy 

To quantify the accuracy of an algorithm, it will be necessary to define the metrics 

that measure the correctness of the result. Blustein et al. [108] propose research 

questions that segmentation methods should answer. The first question is about 

the part of web pages a method is used; our approach segments a web page into 

blocks as part of web pages. The second question is about the purpose of web page 

segmentation. This study focuses on a new fusion technique of web page 

segmentation that can be used in various fields such as recreating a web page in 

ways that can better fit the needs of users, improving the usability of web pages 

on mobile devices, etc. The other questions mentioned in [108] are about 
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quantifying the accuracy of the algorithm and the dataset that a segmentation 

method is used. There is a lack of a standard procedure to compare the accuracy 

of web page segmentation methods [108]. However, precision, recall, and F-score 

are common metrics of accuracy evaluation in statistical analysis [6]. This study 

uses datasets provided by ground truths to segment the content of web pages. Thus, 

we focus on evaluation approaches based on a ground truth such as precision, 

recall, and F-score. The segmentation result generated by our approach groups the 

elements of a web page into cohesive regions both visually and semantically. 

Similar to the previous works [9, 10], we regard each generated segment (block) 

as a cluster and employ cluster correlation metrics to conduct the evaluation. In 

data clustering, the Adjusted Rand Index (ARI) is being used to measure the 

similarity between two clusters [6]. In this study, to verify the accuracy of the 

segmentation methods computed by our approach and the other four comparison 

algorithms, we employ the following four evaluation metrics (precision, recall, F-

1 score and Adjusted Rand Index (ARI)). 

1. Precision represents the ratio of correctly segmented blocks over the 

blocks segmented by the algorithm as equation 4.1. 

                                  Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
               (4.1) 

TP denotes two similar blocks are identified as similar, correctly; while FP 

indicates that two different blocks are identified as similar, incorrectly. 

2. Recall represents the ratio of correctly segmented blocks over the ideal 

blocks that are manually obtained by humans (ground truth) as equation 

4.2.  

                                        Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
               (4.2) 

FN indicates that two similar blocks are identified as different, incorrectly. 

3. F-1 score which combines precision and recall computed as follows. 

                 F − 1score = 2.
Precision.Recall

Precision+Recall
                            (4.3) 

4. Adjusted Rand Index (ARI) [138], which identifies the agreement between 

two clusters (segmented blocks and ground truth clustering) on a particular 
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dataset shown in equation 4.4. Value of the Rand Index is between 0 and 

1; clusters’ agreement on any pair of elements leads to value 1 shows these 

clusters are the same, and 0 states that the clusters do not agree on any 

elements. A version of the Rand Index is called ARI which has a value 

between 0 and 1; 1 shows that two blocks are identical and for random 

blocks, the value is 0 on average. ARI can be calculated as follow. 

Table 4.3: Contingency Table for Comparing Partitions X and Y 

Partition 

Group 

Y 

Sums y1 y2 … ys 

X 

x1 

x2 

n11 n12 … n1s a1 

n21 n22 … n2s a2 

… … … … … … 

xr nr1 nr2 … nrs ar 

 Sums b1 b2 … bs  

Consider a set of n objects 𝑆 = {𝑂1, 𝑂2, … , 𝑂𝑛}, and suppose that 𝑋 =

{𝑥1, 𝑥2, … , 𝑥𝑟} and 𝑌 = {𝑦1, 𝑦2, … , 𝑦𝑠} represent two different partitions (blocks) 

of the objects in 𝑆. Given two partitions, X and Y, with r and s subsets, 

respectively, the contingency Table 4.3 can be formed to indicate group overlap 

between X and Y as 𝑛𝑖𝑗, where 𝑛𝑖𝑗 = |𝑥𝑖 ∩ 𝑦𝑗|. In Table 4.3, a generic entry,𝑛𝑟𝑠, 

represents the number of objects that were partitioned in the rth subset of partition 

r and the sth subset of partition s [139]. Thus, the ARI can be expressed as: 

                             𝐴𝑅𝐼 =
∑ (

𝑛𝑖𝑗
2
)−[∑ (

𝑎𝑖
2
)𝑖 ∑ (

𝑏𝑗
2
)𝑗 ]/(𝑛2)𝑖𝑗

1

2
[∑ (

𝑎𝑖
2
)𝑖 +∑ (

𝑏𝑗
2
)𝑗 ]−[∑ (

𝑎𝑖
2
)𝑖 ∑ (

𝑏𝑗
2
)𝑗 ]/(𝑛2)

           (4.4) 

4.4.5 Evaluation Results 

Our experiments were performed on Windows 7 platform (64-bit, Intel Core i7-

3770 CPU 3.40 GHz, 16.0 GB RAM). The evaluation of the segmentation 

algorithm is an important challenge. To compare one algorithm with another, it is 
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crucial to have a ground truth, validated by human assessors to check algorithm 

correctness. Thus, in this section, we evaluate the performance of our algorithms 

(Fusion-Block and Integrated-Block) against a ground truth. We also apply the 

same method for all the four comparison methods (BoM, VIPS, SegBlock, and 

Semantic-Block) using the four evaluation metrics (precision, recall, F-1 score, 

and ARI) and explain the results as follows.  

All the pages in the datasets have been segmented with our proposed approaches 

(Fusion-Block and Integrated-Block) and the other four methods. Table 4.4 

represents the results of the evaluation metrics in each dataset. “Total” includes 

the results obtained by using the three datasets (DSpopular, DSrandom, and 

DSnew) together. The average number of correctly segmented blocks of web 

pages is represented in the “correct” column for each dataset; a block is said 

correctly segmented if its geometry and location are equal to a labeled block in the 

ground truth. According to this table, BoM, VIPS, SegBlock, Semantic-Block, 

Fusion-Block, and Integrated-Block methods achieve 25.74%, 24.14%, 38.16%, 

41.67%, 48.06%, and 53.55% of the average number of correctly labeled blocks 

in the Total dataset, respectively. Thus, it indicates that our methods (Fusion-

Block and Integrated-Block) obtain an improvement in terms of the average 

number of correctly labeled blocks. 

Table 4.4: Evaluation Results 

                                   DSpopular 

  
Correct Precision Recall F-1 Score ARI 

BoM 2.78 30.5% 26.1% 28.1% 0.452 

VIPS 2.78 23.7% 26.2% 24.9% 0.420 

SegBlock 5.62 38.1% 40.2% 39.1% 0.530 

Semantic-

Block 
6.75 40.3% 43.4% 41.8% 0.532 

Fusion-Block 8.70 44.7% 54.1% 48.9% 0.598 
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Integrated-

Block  
9.50 51.7% 61.7% 52.6% 0.632 

     DSrandom   

 Correct Precision Recall F-1 Score ARI 

BoM 2.55 30.8% 33.0% 31.8% 0.473 

VIPS 1.97 27.8% 26.4% 27.1% 0.371 

SegBlock 3.74 41.9% 44.8% 43.3% 0.531 

Semantic-

Block 
3.82 43.3% 53.6% 48.0% 0.549 

Fusion-Block 4.54 49.3% 61.2% 54.6% 0.610 

Integrated-

Block 
5.55 56.6% 67.5% 61.5% 0.718 

         DSnew   

 Correct Precision Recall F-1 Score ARI 

BoM 5.54 30.5% 21.7% 25.3% 0.426 

VIPS 6.38 20.7% 24.4% 22.4% 0.415 

SegBlock 5.59 39.2% 38.9% 39.0% 0.464 

Semantic-

Block 
5.89 40.6 % 41.7% 41.1% 0.483 

Fusion-Block 6.02 45.8% 48.2% 47.0% 0.533 

Integrated-

Block 
6.75 52.9% 58.7% 55.4% 0.619 

         Total   

 Correct Precision Recall F-1 Score ARI 

BoM 3.38 31.4% 27.9% 29.5% 0.450 

VIPS 3.17 24.7% 25.8% 25.2% 0.405 

SegBlock 5.01 39.6% 42.4% 40.9% 0.514 

Semantic-

Block 
5.47 41.2 % 46.7% 43.8% 0.526 

Fusion-Block 6.31 46.3% 54.9% 50.2% 0.583 

Integrated-

Block 
7.03 53.4% 63.2% 57.8% 0.660 
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According to the table, the Integrated-Block method reaches the highest value of 

the average number of correctly segmented blocks. The Fusion-Block method 

[110] reaches the second-highest value of the average number of correctly 

segmented blocks. This method segments web pages by simulating human 

perception using the Gestalt laws of grouping. It also compares the textual 

similarity of blocks using the Doc2Vec algorithm. The third-highest value of the 

average number of correctly segmented blocks belongs to the Semantic-Block 

algorithm. This method segments web pages by simulating human perception 

regardless of textual analysis. We believe that simulating human perception allows 

this method to achieve the third-highest average number of correctly labeled 

blocks. The next highest amount of the average number of correctly labeled blocks 

belongs to the SegBlock method that segments web pages using visual and logical 

features of content. The number of words within a particular document is used by 

this method. We believe that SegBlock uses more features compared to BoM and 

VIPS, and thus, it reaches the fourth maximum average number of blocks after 

Integrated-Block, Fusion-Block, and Semantic-Block. The VIPS method 

identifies blocks using visual separators of web pages. The BoM algorithm relies 

on visual and logical features to segment a web page. Since the layouts of modern 

web pages are more complicated than before and the visual separators are much 

less obvious, we believe that BoM achieves a slightly better performance than 

VIPS in the amount of correctly segmented blocks over the whole dataset. 

As shown in Table 4.4, our approach (Integrated-Block) outperforms all five 

comparison methods in terms of precision, recall, F-1 score, and ARI. It obtains 

53.4%, 63.2%, 57.8%, and 0.660 in precision, recall, F-1 score, and ARI, 

respectively which shows a noticeable improvement in the segmentation’s quality. 

According to this table, Integrated-Block achieves 15.3%, 15.1%, 15.1%, and 

13.2% improvements against Fusion-Block (the second-highest amount of the 

evaluation metrics in the Total dataset) on the precision, recall, F-1 score, and ARI, 

respectively. The following highlights represent the results of comparing our 

approach (Integrated-Block) with the other comparison methods. 
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 On precision, Integrated-Block reaches 70.1%, 116.2%, 34.8%, 29.6%, 

and 15.3% improvements against BoM, VIPS, SegBlock, Semantic-Block, 

and Fusion-Block, respectively. 

 On recall, Integrated-Block reaches 126.5%, 144.9%, 49.0%, 35.3%, and 

15.1% improvements against BoM, VIPS, SegBlock, Semantic-Block, and 

Fusion-Block, respectively. 

 On F-1 score, Integrated-Block reaches 95.9%, 129.3%, 41.3%, 31.9%, 

and 15.1% improvements against BoM, VIPS, SegBlock, Semantic-Block, 

and Fusion-Block, respectively. 

 On ARI, Integrated-Block reaches 46.6%, 62.9%, 28.4%, 25.5%, and 

13.2% improvements against BoM, VIPS, SegBlock, Semantic-Block, and 

Fusion-Block, respectively. 

As shown in Table 4.4, for all the methods, DSrandom dataset has the maximum 

value of precision, recall, and F-1 score compared to the DSpopular, and the 

DSnew datasets. It shows that web pages in DSrandom tend to be less complicated 

(with less content) rather than DSpopular and DSnew.  

Our model (Integrated-Block) segments web pages by combining the logic, visual 

and textual content of a web page using Gestalt laws of grouping to simulate 

human understandings. It merges web page content into blocks and compares the 

text similarity of the blocks to regroup these similar blocks as integrated blocks. 

Fusion-Block uses the text similarity method (Doc2Vec) to compare the text 

similarity of blocks while the other methods do not use the textual-similarity 

method to segment web pages. They only focus on the page structure and the 

visual features without considering the semantic text similarity metrics of blocks. 

As shown in Table 4.4, the minimum amount of precision, recall, F-1 score, and 

ARI belong to VIPS since we believe that it uses only the visual features of web 

pages, which makes it perform less accurately on the evaluation metrics. This table 

represents that Integrated-Block, Fusion-Block, Semantic-Block, and SegBloak 

were achieved F-1 score values of more than 40% in the Total dataset, which are 

57.8%, 50.2%, 43.8%, and 40.9%, respectively. Additionally, these four methods 
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achieved ARI values greater than 0.5 in the Total dataset that shows their 

segmentation is not close to randomness. The ARI values of Integrated-Block, 

Fusion-Block, Semantic-Block, and SegBlock are 0.660, 0.583, 0.526, and 0.514, 

respectively. Our approach groups semantically similar blocks using the semantic 

text similarity methods (we used the Doc2Vec and SBERT algorithms shown in 

Algorithm 4.1 and 4.2 for the Fusion-Block and Integrated-Block methods, 

respectively). 

Table 4.5 and Table 4.6 show different text difference limit thresholds (𝑡 in 

Algorithm 4.1 and 4.2) from 0 to 1. These tables represent that 𝑡 = 0.5  and 𝑡 =

0.4 result in the highest amounts of ARI (comparing to the ground truth) for the 

Fusion-Block and Integrated-Block methods in the Total dataset which are 0.601 

and 0.660, respectively. The ARI distribution over the different text difference 

limits in the Fusion-Block and Integrated-Block methods are shown in Figure 4.8 

and Figure 4.9, respectively. Thus, according to this result, we set 𝑡 = 0.5 and 𝑡 =

0.4 for the Fusion-Block and Integrated-Block methods, respectively. 

Table 4.5: ARI Values of Different Threshold for Fusion-Block 

Threshold 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

ARI 

(Total 

Dataset) 

0 0.085 0.092 0.210 0.584 0.601 0.562 0.525 0.528 0.523 0.514 
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Figure 4.8: ARI Distribution of Different t for Fusion-Block 

Table 4.6: ARI Values of Different Threshold for Integrated-Block  

Threshold 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

ARI 

(Total 

Dataset) 

0 0.056 0.102 0.482 0.660 0.575 0.546 0.541 0.530 0.521 0.514 

 

Figure 4.9: ARI Distribution of Different Threshold for Integrated-Block 
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Figure 4.10, Figure 4.11, and Figure 4.12 represent the result of web page 

segmentation using four different methods. The segmentation methods are applied 

on a part of the homepage of “www.koreanconsulate.on.ca”, 

“www.fishdevon.co.uk”, and “www.journalregister.com” from DSrandom, 

DSrandom, and DSpopular dataset, respectively. Subfigures (a) of these figures 

represent the manually labeled ground truth of these web pages. Subfigures (b) 

and (c) of these figures show the segmented blocks caused by the SegBlock and 

Semantic-Block, respectively. SegBlock and Semantic-Block methods do not 

segment blocks using semantic text similarity of blocks; this limitation is indicated 

and can be found in [18]. 

The result of segmentation using the SegBlock and the Semantic-Block methods 

are identical as shown in Figure 4.11 (b), Figure 4.11 (c), Figure 4.12 (b), and 

Figure 4.12 (c), while they are different in Figure 4.10 (b), and Figure 4.10 (c). As 

represented in subfigures (b) and (c) of Figures 4.10, 4.11, 4.12, the SegBlock and 

Semantic-Block methods did not group the whole paragraph; we believe that this 

is because the different font styles were used in the paragraph. Subfigures (d) and 

(e) of these figures represent the result of web page segmentation using the Fusion-

Block and Integrated-Block methods. As shown in subfigures (d) and (e) of Figure 

4.10 and Figure 4.11, the segmented blocks using the Fusion-Block and 

Integrated-Block methods are identical. This shows that the result of the text 

similarity using Doc2Vec (Fusion-Block) and SBERT (Integrated-Block) are 

identical; the paragraphs are related and grouped into a single block. The Fusion-

Block method segments the paragraph shown in Figure 4.12 (d) into four separated 

blocks while these blocks are semantically related and need to be grouped in a 

single block. However, as represented in Figure 4.12  (e), Integrated-Block groups 

these related blocks as a single block.   
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Figure 4.10: A Part of the Web page of “www.koreanconsulate.on.ca” from 

DSrandom, (a) Manually Labeled Ground Truth, (b) Segmented Blocks using 

Segblock, (c) Segmented Blocks using Semantic-Block, (d) Segmented Blocks 

using Fusion-Block, (e) Segmented Blocks using Integrated-Block 
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Figure 4.11: A Part of the Web page of “www.fishdevon.co.uk” from 

DSrandom, (a) Manually Labeled Ground Truth, (b) Segmented Blocks using 

Segblock, (c) Segmented Blocks using Semantic-Block, (d) Segmented Blocks 

using Fusion-Block, (e) Segmented Blocks using Integrated-Block 

As shown in Figure 4.10 (b) and Figure 4.10 (c), the Semantic-Block method 

segmented the blocks better than SegBlock, we believe that it is because Semantic-

Block simulates human perception using Gestalt laws of grouping. Also, as shown 

in subfigures (d) of Figure 4.10 and Figure 4.11, the Fusion-Block method 

segmented the blocks better than SegBlock and Semantic-Block methods; it uses 

text similarity of blocks using Doc2Vec technique and regroups similar blocks as 

a single block. The Integrated-Block method uses the deep semantic analysis 

method and grouped the whole paragraph as a single block regardless of the 

different font styles. Thus, Integrated-Block method groups similar semantic text 

contents as an integrated block and overcomes the scattering or shortening of the 

long text of web page content mentioned in Sections 4.1 and 4.2. 
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Figure 4.12: A Part of the Web page of “www.journalregister.com” from 

DSpopular, (a) Manually Labeled Ground Truth, (b) Segmented Blocks using 

Segblock, (c) Segmented Blocks using Semantic-Block, (d) Segmented Blocks 

using Fusion-Block, (e) Segmented Blocks using Integrated-Block 
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4.5 Conclusions and Future Work  

4.5.1 Conclusions 

In this research, we present two new segmentation models (Fusion-Block and 

Integrated-Block) to semantically segment web pages into fusion and integrated 

blocks. Our models merge web page content into basic-blocks by simulating 

human perception using Gestalt laws of grouping. Additionally, they utilize 

semantic text similarity to identify similar blocks and regroup these similar blocks 

as fusion and integrated blocks, respectively. To verify the effectiveness of our 

approach, we (1) applied it to the open-source public datasets, (2) compared it with 

the four existing state-of-the-art algorithms. The results show that both of our 

approaches outperform all the comparison methods in terms of precision, recall, 

F-1 score, and ARI. Comparing our methods together, Integrated-Block 

outperforms the Fusion-Block in terms of all the mentioned metrics. 

4.5.2 Limitations and Future Work 

We demonstrate that the segmentation models proposed in this research (Fusion-

Block and Integrated-Block) outperform the existing methods. However, there are 

also limitations in this segmentation technique which we plan to address in future 

work. In the Fusion-Block method, we used Doc2Vec to compare the textual 

similarity of basic-blocks to regroup them in a single block using Gestalt laws of 

grouping. In the Integrated-Block method, we used SBERT to compare the textual 

similarity of basic-blocks to regroup them as integrated blocks by simulating 

human perception using Gestalt laws of grouping. Figure 4.13 represents several 

segmented blocks using our approach (Integrated-Block) on a part of the web page 

of “www.irs.gov” from the DSpopular dataset. These blocks are considered as a 

single group in the ground truth which means that they have a similar concept. 

However, our proposed approach segments this part of the web page into five 

different blocks. It shows that the text representation model that we used (SBERT) 

does not group these blocks as a single block. Using fusion semantic analysis 
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methods may yield better results when paragraphs have the same concept during 

the regrouping stage.  

The representativeness of the material used for evaluation questions the external 

validity of the study. The presented evaluation results on the non-representative 

datasets may not be generalized to web pages in general. We intend to test our 

models on additional datasets and utilize fusion semantic analysis methods to 

extend our model in future work. 

 

Figure 4.13: A part of the Web page of “www.irs.gov” from DSpopular 
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Chapter 5 

Conclusions and Future Work 

The primary objectives of this thesis are to examine the research gaps and improve 

the techniques that are commonly used during the analysis of large-scale web 

applications for inferring user behavior models. With this goal in mind, this thesis 

presents a solution to generate behavior models using Markov models and the 

Reinforcement Learning (RL) technique. The proposed method is a fully 

automated non-instrumented approach that incrementally generates the models. 

To model user behaviors it is ideal to analyze web pages of an application. Web 

page analysis methods utilize web page segmentation to categorize the structure 

and content of a web page. One of the main factors in segmenting a web page into 

different blocks is how the extracted content is processed to retrieve distinct 

information [6]. In this research, we studied different web page segmentation 

algorithms and proposed two new models of web page segmentation named 

Fusion-Block and Integrated-Block.  

In this section, at first, we present a detailed summary of our contributions in this 

thesis followed by a discussion on opportunities for future work.  

5.1 Overall Contributions 

In par with the structural configuration of this thesis, we categorize the primary 

contributions of this thesis in the following three sub-sections: 

5.1.1 Model Inference 

Today’s users are spending more time on web applications [29, 30]. Many users 

browse applications and navigate through different web pages. They may have 

different and evolving interests, especially when it comes to large-scale 

applications. Knowing and predicting the different user behaviors are crucial 
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factors that may directly affect the success of the application. Underestimating the 

importance of this factor may lead to software limitations which can easily lead to 

lost audiences.  

However, it is almost impossible to accurately predict and address all of the users’ 

interaction expectations. Inferring a model by predicting and analyzing users’ 

navigational behaviors is necessary to understand users’ interests. Developers can 

identify popular or problematic pages of applications and therefore improve the 

application design.  

The mainstream approach towards capturing the user behaviors consists of 

monitoring the usage of the system and subsequently mining possible interaction 

patterns. Some existing solutions instrument web pages to track users’ navigation 

actions, for example, Google Analytics [2], while others analyze log files such as 

[3]. However, current solutions suffer from several limitations. Some approaches 

lack generality, for example, they need to infer users’ navigational behaviors to 

support specific tasks [4, 5]. On the other hand, the general frameworks simply 

return a set of statistics or patterns that are useful to understand the preferences of 

the system’s users but cannot be directly used to evaluate and analyze web page 

limitations. In this research, we proposed a behavior model using Markov models 

and Reinforcement Learning to automatically and incrementally, learn users’ 

interests [36]. We evaluated the utility of our approach by using it on a large-scale 

mobile and desktop application. Then, we analyzed the models using a model 

checker. By analyzing the inferred model, the application limitations are found. 

Next, we compared our method with the 19 most popular behavior model 

generation algorithms in terms of 9 factors such as whether an approach supports 

real-life application or not. It is believed that this is the first time such behavioral 

models have been applied to a mission-critical, real-world large-scale application. 
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5.1.2 Fusion-Block: A New Semantic Approach to 

Improve Web page Segmentation 

The World Wide Web has become a massive repository of information. Thus, 

identifying, and categorizing distinct informational elements from web pages has 

become increasingly difficult. Web page segmentation provides a solution to this 

problem. Web page segmentation is the process of partitioning a web page into 

blocks, in a manner, where each block contains distinctive content. Also, humans 

tend to segment a web page based on their understanding, thus, it is important to 

generate a segmentation model to segment a page by simulating human 

perception. Most research extracts and organizes content relying on the DOM 

structure of an HTML page [8, 140]. Some researchers prefer to segment web 

pages using visual information in a web page. This vision-based segmentation 

method focuses on the analysis of visual features of the document content as they 

are perceived by a human reader. It exploits visual clues such as font size, font 

color, background color, spaces between paragraphs, etc. [19]. Some segmentation 

methods have been carried out using Natural Language Processing (NLP) 

techniques [10, 20]. However, these methods do not consider semantic analysis to 

categorize web pages. Semantic analysis includes extracting text from segmented 

blocks, computing textual similarity, and regrouping blocks.  

This research presented a new method of web page segmentation by combining 

the DOM structure, visual features, and text similarity metrics to improve the 

segmentation performance. Our approach [110] generated a segmentation model 

by utilizing human perception and semantic analysis of a web page. To achieve 

this, our model merges the content of a web page into basic-blocks and identifies 

similar blocks using text similarity, and regroups these similar blocks as fusion 

blocks. Thus, a fusion block is composed of related blocks in terms of similar text 

contents using NLP algorithms. To evaluate the accuracy of our approach, we 

applied it to three public datasets and compared the technique with 4 state-of-the-

art methods. The results show that our proposed approach outperforms the existing 

web page segmentation methods, in terms of higher accuracy.  
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5.1.3 Integrated-Block: A New Combination Model to 

Improve Web page Segmentation 

In this research, we presented the Integrated-Block approach to improve the 

Fusion-Block segmentation method. This approach merges the DOM structure, 

vision-based, and text-based similarity metrics of web pages. We demonstrated the 

utility of transformer technology [21] as a vehicle for the text-based process. Also, 

we represented the validity of this method by an empirical comparison against the 

5 current state-of-the-art techniques. The results represented that our proposed 

approach outperforms the five other existing web page segmentation methods, in 

terms of higher accuracy. 

5.2 Opportunities for Future Work 

In this thesis, several avenues have been explored that aims at generating user 

behavior models and web page segmentation methods. Our research has been 

presented in detail in Chapters 3 and 4 of this thesis. However, like any 

experimental work, all the solutions presented in this thesis can be further pursued 

and improved in different ways. In this section, we present a set of 

recommendations for future work for each of the presented approaches in this 

thesis.  

 Chapter 3 of this thesis presents a novel approach to (1) generate user 

behavioral models for mobile and desktop web applications, (2) 

automatically calculate the states’ rewards, (3) annotate and analyze the 

models to verify the quantitative properties, and (4) address some 

limitations found in existing approaches. Just like any other study, this 

research offers some opportunities for future work. To characterize 

different groups of users, system experts can define a different set of user-

classes. Classes categorize users based upon a set of common features. 

Also, the proposed behavior model can be applied to other large-scale web 
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applications. In addition, this approach can be extended to apply to any 

probabilistic timed automata to capture user behaviors. 

 Chapter 4 of this thesis presents two novel web page segmentation methods 

named Fusion-Block and Integrated-Block, respectively. These methods 

merge the DOM structure, vision-based, and text-based similarity metrics 

of web pages. To improve the segmentation accuracy, we demonstrated the 

utility of NLP as a technique for the text-based process. For future work, 

these methods can be applied to additional datasets.  

 According to Section 3.4, the Extractor function collects the information 

of the retrieved URLs. In this research, we used visual and text-based 

approaches for information extraction of a detected URL. Also, we used 

three different methods to compare the similarity of web pages based on 

the words’ extraction of each page. This study can be further enhanced by 

using Fusion-Block and Integrated-Block methods to compare web pages. 

 Also, a recommender system can be generated using the experiments of 

the behavior model inference approach on the applications to recommend 

popular web pages to the users. 
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