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Abstract

Compressive sensing and sparse reconstruction techniques are adopted to solve many

seismic data processing problems, including the design of high-resolution transforms

for coherent noise removal, signal separation, and seismic wavefield reconstruction.

Traditional sparse reconstruction algorithms optimally work with noise-free data or

data contaminated with random noise of Gaussian distribution. Their performance

degrades in the presence of erratic noise. In this thesis, erratic noise refers to

noise characterized by large and isolated amplitudes. The thesis proposes robust

sparse reconstruction algorithms that are resistant to erratic noise. These algorithms

are adopted to solve the simultaneous-source separation problem via robust sparse

Radon transforms.

I first review different robust sparse reconstruction algorithms based on classical M-

estimators. Then, I propose a robust Matching Pursuit (MP) algorithm to retrieve

sparse Radon domain coefficients. The algorithm is robust to outliers and, hence,

applicable to process simultaneous-source seismic data. The proposed robust MP

algorithm is slow when applied to synthetic data and field data. Thus, I introduce

the robust Stagewise Weak Conjugate Gradient Pursuit (SWCGP), which reduces

the total costs of robust MP by selecting multi-coefficients at each iteration and

performs a simple conjugate gradient optimization step in each iteration. The results

show that the robust SWCGP can use much fewer iterations to achieve similar results

as robust MP.
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CHAPTER 1

Introduction

1.1 Compressive sensing

Compressive Sensing is a topic that has received considerable attention in geophysics

in the last decade. It was first introduced in 2006 by Donoho (2006); Candes et al.

(2006). And since then, thousands of papers have been published in different areas

such as seismic exploration (Hennenfent and Herrmann, 2008; Herrmann, 2010),

medical imaging (Lustig et al., 2007), remote sensing (Ahmad and Amin, 2013),

radar imaging (Baraniuk and Steeghs, 2007), and astronomical imaging (Bobin et al.,

2008). In geophysics, applications of Compressive Sensing can be grouped into two

categories: acquisition design and data reconstruction.

A fundamental principle in signal processing is given by Nyquist-Shannon sampling

theory (Nyquist, 1928; Shannon, 1949). According to the Nyquist-Shannon sampling

theorem, a signal can be exactly recovered from a set of uniformly sampled data

taken at the so-called Nyquist rate, which is at least twice the highest frequency the

data itself. It means that if we sample a signal in which the highest frequency we

want to reconstruct correctly is f , then we must sample the signal at a minimum

1
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frequency of 2f . Sampling the signal at a frequency lower than the Nyquist frequency

will cause aliasing. It is sometimes unrealistic for geophysical data acquisition to

sample the data with density prescribed by Nyquist-Shannon sampling. This is

particularly true for spatial sampling, where one must deploy receivers and sources

on the surface of Earth to acquire seismic data. In general, such sampling can lead

to a costly acquisition of the seismic wavefield. Compressive Sensing states that

a finite-dimensional signal having a sparse or compressible representation can be

recovered from a small set of linear, non-adaptive measurements (Baraniuk, 2007;

Candes and Wakin, 2008). Compressive Sensing for geophysical applications is based

on two key elements. First, the acquisition or sampling is random; second, the signal

is sparse under a particular transform like the Fourier transform, wavelet transform,

or is constrained by a low-rank constraint when the desired signal can be embedded

in a matrix.

Figure 1.1 shows a simple example showing the principles of Compressive Sensing.

Figure 1.1(a) is a complex signal of wavenumber k = 0.3 radians/unit. The green

signal is sampled every ∆x = 1 units and yields 11 regularly sampled observations

given by red dots. Figure 1.1(b) is the frequency spectrum calculated using sparse

inversion. We observe one amplitude in the frequency spectrum corresponding to

the wavenumber k = 0.3 radians/unit. Figure 1.1 (c) is the reconstructed signal

estimated from the inverted Fourier coefficients. Figure 1.1 (d) shows the signal

sampled at ∆x = 2 units which corresponds to extracting 6 equally spaced obser-

vations. Because the sampling rate is below the Nyquist rate, aliasing happened.

We find that there are two peaks in the frequency spectrum portrayed by Figure

1.1e. Therefore, the reconstructed result in Figure 1.1 (f) corresponds to the su-

perposition of two harmonics signals. Clearly, this is a consequence of sampling

the green signal in Figure 1.1d at a rate that corresponds to less than two points
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per cycle. The recovered data (blue curve) shown in Figure 1.1f reproduces the

observations (red dots) but the fit differs significantly from the original green curve

in Figure 1.1d. Figure 1.1 (g) corresponds to the random sampling case. The sig-

nal in green was sampled by 6 observations as in the aliased case, but now the 6

regularly sampled positions where perturbed to generate random sampling. The

average sampling rate is below the Nyquist rate, but the sparse inversion algorithm

has now retrieved one spectral peak at the correct wavenumber k = 0.3 radians/unit

(Figure 1.1 (h)). The estimated Fourier coefficients are then used to reconstruct the

signal in blue portrayed by Figure 1.1(i). The idea of compressive reconstruction is

to recover the Fourier coefficients that synthesize the observations via regularized

sparse inversion. The regularization term of the inversion is a sparsity promoting

term. When this concept is combined with random sampling, one can sample at

a rate that is more economical that the one provided by classical sampling theory

based on Nyquist-Shannon theory.

This thesis will focus on the sparse recovery theory and on algorithms for sparse

signal reconstruction. We will pay specific attention to robust reconstruction algo-

rithms for sparse signals when erratic noise corrupts data.

1.2 Recovery Algorithms

Generally speaking, according to the theory of basis pursuit (BP) (Chen et al.,

1998), signals can often be well-approximated as a linear combination of just a few

elements from a known basis or dictionary. For a signal x ∈ Rn we call the signal

x is k-sparse when it has at most k non-zero elements, i.e.,‖x‖0 ≤ k, and k � n.

Therefore, given the observed data y, if we attempt to reconstruct the signal x, it
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Figure 1.1: (a) Signal sampled at Nyquist rate Δx = 1 unit. (b) Frequency
spectrum of (a) estimated via sparse inversion. (c) Reconstructed signal
(blue) synthesized from the inverted Fourier coefficients. (d) Signal sam-
pled at half of Nyquist rate Δx = 2 units. (e) Frequency spectrum of (d)
estimated via sparse inversion. (f) Reconstructed signal (blue) via Fourier
synthesis. (g) Signal sampled randomly. (h) Frequency spectrum of (g)
estimated via sparse inversion. (i) Reconstructed signal via Fourier synthe-
sis. This example corresponds to a complex signal of single wavenumber
k = 0.3 radians/unit. For illustrative purposes the real part of the signals
were displayed.
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is straightforward for us to adopt the following minimization problem

min
x
‖x‖0 subject to ‖Ax− y‖22 = 0 . (1.1)

In real data situations, the observed data are contaminated by noise. In this situa-

tion, the optimization problem becomes

min
x
‖x‖0 subject to ‖Ax− y‖22 ≤ ε , (1.2)

where ε > 0 is used to bound the `2−norm of the residual error and is pre-determined

by the noise level. In general, solving the nonconvex problems given by equation

1.2 is known to be NP-hard and intractable. The problem can be solved when the

sensing matrix A obeys the restricted isometry property (RIP) (Candès, 2008).

Definition 1.2.1. A matrix A satisfies the restricted isometry property (RIP) of

order k if there exist a constant δk ∈ (0,1), defined as the smallest positive quantity

such that

(1− δk)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δk)‖x‖22 (1.3)

holds for all x ∈
∑

k where
∑

k = {x ∈ Rn| ‖x‖0 ≤ k} .

If the condition given by the RIP property is satisfied, then various algorithms can

recover the sparse signal from noisy measurements. Generally, there are two different

kinds of approaches to solving this optimization problem. The first approach is

based on convex relaxation, which uses the `1-norm to replace the nonconvex `0-

norm, therefore, making the problem convex. The second approach for solving the

sparse approximation problem is greedy pursuit.
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1.2.1 Convex relaxation methods

The first approach is based on convex relaxation. The convex relaxation method

uses the `1-norm to replace the `0-norm in the equation 1.2. Then the minimization

problem becomes

min
x
‖x‖1 subject to ‖Ax− y‖22 ≤ ε , (1.4)

which is also known as Basis Pursuit denoising (BPDN) (Chen et al., 1998). This

constrained optimization problem can be converted into an alternative unconstrained

form, which is known as LASSO (least absolute shrinkage and selection operator)

(Tibshirani, 1996)

min
x
‖Ax− y‖22 + λ‖x‖1, (1.5)

where λ > 0 is a regularization parameter that controls a tradeoff between the

residual error term and the regularization term. Under certain conditions, the `1-

norm minimization solution problem coincides with that of the `0-norm minimiza-

tion problem. An important advantage of adopting an `1-norm regularization is that

problems become tractable by classical optimization tools for convex problems. The

`1-regularized least squares (LASSO) is sometimes preferred over BPDN because

of the availability of efficient methods to solve the problem given by equation 1.5.

However, in generally, the value of λ is unknown. Moreover, the solution of the

problem given by equation 1.5 is highly sensitive to the value of λ. Several authors

discuss the selection of the tradeoff scalar λ (Eldar, 2008; Galatsanos and Katsagge-

los, 1992; Golub et al., 1979) and, in general, trade-off parameter selection can be a

challenge for large-scale applications where one may not be able to explore solutions

for different λ values.
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Many algorithms are available to solve the `1 regularization problem. The projected

gradient method, for instance, is a method that seeks sparse a representation of x

along a given gradient direction. There exist two slightly different versions of it, one

is the gradient projection sparse representation (GPSR) (Figueiredo et al., 2007),

and the other is the truncated Newton interior-point method (TNIPM) (Kim et al.,

2007). Homotopy methods (Osborne et al., 2000; Malioutov et al., 2005) are another

suitable approach for large-scale sparse solvers. For instance, if a k-sparse signal is

sufficiently sparse, the homotopy methods can find it in k iterations with high prob-

ability. Another algorithm is called the iterative shrinkage-thresholding algorithm

(ISTA) (Combettes and Wajs, 2005; Daubechies et al., 2004). ISTA updates the

solution via ”soft-thresholding” function (Donoho, 1995).

Beck and Teboulle (2009) proposed the fast iterative shrinkage thresholding algo-

rithm (FISTA), which is an improvement of ISTA. FISTA also improves the sequence

of iteration points; instead of employing the previous point, it utilizes specific linear

combinations of the previous two points.

The alternating direction method of multipliers(ADMM) is another powerful al-

gorithm suitable for large-scale machine learning and signal processing problems,

developed long ago and reviewed recently by Boyd et al. (2011). ADMM has also

been adopted to solve linear problems with `1 regularization.

1.2.2 Greedy methods

The second group of approaches can be summarized as a group of greedy methods.

Generally, greedy techniques can be divided into two categories. The first set of

strategies is called ”greedy pursuit,” which can be defined as a set of techniques that

iteratively build up an estimate of the signal x. The second set of approaches called
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”Thresholding” algorithms. These methods are often straightforward to implement

and can be relatively fast.

Greedy pursuit

Mallat and Zhang (1993) introduced the idea of greedy pursuit in signal processing.

Greedy pursuits methods share the two basic steps: element selection and coefficient

update. These methods are usually initialized with a zero estimate, x̂[0] = 0. With

this initialization, the initial residual error is r[0] = y −Ax̂[0] = y and the support

set (i.e. the indices of the nonzero elements) of the first estimate x̂[0] is T = ∅. Each

iteration then updates these quantities by adding additional elements (columns from

A) to the support set T and updating the signal estimate x̂, thereby decreasing the

residual observation error r.

Matching Pursuit (MP) (Mallat and Zhang, 1993) is one of the simplest pursuit

algorithms that one can code. The approximation is incremental, selecting one

column from A at a time, and, at each iteration, only the coefficients associated

with the selected column of the dictionary A is updated. MP will stop in a finite

number of iterations if the norm of r[i] is used to define a stopping criterion for

the algorithm. The dominant computational cost of MP arises from the repeated

evaluation of matrix-times-vector multiplications involving AT . Therefore MP is

generally proposed for applications where operations with A and AT admit a fast

implementation in implicit form such as in case of the Fast Fourier Transform (FFT).

A more sophisticated strategy is implemented by Orthogonal Matching Pursuit

(OMP) (Pati et al., 1993; Tropp and Gilbert, 2007; Tropp, 2004). In OMP the

approximation for x is updated in each iteration by projecting y orthogonally onto

the columns of A associated with the current support set T[i]. Note that in contrast
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to MP, the minimization is performed with respect to all of the currently selected

coefficients. Unlike MP, OMP never re-selects an element, and the residual at any

iteration is always orthogonal to all currently selected elements. While OMP is more

computationally complex than MP due to the orthogonalization step, it generally

enjoys superior performance compared to the MP.

One problem with MP and OMP type strategies is the need to perform at least as

many iterations as there are atoms (elements from the dictionary A) to be selected.

Unfortunately, this precludes MP and OMP to be adopted for large scale problems.

To speed up pursuit these algorithms, it is thus necessary to select multiple elements

at a time. This idea, first proposed in (Donoho et al., 2012) is termed stagewise

selection. In MP and OMP, the selection step chooses one element that is maximally

correlated with the residual. A very natural stagewise strategy is to replace the

maximum with a threshold criterion and select more than one element per iteration.

In the Stagewise Orthogonal Matching Pursuit (StOMP) described by (Donoho

et al., 2012), a threshold λ[i] is defined as a function of the residual r[i−1]. A specific

problem is that the algorithm terminates prematurely when all inner products fall

below the threshold.

Another alternative multi-element selection strategy that has been proposed is the

Regularized OMP (ROMP) (Needell and Vershynin, 2008; Needell and Vershynin,

2010), which groups the inner products gi into sets Jk such that the elements in each

set have similar magnitude. ROMP then selects the set Jk for which
∑

j∈Jk(|gi|)2

is largest.
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Thresholding type methods

As shown above, greedy pursuits are easy to implement. Moreover, they can be

extremely fast. However, they do not have recovery guarantees that are as strong as

methods based on convex relaxation. The methods discussed here bridge this gap.

They are relatively easy to implement and can be extremely fast and show strong

performance guarantees with convex relaxation strategies.

The iterative hard thresholding algorithm is introduced by Blumensath and Davies

(2008b). It is a greedy algorithm that iteratively solves a local approximation to

the CS recovery problem. At each iteration, the algorithm greedily finds a global

minimum based on the current estimate x̂[i],

x̂[i+1] = Hk(x̂
[i] + µAT (y −Ax̂[i])), (1.6)

where Hk is the hard thresholding operator that sets all but the largest k elements of

its argument to zero. The IHT algorithm is easy to implement and is computational

efficient.

There are also some other greedy methods like Compressive Sampling Matching Pur-

suit (CoSaMP) algorithm by Needell and Tropp (2009), and the Subspace Pursuit

(SP) algorithm by Dai and Milenkovic (2009).

1.3 Robust sparse recovery

Compressive Sensing and sparse reconstruction methods generally apply to noise-

free signals or signal contaminated with random noise, preferable with Gaussian

distribution. However, geophysical datasets are often corrupted by erratic noise of
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unknown distribution. It is well known that least squares-based estimators are highly

sensitive to erratic noise in the observed data, leading to poor performance when the

noise does not follow the Gaussian assumption and is, instead, better characterized

by heavier-than Gaussian-tailed distributions (Kassam and Poor, 1985; Zoubir et al.,

2012).

Therefore, in Chapter 2, I will discuss a robust theory for sparse reconstruction, and

I will also introduce some well-accepted algorithms for robust sparse reconstruction.

These algorithms will become the engine adopted in this thesis for simultaneous

source seismic data processing. Simultaneous-source seismic data processing offers

an excellent scenario for testing denoising methods that require robust sparse ap-

proximations.

1.3.1 Simultaneous source separation

Simultaneous source acquisition techniques have gained popularity as a low-cost

strategy to improve seismic data acquisition (Beasley, 2008; Berkhout, 2008). In

the simultaneous source acquisition configuration, instead of firing one shot and im-

posing large time intervals between different shots, several seismic sources fire at

close time intervals. The same set of receivers then records the response of multiple

sources. By allowing overlaps between the closely fired shots, we can acquire various

shot records during the period that one could have used to obtain one conventional

shot record. The main benefit of simultaneous source acquisition is that one can

significantly increase source density and improve seismic images with extra acqui-

sition cost. Figure 1.2 shows an example of simultaneous source acquisition with

two sources towed by two vessels. Two sources move in opposite directions and

fire sources with a small time difference. The primary technical challenge for si-

multaneous source seismic data processing lies in the strong interference introduced



CHAPTER 1. INTRODUCTION 12

by the closely fired shots. Therefore, an additional processing step referred to as

simultaneous source separation or deblending must apply to the conventional pro-

cessing flow. The goal is to separate the responses from each shot and to eliminate

simultaneous source interferences. After deblending or separation, the data should

be comparable to the ideal unblended data that one could have acquired from the

conventional seismic acquisition.

The pseudo-deblending process shifts the firing time delay back for each shot. As

shown in the figure 1.3, the desired signal appears coherent in common receiver,

common offset, and common midpoint domains of the pseudo-deblended data. In

contrast, interferences can be modelled as erratic noise. The interferences from the

blended shots would appear random because the randomized firing time delays per-

turb them. Meanwhile, both desired signals and interferences are coherent in the

common shot gather. Therefore, the deblending problem can be solved by removing

erratic noise in the common receiver, common offset, and common midpoint gath-

ers, which can be done by the robust sparse reconstruction methods. In essence,

deblending in this thesis is tackled as a robust denoising problem.

1.4 Contributions of this thesis

My thesis is about robust Compressive Sensing and robust sparse recovery algo-

rithms and mainly focused on robust greedy methods and their application to si-

multaneous source data processing. My application is to seismic data processing but

the algorithms developed in this thesis can be applied to problems in other areas.

� I first introduce the general concepts of compressive Sensing and sparse re-

covery. I discuss two categories of traditional recovery algorithms, which are
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Source Line 1

Source Line 2

𝑡1 𝑡2 𝑡3 𝑡4 𝑡5

𝑡1 + 𝑡1
′

𝑡2 + 𝑡2
′𝑡3 + 𝑡3

′𝑡4 + 𝑡4
′𝑡5 + 𝑡5

′

Figure 1.2: Simultaneous source acquisition with two sources. Red symbols
represent sources. Blue triangles represent receivers. In a conventional ac-
quisition each time one source is activated the array of receivers only record
the response for that particular source. In simultaneous source acquisition,
receivers record the responses of two (or more) sources activated with ran-
dom time delays. The process of deblending or separation involves retrieving
the responses from individual sources from simultaneous source data.
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Figure 1.3: Data after pseudo-deblending. (a) A common midpoint gather.
(b) A common receiver gather. (c) A common offset gather. (d) common
shot gather. In a common shot gather the responses of the two sources
are coherent and therefore, we cannot apply separation algorithms based on
denoising in this domain. On the other hand, in all the other domains, the
response for one source is coherent and incoherent for the rest of the sources
making these domains attractive for source separation techniques based on
denoising.
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convex relaxation and greedy methods. Then I review the theory of the ro-

bust sparse reconstruction and many robust sparse reconstruction algorithms.

I also take some simple tests to compare the performance of the robust and

non-robust reconstruction algorithms.

� I present the classical Matching Pursuit algorithm (Mallat and Zhang, 1993)

using the simple language of linear algebra, and then I make it robust to the

presence of outliners in the data. The modification entails replacing the `2

space inner product required to identify basis functions by a `p space inner

product. The `p space inner product helps determine the correct basis function

in each iteration of the Matching Pursuit scheme.

� My contribution also addresses technical questions concerning Matching Pur-

suit implementation for cases where the basis functions are not given in an

explicit form. An example of the latter is the time domain Radon transform

adopted in this study to denoise simultaneous source records.

� The traditional Matching Pursuit algorithm is relatively slow when is applied

to complex synthetic data and real marine data. Therefore, I also discuss

other greedy pursuit algorithms that works much faster than the classical MP

algorithm.

1.5 Thesis Outline

The structure of the thesis is as follow

� In Chapter 1, I provide an introduction about Compressive Sensing and

sparse reconstruction algorithms. These algorithms can be divided into two
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groups, which are convex relaxation methods and greedy methods. I then dis-

cuss the challenge we faced with traditional sparse recovery algorithms. These

algorithms only work when the signals contain no noise or have random noise

that follows a normal distribution. This problem motivates the thesis core

topic: Robust sparse recovery when the signal contains impulsive or erratic

noise.

� In Chapter 2, I review the theory of robust reconstruction. I also introduce

some commonly used robust M-estimators. I review algorithms to solve the

robust sparse reconstruction problem using different M-estimators. I consider

simple tests to compare the performance between robust and non-robust sparse

reconstruction algorithms.

� In Chapter 3, I introduce a new robust greedy method called lp − norm

matching pursuit. It replaces the l2 − norm inner product used in the tradi-

tional matching pursuit algorithm with our new-defined robust inner product.

I also explain the implementation of Matching Pursuit with an operator given

in the implicit form, in our case, a local Radon transform. Finally, I apply

the robust Matching Pursuit with local Radon transform to the simultaneous

source separation problem.

� In Chapter 4, I discuss other greedy pursuit algorithms that work faster

than the traditional MP algorithm. Then I explained how to apply robust

Radon transform and robust inner product into these faster greedy pursuit

algorithms. I also provide tests to compare the performance of each algorithm

in the different scenarios.

� In Chapter 5, I conclude the main results and the observations of my research.

In the end, I discuss the limitations of the proposed approach and provide
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suggestions for future works.



CHAPTER 2

Robust sparse inversion

In Chapter 1, I provide an introduction to compressive sensing (CS) and sparse

reconstruction algorithms. Traditional techniques for CS and sparse representation

use the `2 norm as the metric for the residual error. However, it is well known

that least-squares based estimators are highly sensitive to outliers present in the

data. The performance of least-squares methods is only guaranteed when the noise

follows the Gaussian assumption. The presence of noise that follows a heavy-tailed

distribution will lead to poor performance. In the area of geophysical signal pro-

cessing, often data contain heavy-tailed noise also called erratic noise. One way of

addressing this type of noise is via robust statistics and, more precisely, by robust

filtering techniques.

2.1 M-estimators

Robust signal processing techniques are generally based on maximum likelihood

type estimators. Maximum likelihood (ML) type estimators, also known as M-

estimators, are described by a cost function-defined optimization problem where

18
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properties of the cost function (or its first derivative, the so-called influence function)

determine the estimator robustness (Hampel et al., 1986). An estimator’s robustness

is characterized by two essential concepts: the breakdown point and the influence

function. The breakdown point is used to describe the quantitative robustness of an

estimator. It indicates the maximal fraction of outliers in the observations, which an

estimator can handle without breaking down. The influence function describes the

bias impact of infinitesimal contamination at an arbitrary point on the estimator,

standardized by the fraction of contamination. For M-estimators, the influence

function is proportional to the first derivative of the cost function(Hampel et al.,

1986).

Let us assume a linear model where observations y are related to model parameters

or coefficients x via a linear operator or matrix A. Under the above mentioned

model, observations can be written as follows

y ≈ Ax (2.1)

where the symbol ≈ emphasizes that we have noise in the system and therefore, Ax

is understood as modelled data that should not fit the observation exactly. In sparse

approximation theory or sparse inverse problems our goal is to find a sparse solution

of the unknown x and therefore, we pose the problem as one where we minimize a

cost function given by

J = ‖r‖22 + λ‖x‖11 . (2.2)

The `1 term is the sparsity promoting term. The vector r are the residuals r = y−Ax

and λ is the tradeoff parameter. Notice that in equation 2.2 I have adopted an `2

norm for the residuals. The latter is equivalent to assume a Gaussian distribution

of errors. Therefore, if the data is contaminated by erratic noise, the solution x
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will contain unreal features that are needed to explain outliers. This effect can be

attenuated by introducing a robust M-estimator. In others words, the main idea

is to adopt a different manner of measuring error. In the `2 case, the ”size of the

residuals” is measured by

‖r‖22 =
∑
i

r2i =
∑
i

f(ri) (2.3)

where it is clear that f(x) = x2 is the function used when we adopt the `2 norm 1.

The M-estimator tries to reduce the effect of outliers by replacing f(·) by a function

ρ(·) which is robust to outliers. Then, a typical sparse inversion problem with data

contaminated by erratic noise becomes one where we minimize the following cost

function

J = ‖r‖ρ + λ‖x‖11 , (2.4)

where

‖r‖ρ =
∑
i

ρ(ri) (2.5)

Generally, this problem can be solved by the Iterative Reweighted Least-Squares

method (IRLS) (Holland and Welsch, 1977; Ji, 2006; Ibrahim and Sacchi, 2014)

with the following equivalent cost function

J = ‖Wrr‖22 + λ‖Wxx‖22. (2.6)

Thus, we have turned the non-quadratic problem into a sequence of quadratic min-

imization problems where Wr and Wx are diagonal matrices that depend on the

residual r and model x, respectively. These matrices are calculated from the solu-

tion r and x in an iterative manner. The function ρ, its derivative (also called the

1or f(x) = |x|2 = xx∗ for complex x
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M-estimators
type ρ(x) ψ(x) w(x)

`2
x2

x x 1
`1 |x| sgn(x) 1

|x|
`1 − `2 2(

√
(1 + x2/2)− 1) x√

(1+x2/2)

1√
1+x2/2

`p
|x|p
p sgn(x)|x|p−1 |x|p−2

Huber

{
if |x| ≤ k
if |x| ≥ k

{
x2/2
k(|x| − k/2)

{
x
ksgn(x)

{
1
k/|x|

Cauchy c2

2 log(1 + (x/c)2) x
1+(x/c)2

1
1+(x/c)2

Geman-McClure x2/2
1+x2

x
(1+x2)2

1
(1+x2)2

Welsch c2

x [1− exp(−(x/c)2)] xexp(−(x/c)2) exp(−(x/c)2)

Tukey

{
if‖x‖ ≤ c
if‖x‖ ≥ c

{
c2

6 (1− [1− (x/c)2]3)
c2/6

{
x[1− (x/c)2]2

0

{
[1− (x/c)2]2

0

Table 2.1: A few commonly used M-estimators.The variable x can be either
an element of the residual vector r or an element of the vector of model
parameters x. In compressive or sparse inversion problems, we often select
the `1 norm for the regularization term and the `2 norm for the error term.
In robust sparse inversion or robust compressive sensing, we will continue
to adopt the `1 norm for the regularization term and adopt one of the M-
estimators above (except for the `2 norm which is non-robust.)

influence function) and the expression of the weights for different M-estimators are

listed in table 2.1. The function w(x) or w(r) are used to compute the diagonal

matrices of weights as follow

[Wr]ii = w(ri) (2.7)

and

[Wx]ii = w(xi) . (2.8)

Table 2.1 shows some commonly use M-estimators, ρ(x) is the functional that affects



CHAPTER 2. ROBUST SPARSE INVERSION 22

the error fitting term. Similarly, ψ(x) is the corresponding influence function which

is proportional to the first derivative of ρ(x), and w(x) is the weighting matrix that

we used to solve the problem by, for instance, the iterative reweighted least square

(IRLS) method.

Figure 2.1,2.2 and 2.3 show the cost function, influence function and weighting

function of the M-estimators, respectively. As we can see from theses figures, the `2

norm estimator is non-robust because its influence function is not bounded, as the x

increases, the influence function also increases linearly. The `1 estimator reduce the

influence of the large errors, but they still have some influence because the influence

function has no cut-off point. In addition, the `1 estimator is not stable because the

ρ function is convex but its derivative does not exist at at x = 0. The latter implies

that special care needs to be taken to deal with the discontinuity of gradients at

x = 0. The `1 − `2 estimator can reduce the influence of large errors like `1, and

is also convex. The influence of the Huber estimator has the similar behaviour

as the `1 estimator. For the Cauchy2, Geman-McClure and Welsh estimators, the

influence of large errors only decreases linearly. For the Tukey function, the outliers

are totally suppressed. As we mentioned before, these problems can be generally

solved by IRLS. Ji (2006) explains how to solve the robust inversion problem by

IRLS in conjunction with the conjugate gradient method in detail.

2.2 Methods

We first consider the `1 norm case where one seeks a robust method to estimate a

sparse solution

min
x
‖Ax− y‖11 + λ‖x‖1, (2.9)

2Also known as the Lorentzian function.
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Figure 2.1: Cost function of different M-estimators. For the �p norm we use
p = 1.5 , and for Huber estimator we use k = 0.75. we use c = 1 for the
Cauchy, Welsch and Tukey norms.
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Figure 2.2: Influence function of different M-estimators. For the �p norm we
use p=1.5. For the Huber estimator we use k = 0.75. We use c = 1 for the
Cauchy, Welsch and Tukey estimators.
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Figure 2.3: Weighting function for different M-estimators. For the �p norm
we use p=1.5. For the Huber estimator we use k = 0.75. We adopted c = 1
for the Cauchy, Welsch and Tukey estimators.
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Equation 2.9 is called a LAD l1 regularized problem (l1-LAD) and has been studied

by Wang et al. (2007). This problem can be changed to the following equivalent

convex problem

min
x,z

λ‖x‖1 + ‖z‖1 subject to y = Ax + z (2.10)

where z represents the erratic noise. The parameter λ is the trade-off parameter

controls the two l1 terms. In signal processing, this method is often referred as Jus-

tice Pursuit (Laska et al., 2009). The theoretical recovery conditions for solving this

problem have been studied by Wright and Ma (2009); Studer et al. (2011); Li (2012).

Equation 2.10 can also be modified as follows for the case of data contaminated with

both erratic noise and non-erratic (Gaussian) noise

min
x,z

λ‖x‖1 + ‖z‖1 subject to ‖y −Ax− z‖2 ≤ ε . (2.11)

The theoretical recovery conditions for the problem above have been studied by

Nguyen and Tran (2013); Nguyen and Tran (2011); Studer and Baraniuk (2013).

The problem posted in 2.11 is convex and can be efficiently solved by using an

optimization algorithm like FISTA (Beck and Teboulle, 2009).

The problem in 2.10 is convex but non-smooth, it can be solved using the alternating

direction method of multipliers (ADMM) (Yang and Zhang, 2011).

If the erratic noise has heavier tails than those of a Laplace distribution (`1 norm

case), we can use the `p norm with 0 < p < 1. Then, the problem becomes

min
x
‖Ax− y‖pp + λ‖x‖1 . (2.12)

An algorithm that uses the proximity operator of the `p norm in conjunction with
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ADMM has been proposed to efficiently solve 2.12 for the case 0 < p < 2 by Wen

et al. (2016). For the non-convex case 0 < p < 1, a smoothing strategy has also

been proposed to derive a convergent algorithm.

Another method to solve 2.12 is a greedy method. For instance, Zeng et al. (2016)

proposed a robust MP and OMP method called `p-MP and `p-OMP, respectively.

Both techniques are based on the `p-space correlation defined as follows

cp(a,b) = 1− minα‖b− αa‖pp
‖b‖pp

. (2.13)

One can also use the Cauchy cost function to replace the `2 norm for the data-fitting

term. In this case, the problem becomes

min
x

m∑
i=1

ρ(
yi −ATi x

σ
) + λ‖x‖1, (2.14)

with ρ(·) the functional corresponding to the Cauchy norm (Table 2.1). The param-

eter σ is the scale parameter of the Cauchy distribution The scalar λ is a regular-

ization parameter that controls the sparsity level of the solution. Equation 2.14 can

be solved efficiently based on the fast iterative shrinkage algorithm (FISTA) (Pham

and Venkatesh, 2012) and ADMM (Pham and Venkatesh, 2013).

2.2.1 Denoising by robust sparse inversion

At this point I have described methods to estimate sparse solutions for linear prob-

lems. Now, I would like to make the connection to denoising, the central topic of

my thesis. Problems defined in the previous section fall under the general scheme

x̂λ = argmax
x
‖y −Ax‖ρ + λ‖x‖1 (2.15)



CHAPTER 2. ROBUST SPARSE INVERSION 28

where it is clear that x̂λ is the solution of our problem for a suitable parameter λ.

The solution x̂λ can be used to predict the data

ŷ = Ax̂λ . (2.16)

We call ŷ the predicted or denoised data. In general, A is a synthesis operator

that transforms coefficients x to data y. The operator A can be the inverse Fourier

transform in which case, x is the vector of complex Fourier coefficients (Sacchi et al.,

1998). Similarly, A can be a Radon operator that maps Radon-domain coefficients

to data space (Sacchi and Ulrych, 1995). In general, when we refer to denoising we

mean to estimate x from y and then use the result to synthesize ŷ via equations

2.15 and 2.16.

2.3 Deblending by robust sparse inversion

The simultaneous source separation problem can be tacked via robust denoising. In

Chapter 1, I have also presented robust sparse inversion via robust M-estimators.

In this section, I test the performance of these methods with an application that

entails denoising via the robust Radon transform.

2.3.1 Radon transform

One of the basic principles for Compressive sensing (CS) and sparse inversion is

that the signal is sparse under a particular transform. The seismic noise removal

methods are based on the principle that the seismic data can be transfered into a

new domain where the signal and noise can be separated (Berkhout and Verschuur,

2006). The Radon transform is one of these suitable transformations because it



CHAPTER 2. ROBUST SPARSE INVERSION 29

can focus seismic signals efficiently (Deans, 2007; Kuchment, 2013). It has been

well used in seismic data processing applications, such as interpolation (Kabir and

Verschuur, 1995; Sacchi and Ulrych, 1995; Trad et al., 2002), multiple separation

(Hampson, 1986a; Trad et al., 2003a) and noise removal (Russell et al., 1990a,b).

Many deblending methods are also based on Radon transform (Moore et al., 2008;

Akerberg et al., 2008; Ibrahim and Sacchi, 2014).

The forward Radon operator is denoted by L and the adjoint by L∗. Having these

two operators is equivalent to having access to the matrix A (or its columns ai) and

its Hermitian transpose AH in the preceding section. For a general Radon transform

with integration path t = τ + qφ(h) the forward and adjoint operators are given by

L : d(t, h) =
∑
q

a(τ = t− q φ(h), q), (2.17)

L∗ : ã(τ, q) =
∑
h

d(t = τ + φ(h)q, h), (2.18)

where h is offset, t is time and τ is intercept. For a linear Radon transform, φ(h) = h

and q represents dip or ray-parameter. Similarly, for the parabolic Radon transform,

φ(h) = (h/hf )2 and q represents residual parabolic moveout at far offset hf (Hamp-

son, 1986b). The Radon coefficients are given by a(τ, q) and the low-resolution

coefficients computed via the adjoint operator are given by ã(τ, q). In our numerical

implementation it is clear that all variables are discrete and, for instance, h is re-

placed by the discrete offset hi, i = 1 . . . nh. Similarly, q is replaced by the discrete

Radon parameter qi, i = 1 . . . nq.
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2.3.2 Blending operator

The next important concept is the blending operator, which I use to create data

that mimics a simultaneous acquisition survey. First, I assume that the seismic

data acquired via a conventional seismic acquisition survey are denoted as D(t, r, s),

where t, r, s are used to indicate the time, receiver, and source indices, respectively.

In simultaneous source acquisition, the trace recorded by the j-th receiver (rj) can

be simulated as

b(t, rj) =
∑
i∈S

Drj (t− τi, rj , si), (2.19)

where S indicates a group of shots with fire times and locations (τi, si). This equation

can be rewritten into operator form like

b = BD, (2.20)

where B is the blending operator defined by Berkhout (2008) and b are the blended

data. The symbol D is the ideal unblended common receiver gather for the receiver j.

Basically, the blending operator shifts each shot record according to the fire time and

then superposes the shot records into a blended shot gather. The adjoint operator,

of the blending operator, is the pseudo-deblending operator Berkhout (2008). We

denote the pseudo-deblending operator as follows

D̂ = B∗b. (2.21)

Pseudo-deblending entails shifting the fire time delays back to every single shot

and then truncating the blended shot record to the conventional shot’s recording

interval. Figure 2.4 and 2.5 illustrate the numerical blend and pseudo-deblend the

three shots. As we can see from figure 2.5, the pseudo-deblend process can not
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Figure 2.4: Illustration of numerical blending using three shots.

Figure 2.5: Illustration of pseudo-deblending of two shots.

remove the source interference.

2.3.3 Blending factor

The blending factor is defined as the average number of simultaneous source shots

that fit the desired conventional record. A blending factor equals five means we fire

five sources fired on one blended record. This means the blending factor for the

example in figure 2.4 is three. With this definition, a high blending factor indicates

a higher level of blending noise.
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Figure 2.6: Simple synthetic data generated to test robust and sparse de-
noising algorithms based on the Radon transform.

2.3.4 Examples

The goal of the test is to estimate the Radon coefficients that model the data and

then use them to predict the denoised data. I will measure the quality of the

reconstruction via the following expression

SNR = 10 log10(
‖yc‖22

‖yc − ŷ‖22
)

where yc is the clean data. In all our examples, we add erratic noise to yc by

the blending and pseudo-deblending operators, and trying to mimic blending noise.

Then, we estimate ŷ via robust �p and non-robust �2 sparse inversions. The noisy

data with strong erratic noise can be considered as the pseudo-deblended common

receiver gathers. Figure 2.6 to figure 2.10 shows the denoising results when we use

different value of the parameter p for the �p norm estimator. We test the performance

with three different noise levels defined by the different blending factors for each one.
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Figure 2.11 shows the denoising performance changes as the value of p. From these

figures, we can see that, as the value of p decreases, our algorithm becomes more

robust to blending noise. However, the algorithm’s performance is susceptible to

the value of the tradeoff parameter λ. As we can see from figures 2.12 to figure 2.15,

a small change of λ can change the final performance of the denoiser. For the same

cost function, data with a different noise level needs to use a different value of λ.

Similarly, for the same dataset, we need to find the best λ when we use a different

value of the parameter p in the cost function. There is no clear method to calculate

this λ, especially when dealing with non-Gaussian noise data. A heuristic approach

is to monitor the solution (predicted denoised data) and visually inspect the results

for evidence of over or under-fitting and modify the tradeoff parameter accordingly.

We run these tests by both IRLS and ADMM methods. The performance of these

algorithms is similar. The final results of both methods are susceptible to the value

of λ. These techniques are challenging to apply to real datasets methods. In the next

chapters, I propose to adopt robust greedy methods for denoising blended datasets

similar to the data used in this section.
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Figure 2.7: Denoising results for the error �2 estimator (non-robust solution).
(a) Noisy data with a blending factor of 5. (b) The denoised data yield
SNR = 15.5 dB. (c) Errors between the denoised data and the clear data in
Figure 2.6. (d) Noisy data with a blending factor of 10. (e) Denoised data
SNR = 13.1 dB. (f) Errors between e and the clean data. (g) Noisy data
with a blending factor of 20. (h) Denoised result SNR=12.2 dB. (i) Errors
between h and the clear data.
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Figure 2.8: Denoising results for the �p estimator with p = 1.5. (a) Noisy
data with a blending factor of 5. (b) Denoised data result SNR = 28.4 dB.
(c) Errors between b and the clean data. (d) Noisy data with a blending
factor of 10. (e) Denoised data SNR = 21.8dB. (f) Errors between e and
the clean data (g) Noisy data with a blending factor of 20. (h) denoised data
SNR = 12.2db. (i) Difference between h and the clean data.
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Figure 2.9: Denoising results for the �p estimator with p = 1. (a) Noisy
data with a blending factor of 5. (b) Denoised data SNR = 123.4dB. (c)
Errors between b and the clean data. (d) Noisy data with a blending factor
of 10. (e) Denoised data SNR = 113.8 dB. (f) Errors between e and the
clean data. (g) Noisy data with a blending factor of 20. (h) Denoised data
SNR = 34.8 dB. (i) Errors between h and the clean data.
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Figure 2.10: Denoising results for the �p estimator with p = 0.8. (a) Noisy
data with a blending factor of 5. (b) Denoised data SNR = 142.2dB. (c)
Errors between b and the clean data. (d) Noisy data with a blending factor
of 10. (e) Denoised data SNR = 138.8 dB. (f) Errors between e and the
clean data. (g) Noisy data with a blending factor of 20. (h) Denoised data
SNR = 120.9 dB. (i) Errors between h and the clean data.



CHAPTER 2. ROBUST SPARSE INVERSION 38

Figure 2.11: Comparison of denoising performance versus the p-norm pa-
rameter p.

Figure 2.12: Denoising performance vs λ for p-norm parameter p = 2.
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Figure 2.13: Denoising performance vs λ for p-norm parameter p = 1.5.

Figure 2.14: Denoising performance vs λ for p-norm parameter p = 1.
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Figure 2.15: Denoising performance vs λ, for p-norm parameter p = 0.8.



CHAPTER 3

Deblending via robust matching pursuit 1

In chapter 1, I introduced compressive sensing and sparse reconstruction. Then, I

discussed different robust sparse reconstruction methods. In this chapter, I propose

a new robust and sparse estimation technique based a robust Matching Pursuit

algorithm. I will also show how to use the robust Matching pursuit to solve the

simultaneous source separation problem via Radon transforms. First, we need to

explain the theory of Matching pursuit in detail.

3.1 Theory

3.1.1 Matching pursuit

The Matching Pursuit method iteratively represents a signal via a superposition

of simple components. After k iterations, the signal is described by the following

1This chapter contains material published in J Li and M D Sacchi, 2021, An lp-space Matching
Pursuit algorithm and its application to robust seismic data denoising via time-domain Radon
transforms: Geophysics, in Press.

41
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expressions

d = s[k] + r[k], (3.1)

s[k] =
∑
j∈T [k]

aj gj , (3.2)

where s[k] is the reconstructed or synthesized signal and r[k] is the reconstruction

error. In the influential paper introducing Matching Pursuit (Mallat and Zhang,

1993), the algorithm is summarized by the following process: starting with an initial

approximation s[0] = 0, an empty set T [0] = {} and residual r[0] = d, the subsequent

iteration is used to update r[k] and s[k]

l = argmax
j=1,2,....,M

|gHj r[k] |, (3.3)

al = argmin
a

‖r[k] − agl ‖22, (3.4)

T [k+1] = T [k] ∪ {l}, (3.5)

r[k+1] = r[k] − al gl, (3.6)

s[k+1] = s[k] + al gl . (3.7)

In each iteration, the algorithm selects the basis function that maximizes the ab-

solute value of the inner product between the residual r[k] and all basis functions

that belong to the dictionary D (Equation 3.3). Then, once the best basis function

is selected, the optimal coefficient al is obtained via the method of least-squares

(equation 3.4). Notice that equation 3.4 has a simple closed-form solution given by

ak =
gHl r[k]

‖gl‖22
. (3.8)
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The expression given by equation 3.8 is a normalized l2 inner product between the

vector r[k] and the vector gl. For a normalized dictionary with elements satisfying

‖gl‖22 = 1, the coefficient becomes al = gHl r[k].

3.1.2 Robust Matching pursuit

The l2 inner product in the classical Matching Pursuit algorithm (equation 3.8) is

sensitive to data outliers. Many authors have observed that when the observations d

are contaminated by erratic noise, the l2 inner product could result in the selection

of an incorrect basis function (Razavi et al., 2012; Chen et al., 2013; Moore et al.,

2016). The problem can be alleviated by modifying the steps given by equations

3.3 and 3.4 of the classical Matching Pursuit algorithm. One can interpret the l2

inner product between the vector r and a waveform g (notice that we have removed

the sub-index l from gl to avoid notational clutter) as the solution of the following

problem

(g, r)2 := aopt = argmin
a

‖r− ag ‖22

=
gHr

gHg
.

(3.9)

Inspired by the last equation, we propose to estimate the following lp inner product

via the following expression

(g, r)p := aopt = argmin
a

‖r− ag ‖pp

=
gHWr

gHWg
,

(3.10)

where W is a diagonal matrix with elements given wi = (|di − agi|2−p + ε)−1.

Equation 3.10 does not have a closed-form solution for p < 2. In this case, we adopt



CHAPTER 3. DEBLENDING VIA ROBUST MATCHING PURSUIT 44

the Iteratively Reweighed Least-Squares (IRLS) method (Scales and Gersztenkorn,

1988) to compute (g, r)p (see Appendix). The small number ε > 0 in wi avoids

division by zero. We name the proposed method for p ≈ 1 the Robust Matching

Pursuit algorithm. The pseudo-code is given by Algorithm 1. Notice that the

algorithm becomes the classical Matching Pursuit method for p = 2. At this stage,

it is important to mention that the IRLS algorithm adopted to evaluate the lp inner

product convergences in about 4 − 5 iterations. Also notice that (g, r)p is not an

inner product in a strict mathematical definition (Zeng et al., 2016).

We now illustrate the problem via a simple example which is provided in Figure

3.1. The signal corresponds to a complex exponential given by d(n) = ei (n−1) k̃, n =

1 . . . N with non-dimensional wavenumber k̃ = 0.2 radians and length N = 100

samples. The clean signal is provided in Figure 3.1(a). The signal contaminated

by three outliers is portrayed in Figure 3.1(b). In this example, the dictionary D

is given by complex exponentials gj(n) = ei(n−1) kj of non-dimensional wavenumber

kj = −π+ 2π(j − 1)/(M − 1) where n = 1 . . . N , j = 1 . . .M and M = 250. We run

the classical Matching Pursuit algorithm for K = 20 iterations, and we displayed

the recovered data in Figure 3.1(c). The absolute value of the retrieved Fourier

coefficients, |ak|, are plotted versus wavenumber in the interval [−π, π] in Figure

3.1(d). The classical Matching Pursuit algorithm identifies the correct basis function

and includes spurious spectral peaks required to fit the outliers. The recovered data

show the persistence of outliers in the solution. Additionally, Figure 3.1(e) and

Figure 3.1(f) show the reconstructed data and the identified Fourier coefficients for

the robust Matching Pursuit algorithm with p = 0.8, respectively. In this case, the

algorithm is also run for K = 20 iterations. The algorithm now selects the correct

basis function in the first iteration. In the remaining iterations, the robust selection

of the basis function leads to ak = 0. In other words, as indicated by our analysis
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of the convergence diagram in Figure 3.2, the classical Matching Pursuit method

adds spurious harmonics to further decrease the norm of the residuals. Conversely,

immediately after one iteration, the robust Matching Pursuit algorithm ceases to

add new harmonics. In essence, the absence of spurious harmonics (Figure 3.1(e)

and (f) ) and the flattening of the convergence curve (Figure 3.2) indicate that the

robust Matching Pursuit algorithm can tolerate outliers.

Algorithm 1 Matching Pursuit with lp inner product

Input: data d, dictionary D with normalized atoms gj , j = 1 . . .M

Output: reconstructed data d
[K]
r and residuals r[K]

Initialization: r[0] = d, d
[0]
r = 0 and T [0] = {}

Select p = 2 for classical MP or p ≈ 1 for robust MP
for k = 1, 2, ....,K do

l = argmax
j=1,2,....M

|(r[k−1],gj)p|

α = (r[k−1],gl)p
T [k] = T [k−1] ∪ {l}
r[k] = r[k−1] − αgl
d
[k]
r = d

[k−1]
r + αgl

end for

3.1.3 Computing sparse Radon transforms via Robust Matching

Pursuit

We now apply the proposed robust Matching Pursuit algorithm to the computation

of the Radon transform. Unfortunately, the time domain Radon transform entails

solving an inverse problem in an implicit formulation (Trad et al., 2003b). Simply

speaking, one does not have access to explicit Radon basis functions in a matrix-

vector form. Instead, we need to apply the robust inner product inside the Radon

operator, I already discribed the Radon operator in the Chapter 2. I will shows the
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Figure 3.1: One-dimensional Fourier example. (a) The original data consists
of one harmonic of non-dimensional wavenumber 0.2 rads. (b) The original
data plus outliers. (c) The estimated data using the classical Matching Pur-
suit algorithm with l2 inner products. Blue stars indicate the original data
and the orange solid line for recovered data. (d) The Fourier coefficients
(ak) that were identified by the classical non-robust Matching Pursuit al-
gorithm. (c) Estimated data using the proposed robust Matching Pursuit
algorithm with lp inner product (p = 0.8). The blue stars represent the
original data, and the orange solid line represents the recovered data. (d)
The absolute value of the Fourier coefficients ak that were identified by the
Robust Matching Pursuit algorithm.
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Figure 3.2: Convergence curves for the example provided in Figure 1. The
vertical axis is the norm of the residual vector. The figure compares the
convergence curves of the classical Matching Pursuit (MP) algorithm versus
the Robust Matching Pursuit (RMP) algorithm proposed in this paper. The
blue line indicates the convergence curve for the standard Matching Pursuit
algorithm. The orange line shows the convergence curve for the Robust
Matching Pursuit algorithm.
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equations for the Radon operators here again.

L : d(t, h) =
∑
q

a(τ = t− q φ(h), q), (3.11)

L∗ : ã(τ, q) =
∑
h

d(t = τ + φ(h)q, h), (3.12)

We notice that the adjoint Radon operator L∗ can be interpreted as the inner prod-

uct between data extracted across each τ, q trajectory and an all ones-vector 1. We

denote the data extracted along a τ, q trajectory as the length nh × 1 vector given

by

u(τ, q) = [d(τ + q φ(h1), h1), d(τ + q φ(h2), h2), . . . , d(τ + q φ(hnh
), hnh

)]T . (3.13)

Hence, we can write

ã(τ, q) = (u(τ, q),1)p . (3.14)

For p ≈ 1, the Matching Pursuit algorithm will become insensitive to outliers and,

therefore, less prone to the selection of the incorrect basis function. Algorithm 2

provides the proposed robust Matching Pursuit algorithm for the Radon transform.

The algorithm follows the same logic of Algorithm 1 but now one needs to be

more creative in the definition of its parts because we do not have access to Radon

transform basis functions in explicit form. Notice that when p = 2, Algorithm 2 is

the classical Matching Pursuit algorithm which is non-robust and can be adopted

to estimate sparse Radon coefficients. Also, notice that in Algorithm 2, the Radon

coefficients with maximum absolute lp inner product is used to model one individual

basis function via the forward Radon operator. We also mention that the symbol

δ(t, q) in Algorithm 2 is the Kronecker delta function which serves to model one

individual waveform. The modelled resulting waveform is then fitted to the data.
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Figure 2 indicates that, for the robust Matching Pursuit algorithm, the norm of the

Algorithm 2 Robust Matching Pursuit Radon transform

Input: data d, forward L and adjoint L∗ Radon operators

Output: reconstructed data d
[K]
r and residuals r[K]

Initialization: r[0] = d, d
[0]
r = 0 and T [0] = {}

for k = 1, 2, ....,K do
for all τ, q do

u(τ, q) = [d(τ + q φ(h1), h1), d(τ + q φ(h2), h2), . . . , d(τ + q φ(hnh
), hnh

)]T

ã(τ, q) = (u(τ, q),1)p
end for
(τl, ql) = argmax

τ,q
|ã(τ, q)|

a(τ, q) = δ(τ − τl, q − ql)
g = La(τ, q)
α = argmin

α′
‖r[k−1] − α′g‖pp

T [k] = T [k−1] ∪ {l}
r[k] = r[k−1] − αg

d
[k]
r = d

[k−1]
r + αg

k ← k + 1
end for

residuals does not change after all the correct basis functions were selected. For

this reason, we have adopted the following stopping criteria. The algorithm stops

either when it reaches a maximum number of iterations or the norm of the relative

change of the residuals satisfies ‖rk − rk−1‖/|rk−1‖ < η where η = 0.05. These

two criteria were used for all numerical experiments run with classical and robust

Matching Pursuit methods.
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3.2 Examples

3.2.1 First example

Using the parabolic forward Radon operator, we synthesize data that consists of

eight parabolic events. The spatial sampling is 51 m, and the temporal sampling

interval is 0.004 s. We also use a zero-phase Ricker wavelet of central frequency fc =

20 Hz to simulate the source wavelet. Figure 3.3a shows the clean data. Figure 3.3b

is the data after contamination with erratic noise. The noise imitates the type of data

corruption that one will encounter in a simultaneous source acquisition environment.

The gather can be considered a pseudo-deblended common receiver gather where the

noise is erratic. We define the input signal-to-noise ratio as SNRin = 10 log
‖dc‖22
‖ne‖

where dc is the clean signal and ne is the erratic noise. For this example SNRin =

−8.1 dB.

We test the retrieval of Radon coefficients and data reconstruction by first adopting

the classical non-robust Matching Pursuit algorithm (p = 2). Then we investigate

the proposed robust Robust Matching Pursuit method with parameter p = 0.8. In

this example, we use the parabolic Radon operator. We run the algorithm for a

maximum of K = 20 iterations.

In Figure 3.3c and Figure 3.3d we show the reconstructed data and the reconstruc-

tion error for the classical Matching Pursuit algorithm (p = 2). Similarly, Figure

3.3e and Figure 3.3f show the reconstructed data and reconstruction error obtained

via the robust Matching Pursuit algorithm with parameter p = 0.8. We also com-

puted the signal-to-noise-ratio of the output SNRout = 10 log
‖dc‖22
‖dc−dr‖ where dr is

the reconstructed data. For this example SNRout = 77 dB. We also save the sparse

Radon coefficients a(τ, q) identified by the Matching Pursuit algorithm. Figure 3.4a
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shows the true parabolic Radon coefficients adopted to synthesize the data in Fig-

ure 3.3a. Figure 3.4b shows the coefficients identified by the classical non-robust

Matching Pursuit algorithm. Finally, Figure 3.4c shows the coefficients identified by

the robust Matching Pursuit algorithm with p = 0.8. We also need to mention that

the retrieved sparse coefficients were convolved with a two-dimensional smoothing

kernel to facilitate their visualization. We find that the robust Matching Pursuit

algorithm avoids picking the wrong basis functions caused by erratic noise.

3.2.2 Second example

We also compare our proposed algorithm with a different deblending method: it-

erative rank reduction (IRR) deblending first studied by Cheng and Sacchi (2015).

The rank reduction filter of IRR is based on the Singular Spectrum Analysis (SSA)

method, which is iteratively implemented in local windows as a denoiser. The IRR

deblending method falls in the deblending by inversion category, where recorded

simultaneous source data are inverted to estimate the deblended data (Abma et al.,

2010; Chen et al., 2014; Abma et al., 2015). The proposed robust Matching Pursuit

method belongs to the category of deblending by denoising methods (Huo et al.,

2012; Ibrahim and Sacchi, 2014), which in general, are easier to implement and can

be relatively faster than deblending via inversion techniques. Figure 3.5 shows a

comparison between the IRR deblending method and robust Matching Pursuit with

the linear Radon transform operator. We display three windows corresponding to

three linear events of different dips (Figure 3.5a, e and i). The first window, Figure

3.5a, contains three distinct dips. The second window, Figure 3.5e, contains three

dips, and two dips are similar. In the third window, Figure 3.5i, two events are spa-

tially aliased. We adopted a rank P = 3 for IRR. For the proposed robust Matching

Pursuit method, we use p = 0.8 and the maximum number of iterations K = 20 and
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Figure 3.3: (a) Clean data synthesized via a foward parabolic Radon trans-
form. (b) Data contaminated with erratic noise, SNRin = −8.1 dB. (c)
Reconstruction of the data via classical (non-robust) Matching Pursuit,
SNRout = 8.0 dB. (d) Error panel given by reconstructed data in (c) minus
the clean data. (e) Reconstruction via the proposed robust Matching Pur-
suit algorithm, SNRout = 77 dB. (f) Error panel given by the reconstructed
data in (e) minus the clean data.
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Figure 3.4: (a) Parabolic Radon coefficients utilized to synthesize the data
in Figure 3.3a. (b) Coefficients retrieved via the classical (non-robust)
Matching Pursuit method. (c) Coefficients retrieved via the proposed ro-
bust Matching Pursuit algorithm.

tolerance η = 0.05. Figure 3.5b,f and j show the data contaminated with erratic

blending noise. Figure 3.5c, g and k show the resulting deblended data via IRR.

Figure 3.5d, h and l correspond to the data deblended via robust Matching Pursuit.

We observe that the proposed method produces results with fewer artifacts than

IRR. For completeness, we also compare IRR and the proposed robust Matching

Pursuit Radon denoising method in Figure 3.6. In this case, we evaluate SNRout

versus blending factor for randomly generated events of varying dips similar to those

portrayed in Figure 3.6a,e and i. As the blending factor increases, we expect the

quality of the construction to decrease. However, we observe that the quality of the

reconstruction measured by SNRout does not deteriorate too dramatically for the

robust Matching Pursuit Radon denoising method.
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Figure 3.5: (a) Clean window. (b) Pseudo-deblended data. (c) Deblending
via iterative rank reduction (IRR) with resulting SNR = 27.4. d) Deblend-
ing via robust Matching Pursuit (SNR = 32.). (e) Clean window. (f)
Pseudo-deblended data. (g) Deblending via IRR (SNR = 5.3). h) De-
blending via robust Matching Pursuit (SNR = 17.2) (i) Clean window. (j)
Pseudo-deblended data. (k) Deblending via IRR ( SNR = 4.7). l) Deblend-
ing via robust Matching Pursuit (SNR = 14.2).
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Figure 3.6: The blue line represents the deblending via iterative rank reduc-
tion (IRR) and the orange line shows deblending via the proposed robust
Matching Pursuit method.

3.2.3 Acoustic finite differences synthetic example

We also tested the proposed method with a 2D synthetic data example generated

by an acoustic finite-difference method. The velocity model used to create this

example is shown in Figure 3.7. The total length of the model is 7000 m, and the

depth is 3000 m. A total of 350 receivers are evenly distributed at a 500 m depth

below the sea level to simulate an ocean bottom survey. Moreover, 350 sources

are triggered at the surface of the ocean to simulate the survey. Acoustic finite

differences data were numerically blended to mimic a simultaneous source survey.

For this purpose, we set five adjacent sources as a group and fire these sources with

a short time difference ranging between 0 and 2 s. A total number of 70 source

groups were simulated. By this type of acquisition, the survey time is about one-

fifth of a conventional survey acquisition time with the same number of sources.
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The acquisition geometry, including firing times, is provided in Figure 3.8.

Since the linear events assumption only valid for a small patch of seismic data, we

can define a window operator that combines the linear radon transform to excise

the local radon transform. The forward window operator decomposes the common

receiver gathers into small overlapping windows, and the adjoint window operator

will combine all small patches back into the common receiver gathers. And a Gaus-

sian taper is used in the overlapping area between the windows. For both finite

difference and real data example, we set the window size equal to 10 traces and

400 time samples per window, and apply 20% overlap along each edge. Unlike the

simple synthetic example, both finite differences and real data have thousands of

non-zero coefficients needing to be reconstructed. The main computational cost for

this Matching Pursuit algorithm is coming from each time we calculate the adjoint

Radon coefficients. Therefore, to reduce the total time costs, we apply a simple trick

here; instead of picking 1 radon coefficients in each iteration, we select the largest N

coefficients. Then we fit these coefficients via the method like conjugate gradient for

one-time. We apply this method to both finite difference examples and real marine

data example.

Figure 3.9a shows an ideal common receiver gather that we would have recorded

via a conventional acquisition. Figure 3.9b shows the common receiver gather for

the simultaneous source survey. This is often referred to as the pseudo-deblended

data. We adopted a local linear Radon transform we explained above to remove

the blending noise observable in Figure 3.9b. Figure 3.9c and Figure 3.9d show the

reconstructed data and reconstruction error for the non-robust Radon transform

with coefficients extracted via classical Matching Pursuit. These results are not very

encouraging. The non-robust Marching pursuit algorithm was unable to reduce the

blending noise from the data. Conversely, Figure 3.9e and 3.9f show an excellent
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Figure 3.7: The velocity model used to generate synthetic data via acoustic
finite differences.

recovery of the data with a significant attenuation of blending noise.

We conducted erratic noise attenuation to all common receiver gathers, and when

the process was finalized, the data was sorted back into common shot gathers. Fig-

ure 3.10 shows the results for one common shot gather. For this particular example,

the SNRin = −3.6 dB. The resulting deblended data via classical Matching Pursuit

yield SNRout = −3.4 dB, which indicates that the non-robust Matching Pursuit

failed at removing blending noise. Denoising via the robust Matching Pursuit algo-

rithm (Figures 3.9e and 3.10e) has lead to a result with SNRout = 18.8 db.

3.2.4 Field data example

Finally, we test our algorithm on the real marine dataset that we numerically blended

to simulate a simultaneous source survey. This is a subset of a marine seismic data
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Figure 3.8: (a) Distribution of receivers (dots) and sources (stars). Note
that the vertical axis indicates source firing time, . (b) Detailed window of
(a). The acquisition simulates a two-dimensional ocean bottom survey with
70 group of sources of 5 sources each.
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Figure 3.9: (a) One ideal common receiver gather. (b) Pseudo-deblended
data common receiver gather SNRin = −1.73 dB. (c) Deblending via clas-
sical Matching Pursuit SNRout = −1.40 dB. (d) Difference between (a) and
(c). (e) Deblending via robust Matching Pursuit SNRout = 17.8 dB. (f)
Difference between (a) and (e).
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Figure 3.10: (a) One ideal common shot gather. (b) Pseudo-deblended data
shot receiver gather SNRin = −3.6 dB. (c) Deblending via classical Match-
ing Pursuit SNRout = −3.4 dB. (d) Difference between (a) and (c). (e)
Deblending via robust Matching Pursuit SNRout = 18.8 dB. (f) Difference
between (a) and (e).
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from the Gulf of Mexico with a total of 808 shots and 183 receivers. The receivers

are evenly distributed with an interval of 87 m. We blend three consecutive sources

to perform pseudo-blending. In this example, we apply deblending in the common

channel gather domain first and then sort back the data to common shot gathers.

As in the previous case, we adopted a local linear Radon transform on overlapping

windows of 10 traces and 400 time samples.

Figure 3.11 shows one ideal common offset gather and its associated pseudo-deblended

gather. As expected, dips in common offset gathers change laterally. Hence, one

has to adopt a local denoising strategy, which corresponds to applying linear Radon

transform denoising in windows. Figures 3.11c and 3.11e shows the result for classi-

cal Matching Pursuit and Robust Matching Pursuit. For the Robust Matching pur-

suit algorithm, the SNR improves from SNRin = −0.65 dB to SNRout = 11.7 dB.

The classical Matching Pursuit algorithm was not able to attenuate the blending

noise.

Similar to the 2D finite differences example, we apply deblending to all common

offset gathers, and then sort them back into common shot gathers. Figure 3.12

corresponds to one of the common shot gathers and its pseudo-deblended data. The

pseudo-deblended data contains source interference from two neighboring sources

(SNRin = −1.85 dB). Figure 3.12e shows deblended data obtained via the robust

Matching Pursuit algorithm. In this case, the signal-to-noise ratio increases from

SNRin = −1.85 dB to SNRout = 13.2 dB. The quality enhancement can also be

observed even from one single trace, as it is portrayed in Figure 3.13.
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Figure 3.11: (a) One ideal common-offset section. (b) Pseudo-deblended
common offset section SNRin = −0.65 dB. (c) Non-robust deblending
SNRout = 2.7 dB. (d) Difference between (a) and (c), (a)-(c). (e) Robust
deblending SNRout = 11.7 dB. (f) Difference between (a) and (e).
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Figure 3.12: Deblending results for a commom shot gather for the real marine
dataset. (a) Ideal shot gather. (b) Pseudo-deblended data with SNRin =
−1.85 dB. (c) Non-robust deblending result with SNRout = 1.7 dB. (d)
Difference between (a) and (c). (e) Robust deblending result SNRout =
13.2 dB. (f) Difference between (a) and (e).
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Figure 3.13: Trace-by-trace comparison for a near offset trace. (a) Ideal seis-
mic trace. (b) Trace after pseudo-deblending. (c) Denoising after classical
Matching Pursuit. (d) Denoising after robust Matching Pursuit.

3.3 Discussion

We have tested the robust Matching Pursuit algorithm for different incoherent noise

levels and with diverse synthetic datasets. In general, the algorithm is not sensitive

to selecting the parameter p as far as 0.5 < p < 1.2. In our examples, we choose

p = 0.8 because the value provided a slightly better result than for other values of

p. Additional parameters for consideration are the maximum number of iterations

and the tolerance η, which monitors the residuals’ decay versus iteration. For the

finite-difference and real data examples, we select more than one coefficients in each

interaction to reduce the number of total iterations and hence minimize computa-

tional cost. Using many iterations for the non-robust Matching Pursuit algorithm

only leads to overfitting the erratic blending noise at the expense of choosing the

wrong basis functions. On the other hand, the robust Matching Pursuit algorithm

can counterbalance the influence of erratic blending noise. Hence, in each iteration,

the robust Matching Pursuit method is less likely to select incorrect basis functions.



CHAPTER 3. DEBLENDING VIA ROBUST MATCHING PURSUIT 65

We have also explored early stopping strategies for the classical non-robust Match-

ing Pursuit to examine if satisfactory deblending results were attainable by this

mean. Unfortunately, our tests show that classical Matching Pursuit cannot cope

with erratic impulsive noise introduced by source interferences in common receiver

and common channel gathers. This is a consequence of the classical Matching Pur-

suit formulation, which was developed under assumptions that do not contemplate

erratic noise.

We recognize that many other methods can be used to solve the deblending prob-

lem. To mention a few options, one can adopt methods based on Radon transforms

(Moore et al., 2008; Haacke et al., 2015), Fourier operators (Abma et al., 2010),

the Seislet transform (Chen et al., 2014; Gan et al., 2016), rank-reduction (Cheng

and Sacchi, 2015; Jeong et al., 2020), curvelet transform (Kontakis and Verschuur,

2017), etc. Comparing the proposed algorithm to the plethora of algorithms that

have been proposed for simultaneous source separation is not the intention of our pa-

per. Our main goal is to present a robust Matching Pursuit algorithm for computing

a Radon denoiser and, in particular, to show how it can be adopted for processing

simultaneous source data. We also stress that we provide a detailed description

that permits to implement robust Matching Pursuit with an implicit operator such

as the time-domain Radon transform. A similar strategy can also be adopted for

other operators that are applied in implicit form. An example of the latter is mul-

tidimensional Fourier interpolation, where forward and adjoint operators are Fast

Fourier Transforms (Liu and Sacchi, 2004; Trad, 2009) or non-uniform Fast Fourier

Transforms (Xu et al., 2005; Zwartjes and Sacchi, 2007; Schonewille et al., 2013).



CHAPTER 4

Fast Robust Greedy methods

In the last chapter, I introduced the traditional Matching pursuit algorithm (Mallat

and Zhang, 1993). I also combined it with the robust inner product method and

proposed a new robust Matching pursuit method. I then applied the robust MP

to the simultaneous source separation problem. The robust MP gives a decent

deblending performance. However, one major drawback of the traditional MP is

its computational costs when applied to large-scale datasets. MP only selects one

atom from the dictionary D in each iteration, and it will also generally repeatedly

pick the same atom from D to refine the approximation further. The algorithm

is guaranteed to stop in a finite number of iterations if the norm of residual r is

used to define the stopping criteria. For sparse data with k non-zeros coefficients,

the MP requires at least k iterations for full reconstruction. When the number k is

large, this process can be impractically slow. From the previous examples, and in

particular for the complex finite different example and real marine data example,

hundreds of thousands of non-zero coefficients need to be reconstructed in the Radon

domain. Hence, the robust MP takes a considerable amount of time to deblend the

full dataset. In this chapter, I will introduce a fast greedy pursuit algorithm. I

66
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will compare the performance of different algorithms for noise-free, random noise,

and blending noise cases. I will also explain how to apply the robust inner product,

and robust Radon transforms to these fast greedy pursuit algorithms. In the end, I

will use the fast robust greedy method to run the deblending problem for the finite

different example and real marine example again and compare the results with the

robust MP we proposed in chapter 3.

4.1 Fast Greedy Pursuit

4.1.1 Orthogonal Matching Pursuit

We first need to introduce the orthogonal Matching Pursuit (OMP) (Tropp and

Gilbert, 2007; Tropp, 2004) before introducing other fast greedy pursuit algorithms

since all of them are based on the OMP scheme. Unlike MP, which updates one

coefficient in each iteration, OMP minimizes the following cost function for all of

the currently selected coefficients in each iteration

x̂
[i]

T [i] = argmin
x̃
T [i]

‖y −AT [i] x̃T [i] ‖22, (4.1)

where T [i] is the set of the indexes of all coefficients we have been picked until

iteration i. The full algorithm for the OMP is listed below. Since we update all

currently selected coefficients in each iteration, unlike MP, OMP will never re-select

the atoms. Moreover, the residual vector in each iteration is always orthogonal to

all currently selected atoms.

However, although OMP never re-selects the atom, it still needs k iterations to fully

reconstruct the k-sparse problem. Also, the orthogonalization step is usually the
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Algorithm 3 OMP

Input: y, A ,and k
Output: r[k], x̂[k]

Initialization: r[0] = y ,x̂[k] = 0, and T [0] = ∅
for k = 1, 2, ....,K do

l = argmax
j=1,2,....M

|〈A, r[k−1]〉|

T [k] = T [k−1] ∪ {l}
x̂
[k]

T [k] = argmin
x̃
T [k]

‖y −AT [k] x̃T [k] ‖22

r[k] = y −Ax̂
[k]

T [k]

end for

bottleneck, especially for large-scale data. From the algorithm above, we find the

main cost of OMP is coming from two parts. Every time we calculate the inner

product between the residual vector and a basis vector, the other is the orthogonal-

ization step where one needs to minimize an l2 − norm cost function. Thus, two

realistic strategies can be used to accelerate the OMP algorithm. The first is to

pick more than one coefficient in each iteration to reduce the total time to calculate

inner products. Secondly, one can modify the orthogonalization minimization part

to reduce computations further. I, therefore, will discuss both of these two strategies

in next sections.

4.1.2 Selection strategies

We first discuss selection strategies which can pick more than one element in each

iteration.

StOMP

One of the approaches that uses the thresholding idea for multi-element selection

in each iteration is the Stagewise Orthogonal Matching Pursuit(StOMP) (Donoho
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et al., 2012). In this approach, a threshold λ is calculated depending on the current

residual r

λstomp =
t‖r[k−1]‖2√

M
, (4.2)

where M is the dimension of x, and ‖r
[k−1]‖2√
M

= σ represent the noise level and t is

a threshold parameter. The set of indexes is then updated as

T [k] = T [k−1] ∪ {i : |gi| ≥ λstomp}. (4.3)

The performance of StOMP is only guaranteed for some specific matrix A. More-

over, theoretical performance guarantees are not available when applied to more

general matrices. From the equation giving the thresholding value λ, one finds that

selecting the parameter t is critical for its performance. In fact, there are no intuitive

guidelines available to select t, and the only suggestion in (Donoho et al., 2012) is

to use a value between 2 and 3. Another major problem is that one only uses the

residual r to define the threshold. The algorithm might be terminated when all the

inner products fall below the threshold. This problem is more probable when the

algorithm is applied to data with erratic noise since the erratic noise remains in the

residuals and makes them relatively large. In the end, this approach shows mixed

results.

Regularized OMP

Another multi-element selection strategy that has been proposed is the Regularized

OMP (ROMP) (Needell and Vershynin, 2008; Needell and Vershynin, 2010). The

ROMP algorithm groups the inner products gi into sets Jk such that the elements
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in each set have a similar magnitude,

|gi| ≤
1

r
|gj |, for all i, j ∈ Jk. (4.4)

ROMP then selects the set Jk for which ‖gJk‖2 is largest.

For the ROMP selection strategy proposed in (Needell and Vershynin, 2008; Needell

and Vershynin, 2010), r was assumed to be 0.5. Theoretically, the ROMP perfor-

mance should be better than the performance of OMP. However, in many practical

situations, ROMP’s average performance was notably worse than that of OMP and

StOMP. Also, the grouping and selection method is much more complex compare

with other multi-element selection methods. Therefore, ROMP is not considered

a good practical algorithm for CS or sparse data reconstruction and it will not be

tested in the following sections.

SWOMP

Both ROMP and StOMP have several drawbacks. Luckily, there is another multi-

element selection strategy that has been proposed by Blumensath and Davies (2009),

which is called stagewise weak OMP (SWOMP). The idea of SWOMP is inspired

by the weak matching pursuit algorithm (Mallat, 2008). Weak matching pursuit is

a method developed for large or infinite-dimensional problems in which not all inner

products can be evaluated explicitly. For the stagewise weak selection, we select all

elements that satisfy the following update condition

T [k] = T [k−1] ∪ {i : |gi| ≥ αmax|gj |}. (4.5)
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It will select all elements that come within a factor of α of the largest inner product

(in magnitude), and α ∈ (0, 1]. It has been proved that SWOMP is preferable in

many respects to the other two methods.

4.1.3 Coefficient updates

The second approach to reducing the total cost is by modifying the coefficient op-

timization step. This step is done using an orthogonal projection traditionally.

However, for applications in which A is large, it will be problematic both in storage

and computational cost.

Conjugate Gradient Pursuit

Traditionally, in each iteration, we start a new conjugate gradient solver every time

and fully run it, and it gives us the optimal result in each iteration. In order to

save the total cost, one can use few iterations of conjugate gradient and get the sub-

optimal result in each iteration like what Donoho does in his paper about Stagewise

Orthogonal Matching Pursuit (StOMP) (Donoho et al., 2012). StOMP uses a small

number of conjugate gradient steps in each iteration to reach a approximate orthog-

onalization. In the article introducing SWOMP (Blumensath and Davies, 2009),

the author also introduces a fast way to perform the coefficient update step, called

conjugate gradient pursuit (CGP) which is belongs to the Gradient Pursuit frame-

work (GP) (Blumensath and Davies, 2008a). The Gradient Pursuit algorithm use

directional optimisatation to update the data d̂[k−1] in each iteration, the update

for MP and OMP can also works in this way. So for the MP and OMP, the update

directions for the approximate conjugate gradient method can be calculated using
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d
[i]

T [i] = g
[i]

T [i] + νd
[i]

T [i−1] . (4.6)

where ν[i] =
〈(A

T [i−1]d
[i−1]

T [i−1]
),(A

T [i]g
[i]

T [i]
)〉

‖A
T [i−1]d

[i−1]

T [i−1]
‖22

ensures that 〈AT [i]d
[i]

T [i] ,AT [i]d
[i−1]
T [i] 〉 = 0. It is

important to note that this strategy uses a single update direction after each element

selection step. This update direction is chosen to be conjugate to the update step in

the previous iteration. Therefore, instead of starting a new conjugate gradient and

fully running it in each iteration as OMP, the CGP only runs a conjugate gradient

one time in each iteration. The general algorithm of CGP combines with OMP with

different selection strategies can be summarized as bellow.

Algorithm 4 CGP

Input: y, A ,and k
Output: r[k], x̂[k]

Initialization: r[0] = y ,x̂[k] = 0, and T [0] = ∅
for k = 1, 2, ....,K do

g[k] = AT r[k−1]

Select a set of new elements I.
T [k] = T [k−1] ∪ I
if n=1 then

d
[k]

T [k] = g
[k]

T [k]

v[k] = AT [k]d
[k]

T [k]

else
w[k] = AT [k]g

[k]

T [k]

ν[k] = −〈v[k−1],w[k]〉/η[k−1]

d
[k]

T [k] = g
[k]

T [k] + ν[k]d
[k−1]
T [k]

v[k] = w[k] + ν[k]v[k−1]

end if
η[k] = ‖v[k]‖22
β[k] = 〈r[k−1],v[k]〉/η[k]

x
[k]

T [k] = x
[k−1]
T [k] + β[k]d

[k]

T [k]

r[n] = r[n−1] − β[n]v[n]

n← n+ 1
end for
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Theoretically, since we are not entirely run the conjugate gradient in the algo-

rithm, the orthogonalization in each iteration is sub-optimal and approximated.

The conjugate gradient pursuit will re-select the same atoms. If the residual is far

from orthogonal, the inner product with already selected elements will be large,

and the elements will be re-selected. If not, CGP will not re-select the same ele-

ments(Blumensath and Davies, 2009) like MP. Therefore, the final performance will

not be affected. Overall, the conjugate gradient pursuit has a similar performance

as OMP. The computational cost in each iteration is close to the MP, and combine

with the selection strategies like stagewise weak selection it can reduce the total

iterations needed a lot. In the next section, I will use simple tests to compare the

performance of different selection strategies.

4.1.4 Examples

The first test is done with noise-free data. The linear Radon model was used in

Figure 4.1 to generate a model that consists of four linear events. The coefficients

in Radon space are the unknown of our problem. Notice, these coefficients where

convolved with a Ricker wavelet with a central frequency of 25 Hz. There is a total

of 92 non-zero coefficients in the linear Radon panel in Figure 4.1a. Figure 4.1b is

the synthetic data generated by the Radon coefficients via forward modelling with

the linear Radon transform.

We set the total number of iterations to k = 100 for all algorithms. For StOMP, we

use t = 100, and α = 0.7 for SWOMP. Figure 4.2 shows the results of the convergence

for different algorithms. I also need to mention that for all OMP, StOMP, and

SWOMP, we use the conjugate gradient pursuit mentioned above to update the

coefficients. Figure 4.2 shows that MP needs the most iterations to reconstruct

the data entirely, and OMP needs fewer iterations than MP. For both StOMP and



CHAPTER 4. FAST ROBUST GREEDY METHODS 74

Figure 4.1: (a) The linear Radon used to generate the synthetic data. (b)
Synthetic data generated from (a) with a forward linear Radon operator.

SWOMP have converged much faster than the traditional OMP algorithm. We can

also stop the algorithm when the total number of the non-zero selected coefficients

meets a desired number. There are 92 non-zero coefficients in our original Radon

panel. Thus we set the desired total coefficients of n = 92. Our results show that

it takes 246 iterations for MP to pick the 92 coefficients, as we know the MP tends

to re-select coefficients for further optimization. OMP takes exactly 92 iterations

to stop the algorithm. For StOMP with t = 100, it only needs 6 iteration, and

SWOMP with α = 0.7 needs 11 iterations. Therefore for the noise-free data, both

StOMP and SWOMP work perfectly.

Figure 4.3 shows the convergence results of the StOMP method with different values
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Figure 4.2: Comparison of convergence with different algorithms for the
noise-free case. The x-axis is the iteration number and the y-axis is the
norm of the residual r.

of t. When we use t = 250 and t = 260, StOMP works very well, but when we use

t = 270 and t = 280, the algorithm failed because all inner products fall below the

threshold after several iterations. Although the wrong value of t can make StOMP

fail, it is still relatively easy to find the value of t that works well in the noise-free

case. Figure 4.4 shows convergence results of SWOMP for different values of α. It

shows that the value of α is only affecting the convergence rate of the algorithm but

not the final denoising performance. I also need to point out that when α = 1, the

SWOMP is equivalent to OMP.

Next, we test the performance of these multi-element selection strategies with data

contaminated with random noise. The noisy data are presented in Figure 4.5 b.

Figure 4.5 shows the final results. This time, StOMP failed to reconstruct the noisy

data fully. All MP, OMP, and SWOMP still work well. Unlike before, since we have
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Figure 4.3: Comparison of the convergence of StOMP for different values of
t for the noise-free case. The x-axis is the iteration number and the y-axis
is the norm of the residual r.

Figure 4.4: Comparison of the convergence of SWOMP for different values
of α for the noise-free case. The x-axis is the iteration number and the y-axis
is the norm of the residual r.
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random noise in our data, we stopped our algorithms when the desired number of

non-zero coefficients were picked. This time, we set the non-zero coefficients we

want to pick to n = 60.

Figure 4.7 shows the convergence results for StOMP with different value of t. When

we use a small value of t, the algorithm picked many coefficients in the very early

iterations, and it stopped after a few iterations. If one slightly increases the value

of t, all the inner product became smaller than the threshold λ and the algorithm

terminates after few iterations again. We can probably find an optimal value of t

by doing many tests, which can make the algorithm work again for the noisy data

. StOMP is not a good option for the noisy data case. Figure 4.8 shows the same

results as before. For the noisy data, the parameter α does not change the final

denoising performance of the SWOMP method.

4.2 Robust fast Greedy methods

I tested greedy inversion algorithms with different coefficient selection strategies for

both noise-free case and random noise case. I will apply the robust inner product

and robust Radon transform introduced in Chapter 3 to the algorithm presented in

this chapter. I will also test the performance of these different selection strategies

again for data contaminated with erratic noise. The implement of robust inner

product and robust Radon transform into these algorithms is straightforward. We

use the robust inner product to calculate the robust adjoint radon coefficients g[k]

in each iteration. To make the problem robust to erratic noise, I replace all the

traditional inner products by a robust inner product in `p space in the coefficient

optimization part. I have already explained how to apply the Radon transform with

`p inner products in Chapter 3 and it will not be explained here again.The following
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Figure 4.5: (a) Original data. (b) Noisy data. (c) Denoising result by RMP,
SNR = 15.4 dB. (d) Error between a and c. (e) Denoising by ROMP,
SNR = 16.6 dB. (f) Error between a and e. (g) Denoising by RStOMP,
SNR = 9.8 dB. (h) Error between a and g. (i) Denoising by RSWOMP,
SNR = 16.4 dB. (j) Error between a and i.
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Figure 4.6: Comparison of the convergence with different algorithms for data
contaminated with random noise. The x-axis is the iteration number and
the y-axis is the norm of the residual r.

Figure 4.7: Comparison of the convergence of StOMP for different values
of t for data contaminated with random noise. The x-axis is the iteration
number and the y-axis is the norm of the residual r.
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Figure 4.8: Comparison of the convergence of SWOMP for different values of
α for the data contaminated with random noise. The x-axis is the iteration
number and the y-axis is the norm of the residual r.

is the general algorithm for the robust CGP with different selection methods and

the robust Radon operator.

Where L is the forward Radon operator. We can stop our algorithm when the

maximum iterations are reached, or the relative change of residual r becomes very

small.

4.2.1 Simple example

I test the denoising performance of the robust CGP with the same simple example

used previously. The synthetic data with erratic noise to represent the common

receiver gather presented in Figure 4.9 b. I use a blending factor equal to 4 to

generate this pseudo-deblended common receiver gather. As before, to avoid over-

fitting, I stop the algorithms when 60 non-zero coefficients are picked. The robust
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Algorithm 5 RCGP

Input: y, L ,and k
Output: r[k], x̂[k]

Initialization: r[0] = y ,x̂[k] = 0, and T [0] = ∅
for k = 1, 2, ....,K do

for all τ, q do
u(τ, q) = [d(τ + q φ(h1), h1), d(τ + q φ(h2), h2), . . . , d(τ + q φ(hnh

), hnh
)]T

g[k](τ, q) = (u(τ, q),1)p
end for
Select a set of new elements I.
T [k] = T [k−1] ∪ I
if n=1 then

d
[k]

T [k] = g
[k]

T [k]

v[k] = Ld
[k]

T [k]

else
w[k] = Lg

[k]

T [k]

ν[k] = −LP-norm(v[k−1],w[k], lp)

d
[k]

T [k] = g
[k]

T [k] + ν[k]d
[k−1]
T [k]

v[k] = w[k] + ν[k]v[k−1]

end if
β[k] = LP-norm(r[k−1],v[k], lp)

x
[k]

T [k] = x
[k−1]
T [k] + β[k]d

[k]

T [k]

r[n] = r[n−1] − β[n]v[n]

n← n+ 1
end for
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Figure 4.9: (a) Original data. (b) Pseudo-blended data. (c) Denoising
result by RMP, SNR=13.4 dB. (d) Error between a and c. (e) Denois-
ing by ROMP, SNR=13.4 dB. (f) Error between a and e. (g) Denoising
by RStOMP, SNR=6.6 dB. (h) Error between a and g. (i) Denoising by
RSWOMP, SNR=13.4 dB. (j) Error between a and i.

StOMP failed again for the erratic noise case. Robust OMP and SWOMP have the

best performance. From figure 4.11 , I find that for the erratic noise case, even a

slight change of the parameter t can change the performance of the algorithm dra-

matically. It is almost impossible to find a value of t that works for this example.

The test for the robust SWOMP shows the same results as before, the value of the

parameter α only affect the convergence rate but not the denoising performance.
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Figure 4.10: Comparison of convergence with different algorithms for the
blending noise case. The x-axis is the iteration number and the y-axis is the
norm of the residual r.

Figure 4.11: Comparison of convergence of StOMP with different value of
t for the blending noise case. The x-axis is the iteration number and the
y-axis is the norm of the residual r.
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Figure 4.12: Comparison of convergence of SWOMP with different value of
α for the blending noise case. The x-axis is the iteration number and the
y-axis is the norm of the residual r.

4.3 Complex examples

In this section, I re-do the deblending example for the complex finite different exam-

ple and real marine data example and solve the problem via the fast robust greedy

pursuit algorithm. After the previous tests, I decided to use the Stagewise Weak

Orthogonal Matching Pursuit as the selection strategy for the fast robust greedy

pursuit. I am following the same deblending scheme explained in Chapter 3 and

re-do the deblending process for the finite different example and real marine data

example.

Figure 4.13 and 4.14 show the deblending result for the finite different data example

in both common receive gather and common shot gather. Similarly, Figure 4.15

and 4.16 show the deblending result for the real marine data example in both com-
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mon offset gather and common shot gather. For these tests, we set the maximum

iteration for each window equals to 20. From these results, we can conclude that

robust Stagewise Weak Conjugate Gradient Pursuit (SWCGP) can provide a simi-

lar deblending result as the robust MP with much fewer iterations needed. For the

robust MP algorithm, for the same examples, we set the maximum iterations to 500

for each window. The saving in number of iterations is significant. As we men-

tioned, the cost of robust Stagewise Weak Conjugate Gradient Pursuit and robust

Matching Pursuit is similar for one iteration. The saving in the number of iterations

contributes to the saving of time directly.
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Figure 4.13: (a) One ideal common receiver gather. (b) Pseudo-deblended
data common receiver gather SNRin = −1.73 dB. (c) Deblending via robust
Matching Pursuit SNRout = 17.8 dB. (d) Ideal data minus deblended data
in (c). (e) Deblending via robust SWOMP SNRout = 17.1 dB. (f) Ideal data
minus deblended data in (e).
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Figure 4.14: (a) One ideal common-shot section. (b) Pseudo-deblended
common shot section SNRin = −3.6 dB. (c) Deblending via robust Matching
Pursuit SNRout = 18.8 dB. (d) Ideal data minus deblended data in (c). (e)
Deblending via robust SWOMP SNRout = 18.4 dB. (f) Ideal data minus
deblended data in (e).
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Figure 4.15: (a) One ideal common-offset gather. (b) Pseudo-deblended
data common offset gather SNRin = −0.65 dB. (c) Deblending via robust
Matching Pursuit SNRout = 11.7 dB. (d) Ideal data minus deblended data
in (c). (e) Deblending via robust SWOMP SNRout = 11.3 dB. (f) Ideal data
minus deblended data in (e).
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Figure 4.16: (a) One ideal common-shot section. (b) Pseudo-deblended com-
mon offset section SNRin = −1.85 dB. (c) Deblending via robust Matching
Pursuit SNRout = 13.2 dB. (d) Ideal data minus deblended data in (c). (e)
Deblending via robust SWOMP SNRout = 12.8 dB. (f) Ideal data minus
deblended data in (e).



CHAPTER 5

Conclusions

Compressive sensing and sparse reconstruction play an essential role in geophysics

data acquisition and seismic signal processing. In this thesis, I focused on sparse re-

construction algorithms and applications. The generally used sparse reconstruction

methods adopt an `2 norm to fit the data. These methods work quite well for noise-

free data or data only contaminated with Gaussian random noise. They do not work

when data are corrupted with erratic noise, such as the blending noise encountered

in simultaneous source processing. Therefore, in this thesis, I become interested in

making sparse approximation algorithms robust to the presence of erratic noise. I

recognize that the algorithms presented in this thesis can also apply to problems

of multiple suppression, seismic data interpolation, deghosting and probably many

other processes that require robust sparse inversions.

In Chapter 1, I provide a brief overview of the compressive sensing theory and sparse

reconstruction algorithms. These algorithms can be grouped into two major cate-

gories. One is based on convex relaxation by replacing the `0 norm regularization

term with the `1 norm regularization term. The other is the greedy pursuit algo-

rithm, which solves the problem iteratively. All these methods are only working for

90
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noise-free data or data with Gaussian random noise.

In Chapter 2, I present a review of robust sparse reconstruction strategies. I first in-

troduce the M-estimator concept and influence functions and explained how the

different M-estimators affect the cost function robustness. Then, I run a sim-

ple example with the `p norm estimator solved by the iterative reweighted least-

squares (IRLS) method to show the difference between the robust and non-robust

M-estimators. In the end, I also provide a review about other ways that can be used

to solve the linear inverse problem with M-estimators.

The main contributions of my thesis are presented in Chapter 3 and Chapter 4.

Chapter 3 proposes a newly defined `p norm inner product, which is robust to er-

ratic noise. The latter replaces the traditional inner product in the Matching Pursuit

(MP) algorithm. The MP algorithm picks the best-correlated basis atom based on

the absolute value of the inner product between the residual r and the element of

a given dictionary D. However, the traditional inner product used in the MP algo-

rithm is defined in the `2 norm space and is very sensitive to erratic noise, and it can

lead the MP to pick the wrong basis atom. Replacing the traditional inner product

with our robust inner product can make the MP algorithm robust to the erratic

noise. I also explained how to use the robust MP when one only has an operator

instead of an explicit form matrix, which is the sparse Radon transform in our case.

By adopting the robust MP method in conjunction with the Radon transform, I

applied the robust MP method to the simultaneous source separation problem. Ex-

periments show decent deblending results, but unfortunately, MP requires many

iterations when applied to realistic size problems. In other words, the major lim-

itation of the proposed robust MP algorithm for deblending is its computational

cost. MP only picks and fit one coefficient in each iteration. For complex synthetics

and real datasets, hundreds of thousands of coefficients need to be selected in each
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gather. Also, to improve results, seismic gathers are broken into many small over-

lapping windows. This makes the problem computational expensive because robust

MP must be applied to all the windows that make all the gathers.

Therefore, in Chapter 4, I introduce robust and fast greedy pursuit algorithms. I

first introduce the orthogonal matching pursuit (OMP) algorithm since all the fast

greedy pursuit algorithms are based on the OMP algorithm. The primary com-

putational costs of the OMP are coming from two parts: identification step (pick

the best-correlated coefficient) and estimation step (fit the selected coefficients to

the residual). Therefore, I introduce different multi-element selection strategies to

reduce the total number of identification steps needed. I also propose a conjugate

gradient pursuit method to minimize the computational cost of the estimation step.

After many tests and comparisons, I decided to use the stagewise orthogonal match-

ing pursuit (SWOMP) for the proposed robust, fast greedy pursuit algorithm. I use

the robust SWOMP algorithm for deblending the data that was also used in Chapter

3. The main results show that, for the robust SWOMP, one can use much fewer

iterations to achieve a similar deblending performance as the robust MP. For the

robust SWOMP, we only use 20 iterations for each window. This value is about 500

for the robust MP used in Chapter 3.

I believe that designing fast and accurate, robust sparse reconstruction algorithms

is a topic of interest for seismic processing practitioners. There are many avenues to

improve these algorithms and make them applicable to large real-world scale seismic

data processing problems that involve data denoising. Some problems need to be

carefully examined in the future, such as proper parameter selection for robust sparse

optimization problems. For instance, an objective way of accessing the number of

coefficients that one must retrieve to avoid over or under-fitting when data are

contaminated with erratic noise requires more research. Similarly, my thesis has
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adopted the Radon transform as the sparsifying transform of the problem. Other

transforms could have been adopted and, in particular, one should study if adaptive

transforms derived from the data themselves via, for instance, dictionary learning

techniques are one way of further improving the performance of the algorithms

presented in this thesis. Last, I envision also applications of the proposed methods

to problems of time-frequency analysis where greedy algorithms in conjunction with

localized harmonic functions can be used for robust estimation of time-evolutionary

spectra with application to the study of non-stationary time series that arise in fields

such as climatology, paleomagnetism and bioacoustics.
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APPENDIX A

Derivation of equation 3.10

For a vector x of length N its p norm ‖x‖p is defined as

‖x‖p =

(
N∑
i=1

|xi|p
) 1

p

. (A.1)

The computation of the lp inner product (equation (13)) requires minimizing the

cost

J = ‖r− ag ‖pp . (A.2)

Taking the derivative of J with respect to the unknown a and equating the derivative

to zero leads to

dJ

da
=

d

da

∑
i

|ri − agi|p

= p
∑
i

|ri − agi|p−1 sgn(ri − agi)g∗i

= 0 ,

(A.3)
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where sgn is the signum function which for a complex number z is given by

sgn(z) =
z

|z|
. (A.4)

Then equation A.3 becomes

dJ

da
=
∑
i

|ri − agi|p−2(ri − agi)g∗i = 0, (A.5)

which leads to ∑
i

riwig
∗
i = a

∑
i

giwi g
∗
i , (A.6)

or

a =

∑
i riwig

∗
i∑

i giwi g
∗
i

, (A.7)

were the weights are approximated by the following expression

wi =
1

|ri − agi|2−p + ε
. (A.8)

It is clear that A.7 can be written in the following form

a =
gHWr

gHWg
. (A.9)

A few iterations (typically 4 to 5) are sufficient to estimate the parameter a with

initial value ao = 0.


	Abstract
	Preface
	Acknowledgements
	Introduction
	Compressive sensing
	Recovery Algorithms
	Convex relaxation methods
	Greedy methods

	Robust sparse recovery
	Simultaneous source separation

	Contributions of this thesis
	Thesis Outline

	Robust sparse inversion
	M-estimators
	Methods
	Denoising by robust sparse inversion

	Deblending by robust sparse inversion
	Radon transform
	Blending operator
	Blending factor
	Examples


	Deblending via robust matching pursuit This chapter contains material published in J Li and M D Sacchi, 2021, An lp-space Matching Pursuit algorithm and its application to robust seismic data denoising via time-domain Radon transforms: Geophysics, in Press.
	Theory
	Matching pursuit
	Robust Matching pursuit
	Computing sparse Radon transforms via Robust Matching Pursuit

	Examples
	First example
	Second example
	Acoustic finite differences synthetic example
	Field data example

	Discussion

	Fast Robust Greedy methods
	Fast Greedy Pursuit
	Orthogonal Matching Pursuit
	Selection strategies
	Coefficient updates
	Examples

	Robust fast Greedy methods
	Simple example

	Complex examples

	Conclusions
	Bibliography
	Derivation of equation 3.10

