
University of Alberta

NUMERICAL ALGORITHMS FOR DISCRETE
MODELS OF IMAGE DENOISING

by

HANQING ZHAO

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

MATHEMATICS

Department of Mathematical and Statistical Sciences

c©HANQING ZHAO
FALL, 2010

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis
and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is

converted to, or otherwise made available in digital form, the University of Alberta will advise potential
users of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis
and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed

or otherwise reproduced in any material form whatsoever without the author’s prior written permission.

Examining Committee

Rong-Qing Jia, Mathematics

Bin Han, Mathematics

Michael Li, Mathematics

Mrinal Mandal, Electrical and Computer Engineering

Charles Chui, Mathematics, University of Missouri - St. Louis

To my parents,

who always have their faith in me.

Thank you for raising me

to be the person I am today.

Abstract

In this thesis, we develop some new models and efficient algorithms for im-

age denoising. The total variation model of Rudin, Osher, and Fatemi(ROF)

for image denoising is considered to be one of the most successful deterministic

denoising models. It exploits the non-smooth total variation (TV) semi-norm

to preserve discontinuities and to keep the edges of smooth regions sharp. De-

spite its simple form, the TV semi-norm results in a strongly nonlinear Euler-

Lagrange equation and poses computational challenge in solving the model

efficiently. Moreover, this model produces so-called staircase effect. In this

thesis, we propose several new algorithms and models to solve these problems.

We study the discretized ROF model and propose a new algorithm which

does not involve partial differential equations. Convergence of the algorithm

is analyzed. Numerical results show that this algorithm is efficient and stable.

We then introduce a denoising model which utilizes high-order difference to

approximate piece-wise smooth functions. This model eliminates undesirable

staircases, and improves both visual quality and signal-to-noise ratio. Our

algorithm is generalized to solve the high-order models. A relaxation tech-

nique is proposed for the iteration scheme, aiming to accelerate our solution

process. Finally, we propose a method combining total variation and wavelet

packets to improve performance on texture-rich images. The ROF model is

utilized to eliminate noise, and a wavelet packet transform is used to enhance

textures. The numerical results show that the combinational method exploits

the advantages of both total variation and wavelet packets.

Acknowledgements

I would like to express my gratitude to my supervisor, Professor Rong-Qing

Jia, for his wise guidance and generous support throughout my graduate stud-

ies at the Department of Mathematical and Statistical Sciences, University of

Alberta.

I would like to thank Professor Bin Han, Professor Feng Dai and Professor

Alexander Litvak for their great help, encouragement and valuable discussions

on my studies and research.

I am grateful to my friends Wei, Xiaosheng, Zhiyong, Vishaal for all the

helpful discussions. I am also thankful to all of the people who work in the

Department of Math. and Stat. Sciences for providing such a wonderful

research environment.

Table of Contents

1 Introduction 1

1.1 An Overview of Image Denoising 1

1.2 Definitions and Notation . 3

1.3 Image Denoising based on Total Variation 7

1.4 The Staircase Effect and Improved Variational Models 8

1.5 The ROF Model and Partial Differential Equations 11

1.6 Early-Stage Solutions to the ROF Model 12

1.7 Discretization . 13

1.8 Outlines of the Thesis . 18

2 Fast Algorithms for the Total Variation Model 20

2.1 The Bregman Iteration . 21

2.2 The Split Bregman Method 27

2.3 The Alternating Bregman Method 30

2.4 The Algorithm of Goldstein and Osher 34

2.5 Our Algorithms . 37

2.6 Convergence Analysis for the Isotropic Model 39

2.7 Numerical Performance . 51

3 Denoising Models based on High-Order Difference Schemes 58

3.1 High-order Difference Schemes in Image Denoising 58

3.2 An Extension of Our Algorithm to High-order Difference . . . 59

3.3 Preliminary Results . 61

3.4 Convergence Analysis of the Algorithm 69

3.5 Relaxation Technique and Numerical Results 70

4 Combination of Wavelets with Variational Techniques 75

4.1 Motivation . 75

4.2 Multiresolution Analysis and Wavelets 79

4.3 Discrete Wavelets on Intervals 83

4.4 Combination of Wavelet Packets with the ROF model 90

4.5 Numerical Experiments . 92

5 Conclusions and Future Work 98

Bibliography 101

List of Tables

2.1 Comparison results on number of iterations and CPU time of

image Peppers, 256× 256. 56

2.2 Comparison results on number of iterations and CPU time of

image Lena, 512× 512. 57

2.3 Comparison results on number of iterations and CPU time of

image Boat, 512× 512. 57

2.4 Comparison results on number of iterations and CPU time of

image Man, 1024× 1024. 57

3.1 Comparison results on PSNR of the images denoised by the

ROF model and the high-order model. 72

3.2 Comparison results on number of iterations and CPU time(seconds)

of proposed algorithms. 74

4.1 List of orders of vanishing moments of different wavelets. . . . 84

4.2 Comparison on vanishing moments of different wavelet bases on

the boundary. 90

4.3 Comparison results between our combinational algorithm and

other algorithms on PSNR of different images. 93

List of Figures

1.1 Comparison on denoising effects between the wavelet shrinkage

and the ROF model. 8

2.1 The Bregman Distance. 22

2.2 The clean images for our test problems. 54

2.3 Comparison results on CPU time of algorithms. 56

3.1 Comparison results between the higher-order model and the

ROF model on visual quality of Lena. 73

3.2 Comparison results between our higher-order model and the

ROF model on PSNR. 74

4.1 The smooth images Lena and Peppers. 76

4.2 The texture-rich image Barbara. 76

4.3 image = cartoon+ texture. 77

4.4 The ROF model does not separate texture from noise. 78

4.5 A sample of signal. 81

4.6 The Process of discrete wavelet transform. 82

4.7 The Process of discrete wavelet packet transform (DWPT). . . 83

4.8 Our algorithm: Combining the ROF model with wavelet packets. 91

4.9 The images with texture for our test problems. 93

4.10 Comparison on PSNR of different models on Barbara. 95

4.11 Comparison results on details of Barbara. 96

4.12 Comparison results on Fingerprint and Dollar. 97

Chapter 1

Introduction

1.1 An Overview of Image Denoising

Digital images captured by digital cameras or medical devices are generally

contaminated by noise. Thus, denoising and reconstructing a degraded image

are an important step before we can analyze it.

In reality, the noise is determined by capturing instruments, data trans-

mission or quantization. Though the model of noise is greatly dependent on

environment, most noisy models assume that additive Gaussian noise is ap-

plied, i.e. the noisy image is formulated as

f = u+ ε ,

where u is the noise-free image, ε is the Gaussian white noise with standard

deviation σ, and f is the observed noisy image which is to be processed.

Most existing denoising methods assume that the noise level σ is known.

In the following discussion, we always assume that σ is given.

1

There are two basic approaches to image denoising, spatial domain methods

and transform(frequency) domain methods. The main difference between these

two categories is that a transform domain method decomposes the image by a

chosen basis before further processing while a spatial domain method processes

the observed image data directly.

Transform domain methods have developed rapidly since Donoho’s soft

thresholding technique [16] was introduced in 1995. The noise is consid-

ered high-frequency component in the transform domain for both FFT and

DWT and hence thresholding or truncating eliminates noise. The advantage

of transform domain methods is that images often have sparse representations

in transform domain. Thus dealing with the transform domain is very effi-

cient. However, thresholding also weakens the texture of the image, which

is also contained in high-frequency component. Moreover, in transform do-

main the geometric features of the image is often lost. Since the visual quality

of an image is highly relevant to the geometric features, especially edges of

objects, sharp edge is a critical criterion for judging the performance of a de-

noising model. Some frequency-based methods do not work well on preserving

edges of objects in an image. They usually cause broken or blurred edges and

make the denoised image look less pleasant. To remedy this, some adaptive

thresholding (see [11]) and statistical models in transform domain were built

to improve visual quality of denoised image and some of which were quite

successful in generating high-quality images.

On the other hand, the spatial domain methods focus on the image itself.

The PDE-based methods which use differential equations to describe both the

noise model and denoising process, and methods using filters are easy to imple-

2

ment and are usually very efficient.(see [9, 12]) These methods take advantage

of existing techniques in numerical PDEs, approximation and optimization,

and have attracted more and more attention in recent years. In 1992, Rudin,

Osher and Fatemi proposed the celebrated the ROF model in [30], which was

extremely simple and of good performance, yet was hard to solve. Our main

results are based on the ROF model and its descendants.

1.2 Definitions and Notation

We will discuss image processing in both continuous and discrete contexts.

Therefore, it is important to clarify the notations to avoid ambiguity. We will

define the notations and the mathematical model for denoising for the contin-

uous case. The discretization will be introduced in the next chapter.

It is convenient to describe an image as a continuous function for theoreti-

cal analysis. In most cases, an image, either a wall picture or a digital photo,

is fitted in a rectangular region. For simplicity, in this thesis we assume that

an image is square-shaped, but all the conclusions and algorithms can be nat-

urally extended to adapt to the general rectangular shape. We also assume

that the length of each side of a square-shaped image is 1 unit.

Choosing the lower left corner of the square to be the origin, we construct a

coordinate system in the following way:

3

x

y

1

1

Ω = [0, 1]2

We further simplify the mathematical model by considering only grayscale im-

ages. To avoid becoming lost in various color channels, we assume that the

color at any point of an image can be characterized simply by one real number

which represents the darkness of that point, ranging from 0 to 255. Usually

0 represents the black and 255 represents the white. Hence, an image can be

characterized as a function u : Ω → R. Since an image is 2-dimensional, we

do not consider the higher-order space Rn with n > 2 in this thesis.

We will denote by u the image through out this thesis. We also denote by

f = u+ ε the noisy image, or observed image, in both continuous and discrete

cases. ε is the noise we want to remove. In the continuous case, we usually

choose u, f ∈ L2(Ω).

We clarify some notations here. Some of them will be explained later in details.

• Ω = [0, 1]2 is the domain.

• ‖ · ‖1 and ‖ · ‖2 are the normal L1 and L2 norms on L1(Ω) and L2(Ω)

4

respectively.

• W k,p is the Sobolev space equipped with the norm

‖f‖k,p =
(k∑
i=0

‖f (i)‖pp
)1/p

.

When k = p = 1, W 1,1 is the space of absolutely continuous functions.

• f : Ω→ R is the observed image contaminated with noise.

• u : Ω→ R is the clean image or the processed result.

• ε : Ω→ R is the noise, usually considered the Gaussian white noise.

• σ > 0 is the standard deviation of the noise ε.

• | · | is either the absolute value of an real number or the Euclidean norm

on R2, i.e. 
|a| is the absolute value of a ∈ R

|(a, b)| =
√
a2 + b2, b ∈ R

• ∇ is the gradient operator : ∇u = (ux, uy)

• div is the divergence operator which is also written as (∇·) .

div(F) = ∇ · F = div(F1, F2) =
∂F1

∂x
+
∂F2

∂y
for F = (F1, F2) : R2 → R2

With these notations, we are in a position to introduce the total variation

of a function u:

TV (u) :=

∫
Ω

|∇u| =
∫

Ω

√
u2
x + u2

y (1.1)

5

which is more formally defined as

TV (u) := sup
{∫

Ω

u div(w)
∣∣ w = (w1, w2) ∈ C1

c (Ω,R2), |w| ≤ 1
}
. (1.2)

The latter one is more general since it does not require u to be differentiable.

The following minimization problem is a main topic in this thesis:

u∗ = arg min
u

∫
Ω

|∇u| subject to ‖u− f‖2 = σ2 . (1.3)

which is called the the ROF model. To make it well-defined, we further assume

that TV (u) <∞, i.e. u is in a bounded variation space which is defined as

BV (Ω) :=
{
u ∈ L1(Ω)

∣∣ TV (u) <∞
}
.

It is known that BV (Ω) is a Banach space with the norm ‖u‖BV = TV (u)+

‖u‖1. Moreover, it can be shown that W 1,1(Ω) ⊆ BV (Ω) ⊆ L1(Ω) and the

definitions (1.1) and (1.2) are equivalent when u ∈ W 1,1(Ω). Therefore, we

will use W 1,1(Ω) to approximate BV (Ω). The problem (1.3) becomes

u∗ = arg min
u∈W 1,1(Ω)∩L2(Ω)

∫
Ω

|∇u| subject to ‖u− f‖2 = σ2 . (1.4)

We will always assume u ∈ W 1,1(Ω) ∩ L2(Ω) without further instruction. We

refer interested readers to [1], [6] for more information about total variation

and BV space.

6

1.3 Image Denoising based on Total Variation

Suppose u and f are defined on Ω = [0, 1]2 ⊂ R2, satisfying f = u + ε, where

ε is the error with standard deviation σ. Let ∇u := (ux, uy) be the gradient

operator and | · | be the Euclidean norm on Ω. We have |∇u| =
√
u2
x + u2

y.

The Total Variation of u is defined by

TV (u) =

∫
Ω

|∇u| =
∫

Ω

√
u2
x + u2

y .

In 1992, Rudin, Osher and Fatemi proposed the ROF model in [30]. This

model became a popular approach to image denoising very soon. And later,

the model was rapidly modified and applied to other topics in image processing

such as deconvolution and inpainting.

The ROF model is the following constrained minimization problem

u∗ = arg min
u

∫
Ω

|∇u| subject to ‖u− f‖2 = σ2 , (1.5)

or its unconstrained variation

u∗ = arg min
u

{∫
Ω

|∇u| +
µ

2
‖u− f‖2

2

}
, (1.6)

where µ is some properly chosen penalty parameter. The penalty approach

(1.6) is standard in the inverse problems community, and is commonly referred

to as Tikhonov regularization. In this thesis, (1.6) will be discussed extensively.

Since the term
∫

Ω
|∇u| represents the total variation of u, models involving

this term are called total variation based models, or simply TV-based models.

7

1.4 The Staircase Effect and Improved Varia-

tional Models

The ROF model has some favorable properties compared with the existing

deterministic denoising models. Here is a comparison of the denoising results

between wavelet thresholding methods and the ROF model (1.6).

0 20 40 60 80 100 120

−100

−50

0

50

100

(a) The original signal

0 20 40 60 80 100 120

−100

−50

0

50

100

(b) Contaminated with noise

0 20 40 60 80 100 120

−100

−50

0

50

100

(c) Denoised by the wavelet threshold-
ing

0 20 40 60 80 100 120

−100

−50

0

50

100

(d) Denoised by the ROF model

Figure 1.1: Comparison on denoising effects between the wavelet shrinkage
and the ROF model.

It is clear that the ROF model preserves the discontinuities, or jumps,

while wavelet shrinkage causes Gibb’s effect and produces artifacts. However,

the ROF model does not always work as it is supposed to. With presence of

heavy noise, the ROF model often misinterprets some noise as jumps or edges

8

and produces false edges. Thus it results in piecewise constant which is clearly

seen in Figure 1.1(d). This phenomenon is known as “staircase artifact” and

is analyzed in [26, 29]. In a two-dimensional case, it produces undesirable

blocky images. In spite of this shortcoming, the ROF model remains one of

the most successful deterministic denoising models and is still a popular area

of research.

To improve visual quality, several methods were proposed to find a trade-

off between smoothness and sharpness by modifying the TV term. In 1997,

Blomgren, Mulet, Chan and Wong [2] proposed the modified model:

u∗ = arg min
u

{∫
Ω

|∇u|Q(|∇u|) +
µ

2
‖u− f‖2

2

}
. (1.7)

where Q : R→ R decreases monotonically from Q(0) = 2 to Q(∞) = 1, which

is more convex when the gradient is small and behaves like the standard ROF

model near discontinuities. Hence the goals of reducing staircase and preserv-

ing edges are achieved simultaneously.

A better approach was proposed by Lysaker, Lundervold and Tai [22, 23]

by replacing the gradient in TV term with a higher-order differential. Their

model, known as the LLT model, was

u∗ = arg min
u

{∫
Ω

|∇2u| +
µ

2
‖u− f‖2

2

}
= arg min

u

{∫
Ω

√
|uxx|2 + |uxy|2 + |uyx|2 + |uyy|2 +

µ

2
‖u− f‖2

2

}
.

(1.8)

9

They also proposed the anisotropic version

u∗ = arg min
u

{∫
Ω

(|uxx|+ |uyy|) +
µ

2
‖u− f‖2

2

}
. (1.9)

It is known that high-order PDEs can recover smoother surfaces. Thus this

model performs better than the ROF model in the smooth region of an image.

Chang, Tai and Xing adopted this idea and proposed the combination model

in [7] as follows:

u∗ = arg min
u

{
(1− g)

∫
Ω

|∇2u|+ g

∫
Ω

|∇u| +
µ

2
‖u− f‖2

2

}
. (1.10)

where g is a properly-chosen weighting function. The combination model

was proved to perform well on both edges and smooth regions. However,

the existing numerical algorithms for solving those models rely on gradient-

descent methods and Euler-Lagrange equations, and are inefficient and time-

consuming.

We will propose a fast algorithm solving a model close to (1.10). Instead

of replacing ∇u by ∇2u which was done in (1.8), we keep both ∇u and ∇2u.

Recall the ROF model

u∗ = arg min
u

∫
Ω

|∇u| +
µ

2
‖u− f‖2

2 .

which can be written as

u∗ = arg min
u

1

µ

∫
Ω

|∇u| +
1

2
‖u− f‖2

2 .

10

By adding an additional term, we have the model

u∗ = arg min
u

1

µ

∫
Ω

|∇u| +
1

ν

∫
u∈Ω

|∇2u| +
1

2
‖u− f‖2

2 . (1.11)

where |∇2u| =
√
u2
xx + u2

xy + u2
yx + u2

yy , following the notation in [23]. We

point out that equation (1.11) is not the original LLT model, since LLT model

does not contain the first term.

In Chapter 3, we will propose an algorithm to solve this problem.

1.5 The ROF Model and Partial Differential

Equations

In the past few decades, the PDE based image denoising models became an

active research area. This is because PDE approaches take the advantages of

effective treatments from PDE theory and produces high accuracy and stable

computation. In 1990, Perona and Malik proposed an anisotropic-diffusion

PDE model for image processing [28], which could be deemed as an interpre-

tation of the ROF model from the point of view of diffusion.

The model is as follows:

∂u

∂t
= ∇ · (c(|∇u|) ∇u), (x, y) ∈ Ω,

u(x, y, 0) = u0(x, y)

∂u

∂~n
= 0, (x, y) ∈ ∂Ω

(1.12)

where ∇ is the gradient operator, ∇· is the divergence operator, c(λ) is a

decreasing function with limλ→∞ c(λ) = 0, ∂Ω is the boundary of Ω and ~n is

11

the normal direction of ∂Ω. Let
τ =

(
ux
|∇u|

,
uy
|∇u|

)
=
∇u
|∇u|

γ =

(
− uy
|∇u|

,
ux
|∇u|

)

be the normal and tangent unit vectors of the level sets of u. Then the equation

(1.12) can be formulated as

∂u

∂t
=
[
c(λ) + λ c′(λ)

]∂2u

∂τ 2
+ c(λ)

∂2u

∂γ2
, where λ = |∇u|.

It is easy to see that we can choose function c(λ) wisely such that c(λ) +

λ c′(λ) is small or negative, therefore making u diffuse less or diffuse backwards

perpendicular to edges. Hence the edges do not suffer from blurry effects. As

the time t develops, u approaches the clean image with the preserved, or even

sharper edges.

Let us concentrate on a special case when c(λ) = 1/λ. The model (1.12)

becomes

∂u

∂t
= ∇ ·

(∇u
|∇u|

)
, (1.13)

which is the steepest decent method (1.15) on page 13 for solving the ROF

model (1.5).

1.6 Early-Stage Solutions to the ROF Model

Despite its simple form, the solution of these minimization problems suffers

from serious non-linearity and non-differentiability introduced by the TV term∫
Ω
|∇u|. During a long period of time, the traditional way of solution is to

12

solve the Euler-Lagrange equation of an differentiable approximation of 1.5:

u∗ = arg min
u

∫
Ω

√
∇u+ β +

µ

2
‖u− f‖2

2 . for some β > 0. (1.14)

In their original paper [30], Rudin, et al. introduced artificial time march-

ing and solved the following equation with homogeneous Neumann boundary

condition

∂u

∂t
= ∇ ·

(
∇u√

|∇u|2 + β2

)
(1.15)

with the stopping criterion ‖u− f‖ ≤ σ, or

∂u

∂t
= −µ(u− f) +∇ ·

(
∇u√

|∇u|2 + β2

)
(1.16)

with t→∞.

While numerical implementation is straightforward, the non-linearity and

poor conditioning of the problem make the convergence very slow. Efforts had

been made after the model being proposed. Vogel and Oman [32] proposed a

lagged-diffusive fixed-point iteration method. For each k = 1, 2, . . . ,, solve the

following equations iteratively:

µ(uk+1 − f)−∇ ·

(
∇uk+1√
|∇uk|2 + β2

)
= 0 (1.17)

Each linearized equation was much more easier to solve and hence the entire

calculation was made more efficient.

13

1.7 Discretization

When we consider discretized models, all the restrictions on u, such as bounded

variation and differentiability, become irrelevant. We will exploit this advan-

tage. And hence most of our analysis and proof will be based on discrete case.

Note we still use u and f to denote the image in the discrete case. Since the

context will show clearly whether it is continuous or discrete, ambiguity is not

likely to occur.

first row, i = 1

A square-shaped image is discretized into an n × n grid. Each cell in the

grid is called a pixel and is filled with one color. Recall that we only con-

sider grayscale images and the color is uniquely determined by a real number.

Therefore, an image is modeled as a real-valued function on the discrete do-

main

u : {1, 2, . . . , n} × {1, 2, . . . , n} → R,

or a real-valued n× n matrix:

u ∈ R{1,2,...,n}×{1,2,...,n} .

We use notation ui,j to represent the value of u at ith row and jth column.

14

The lp norm and inner product are defined similarly to the ordinary case:

• ‖u‖p :=
(∑

1≤i,j≤n |ui,j|p
)1/p

• ‖u‖∞ := max1≤i,j≤n |ui,j|

• 〈u, v〉 =
∑

1≤i,j≤n ui,j vi,j

We also have to discretize the total variation TV (u) =
∫

Ω
|∇u|. The gra-

dient ∇u = (ux, uy) is approximated by the difference operators ∇x and ∇y,

which are defined as

(∇xu)i,j =

 0 if i = 1

ui,j − ui−1,j if i > 1

and

(∇yu)i,j =

 0 if j = 1

ui,j − ui,j−1 if j > 1

It is clear that ∇xu,∇yu are the difference operators resembling ux, uy. With

these notations, the gradient of u is (∇xu,∇yu). Noting |(∇xu,∇yu)| =√
(∇xu)2

i,j + (∇yu)2
i,j, the total variation TV (u) =

∫
Ω
|∇u| can be discretized

as

TV (u) =
∑

1≤i,j≤n

√
(∇xu)2

i,j + (∇yu)2
i,j

=

∥∥∥∥√(∇xu)2 + (∇yu)2

∥∥∥∥
1

(1.18)

We have another discretization of the TV function. If we let |(a, b)| =

15

|a|+ |b| instead of
√
a2 + b2, we have

TVa(u) =
∑

1≤i,j≤n

|(∇xu)i,j|+ |(∇yu)i,j|

= ‖∇xu‖1 + ‖∇yu‖1

(1.19)

which is the anisotropic discrete total variation. Correspondingly, (1.18) is the

isotropic discrete total variation.

We will analyze the high-order models (1.11). So we have to define the

following notations. Let ∆x and ∆y be the difference operators defined by

(∆xu)i,j =


u1,j − u2,j if i = 1

2ui,j − ui−1,j − ui+1,j if 1 < i < n

un,j − un−1,j if i = n

and

(∆yu)i,j =


ui,1 − ui,2 if j = 1

2ui,j − ui,j−1 − ui,j+1 if 1 < j < n

ui,n − ui,n−1 if j = n .

It is easy to see that they are discrete approximations to uxx and uyy.

To make the problem more easily described in the language of matrix al-

gebra, we stretch the n×n matrix u row-by-row into an n2×1 column vector:

u = (u1,1, u1,2, . . . , u1,n, u2,1, u2,2, . . . , un,n)T ,

where T stands for the transpose of a matrix. And the index is rearranged

16

from 1 to n2 like what is usually done in numerical PDE:

u = (u1, u2, . . . , un2) .

We also rewrite the difference operators ∇x,∇y : Rn × Rn → Rn × Rn into

∇x,∇y : Rn2 → Rn2
defined by

(∇xu)i :=


0 if i ≤ n

ui − ui−n if i > n

(1.20)

(∇yu)i :=


0 if i = 1 mod n

ui − ui−1 otherwise

(1.21)

Hence the ROF model (1.6) has the isotropic discretization

u∗ = arg min
u∈Rn2

∥∥∥∥√(∇xu)2 + (∇yu)2

∥∥∥∥
1

+
µ

2
‖u− f‖2

2 . (1.22)

And the anisotropic model is

u∗ = arg min
u∈Rn2

‖∇xu‖1 + ‖∇yu‖1 +
µ

2
‖u− f‖2

2 . (1.23)

We point out that the isotropic model and anisotropic one yield very close

solutions. But it is obvious that the anisotropic model is much easier to code

and solve.

17

Similarly, ∆x,∆y are replaced by ∆x and ∆y:

(∆xu)i :=


ui − ui+n if i ≤ n

ui − ui−n if i > n2 − n

2ui − ui−n − ui+n if n < i ≤ n2 − n

(1.24)

(∆yu)i :=


ui − ui+1 if j = 1 mod n

ui − ui−1 if j = 0 mod n

2ui − ui−1 − ui+1 otherwise

(1.25)

Clearly, ∆x = ∇T
x∇x and ∆y = ∇T

y∇y. In this thesis, we always assume that

u and f are one-dimensional vectors and use ∇x,∇y,∆x,∆y as the difference

operators.

In [7, 23], isotropic discretization was applied. However, our numerical ex-

periment shows that isotropic and anisotropic discretizations differ very little.

Therefore we use anisotropic discretization to avoid complex modelling and

computation and gain fast computational speed. Hence, the discretized model

is

u∗ = arg min
u∈Rn2

1

µ

(
‖∇xu‖1 + ‖∇yu‖1

)
+

1

ν

(
‖∆xu‖1 + ‖∆yu‖1

)
+

1

2
‖u− f‖2

2 .

(1.26)

1.8 Outlines of the Thesis

In this thesis, we try to develop some efficient algorithms to solve the total

variation based image denoising models. The paper is organized as follows:

18

Chapter 1 gives an overview of image denoising and the mathematical back-

ground of imaging models. The ROF model is introduced. Its advantages

and disadvantages are discussed. We then introduce the high-order mod-

els to overcome the disadvantages of the ROF model. At the end of this

chapter, we introduce some early-stage algorithms for the ROF model,

and discretize the model into isotropic and anisotrpic forms.

Chapter 2 investigates some numerical methods based on the Bregman it-

eration for solving the ROF model, and then proposes a fast algorithm.

We start with the Bregman Iteration, and introduce Goldstein and Os-

her’s Split Bregman algorithm for the ROF model. A fast algorithm

is proposed, and its convergence is analyzed. We end this chapter by

reporting the numerical results of our algorithm. In numerical experi-

ments, a relaxation technique is proposed to accelerate the iteration.

Chapter 3 discusses solutions to a high-order variational model. Our fast al-

gorithm is generalized and adapted to the high-order model. Its conver-

gence is proved. The relaxation technique is extended to the high-order

model to accelerate the iteration.

Chapter 4 proposes a combinational algorithm for texture-rich images. We

analyze the performance of the ROF model on textures.A brief intro-

duction of wavelets and wavelet packets is given. Then we propose

the algorithm combining variational model and wavelets. The numer-

ical experiments show that the new algorithm has good performance on

texture-rich images.

Chapter 5 ends the paper with some final conclusions.

19

Chapter 2

Fast Algorithms for the Total

Variation Model

In this chapter, we will give a comprehensive survey of solutions to the ROF

model. It is interesting that some of the current hard-to-solve problems of

imaging have elegant solution with some methods developed by the optimiza-

tion community in 1960s and 1970s. Recently the solution to the ROF model

was boosted by the idea of solving problem (1.6) directly, instead of solving

its Euler-Lagrange equation. Several swift iteration schemes emerge and they

are more efficient and more accurate than classical approaches. But most of

them were proved to be descendants of some old and inconspicuous papers,

such as [3] by Bregman, 1967.

We start with introducing the Bregman iteration. Then we analyze Gold-

stein and Osher’s Split Bregman Method, on which our algorithm is based.

Our fast algorithm will be introduced with a partial proof. The proof of a

general form of our algorithm will be given in the next chapter. In the last

section of this chapter, we present the numerical results of our algorithm and

20

the Split Bregman method. A relaxation technique is proposed to accelerate

the computation.

2.1 The Bregman Iteration

The Bregman iteration was first introduced to imaging science in [27] by Osher

et al. in 2005. It is based on the Bregman distance which was defined in [3] as

a measure of the distance between the value of two vectors under certain en-

ergy function. These concepts are important for understanding our algorithm,

so we will discuss them in details. We first introduce the concept subgradient.

We consider a vector space Rn. Let E be a continuous and convex function

on Rn. Then the subgradient of E at point u0 is a vector p ∈ Rn such that

E(u)− E(u0) ≥ 〈p, u− u0〉 ,∀u ∈ Rn.

The subdifferential ∂E(u0) is the set of subgradients of E at u0. Clearly, p is

the gradient of E if E is differentiable at u0. Therefore, we also use ∂E(u) to

denote the gradient.

The Bregman distance associated with E between u and u0 is

Dp
E(u, u0) = E(u)− E(u0)− 〈p, u− u0〉 .

where p is a subgradient of E at u0. If E is not differentiable at u0, there

may be multiple choice of p. Figure 2.1 shows an intuitive 1-D example of the

Bregman distance.

21

u

E(u)

slope= p

u0 u1

= Dp
E(u1, u0)

Figure 2.1: The Bregman Distance.

It is clear that Dp
E(u, u0) ≥ 0 as long as E is convex. Moreover, if v lies on

the line segment connecting u and u0, then Dp
E(u, u0) ≥ Dp

E(v, u0). Therefore,

the Bregman distance is a measure of closeness between u and u0. On the

other hand, it is obvious that in general Bregman distance is not symmetric:

Dp
E(u, v) 6= Dq

E(v, u) where p ∈ ∂E(v) and q ∈ ∂E(u).

We are ready to introduce the Bregman iteration. Suppose E is a convex

function and H is a function such that minuH(u) = 0. We want to solve the

following optimization problem:

min
u
E(u) subject to H(u) = 0 . (2.1)

The usual solution is to solve the related unconstrained problem

min
u
E(u) + λH(u) . (2.2)

22

When λ → ∞, (2.2) gives the same solution as (2.1). But as λ is getting

larger, the problem usually becomes ill-posed and harder to solve.

The Bregman iteration was proposed to solve the dilemma of solving an well-

posed problem and increasing λ to get an accurate solution. In his paper [3],

Bregman suggested that we fix λ, and the problem is solved by doing the

following iteration scheme

uk+1 = arg min
u

Dp
E(u, uk) + λH(u)

= arg min
u

E(u)− E(uk)− 〈pk, u− uk〉+ λH(u)

= arg min
u

E(u)− 〈pk, u− uk〉+ λH(u)

where pk ∈ ∂E(uk). He also gave the explicit formula for computing pk:

pk+1 = pk − ∂H(uk+1)

where ∂H is the gradient of H. Since H is differentiable, the iteration is

well-defined. Let us restate the scheme for convenience:
uk+1 = arg min

u
Dp
E(u, uk) + λH(u)

pk+1 = pk − ∂H(uk+1)

(2.3)

Bregman claimed that under some mild conditions, this iteration will converge

to the solution of (2.1). In this way, we do not have to increase λ and thus

avoid the problems brought by large λ.

In [27], the Bregman iteration was applied to image denoising. However,

this powerful tool was not used to accelerate the computation. The paper

23

claimed that the Bregman iteration increased the image quality. Recall that

the ROF model (1.6) is

u∗ = arg min
u

TV (u) +
µ

2
‖u− f‖2

2 .

Comparing it with (2.2), and recalling that the effect of Bregman iteration is

equivalent to letting λ→∞, they argue that if λ was chosen smaller than µ/2,

then after some iterations the Bregman iteration scheme will generate some

solution close to u∗. Here follows the details.

Let E(u) = TV (u), which obviously is convex, and let H(u) = λ
2
‖u− f‖2

2. It

is easy to get ∂H(u) = λ(u− f). The Bregman iteration becomes


uk+1 = arg min

u
Dp
E(u, uk) +

λ

2
‖u− f‖2

2

pk+1 = pk + λ(f − uk+1)

This seemingly complex iteration can be simplified. Let bk = 1
λ
pk. Then the

first equation can be simplified as follows:

uk+1 = arg min
u

Dp
E(u, uk) +

λ

2
‖u− f‖2

2

= arg min
u

E(u)− E(uk)− 〈pk, u− uk〉+
λ

2
‖u− f‖2

2

= arg min
u

E(u)− λ〈bk, u− uk〉+
λ

2
〈u− f, u− f〉

= arg min
u

E(u)− λ〈bk, u− f〉+
λ

2
〈u− f, u− f〉

= arg min
u

E(u) +
1

λ
〈bk, bk〉 − λ〈bk, u− f〉+

λ

2
〈u− f, u− f〉

= arg min
u

E(u) +
λ

2
〈u− f − bk, u− f − bk〉

= arg min
u

E(u) +
λ

2
‖u− f − bk‖2

2 .

(2.4)

24

Noting E(u) = TV (u), eventually we have


uk+1 = arg min

u
TV (u) +

λ

2
‖u− f − vk‖2

2

bk+1 = bk + f − uk+1 .

We point out that the first equation coincides with the ROF model with ex-

ceptions of vk and λ. Thus it is as hard to solve as the ROF model itself.

Therefore, this iteration scheme runs slower than solving the ROF model.

The objective of this scheme is, as they claimed, different visual quality than

a single-step ROF model.

The convergence was also studied in their paper. The following theorem

was proposed in [27].

Theorem 2.1. For an initial vector p0 ∈ R, let uk+1 and pk+1 be given by

the Bregman iteration (2.3). Then pk ∈ ∂E(uk) and H(uk+1) ≤ H(uk) for

k = 1, 2, Moreover, if minu∈RH(u) = 0, then

lim
k→∞

H(uk) = 0.

In [21], convergence of the Bregman iteration was further discussed. Con-

sider the minimization problem

min
u
E(u) subject to Au = b (2.5)

where u, b ∈ Rn and A is an n × n matrix. The Bregman iteration for this

25

problem is 
uk+1 = arg min

u
{Dpk

E (u, uk) +
λ

2
‖Au− b‖2

2

pk+1 = pk − λAT (Auk+1 − b).
(2.6)

Using the same technique as (2.4), this scheme can be simplified as


uk+1 = arg min

u
{{E(u) +

λ

2
‖Au− bk‖2

2}

bk+1 = bk + b− Auk+1,

(2.7)

with pk = λAT (bk − b). We propose the following basic criterion for the

convergence of (2.7).

Theorem 2.2. Suppose problem (2.5) has a unique solution ũ. For k =

0, 1, . . . , let uk+1 and bk+1 be given by (2.7). Then limk→∞ u
k = ũ, provided

the following three conditions are satisfied:

1. limk→∞(uk+1 − uk) = 0,

2. (uk)k=1,2,... is a bounded sequence in Rn,

3. (bk)k=1,2,... is a bounded sequence in Rn.

Proof. Since (uk)k, (b
k)k are bounded, they have convergent sub-sequences.

Hence, we can find (kj)j=1,2,... ⊂ Z+ s.t. limj→∞ u
kj = u∗ and limj→∞ p

kj = p∗

exist. By the first condition we also have limj→∞ u
kj+1 = u∗ By Theorem 2.1,

limj→∞ ‖Aukj − b‖2
2 = 0. Hence, Au∗ = b. It follows from (2.6) that

E(ukj+1)− 〈pkj , ukj+1 − ukj〉+
λ

2
‖Aukj+1 − b‖2

2

≤E(u)− 〈pkj , u− ukj〉+
λ

2
‖Au− b‖2

2

26

for all u ∈ Rn. Choosing u = ũ in the above inequality and letting j →∞, we

obtain

E(u∗) ≤ E(ũ)− 〈p∗, ũ− u∗〉.

We can estimate 〈p∗, ũ − u∗〉 as follows. Since pk = λAT (bk − b)), pkj lies in

the range of AT ,∀j = 1, 2, Hence, p∗ also lies in the range of AT , i.e.

p∗ = ATw for some w ∈ Rn. Therefore,

〈p∗, ũ− u∗〉 = 〈ATw, ũ− u∗〉 = 〈w,A(ũ− u∗)〉 = 0.

Consequently, we have E(u∗) ≤ E(ũ). Combining this conclusion and Au∗ = b,

we have u∗ = ũ.

Since limj→∞ u
kj = u∗ for any convergent sub-sequence (ukj)j, we conclude

that (uk)k=1,2,... itself converges to ũ.

2.2 The Split Bregman Method

The revolution of fast algorithms for solving the ROF model was made by

Goldstein and Osher in 2008. In their paper [17], a splitting technique was

proposed and was extremely successful in solving `1 regularized problems like

total variation based denoising and compressed sensing. Combining with split-

ting technique, the Bregman iteration became the Split Bregman iteration and

soon attracted more and more attention.

27

Before we introduce the Split Bregman, recall the ROF model (1.6)

u∗ = arg min
u

∫
Ω

|∇u| +
µ

2
‖u− f‖2

2

=


arg min

u

∫
Ω

√
u2
x + u2

y +
µ

2
‖u− f‖2

2 which is isotrpic

arg min
u

∫
Ω

(|ux|+ |uy|) +
µ

2
‖u− f‖2

2 which is anisotrpic

For simplicity, we consider the one dimensional case. Assume Ω = [0, 1] ⊂

R. The 1-D ROF model is

u∗ = arg min
u∈Ω

{‖ux‖1 +
µ

2
‖u− f‖2

2} , (2.8)

and its discretized form is

u∗ = arg min
u∈Rn

{‖∇u‖1 +
µ

2
‖u− f‖2

2} , (2.9)

where ∇ : Rn → Rn is the difference operator defined by

(∇u)i =

 0 if i = 1

ui − ui−1 if i > 1 .

Note that it is the one dimensional version of ∇x and ∇y and can be written

as a matrix

∇ =



0 0 · · · 0

−1 1 · · · 0

0 −1 1 · · ·
...

.

0 · · · −1 1


.

28

The difficulty of solving the ROF model is how to deal with differential ∇u

and the indifferentiable `1 norm ‖ · ‖1 simultaneously. The splitting technique

solves this dilemma wisely by splitting these two difficulties. Let v = ∇u, then

the problem becomes

u∗ = arg min
u∈Rn

‖v‖1 +
µ

2
‖u− f‖2

2 subject to v = ∇u . (2.10)

Recall that the Bregman iteration was designed to solve problems of the form

min
u
E(u), subject to H(u) = 0 .

Comparing it with (2.10), we can apply the Bregman iteration to this problem

easily. Since one of the advantages of Bregman iteration is that E does not

have to be differentiable, we exploit this good property by doing the Bregman

iteration with respect to v rather than u. We temporarily fix u, and let E(v) =

‖v‖1+ µ
2
‖u−f‖2

2 and H(v) = λ
2
‖v−∇u‖2

2. Then we come up with the following

iteration: 
vk+1 = arg min

v
Dp
E(v, vk) +

λ

2
‖v −∇u‖2

2

pk+1 = pk − λ(v −∇u) .

(2.11)

This iteration can be simplified with the same technique as (2.4), into


vk+1 = arg min

v
‖v‖1 +

µ

2
‖u− f‖2

2 +
λ

2
‖v −∇u− bk‖2

2

bk+1 = bk +∇u− vk+1 .

(2.12)

29

Taking u into account, in the first equation, we solve the minimization problem

w.r.t. both u and v. Hence the iteration scheme becomes
(uk+1, vk+1) = arg min

u,v
‖v‖1 +

µ

2
‖u− f‖2

2 +
λ

2
‖v −∇u− bk‖2

2

bk+1 = bk +∇uk+1 − vk+1 .

(2.13)

which is called the Split Bregman iteration. If (2.8) has a solution, this iteration

will converge to the solution of (2.10). Hence uk will converge to the solution

of (2.8). The convergence of this iteration scheme is studied in [21].

2.3 The Alternating Bregman Method

The Split Bregman Iteration (2.13) is not a fast algorithm yet. The solution

to the first equation of (2.13) is essential for efficiency of the Split Bregman

method. Instead of solving (uk+1, vk+1) together, we can split the problem

(uk+1, vk+1) = arg min
u,v

‖v‖1 +
µ

2
‖u− f‖2

2 +
λ

2
‖v −∇u− bk‖2

2

into two sub-problems


ũ = arg min

u
‖vk‖1 +

µ

2
‖u− f‖2

2 +
λ

2
‖vk −∇u− bk‖2

2

ṽ = arg min
v
‖v‖1 +

µ

2
‖uk − f‖2

2 +
λ

2
‖v −∇uk − bk‖2

2

(2.14)

and solve them respectively. They can be simplified as


ũ = arg min

u

µ

2
‖u− f‖2

2 +
λ

2
‖vk −∇u− bk‖2

2

ṽ = arg min
v
‖v‖1 +

λ

2
‖v −∇uk − bk‖2

2 .

(2.15)

30

Clearly, in general (ũ, ṽ) 6= (uk+1, vk+1). To get a better approximation, one

need to iterate (2.15) several times while updating both u and v on each

iteration. In real computation, we let ũ0 = uk and ṽ0 = vk and use the

following iteration to approximate the first equation of (2.13):

1: ũ0 = uk and ṽ0 = vk

2: Choose a proper number of iteration M
3: for m = 1 to M do
4: ũm = arg min

u
‖ṽm−1‖1 + µ

2
‖u− f‖2

2 + λ
2
‖ṽm−1 −∇u− bk‖2

2

5: ṽm = arg min
v
‖v‖1 + µ

2
‖ũm − f‖2

2 + λ
2
‖v −∇ũm − bk‖2

2

6: end for
7: uk+1 = ũM and vk+1 = ṽM

Since the solutions of problems of image processing are rounded into inte-

gers, we do not need accurate approximation. Goldstein and Osher in their

paper [17] pointed out that only one iteration is enough, i.e. (ũ1, ṽ1) is a good

approximation to (uk+1, vk+1).

Letting M = 1 and plugging this alternating minimization scheme into (2.13),

we have the following scheme:



uk+1 = arg min
u

µ

2
‖u− f‖2

2 +
λ

2
‖vk −∇u− bk‖2

2

vk+1 = arg min
v

‖v‖1 +
λ

2
‖v −∇uk+1 − bk‖2

2

bk+1 = bk +∇uk+1 − vk+1 .

(2.16)

In (2.16), we still have to solve two minimization problems in every itera-

tion. Since the first sub-problem of (2.16) contains only ‖·‖2
2, it is differentiable

31

and has the optimality condition

µ(u− f) + λ∇T (∇u+ bk − vk) = 0

⇒ (µI + λ∇T∇)u = µf + λ∇T (vk − bk)

⇒ uk+1 = (µI + λ∇T∇)−1
[
µf + λ∇T (vk − bk)

]
.

(2.17)

The second sub-problem of (2.16) has the form

v = arg min
v∈Rn

‖v‖1 +
λ

2
‖v − b‖2

2

for some b ∈ Rn. Let us consider a simple case when n = 1. Suppose a ∈ R

and λ > 0, it is easy to verify that the problem

x = arg min
x∈R

|x|+ λ

2
(x− a)2

has the solution

x = shrink(a,
1

λ
) :=


−(a− 1

λ
), if a < − 1

λ

0, if − 1
λ
≤ a ≤ 1

λ

a− 1
λ
, if a > 1

λ

which is equivalent to soft-thresholding.

Now we consider v ∈ Rn. Denoting by vi the ith element of the vector v, we

32

have

min
v∈Rn

‖v‖1 +
λ

2
‖v − b‖2

2

= min
v∈Rn

n∑
i=1

vi +
λ

2

n∑
i=1

(v − b)2

= min
v∈Rn

n∑
i=1

[
vi +

λ

2
(vi − bi)2

]
=

n∑
i=1

min
vi∈R

[
vi +

λ

2
(vi − bi)2

]
Thus the minimization problem is separable. Therefore, to minimize v =

arg min
v∈Rn

‖v‖1 + λ
2
‖v − b‖2

2, we extend the shrink function to Rn and have the

solution

v = shrink(b,
1

λ
)

in the sense of

vi = shrink(bi,
1

λ
) .

Applying the discussion above to the second subproblem of (2.16), we have an

explicit solution

vk+1 = arg min
v∈Rn

‖v‖1 +
λ

2
‖v −∇uk+1 − bk‖2

2

= shrink(∇uk+1 + bk,
1

λ
) .

(2.18)

On the basis of the discussion above, we have the 1-D Alternating Split

Bregman Method

33

Algorithm 2.1 One dimensional Alternating Split Bregman Method

u0 ← f, v0 ← 0, and b0 ← 0
while ‖v −∇u‖2 < some tolerance do
uk+1 = (µI + λ∇T∇)−1

[
µf + λ∇T (vk − bk)

]
vk+1 = shrink(∇uk+1 + bk, 1

λ
)

bk+1 = bk +∇uk+1 − vk+1

end while

The name Alternating Split Bregman Method was proposed in [31].

We define cut(u, 1
λ
) = u−shrink(u, 1

λ
). Then the last step can be rewritten

as

bk+1 = cut(bk +∇uk+1,
1

λ
) .

which coincide with our JZ Algorithm 2.4 on page 38. This method inspired

us to propose our fast algorithm.

2.4 The Algorithm of Goldstein and Osher

In Algorithm 2.1 we still have to solve a linear system to obtain uk+1 and

hence in theory no explicit algorithm can be derived. However, the linear

system uk+1 = (µI +λ∇T∇)−1
[
µf + λ∇T (vk − bk)

]
is well-posed and it does

not need to be solved precisely. In fact, Goldstein and Osher in [17] pointed

out that uk+1 solved by Gauss-Seidel method with only one iteration is precise

enough for the entire algorithm to converge efficiently.

Recall that the anisotropic ROF model (1.23) is

u∗ = arg min
u∈Rn2

‖∇xu‖1 + ‖∇yu‖1 +
µ

2
‖u− f‖2

2 .

34

Note that we have two terms ∇xu and ∇yu to approximate. The split form is

u∗ = arg min
u∈Rn2

‖vx‖1 + ‖vy‖1 +
µ

2
‖u− f‖2

2 .

subject to vx = ∇xu and vy = ∇yu .

(2.19)

Following the same process of the 1-dimensional case, the Alternating Split

Bregman Method for this 2-dimensional model is

Algorithm 2.2 Alternating Split Bregman Method for the Anisotropic ROF
model
u0 ← f, v0

x ← 0, v0
y ← 0, b0

x ← 0 and b0
y ← 0

while ‖vx −∇xu‖2 + ‖vy −∇yu‖2 < some tolerance do
uk+1 = (µI + λ∇T

x∇x + λ∇T
y∇y)

−1
[
µf + λ∇T

x (vkx − bkx) + λ∇T
y (vky − bky)

]
vk+1
x = shrink(∇xu

k+1 + bkx,
1
λ
)

vk+1
y = shrink(∇yu

k+1 + bky,
1
λ
)

bk+1
x = bkx +∇xu

k+1 − vk+1
x

bk+1
y = bky +∇yu

k+1 − vk+1
y

end while

The Gauss-Seidel solution to uk+1 can be written component-wise as uk+1
i,j =

Gk
i,j where

Gk
i,j =

λ

µ+ 4λ
(uki+1,j + uki−1,j + uki,j+1 + uki,j−1

+ vkx,i−1,j − vkx,i,j + vky,i,j−1 − vky,i,j − bkx,i−1,j + bkx,i,j − bky,i,j−1 + bky,i,j)

+
µ

µ+ 4λ
fi,j .

Eventually, Goldstein and Osher’s algorithm is

35

Algorithm 2.3 GO Algorithm for the Anisotropic ROF model

u0 ← f, v0
x ← 0, v0

y ← 0, b0
x ← 0 and b0

y ← 0
while ‖vx −∇xu‖2 + ‖vy −∇yu‖2 < some tolerance do
uk+1 = Gk

vk+1
x = shrink(∇xu

k+1 + bkx,
1
λ
)

vk+1
y = shrink(∇yu

k+1 + bky,
1
λ
)

bk+1
x = bkx +∇xu

k+1 − vk+1
x

bk+1
y = bky +∇yu

k+1 − vk+1
y

end while

We call this algorithm the GO algorithm throughout this thesis. This al-

gorithm is very efficient. For a 512 × 512 image with noise level σ = 25, 30

iterations (i.e. stop at k = 30) is enough to attain optimal denoising result

for most of images. On our computer with Intel Core 2 6400 2.13GHz and

Windows Vista 32, the CPU time is 0.3 seconds.

The algorithm for isotropic case is also discussed in [17]. Recall the isotropic

discrete ROF model (1.22)

u∗ = arg min
u∈Rn2

∥∥∥∥√(∇xu)2 + (∇yu)2

∥∥∥∥
1

+
µ

2
‖u− f‖2

2

= arg min
u∈Rn2

∑
1≤i,j≤n

√
(∇xu)2

i,j + (∇yu)2
i,j +

µ

2
‖u− f‖2

2 .

The split formulation becomes

u∗ = arg min
u∈Rn2

‖
√
vx + vy‖1 +

µ

2
‖u− f‖2

2

subject to vx = ∇xu and vy = ∇yu .

(2.20)

36

It is easy to see that vx and vy do not decouple, and the minimization problem

(vk+1
x , vk+1

y) = arg min
vx,vy

‖
√
vx + vy‖1 +

λ

2
‖vx−∇xu− bx‖2

2 +
λ

2
‖vy −∇yu− by‖2

2

is not separated as the anisotropic case. This problem is solved using a gener-

alized shrinkage formula proposed in [34]:

vk+1
x = shrink(sk,

1

λ
)
∇xu+ bkx

sk

vk+1
y = shrink(sk,

1

λ
)
∇yu+ bky

sk

where

sk =
√

(∇xu+ bkx)
2 + (∇yu+ bky)

2 .

Besides this difference, uk+1, bk+1
x and bk+1

y are solved in the same way as the

anisotropic model. In numerical experiment, the isotropic GO algorithm cost

twice as much time as the anisotropic one in a single iteration.

2.5 Our Algorithms

We propose an explicit iterative algorithm in [20] to solve the anisotropic

discrete ROF model (1.23). Suppose f is the noisy image and µ is a properly

chosen parameter depending on the noise level. The anisotropic discrete ROF

model is the following optimization problem:

u∗ = arg min
u∈Rn2

‖∇xu‖1 + ‖∇yu‖1 +
µ

2
‖u− f‖2

2 .

Picking an arbitrary constant 0 < γ < 1/8 and let λ = µγ, we have the

following iteration scheme.

37

Algorithm 2.4 JZ Algorithm

1: b1
x ← 0, b1

y ← 0, λ← γµ and u1 = f
2: for k = 1 to M do
3: bk+1

x = cut(∇xu
k + bkx,

1
λ
)

4: bk+1
y = cut(∇yu

k + bky,
1
λ
)

5: uk+1 = f − γ∇T
x b

k+1
x − γ∇T

y b
k+1
y

6: end for

This algorithm is very simple and turned out to be extremely efficient. We

will prove that uk converges to the solution of the ROF model. We point out

that for fast convergence, γ should be as large as possible, and γ < 1/8 is

a sufficient but not necessary condition for the iteration scheme to converge.

In numerical experiment, γ could be as large as 1/4 to make the algorithm

converge faster.

This scheme can also be used to solve the isotropic model (1.22), i.e. the

minimization problem

u∗ = arg min
u∈Rn2

∥∥∥∥√(∇xu)2 + (∇yu)2

∥∥∥∥
1

+
µ

2
‖u− f‖2

2.

The corresponding algorithm is

Algorithm 2.5 JZ Algorithm for The Isotropic Model

1: b1
x ← 0, b1

y ← 0, λ← γµ and u1 = f
2: for k = 1 to M do
3: tk+1

x = ∇xu
k + bkx, tk+1

y = ∇yu
k + bky

4: sk+1 =
√

(tk+1
x)2 + (tk+1

y)2

5: bk+1
x = cut(sk+1, 1

λ
) t

k+1
x

sk+1 , bk+1
y = cut(sk+1, 1

λ
)
tk+1
y

sk+1

6: uk+1 = f − γ∇T
x b

k+1
x − γ∇T

y b
k+1
y

7: end for

This scheme is also very efficient and produces almost the same images as

the anisotropic one.

38

We will investigate Algorithm 2.5 for the isotropic model in the next sec-

tion. Then we compare numerical performance of our Algorithm 2.4 (JZ) with

Goldstein and Osher’s Algorithm 2.3 (GO). The convergence of Algorithm 2.4

for the anisotropic model will be discussed in the next chapter.

2.6 Convergence Analysis for the Isotropic Model

In this section, we give a proof of convergence of the JZ Algorithm for the

isotropic ROF model. We will skip the anisotropic case since it is covered by

the general form of JZ Algorithm which is proved in Chapter 3.

Recall the isotropic ROF model (1.22):

u∗ = arg min
u∈Rn2

∥∥∥∥√(∇xu)2 + (∇yu)2

∥∥∥∥
1

+
µ

2
‖u− f‖2

2 .

The JZ Algorithm for this minimization problem is



tk+1
x = ∇xu

k + bkx, tk+1
y = ∇yu

k + bky

sk+1 =
√

(tk+1
x)2 + (tk+1

y)2

bk+1
x = cut(sk+1,

1

λ
)
tk+1
x

sk+1

bk+1
y = cut(sk+1,

1

λ
)
tk+1
y

sk+1

uk+1 = f − γ∇T
x b

k+1
x − γ∇T

y b
k+1
y .

(2.21)

The main result of this section is the following theorem.

Theorem 2.3. For k = 0, 1, . . . , let bkx, b
k
y, u

k be given by the iteration scheme

(2.21). If 0 < γ < 1/8, then limk→∞ u
k = u∗.

39

We extend the proof of convergence of the anisotropic model in [20] to

prove Theorem 2.3. The difficulty for the isotropic scheme is that ∇x and

∇y do not decouple. Therefore, we must deal with them simultaneously. To

prove this theorem, we introduce some notations. Recall uk, f, bkx, b
k
y are n2×1

column vectors, and ∇x,∇y are linear operators, i.e. n2 × n2 matrices. We

combine bkx and bky into a 2n2 × 2n2 column vector as follows:

bk =

 bkx

bky

 .
We also combine ∇x and ∇y into ∇ : Rn2 → R2n2

defined by

∇ =

 ∇x

∇y

 .
Let tk be combination of tkx and tky:

tk =

 tkx

tky

 .
Note that the notations ∇x,∇y, t

k
x, t

k
y will still be used. We also stretch sk into

a 2n2 × 1 vector by duplicating itself into
[
sk

sk

]
:

sk+1
i = sk+1

i+n2 =
√

(tk+1
x,i)2 + (tk+1

y,i)2

=
√

(tk+1
i)2 + (tk+1

i+n2)2.

40

With these notations, (2.21) can be rewritten as



tk+1 = ∇uk + bk

sk+1
i = sk+1

i+n2 =
√

(tk+1
i)2 + (tk+1

i+n2)2

bk+1 = cut(sk+1,
1

λ
)
tk+1

sk+1

uk+1 = f − γ∇T bk+1 .

(2.22)

To prove Theorem (2.3), we show that (2.22) can be interpreted as another

form:



tk+1 = ∇uk + bk

sk+1
i = sk+1

i+n2 =
√

(tk+1
i)2 + (tk+1

i+n2)2

vk+1 =
[
vk+1
x

vk+1
y

]
= arg min

v

{∥∥∥√(vx)2 + (vy)2

∥∥∥
1

+
λ

2
‖v − tk+1‖2

2

}
bk+1 = tk+1 − vk+1 = ∇uk + bk − vk+1

uk+1 = arg min
u
{1

2
‖B(u− f)‖2

2 − 〈B2(uk − f), u− uk〉+
γ

2
‖vk+1 −∇u‖2

2}

(2.23)

where B is an s.p.d matrix such that B2 = I − γ∇T∇. Existence of B is

guaranteed by λ < 1/8. We first show that vk+1 defined by the third equation

of (2.23) is equivalent to

vk+1 = shrink(sk+1,
1

λ
)
tk+1

sk+1
.

Let us investigate the minimization problem

min
x,y∈R

√
x2 + y2 +

λ

2
|x− cx|2 +

λ

2
|y − cy|2,

41

where cx, cy ∈ R and λ > 0 are given. For (x, y) ∈ R2, let J(x, y) :=√
x2 + y2, F (x, y) := (λ/2)|x− cx|2 + (λ/2)|y − cy|2, and E(x, y) := J(x, y) +

F (x, y). It is easily seen that

∂F (0, 0) = (λcx, λcy)

and

∂G(0, 0) = (x, y) ∈ R2 : x2 + y2 < 1.

Consequently, we have

• Case 1. c2
x + c2

y ≤ 1
λ2

. In this case arg min
x,y

E(x, y) = (0, 0).

• Case 2. c2
x + c2

y ≥ 1
λ2

. In this case we have

x√
x2 + y2

+ λ(x− cx) and
y√

x2 + y2
+ λ(y − cy).

It follows that x/cx = y/cy. Hence, there exists a real number t s.t.

x = tcx and y = tcy. Consequently,

E(x, y) = |t|
√
c2
x + c2

y +
λ

2
(t− 1)2(c2

x + c2
y).

Taking t as the variable, we can see that E(x, y) achieves the minimum

if and only if

t = shrink
(

1,
1

λ
√
c2
x + c2

y

)
,

which implies

x = shrink(s, 1/λ)
cx
s

and y = shrink(s, 1/λ)
cy
s
,

42

where s =
√
c2
x + c2

y.

Therefore, we conclude that

vk+1 = arg min
v

{∥∥∥√(vx)2 + (vy)2

∥∥∥
1

+
λ

2
‖v − tk+1‖2

2

}

is true, if and only if

vk+1 = shrink(sk+1,
1

λ
)
tk+1

sk+1
.

Consequently, it is clear that

bk+1 = tk+1 − vk+1 = cut(sk+1,
1

λ
)
tk+1

sk+1
.

For (uk)k=1,2,..., we consider the last equation of (2.23). Note B2 = I −

γ ∇T∇. By differentiating the last equation of (2.23), we have

B2(uk+1 − f)−B2(uk − f) + γ∇T (∇uk+1 − vk+1) = 0

⇒ B2(uk+1 − uk) = γ∇T (vk+1 −∇uk+1)

⇒ (I − γ∇T∇)(uk+1 − uk) = γ∇T (vk+1 −∇uk+1)

⇒ uk+1 − uk = γ∇T (vk+1 −∇uk)

(2.24)

The fourth equation in (2.23) implies

vk+1 −∇uk = bk − bk+1 .

Plugging it into (2.24), we have

uj+1 − uj = γ∇T (bj − bj+1), j = 1, 2, . . . , k.

43

Adding up from j = 1 to k, we get

∑k
j=1(uj+1 − uj) =

∑k
j=1 γ∇T (bj − bj+1)

⇒ uk+1 − u1 =
∑k

j=1 γ∇T (bj − bj+1)

⇒ uk+1 − f = −γ∇T bk+1

⇒ uk+1 = f − γ∇T bk+1

which equates the last equation of (2.22). Hence, we conclude that (2.22) and

(2.23) are equivalent.

We introduce some notations:

• J(v) = ‖
√
v2
x + v2

y‖

• ∂J is the subdifferential of J

• Dp
J(v, v0) = J(v)− J(v0)− 〈p, v− v0〉 be the Bregman distance between

v and v0 associated with J , where p ∈ ∂J(v)

• Υk = γ‖vk+1 −∇uk‖2
2

With these notations, we have

vk+1 = arg min
v
{J(v) +

λ

2
‖v −∇uk − bk‖}

which implies

0 ∈ ∂J(vk+1) + λ(vk+1 −∇uk − bk).

⇒ λ(bk +∇uk − vk+1) ∈ ∂J(vk+1)

⇒ λbk+1 ∈ ∂J(vk+1)

⇒ λbk ∈ ∂J(vk)

44

Let pk = λbk, then pk ∈ ∂J(vk). By the definition of Bregman distance, we

deduced a useful relation

Dpk

J (v, vk) = ‖v‖ − ‖vk‖ − 〈pk, v − vk〉 ≥ 0, v ∈ Rn

and especially when v = vk+1,

Dpk

J (vk+1, vk) = ‖vk+1‖ − ‖vk‖ − 〈pk, vk+1 − vk〉 ≥ 0.

Lemma 2.4. (uk), (vk)k, (b
k)k, (p

k)k are all bounded sequences.

Proof. By the definition of cut function, it is clear that ‖bk‖∞ = supk b
k ≤ 1

λ
.

Therefore, (bk)k is a bounded sequence. And since pk = λbk we conclude that

(pk)k are also bounded.

The fourth equation in (2.23) implies

vk+1 = bk +∇uk − bk+1.

Hence (vk)k is bounded.

Since uk+1 = f − γ∇T bk , (uk)k is also bounded.

Lemma 2.5. limk→∞ ‖uk+1 − uk‖2
2 = 0. Moreover, Υk ≥ Υk+1 for all k ∈ Z.

Proof. We first show ‖vk+1 −∇uk‖2
2 ≤ ‖vk −∇uk‖2

2.

45

By the definition of vk+1, we have

vk+1 = arg min
v
{‖v‖+ λ

2
‖v −∇uk − bk‖2

2}

= arg min
v
{‖v‖+ λ

2
‖v −∇uk‖2

2 + λ
2
‖bk‖2

2 − λ〈v −∇uk, bk〉}

= arg min
v
{‖v‖+ λ

2
‖v −∇uk‖2

2 − 〈λbk, v − vk〉}

= arg min
v
{‖v‖+ λ

2
‖v −∇uk‖2

2 − 〈pk, v − vk〉} .

Therefore, vk+1 is the minimizer of ‖v‖+ λ
2
‖v−∇uk‖2

2−〈pk, v−vk〉. It follows

that

‖vk+1‖+ λ
2
‖vk+1 −∇uk‖2

2 − 〈pk, vk − vk〉

≤ ‖vk‖+
λ

2
‖vk −∇uk‖2

2

⇒ 0 ≤ Dpk

J ≤
λ

2
‖vk −∇uk‖2

2 −
λ

2
‖vk+1 −∇uk‖2

2

⇒ ‖vk+1 −∇uk‖2
2 ≤ ‖vk −∇uk‖2

2. (2.25)

Then we show Υk+1 ≤ Υk. Recall the last step of the iteration (2.23)

uk+1 = arg min
u

{
1
2
‖B(u− f)‖2

2 − 〈B2(uk − f), u− uk〉

+γ
2
‖vk+1 −∇u‖2

2

}
.

46

Since uk+1 is the minimizer, it is smaller to substitute u = uk+1 than u = uk:

1
2
‖B(uk+1 − f)‖2

2 − 〈D2(uk − f), uk+1 − uk〉+ γ
2
‖vk+1 −∇uk+1‖2

2

≤ 1
2
‖B(uk − f)‖2

2 + γ
2
‖vk+1 −∇uk‖2

2

⇒ 1
2
‖B(uk+1 − f)‖2

2 − 〈D2(uk − f), uk+1 − uk〉 − 1
2
‖B(uk − f)‖2

2

≤ γ
2
‖vk+1 −∇uk‖2

2 −
γ
2
‖vk+1 −∇uk+1‖2

2

⇒ 1
2
‖B(uk+1 − uk)‖2

2

≤ γ
2
‖vk+1 −∇uk‖2

2 −
γ
2
‖vk+1 −∇uk+1‖2

2 .

Applying (3.5), we have

1
2
‖B(uk+1 − uk)‖2

2

≤ γ
2
(‖vk+1 −∇uk‖2

2 − ‖vk+1 −∇uk+1‖2
2)

≤ γ
2
(‖vk+1 −∇uk‖2

2 − ‖vk+2 −∇uk+1‖2
2)

= Υk −Υk+1

⇒ Υk+1 ≤ Υk − 1
2
‖B(uk+1 − uk)‖2

2 ≤ Υk

Therefore Υk+1 ≤ Υk. On the other hand, it is clear that Υk ≥ 0. Hence

limk→∞Υk exists. It follows that

lim
k→∞

1

2
‖B(uk+1 − uk)‖2

2 = lim
k→∞

Υk −Υk+1 = 0.

Hence, we deduce that

lim
k→∞
‖uk+1 − uk‖2

2 = 0 .

Lemma 2.6 (v∗ = ∇u∗). limk→∞Υk = 0. It follows that limk→∞ v
k−∇uk = 0.

Proof. Noting vk+1 −∇uk = bk − bk+1, we consider pk − pk+1 firstly.

47

For any v ∈ Rn, we have

Dpj+1

J (v, vj+1)−Dpj

J (v, vj) +Dpj

J (vj+1, vj)

= J(v)− J(vj+1)− 〈pj+1, v − vj+1〉 − J(v) + J(vj) + 〈pj, v − vj〉

+J(vj+1)− J(vj)− 〈pj, vj+1 − vj〉

= 〈pj − pj+1, v − vj+1〉 .

This implies

Dpj+1

J (v, vj+1)−Dpj

J (v, vj) ≤ 〈pj − pj+1, v − vj+1〉 .

On the other hand, consider the function

M(v) =
λ

2
‖v −∇uj+1‖2

2

we have

pj − pj+1 = λ(bj − bj+1) = λ(vj+1 −∇uj) = ∂M(vj+1)

⇒ Dpj−pj+1

M (v) = M(v)−M(vj+1)− 〈pj − pj+1, v − vj+1〉 > 0

⇒ M(v)−M(vj+1) ≥ 〈pj − pj+1, v − vj+1〉 ≥ Dpj+1

J (v, vj+1)−Dpj

J (v, vj)

⇒ λ
2
‖v −∇uj‖2

2 − λ
2
‖vj+1 −∇uj‖2

2

≥ ‖vj‖ − ‖vj+1‖+ 〈pj, v − vj〉 − 〈pj+1, v − vj+1〉

Choosing v = ∇uj, we come up with

λ
2
‖vj+1 −∇uj‖2

2

≤ ‖vj+1‖ − ‖vj‖+ 〈pj+1,∇uj − vj+1〉 − 〈pj,∇uj − vj〉

= (‖vj+1‖ − ‖vj‖) + (〈pj+1,∇uj − vj+1〉 − 〈pj,∇uj−1 − vj〉)− 〈pj,∇uj −∇uj−1〉 .

48

Summing j from m to k − 1, we obtain

λ
2

∑k−1
j=m ‖vj+1 −∇uj‖2

2

≤ ‖vk‖ − ‖vm‖+ 〈pk,∇uk−1 − vk〉 − 〈pm,∇um−1 − vm〉]−
∑k−1

j=m〈pj,∇uj −∇uj−1〉 .

Since the sequences (uj)j, (v
j)j, (p

j)j are bounded, there exists positive con-

stants C1l and C2 independent of k and m such that

λ

2

k−1∑
j=m

‖vj+1 −∇uj‖2
2 ≤ Cl,1 + Cl,2(k −m)ηm

where ηm = supj≥m ‖uj+1 − uj‖2
m→∞−→ 0 . Hence

k−1∑
j=m

Υj ≤ C1 + C2(k −m)ηm.

Since (Υj) is a decreasing sequence, we have

(k −m)Υk ≤ C1 + C2(k −m)ηm

⇒ Υk ≤ C1

k−m + C2ηm for any 1 < m < k − 1

⇒ Υk ≤ C1

m
+ C2ηm for m = bk/2c

Therefore, limk→∞Υk = 0. It follows that limk→∞ v
k −∇uk = 0.

We are in a position to prove Theorem 2.3. Assume

u∗ = arg min
u∈Rn2

{
∥∥√(∇xu)2 + (∇yu)2

∥∥
1

+
µ

2
‖u− f‖2

2}

is the unique solution. We’ll show limk→∞ u
k = u∗.

49

Proof. Let F (u) = 1
2
‖u− f‖2

2. Then ∂F (uk+1) = uk+1− f . ∀w ∈ Rn2
, we have

F (uk+1 + w)− F (uk+1) + 〈uk+1 − f, w〉 = Duk+1−f
F (uk+1 + w, uk+1) ≥ 0.

By the last equation of (2.22) we know uk+1 − f = −γ∇T bk. Hence,

F (uk+1 + w)− F (uk+1) + 〈γbk,∇w〉 ≥ 0. (2.26)

On the other hand, recall pk = λbk ∈ ∂J(vk). It follows that

J(vk +∇w)− J(vk)− 〈pk,∇w〉 ≥ 0

⇒ ‖vk +∇w‖ − ‖vk‖ − 〈λbk,∇w〉 ≥ 0

⇒ 〈γbk,∇w〉 ≤ 1
µ
‖vk +∇w‖ − 1

µ
‖vk‖.

The two inequalities above yield

‖vk‖+ µF (uk+1)

≤ ‖vk +∇w‖+ µF (uk+1 + w), ∀w ∈ Rn2
.

(2.27)

(uk) is a bounded sequence. Thus it has convergent subsequences. Picking

up arbitrary convergent subsequent (ukj)j=1,2... , we denote ũ = limj→∞ u
kj .

Since limk→∞(uk+1 − uk) = 0, we also have limj→∞ u
kj+1 = ũ.

By Lemma 2.6, limj→∞ v
kj = ∇ũ. Therefore, replacing uk in (2.27) by ukj

and letting j →∞ , we obtain

‖∇ũ‖+ µF (ũ)

≤ ‖∇(ũ+ w)‖+ µF (ũ+ w), ∀w ∈ Rn2
.

(2.28)

50

Hence, ũ = arg min
u
{‖∇u‖ + µF (u)} = u∗. Since limj→∞ u

kj = ũ = u∗ is true

for any convergent subsequence ukj , we conclude that

lim
k→∞

uk = u∗ .

2.7 Numerical Performance

The rate of convergence of JZ Algorithm 2.4 is limited by the restriction γ <

1/8. To accelerate the calculation, we apply a relaxation technique to the

iteration. Recall the iteration scheme of JZ algorithm:


bk+1
x = cut(∇xu

k + bkx,
1

λ
)

bk+1
y = cut(∇yu

k + bky,
1

λ
)

uk+1 = f − γ∇T
x b

k+1
x − γ∇T

y b
k+1
y .

Choosing proper 0 < t < 1, we rewrite the third equation as

uk+1 = (1− t)uk + t
(
f − γ∇T

x b
k+1
x − γ∇T

y b
k+1
y

)
.

With the coefficient t, the restriction γ < 1/8 is relaxed. Algorithm 2.4 be-

comes

51

Algorithm 2.6 JZ algorithm with relaxation for the anisotropic ROF model

1: b1
x ← 0, b1

y ← 0, λ← γµ and u1 = f
2: for k = 1 to M do
3: bk+1

x = cut(∇xu
k + bkx,

1
λ
)

4: bk+1
y = cut(∇yu

k + bky,
1
λ
)

5: uk+1 = (1− t)uk + t
(
f − γ∇T

x b
k+1
x − γ∇T

y b
k+1
y

)
6: end for

And the algorithm for isotropic case is

Algorithm 2.7 JZ algorithm with relaxation for the isotropic ROF model

1: b1
x ← 0, b1

y ← 0, λ← γµ and u1 = f
2: for k = 1 to M do
3: wk+1

x = ∇xu
k + bkx, w

k+1
y = ∇yu

k + bky

4: sk+1 =
√

(wk+1
x)2 + (wk+1

y)2

5: bk+1
x = cut(sk+1, 1

λ
)w

k+1
x

sk+1 , b
k+1
y = cut(sk+1, 1

λ
)
wk+1

y

sk+1

6: uk+1 = (1− t)uk + t
(
f − γ∇T

x b
k+1
x − γ∇T

y b
k+1
y

)
7: end for

With relaxation technique, we can choose proper t such that the algorithm

converges without the restriction γ < 1/8. In numerical experiments, we found

out that γ = 0.5 is optimal for rate of convergence.

Before reporting the performance of our model and algorithm, we introduce

two concepts to describe the criterion of the quality of the resulting image.

Recall these notations:

• Ω = {1, 2, . . . , n} × {1, 2, . . . , n} is the domain.

• u0 : Ω→ R is the original clean image.

• f : Ω→ R is the image with noise.

• u : Ω → R is the image after processing. This is the image to be

evaluated.

52

The Mean Squared Error(MSE) between u and f is defined by

MSE :=
1

n2

n∑
i=1

n∑
j=1

(ui,j − u0,i,j)
2 =

1

n2
‖u− u0‖2

2.

And the Peak Signal-to-Noise Ratio(PSNR) is defined by

PSNR := 20 · log10

(
max(u0)√

MSE

)

where max(u0) is the maximum possible pixel value of the image u0. In our

experiment, this is 255.

The clean image u0 is considered to have the best visual quality. Therefore,

we want the resulting image u to be as close to u0 as possible. Clearly, MSE is

inversely related to the quality of the resulting image. On the contrary, PSNR

is positively related to it.

We report computational experiments for four images. All the programs

are C++ codes running on an desktop computer with Intel Core 2 6400 2.3GHz

and 2G memory. The compiler is MinGW/GCC 3.4.5 for windows. And the

operating system is Windows Vista Business x32.

Figure 2.2 shows the original clean images. The sizes of our testing images

Peppers, Lena, Boat, Man are 256 × 256, 512 × 512, 512 × 512, 1024 × 1024,

respectively. The noisy images are generated by adding Gaussian noise to the

clean images using the MATLAB function randn, with pseudo-random seed

set by randn(’state’,0).

We tested our JZ Algorithm(JZ), JZ with relaxation(JZr) and Goldstein

and Osher’s GO Algorithm(GO). Since these algorithms converge to the same

53

(a) Peppers, 256× 256 (b) Lena, 512× 512

(c) Boat, 512× 512 (d) Man, 1024× 1024

Figure 2.2: The clean images for our test problems.

solution, they generate the same clean images. The comparison is focused

on the efficiency of these schemes. The stopping criterion is ‖uk − uk−1‖2 ≤

10−3n2, where n is the size of the image. We report the number of iterations

and the CPU time.

The parameter µ is adjusted for each image and each noise level to get opti-

mal quality. There is no algorithm reported so far for an automatic estimation

54

of the optimal µ. A rough estimation can be made by

µ = 2.14/σ − 0.02

for most of images, where σ is assumed to be given. In [33], Wang and Shang

proposed a method to estimate σ by

σ = 1.0482median
i,j

(|(∇u)i,j|).

This estimation is accurate for most natural images.

Figure 2.3 shows the numerical performance of the GO Algorithm and JZ

algorithm on these images. We tested each image with different noise levels.

Each algorithm iterates until the optimal PSNR is reached in the sense that

PSNRoptimal − PSNR(uk) < 0.02 .

The x-axis represents the noise level ranging from σ = 10 to 40. And the y-axis

represents the CPU time. It is clear that our algorithms are much faster than

the GO Algorithm in each noise level.

Table 2.1 to Table 2.4 show the details of performance on each image. σ

is the noise level. The parameter µ is inversely related to σ. Since all the

algorithms solve the same model, they should produce images with the same

PSNR. The number of iterations and the CPU time of each algorithm increase

as the noise level grows.

55

10 15 20 25 30 35 40
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Noise level (σ)

C
P

U
 t

im
e

(s
ec

o
n

d
s)

GO
JZ
JZr

(a) Peppers

10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Noise level (σ)

C
P

U
 t

im
e

(s
ec

o
n

d
s)

GO
JZ
JZr

(b) Lena

10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Noise level (σ)

C
P

U
 t

im
e

(s
ec

o
n

d
s)

GO
JZ
JZr

(c) Boat

10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

Noise level (σ)

C
P

U
 t

im
e

(s
ec

o
n

d
s)

GO
JZ
JZr

(d) Man

Figure 2.3: Comparison results on CPU time of algorithms.

σ 10 15 20 25 30 35 40
µ 0.18 0.115 0.082 0.064 0.052 0.044 0.04

PSNR 33.47 31.26 29.79 28.59 27.60 26.80 26.16

GO
Iter 8 11 14 16 18 20 22
time 0.03 0.04 0.05 0.06 0.08 0.08 0.09

JZ
Iter 3 5 6 7 8 10 11
time 0.005 0.008 0.01 0.012 0.014 0.015 0.018

JZr
Iter 2 3 4 4 5 6 6
time 0.004 0.006 0.008 0.008 0.01 0.01 0.01

Table 2.1: Comparison results on number of iterations and CPU time of image
Peppers, 256× 256.

56

σ 10 15 20 25 30 35 40
µ 0.18 0.11 0.075 0.057 0.047 0.04 0.034

PSNR 34.36 32.46 31.17 30.15 29.45 28.82 28.20

GO
Iter 9 12 15 20 25 30 30
time 0.12 0.17 0.2 0.28 0.34 0.4 0.4

JZ
Iter 6 10 12 16 19 21 23
time 0.04 0.06 0.08 0.13 0.15 0.17 0.19

JZr
Iter 3 5 6 9 12 14 16
time 0.02 0.03 0.05 0.06 0.09 0.11 0.14

Table 2.2: Comparison results on number of iterations and CPU time of image
Lena, 512× 512.

σ 10 15 20 25 30 35 40
µ 0.21 0.13 0.087 0.067 0.053 0.045 0.038

PSNR 32.47 30.53 29.14 28.14 27.33 26.69 26.13

GO
Iter 7 10 13 16 18 21 25
time 0.11 0.16 0.17 0.22 0.25 0.28 0.34

JZ
Iter 4 6 8 12 14 16 18
time 0.03 0.04 0.06 0.07 0.09 0.11 0.12

JZr
Iter 3 4 4 5 7 10 12
time 0.02 0.03 0.03 0.04 0.05 0.08 0.09

Table 2.3: Comparison results on number of iterations and CPU time of image
Boat, 512× 512.

σ 10 15 20 25 30 35 40
µ 0.22 0.13 0.09 0.07 0.052 0.045 0.038

PSNR 32.83 30.80 29.40 28.28 27.37 26.62 25.90

GO
Iter 6 9 11 12 15 17 19
time 0.31 0.45 0.56 0.61 0.75 0.86 0.97

JZ
Iter 3 4 6 7 8 11 12
time 0.07 0.09 0.14 0.17 0.2 0.27 0.30

JZr
Iter 3 3 3 4 4 5 6
time 0.08 0.08 0.08 0.11 0.11 0.14 0.17

Table 2.4: Comparison results on number of iterations and CPU time of image
Man, 1024× 1024.

57

Chapter 3

Denoising Models based on

High-Order Difference Schemes

3.1 High-order Difference Schemes in Image

Denoising

As we stated in Chapter 1, sometimes the ROF model does not have ideal

performance in visual quality since it produces staircase effect. One good way

to solve this problem is to use higher-order differential terms instead of, or

in addition to, the total variation term
∫
u∈Ω
|∇u|. The resulting model was

originally proposed by Lysaker, Lundervold and Tai [22, 23], which is called

the LLT Model.

The numerical computation has developed fast for solving this model. The

JZ Algorithm can be naturally adopted for this kind of problems.

58

In this chapter, we consider the discretized model (1.26):

u∗ = arg min
u∈Rn2

1

µ

(
‖∇xu‖1 + ‖∇yu‖1

)
+

1

ν

(
‖∆xu‖1 + ‖∆yu‖1

)
+

1

2
‖u− f‖2

2 .

We will extend our fast algorithm to solve the discretized model. Moreover, we

apply the relaxing technique to boost the iteration scheme, making it extremely

efficient compared to other algorithms.

3.2 An Extension of Our Algorithm to High-

order Difference

We can easily extend the JZ Algorithm and adapt it to the high-order model

(1.26). For convenience we restate it here:

u∗ = arg min
u∈Rn2

1

µ

(
‖∇xu‖1 + ‖∇yu‖1

)
+

1

ν

(
‖∆xu‖1 + ‖∆yu‖1

)
+

1

2
‖u− f‖2

2

By introducing new variables cx and cy, we can split ∆xu and ∆yu and

take them out of ‖ · ‖1. Hence we have Algorithm 3.1.

Algorithm 3.1 JZ Algorithm Based on High-Order Scheme

Choose γ1, γ2 s.t. 8γ1 + 32γ2 < 1
λ1 ← γ1µ, λ2 ← γ2ν
b1
x ← 0, b1

y ← 0, c0
x ← 0, c0

y ← 0 and u1 = f
while ‖uk+1 − uk‖ < some tolerance do
bk+1
x = cut(∇xu

k + bkx,
1
λ1

)

bk+1
y = cut(∇yu

k + bky,
1
λ1

)

ck+1
x = cut(∆xu

k + ckx,
1
λ2

)

ck+1
y = cut(∆yu

k + cky,
1
λ2

)

uk+1 = f − γ1(∇T
x b

k+1
x +∇T

y b
k+1
y) − γ2(∆T

x c
k+1
x + ∆T

y c
k+1
y)

end while

59

which solves the discrete model (1.26).

In the next two sections, we prove the convergence of the JZ Algorithm 2.4

and 3.1. We will achieve this by proving a more general conclusion. From (1.23,

page 17) and (1.26, page 18), the total variation-based anisotropic denoising

models can be generalized into the following form

u∗ = arg min
u∈Rn2

1

2
‖u− f‖2

2 +
L∑
l=1

1

µl
‖Alu‖1 (3.1)

where Al : Rn → Rn are various difference operators such as ∇x,∇y,∆x,∆y.

Choosing proper γl for each Al and letting λl = λl, the JZ Algorithm for

(3.1) is 
bk+1
l = cut(Alu

k + bkl ,
1

λl
) k = 1, . . . L

uk+1 = f −
L∑
l=1

γlA
T
l b

k+1
l

(3.2)

The convergence of the algorithm depends on Al and γl. Suppose ρ(ATl Al)

is the spectral radius of ATl Al. We have the following conclusion about the

convergence of (3.2):

Theorem 3.1. Suppose

1. u∗ is the unique solution to (3.1)

2.
∑L

l=1 γl ρ(ATl Al) < 1

Then the iteration scheme (3.2) yields limk→∞ u
k = u∗ .

Note that the condition 8γ1 + 32γ2 < 1 of Algorithm 3.1 is the direct

60

corollary of assumption 2.

We will prove this theorem in the following three sections.

3.3 Preliminary Results

To investigate the convergence of (3.2), we will show that it could be formu-

lated into another form:



vk+1
l = arg min

v
‖v‖1 +

λl
2
‖v − Aluk − bkl ‖2

2, k = 1, 2 . . . , L

bk+1
l =bkl + Alu

k − vk+1
1 , l = 1, 2 . . . , L

uk+1 = arg min
u

{1

2
‖B(u− f)‖2

2 − 〈B2(uk − f), u− uk〉

+
L∑
l=1

γl
2
‖vk+1

l − Alu‖2
2

}
(3.3)

where B is a s.p.d matrix such that B2 = I −
∑L

l=1 γlA
T
l Al. From the sec-

ond assumption of Theorem 3.1 we know that ρ(
∑L

l=1 γlA
T
l Al) < 1 and hence

I −
∑L

l=1 γlA
T
l Al is s.p.d. Therefore, there exists a unique s.p.d. matrix B s.t.

B2 = I −
∑L

l=1 γlA
T
l Al, i.e. B is well-defined.

While all the algorithms are well-defined, we show that the algorithm (3.3)

coincides with (3.2).

Proposition 3.2. Given the same initial data, then (3.3) and (3.2) generate

the same sequences bkl , l = 1, . . . , L and uk.

61

Proof. It is obvious that the first equation of (3.3) is equivalent to

vk+1
l = shrink(Alu

k + bkl ,
1

λl
) .

Therefore, the second equation in (3.3) yields

bk+1
l = (Alu

k + bkl)− shrink(Alu
k + bkl ,

1

λl
)

= cut(Alu
k + bkl ,

1

λl
) .

Hence (bkl)k, l = 1, 2, . . . , L are equivalent in the two algorithms.

For (uk)k=1,2,..., we consider the last equation of (3.3). Noting B2 = I −∑L
l=1 γl A

T
l Al, we differentiate the last equation in (3.3) which is

uk+1 = arg min
u

{1

2
‖B(u− f)‖2

2 − 〈B2(uk − f), u− uk〉

+
L∑
l=1

λl
2
‖vk+1

l − Alu‖2
2

}
and obtain

B2(uk+1 − f)−B2(uk − f) +
∑L

l=1 γlA
T
l (Alu

k+1 − vk+1
l) = 0

⇒ B2(uk+1 − uk) =
∑L

l=1 γlA
T
l (vk+1

l − Aluk+1)

⇒ (I −
∑L

l=1 γlA
T
l Al)(u

k+1 − uk) =
∑L

l=1 γlA
T
l (vk+1

l − Aluk+1)

⇒ uk+1 − uk =
∑L

l=1 γlA
T
l (vk+1

l − Aluk)

(3.4)

The second equation in (3.3) implies

vk+1
l − Aluk = bkl − bk+1

l .

62

Plugging it into (3.4), we have

uj+1 − uj =
L∑
l=1

γlA
T
l (bjl − b

j+1
l), j = 1, 2, . . . , k.

Adding up from j = 1 to k, we get

∑k
j=1(uj+1 − uj) =

∑k
j=1

∑L
l=1 γl A

T
l (bjl − b

j+1
l)

⇒ uk+1 − u1 =
∑L

l=1

∑k
j=1 γl A

T
l (bjl − b

j+1
l)

⇒ uk+1 − f = −
∑L

l=1 γlA
T
l b

k+1
l

⇒ uk+1 = f −
∑L

l=1 γlA
T
l b

k+1
l

which equates the last equation of (3.2). Hence, we conclude that (3.2) and

(3.3) generate the same result.

In the next section we will prove the convergence of (3.3). By Proposition

3.2, the convergence of (3.2) follows.

To prove the theorem, we introduce some notations:

• J(v) = ‖v‖l

• ∂J is the subdifferential of J

• Dp
J(u, v) = J(u)− J(v)− 〈p, u− v〉 be the Bregman distance between u

and v associated with J , where p ∈ ∂J(v)

• Υk =
∑L

l=1 γl‖v
k+1
l − Aluk‖2

2

With these notations, the first equation of (3.3) becomes

vk+1
l = arg min

v
{J(v) +

λl
2
‖v − Aluk − bkl ‖}

63

which implies

0 ∈ ∂J(vk+1
l) + λl(v

k+1
l − Aluk − bkl).

⇒ λl(b
k
l + Alu

k − vk+1
l) ∈ ∂J(vk+1

l)

⇒ λlb
k+1
l ∈ ∂J(vk+1

l)

⇒ λlb
k
l ∈ ∂J(vkl)

Let pkl = λlb
k
l , then pkl ∈ ∂J(vkl). By the definition of Bregman distance, we

deduced a useful relation

D
pkl
J (v, vkl) = ‖v‖ − ‖vkl ‖ − 〈pkl , v − vkl 〉 ≥ 0, v ∈ Rn

and especially when v = vk+1
l ,

D
pkl
J (vk+1, vkl) = ‖vk+1‖ − ‖vkl ‖ − 〈pkl , vk+1 − vkl 〉 ≥ 0.

This is true for all l = 1, 2, . . . , L

Lemma 3.3 (Boundedness). (uk), (vkl)k, (b
k
l)k, (p

k
l)k, l = 1, 2, · · · , L are all

bounded sequences.

Proof. By the definition of cut function, it is clear that ‖bkl ‖∞ = supk b
k
l ≤

1
λl
, ∀ l = 1, 2, . . . , L. Therefore, for every l, (bkl)k is a bounded sequence.

And since pkl = λlb
k
l we conclude that (pkl)k are also bounded.

The second equation in (3.3) implies

vk+1
l = bkl + Alu

k − bk+1
l .

Thus (vkl)k is bounded for each l.

64

Since uk+1 = f −
∑L

l=1 γlA
T
l b

k
l , (uk)k is also bounded.

Lemma 3.4. limk→∞ ‖uk+1 − uk‖2
2 = 0. Moreover, Υk ≥ Υk+1 for all k ∈ n.

Proof. We first show ‖vk+1
l − Aluk‖2

2 ≤ ‖vkl − Aluk‖2
2.

By the first equation of (3.3), we have

vk+1
l = arg min

v
{‖v‖l + λl

2
‖v − Aluk − bkl ‖2

2}

= arg min
v
{‖v‖l + λl

2
‖v − Aluk‖2

2 + λl
2
‖bkl ‖2

2 − λl〈v − Aluk, bkl 〉}

= arg min
v
{‖v‖l + λl

2
‖v − Aluk‖2

2 − 〈λlbkl , v − vkl 〉}

= arg min
v
{‖v‖l + λl

2
‖v − Aluk‖2

2 − 〈pkl , v − vkl 〉} .

Therefore, vk+1
l is the minimizer of ‖v‖l + λl

2
‖v − Alu

k‖2
2 − 〈pkl , v − vkl 〉. It

follows that it is smaller substituting v = vk+1
l than substituting v = vkl :

‖vk+1
l ‖l + λl

2
‖vk+1

l − Aluk‖2
2 − 〈pkl , vkl − vkl 〉

≤ ‖vkl ‖l +
λl
2
‖vkl − Aluk‖2

2

⇒ 0 ≤ D
pkl
J ≤

λl
2
‖vkl − Aluk‖2

2 −
λl
2
‖vk+1

l − Aluk‖2
2

⇒ ‖vk+1
l − Aluk‖2

2 ≤ ‖vkl − Aluk‖2
2, l = 1, 2, . . . , L . (3.5)

65

Then we show Υk+1 ≤ Υk. Recall the last step of the iteration (3.3)

uk+1 = arg min
u

{
1
2
‖B(u− f)‖2

2 − 〈B2(uk − f), u− uk〉

+
∑L

l=1
γl
2
‖vk+1

l − Alu‖2
2

}
.

Since uk+1 is the minimizer, it is smaller to substitute u = uk+1 than u = uk:

1
2
‖B(uk+1 − f)‖2

2 − 〈D2(uk − f), uk+1 − uk〉+
∑L

l=1
γl
2
‖vk+1

l − Aluk+1‖2
2

≤ 1
2
‖B(uk − f)‖2

2 +
∑L

l=1
γl
2
‖vk+1

l − Aluk‖2
2

⇒ 1
2
‖B(uk+1 − f)‖2

2 − 〈D2(uk − f), uk+1 − uk〉 − 1
2
‖B(uk − f)‖2

2

≤
∑L

l=1
γl
2
‖vk+1

l − Aluk‖2
2 −

∑L
l=1

γl
2
‖vk+1

l − Aluk+1‖2
2

⇒ 1
2
‖B(uk+1 − uk)‖2

2

≤
∑L

l=1
γl
2
‖vk+1

l − Aluk‖2
2 −

∑L
l=1

γl
2
‖vk+1

l − Aluk+1‖2
2 .

Applying (3.5), we have

1
2
‖B(uk+1 − uk)‖2

2

≤
∑L

l=1
γl
2

(‖vk+1
l − Aluk‖2

2 − ‖vk+1
l − Aluk+1‖2

2)

≤
∑L

l=1
γl
2

(‖vk+1
l − Aluk‖2

2 − ‖vk+2
l − Aluk+1‖2

2)

= Υk −Υk+1

⇒ Υk+1 ≤ Υk − 1
2
‖B(uk+1 − uk)‖2

2 ≤ Υk

Therefore Υk+1 ≤ Υk. On the other hand, it is clear that Υk ≥ 0. Hence

limk→∞Υk exists. It follows that

lim
k→∞

1

2
‖B(uk+1 − uk)‖2

2 = lim
k→∞

Υk −Υk+1 = 0.

66

Hence, we deduce that

lim
k→∞
‖uk+1 − uk‖2

2 = 0 .

Lemma 3.5 (v∗ = ∇u∗). limk→∞Υk = 0. It follows that limk→∞ v
k
l −Aluk =

0, for each l = 1, 2, . . . , L.

Proof. Noting vk+1
l − Alukl = bkl − bk+1

l , we consider pkl − pk+1
l firstly.

For any v ∈ Rn, we have

D
pj+1
l
J (v, vj+1

l)−Dpjl
J (v, vjl) +D

pjl
J (vj+1

l , vjl)

= J(v)− J(vj+1
l)− 〈pj+1

l , v − vj+1
l 〉 − J(v) + J(vjl) + 〈pjl , v − v

j
l 〉

+J(vj+1
l)− J(vjl)− 〈p

j
l , v

j+1
l − vjl 〉

= 〈pjl − p
j+1
l , v − vj+1

l 〉 .

This implies

D
pj+1
l
J (v, vj+1

l)−Dpjl
J (v, vjl) ≤ 〈p

j
l − p

j+1
l , v − vj+1

l 〉 .

On the other hand, consider the function

M(v) =
λl
2
‖v − Aluj+1‖2

2

67

we have

pjl − p
j+1
l = λl(b

j
l − b

j+1
l) = λl(v

j+1
l − Aluj) = ∂M(vj+1

l)

⇒ D
pjl−p

j+1
l

M (v) = M(v)−M(vj+1
l)− 〈pjl − p

j+1
l , v − vj+1

l 〉 > 0

⇒ M(v)−M(vj+1
l) ≥ 〈pjl − p

j+1
l , v − vj+1

l 〉 ≥ D
pj+1
l
J (v, vj+1

l)−Dpjl
J (v, vjl)

⇒ λl
2
‖v − Aluj‖2

2 − λl
2
‖vj+1

l − Aluj‖2
2

≥ ‖vjl ‖l − ‖v
j+1
l ‖l + 〈pjl , v − v

j
l 〉 − 〈p

j+1
l , v − vj+1

l 〉

Choosing v = Alu
j, we come up with

λl
2
‖vj+1

l − Aluj‖2
2

≤ ‖vj+1
l ‖l − ‖v

j
l ‖l + 〈pj+1

l , Alu
j − vj+1

l 〉 − 〈p
j
l , Alu

j − vjl 〉

= (‖vj+1
l ‖l − ‖v

j
l ‖l) + (〈pj+1

l , Alu
j − vj+1

l 〉 − 〈p
j
l , Alu

j−1 − vjl 〉)− 〈p
j
l , Alu

j − Aluj−1〉 .

Summing j from m to k − 1, we obtain

λl
2

∑k−1
j=m ‖v

j+1
l − Aluj‖2

2

≤ ‖vkl ‖l − ‖vml ‖l + 〈pkl , Aluk−1 − vkl 〉 − 〈pml , Alum−1 − vml 〉]−
∑k−1

j=m〈p
j
l , Alu

j − Aluj−1〉 .

Since the sequences (uj)j, (v
j
l)j, (p

j
l)j are bounded, there exists positive con-

stants Cl,1l and Cl,2 independent of k and m such that

λl
2

k−1∑
j=m

‖vj+1
l − Aluj‖2

2 ≤ Cl,1 + Cl,2(k −m)ηm

where ηm = supj≥m ‖uj+1 − uj‖2
m→∞−→ 0 . Which is true for all l = 1, 2, . . . , L.

Adding all the inequalities up for l = 1, 2, . . . , L yields

k−1∑
j=m

Υj ≤ C1 + C2(k −m)ηm

68

for some constants C1 and C2.

By lemma 3.4, we know that (Υj) is a decreasing sequence. Hence, we have

(k −m)Υk ≤ C1 + C2(k −m)ηm

⇒ Υk ≤ C1

k−m + C2ηm for any 1 < m < k − 1

⇒ Υk ≤ C1

m
+ C2ηm for m = bk/2c

Therefore, limk→∞Υk = 0. It follows that limk→∞ v
k
l − Aluk = 0.

3.4 Convergence Analysis of the Algorithm

Here we prove the main theorem. Assume u∗ = arg min
u∈Rn2

1
2
‖u − f‖2

2 +∑L
l=1

1
µl
‖Alu‖1 is the unique solution. We’ll show limk→∞ u

k = u∗.

Proof. Let F (u) = 1
2
‖u− f‖2

2. Then ∂F (uk+1) = uk+1 − f . ∀w ∈ Rn, we have

F (uk+1 + w)− F (uk+1) + 〈uk+1 − f, w〉 = Duk+1−f
F (uk+1 + w, uk+1) ≥ 0.

By the last equation of (3.2) we know uk+1 − f = −
∑L

l=1 γlA
T
l b

k
l . Hence,

F (uk+1 + w)− F (uk+1) +
L∑
l=1

〈γlbkl , Alw〉 ≥ 0. (3.6)

On the other hand, recall pkl = λlb
k
l ∈ ∂J(vkl). It follows that

J(vkl + Alw)− J(vkl)− 〈pkl , Alw〉 ≥ 0

⇒ ‖vkl + Alw‖l − ‖vkl ‖l − 〈λlbkl , Alw〉 ≥ 0

⇒ 〈γlbkl , Alw〉 ≤ 1
µl
‖vkl + Alw‖l − 1

µl
‖vkl ‖l,

which is true for all l = 1, 2, . . . , L.

69

Substituting these inequalities into (3.6), we obtain

∑L
l=1

1
µl
‖vkl ‖l + F (uk+1)

≤
∑L

l=1
1
µl
‖vkl + Alw‖l + F (uk+1 + w), ∀w ∈ Rn.

(3.7)

(uk) is a bounded sequence, thus it has convergent subsequences. Picking

up arbitrary convergent subsequent (ukj)j=1,2... , we denote ũ = limj→∞ u
kj .

Since limk→∞(uk+1 − uk) = 0, we also have limj→∞ u
kj+1 = ũ.

By Lemma 3.5, limj→∞ v
kj
l = Alũ, l = 1, 2, . . . , L. Therefore, replacing

uk in (3.7) by ukj and letting j →∞ , we obtain

∑L
l=1

1
µl
‖Alũ‖l + F (ũ)

≤
∑L

l=1
1
µl
‖Al(ũ+ w)‖l + F (ũ+ w), ∀w ∈ Rn.

(3.8)

Hence, ũ = arg min
u
{
∑L

l=1
1
µl
‖Alu‖l + F (u)} = u∗.

Since limj→∞ u
kj = ũ = u∗ is true for any convergent subsequence ukj , we

conclude that

lim
k→∞

uk = u∗ .

3.5 Relaxation Technique and Numerical Re-

sults

The restriction 8γ1 + 32γ2 < 1 makes the Algorithm 3.1 converge very slow.

In numerical experiments, 200 or more iterations are needed for satisfactory

convergence, resulting in 5 seconds or more CPU time on an average computer.

70

To accelerate the calculation, we apply the relaxation technique as we did in

Chapter 2. Recall the general form of JZ iteration scheme (3.2):


bk+1
l = cut(Alu

k + bkl ,
1

λl
) k = 1, . . . L

uk+1 = f −
L∑
l=1

γlA
T
l b

k+1
l .

Choosing proper 0 < t < 1, we rewrite the second equation as

uk+1 = (1− t)uk + t
(
f −

L∑
l=1

γlA
T
l b

k+1
l

)
.

With the coefficient t, the restriction
∑L

l=1 γlρ(ATl Al) < 1 is relaxed. Algo-

rithm 3.1 then becomes

Algorithm 3.2 The general form of JZ algorithm with Relaxation

Choose γ1 = 0.5, γ2 = 0.5, and t = 0.1
λ1 ← γ1µ, λ2 ← γ2ν
b1
x ← 0, b1

y ← 0, c0
x ← 0, c0

y ← 0 and u1 = f
while ‖uk+1 − uk‖ < some tolerance do
bk+1
x = cut(∇xu

k + bkx,
1
λ1

)

bk+1
y = cut(∇yu

k + bky,
1
λ1

)

ck+1
x = cut(∆xu

k + ckx,
1
λ2

)

ck+1
y = cut(∆yu

k + cky,
1
λ2

)

uk+1 = (1− t)uk + t
[
f − γ1(∇T

x b
k+1
x +∇T

y b
k+1
y) − γ2(∆T

x c
k+1
x + ∆T

y c
k+1
y)

]
end while

We will report the details of relaxation at the end of this section.

We report the results of computational experiments. All the programs are

C++ codes running on an desktop computer with Intel Core 2 6400 2.13GHz

and 2G memory. The compiler is MinGW/GCC 3.4.5 for windows. And the

operating system is Windows Vista Business x32. We use the same images

71

and the same noise levels as the experiments in the previous Chapter.

We first report the quality of the images generated by our model. Figure

3.1 shows the comparison of visual quality between the ROF model and the

higher-order model. We focus on the face region of image Lena. It is easy to

see that the ROF model produces false edges on smooth face. On the other

hand, the high-order model reduces this staircase effect significantly and makes

the face of Lena look natural.

Figure 3.2 shows the comparison of PSNR between the ROF model and

the higher-order model. The x-axis represents the noise level, and the y-axis

represents the PSNR. Our model performs consistently better than the ROF

model on all images.

The detailed data is shown in Table 3.1. In all levels of noise, our model

improves the PSNR by 0.6 to 0.7. This is equivalent to 1/6 less MSE than the

ROF model.

σ 10 15 20 25 30 35 40

Peppers
ROF 33.47 31.26 29.79 28.59 27.60 26.80 26.16

Higher-order 34.15 32.04 30.48 29.29 28.30 27.51 26.86

Lena
ROF 34.36 32.46 31.17 30.15 29.45 28.82 28.20

Higher-order 35.05 33.21 31.92 30.90 30.13 29.50 28.85

Boat
ROF 32.47 30.53 29.14 28.14 27.33 26.69 26.13

Higher-order 32.88 30.98 29.61 28.58 27.78 27.12 26.53

Peppers
ROF 32.83 30.80 29.40 28.28 27.37 26.62 25.90

Higher-order 33.35 31.37 29.97 28.83 27.89 27.10 26.35

Table 3.1: Comparison results on PSNR of the images denoised by the ROF
model and the high-order model.

The numerical experiments also reveal the importance of relaxation. With-

out relaxation, convergence of Algorithm 3.1 is only guaranteed when 8γ1 +

32γ2 < 1. In numerical experiments, this limitation can be slightly eased and

we usually choose γ1 = γ2 = 0.05. Table 3.2 reports the number of iterations

72

(a) Denoised by the ROF model (b) Denoised by the High-order model

(c) The ROF model:face (d) The High-order model:face

Figure 3.1: Comparison results between the higher-order model and the ROF
model on visual quality of Lena.

and CPU time needed for three algorithms. ROF stands for the data of JZ

algorithm for the anisotropic ROF model, which was previously reported in

Chapter 2. Without relaxation, the algorithm needs up to 250 iterations, tak-

ing 7.8 seconds. However, with relaxation, we choose t = 0.18 and increase

those parameters to γ1 = γ2 = 0.5. Table 3.2 shows that the number of itera-

tions is reduced significantly with relaxation.

73

10 15 20 25 30 35 40

26

27

28

29

30

31

32

33

34

35

Noise level (σ)

P
S

N
R

ROF Model
Higher−order model

(a) Peppers

10 15 20 25 30 35 40

28

29

30

31

32

33

34

35

36

Noise level (σ)

P
S

N
R

ROF Model
Higher−order model

(b) Lena

10 15 20 25 30 35 40

26

27

28

29

30

31

32

33

Noise level (σ)

P
S

N
R

ROF Model
Higher−order model

(c) Boat

10 15 20 25 30 35 40
25

26

27

28

29

30

31

32

33

34

Noise level (σ)

P
S

N
R

ROF Model
Higher−order model

(d) Man

Figure 3.2: Comparison results between our higher-order model and the ROF
model on PSNR.

σ 10 15 20 25 30 35 40

ROF
Iter 6 10 12 16 19 21 23
time 0.04 0.06 0.08 0.13 0.15 0.17 0.19

Higher-order
Iter 80 130 160 180 200 220 250
time 2.6 4.0 5.1 5.7 6.2 6.8 7.8

Higher-order
relax

Iter 20 25 30 30 30 35 35
time 0.7 0.8 1.0 1.0 1.0 1.2 1.2

Table 3.2: Comparison results on number of iterations and CPU time(seconds)
of proposed algorithms.

74

Chapter 4

Combination of Wavelets with

Variational Techniques

4.1 Motivation

It is known that the ROF model and the similar total variation based image

denoising models are good at recovering piecewise-smooth functions. These

models eliminate noise by wiping out oscillating component, or the high fre-

quency component, while preserving the smooth/low frequency component of

a function/image. These models work very well for images like Lena or Pep-

pers (Figure 4.1), as we discussed in the previous chapters. It is clear that

these images consist of large pieces of smooth region.

However, these variational models do not fit to the sort of images which

contains lots of texture, such as the popular Barbara image (Figure 4.2). A

texture-rich image u can be decomposed into u = c+ t, where c stands for the

smooth/cartoon parts and t stands for the oscillation/texture parts. Figure

4.3 shows such a decomposition of Barbara.

75

Figure 4.1: The smooth images Lena and Peppers.

Figure 4.2: The texture-rich image Barbara.

Unfortunately, the noise is also highly oscillatory and is also contained in

G. Therefore r = f − u contains both noise and texture and they are not

76

(a) Barbara

(b) Cartoon (c) Texture

Figure 4.3: image = cartoon+ texture.

separated by the ROF model according to the discussion above. The ROF

model and its descendants do not work well if u = c+ t contains heavy texture

t, resulting in an over-smoothed solution u = c and a remainder r = t+ ε with

undesirable texture t in it. Generally speaking, we want to recover a textured

image u = c + t and leave only the noise in the remainder r = ε, but t and

ε usually mix together and can not be separated by the ROF model. This is

77

shown in Figure 4.4.

0 20 40 60 80 100 120

−100

−50

0

50

100

(a) The smooth signal c

0 20 40 60 80 100 120

−100

−50

0

50

100

(b) The texture t

0 20 40 60 80 100 120

−100

−50

0

50

100

(c) The signal with texture u = c+ t

0 20 40 60 80 100 120

−100

−50

0

50

100

(d) Contaminated with noise u+ ε

0 20 40 60 80 100 120

−100

−50

0

50

100

(e) Processed by the ROF model

0 20 40 60 80 100 120

−100

−50

0

50

100

(f) The remainder r = t+ ε

Figure 4.4: The ROF model does not separate texture from noise.

It is clear that the ROF model does not separate texture and noise, leaving

all the oscillations in the remainder (Figure 4.4(f)). Hence, we have to process

it further to recover the desired texture. This motivates us to combine the ROF

78

model and wavelet shrinkage together to improve the quality of denoising for

the particular family of images with textures.

4.2 Multiresolution Analysis and Wavelets

We intoduce wavelet and wavelet packet transforms.

As usual, for 1 ≤ p <∞, Lp(R) denotes the Banach space of all measurable

functions f on R such that ||f ||p <∞, where

||f ||p :=

(∫
R
|f(x)|pdx

)1/p

for 1 ≤ p <∞.

Throughout this chapter, we only consider p = 2. In this case L2(R) is a

Hilbert space.

A countable set {φk}k∈Z in L2(R) is said to be a Riesz sequence if there

exist two positive constants A and B such that the inequalities

A

(∑
k∈Z

|ck|2
)1/2

≤

∥∥∥∥∥∑
k∈Z

ckφk

∥∥∥∥∥ ≤ B

(∑
k∈Z

|ck|2
)1/2

hold true for every sequence {ck}k∈Z in `2, where A and B are called Riesz

bounds. Moreover, if the linear span of {φk}k∈Z is dense in L2(R), then it is

a Riesz Basis of L2(R).

We define the wavelets and multiresolution analysis. For a comprehensive

introduction to wavelets, we refer readers to [8],[15] and [25].

• Scaling functions and Wavelets

79

– Scaling functions: φ ∈ L2(R) and φn,j := 2n/2φ(2n · −j), j ∈ Z.

– Wavelets: ψ ∈ L2(R) and ψn,j := 2n/2ψ(2n · −j), j ∈ Z.

– Denote Vn := span{φn,j}j∈Z and Wn := span{ψn,j}j∈Z.

– φ satisfies the refinement equation: φ =
∑

j∈Z h(j)φ(2 · −j) for

some h ∈ `2(Z), where h is called the refinement mask. There-

fore, Vn−1 ⊂ Vn and we say that Vn is fine and Vn−1 is coarse in

comparison.

– For ψ, we also have ψ =
∑

j∈Z g(j)φ(2 · −j) for some g ∈ `2(Z).

That suggests Wn−1 ⊂ Vn. Some times g is called the wavelet mask.

• Scaling functions and wavelets must satisfy the following conditions to

form a Multiresolution Analysis

– {φn,j}j∈Z is a Riesz basis of Vn and {ψn,j}j∈Z is a Riesz basis of Wn.

–
⋃
n∈Z Vn is dense in L2(R) and

⋂
n∈Z Vn = {0}.

In this way, {Vn}n∈Z form a multiresolution analysis.

– In addition to Vn ⊃ Vn−1 and Vn ⊃ Wn−1, we have Vn = Vn−1 +

Wn−1.

– Therefore, L2(R) = V1 +W1 +W2 +W3 + and {ψn,j}n,j∈Z form

a Riesz basis of L2(R).

• Orthogonal, Biorthogonal and Semi-orthogonal wavelets:

If {ψn,j}n,j∈Z form an orthonormal basis instead of a Riesz basis, then

we have orthogonal wavelets (see [15]). Otherwise, depending on the

orthogonality between adjacent levels we have biorthogonal wavelets (see

[13]) or semi-orthogonal wavelets (see [10]).

80

Given a function f =
∑

j∈Z sn,j φn,j ∈ Vn, since Vn = Vn−1 +Wn−1, we can

rewrite f as

f =
∑
j∈Z

sn−1,j φn−1,j +
∑
j∈Z

tn−1,j ψn−1,j .

In this way, the original representation of f in {sn,j}j∈Z is decomposed into the

representation in {sn−1,j}j∈Z and {tn−1,j}j∈Z of a lower level. The algorithm

we use to derive the coefficients {sn,j}j∈Z and {tn,j}j∈Z is called the Discrete

Wavelet Transform (DWT). If we continue to perform DWT on sn−1, sn−2, . . .

recursively while keep tn−1, tn−2, . . . , we get

f =
∑
j∈Z

s1,j φ1,j +
∑

16k6n−1

∑
j∈Z

tk,j ψk,j .

In practice, the original data is usually a vector of length 2n which could

be sampled from an image. We denote this original set of data by {sj}, j =

Figure 4.5: A sample of signal.

1, 2, . . . , 2n. Clearly, it can be represented by a function fn =
∑n

j=1 sj φn,j ∈

Vn. Then we can apply the discrete wavelet transform to decompose it into

coefficients in lower levels. The algorithm of this procedure can be regarded

81

as applying the filters h̄ and high pass filter ḡ on {sn,j} as follows:

sm,j =
∑
k

h̄(j − 2k)sm+1,j,

tm,j =
∑
k

ḡ(j − 2k)sm+1,j,

where h̄, ḡ are dual filters of h, g. This process is described in Figure 4.6.

sn

h̄

ḡ

↓ 2

↓ 2

sn−1

tn−1

h̄

ḡ

↓ 2

↓ 2

sn−2

tn−2

. . .

. . .

Figure 4.6: The Process of discrete wavelet transform.

This fast algorithm was proposed by Mallat[24]. So far, the most success-

ful wavelet in application, especially in image compression, is the so-called 9/7

wavelet which is biorthogonal (see [13]). The reason it’s called 9/7 is that the

length of the masks/filters h and g are 9 and 7 respectively.

The wavelet transform is only performed on sm,m ∈ Z. If we also de-

compose tm with dual filters h̄ and ḡ, we have the wavelet packet transform

(Figure 4.7). For details of wavelet packets, we refer reader to [25].

82

sn

h̄

ḡ

↓ 2

↓ 2

s
(0)
n−1

s
(1)
n−1

h̄

ḡ

↓ 2

↓ 2

s
(0)
n−2

s
(1)
n−2

h̄

ḡ

↓ 2

↓ 2

s
(2)
n−2

s
(3)
n−2

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Figure 4.7: The Process of discrete wavelet packet transform (DWPT).

4.3 Discrete Wavelets on Intervals

In application, the vanishing moment of dual wavelets is an important issue.

A wavelet function ψ is said to have vanishing moments of order n, if

∫
R
xpψ(x)dx = 0, p = 0, 1, 2, . . . , n− 1.

And, a filter/mask g = [g1, g2, . . . , gl] have vanishing moments of order n if

l∑
k=1

kpgk = 0, p = 0, 1, 2, . . . , n− 1.

83

A relatively high order of vanishing moments of dual wavelets is desirable for

the quality of an image.

The popular 9/7 wavelets has vanishing moments of order 4, which is

good enough for most applications. However, when processing data with finite

length, we have to truncate the filter or to extend the data. On the bound-

ary of a sequence, the vanishing moment of a wavelet is reduced, as shown in

Figure 4.1.

Order of vanish-
ing moments

Vanishing mo-
ments on the
boundary

D4 2 1
B2-4 2 1
D6 3 1
9/7 4 1

Table 4.1: List of orders of vanishing moments of different wavelets.

To remedy this, we propose boundary filters for higher order of vanishing

moments by constructing wavelets on discrete domain. To avoid ambiguous

notation, we denote by v the discrete scaling function and by w the corre-

sponding discrete wavelet. Suppose E is a finite interval of Z. Then we follow

these steps to construct discrete wavelets on the interval.

1. Fix a finest level M and let vM,k = ek, ∀k ∈ Z where {ek}k∈Z is the

canonical basis of `2. Namely, VM,k(j) = δkj ∀k, j ∈ Z.

2. Find a proper mask h and g and define

vm−1,k :=
∑
j∈Z

hjvm,j and wm−1,k =
∑
j∈Z

gjvm,j

such that {wm,k}k∈Z is a Riesz sequence in `2 with the Riesz bounds

84

being independent of m.

3. Adapt {vm,k} and {wm,k} to E by constructing boundary elements.

In step 1 and 2, we choose the masks 10/2 and 6/2 which correspond to

biorthogonal spline wavelets. The detailed construction can be found in [15].

Our purpose of such construction is that it is easier to construct boundary

filters in discrete case. We construct a family of discrete wavelets which fall

into two categories: one with the mask of 6 coefficients and the other one with

the mask of 10 coefficients. We name them JZ6 and JZ10 respectively.

Recall that

vm−1,k =
∑
j∈Z

hjvm,j and wm−1,k =
∑
j∈Z

gjvm,j .

We have the following masks:

• Inner masks JZ6:

h: [−1, 1, 8, 8, 1,−1]/8,

g: [1,−1].

• Inner masks of JZ10:

h: [3,−3,−22, 22, 128, 128, 22,−22,−3, 3]/128,

g: [1,−1].

The boundary elements distinguish the discrete wavelets from continuous

ones in algorithm. For simplicity we assume that the interval E is {1, 2, . . . , 2M}

where M stands for the finest level. In our construction, only the scaling func-

tions vm,k need boundary elements. The wavelets wm,k, however, always keep

85

the [1,−1] scheme.

JZ6 wavelets are described as follows:

• The scaling functions satisfy the refinement equation vm−1,k =
∑

j∈Z hjvm,j

where the mask {hj} is given by [−1, 1, 8, 8, 1, −1]/8

• There are 2 boundary masks on each side:

h1 : [10, 6, 1,−1]/8,

g2 : [−2, 2, 8, 8, 1,−1]/8.

• For w we have g = [1,−1]. Therefore,

wm−1,k := vm,2k−1 − vm,2k−2, k = 1, 2, . . . , 2m−1.

With the wavelets we constructed, the decomposition algorithm is obtained.

Suppose f =
∑2m

k=1 sm,kvm,k, we have

f =
2m−1∑
k=1

sm−1,kvm−1,k +
2m−1∑
k=1

tm−1,kwm−1,k,

86

where



sm−1,1

sm−1,2

...

sm−1,2m−1

tm−1,1

tm−1,2

...

tm−1,2m−1



=
1

16



8 8

8 8

.

8 8

6 −10 2 2

−1 −1 8 −8 1 1

−1 −1 8 −8 1 1

.

−2 −2 10 −6





sm,1

sm,2
...

sm,2m


.

The construction of JZ10 wavelets is similar:

• The mask of the inner scaling function is

[3
128
, − 3

128
, −11

64
, 11

64
, 1, 1, 11

64
, −11

64
, − 3

128
, 3

128
].

• We have 4 boundary masks on each side. They are:

h1 : [106, 96, 16,−16,−3, 3]/128,

h2 : [−32, 32, 128, 128, 22,−22,−3, 3]/128,

h3 : [−16, 16, 128, 128, 22,−22,−3, 3]/128,

h4 : [−22, 22, 128, 128, 22,−22,−3, 3]/128.

• The wavelets are defined in the same way as JZ6.

g = [1,−1] and wm−1,k := vm,2k−1 − vm,2k−2, k = 1, 2, . . . , 2m−1.

87

Suppose f =
∑2m

k=1 sm,kvm,k, we have the following decomposition:

f =
2m−1∑
k=1

sm−1,kvm−1,k +
2m−1∑
k=1

tm−1,kwm−1,k.

The algorithm can be described as



sm−1,1

sm−1,2

...

sm−1,2m−1

tm−1,1

tm−1,2

...

tm−1,2m−1



=
1

256
A



sm,1

sm,2
...

sm,2m


,

where

A =



128 128

128 128

.

128 128

96 −160 32 32

−16 −16 128 −128 16 16

3 3 −22 −22 128 −128 22 22 −3 −3

3 3 −22 −22 128 −128 22 22 −3 −3

.

3 3 −22 −22 128 −128 22 22 −3 −3

−16 −16 128 −128 16 16

−32 −32 160 −96



.

We also constructed another version of JZ6 and JZ10 wavelets which are called

JZ6-C and JZ10-C respectively. The difference is the boundary elements, while

88

the inner masks are the same as JZ6 and JZ10. The boundary masks of them

are:

• JZ6-C:

h1 : [11, 5, 1,−1]/8,

h2 : [−4, 4, 8, 8, 1,−1]/8,

h3 : [1,−1,−1, 1, 8, 8, 1,−1]/8.

• JZ10-C:

h1 : [186, 70, 10,−10,−3, 3]/128,

h2 : [−94, 94, 146, 110, 22,−22,−3, 3]/128,

h3 : [46,−46,−34, 34, 128, 128, 22,−22,−3, 3]/128,

h4 : [−10, 10, 6,−6,−22, 22, 128, 128, 22,−22,−3, 3]/128.

A fundamental difference between JZ6/JZ10 and JZ6-C/JZ10-C is that

the latter ones have their corresponding continuous wavelets. The inner and

boundary masks of JZ6-C/JZ10-C can be used to construct biorthogonal con-

tinuous wavelets on the interval. Since the continuous wavelets have the same

mask and dual mask as the discrete ones, they also have the same decomposi-

tion algorithm. JZ6-C and JZ10-C provide higher vanishing moments on the

boundary than JZ6 and JZ10 but give worse numerical performance. This is

because the Riesz bounds of JZ6-C and JZ10-C are affected by the boundary

wavelets, and the Riesz bounds result in bigger condition numbers of transfor-

mation matrices.

An advantage of discrete wavelets is their flexibility on the boundary. We

have full control of the boundary elements and we can give them some special

89

properties, such as high order of vanishing moments. Most successful wavelet

algorithms implement symmetric extensions to deal with the boundary, but

symmetric extension only grants vanishing moment of order 1.

Order of vanish-
ing moments

Vanishing mo-
ments on the
boundary

D4 2 1
B2-4 2 1
D6 3 1
9/7 4 1
JZ6 3 2

JZ6-C 3 3
JZ10 5 2

JZ10-C 5 4

Table 4.2: Comparison on vanishing moments of different wavelet bases on the
boundary.

The wavelet packet transforms in the next section is performed by those

filters.

4.4 Combination of Wavelet Packets with the

ROF model

Since wavelet thresholding and wavelet packet thresholding introduce artifacts

at the edges of cartoon components (see [6]), a natural incentive is using these

techniques only within a smooth region. The motivation of our idea is inspired

by image separation. The variational models perform well in separation of

cartoon component, while the wavelet packets are widely used for extraction

of textures. We can exploit the advantages of both approaches by combining

them together.

90

Recall our notations:

• f is the original image contaminated with noise.

• c is the cartoon, or smooth component.

• t is the texture component.

• ε is the noise.

• r = f − c = t+ ε

• u = c+ t is the clean image we want to obtain.

The idea of our approach is that we use variational models, e.g. the ROF

model, to separate the cartoon components c and the remainder r. Since

the cartoon components and thus its edges are separated from r, r contains

only texture and noise and is appropriate to be processed by wavelet packets.

Therefore, the following circuit is proposed.

f ROF

c

t + ε DWPT

t

ε

+ u

Figure 4.8: Our algorithm: Combining the ROF model with wavelet packets.

We interpret the algorithm as follows.

91

1. For the observed noisy image f , use a variational model to obtain its

smooth component c. In practice, we use the JZ Algorithm to solve the

ROF model

c = arg min
c∈BV (Ω)

{TV (c) +
µ

2
‖c− f‖2

2}.

2. DWPT stands for discrete wavelet packet thresholding. It consists of

three steps:

(a) Perform wavelet packet decomposition on r := f − c. Suppose r̃ is

the transformed data.

(b) Process r̃ to get t̃ and ε̃. Soft thresholding/shrinkage is good enough

for most images.

t̃ = shrink(r̃) and ε̃ = r̃ − t̃.

(c) Apply the inverse wavelet packet transform to t̃, ε̃ and get t, ε, where

t is the texture and ε is the noise.

3. Add up the cartoon and the texture to obtain the clean image: u = c+t.

4.5 Numerical Experiments

We test the algorithm on three representative texture-rich images: Barbara,

Fingerprint, and Dollar.

In the numerical experiment, the noise level is chosen as σ = 25. We

compare our results with the pure thresholding/shrinkage method via wavelet

decomposition and wavelet packet decomposition, and the ROF model. Ta-

ble 4.3 lists the performance of each method for each image. For all images,

92

(a) Barbara

(b) Fingerprint (c) Dollar

Figure 4.9: The images with texture for our test problems.

our algorithm outperforms the stand-alone shrinkage or the ROF model.

Image Wavelet Shrinkage Wavelet Packet ROF model Our method
Barbara 25.37 25.00 25.78 26.66

Fingerprint 22.86 22.89 23.35 23.84
Dollar 23.31 22.36 23.67 24.14

Table 4.3: Comparison results between our combinational algorithm and other
algorithms on PSNR of different images.

The improvement made by our algorithm is most visible on Barbara. This

93

is demonstrated in Figure 4.10. The ROF model is solved three times with

µ = 0.05, 0.07 and 0.07 respectively. For µ = 0.05, the image is a little bit

over-smoothed. In this case we have better denoising effect, but the texture

is weaken. For µ = 0.08, the denoising is not completely performed, leaving

large amount of noise on the image. For µ = 0.07, the ROF model gives the

best PSNR. In this case the resulting image has the best balance between

noise and texture, but some noise is still left on the image. Our method is

obviously optimal among these methods. It gives the highest PSNR, which is

much greater than the result of the ROF model.

Figure 4.11 enlarges some details of Barbara. Our algorithm has the ad-

vantage of both removing noises effectively and retaining texture details. The

comparison for Fingerprint and Dollar is shown in Figure 4.12.

94

(a) Original image (b) Noisy image

(c) ROF model, µ = 0.05,
PSNR=25.42

(d) ROF model, µ = 0.07,
PSNR=25.78

(e) ROF model, µ = 0.08,
PSNR=25.61

(f) Our method, PSNR=26.66

Figure 4.10: Comparison on PSNR of different models on Barbara.

95

(a) ROF model, µ = 0.05 (b) ROF model, µ = 0.05

(c) ROF model, µ = 0.07 (d) ROF model, µ = 0.07

(e) Our method (f) Our method

Figure 4.11: Comparison results on details of Barbara.

96

(a) Original fingerprint image (b) Original dollar image

(c) ROF, PSNR = 23.35 (d) ROF, PSNR = 23.67

(e) Our model,PSNR = 23.84 (f) Our model,PSNR = 24.14

Figure 4.12: Comparison results on Fingerprint and Dollar.

97

Chapter 5

Conclusions and Future Work

This thesis presents some new algorithms and new models for solving image

denoising problems. All of them are very efficient and competitive to the ex-

isting popular methods. The algorithms are based on the splitting technique

and are related to the Bregman iteration. Therefore, they do not have limita-

tions of solution to the Euler-Lagrange equations. Moreover, they are explicit

schemes without the requirement of solving any inverse problem. This prop-

erty discriminates them from the Split Bregman method which solves a linear

system in the iteration, and makes our algorithms extremely efficient compared

with existing solutions to total-variation-based models. To further boost these

algorithms, a relaxation technique is proposed to offset the restrictions.

We also propose some new ideas to improve the ROF model itself. For

relatively smooth images, we extend the discrete ROF model with differ-

ence operators of order two. With differences of order two, the high-order

model successfully reduces staircase effects and achieves better image quality

for smooth images. For a particular family of texture-rich images which con-

tain periodic textures, the ROF model is used to separate smooth regions from

98

high-frequency components. A combinational method utilizes wavelet packet

shrinkage to deal with textures, and achieves big improvement in denoising

results of a family of texture-rich images.

While these algorithms and methods worked well, there are a few areas

where the theory and implementation could be improved.

We proposed relaxation technique and designed Algorithm 2.6, 2.7, and

3.2. In numerical experiments, relaxed algorithms have weakened constrains

on parameter λ, and converge faster than the original algorithms. However,

convergence of the algorithms with relaxation has not been proved in this

thesis. A more general proof of convergence of algorithms, covering relaxation,

is needed for completion of theory. Moreover, the rate of convergence has not

been studied. In the future, the rate of convergence may also be estimated for

better understanding to the schemes.

The implementation of our algorithms requires that the fidelity parameter

µ be chosen by human intervention. A rough estimation µ = 2.14/σ − 0.02

is proposed, but it only works for those natural images with average smooth-

ness and textures, and has to be revised according to the characteristics of

each image. In the past, most researches on the ROF model assume that µ

is given or found. In application, human intervention is often not practical,

and an automatic algorithm is necessary for a method of image denoising.

We are trying to design an automatic method to find the optimal µ for ev-

ery image at different noise levels. Since noise level can be estimated by

σ = 1.05median
i,j

(|(∇xu)i,j| + |(∇yu)i,j|)/2, a successful estimation of µ will

make the entire denoising process automatic for every image without human

intervention.

The high-order model provides a convenient way to improve image quality

99

of total-variation-based denoising methods. In our research, the fidelity coeffi-

cients µ1 and µ2 are constants at all pixels of an image. Numerical experiments

show that low-order difference works well at edges of smooth regions, while

high-order difference reduces staircase inside smooth regions. Therefore, this

model may be improved by replacing constant coefficients by some location-

dependent parameters which balance the difference operators of order one and

order two in different areas of an image.

100

Bibliography

[1] G. Aubert, P. Kornprobst, Mathematical Problems in Image Processing:

Partial Differential Equations and the Calculus of Variations, Springer-

Verlag, New York, 2006.

[2] P. Blomgren, T. F. Chan, P. Mulet, C. K. Wong, Total variation im-

age restoration: numerical methods and extensions, in: Proceedings of

the 1997 International Conference on Image Processing (ICIP’97), vol. 3,

IEEE Computer Society, 1997, p. 384.

[3] L. M. Bregman, A relaxation method of finding a common point of convex

sets and its application to the solution of problems in convex program-

ming, USSR Computational Mathematics and Mathematical Physics 7

(1967) 200–217.

[4] J. F. Cai, S. Osher, Z. W. Shen, Convergence of the linearized Bregman it-

eration for `1-norm minimization, Mathematics of Computation 78 (2009)

2127–2136.

[5] J. F. Cai, S. Osher, Z. W. Shen, Linearized Bregman iterations for com-

pressed sensing, Mathematics of Computation 78 (2009) 1515–1536.

101

[6] T. F. Chan, J. Shen, Image Processing and Analysis, Society for Industrial

and Applied Mathematics, Philadelphia, 2005.

[7] Q. Chang, X. C. Tai, L. Xing, A compound algorithm of denoising using

second-Order and fourth-Order partial differential equations, Numerical

Mathematics: A Journal of Chinese UniversitiesEnglish Series 2.

[8] C. K. Chui, An Introduction to Wavelets, Academic Press, San Diego,

1992.

[9] C. K. Chui, R. Garnett, T. Huegerich, W. He, A universal noise removal

algorithm with an impulse detector, IEEE Transactions on Image Pro-

cessing 14 (2005) 1747–1754.

[10] C. K. Chui, J. Z. Wang, On compactly supported spline wavelets and a

duality principle, Transactions of the American Mathematical Society 330

(1992) 903–915.

[11] C. K. Chui, J. Z. Wang, Wavelet-based minimal-energy approach to image

restoration, Applied and Computational Harmonic Analysis 23 (2007)

114–130.

[12] C. K. Chui, J. Z. Wang, PDE models associated with the bilateral filter,

Advances in Computational Mathematics 31 (2009) 131–156.

[13] A. Cohen, I. Daubechies, J. C. Feauveau, Biorthogonal bases of compactly

supported wavelets, Communications on Pure and Applied Mathematics

45 (1992) 485–650.

102

[14] A. Cohen, I. Daubechies, P. Vial, Wavelets on the interval and fast wavelet

transforms, Applied and Computational Harmonic Analysis 1 (1993) 54–

81.

[15] I. Daubechies, Ten Lectures on Wavelets, Society for Industrial and Ap-

plied Mathematics, Philadelphia, 1992.

[16] D. L. Donoho, De-noising by soft-thresholding, IEEE Transactions on

Information Theory 41 (1995) 613–627.

[17] T. Goldstein, S. Osher, The Split Bregman method for L1-regularized

problems, SIAM Journal on Imaging Sciences 2 (2009) 323–343.

[18] B. Han, R. Q. Jia, Characterization of Riesz bases of wavelets gener-

ated from multiresolution analysis, Applied and Computational Harmonic

Analysis 23 (2007) 321–345.

[19] R. Q. Jia, Spline wavelets on the interval with homogeneous boundary

conditions, Advances in Computational Mathematics 30 (2009) 177–200.

[20] R. Q. Jia, H. Q. Zhao, A fast algorithm for the total variation model of

image denoising, Advances in Computational Mathematics (2009) DOI

10.1007/s10444–009–9128–5.

[21] R. Q. Jia, H. Q. Zhao, W. Zhao, Convergence analysis of the Bregman

method for the variational model of image denoising, Applied and Com-

putational Harmonic Analysis 27 (2009) 367–379.

[22] M. Lysaker, A. Lundervold, X. C. Tai, Noise removal using fourth-order

partial differential equation with applications to medical magnetic reso-

103

nance images in space and time, IEEE Transactions on Image Processing

12 (2003) 1579–1590.

[23] M. Lysaker, X. C. Tai, Iterative image restoration combining total vari-

ation minimization and a second-order functional, International Journal

of Computer Vision 66 (2006) 5–18.

[24] S. G. Mallat, A theory for multiresolution signal decomposition: the

wavelet representation, IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence 11 (1989) 674–693.

[25] S. G. Mallat, A Wavelet Tour of Signal Processing, Academic Press, San

Diego, 1999.

[26] M. Nikolova, Weakly constrained minimization: application to the esti-

mation of images and signals involving constant regions, Journal of Math-

ematical Imaging and Vision 21 (2004) 155–175.

[27] S. Osher, M. Burger, D. Goldfarb, J. Xu, W. Yin, An iterative regu-

larization method for total variation-based image restoration, Multiscale

Modeling and Simulation 4 (2005) 460–489.

[28] P. Perona, J. Malik, Scale-space and edge detection using anisotropic dif-

fusion, IEEE Transactions on Pattern Analysis and Machine Intelligence

12 (1990) 629–639.

[29] W. Ring, Structural properties of solutions to total variation regulariza-

tion problems, Mathematical Modelling and Numerical Analysis 34 (2000)

799–810.

104

[30] L. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise re-

moval algorithms, Physica D 60 (1992) 259–268.

[31] S. Setzer, Split Bregman algorithm, Douglas-Rachford splitting and frame

shrinkage, in: Proceedings of the 2nd International Conference on Scale

Space and Variational Methods in Computer Vision, Voss, Norway, vol.

5567, Springer, pp. 464–476.

[32] C. R. Vogel, M. E. Oman, Iterative methods for total variation denoising,

SIAM Journal on Scientific Computing 17 (1996) 227–238.

[33] J. Z. Wang, X. Shang, Adaptive smoothing of anisotropic diffusion equa-

tions in image denoising, manuscript.

[34] Y. Wang, W. Yin, Y. Zhang, A fast algorithm for image deblurring with

total variation regularization, Rice University CAAM Technical Report

TR07-10.

[35] W. Yin, S. Osher, D. Goldfarb, J. Darbon, Bregman iterative algorithms

for l 1-minimization with applications to compressed sensing, SIAM Jour-

nal on Imaging Science 1 (2008) 143–168.

105

	Introduction
	An Overview of Image Denoising
	Definitions and Notation
	Image Denoising based on Total Variation
	The Staircase Effect and Improved Variational Models
	The ROF Model and Partial Differential Equations
	Early-Stage Solutions to the ROF Model
	Discretization
	Outlines of the Thesis

	Fast Algorithms for the Total Variation Model
	The Bregman Iteration
	The Split Bregman Method
	The Alternating Bregman Method
	The Algorithm of Goldstein and Osher
	Our Algorithms
	Convergence Analysis for the Isotropic Model
	Numerical Performance

	Denoising Models based on High-Order Difference Schemes
	High-order Difference Schemes in Image Denoising
	An Extension of Our Algorithm to High-order Difference
	Preliminary Results
	Convergence Analysis of the Algorithm
	Relaxation Technique and Numerical Results

	Combination of Wavelets with Variational Techniques
	Motivation
	Multiresolution Analysis and Wavelets
	Discrete Wavelets on Intervals
	Combination of Wavelet Packets with the ROF model
	Numerical Experiments

	Conclusions and Future Work
	Bibliography

