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Abstract

Availability of large amounts of industrial process data is allowing researchers to

explore new data-based modelling methods. In this thesis, Gaussian process (GP) re-

gression, a relatively new Bayesian approach to non-parametric data based modelling

is investigated in detail. One of the primary concerns regarding the application of

such methods is their sensitivity to the presence of outlying observations. Another

concern is that their ability to predict beyond the range of observed data is often poor

which can limit their applicability. Both of these issues are explored in this work.

The problem of sensitivity to outliers is dealt with by using a robust GP regres-

sion model. The common approach in literature for identification of this model is

to approximate the marginal likelihood and maximize it using conjugate gradient al-

gorithm. In this work, an EM algorithm based approach is proposed in which an

approximate lower bound on the marginal likelihood is iteratively maximized. Mod-

els identified using this method are compared against those identified using conju-

gate gradient method in terms of prediction performance on many synthetic and real

benchmark datasets. It is observed that the two approaches are similar in prediction

performance. However the advantages of EM approach are numerical stability, ease

of implementation and theoretical guarantee of convergence.

The application of proposed robust GP regression in chemical engineering is also

explored. An optimization problem for an industrial water treatment and steam gen-

eration network is formulated. Process models are constructed using material balance

equations and used for data reconciliation and steady state optimization of the cost

of steam production. Since the overall network is under manual operation, a dynamic

optimization framework is constructed to find a set point change strategy which op-

erators can use for minimizing steam production cost. Dynamic models for process

units and tanks are integrated into this framework. Some of these models are identi-
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fied using proposed robust GP regression method. Extrapolation ability of identified

GP models is improved by applying a suitable GP kernel structure and by using some

ad hoc scaling techniques. Based on the application of robust GP regression to an in-

dustrial optimization problem, it is shown that non-parametric data-based modelling

can be successfully integrated with process optimization objectives.
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Chapter 1

Introduction

1.1 Motivation

Plant wide optimization is an important research subject in process industries. With

the increase in complexity of plant processes and networks, it has become difficult for

operators to optimize process operations. Real-time optimization strategies rely on

the use of complex but accurate first principle plant models which can be difficult to

construct. With the availability of large amounts of process data from historical oper-

ation, it has become feasible to construct data-driven regression models for processes

and use it in optimization strategies.

The use of data-driven models comes with its own unique challenges. Very of-

ten the relationship between process variables is not known. Arbitrary assumption

of a model structure, may lead to inaccurate representation of the process. Conse-

quently, the use of neural networks, support vector regression and fuzzy models for

modeling unknown non-linear systems has increased in recent years. Several works

have focused on the application of such models in chemical engineering problems

[1, 2, 3, 4]. These models can automatically learn the relationship between inputs

and output and approximate non-linear systems. However, it is not easy to analyze

such models statistically. Cross-validation is required for parameter estimation and

it can be difficult to avoid over-fitting. Gaussian process (GP) regression models of-

fer a viable alternative to these techniques. It allows a fully Bayesian approach for

non-linear modeling which can help address most of the drawbacks mentioned above

without compromising on prediction performance. This thesis focuses on GP models

for performing nonlinear regression.
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Process data are often noisy and contaminated with outliers arising out of in-

strument malfunctioning or process disturbances. Since most data driven models

including GP are sensitive to the presence of outliers in data, the problem of robust-

ness is an important issue. The primary objective of this thesis is to find a method for

robust identification of GP models. The secondary objective is application of robust

GP models in process optimization. The achievement of these two objectives can help

in the use of data-driven models in optimization.

1.2 Thesis contribution

The main contributions of this thesis are the development of an identification method

for robust GP regression model and the formulation of a plant wide optimization

problem involving nonlinear process models identified using the proposed method.

Specifically, the contributions of this thesis can be summarized as follows:

1. An EM based algorithm is proposed for identification of robust GP models. Two

different distributions namely Student’s t-distribution and Laplace distribution

are used to model noise characteristics with outliers. A novel lower bound on

the Q function is proposed for the t-distribution case.

2. The proposed approach is compared against conjugate gradient based method

for robust GP identification. Convergence of the two methods is analyzed based

on the effects of step size, step direction and gradient of their respective objective

functions.

3. An optimization problem is formulated using industrial data from a water treat-

ment and steam generator network. Data reconciliation and steady state opti-

mization is performed.

4. A manual set point changing strategy for achieving optimal operation of network

is obtained using a novel optimization framework.

5. Both linear and nonlinear dynamic process models are used in optimization.

Nonlinear process identification is performed using robust GP regression identi-

fied based on the proposed method. This application gave several insights into

2



the properties of GP regression such as its ability to handle noisy time series

data and the effect of the choice of kernel function in Gaussian process prior.

1.3 Thesis outline

The rest of the thesis is organized as follows:

Chapter 2 deals with identification of robust GP regression model with EM algorithm.

Chapter 3 introduces a SAGD water treatment network optimization problem. It

includes model description for various units in the network. Data reconciliation and

steady state optimization results are also presented in this chapter.

Chapter 4 addresses the problem of finding a manual set point change strategy for

optimization of SAGD water treatment network. Dynamic process models which are

required for this task are identified using robust GP regression.

Chapter 5 concludes the thesis.
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Chapter 2

Robust Gaussian process
regression using EM algorithm

2.1 Introduction

With the availability of large amounts of data, industries are increasingly looking to-

wards new ways for extracting useful information. There has been significant interest

in non-parametric regression methods since they are completely data-driven and do

not assume any knowledge about the functional relationship between variables. Sup-

port vector regression [5], artificial neural networks [6] and Gaussian process (GP)

regression [7] are some such techniques which are widely used in literature. Gaussian

processes are unique in that they offer a probabilistic framework for non-parametric

regression. They have been shown to be a powerful nonlinear regression technique

[7].

GP regression as a non-parametric regression technique has been around for a

long time with roots in geostatistics [8], where it is known as Kriging, derived from

Krige who first introduced this technique [9]. It was designed for use as a statistical

interpolation tool to estimate the probable distribution of gold based on samples from

a few underground locations. Today, applications of Gaussian process modeling can

be found in machine learning, pattern recognition [10, 11], remote sensing [12] and

neural image processing [13] to name a few. It is also widely used as a metamodeling

tool in the design and analysis of computer experiments [14]. Recently, it has seen

applications in chemical engineering problems as well [15, 16, 17, 18, 19]. One of the

earliest applications was in multivariate spectroscopic calibration [19]. Since then, GP
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regression has been used in several areas ranging from soft sensor development for

industrial processes [17] to estimation of state of health of Lithium-ion batteries [16].

Other authors have used it to develop algorithms for the optimization of constrained

computer experiment systems [15, 20]. The use of GP regression model from the point

of view of system identification and control has also been explored [21, 22, 18]. Some of

these applications use industrial data for training which can be noisy. To account for

this, noise in observations is often assumed to follow a normal distribution. However,

predictions under this noise assumption are highly susceptible to the presence of

“outliers” or extreme observations in data.

Just as in other regression models, in GP regression, outliers are handled by

selecting a noise model which accounts for the possibility of extreme observations.

Mathematically, this amounts to using a noise model with heavier tails compared

to Gaussian distribution. A mixture of normal distributions is often used to build

robust models [23]. A more general choice is the Student’s t-distribution in which

the degree of freedom hyper-parameter ν can be used to adjust the probability of

observing extreme values [24]. The Laplace distribution is also a suitable choice since

it has heavier tails compared to normal distribution. This distribution is well studied

in the context of least absolute deviations estimate in robust regression [25].

Regardless of the choice of noise model, learning hyper-parameters for Gaussian

process regression is an important problem. Hyper-parameters for GP regression are

usually estimated by optimizing the log marginal likelihood of evidence [26, 27]. For

noise following normal distribution, a closed form expression for the log marginal

likelihood is available. However, in the case of robust GP regression the tractability

of the log marginal likelihood is lost. The common approach in literature is to find

an approximation for the log marginal likelihood and maximize it with respect to

hyper-parameters using any gradient based method. Kuss [27] has compared the

different approximations to the log marginal likelihood for robust GP regression.

Two of them are Laplace’s method and Expectation Propagation (EP). Laplace’s

method is a well known approximation technique explained in most introductory

machine learning books [28, chap. 27]. Expectation Propagation method is another

powerful approximation technique first proposed by [29]. Several works have focused

on improving these approximation techniques in the context of robust GP regression
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[30, 31].

In the context of sparse GP regression, [32] proposed a different approach to

learning hyper-parameters wherein a lower bound on the log marginal likelihood was

maximized using EM (Expectation Maximization) algorithm. Later, [33] and [34]

provided a similar EM algorithm implementation for binary GP classification and

ordinal GP regression respectively.

In this chapter, we present an EM based algorithm for training a Gaussian process

regression model which is robust to outliers. We explore the use of both Laplace’s

approximation method and Expectation Propagation approximation method. To the

best of our knowledge, there exists no EM implementation for robust GP regression.

Moreover, there exists no comparison of results from the two competing approaches

for hyper-parameter estimation, viz., maximization of approximate log marginal like-

lihood using conjugate gradient method and EM algorithm based lower bound maxi-

mization. We demonstrate our approach using t-distribution and Laplace distribution

for noise modeling. Steps involved in EM algorithm are explained in detail and the

proposed and existing methods are compared on the basis of prediction performance.

It is often argued that EM convergence can be extremely slow [35]. Several techniques

have been proposed to speed up EM [36, 37]. One such method known as Expectation

Conjugate Gradient (ECG) [38] is implemented in this work to address this issue.

The effects of initial guess, gradients, step size and step direction on EM and

gradient based algorithms are also explored. Simulation results on various data sets

and implementation on an industrial system identification problem show that the

proposed method can give reliable estimates for hyper-parameters.

The rest of the chapter is arranged in the following manner. First we introduce

the problem in mathematical terms in Section 2.2. Section 2.3 gives an overview

of approximations used for robust GP regression. These approximations are used

in Section 2.4 to derive EM algorithm steps for two robust noise models namely,

t-distribution and Laplace distribution. Section 2.4 also contains a description of

the ECG algorithm which is closely related to EM. Regression results from our EM

implementation on synthetic and real data-sets are given in Section 2.5. Results from

competing approaches are also provided. Section 2.6 contains a discussion on the

advantages and disadvantages of EM algorithm. In Section 2.7, a non-linear dynamic
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process model is identified using proposed GP regression. Section 2.8 concludes the

chapter.

2.2 Problem description

Before explaining the approach, we briefly describe the problem statement. In a

typical regression problem,

y = f(x, θ) + ε (2.1)

x ∈ RD is input, y ∈ R is scalar output, f : RD → R is a function with fixed para-

metric model structure with parameter θ and ε is a random variable representing noise

in the output. If it is assumed that noise is independent and identically distributed,

then the likelihood of observing outputs y = [y1, y2, . . . , yn]T at X = [x1,x2, . . . ,xn]T

can be written as:

p(y|X, θe) =
n∏
i=1

p (yi|f(xi), θe) (2.2)

where θe is the hyper-parameter for noise distribution. Typically, this expression is

maximized to estimate the model parameters and the noise hyper-parameters. How-

ever, in GP regression, no parametric model structure is assumed for the function.

Instead a Gaussian prior distribution is specified over the vector f = [f1, f2, . . . , fn]T

where fi is a random variable associated with the value of “latent” function f at

input location xi. In other words, it is assumed that f is a random variable which

follows a multivariate Gaussian distribution. Usually the mean is assumed to be zero

and each element of the covariance matrix is an exponentially decreasing function of

the distance between points in the input space. This function is governed by a set of

hyper-parameters θcov. Therefore, the Gaussian prior distribution can be mathemat-

ically expressed as,

p (f |X, θcov) = N (0, K(X,X)) (2.3)

where, K is the covariance matrix defined by the function,

K(xi,xj) = σ2
seexp

(
− 1

2l
(xi − xj)

2

)
and θcov = [σ2

se, l]. Other covariance functions

can also be used. More details regarding Gaussian processes can be found in the book
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by Rasmussen and Williams [26]. Using the likelihood and prior distributions from

Equations 2.2 and 2.3, the marginal likelihood of evidence is given by:

p(y|X,Θ) =

∫
p(y|f , θe)p(f |X, θcov)df (2.4)

where Θ = [θcov, θe]. As explained earlier, hyper-parameters for GP regression are

estimated by optimizing the log marginal likelihood of evidence. Thus we have,

Θ∗ = [θ∗cov, θ
∗
e ] = arg max

θcov ,θe

log p(y|X, θcov, θe) = log

∫
p(y|f , θe)p(f |X, θcov)df (2.5)

This integral is tractable with Gaussian noise assumption but intractable in the case

of the heavy-tailed distributions for example, Student’s t and Laplace distributions

used in this work. Typically, researchers approximate the log marginal likelihood

directly and optimize it using the conjugate gradient method. In this work, we use

an approximation for the posterior distribution of the latent variable p(f |y,X,Θ) to

find a lower bound to the log marginal likelihood and maximize it iteratively using

EM algorithm.

2.3 Approximation techniques for distributions: An

overview

There are several approximation techniques which can be used with robust GP regres-

sion. In literature, these methods have been used for approximating the log marginal

likelihood p(f |y,X,Θ) [27, 30, 31]. This work uses deterministic techniques namely

Laplace’s method [28, chap. 27] and Expectation Propagation method [29] to approx-

imate the posterior distribution of the latent variable p(f |y,X,Θ). These techniques

are described in this section.

2.3.1 Laplace’s Method

Laplace approximation can be used to find a Gaussian approximation to the posterior

of the latent variable f by doing a second-order Taylor expansion of log p(f |y,X)

around the mode of the posterior. The covariance of this approximation is given by

the curvature of the true posterior at the mode:

p(f |y,X,Θ) ≈ q(f) = N (f |h,A) (2.6)
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where h = arg maxf p(f |y,X,Θ) and A = −∇∇ log p(f |y,X,Θ)

∣∣∣∣
f=h

are the mean

and the Hessian of the negative log posterior at f = h. In this work, a MATLAB

function based on a numerically stable Laplace approximation approach [31] using

t-distribution as noise model is implemented. This function provides the mean h and

covariance matrix A of the approximation.

2.3.2 Expectation Propagation method

Expectation Propagation (EP) method also gives a Gaussian approximation for the

posterior distribution of the latent variable f . However, it is based on an iterative

algorithm that exploits the factorization structure of the target distribution. In the

case of robust GP regression, the target distribution is p(f |y,X,Θ). From Bayes’ rule

we know that the posterior is proportional to the prior multiplied by the likelihood:

p(f |y,X,Θ) ∝ p(f |X, θcov)
n∏
i=1

p(yi|fi, θe) (2.7)

In EP for Gaussian process, the likelihood for each observation p(yi|fi, θe) is replaced

by a so-called site function t̃i(fi|Z̃i, µ̃i, σ̃2
i ) in Equation 2.7. The site function is an

un-normalized Gaussian t̃i(fi) = ZiN (fi|µ̃i, σ̃2
i ). Thus, we get an approximation q(f):

q(f) ∝ p(f |X, θcov)
n∏
i=1

t̃i(fi|Z̃i, µ̃i, σ̃2
i ) (2.8)

EP algorithm visits each site iteratively and adjusts the site parameters to match the

moments of the approximation (Equation 2.8) with that of posterior (Equation 2.7).

Once converged, it gives a Gaussian approximation to the posterior:

p(f |y,X,Θ) ≈ q(f) = N (h,A) (2.9)

where h and A are functions of site parameters µ̃i’s , σ̃2
i ’s and prior covariance matrix

K. The derivations involved differ with the type of likelihood distribution. In this

work, the implementation available in GPML toolbox [39] has been utilized. The EP

inference function in the toolbox provides the mean h and covariance matrix A of

the approximation.
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2.4 EM algorithm derivation for robust GP regres-

sion

The proposed approximate EM algorithm for learning hyper-parameters for robust

GP regression is presented in this section. The algorithm has been derived for two

different noise models namely t-distribution and Laplace distribution. Before show-

ing the EM step derivations, we give the lower bound on the log marginal likelihood.

As shown earlier, the optimization of log marginal likelihood with respect to hyper-

parameters can be written as:

Θ∗ = arg max
Θ

log p(y|X,Θ)

= arg max
Θ

log

∫
p(y|f , θe)p(f |X, θcov) df

(2.10)

where Θ = [θcov, θe]. Multiplying and dividing the integrand by the approximate

posterior distribution q(f) for p(f |y,X, θcov, θe) and using Jensen’s inequality we get

the lower bound [33]:

log p(y|X,Θ) = log

∫
q(f)

p(y|f , θe)p(f |X, θcov)
q(f)

df

≥
∫
q(f) log

(
p(y|f , θe)p(f |X, θcov)

q(f)

)
df

(2.11)

This lower bound can be further simplified as follows

log p(y|X,Θ) ≥
∫
q(f) log (p(y|f , θe)p(f |X, θcov)) df −

∫
q(f) log q(f) df

= Eq [log (p(y, f |X,Θ)] +H

≥ Eq [log (p(y, f |X,Θ)]

(2.12)

Eq [log (p(y, f |X,Θ))] denotes the expectation of the joint distribution of y and f with

respect to q(f) and H represents the entropy of the approximate posterior distribu-

tion q(f) which is always non-negative. Note that the expectation term is similar to

the actual lower bound in the EM algorithm [40] which uses the true posterior of the

latent function: Ep(f |y,X) [log (p(y, f |X,Θ)]. By replacing the true posterior with q(f),

we get an approximate EM algorithm consisting of the following steps:

10



Repeated until Θ converges:

1. E-step:

(a) Given Θt find approximate posterior distribution q(f) = N (h,A) using
either Laplace approximation or EP.

(b) Use q(f) to find the lower bound Eq(f) [log (p(y, f |X,Θ)]. This expres-
sion is referred to as Q function: Q(Θ|Θt)

2. M-step: Θt+1 = arg maxΘQ(Θ|Θt)

In the M-step, the Q function can be separately maximized with respect to the noise

hyper-parameters θe and the GP prior hyper-parameters θcov since

Q(Θ|Θt) =

∫
log (p(y|f , θe))N (f |h,A) df +

∫
log (p(f |X, θcov))N (f |h,A) df (2.13)

Q(Θ|Θt) = Qe +Qcov (2.14)

In the next two subsections we give detailed derivations of the above algorithm for t-

distribution and Laplace distribution noise models and find the closed-form expression

for their Q functions which are easily optimized using any gradient based optimizer.

2.4.1 EM steps for Student’s t-likelihood

The expression for the t-distribution based noise model is as follows:

p(yi|fi, ν, σ) =
Γ(
ν + 1

2
)

Γ(
ν

2
)
√
πνσ

(
1 +

(yi − fi)2

νσ2

)−ν + 1

2
(2.15)

Note that there are two noise hyper-parameters θe = [ν, σ]. ν is the degree of free-

dom and σ is the scaling parameter. In our approach Laplace’s method was used for

approximating the posterior. EP was not used since it fails to converge for non log

concave distributions such as Student’s t-distribution [27]. A robust EP implemen-

tation has been proposed to solve this problem [30]. However, it requires adaptive

selection of step sizes in difficult cases.

In this work, we use Laplace approximation to approximate the posterior distri-

bution p(f |y,X,Θt). In order to use EM algorithm we need to evaluate Qcov and

Qe in Equation 2.14. The expression for Qcov can be easily obtained in closed form
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[33]. Closed-form expression for Qe requires calculating the following expectation

previously shown in Equation 2.13:

Qe(θe|Θt) =

∫
log (p(y|f , θe))N (f |h,A) df

=
n∑
i=1

Ef |h,A [log (p(yi|fi, ν, σ))]
(2.16)

Here, N (f |h,A) is the Laplace approximation for the posterior p(f |y,X,Θt). Using

Equation(2.15) in Equation 2.16 we get:

Qe =
n∑
i=1

Ef |h,A

log

 Γ(
ν + 1

2
)

Γ(
ν

2
)
√
πνσ

− ν + 1

2
log

(
1 +

(yi − fi)2

νσ2

) (2.17)

Qe = C(ν, σ)− ν + 1

2

n∑
i=1

Ef |h,A

[
log

(
1 +

(yi − fi)2

νσ2

)]
where C(ν, σ) = n log

(
Γ(
ν + 1

2
)/Γ(

ν

2
)/(
√
πνσ)

) (2.18)

The expectation terms in Equation(2.18) cannot be derived in closed form. Never-

theless, using Jensen’s inequality on the expectation terms, we can write

Qe ≥ Qle := C(ν, σ)− ν + 1

2

n∑
i=1

log Ef |h,A

[
1 +

(yi − fi)2

νσ2

]
(2.19)

Closed-form expression for Qle is available. Thus, instead of maximizing Qe, we

propose to maximize its lower bound Qle to update the value of θe = [ν, σ]. The

complete expression for the Qle and its gradient is given in Appendices.

The results from this technique are comparable to the existing parameter estima-

tion methods (see Section 2.5). Also, we observed no convergence problems with this

implementation. One reason could be that the point of maximum for Qe(θe|Θt) and

Qle(θe|Θt) are very close to each other for most data sets. This would ensure that EM

algorithm convergence is not affected. Moreover, the fact that partial maximization

in M step has also been shown to converge in practice [40, 41] can be used to justify

this approach.

2.4.2 EM steps for Laplace likelihood

In the case of Laplace likelihood, the expression for noise term is as follows:

p(yi|fi, s) =
1

2s
exp(−|yi − fi|

s
) (2.20)
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Note that there is only one noise hyper-parameter θe = s. Laplace approxima-

tion cannot be used with this distribution since it has discontinuous derivatives

[27]. Therefore, EP method was used to approximate the posterior distribution

p(f |y,X,Θt) ≈ q(f) = N (f |h,A). In order to use EM algorithm we need to evalu-

ate Qcov and Qe in Equation 2.14. The expression for Qcov can be easily obtained

in closed form [33]. Closed-form expression for Qe requires calculating the following

expectation previously shown in Equation 2.13:

Qe(θe|Θt) =

∫
log (p(y|f , θe))N (f |h,A) df

=
n∑
i=1

Ef |h,A [log (p(yi|fi, s))]
(2.21)

Expanding Equation 2.21 using Equation 2.20, we get:

Qe =
n∑
i=1

Ef |h,A

[
− log(2s) + log

(
exp

(
−|yi − fi|

s

))]
Qe = −n log(2s)− 1

s

n∑
i=1

Ef |h,A[|yi − fi|]
(2.22)

It is possible to derive the exact expression for Qe in Equation 2.22. Individual

expectation terms can be expanded as follows:

Ef |h,A [|yi − fi|] =

∫
|yi − fi|N (f |h,A) df

=

∫
|yi − fi|N (fi|hi, Aii) dfi

= (yi − fi)
[
2Φ

(
yi − hi
Aii

)
− 1

]
+ 2Aii

[
φ

(
yi − hi
Aii

)] (2.23)

Thus, the integral in Equation 2.23 can be expressed in terms of standard normal cdf

(Φ) and pdf (φ). Using the above expression in Equation 2.22 we can get the final

exact expression for Qe. The equation for Qe and its gradient is given in Appendices.

2.4.3 Expectation Conjugate Gradient (ECG) Algorithm

An EM based algorithm known as Expectation Conjugate Gradient [38] was also

implemented in this work. The derivative of Q function is same as the derivative

of the log marginal likelihood. This property holds true when we use exact EM

algorithm to find the Q function. In ECG algorithm the derivative of the Q function
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is used to supply gradient to the conjugate gradient optimizer for the log marginal

likelihood. This work uses a modified version of ECG algorithm. The gradient of the

Q function derived originally for EM algorithm was used in place of the gradient of

the approximate log marginal likelihood. The resulting approach can be described as

follows:

ECG Algorithm Use a conjugate gradient optimizer to maximize the approx-

imate log marginal likelihood L(Θ) ≈ log p(y|X,Θ), employing the following steps

whenever the value or gradient of L(Θt) at a particular Θt is required (eg. during

line search)

1. E-step: Find an approximation q(f) for the true posterior distribution p(f |y,X,Θt).

Use it to find the approximate log marginal likelihood L(Θt)

2. G-step: Find gradient of Q function and use it in place of the gradient of the

approximate log marginal likelihood

∇L(Θt) ≈ ∂

∂Θ
Q(Θ|Θt)

∣∣∣∣
Θt

(2.24)

�

We implemented this algorithm for the Laplace noise distribution problem using EP

for approximate inference. The derivative expression for Q(Θ|Θt) was simplified using

matrix algebra properties and can be found in Appendices. Based on simulation

results given in the next section, we found that ECG converges much faster than EM

in most cases.

2.5 Regression results

The equation for making predictions using robust GP regression models can be found

in several works [26, 31]. Before discussing regression results we give a brief descrip-

tion of the prediction equations. Given a new test point x∗, GP can be used to predict

mean of f(x∗) as follows:

Ep(f |y,X) [f ∗|X,y,x∗] ≈ Eq(f) [f ∗|X,y,x∗]

= K(x∗,X)K(X,X)−1h
(2.25)
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Since the posterior distribution p(f |y,X) is not analytically tractable it is approxi-

mated with q(f) using the methods described in Section 2.3. The variance of f(x∗)

is also found using the approximation:

Varp(f |y,X) [f ∗|X,y,x∗] ≈ Varq(f) [f ∗|X,y,x∗]

= K(x∗,x∗)−K(x∗,X)A−1K(X,x∗) (2.26)

Thus, given training locations X and any new test point x∗, a predictive distribution

for f ∗ can be defined using the above equations. Note that GP not only predicts

the value of the function, but also provides an uncertainty of prediction that varies

with location of the test point location x∗. In Figure 2.1 prediction results from

a toy problem using GP regression can be seen. Test points which are far away

from training set locations have a larger uncertainty in prediction. Proposed EM

−4 −3 −2 −1 0 1 2 3 4
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

X

y

 

 
95% confidence interval
GP regression
Actual function
Training data

Figure 2.1: Example of prediction results from GP regression: Both mean and vari-
ance of prediction can be obtained
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approach for finding hyper-parameters was compared with some conjugate-gradient

(CG) based approaches using both synthetic and real-world data-sets. Table 2.1

contains the list of applied methods and their abbreviations. GPML toolbox [39]

was used to implement snML, lnEP and tLAP. A Polack-Ribière flavor of conjugate

gradient method has been implemented in this toolbox. The remaining proposed

methods were implemented in MATLAB. Approximate inference using EP method

was obtained from the GPML toolbox. For Laplace approximation method, the

numerical stable approach as proposed by [31] was implemented. Average root mean

square error of prediction was used to compare the methods.

Table 2.1: Robust GP regression methods compared in this work

Method Noise distribution Algorithm Approximation

snML Gaussian CG -
tLAP Student’s t CG Laplace
tEMLAP Student’s t EM (proposed) Laplace
lnEP Laplace CG EP
lnEMEP Laplace EM (proposed) EP
lnECG Laplace ECG (proposed hybrid) EP

2.5.1 Synthetic data sets

Neal data-set

Neal created a synthetic regression problem with one input variable x where the true

function value f(x) was given by [42]:

f(x) = 0.3 + 0.4x+ 0.5sin(2.7x) +
1.1

1 + x2
(2.27)

10 training data-sets were created each containing 100 data points drawn from a

standard normal distribution. Function values at 85% of points were corrupted using

Gaussian noise with standard deviation 0.1. Remaining 15% of points served as

outliers with function values corrupted using Gaussian noise with standard deviation

1. A test set of 1000 points was generated uniformly in the range x ∈ [−3, 3].

Equation 2.28 gives the expression for the co-variance function used in this problem.

K(xi,xj) = σ2
seexp

(
−1

2

(xi − xj)
2

l

)
+ v0δij (2.28)
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The first term reflects the strength of correlation based on the distance between input

locations. δij is the Kronecker operator. The second term represents white noise which

captures the random error effects. This term also helps in ensuring that the matrix

inversions involved in the EM steps are stable. Thus the total covariance parameter

vector is θcov = [l, σ2
se, v0].

Methods introduced in Table 2.1 are applied for parameter estimation of this

problem. Box and whisker plots for average root mean square error for each method

is given in Figure 2.2. Table 2.2 presents the root mean square error (RMSE) of the

prediction error for each method.

0.05

0.1

0.15

0.2

0.25

snML lnEP lnECG lnEMEP tLAP tEMLAP

Figure 2.2: Neal data set: 15% outliers with standard deviation of 1

We see that proposed tEMLAP approach did marginally better than CG approach

(tLAP) in the case of Student’s t noise model. lnEMEP was slightly worse than lnEP.

Overall we can see that the Student’s t-distribution based models performed the best

with this regression problem.
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Table 2.2: Summary of RMSE results

Method Neal Friedman Boston Meat NIR

snML 0.161 0.287 2.606 0.910
tLAP 0.061 0.194 3.422 2.348
tEMLAP 0.059 0.207 2.491 0.864
lnEP 0.088 0.204 2.545 1.105
lnEMEP 0.089 0.207 2.665 0.907
lnECG 0.088 0.203 2.945 0.955
PLS - - - 3.095

Friedman data-set

Friedman constructed the following regression problem which accepts a 10-dimensional

input vector x and yet the function value f(x) depends only on the first five input

dimensions [43].

f(x) = 10sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 (2.29)

The purpose of the remaining input dimensions x6, ..., x10 is to complicate the task.

10 sets of training data were created and the identified models were used against a

test set containing no outliers [27]. The square exponential covariance function with

separate length scale for each feature was used for this data set.

K(xi,xj) = σ2
seexp

(
−1

2

D∑
d=1

(
xdi − xdj

)2

ld

)
+ v0δij (2.30)

Here, θcov = [l1, l2, ..., ld, σ
2
se, v0]. If a feature is uninformative, the corresponding

length scale should automatically converge to a large value when optimized. To illus-

trate the automatic relevance determination ability of the chosen kernel, we present

the optimized value of the hyper-parameters using the lnEMEP approach for one of

the training sets:

log θcov = [−0.42,−0.58,−0.42, 0.04, 0.85, 15.98, 16.48, 16.39, 16.14, 16.42, 0.54,−1.86]

(2.31)

It can be observed that variables x6 to x10 have very large values for optimized length

scale hyper-parameters. This shows that they are uninformative.
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Figure 2.3: Friedman data set: 10% outliers with standard deviation 3

A box and whisker plot for root mean square error for each method using ten

different training sets is given in Figure 2.3. From Table 2.2 we can see that once again

Student’s t-distribution based models performed better than others. lnECG, which

uses a gradient of the Q function to maximize the approximate marginal likelihood

did better than other EP based approaches.

2.5.2 Real data sets

Boston housing data set

This data set [44] is often used to test non-linear regression methods. 13 input vari-

ables are used to predict the median price of houses in Boston. There are 506 obser-

vations available in the data set. All variables are normalized to zero mean and unit

variance before performing regression. Training and test data set partitions are made

as shown in literature [27]. Once again, the squared exponential covariance function
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with separate length scale for each feature was used for this task (see Equation 2.30).

2
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4
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snML lnEP lnECG lnEMEP tLAP tEMLAP

Figure 2.4: Boston housing data set

We can see from Table 2.2 that among the EP based approaches, lnEP performed

better than other methods. However, tEMLAP gave the best prediction performance

for this data-set. tLAP results were the worst compared to all other methods. It was

observed that tLAP approach in GPML toolbox faced some numerical stability issues

with this data set. In our implementation for tEMLAP, a more numerically stable

approach [31] was implemented.

Nonlinear NIR data set

Chen et al. [19] have successfully applied GP regression on NIR data sets. The

performance of proposed robust GP regression was assessed on the “Meat” data set

[45] that was used in their work. Fat content in meat is known to exhibit a non-linear

relationship with NIR spectra and hence was chosen as the response variable for our
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purpose. Data was pre-processed and partitioned according to literature [19]. The

following co-variance function was used by the authors and has been replicated in our

approach giving θcov = [m0,m1, l1, l2, ..., ld, σ
2
se, v0]

K(xi,xj) = m0 +m1

D∑
d=1

xdix
d
j + σ2

seexp

(
−1

2

D∑
d=1

(
xdi − xdj

)2

ld

)
+ v0δij (2.32)

m0 is a constant bias in the covariance function. m1

∑D
d=1 x

d
ix

d
j is used to capture

linear correlation between input and response variables. 10 random partitions of

training and test set pairs were generated from the data set and used for regression.

The corresponding results are shown in Figure 2.5. Once again tEMLAP performed

0.5
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1.5

2

2.5

3

3.5

4

snML lnEP lnECG lnEMEP tLAP tEMLAP PLS

Figure 2.5: Meat NIR data set

the best among all methods, followed by lnEMEP. Other methods except tLAP and

PLS, are marginally weaker than the proposed EM approaches. PLS fails to perform

well due to its inability to model non-linearities whereas tLAP was affected with

numerical stability issues just as in the case of Boston data set.
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2.6 EM and conjugate gradient methods: A com-

parison

Results show that approximate EM technique is similar to direct maximization of

approximate marginal likelihood in terms of prediction performance. Also, it was

observed that both direct CG and ECG are faster than EM by a factor ranging from

2 to 10 depending on the size of the data set. This was expected since gradient based

methods are generally faster than EM [38].

Another observation was that given the same initial guess, hyper-parameters

learned using EM and CG approaches occasionally converged to widely different val-

ues. To understand this, it is important to observe that both EM and gradient based

methods are optimization algorithms which do not guarantee global convergence.

Convergence of such optimization schemes is dependent on iteration step size or step

direction. It was also observed that even in usual cases, EM and CG solutions are

close but not identical. This is because of the slight difference in gradient expression

for the two algorithms. The effect of step size, step direction and gradient expression

on the convergence of EM and CG methods is discussed in the next two subsections.

2.6.1 Step direction and step size

In most cases, the two algorithms gave similar estimates for the hyper-parameters.

Thus, a toy problem was created wherein the two approaches converged to extremely

different solutions given the same initial guess. Revisiting the Neal data set in 2.5.1,

a new set of training points was created using the function in Equation 2.27. 100 data

points were generated uniformly in the range x ∈ [0, 30]. Gaussian noise with standard

deviation 0.1 was added to the function value at these locations. To generate outliers,

10 locations in X were chosen randomly and the function values at these locations

were corrupted with Gaussian noise with standard deviation 1. Test set of 3000 points

was generated uniformly in the range x ∈ [0, 30]. No outliers were included in the

test set. The covariance function chosen for this example was:

k(x, x′) = exp(−||x− x
′||2

2l
) (2.33)
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For the same initial guess [−1.5, 0], the EM based approaches converged to a different

(in this case, better) maximum compared to the direct conjugate gradient based

approaches as seen in Figures 2.6b and 2.6a. This suggests that results from the

two algorithms are not always similar. The different outcomes can be attributed to

different step size and step direction. It has been shown that for the Gaussian mixtures

problem, “at each iteration of the EM algorithm, the EM step can be obtained by

pre-multiplying the gradient by a transformation matrix P (Θt)” [46]. This expression

holds true for many other problems as well [38].

Θt+1 −Θt = P (Θt)∇L(Θt) (2.34)

P (Θt) is positive definite under certain conditions [38]. In Newton based methods,

instead of P (Θt) the inverse of the Hessian of log likelihood is used. When the Hessian

is close to singular, Newton’s method can diverge. For this reason, the inverse of the

Hessian is often approximated (quasi-Newton methods). Another way to avoid inverse

Hessian calculation is to use non-linear conjugate gradient (CG) method against which

we have compared the EM implementation. However, all these methods require line-

search techniques to find the best step size for iteration. A careful selection of tuning

parameters is required to ensure that the optimization scheme does not diverge. Even

in our simulations, it was observed that sometimes the conjugate gradient approach

failed to converge. On the other hand, EM algorithm did not face any such problems

owing to the positive definite nature of the transformation matrix. Since the Q

function is well-behaved, maximizing it with respect to hyper-parameters is not as

difficult.

2.6.2 Gradient with respect to hyper-parameters

Another difference between the two methods is due to the gradient with respect to the

hyper-parameters. Ideally the Q function derivative equals derivative of log likelihood

at a given set of hyper-parameters, that is:

∇L(Θ)

∣∣∣∣
Θt

=
∂

∂Θ
Q(Θ|Θt)

∣∣∣∣
Θt

(2.35)

where L(Θ) = log p(y|X,Θ) is the log marginal likelihood. This fact was used to

justify the ECG algorithm [38]. However, for robust GP regression, the Q function
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(a) Proposed EM method
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(b) Direct maximization of approximate marginal likelihood

Figure 2.6: Different optima reached by direct and EM methods
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gradient used in the M step does not match the gradient of the log marginal likelihood

exactly. This is because there are approximations on both sides of Equation 2.35. On

the left side the log marginal likelihood is approximated and on the right side, in the Q

function the expectation is taken over the approximate posterior distribution. Despite

this, the two derivatives were observed to be fairly close to each other in practice. [33]

showed that for EM algorithm using EP for approximating posterior distribution, the

gradient of the approximate Q function with respect to the covariance function hyper-

parameters θcov is equal to gradient of the approximate marginal likelihood using EP.

However, the gradient with respect to noise hyper-parameters is not the same for

the two functions under EP approximation. To verify this for robust GP regression,

derivatives of the Q function of the lnECG implementation were compared with that

for the approximate log likelihood function. It was found that the two derivatives are

exactly equal except for the noise hyper-parameter derivatives which differ slightly.

For example in the simulation used to generate Figure 2.6, where two parameters had

to be learned; kernel length scale and noise parameter, at the initial guess [-1.5,0],

derivative of log likelihood with respect to hyperparameters was [-82.9920,40.8471]

and derivative of Q function with respect to hyperparameters was [-82.9920,39.4111].

The slight difference can also be seen in Figure 2.7 where ECG and CG methods

are close to each other but not exactly identical. EM takes a different route to opti-

mization due to the transformation matrix P (Θt) as explained in previous subsection.

Since the derivative of the Q function is not exactly equal to the derivative of marginal

likelihood for the robust problem, the ECG algorithm stopped before converging com-

pletely in our simulations. Despite this, in terms of RMSE, ECG results were com-

parable with EM and direct methods. This is because, typically in optimization, the

number of iterations increase close to the optimal point and so the last few iterations

do not significantly affect the result.

2.6.3 Advantages of EM over direct methods

Based on the above discussion one can conclude that the main advantage of EM

algorithm is that it does not require any tuning parameter and is numerically stable.

Also, it is easier to implement. Another potential advantage of EM is that the Q
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Figure 2.7: Comparing EM, ECG and Direct CG approach: ECG is close to the direct
approach but not identical due to difference in gradients. EM takes a different route
to optimization

function can supply the gradient when it is difficult to estimate the gradient of the

log marginal likelihood [27]. The proposed scheme for robust GP regression could also

be extended to handle sparse GP formulations, in the context of which lower bound

maximization using EM algorithm was first proposed [32]. The main drawback of EM

approach is that it can be slow, in which case one could switch to the ECG method

discussed above.

2.7 Industrial application

Steam Assisted Gravity Drainage (SAGD) is used to recover heavy crude oil from

Alberta’s vast underground oil sands reserves. This technology requires large amounts

of high pressure steam which is injected into deep underground oil sands reservoirs.

In order to generate steam, a network of water treatment units is used to treat

produced water and supply boiler feed quality water to steam generators. Control

and optimization of this network is important for oil sands industries. As a part
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of this objective, proposed robust GP regression using EM algorithm was used for

constructing a data-based dynamic model of water treatment units in SAGD process.

A single water treatment unit consists of a series of tanks in which chemicals are

added to remove hardness, silica and dissolved solids in the form of a sludge. Pure

water and sludge exit the unit in the form of two separate streams. Flow rate data

is available for all streams entering and exiting the unit. The input to the process

is impure water flowrate u(t) and the output is combined flowrate of pure water and

slurry y(t). Due to mass balance principle, at steady state y(t) equals u(t). A non-

linear dynamic model for this process was required as part of a larger plant-wide

optimization objective. The following structure was chosen for the model:

y(t+ 1) = f(y(t), u(t), y(t− 1), u(t− 1)) + ε (2.36)

According to this equation, the one-step ahead output y(t+1) is given by an unknown

function of the input u(t), u(t− 1) and output y(t), y(t− 1) corrupted by noise ε.

Step response data set was used for training a robust Gaussian process regression

model. Due to proprietary reasons, input and output data were normalized in this

example. Average values of u(t) and y(t) before step change and after achieving new

steady state were used as maximum and minimum values for normalization. Training

data points were arranged as follows:

y =


y(2)
y(3)
y(4)

...
y(n)

 , X =


y(1) u(1) y(0) u(0)
y(2) u(2) y(1) u(1)
y(3) u(3) y(2) u(2)

...
...

...
...

u(n− 1) u(n− 2) y(n− 1) y(n− 2)

 (2.37)

Gaussian process model was chosen since it can be used to model non-linearities with-

out knowledge of the underlying model structure. Moreover, to account for outliers in

output, noise was assumed to follow Laplace distribution (Equation 2.20). Squared ex-

ponential covariance function with automatic relevance determination (Equation 2.30)

was used for designing the Gaussian prior.

Hyper-parameters for the covariance function were learned using the proposed lnE-

MEP approach. Figure 2.8 shows the training data plots and the one-step ahead

prediction from identified robust GP regression model. We can see that the predic-
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tions match well with output with an RMSE of 0.1269.
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Figure 2.8: One step ahead response from robust GP regression model

2.8 Conclusion

In this chapter, we proposed an approximate EM algorithm for constructing a robust

GP regression model. EM steps were derived for two noise models, Student’s t-

distribution and Laplace distribution. A new lower bound in EM algorithm was

proposed for the Student’s t-distribution. The proposed approach was validated using

both synthetic and industrial data sets. Furthermore, we compared the proposed

method against conjugate gradient maximization of approximate marginal likelihood.

The two approaches are similar in terms of prediction performance. However, in some

cases, EM approach outperforms the direct approach. The effects of step size, step

direction and gradient on the two methods were analyzed. The advantage of the

EM approach lies in its ease of implementation, stability and theoretical convergence

28



guarantees. Finally, an industrial application of robust GP regression was explored in

which it was used to identify a nonlinear dynamic model for a water treatment unit

in SAGD process. The identified process model was used as a constraint as part of a

larger optimization framework which is discussed in Chapter 4.
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Chapter 3

Steady-state modeling and
optimization of water treatment
network

This chapter focuses on first-principles steady-state modeling and optimization of

water treatment network in SAGD process. Section 3.1 introduces the problem and

specifies the objective. Description of process units and available data is given in

Section 3.2, while data preprocessing steps are explained in Section 3.3. Section 3.4

contains methodology adopted for data reconciliation and corresponding results. Fi-

nally, in Section 3.5 steady state optimization scheme is discussed and results are

compared against historical data.

3.1 Problem statement

Steam is an important utility in SAGD process. Water is treated in large treatment

units and fed to steam generators. Scheduling and planning of steam production is

essential. For this reason, industries maintain an overall process capacity in excess

of the actual requirement and use buffer tanks in the network to regulate water flow.

In the event of planned or unplanned shutdowns, operators must divert water flow to

other units and make efficient use of limited tank volumes to minimize any drop in

processing capacity during the transition. Operators would like to have a tool which

they can use to assess or improve their decision making during such situations.
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3.1.1 Objective

The objective is to find an effective tool which can provide a quick solution and

guide the operators in their decision making. Mathematically, this involves a two-

fold objective. The first objective is to find what should be the optimal throughput

for all units, when some of the units have planned or unplanned shutdowns. In this

study, optimality is defined based on minimization of the cost of steam production.

In continuation, the second objective is to arrive at this optimal operating point, as

soon as possible using buffer tank capacities and honoring all process limitations.

3.2 Process description

In this section we give a brief overview of SAGD process. Water treatment and steam

generator units are described in some detail. A description of industrial data is also

provided.

3.2.1 SAGD Process

Steam Assisted Gravity Drainage or SAGD technology is used to recover heavy crude

oil from Alberta’s vast underground oil sands reserves. Figure 3.1 shows the flow

chart for the complete process. Large volumes of high pressure steam are injected

into deep horizontal pipes which are buried in underground oil sands reservoir. Heat

from steam helps reduce the viscosity of bitumen (or heavy oil) in the reservoir. A

mixture of bitumen and water is then pumped to the surface from production wells.

Bitumen is separated from water, diluted using a diluent and sent downstream for

further processing while produced water is treated and reused for steam generation.

Some makeup water is also mixed with produced water to meet the required steam

demand. Two different produced water treatment technologies namely, Warm Lime

Softeners and Evaporators are used in industry. Once treated, water is sent to steam

generators. Here too, there are two different types of technologies: OTSGs (Once

Through Steam Generators) and Cogens (Co-generators). Not all water is converted

to steam in these generators. Some of it is recycled back to the upstream units and is

known as “blowdown”. Tanks are provided upstream of water treatment plants and

steam generators. These act as buffers and are used by operators to absorb changes

31



in operating conditions.

This work focuses on modeling and optimization of the water treatment and steam

generator network encircled in Figure 3.1. The figure shows a simplified process

flow diagram. In reality there may be several water treatment and steam generator

units operating in parallel with interconnections to allow for water distribution in the

network. An example is depicted in Figure 3.2. Note that this figure is not identical

to the actual process network which has not been shown due to proprietary reasons.

The ensuing subsections contain description for various units in the network.

Figure 3.1: General SAGD process overview. Region enclosed within the orange box
was modeled and optimized in this work

3.2.2 Water treatment units

De-oiled water (produced water separated from bitumen) contains traces of dissolved

impurities which can cause scaling in steam generators. Different methods can be

used for reducing hardness and silica in produced water which constitute the bulk of

impurities. Addition of certain chemicals can neutralize the impurities and convert

them into insoluble sludge which can be removed using settling tanks and filters. This

is accomplished in the Warm Lime Softener units. Evaporators offer an alternative

approach to water treatment wherein impurities are separated by converting the water
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content in the mixture into water vapor. Both these technologies have been used in

industry and are described below:

Warm Lime Softeners

Warm Lime Softener units as a general rule consist of the following three sections:

• Warm Lime Softener (WLS) Tank

• After Filters

• Weak Acid Cation (WAC) Tank

In the WLS tank, chemicals are added to remove calcium and magnesium salts and

silica. These impurities settle at the bottom of the tank and are removed in the

form of sludge. Treated water is sent to After Filters which remove suspended solids

using a filter media. To avoid pressure drop in the line, filters must be cleared of

accumulated solids using a backwash procedure. Finally, filtered water is sent to

WAC Tanks where the majority of hardness is removed using weak acid cation resins.

These resins must also be regenerated from time to time.

This process cannot handle water with very high amounts of total dissolved solids

(TDS>7000 ppm) and requires experienced operators [47]. However, they are cheaper

to operate since they require less energy compared to evaporators.

Evaporator

This process offers an alternative evaporative method of treating produced water.

Different types of evaporators are used in industry. The key idea in this method is to

allow the evaporation of produced water to separate impurities and obtain boiler feed

quality water output. The vertical tube falling film vapor compression evaporator

offers an energy efficient system for water evaporation and is used in many SAGD

plants. Yet, despite technological improvements, this process is more energy intensive

than addition of chemicals as done in WAC or WLS. Nevertheless, the advantage of

these units is that they can handle water with higher amounts of total dissolve solids.

Details regarding this technology can be found in several articles [47, 48].
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3.2.3 Steam generators

After treatment, water is sent to steam generators where it is converted to steam.

There are different types of steam generators which are used in industry. Two of

the popular designs are heat recovery and once through steam generators. They are

described below:

Co-generator

Cogenerator or heat recovery steam generator (HRSG) is an energy recovery steam

generator that uses excess heat from hot gas stream to generate electricity. A typical

co-generator consists of three sections namely the economizer, evaporator and super-

heater. Pressurized water is pre-heated in economizer section by passing it through

hot tubes. It is then further heated in the feed water drum. Boiling water rises into

the steam drum where it is separated from steam. Saturated steam is drawn off from

the top of the steam drum and sent to the superheater section where further heat

is supplied to increase steam temperature. Through efficient design waste heat from

hot gas is utilized for electricity production.

Once Through Steam Generator

In OTSGs, unlike conventional drum boiler based HRSGs, there are no segmented

sections for economizer, evaporator and superheater and waste heat is not used for

electricity production. Pressurized water is fed into hot tubes at one end and super-

heated steam is produced at the other end. The advantage of OTSGs is that they

can handle water with high levels of total dissolved solids (TDS) and silica. The heat

flux in OTSG is also much lower than co-generator which makes it more tolerant to

overheating. Startup and shutdown in OTSGs is also much faster.

Ideally, 100% steam quality (ratio of steam to total output) is desirable, i.e. steam

uncontaminated with any liquid water. To achieve this, steam must be either 100%

saturated or superheated. However, in practice water fed to steam generators may

contain trace amounts of dissolved salts which can damage pipes at high steam quality

conditions. Therefore, SAGD steam generators are operated at marginally lower

steam quality range of 70% to 80%.

34



Figure 3.2: Water treatment and steam generator network. Actual network is not
shown due to confidentiality reasons

3.2.4 Buffer tanks

Tanks are installed upstream of water treatment and steam generator units (see Fig-

ure 3.2). These act as buffers in the event of changes in operating point for a unit or

shutdown/startup. Tanks upstream of water treatment units are known as produced

water tanks (PWTs) and those upstream of steam generators are called boiler feed

water tanks (BFW tanks). Each tank has its own lower and upper limit for tank level

which must not be violated to ensure safe operation.

3.2.5 Process Data

Data over a 1 year period was provided by the industry. It consists of process measure-

ments regarding water bearing streams in the network. The contents are summarized

below in Table 3.1:

Table 3.1: Summary of data-set

Sr. No. Data-type No. of variables Units Interval
1 Water Flow rate 40 m3/hr 1 min
2 Tank level 7 m 1 min
3 Steam quality (fraction) 18 - 1 min
4 Design processing capacities 27 m3/hr -
5 Tank upper & lower limits 14 m -
6 Tank area 7 m2 -
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As shown in the table, time series measurements are available for water flow rates,

tank levels and steam quality. Barring a few streams, all measured water flow streams

including input produced water flow streams as shown in Figure 3.2 are available.

Similarly all tank levels are measured and steam quality ratios are available for all

generators. However actual steam flow rate is not measured and can only be esti-

mated based on steam quality ratio and input boiler feed flow rate. Note that the

Figure 3.2 is not the actual process flow sheet and thus the number of variables may

not match those from the figure.

All flow rate measurements are at standard conditions, i.e. densities are not

required to use this data for verifying mass balance. Steam quality is available indi-

vidually for all steam generators. Design processing capacity refers to the maximum

flow rate limit for the total feed to a unit as per process design.

3.3 Data preprocessing

Since our objective in this chapter is data reconciliation and steady state optimization,

the available time series data was averaged over 30 minute intervals to remove the

effect of process transients. This resulted in a shorter time series of measurements

of 17520 data points. Original data set with 1 minute frequency will be used in

Chapter 4 for dynamic process identification. The rest of this section covers other

preprocessing steps.

3.3.1 Identifying shutdown process units

At a particular time, some units may be under shutdown or under reduced operating

limits. Such situations must be identified before data reconciliation or optimization.

Shut down condition for a plant at a particular time t was inferred from zero or

negligible flow rate measurements for input streams to that plant at time t. Inferring

reduced operating limits using just flow rate data was not possible and hence it has

not been considered in this work.
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3.3.2 Identifying missing flow measurements

Average steady state mass balance error for every unit in the network over all data

points was used to verify the process flow sheet provided by industry. Although it

is not entirely reasonable to assume steady state conditions for mass balance, it can

be argued that any significant missing flow measurement would result in abnormally

large average mass balance error (say more than 20%) in affected units. On the

basis of this exercise a few significant missing streams were identified. Data for these

streams was sought from the industry and the complete process flow sheet was built.

The data-set summary in Table 3.1 lists the complete set of information available.

Variable notation

Before proceeding, it is important to summarize the variable notations that will be

used in the rest of the chapter.

Table 3.2: Summary of variable notations for this chapter

Variable Notation

All measurements (flow rates and tank levels) at time t x(t)
Steam quality fraction at time t η(t)
Maximum processing capacities of units C(t)
Upper limit of all measured variables at time t h(t)
Lower limit of all measured variables at time t l(t)
Tank cross-sectional area of tank Atank
Vector of unmeasured variables at time t z(t)

Relevant subscripts will be used when referring to flow measurements (for example

xwp in) or tank level measurements (xlevel) within the vectors x(t), l(t) and h(t). Ele-

ments of C(t) represent the maximum processing design capacity of units. If the flow

rate across the unit is observed to be negligible, the corresponding element in C(t)

vector is set to 0. This represents the shutdown situation. Maximum limits for indi-

vidual flow rate measurements were empirically chosen based on the process design

limits of units upstream or downstream of the measured line. Lower limit for all flow

rate measurements was fixed to be 0 except for one stream which allowed flow in both

directions. An empirical lower limit was set for this stream. Tank area cross sections
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are provided in the data-set and are referred by Atank. Data for some streams was

not available. These are represented by the vector z(t). Their values were estimated

based on the data reconciliation technique described in the next section.

3.4 Data reconciliation

Process measurements x(t) are usually noisy. They may contain random errors or

gross errors. Data reconciliation refers to the estimation of process variables using

process measurements and models [49]. In this work, it was used to get reconciled

measurements x̂(t) and -estimate unmeasured variables ẑ(t).

Simple yet reasonably accurate process models were used for data reconciliation.

Steady state mass balance models were built to describe the water treatment units

and steam generators. Tanks were modelled using a simple material balance model

involving changes in tank level. Energy balance models could not be constructed

since only material flow rate information is available. Reconciled measurements were

made to honor the process models introduced in the following subsections.

3.4.1 Water treatment unit

Evaporators were modeled using a simple mass balance model.∑
i∈wp in

x̂i(t) = x̂wp slurry(t) +
∑

j∈wp out,j /∈wp slurry

x̂j(t) (3.1)

x̂wp slurry(t) is also an output of the water plant but the distinction has been made

because it is sent to disposal, whereas other streams contain treated water which are

fed to steam generators. For the evaporators, all process measurements are available.

In the case of WLS units, slurry flow measurements are not available. For this rea-

son, x̂wp slurry(t) is replaced by ẑwp slurry(t) in the above equation and approximated

using data reconciliation. A similar change was made in other process models (steam

generator, tanks etc.) to deal with missing measurements. Besides mass balance, the

following inequality was also used:∑
i∈wp in

x̂i(t) ≤ Cwp(t) (3.2)
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All water plants have a maximum processing capacity Cwp which must be honoured

by the total input flowrate.

3.4.2 Steam generator

In steam generators, feed water is converted into a saturated mixture of steam and

water. Water is separated from steam and recycled. This stream is known as blow-

down. Flow measurements are available for feed water and blowdown. Steam quality

ratio is also available. These variables are related as follows:∑
j∈sg bd

x̂j(t) = (1− ηsg(t))x̂sg in(t) (3.3)

where ηsg refers to the steam quality, xj is the one of the blow down flow rates and

xsg in is the input to the steam generator. While analysing process data, it was found

that blow down flow rate for steam generators receiving water from WLS units, was

always less than that given by steam quality ratio using above equation. This was

perhaps due to bias in blow down flow rate measurement. The steam quality data

which is also available was considered to be a more accurate predictor of blow down

flow rate. Thus Equation 3.3 was used as the mass balance model for steam generator.

Just as in the case of water treatment units, all steam generators have a maximum

processing capacity and thus:

x̂sg in(t) ≤ Csg(t) (3.4)

Here x̂sg in is the feed water entering the steam generator and Csg is the maximum

rated process capacity of the steam generator.

3.4.3 Tanks

It was observed that tank dynamics are significant even after data preprocessing

wherein measurements were time averaged over 30 minutes. Therefore, a material

balance model involving tank level measurements was constructed for tanks and used

in data reconciliation.

Atankx̂level(t) +
∑

i∈tank in

x̂i(t)−
∑

j∈tank out

x̂j(t) = Atankxlevel(t+ 1) (3.5)
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x̂i is an input stream, x̂j is an output stream and x̂level(t) is the tank level at time

t. xlevel(t+ 1) is the tank level measurement at time t+ 1 and was deemed constant.

This equation was used to reconcile all measurements at time t.

3.4.4 Data reconciliation framework

Based on above explanations, the reconciled data (x̂(t) and ẑ(t)) are obtained by:

argmin
x̂,ẑ

(x− x̂)TV−1(x− x̂) (3.6)

such that:

Aeq,xx̂ + Aeq,zẑ = beq (3.7)

Axx̂ + Azẑ ≤ C (3.8)

l ≤ x̂ ≤ h (3.9)

where x is the vector of raw measurements, x̂ is the reconciled value of process

measurements and ẑ contains the estimate for unmeasured variables. V is a diagonal

covariance matrix representing noise in the measurements. Equation 3.7 represents

all the process models based on mass balance equations described above (namely

Equations 3.1, 3.3 and 3.5). Equation 3.8 represents the limits to processing capacities

described in Equations 3.2 and 3.4. Equation 3.9 specifies the limits to the flow

streams and tank levels as described previously in Table 3.2.

Use of covariance matrix V in the objective function ensures that variables with

noisier measurements (higher variance) are adjusted more than less noisy ones. In

order to estimate the variance of measurements the following approach was taken:

1. The complete available time series data was passed through a non-causal filter

(“filtfilt” in MATLAB)

2. Variance of measurement was estimated using the deviation of measured data

from filtered data

3. V was constructed as a diagonal matrix using the variance estimations

40



3.4.5 Results

The above described data reconciliation framework was used to obtain reconciled

measurement values and estimate unmeasured variables. Results show that recon-

ciled values match well with the raw measurements for all streams. This suggests

that process models used to reconcile the process measurements are valid. Note

that dynamics of steam generators and water treatment units were not considered.

However, tank models were built based on material balance incorporating tank level

measurements. As mentioned earlier, this was done because tank dynamics were

found to be significant.

A scatter plot of reconciled v/s measured tank levels is given in Figure 3.3. An-

other scatter plot of reconciled v/s measured input produced water flow rates is shown

in Figure 3.4. Barring a few data points, both figures show that data is well explained

by the chosen process models.

One drawback of the proposed data reconciliation approach is that gross error in

a measurement may not be detected since it is distributed over all other variables. It

is possible that small adjustments in some of the variables can hide the gross error in

another variable. The possibility of such a scenario can be reduced by a good choice

of covariance matrix V. Another solution could be to identify and remove the gross

error prior to performing data reconciliation.

3.5 Steady state optimization

For a given fixed amount of produced water received from the reservoir (see input in

Fig 3.2), operators would like to know the optimal distribution of water flow in the

network. There are several ways in which the optimality condition can be defined.

In this work, the objective was defined as the minimization of the average cost of

production per unit m3 of dry steam given a fixed amount of produced water entering

the network. This is a reasonable objective since steam production is the most energy

and cost intensive operation in the whole process. The cost of production per unit m3

of steam for different steam generators in the network was available from industry.
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Figure 3.3: Scatter plot for tank levels (in %). X-axis is raw measured values and
Y-axis is reconciled values

Thus the objective was defined as the following:

F =

∑n
i=1 siµix̃i,sg in∑n
i=1 µix̃i,sg in

(3.10)

Variables marked with the ∼ sign are decision variables in the optimization. In the

above equation x̃i,sg in is the input feed water flow rate to ith steam generator,µi is the

steam quality and si is the cost of production which was assumed to be fixed value for

each generator. Co-generators had a lower cost of production due to their capability

of using waste heat for producing electricity. Once-through steam generators on

the other hand had a higher cost of production. The minimization of the above

mentioned objective function suggests that co-generators must always be preferred

over OTSGs. However, it may not always be possible to divert maximum possible flow

to co-generators owing to network limitations. Thus, mass balance and throughput

limitations are included as constraints to the optimization. Unlike data reconciliation,

dynamic tank models were not included in the list of constraints since we need to find
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Figure 3.4: Scatter plot for produced water flow rates (normalized). X-axis is raw
measured values and Y-axis is reconciled values

steady state optimal operating point. Instead, a simple steady state mass balance

model was used. Moreover, it was observed that the amount of slurry water exiting

the water treatment units is usually a fixed fraction of the input water flowrate. In

other words:

φwp

( ∑
i∈wp in

x̃i(t)

)
= x̃wp slurry(t) (3.11)

Here φwp is the slurry ratio parameter which is learned by performing linear regression

using reconciled flow rates x̂ in place of x̃ in Equation 3.11. Use of reconciled mea-

surements is necessary to ensure meaningful parameter estimation [50]. Data regions

were identified where the reconciled flow rates appear to be in steady state. These

data points were used to estimate the value of slurry ratio parameter which are listed

in Table 3.3.

The value of this parameter was found to lie around 2% to 3% for all water plants.

Equations 3.1 and 3.11 are together used to model the steady state model for water
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Table 3.3: Slurry ratio for water plants

Water plant Slurry ratio φwp
1 0.0262
2a 0.0247
2b 0.0282
2c 0.0261
2d 0.0209
3 0.0312

treatment units. The complete optimization problem can be expressed as:

x∗f , z
∗
f = argmin

x̃f ,z̃f

F = argmin
x̃f ,z̃f

∑n
i=1 siµix̃i,sg in∑n
i=1 µix̃i,sg in

(3.12)

such that:

Af,eq,xx̃f + Af,eq,zz̃f = bf ,eq (3.13)

Af,xx̃f + Af,zz̃f ≤ Cf (3.14)

lf ≤ x̃f ≤ hf (3.15)

x̃pw,in = x̂pw,in (3.16)

The objective F represents minimization of average cost of steam production. x∗f

and z∗f are the optimized value of flow rates. Optimal tank levels are not found since

the objective is steady state optimization. The subscript f is used to highlight this

fact. Equation 3.13 represents the flow rate based mass balance equations previously

described in Equations 3.1 and 3.3. It also includes the slurry ratio model shown in

Equation 3.11 and steady state tank models expressed as follows:∑
i∈tank in

x̃i(t)−
∑

j∈tank out

x̃j(t) = 0 (3.17)

Equations 3.14 and 3.15 are the same as those used in data reconciliation. The final

constraint in Equation 3.16 signifies that the input produced water flow rates to the

network are kept same as the reconciled value.

3.5.1 Optimization procedure summary

We summarize the procedure for optimization. First we select process measurements

at time instant t and identify the process capacity limitations active at that time.
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Given process measurements at time t, we perform data reconciliation and compute

the cost of steam production using Equation 3.10 with reconciled flow rate values. Fi-

nally, we perform steady state optimization fixing the input produced water flow rate

and compare the achieved optimal cost of production to historical cost of production.

This procedure has also been summarized in the form of a flow chart in Figure 3.5.

1. Select data from time
(t): (x(t), η(t), Atank)

2. Identify active constraints from data
or prior information (C(t),h(t), l(t))

3. Use data reconciliation to estimate x̂(t), ẑ(t)

4. Evaluate operating cost per m3

of steam using x̂(t) (Equation 3.10)

5. Find minimum operating cost per m3

of steam along with corresponding optimal
flow rates using steady state optimization

6. Compare current and optimal
operating cost (from 4. and 5.)

Figure 3.5: Summary of data reconciliation and optimization
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3.5.2 Results

Historically achieved cost of production was compared against steady state optimiza-

tion results for minimum optimal cost of production. Figure 3.6 depicts the com-

parison for some randomly selected data-points. The cost of production has been

normalized for proprietary reasons. Historically achieved operating cost is in blue

and minimum optimal cost is in green. In addition, the maximum cost of production

is also plotted in red. This was obtained by maximizing the cost of production instead

of minimizing in the above described framework. The red and green plots represent

the worst and best possible operating strategies respectively. An operator would like

to operate closer to the minimum operating limit. It can be observed that for most

scenarios historical cost of production was closer to minimum limit compared to max-

imum limit. However there still appears to be a significant room for improvement.

Operators can use such results to assess their performance and find the set points

x∗ for achieving minimum operating cost. Besides steam production cost, other costs

of operation such as water treatment costs can also be included in the objective

function. Sometimes, a particular set of process units may be preferred for operation

despite resulting in higher operating costs. Such priorities can be easily included in

the optimization framework to arrive at a more practical solution.

3.5.3 Conclusion

In this chapter, we introduced the water treatment network optimization problem.

First principle mass balance models were constructed based on process description

and problem requirements. Raw measurements were reconciled using these models.

It was observed that process models explained the data reasonably well. This allowed

their use in steady state optimization. Results from optimization can be used by

operators to assess how close they are operating to the optimal operating point. The

next natural objective is to arrive at the steady state optimal operating point as

quickly as possible by making use of buffer tank capacities and while adhering to all

process limitations. An approach to handle this is discussed in the next chapter.
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Chapter 4

Optimal set point change strategy
for water treatment network

Operators are often faced with the problem of negotiating sudden changes in operating

conditions. The previous chapter describes a method using which operators can find

a steady state optimal solution for the entire network given the active operating

constraints. The next logical step is to find a strategy to arrive at this operating point.

In this chapter, we discuss a strategy to arrive at the optimal steady state operating

point for the water treatment network. Section 4.1 contains problem description.

Assumptions made while constructing the problem statement are given in Section 4.2.

Section 4.3 gives the mathematical problem statement. Dynamic process models are

identified in Section 4.4. Results based on optimization framework are discussed in

Section 4.5. Next, some comments are made regarding the use of Gaussian process

models in system identification in Section 4.6. Finally, Section 4.7 concludes the

chapter.

4.1 Problem description

The water treatment and steam generator network discussed in Chapter 3 consists

of several process units which are controlled manually by different operators. There

is no automatic control that ensures that the units are working at optimal set point.

Skilled operators are able to maneuver plant set points based on their experience and

fine judgment. Tanks in the network are used as buffers to ensure smooth change in

process operating conditions. However, operators do not possess any tool which can
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guide them towards the optimal operating point.

In industry, this problem is usually handled by adopting a real time optimiza-

tion(RTO) and control strategy. In RTO, a global real time optimizer is used to

obtain set points for local model predictive controllers [51] which are tuned to work

in a coordinated fashion and drive the process to the optimal point. Several indus-

trial applications of RTO based process control have been shown to be successful.

Unfortunately, very often it is not economically feasible to implement RTO especially

when most of the units are under manual operation, as in case of the water treatment

network that is being studied in this work. In practice, RTO has been found to be

a profitable investment only in high margin plants such as FCCUs or hydrocrack-

ers [52]. This is because RTO implementations are hard to build and maintain and

involve significant investment. Complex models are used to describe the process as

accurately as possible. Parameters for these models are updated from time to time.

In the case of a major change in plant operation, the complete RTO implementa-

tion must be revised. Owing to these challenges, it makes sense to find a simpler

yet practical solution for optimization of the water treatment and steam generator

network.

4.2 Assumptions

Certain assumptions were made regarding the network and the strategy using which

it is driven to its new optimal point. These are given below:

1. Manual control of variables: It was assumed that as far as the available

flow rate and tank variables are concerned, the complete network is under open

loop control. Operators make decisions for changing the set points for some

of the variables, while the rest are governed by dynamic process models or

constraints identified using data. The number of manually controlled variables

were assumed to be given by the difference between total number of variables

and number of equality constraints. The rest were the so-called dependent

variables whose behavior was deemed to be governed by process constraints.

As seen in Figure 4.1, the input streams for water treatment units and steam

generators are assumed to be operator controlled. Some of the output streams
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are also considered to be operator controlled. 26 manually operated variables

were identified for the actual industrial network used in this work.

2. Data based models: Dynamic models are required to predict the behavior of

the process under set point change. First principle models for water treatment

and steam generators can be difficult to build and use in optimization. This is

because of the inherent complexity of the process. Thus, it was concluded that

data based models would be a viable modeling option. Use of both linear and

nonlinear data based modeling strategies was explored. Linear process models

were identified using first order plus dead time model structure. Non linear

modeling was performed using EM algorithm based robust GP regression as

proposed in Chapter 2. Results from both methods are provided in Section 4.4.

3. Time horizon for achieving new steady state: A time horizon of size N

was assumed for achieving new steady state condition. This is similar to the

finite horizon condition in model predictive control.

4. Time interval between set point changes: It was assumed that within the

time horizon N , all operators simultaneously change set points on manually con-

trolled variables after every M time steps. Although this type of coordination

between operators may not be achievable in practice, such an assumption can

provide an ideal solution to the problem and hence can be used as a guideline.

5. Fixed input water flow: It was assumed that throughout the time horizon of

transition, the input produced water flow to the network as seen in Figure 3.2,

is fixed.

4.3 Problem statement

Based on above mentioned assumptions, the set point change solution was obtained

using a dynamic optimization framework constructed as follows:

argmin
x(t=1),...,x(t=N),z(t=1),...,z(t=N)

N∑
t=1

(
||xf

∗ − xf (t)||2 + ||zf
∗ − zf (t)||2

)
(4.1)

50



Figure 4.1: Manually operated variables in the network: All inputs to water treatment
and steam generator units are manually operated. Some other streams are also under
manual operation based on the number of independent variables in the network. Note
that blocks in the figure represent the same process units as shown in Figure 3.2

such that,

1) Steam gen/water plants:

y(t) = G(z−1)u(t)

or

y(t) = f(y(t− 1), u(t− 1), y(t− 2), u(t− 2), . . .)

(4.2)

2) Tank models:

Atankxlevel(t) +
∑

i∈tank in

xi(t)−
∑

j∈tank out

xj(t) = Atankxlevel(t+ 1) (4.3)

3) Inequality constraints:

l ≤ x(t) ≤ h (4.4)

4) Operator controlled variables:

xk(t) = xk(t− 1) (4.5)
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where k denotes the operator controlled variables for all t 6= 1,M + 1, 2M + 1 . . .

5) Fixed produced water input:

xpw,in(t) = xpw,in(0) (4.6)

6) Initialization:

x(0) = x̂, z(0) = ẑ (4.7)

where N is the time horizon over which new optimal steady state flow rates repre-

sented by xf
∗ and zf

∗ are to be achieved. Values for xf
∗ and zf

∗ are obtained from

steady state optimization in Chapter 3. Note that optimal tank levels are not given

by steady state optimization. That’s why they do not appear in the objective func-

tion even though they appear in Equation 4.3 and 4.4 as constraints. Equation 4.2

is the dynamic model for steam generator or water treatment unit. Both linear and

nonlinear models have been explored in this work. y(t) represents the sum of all

measurements of streams exiting a unit and u(t) represents sum of all measurements

of streams entering the unit.

u(t) =
∑

i∈plant in

xi(t)

y(t) =
∑

i∈plant out

xi(t)
(4.8)

In the case of linear model G(z−1) is a discrete transfer function. In the case of

nonlinear model, f(.) represents prediction from Gaussian process with regressors

y(t − 1), u(t − 1), y(t − 2) and u(t − 2). The choice of regressors may vary depend-

ing upon the process model. Equation 4.3 represents the discretized first principles

based dynamic tank model. Process inequalities are incorporated using Equation 4.4.

In Equation 4.5, the freedom to change operator controlled variables at finite time

intervals of size M is represented. Finally in Equation 4.6 the input to the system is

fixed over the time horizon period and in Equation 4.7 the value of process variables

is initialized at time t = 0.

In our simulations, M was chosen to be 1/6th of the horizon length N . x(0) was

initialized using the data reconciliation results from Chapter 3. As explained before,

two different model identification strategies were explored in Equation 4.2.
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4.4 Model identification

As mentioned in Chapter 2, process measurements are available at a sampling rate

of 1 minute. Step response data was isolated for model identification from the time

series of measurements. Data had to be preprocessed using the system ID toolbox in

MATLAB before identifying model parameters. This was done as follows:

1. Data regions where input measurements were close to steady state were avoided

in the selection of training set. A continuous time series region involving a step

input response was extracted from the dataset without excessive fluctuations or

noise in process measurements. A similar exercise was performed to extract a

test set.

2. Outliers were removed from the training set based on visual inspection and

replaced by the mean of adjacent process measurements.

3. Mean of the data was removed from both the training and test sets.

4. Training and test data were down-sampled from 1 minute to 3 minute for all

plants before identification.

5. Input and output data for training as well as test set were normalized between

0 and 1.

4.4.1 Linear model identification

Linear model identification was performed as follows:

1. First order plus dead time models were identified using preprocessed step re-

sponse data. Since a steady state material input must equal output, the gain

of the dynamic process model must be 1. In reality, some flow rates are missing

such as slurry flow rate for some water plants. Moreover, measurements are

noisy. As a result input and output flow rates are never balanced. Therefore

after identification the gain for the process was approximated bys 1.

2. Identified unit gain first order plus dead time model was converted to discrete

transfer function formulation.
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3. WLS/WAC water plant models were found to have a response time between 10-

20 minutes. The poles for the identified transfer function were between 0.6 and

0.9 for these water plants. Higher order time series models could be identified;

however it was not leading to sufficient improvement in prediction performance

on test set. Therefore the following models were used in optimization code for

the two WLS/WAC water plants (Plants 1 and 3).

water plant 1: G1(z−1) = z−3 0.3792 + 0.007235z−1

1− 0.6136z−1

water plant 3: G3(z−1) = z−1 0.1511

1− 0.8489z−1

(4.9)

4. Identified steam generator models and evaporator (water plants 2a, 2b, 2c and

2d) models had a very small time constant (less than 3 minutes). From an

optimization point of view these units can be considered to be fast rate in

comparison to WLS/WAC water treatment plants. For simplicity, the following

arbitrary chosen linear process model was used for all these units:

G(z−1) =
0.92z−1

1− 0.08z−1
(4.10)

In Figures 4.2 and 4.3 we can see the one-step ahead prediction performance of iden-

tified linear models on training set for water plants 1 and 3. Note that the step input

response for water plant 1 in Figure 4.2 has a small overshoot which is not captured

by the identified process model.

4.4.2 Nonlinear model identification using EM based robust
GP regression

Nonlinear model identification using EM based robust GP regression was performed

for water plants 1 and 3 using the same training and test sets extracted for linear

model identification. Laplace likelihood was selected for noise model and Expectation

propagation was used for approximating the posterior distribution. This corresponds

to the lnEMEP procedure described in Chapter 2. One and two step delayed input

and output were chosen as regressors in the model. Increasing the number of regres-

sors did not improve prediction performance on test set. The evaporators and steam
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Figure 4.2: One-step ahead prediction using identified linear process model for water
plant 1

generators were assumed to follow the fast rate process model described in Equa-

tion 4.10. The following nonlinear autoregressive models were considered for water

plants 1 and 3:

y(k) = f(x(k)) + ε

where x(k) = [y(k − 1), u(k − 1), y(k − 2)]T for water plant 1

where x(k) = [y(k − 1), u(k − 1), y(k − 2), u(k − 2)]T for water plant 3

and ε ∼ Laplace distribution(0, b)

(4.11)

f refers to Gaussian process. Noise is assumed to follow Laplace distribution with

hyper-parameter b as described in Chapter 2. Similar to Equation2.32, the following

choice of kernel gave the best results [19].

K(xi,xj) = m0 +
D∑
d=1

mdx
d
ix

d
j + σ2

seexp

(
−1

2

(
xdi − xdj

)2

l

)
+ v0δij (4.12)

The first term in this kernel is a constant bias while the second term captures linear

correlations between input variables and response variables. Nonlinearity in the rela-
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Figure 4.3: One-step ahead prediction using identified linear process model for water
plant 3

tionship is modeled by the third term which is a squared exponential function. The

last term accounts for random error effect in the input variables. It was observed

that the use of linear kernel function (second term) is important for improving the

extrapolation ability of the identified Gaussian process model. This will be further

discussed in Section 4.6.

The kernel hyper-parameters and noise hyper-parameters are learned using the pro-

posed EM-EP approach. The hyper-parameter values for the identified models are

given in Table 4.1.

As mentioned earlier, both the training and test data were normalized between

0 and 1. In the optimization procedure, input was not restricted to unit changes in

magnitude. Therefore the output response for a step change in input was modeled by

scaling the unit step response according to the size of the step input. The reason for

adopting this approach is discussed in subsection 4.6.1. From Figures 4.4 and 4.5,

we can see that one-step ahead predictions from trained robust GP models match
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Table 4.1: Optimized hyper-parameter values for identified robust GP models: Values
correspond to the sequence log([m0,m1,m2, . . . ,md, l, σse, v0]) as per Equation 4.12,
where d is the number of regressors

Water
Plant

No of regressors Model hyper-parameters

1 3 [-33.78 -1.85 -4.89 0.55 -4.23 -2.36 -9.42]
3 4 [-42.52 -3.08 -55.91 -40.67 -0.46 12.74 -21.26 -5.11]

well with the output.

Simulation results on validation set are shown in Figures 4.6 and 4.7 for both

linear and robust GP models. In Table 4.2, we compare the performance of robust

GP models and linear process models in terms of RMSE on validation data set. Both

one-step ahead and infinite-step ahead (simulation) results are shown in the table for

robust GP models. One-step ahead results from linear models is same as simulation

results since it is an output-error (OE) model. As seen from the table, robust GP

models are good at one-step ahead prediction but not as good in the case of infinite-

step ahead prediction. Nevertheless, it is still better than or comparable to linear

process models.

In case of water plant 1, robust GP models give a better performance than linear

models. This is because process dynamics of water plant 1 are nonlinear. The non-

linearity of water plant 1 dynamics can also be assessed from the hyper-parameter

values for squared exponential kernel in Table 4.1. A large value of σse increases the

contribution of squared exponential kernel to the covariance matrix. On the other

hand, a small value of l gives more weight to nearby input locations thereby providing

a nonlinear structure to the model. Based on these facts, it can be observed that in

the case of water plant 1 the values for σse and l make the model nonlinear whereas

in the case of water plant 3 they do not impose significant nonlinearity. In conclu-

sion we can say that the use of GP kernels allows the identification of both linear

and nonlinear regression models and the use of heavy tailed noise distribution helps

reduce the effect of outliers.
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Figure 4.4: One-step ahead prediction using identified robust GP model for water
plant 1 on training data

4.5 Results

The complete data reconciliation, optimization and set point change strategy pro-

posed in Chapters 3 and 4 is summarized in form of a flowchart in Figure 4.8. In this

section we discuss the results from the optimization framework. The main output is

the set point change strategy for 26 manually operated variables. Optimization with

linear models was found to be approximately 5 times faster than optimization with

nonlinear robust GP models.

Based on the choice of process models for water plants 1 and 3 (linear or nonlinear),

two sets of results are shown in subsections 4.5.1 and 4.5.2 respectively. In addition

to exploring linear and nonlinear constraints for optimization, a variation to the

set point change constraint was studied and the corresponding results are shown in

subsection 4.5.3.
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Figure 4.5: One-step ahead prediction using identified robust GP model for water
plant 3 on training data

4.5.1 Optimization with linear models

Linear models identified as shown in Equation 4.9 were used in optimization to find the

set point changing strategy. A horizon of 60 time steps was chosen for optimization.

In Figure 4.9a, the optimized set point change solution for 9 of the 26 manually

operated variables can be observed. It can be seen that set point changes are initiated

at intervals of 10 time steps. For some set points, the transition to final set point

value is performed immediately whereas for others it follows a small set of changes.

These small delays in arriving at final set point ensure that constraints on tank levels

are not violated. In Figure 4.10a, tank level changes are plotted. Here we can see the

impact of set point changes on tank levels. Almost all tanks witness a rise in their

level and none of the tanks shows any drop in levels. We can also notice how the

set point manipulations ensure that tank levels never breach the constraints. Cost of

production plot is shown on the bottom right of Figure 4.10a. It can be seen that cost
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Figure 4.6: Prediction results using identified robust GP model and linear model for
water plant 1 on validation set

of production immediately drops to a lower value. This is because the optimal steady

state set point was found based on minimizing the cost of steam production and since

steam generator dynamics modeled using Equation 4.10 are very fast, any change to

boiler feed water input flow rate is immediately reflected in the steam production.

4.5.2 Optimization with nonlinear robust GP models

Gaussian process models identified using the approach described earlier were used in

optimization to find the set point changing strategy. Figure 4.9b shows the results

from this method for 9 of the manually operated variables. Comparing Figures 4.9a

and 4.9b, it can be seen that the set point change results are similar. This is to be

expected since the same dataset was used for model identification. Also the same

reconciled and steady state optimal values were used in both optimization methods.

Small differences in the two methods could be attributed to the different process

models.
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Figure 4.7: Prediction results using identified robust GP model and linear model for
water plant 3 on validation set

As far as tank levels are concerned in Figure 4.10b, most tanks arrive close to their

steady state. A slight difference can be levels at which tank levels stabilize in Fig-

ure 4.10b in comparison to Figure 4.10a. This is because of the use of different process

models for water plants in the two cases. On the bottom right of Figure 4.10b, the

drop in cost of production can be seen. Once again, the final optimal value of objec-

tive function is the same as in the case of linear model based optimization. Depending

on which model (linear or robust GP) describes the process dynamics better, one of

the two optimization schemes can be adopted. In this case since validation test per-

formance of robust GP models was better than linear models, as seen in Table 4.2, it

can be concluded that use of robust GP models for optimization is more suitable.

4.5.3 Optimization with “ramped” up set point changes

It was observed in the process data that manipulated variables are not changed based

on abrupt step changes; instead they are changed in smaller steps over a short period
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1. Select data from time
(t): (x(t), η(t), Atank)

2. Identify active constraints from data
or prior information (C(t),h(t), l(t))

3. Use data reconciliation to estimate x̂(t), ẑ(t)

4. Evaluate operating cost using x̂(t)

5. Find minimum operating cost and op-
timal steady state flow rates using steady

state optimization with fixed input flow rate

6. Find set point change strategy us-
ing proposed optimization framework

7. Compare the results from
both linear and robust GP
model based optimization

Figure 4.8: Approach for finding optimal set point change strategy
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(a) Using linear water plant models
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(b) Using robust GP water plant models

Figure 4.9: Results for set point changing strategy for manually operated variables
with linear and robust GP water plant models: Red dotted line represents the initial
set point and green dotted line represents the optimal set point. Blue bold line
signifies the set point change strategy. Clearly, results are not very different for the
two modelling methods
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(a) Using linear water plant models
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(b) Using robust GP water plant models

Figure 4.10: Tank level plots for optimization with linear and robust GP water plant
models: Blue solid lines represent the change in tank levels. Red dotted lines in
some of the plots depict the lower operating limit for the tank; On the bottom right,
blue solid line signifies cost of production. Tank level variations in the case of linear
models are a little different than in the case of robust GP models
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Table 4.2: RMSE on validation data set: Both simulation and one-step ahead pre-
diction results are shown

Water
plant

Robust GP
model

Linear pro-
cess model

Robust GP Linear process
model

(Simulation) (Simulation) (1-step prediction) (1-step prediction)

1 0.1697 0.2024 0.0680 0.2024
3 0.1063 0.1018 0.0428 0.1018

of time. The dynamic optimization proposed above provides a step change solution

where there is no limit to the step size. In order to simulate a slower ramp like

change in set points, a different set point change constraint was used. If the absolute

difference between initial and final optimal set point for a manually operated variable

was large - defined to be atleast 20% of the difference between maximum and minimum

possible value for that variable - then that variable was constrained to follow a slow

ramp like transition to the optimal value. For such variables Equation 4.5 is modified

as follows

xk(t) = xk(t− 1)

where k ∈operator controlled variable for all

t 6= 1, 0.5M + 1,M + 1, 2M + 1, 2.5M + 1, 3M + 1, . . .

(4.13)

The following constraints are added:

xk(t) =
4

7
xk(t+M) +

3

7
xk(t− 1)

xk(t+ 0.5M) =
6

7
xk(t+M) +

1

7
xk(t− 1)

where k ∈ operator controlled with large change for all

t = 1, 2M + 1, 4M + 1, . . .

(4.14)

In other words, pair-wise set point values at time steps (1, 0.5M+1), (2M+1, 2.5M+

1), . . . are constrained to follow a progression between the set point values at time

steps (0,M + 1), (2M, 3M + 1), . . . respectively. The set point values at times M +

1, 3M + 1, . . . are kept free. For example if M = 10, then based on the constraints in

Equations 4.13 and 4.14, a sample set point change strategy is given in Figure 4.11.

To generate this figure, set point value at time M + 1 was fixed as 1 and at time
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3M + 1 was fixed as 0.87.
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Figure 4.11: Sample set point change strategy with constraints based on Equa-
tions 4.13 and 4.14

The results for this problem formulation in case of linear model are given in

Figures 4.12a and 4.13a, and in case of robust GP models are given in Figures 4.12b

and 4.13b. We can see that in both these cases, the solution is noticeably different

from the original problem formulation. Set point changes suggested by optimization

are more intricate. The resulting changes in tank levels are also significantly different.

This is expected since large set point changes are not allowed in the new formulation.

A closer look at the subfigures within Figure 4.12 shows that the use of robust GP

models instead of linear models gave similar results for set point changes. However,

predicted tank level variations were noticeably different especially in case of Tanks 3

and 4 as seen in Figures 4.13a and 4.13b. This is because of the use of linear and GP

based process models for water plants.

Finally, a summary of results from the different modelling and optimization strate-

gies discussed in this chapter is shown in Table 4.3. The objective function refers to
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Equation 4.1 which is the same in all cases. Use of robust GP models gives a slightly

higher objective function value in comparison to the use of linear models. This could

be because GP models are nonlinear and take slightly longer to achieve steady state

as seen in Figure 4.6. As expected, a ramped up set point change strategy also results

in a higher objective function value. The effects of ramped up set point change strat-

egy and slower dynamics of identified GP models are also reflected in the increase in

tank water volumes in the third column of the table.

Table 4.3: Value of optimized objective function and % increase in water stored in
tanks

Method Objective function
value

Increase in tank
water storage (in
%)

Step change (Linear model) 4.7800e5 0.6007
Step change (Robust GP model) 4.8302e5 0.6771
Ramped change (Linear model) 5.6999e5 2.2788

Ramped change (Robust GP model) 5.7818e5 2.4662

4.6 Comments on use of robust GP regression for

process identification

This section contains some discussions regarding the benefits and challenges associ-

ated with the use of GP regression for process identification.

In this study, a robust GP regression model identified using proposed EM algo-

rithm was used on an industrial dataset as part of an optimization task. Results

suggest that it is possible to apply robust GP models to chemical engineering op-

timization problems. Due to the similarity of proposed optimization approach with

model predictive control (MPC), it can be supposed that GP regression can be suc-

cessful even with conventional MPC formulations. In fact several authors have applied

GP regression successfully to synthetic process identification datasets and used it in

MPC [22, 18]. They have also made use of the uncertainty in prediction given by GP

models in designing better model predictive control solutions. The proposed robust
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Figure 4.12: Results for “ramped” up set point changing strategy for manually oper-
ated variables: In this case we can see that some variables have a gradual change in
set points.
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Figure 4.13: Tank level and cost of production plots for “ramped” up set point
changing strategy: Notice that tank levels show a different trend compared to original
formulation. The cost of production dynamics are also different in this case.
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GP regression identified using EM algorithm can also be used in such an implemen-

tation. Based on our observations, some factors that must be accounted for before

using GP regression models for system identification are mentioned below:

4.6.1 Extrapolation performance of GP process models

In the above model identification procedure, training step test data for both input

and output were normalized between 0 and 1. At steady state the output stabilizes

at 1. In other words, the gain of the process model must be 1. This is because of

mass balance property for the unit. It was observed that when a different magnitude

of step input was given to the GP model, the infinite ahead prediction output did

not behave according to a process with gain 1. This is shown in Figure 4.15, where

both GP models fail to maintain the process gain when input is increased to 2. Both

models were identified using the training dataset for water plant 1.

One reason for not maintaining process gain is that industrial training data is

noisy. To verify this, a linear model with process gain 1 and high signal to noise ratio

was used to generate step response training data in the [0, 1] range. This model is

given in Equation 4.15.

y(t) = 0.75 ∗ y(t− 1) + 0.25 ∗ u(t− 1) + ε

where ε ∼ N (0, 10−4)
(4.15)

A robust GP model using the kernel in Equation 4.12 was trained using this dataset

and validated against a step response dataset in the [0, 5] range. In Figure 4.14, we

can see that low noise in training data allows good extrapolation results. This is

because constructing a robust GP model is similar to constructing a nonlinear ARX

model wherein both process and noise models are identified. This training data for GP

models must either have high signal to noise ratio or contain a signal with sufficient

range and excitation. Similar findings have been made by other authors [53].

Since industrial data used in this work is noisy, certain steps were taken to address

the error in extrapolation problem. The optimization framework allows a step change

of variable magnitude. Thus, for every step change in input, the magnitude of the

step change was used to scale the output of the trained GP process model. This

ensured that the gain of the process was 1 irrespective of step size.
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4.6.2 Choice of kernels

The choice of kernels (covariance function) can affect the performance of identified

process models significantly. In the above described implementation a combination of

linear, constant and squared exponential covariance functions was used to construct a

kernel. From the point of view of extrapolation, it was observed that the use of linear

kernel is desirable. Relying only on squared exponential or radial basis function kernel

may not lead to successful model identification. This is because, radial basis function

only recognizes strong correlation between outputs and nearby inputs. Predictions at

test set input locations which are not close to training set locations tend to be poor.

In Figure 4.15, we can see the poor prediction from a robust GP model using only

radial basis function kernel.
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Figure 4.14: Example to show effect of noise in training data on extrapolation per-
formance. Also note that the proposed kernel which also uses a linear covariance
function performs better than radial basis kernel
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Figure 4.15: Example to show extrapolation from GP models as well as effect of
choice of kernels. The blue simulated response is from robust GP model with kernel
given in Equation 4.12 whereas the red simulated response is from robust GP model
with kernel given in Equation 2.30.

4.6.3 Computation time

Use of GP models in the proposed optimization framework is computationally de-

manding. This is because it introduces nonlinear constraints. Thus, it must be

ensured that GP models are used specifically in the case of processes which involve

high degree of nonlinearity. Since GP models are completely data based, large size

of training data set can also slow down the optimization. In such cases use of sparse

Gaussian process models can yield significant improvement. Several works have fo-

cused building sparse GP regression models [32, 54].
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4.7 Conclusion

In this chapter, a novel optimization framework was proposed and implemented to

find a set point changing solution for the water treatment and steam generator net-

work. Two different process identification methods were tested. Linear discrete trans-

fer function models and robust GP regression models were explored. Some unique

aspects related to GP modeling for system identification were discussed. A third

“ramp up” based set point changing strategy was also presented. It was found that

the proposed method can give reasonable solutions for optimization of a network of

units. Results from this method can be improved by realistic constraints on the set

point changing strategy. Moreover, total produced water flow rate entering the sys-

tem may not be fixed during the period of transition. Uncertainties associated with

such constraints can be included into the proposed method and solved using robust

optimization methods.
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Chapter 5

Conclusion

5.1 Summary of thesis

This thesis is concerned with identification of robust GP regression model using EM

algorithm. Dynamic nonlinear process models identified using proposed approach are

used in optimization and control of an industrial process.

The challenges associated with the use of data-driven models in chemical engi-

neering optimization problems motivated us to explore Gaussian process regression.

This is explained in more detail in Chapter 1.

Chapter 2 contains the proposed method for identifying robust GP models. The

effect of outliers on regression is curtailed by the use of heavy tailed noise distribu-

tions such as t-distribution and Laplace distribution. An EM based approach was

used to estimate the hyper-parameters for the Gaussian process prior as well as noise

distribution. Another EM based approach known as Expectation Conjugate Gradient

(ECG) algorithm was derived and implemented. The proposed methods were then

successfully applied on simulation as well as real datasets. A soft sensor regression

problem using NIR spectroscopy data was also solved using the proposed methods.

Finally, a detailed comparison was made between EM based and conjugate gradient

based parameter estimation techniques. Through these discussions, it can be con-

cluded that EM algorithm is often easier to implement and numerically stable in

comparison to gradient based methods. Moreover, it comes with certain convergence

guarantees which make more attractive.

In Chapter 3 an optimization problem was formulated based on a SAGD water

treatment network. Process models were constructed for all the units and used for
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data reconciliation. Steady state optimization was performed for a fixed produced

water input to the network and the optimal cost of production was compared against

historically achieved cost of production.

Next, in Chapter 4 a novel set point change strategy was proposed for achieving

optimal cost of production in the network. This approach was formulated as an

optimization problem involving dynamic process models. The robust GP regression

technique described in Chapter 2 was used for modeling process dynamics of water

treatment units. The factors to be considered while identifying a nonlinear process

model using GP regresson are discussed. Results suggest that robust GP models can

be used in process optimization problems.

5.2 Future work

Although GP models offer a powerful tool for regression and nonlinear system iden-

tification, there are several other issues which must be overcome before they can be

used in a wider range of practical applications. The areas for improvement regarding

application of GP regression are listed below:

1. A well thought out choice of kernel function for designing the GP prior can

be instrumental in improving the performance of GP regression problems. For

example, if a relationship is known to contain a linear or periodic component,

it can be included in the kernel function. Recent works in machine learning

literature have focused on automatic pattern discovery and extrapolation in GP

models. In one paper this has been achieved by the use of the so called spectral

mixture kernels [55]. Such techniques can be useful in chemical engineering

applications.

2. In MPC type of applications, such as the one discussed in Chapter 4, use of a

reliable simulator model can be advantageous. Table 4.2 shows how one-step

ahead predictions from robust GP models are better than simulation. This is

because the strategy proposed in this work involves minimization of one-step

ahead predictions from robust GP models. The remedy is to try and extend

the proposed robust GP identification method to output-error models.
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Some areas for improvement regarding the optimization of the water treatment and

steam generator network are as follows:

1. The proposed set point change strategy basically relies on simulation of process

models using dynamic equations. There is no feedback taken from the actual

plant measurements. This could cause problems if the measurements do not

follow the simulation trend. Use of a feedback mechanism can help design a

model predictive control kind of operation strategy.

2. Cost parameters in the steady state objective function used in this thesis may

vary over a historical range of values. Other parameters appearing in constraints

can also have an uncertainty associated with their values. The proposed steady

state optimization problem can be improved by implementing a robust opti-

mization strategy which takes such uncertainties into account.
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Q function expressions

As seen in Equation 2.14, the Q function is composed of Qcov and Qe. Complete

expressions for these terms are as follows:

Qcov function

The expression for Qcov is as follows [33]:

Qcov = Ef |h,A [log p(f |X, θcov)]

= −1

2
log |2πK| − 1

2
E
[
fTK−1f

]
= −1

2
log |2πK| − 1

2
E[fT ]K−1E[f ]− 1

2
tr
(
K−1cov (f)

)
= −1

2
log |2πK| − 1

2
hTK−1h− 1

2
tr
(
K−1A

)
(1)

The above expression involves finding the inverse of K which can be ill-conditioned.

Cholesky decomposition was used to find K−1 since it is a more numerically stable

technique. Apart from this, a small amount of nugget was added to the diagonal of

K to improve the conditioning. Fixing a value for this nugget was avoided by using

the white noise term in the kernel as described in the regression results section. The

magnitude of this term was considered to be a variable and learnt using the proposed

EM scheme along with other hyper-parameters.

The values for h and A were obtained by the posterior approximation techniques

discussed in the chapter, viz., Laplace approximation or EP approximation.
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Qe function for t-distribution case

Qle for Student’s t-likelihood is given in Equation 2.19. The hyper-paramaters in this

case are θe = [ν, σ].

Q(θe|Θt)l = n log

 Γ(
ν + 1

2
)

Γ(
ν

2
)
√
πνσ

− ν + 1

2

n∑
i=1

log Ef |h,A

[
1 +

(yi − fi)2

νσ2

]

= n log

 Γ(
ν + 1

2
)

Γ(
ν

2
)
√
πνσ

− ν + 1

2

n∑
i=1

log

(
1 +

(y2
i + h2

i − 2yihi + Aii)

νσ2

)

= n log

 Γ(
ν + 1

2
)

Γ(
ν

2
)
√
πνσ

− ν + 1

2

n∑
i=1

log

(
1 +

s2
i

νσ2

)
(2)

Where s2
i = (y2

i + h2
i − 2yihi + Aii).

Qe function for Laplace distribution case

In the case of Laplace likelihood, the noise hyper-parameter is θe = s. Here, exact

Qe expression can be evaluated by substituting Equation 2.22 in Equation 2.23. This

gives the following:

Q(θe|Θt) = −n log(2s)− 1

s

n∑
i=1

Ef |h,A [|yi − fi|]

= −n log(2s)− 1

2

n∑
i=1

(
(yi − hi)

[
2Φ

(
yi − hi√
Aii

)
− 1

]
+ 2
√
Aii

[
φ

(
yi − hi√
Aii

)]) (3)

Where Φ is standard normal cumulative density function and φ is standard normal

probability density function.
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Q function derivatives

Qcov derivative

The derivative of Qcov with respect to covariance function hyper-parameters θcov can

be found as follows:

∂

∂θcov
Q(θcov|Θt) =

∂

∂θe
Ef |h,A [log p(f |X, θcov)]

=
∂

∂θcov

(
−1

2
log |2πK| − 1

2
hTK−1h− 1

2
tr(K−1A)

)
= −1

2
tr

(
K−1 ∂K

∂θcov

)
+

1

2
hTK−1 ∂K

∂θcov
K−1h +

1

2
tr

(
K−1 ∂K

∂θcov
K−1A

)
(4)

Qe derivative for Student’s t-likelihood

In the case of Student’s t-likelihood, Qle is evaluated instead of Qe. The expression

for Qle is given in Equation 2.19. Using this expression the derivative was computed

as follows

∂

∂θe
Q(θe|Θt)l =

∂

∂θe

n log

 Γ(
ν + 1

2
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Γ(
ν

2
)
√
πνσ

− ν + 1

2

n∑
i=1

log Ef |h,A

[
1 +

(yi − fi)2

νσ2

]
(5)
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For ν and σ the respective derivative expression are given by

∂

∂θe
Q(θe|Θt)l

=
∂

∂θe

n log
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log
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s2
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νσ2
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(6)

Where s2
i = (y2

i +h2
i − 2yihi +Aii). Therefore derivatives with respect to ν and σ are

given by

∂

∂ν
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n
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and
∂

∂σ
Q(θe|Θt)l = −n

σ
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2
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−2s2
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(
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Qe derivative for Laplace likelihood

The complete expression for Qe for Laplace likelihood is given in Equation 3. Using

it the derivative can be found as follows:

∂

∂s
Q(θe|Θt) =

∂

∂s

(
−n log(2s)− 1

s
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(9)

=
∂
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(10)
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Simplified Qcov function derivative
for ECG

The Qcov function derivative can be further simplified in the case of ECG. This

is because for ECG algorithm the value of derivative is required only at Θt, i.e.

∂
∂θcov
Qcov

∣∣∣∣
Θt

.

Recall that the expression for Qcov at each iteration requires expectation with respect

to posterior distribution p(f |X,y,Θt) where Θt is the value of hyper-parameters at

tth iteration. The approximation for the posterior distribution q(h) which is used in

ECG for Laplace noise distribution was obtained from the gpml toolbox which admits

the form:

q(f) = N
(
f |h = Kα,A = (K−1 + W)−1

)
(11)

where W is a diagonal matrix with Wii = s2
i . The EP approximation function in

gpml toolbox returns α, W1/2 as well as L = chol(W1/2KW1/2 + I). “chol” refers

to Cholesky decomposition. Using α,W1/2,L the expression in Equation 1 can be

simplified as shown in Equation 12. Since, h = Kα and A = (K−1 + W)−1, we get,
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2
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2
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(12)
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Using the Woodbury identity,

=
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∂θ
α− 1

2
tr
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Using L = chol(W1/2KW1/2 + I) the above expression can be further simplified to

give,

=
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tr
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(14)

where M = L−1W1/2. The final expression which involves less computations in

comparison to Equation 1, uses only α, W1/2 and L which are obtained using EP

approximation function in gpml toolbox.
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