
Social Data Mining: Collection and
Analysis of Political Posts

by

Ahmed Chaari

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Software Engineering and Intelligent Systems

Department of Electrical and Computer Engineering

University of Alberta

c©Ahmed Chaari, 2016

ii

Abstract

Social Networks become an important part of people’s lives. A large

number of individuals contribute to their contents. All aspects of every-

day life – from work to politics, and further from entertainment to per-

sonal events – are reflected in posts generated on a daily basis. Those

posts are perceived as a source of information that becomes a target and

subject of analysis and research. This thesis addresses an issue of col-

lecting and analyzing tweet posts. A comprehensive study of available

programming tools suitable for collecting posts from multiple social net-

works has been conducted. Based on the results of that investigation, we

have designed and developed a methodology for collecting tweets. Fur-

ther, we have constructed a Social Data Mining Platform. The platform,

implemented using Elasticsearch (open source full-text search engine),

provides a number of approaches and algorithms for analysis of tweets.

The analysis goes beyond processing of hast-tags and includes matching

processes that involve the whole context of tweets. We have selected po-

litical tweets as the subject of our study. We have demonstrated how the

proposed platform can be used to gain better understanding of political

issues and opinions of a populace.

iii

Preface
This thesis is submitted in fulfillment of the requirements for the de-

gree of Master of Sciencein Software Engineering and Intelligent Sys-

tems. This thesis is an original work by Ahmed Chaari. No part of this

thesis has been previously published.

iv

Acknowledgements
I would like to express my sincere gratitude to my supervisor Dr.

Marek Reformat for his continuous support of my Master Program, for

his motivation, constructive criticism, patience and engagement.

Last but not least I would also like to thank my parents for their

endless love and support.

v

Contents

Abstract ii

Preface iii

Acknowledgements iv

1 Introduction and Related Work 1

1.1 Introduction . 1

1.2 Thesis goals and perspective 2

1.3 Related Work . 3

2 Social Networks Data Collection 6

2.1 Introduction . 6

2.2 Generic APIs . 8

2.2.1 Introduction . 8

2.2.2 Open Source APIs vs. Proprietary APIs 9

2.2.3 Opensocial . 9

2.2.4 OPENi . 10

2.2.5 Spring Social . 11

2.2.6 Mule ESB . 11

3 Collection of Social Network Data 13

3.1 Limits of Twitter’s API . 13

vi

3.2 Implemented solutions to mitigate API Limits 14

3.2.1 Twitter User Timeline Collector 14

3.2.2 Twitter Search Collector 15

3.2.3 Tweet Status . 16

3.3 Creating Data Sets . 17

3.3.1 Parties Tweets . 17

3.3.2 Regular Users Tweets 18

4 Social Data Mining Platform 20

4.1 Introduction . 20

4.2 Data Set Enrichment . 20

4.2.1 Noun phrases . 20

4.2.2 Sentiment Analysis 21

4.2.3 Code Tuning and Parallel Processing 21

4.3 Platform Architecture . 23

4.3.1 Kubernetes based Platform as a Service (PaaS) . . 25

4.3.2 Docker . 25

4.3.3 Elasticsearch Introduction 27

4.3.4 Elasticsearch Filtering 28

4.3.5 Elasticsearch Analyzer 31

4.3.6 Elasticsearch Term Vectors 33

4.3.7 Multi Search . 34

4.3.8 Elasticsearch Similarities 34

4.3.9 Elasticsearch Mapping 38

4.3.10 Elasticsearch Bulk Insert and Update 39

4.3.11 Elasticsearch Query Matching 39

4.3.12 Elasticsearch Fuzzy Query 42

vii

4.3.13 Lucene Practical Scoring Function 43

4.3.14 Elasticsearch Kibana UI 45

5 Data Set , Analysis Methodology & Results and Discussion 47

5.1 Data Set Statistics . 47

5.2 User Tweet Matching and Scoring Methodology 48

5.2.1 Users Data Filtering 48

5.2.2 Party Matching . 48

5.2.3 Parties Tweets Filtering 48

5.2.4 Filtered Users Tweets Statistics 49

5.2.5 Scoring . 50

5.2.6 Aggregation . 50

5.2.7 Party Matching and Classification 51

5.2.8 Tweets Party Matching and Scoring Results 51

5.3 Election Results . 55

5.3.1 Algorithm validation 55

5.4 Term Vectors . 56

5.5 Term Context . 66

5.6 Results Interpretations and Discussion 72

6 Contributions, Conclusion and Future Work 74

6.1 Contributions . 74

6.2 Conclusion . 75

6.3 Limitation and Future Work 75

Bibliography 77

viii

List of Figures

3.1 Twitter User Data timeline Collector 14

3.2 Twitter Web crawler . 15

4.1 Textbolb parallel processing 22

4.2 Social Data Mining Platform 24

4.3 Virtual Machines VS Docker Platform 26

4.4 Party Score Query Filtering Algorithm 30

4.5 limit influence of tf on the score 37

4.6 Tweet Scoring Algorithm 41

5.1 Word cloud of Term vector from the Republican party . . 58

5.2 Word cloud of Term vector from the Democratic party . . 58

5.3 Word cloud of Term vector of the Justice party 61

5.4 Word cloud of Term vector of the Libertarian party 61

5.5 Word cloud of Term vector of the Socialismand Liberation

party . 64

5.6 Word cloud of Term vector of the Green party 64

5.7 Word cloud from terms in hash-tags hash-tags from Demo-

cratic party that relates to the term Obama 66

5.8 Word cloud from terms in noun phrases from Democratic

party that relates to the term Obama 67

ix

5.9 Word cloud from terms in hash-tags from Republican party

that relates to the term Obama 67

5.10 Word cloud from terms in noun phrases from Republican

party that relates to the term Obama 68

5.11 Word cloud from terms in hash-tags from Green party

that relates to the term Obama 68

5.12 Word cloud from terms in noun phrases from Green party

that relates to the term Obama 69

5.13 Word cloud from terms in hash-tags from Justice party

that relates to the term Obama 69

5.14 Word cloud from terms in noun phrases from Justice party

that relates to the term Obama 70

5.15 Word cloud from terms in hash-tags from Libertarian party

that relates to the term Obama 70

5.16 Word cloud from terms in noun phrases from Libertarian

party that relates to the term Obama 71

5.17 Word cloud from terms in hash-tags from Socialism and

Liberation party that relates to the term Obama 71

5.18 Word cloud from terms in noun phrases from Socialism

and Liberation party that relates to the term Obama . . . 72

x

List of Tables

3.1 Twitter API Rate Limits . 13

3.2 US 2012 Election Data Set Search Terms 18

5.1 Data Set Tweets Count for Parties 47

5.2 Sentiment based Filtered Users Tweets Statistics 49

5.3 Similarity and Sentiment based Filtered Users Tweets Statis-

tics . 50

5.4 Positive Tweets Results 53

5.5 Negative Tweets Results 54

5.6 Frequency T+ - T− . 54

5.7 Actual Election Results Retrieved from Wikipedia 55

5.8 Party Classification Algorithm Validation for the Demo-

cratic Party . 56

5.9 Party Classification Algorithm Validation for the Repub-

lican Party . 56

5.10 Term Vectors of the Republican Party 57

5.11 Term Vectors of the Democratic Party 59

5.12 Term Vectors of the Justice Party 60

5.13 Term Vectors of the Libertarian Party 62

5.14 Term Vectors of the Socialism and Liberation Party . . . 63

5.15 Term Vectors of the Green Party 65

1

Chapter 1

Introduction and Related Work

1.1 Introduction

In recent years, social networks (SNs) have facilitated connections be-

tween people by offering them an easy to use technology to share text,

images, and videos, as well as the ability to chat. SNs have evolved very

rapidly. They allow for keeping connection between friends, following

most recent news and sharing peopole’s thoughts. Those are just a few

key examples that lead SNs to become extremely successful. The most

known example of SN are Facebook, Twitter and Linkedin.

The success of SNs has attracted millions of active users on a daily

basis which resulted in a huge amount of data created every second.

Currently each SN is building its own social environment by offering

developers APIs (Application Programming Interface) to develop ap-

plications that are connected their platform. Developers can create apps

that access the users’ data, update and manage their profile. The easy

access to APIs has drawn the attention of researchers to analyze and

interpret this data.

Social data mining is used in many areas like marketing, business

intelligence, health monitoring, crises management, financial analysis

2 Chapter 1. Introduction and Related Work

and opinion mining. The data of SN offers an easy and continuous ac-

cess that covers a wide range of people compared to data collected by

surveys and polls.

1.2 Thesis goals and perspective

We set three main goal in this thesis. First create a generic SN data col-

lector that can collect a huge data set very quickly and efficiently from

multiple data Social networks .

Second, create a Social Data Mining Platform (SDMP) that is cloud

ready, scalable and extensible.Our (SDMP) is an attempt to improve cur-

rent social data analysis by taking a different approach that take incon-

sideration the text context in analyzing social data.

Third use the Data Collector and the SDMP for analysis of social data

from Politics.We analyze the US Elections of 2012 by mining the social

data related to the event.In our work, we want to investigate how a cer-

tain tweet from a regular user will relate to a each party. To achieve

this goal we collect data sets containing tweets related to each party.

That data is used to determine a unique signature representing each

party. Based on those party signatures we classify users’ tweets. This

classification process is performed by calculating a score that reflect the

relevance of the users’ tweets to each party by taking in consideration

hash-tags, noun phases and context form the users’ tweets and the party

tweets .Final results could be interpreted as a number of indicators that

help make a more accurate and a guided prediction on which party wins

1.3. Related Work 3

an election.

The proposed and developed SDMP can be generalized to utilize

any social data. It can be applied to any SN posts to determine their

relevance to certain entities. Such entities could be: topics, events, indi-

viduals, or organizations.

1.3 Related Work

Several papers haven been published that promote twitter as data source

for data analysis in different areas. We can mention few examples like

the paper of Jain and Kumar [14] where they Monitor Influenza-A (H1N1)

epidemic spread in India in 2015. The paper of Gerber [10] introduced a

system to predict crime in USA city of Chicago, Illinois. Another paper

from Yang, Mo, and Liu [35] tried to predict the stock movement based

on analyzing the sentiment of tweets from the users that form the finan-

cial community.

The first time that Twitter brought attention to the importance of social

network in politics and in elections was in 2008. At that time the USA

presidential candidate Barack Obama from the Democratic party started

using twitter to promote his campaign. Twitter users from the Demo-

cratic parties participated actively in this campaign by sharing Obama

tweets and using hash-tags to advertise the party plans after the elec-

tions and to attack the Republican party candidate John McCain. This

strategy turn out to be very effective and was one of the key strengths

of the Democrats which led to wining the 2008 elections.

4 Chapter 1. Introduction and Related Work

After the 2008 USA elections, researchers gained more interest in us-

ing Twitter in politics. The first attempt of using Twitter for election

prediction was shown in the paper Tumasjan et al. [32]. The authors

tried to predict the outcome of the 2009 German federal Election. Other

papers like Jungherr, Jurgens, and Schoen [15] criticized his paper and

explained why the Pirates Party won the election that year instead of

the Christian Democratic Union (CDU) as [32] predicted and pointed

out several issues with their analysis like: the identification of the par-

ties; and the date range for collection of tweets.

Other studies have showed more promising results, In study of the 2010

Swedish election campaign by Larsson and Moe [18]. The author did

a statistical analysis of the data from Twitter using hash-tags and users

mentioned in tweets and how they relate to each party using graphs.

This study defined a simple guideline for future studies to have a bet-

ter understudying of twitter. Further, in another paper form Ceron et

al. [5] the study measure the popularity of politicians in Italy in 2011

and predict the voting intention for the second round of the presidential

election that happened in France in 2012.The authors used HK method

Hopkins and King [13] that performs a supervised Sentiment Analy-

sis.They claimed that were able to get a Mean Absolute Error equal to

2.38 % for the french election which is very good prediction.Finally a

paper from Burnap et al. [4] presents a sentiment based study of the UK

2015 elections, they pointed out an important issue with the current that

other studies failed to mention, the issue of matching a tweet a party,

in their data set only 19.4% of the tweets containing the term “Greens”

1.3. Related Work 5

were actually about the Green Party.A problem that we intend to ad-

dress in this thesis. They used the sum of only used positive tweets to

predict the vote share and seat share.In both studies of Ceron et al. [5]

and Burnap et al. [4] the elimination of negative tweets from the results

was not justified in their work , negative sentiment is an information

that we intend to keep in our analysis because even if it’s true that neg-

ative sentiment for a specific party will not give an indication on which

party they have a positive sentiment to, we want to use that information

to eliminate votes and to see the public reaction toward a certain party.

6

Chapter 2

Social Networks Data Collection

2.1 Introduction

Building a data set using social network (SN) data is a challenging task.

It requires the use of a API(Application Programming Interface) or Li-

brary that will grant you access to the SN data, and manages the user’s

profile and his social activity. A property API is usually provided by

the official company to allow developers to build apps. In the last years,

major SN companies realized that offering an API right from the SN

lunch will allow for quick development of apps. This will lead to build

a whole ecosystem around SN and eventually will boost a number of

users and generate more revenue.

The APIs are usually provided in multiple programming languages such

as javascript, php, java, python. In most cases API are built as warpers

of the SN official REST REpresentational State Transfer) APIs.REST APIs

receive the most recent updates first and later the other APIs or Soft-

ware development kits (SDKs). Generally, when API is not supported

in a specific programming language, the open source community could

2.1. Introduction 7

also use the REST API to create a new API.

To create a data set, we need to obtain access to the API. This step is

frequently achieved by filling a web form to request API keys or tokens.

In most cases those keys are generated with respect to the OAuth [21]

open specification. The keys allow developers to gain access and com-

municate with a given SN. In the next step, multiple scripts are created

to query SN for data, download it and store it in a database for future

use.

However, this process of creating a data set is quite difficult. Some of

the most common obstacles are: APIs for the same SN in different pro-

gramming language are not always synchronized in implementing all

functions at the same time; documentation is quite often poor or incom-

plete; in some programming languages APIs are only available is open

source format with low community support.

Each SN has its own APIs and data models. Therefore, it is very impor-

tant and beneficial to construct a uniform social data mining platform

(SDMP) in order to access several SNs. It would allow for collecting

data multiple SNs and store it in a similar way without a need of major

changes and updates in the code associated with each SN.

The idea of constructing such SDMP comes from identification of multi-

ple similarities between data models for a number of SNs. For example:

• Personal SN: Facebook, Google+, VK Twitter

• Professional SN: Linkedin and Viadeo

8 Chapter 2. Social Networks Data Collection

• Location based SN: Yelp, Google Places, Foursquare and Tripadvi-

sor

• Video based SN: YouTube, Vimeo and dailymotion.

Therefore, the goal is to find an approach/method that allows a generic

access to different types of SN. This could be achieved by one of the fol-

lowing solutions:

• Finding a ready to use API that will cover all or most of the famous

SNs with full implementation of all major functions/operations;

• building an API with an abstraction layer on the top of REST APIs;

• Finding APIs that implement access to different SNs in similar

way, and use them with minimum modifications to access each

SN.

In the next sections we will present some of those solutions that we

tried, together with our feedback as well as the final solution that has

been adopted to build our system.

2.2 Generic APIs

2.2.1 Introduction

The use of Generic API will allow us to do minimal code changes every

time we add a new social network. It will ultimately use same functions

for similar requests with few differences that reflect the specificity of

each SN.

2.2. Generic APIs 9

2.2.2 Open Source APIs vs. Proprietary APIs

Using a proprietary API offers some key advantages like the quality of

code, the complete documentation and support, bug fixes and the avail-

ability of continuous and rapid updates. On the other hand, quite often

proprietary license forces some limitations on how to obtain data, and

how to perform specific tasks. All of that are obstacles for developers.

In some cases, the use of open source APIs is more suitable. The source

code is accessible and customizable. There is also an access to a huge

and active community support. In many cases, such support is consid-

ered better than the official support which is usually associated with a

longer response time and does not offer alternatives or hacks for doing

some specific tasks. However, some open source projects can stop offer-

ing support and updates. This happens if the project is maintained by

few developers or if the interest in the project is lost.

2.2.3 Opensocial

The first solution that we looked into was Opensocial [24] . It started as an

initiative solution launched by Google and MySapce in 2008. It offered

an open source, multiple-system SN platform. It was introduced as an

open source alternative to Facebook. The platform was based on html,

javascript and Google Gadgets with the promise to provide interopera-

ble applications among SNs that use the Opensocial API. Apache Shindig

[2] is the reference implementation build with respect to the Opensocial

specification that offers out of the box features to integrate Opensocial

as a container.

10 Chapter 2. Social Networks Data Collection

We found out that a few SN companies like MySpace, Linkedin and

SalesForce adopted the Opensocial for building their SNs. Un. As of

December 2014, the Opensocial project stopped and moved to support

the W3C Social Activity specification. In 2015 Apache Shindig has been

retired.

2.2.4 OPENi

OPENi [23] is an open source project created by the European Union to

develop a framework for integrating all major cloud services like SN.

The goal was to build a centralized user cloud profile called Cloudlets.

It’s supposed to enable users to manage their personal information for

each app and limit the disclosure of data that the app need to use to ac-

cess multiple social networks and create cloud applications.

The OpenI framework is a very promising project. However, our

tests showed that the first published releases are unstable. They lacked

some key features which were under development and updates. Addi-

tionally, a number of individuals working on the project was still limited

when compared to a number of developers contributing to the develop-

ment of other APIs.It’s still did not attract any contribution from the

open source community.

2.2. Generic APIs 11

2.2.5 Spring Social

Spring Social [30] is an open source framework for SNs written in Java. It

was supported by Springsource – the company behind the Open Source

Spring Frameworks Suit that included such components as: Spring core,

Spring web service, Spring security, Spring data persistence, Spring mvc,

Spring android, and so on. The suite that is widely used in Java pro-

gramming.

Spring Social offers an easy integration with the other frameworks of

Spring. However, the project did not offer any abstraction layer for a

generic framework, but implemented an access to each SN as separate

library on the top of Spring Social Framework core.

Spring Social has a good documentation, a growing community and

contains an access to new SNs. It contains multiple features and sup-

ported major SNs like Google+, Facebook, Twitter and Linkedin from

its first release.

Using Spring Social we implemented three social data collectors for Face-

book, Twitter and Linkedin. Our experimentation has showed that de-

velopment time was relatively longer than other Python based SN APIs.

Therefore, we continued looking for a faster and easier alternative.

2.2.6 Mule ESB

Apache Software Foundation [3] is an open source Java based Enterprise

Service Bus (ESB), as well as an application integration (AI) platform. It

is built on open source standards and it implements in its design the best

12 Chapter 2. Social Networks Data Collection

practices and recommendations for a middle-ware framework. The ESB

is developer friendly. It uses a high level programming language based

on XML. It also has a domain-specific language (DSL) called Mule Ex-

pression Language. Mule ESB is cloud ready, offers an API management

tool and connectors for many Software as a Service (SaaS) applications.

The connectors offered by Mule ESB include connectors for Facebook,

Twitter and Linkedin. For social connectors, the ESB warps a well-

known open source java API in the background and delivers a straight-

forward configuration and implementation of all major functions.

Using Mule ESB, we implemented three specialized data collectors

for Facebook, Twitter and Linkedin. Our tests with Mule ESB and Spring

Social conducted on the same SN showed that there are some difficulties

and challenges related to collecting social data. Those concerns will be

detailed in the next section.

13

Chapter 3

Collection of Social Network

Data

3.1 Limits of Twitter’s API

The initial utilization of the RESTful Twitter API [33] has indicated a

number of unfortunate limitations regarding the ability to download

data. The free access is restricted with the following limits:

TABLE 3.1: Twitter API Rate Limits

Method

No of requests
over a 15-min
window (app
auth)

Page Limit History

GET statuses/
user_timeline 300 200 status

maximum of
3200 statuses
per user

GET search/tweets 450 200 status
7 days and max-
imum of 3200
statuses

N.B. : These rates are subject to changes and they need to be checked regu-

larly.

14 Chapter 3. Collection of Social Network Data

3.2 Implemented solutions to mitigate API Lim-

its

In order to overcome the API’s limitations we have looked at multiple

options that would allow as to exceed the imposed limits. We have im-

plemented a number of solutions.

3.2.1 Twitter User Timeline Collector

For the method statuses/user_timeline, we create multiple app auth (a

maximum of 8 apps can be created) which give us an access to 8 differ-

ent api keys on the Twitter developers website. In that case, we can run

8 processes in parallel to extract tweets. Each process is able to make 300

requests, and has to wait for 15 minutes time before it can start working

again.

FIGURE 3.1: Twitter User Data timeline Collector

Additionally, for Twitter users that had more than 3200 tweets, we

had to develop a web crawler, written in Python, that mimics the user’s

3.2. Implemented solutions to mitigate API Limits 15

behavior in order to read all tweets using a Web Browser Automation

tool called Selenium [29] before the date of the last tweet that we col-

lected using the API. All collected tweets are saved in HTML format

and parsed to JSON.

FIGURE 3.2: Twitter Web crawler

3.2.2 Twitter Search Collector

With the Twitter Search API, we can query for tweets that were tweeted

in the 15 minutes period. Our solution was to create a twitter search

16 Chapter 3. Collection of Social Network Data

collector that periodically collects and stores tweets using 8 different

API keys and requests only tweets that have an ID higher than the last

tweets we collected with the previous/last usage of the collector.

3.2.3 Tweet Status

The twitter API sends data in JSON format. Below, we show a sample

of the tweet’s status (only useful filed are shown):

Tweet Json Struture

{

"text": "Teeet Text",

"id": "tweet ID",

"createdAt": "tweet timestamp",

"retweetCount": "number of times the tweet was shared",

"hashtagEntities": [{

"text": "hashtag 1"

}, {

"text": "hashtag n"

}],

"userMentionEntities": [{

"name": "User 1 Name mentioned in this tweet ",

"screenName": "User 1 screenName"

}, {

"name": "User m Name mentioned in this tweet ",

"screenName": "User m screenName"

}],

"user": {

"followersCount": "number of users that Follow this user",

"friendsCount": "number of the user’s friends ",

"biggerProfileImageURL": "User Profile Image URL ",

"id": "user id",

"description": "description of the user of this account",

"location": "location of this user",

"screenName": "a string that identify a user account",

"lang": "tweet language",

"statusesCount": "total number of status for this account",

3.3. Creating Data Sets 17

"timeZone": "user time Zoone in Text",

"name": "Account user name",

"createdAt": "user account creation timestamp",

"utcOffset": "Timestamp utcOffset"

}

}

3.3 Creating Data Sets

Our goal has been to create a data set related to politics that focus on

election taken place in a countries (USA). That data set should contain

two major parts: tweets from the party members participating in the

election; and tweets from accounts of ’regular’ users, all data about the

time of election.

3.3.1 Parties Tweets

The first part of the data set can be easily obtained with a list of Twitter

accounts of members of a parliament and most important members of

parties. Twitter has a feature called twitter list where you can create a

collection of Twitter accounts for people to follow. Almost all parties

share lists of party members, parliament members or party related ac-

counts. Such lists enable to promote the party’s ideas, and make it easy

to follow news related to the party. Also, some websites offer such lists

for individuals to follow. In order to create our own lists for each party

we merge all accounts that appear in those party lists in one list. Such

18 Chapter 3. Collection of Social Network Data

created list will be used to collect tweets.

3.3.2 Regular Users Tweets

In the second part of the data set, we use the Twitter search API to search

for tweets with specific words or hash-tags related to the election. How-

ever, this can only be done in real time before and during an election

campaign. Such a campaign takes few weeks in Canada, and up to few

months in US. So, to collect data we should wait for next election to hap-

pen. To overcome this problem, we have decided to use data set from

the past elections, and we were able to find a big data set (170 millions

status) of tweets by [20] collected in a three months period leading up to

the 2012 US elections that was held on November 6th, 2012. The data has

made available by data science consulting company called Kingmolnar.

The following search terms have been used to create this data set:

TABLE 3.2: US 2012 Election Data Set Search Terms

Abortion Democrat MidWest Republican
Afghanistan DINO Mitt Rich

AfricanAmerican economy Morehouse RINO
Ambassador Embassy Moveon Romney

AnneRomney energy MarriageEquality Romneycare
AUC gas NAACP Senate

Bengali HBCU Nationaldebt South
BirthCertificate Heathcare Obama Spelman

Birther HHS Obamacare SwingState
Black Hurricane Pakistan Taxes

BlackVoter Iran PaulRyan TeaParty
Bluestates Israel Poll Undecided

CAU Jerusalem Poor VoterID
ChristopherStephens Liberal POTUS VotingRights

Congress Libya Purplestates West
Conservative Media Prolive Yemen
CivilRights MichelleObama Parenthood Youth

Debt MiddleClass Redstates Youthvot

3.3. Creating Data Sets 19

The 2012 elections were a very large event in the US history. They

consist of the following multiple elections:

• the 57th presidential election;

• Senate elections;

• House of Representatives elections.

Social Data Mining is a Big Data problem, which requires power-

ful hardware to run. However, we only had access to a standard PC.

Also, we wanted to be sure that the tweets we have are related to the

US election – it was important because some search terms could be as-

sociated with tweets that are not related to the election. That required

us to filter all tweets from the downloaded data set using the hash-tag

#Election2012. That hash-tag was the official hash-tag used by all par-

ties to indicate relation to the 2012 Election and all tweets created before

November the 6th of 2012.

20

Chapter 4

Social Data Mining Platform

4.1 Introduction

4.2 Data Set Enrichment

Before we start processing and analyzing our data set, we need to en-

hance our raw data by adding two extra attributes: Noun Phrases List

and sentiment polarity. The values of these attributes are calculated

based on the tweets’ text using Textblob Python natural language pro-

cessing (NLP) library.

4.2.1 Noun phrases

A noun phrases (NP) is a phrase that contain a noun such as a person,

a place, an object. Often, a noun phrase is just a noun or a pronoun.

We use the list of extracted noun phrases in a similar way as hash-tags.

This is particularly useful when we have a tweet that contains a few

hash-tags.

For example, in the sentence: In 2012 election, Obama became the eleventh

President and third Democrat to win a majority vote more than once.

4.2. Data Set Enrichment 21

The noun phrases are :

• Election

• Obama

• President

• Democrat

4.2.2 Sentiment Analysis

In order to calculate the sentiment polarity, where polarity is a float

number within the range [-1.0, 1.0] we use a TextBlob [31] Naive Bayes

Classifier. The classifier is trained on the movie review corpus, and is

imported from the leading Python NLP library called Python Natural

Language Toolkit(NLTK) [26].

4.2.3 Code Tuning and Parallel Processing

Our test showed that processing a tweet using Texbolb to extract the

noun phrases and to calculate the sentiment polarity on a PC with a

two-core CPU and a 3 GHz clock requires about 2 seconds. To reduce

that time we started optimizing our code using multiple approaches to

speed-up the process of loading JSON files. We used a fast python pack-

age called python cjson library [25] that creates a warper on the top of a C

based JSON library. We compared a JSON loading time obtained with

CJSON with solutions using several other packages (jsonlib, simplejson,

ujson and yajl), but we only gained a few microseconds.

The next step was to improve our code using Python parallel pro-

cessing. After implementing the multiprocessing algorithms, our code

22 Chapter 4. Social Data Mining Platform

was running 4 processes simultaneously and with this change we man-

aged to decrease the processing time for one tweet to an average of 1

second. Figure 4.1 illustrate this process.

FIGURE 4.1: Textbolb parallel processing

4.3. Platform Architecture 23

To improve our processing time even more we experienced with us-

ing Opencl [22] library in python for Graphics processing unit (GPU)

programming , the problem was that opencl uses C99 version of C lan-

guage for the parallel portion of code , and because all of our code is in

python , we needed to rewrite some libraries like textbolb in c99 , which

is a very hard task.

4.3 Platform Architecture

The process of building our social data mining platform (SDMP) re-

quired careful selection of every technical aspect of the system in order

to satisfy a number of quality attributes. The platform should be: ro-

bust, easily scalable, cloud ready, and sustainable.

The platform has been tested on the PaaS cloud provider [11]. We have

used Elasticsearch [Elasticsearch] as a document based database and

a real time full text search engine that scores tweets based on specific

queries. Elasticsearch runs a cluster of multiple nodes managed using

Kubernetes [17], each node is a container running separately. The sys-

tem UI is based on Kibana UI running inside a Docker [6] container and

we use several Python scripts running inside a container to query Elas-

ticsearch and updates its indices.

24 Chapter 4. Social Data Mining Platform

FIGURE 4.2: Social Data Mining Platform

4.3. Platform Architecture 25

4.3.1 Kubernetes based Platform as a Service (PaaS)

Kubernetes [17] is an open source project from Google to create and man-

age a cluster of containerized applications.

The system has been tested on the cloud Paas Google Container En-

gine that is built on the top Kubernetes and on local server running Min-

cube version of Kubernetes.

Kubernetes allows an easy deployment and management of docker

containers in pods. A pod is similar to a host machine where containers

share Linux namespaces, local network and docker volumes.

4.3.2 Docker

Docker is an open source platform create by DotCloud Inc. (Now Docker

Inc.). It allows to create a distributed application encapsulated in an iso-

lated environment called containers. The containers are based on Linux

Containers (LXC) and are created on the base of a docker image. A

docker image is a a collection of binary files assembled based on a spec-

ification in a dockerfile (kind of a configuration file). A single container

contains dependencies to run an application inside it. The application

can communicate with the host system through the network and can use

its file system.

Docker evolved quickly and gained a lot of support from many open

source communities and from large IT companies. It became a platform

for manginging containers that can work together and communicate be-

tween each other. Docker is used to build a strong back-end system for

many organizations.

26 Chapter 4. Social Data Mining Platform

Docker also eliminates hassles of system administrators and develop-

ers of applications that behave differently when deployed on different

development and production environments. Since Docker ’uses’ con-

tainers that are built using the same image containing the same libraries

and packages it runs anywhere and guarantees the same outputs. It en-

ables an approach write once, run anywhere (WORA).

The benefit of using Docker containers is the fact that they use the host

Linux kernel to perform all tasks, no matter what version of Linux OS

(Red Hat, Ubuntu ,CentOS) is run on a host machine. This results in

a small size of container images. Each container is running as sperate

process on the host machine. In contrast, Virtual Machines (VMs) are

FIGURE 4.3: Virtual Machines VS Docker Platform

a full virtual environment that contains a layer of virtualization for the

4.3. Platform Architecture 27

targeted environment – hardware and resources.

Docker images are usually created using a dockerfile which is the source

code used to built an image. Typically, this file contains steps how to in-

stall the application that suppose to run, as well as all dependencies of

packages and libraries. It also contains instructions how the container

file system communicates with the host, which ports are exposed to the

host machine, and how to load external configuration files. Every line

of this file is compiled and it results in a separate layer on top of the

layer created during the execution of the previous line. Eventually, the

whole image is created. The user pushes the image to a private or public

repository. Later it can be used to create containers.

Docker containers have become widely used and many open source

projects are currently offering a stable docker image to make sure that

their application will perform as expected. Such companies like Ama-

zon, Google and Microsoft offers IaaS (infrastructure as a service) and

PaaS (Platform as a service) cloud services supporting docker contain-

ers. Currently, docker is the best solution to make sure any application

will work without any issues on the cloud environment.

4.3.3 Elasticsearch Introduction

ElasticSearch [7] is an open source text search engine. It includes NoSQL

document based database and a text mining tool built on top of Apache

Lucene. Elasticsearch hides the complexity of using Lucene and uses it

internally as the core of its platform. Elasticsearch offers a RESTful API

to interact with a client as one server. Both requests and responses use

JSON. It stores data as a document oriented database that represents

28 Chapter 4. Social Data Mining Platform

one of the types of Key-value databases. It means that we do not use

tables and rows as in conventional relational databases but we store the

whole document. The document can also be seen as an object in object-

oriented programming. By default, such objects have no schema what

makes them more compact. Additionally, we do not need to have a

value for each variable like in a relational database.

Each document inserted in Elasticsearch is automatically indexed in

JSON format. We call this process indexing. Documents are stored in a

way similar to a relational database. They can have a type. Types can be

compared to a table in relational databases and basically they are filters

that help organize documents. To query Elasticsearch, we need to create

a query using a Domain Specific Language (DSL) based on Json, and use

the API get method.

In our data set, all tweets are indexed in one index and using seven

types: six types for the parties (each one contains tweets from the same

party), and one more type to store regular users tweets.

In the next sections related to Elasticsearch, we will explain the main

internals components of Elasticsearch. The technical details are based on

the Elasticsearch Documentation [9], and the book by Gormley and Tong

[12]. We also provide details how these features are used in the process

of building our social data mining platform (SDMP).

4.3.4 Elasticsearch Filtering

Elasticsearch Filters works as a true of false classifier. The user creates a

filter in the Query DSL which contains a collection of conditions and cri-

teria applied on an index or a type which species if a document should

4.3. Platform Architecture 29

have to pass a filter or not.

Documents that successfully passed the filter will be later used in

the query body of the search request. For example, the filter query built

to find tweets with a sentiment polarity grater than 0.2 that were cre-

ated between 01/04/2011 and 06/11/2012 in our US elections data set

is shown below:

"filter": {

"bool": { "must": [

{"range": {

"createdAt": {

"gte": "01/04/2011",

"lte": "06/11/2012",

"format": "dd/MM/yyyy"

}

}}

,

{"missing" : { "field" : "parties_agg" }}

,

{

"range": {

"tweet_sentiment_polarity": {

"gte": 0.2

}

}

}

]}

}

}

In Figure 4.4: Party Score Query Filtering Algorithm, we represented

the filtering process for scoring user tweets. Filters are dynamically cre-

ated based on the User tweets to eliminate irrelevant party tweets. The

30 Chapter 4. Social Data Mining Platform

FIGURE 4.4: Party Score Query Filtering Algorithm

4.3. Platform Architecture 31

elimination is done based on basic term filters for the hash-tags and the

noun phrases. A document is considered relevant if it contains at least

one hash-tag or one noun phrase from the user original tweet. Those

generated filters will be added in the whole Scoring Query. The scoring

part of the query assigns higher scores to the most relevant filtered doc-

uments. The scoring process is composed of several steps which will be

discussed in details in the next sections.

4.3.5 Elasticsearch Analyzer

An analyzer in Elasticsearch is basically an NLP tokenizer which split a

string into terms or tokens, and remove stop words.

Several analyzer are available in Elasticsearch by default. We have

picked the English analyzer because it is the most convenient one for

our data set US 2012 Elections. This analyzer was used for all tweets

treated as string fields. The configuration of the analyzer has been set

up using Elasticsearch mapping. This process will be discussed later in

a separate section.

The tokonezation is done at the time of indexing (inserting) a tweet.

This helps Elasticsearch to be very quick at data search and scoring.

All major languages have ready to user analyzers. So for another

data set we can pick the analyzer that supports the language used in

the data. We can also customize analyzer by modifying one of the basic

ones.

The English analyzer has a list of stop word for the English language,

as well as an English term stemmer.

32 Chapter 4. Social Data Mining Platform

For example, the listing below represents an implementation of the

English analyzer as a customized analyzer built using basic tokenizers,

from Elasticsearch Documentation [9] :

{

"settings": {

"analysis": {

"filter": {

"english_stop": {

"type": "stop",

"stopwords": "_english_"

},

"english_keywords": {

"type": "keyword_marker",

"keywords": []

},

"english_stemmer": {

"type": "stemmer",

"language": "english"

},

"english_possessive_stemmer": {

"type": "stemmer",

"language": "possessive_english"

}

},

"analyzer": {

"english": {

"tokenizer": "standard",

"filter": [

"english_possessive_stemmer",

"lowercase",

"english_stop",

"english_keywords",

"english_stemmer"

]

}

}

}

4.3. Platform Architecture 33

}

}

Note. Data from Elasticsearch Documentation

URL: www.elastic.co/guide/en/elasticsearch/reference/current/analysis-lang-

analyzer.html

To extend the default analyzer, we use two other Character Filters: the

HTML Strip Char Filter returns a clean string without any HTML ele-

ments; and the Mapping Char Filter which can be used to create a map-

ping table between emoticons (emojis) to their meanings in English.

4.3.6 Elasticsearch Term Vectors

Term vector in Elasticsearch contains statistics about the output of the

Analyzer. Two term metrics could be extracted per term or per docu-

ment (tweet) over the entire index:

• ttf: total term frequency (it is a number of occurrences of a given

term in index)

• doc_freq : document frequency (a number of tweets that contain a

given term in index).

To extract term vectors we use the Multi-termvectors API which per-

mit querying for term vectors in multiple tweets using a list of tweets

ids. This list makes the processing time shorter by reducing the number

of requests over the network and we will use Terms filtering to only re-

trieve the most relevant term vectors using minimum term frequency of

100.

34 Chapter 4. Social Data Mining Platform

In the future sections we will also be using other performance boost-

ing features like bulk methods.

The term vector statistics allows us to determine a unique party sig-

nature (or fingerprint), which is later used by Elasticsearch to score user

tweets.

4.3.7 Multi Search

To query Elasticsearch we will use the Multi Search API instead of the

regular Search API. The idea is the same as in the bulk indexing. In our

algorithm, we have a large number of queries to trigger, and this creates

a lot of overhead. In order to mitigate this issue we query the index in

bulk, which means we have to prepare each query and its metadata. To

automate this process, we have created three Dynamic Query Builders

in Python that use a query template and add relevant query data for

each of them: One Dynamic Query Builder for scoring regular users

tweets against each party tweets; and two Dynamic Query Builder to

aggregate these scores in two steps.

4.3.8 Elasticsearch Similarities

A similarity in Elasticsearch or Apache Lucene is an algorithm to calcu-

late a weight of each term which will be used in matching formula to

calculate a relevance score based on all terms weights.

Lucene has several similarity algorithms. We will compare the re-

sults using two similarities calculated on all fields for the party and the

regular users tweets. We will describe the algorithm in next sections.

4.3. Platform Architecture 35

Term Frequency–Inverse Document Frequency (TF_IDF) Similarity

We are summarizing the TF/IDF similarity used by Elasticseach and

described in details in Elasticsearch Documentation [9]

The term weight in TF/IDF is calculated based on three values cal-

culated and stored during indexing (inserting) of tweets:

Term frequency (TF) : the prevalence of a term t in a document d

(tweet), Lucene uses the square root of the number of occurrences of the

t in d

tf(t, d) =
√

frequency

The Inverse document frequency (IDF) Lucene uses the logarithm

of the number of filtered documents (tweets), divided by the number of

filtered documents that contain the term.

The more the term is popular, the lower its IDF value is. IDF is used

to minimize the weight of common terms.

idf(t) = 1 + log
number of filtered documents

(number of documents contain the term+ 1)

Field-length norm (norm) To assign higher weight to a shorter field

in order to increase its chances to be more relevant.

norm(d) =
1√

number of Terms

The field-length norm is calculated using the inverse square root of the

number of terms in the field.

36 Chapter 4. Social Data Mining Platform

Term Weight(TF_IDF) : The final term weight is the product of all

those three previous values:

weight(t, d) = tf(t, d) · idf(t) · norm(d)

Okapi BM25 (Best Matching 25) Similarity :

Elasticsearch uses the Robertson Stephen et al. [27] version of Okapi

BM25. In this section we present a basic explanation of the Okapi BM25

similarity based on Robertson [28] paper and Weber [34] presentation.

The BM25 Formula can be divided in three parts :

BM25(d) =
∑

t∈q,ft,d>0

log(1 + (
N − dft + 0.5

dft + 0.5
)) · ftd

ftd + k
· 1

(1− b+ b
1(d)

avgdl
)

(4.1)

• Part 1 represents the IDF factor : Term popularity

• Part 2 represents the Saturation Curve factor :limit the effect of TF

on the score

• Part 3 represents the Length Weighing factor: change the influence

of document length

where :

• dft=number of document that contain the term

• N=Number of Documents

• ftd = frequency of term in document

4.3. Platform Architecture 37

• k = saturation parameter

• b= length parameter

• l(d) = number of tokens in document

• avgdl = average document length in corpus

BM25 formula is quite complex when compared to TF/IDF. It was

created using multiple mathematical approximations. The most impor-

tant advantage of BM25 compared to TF/IDF is how it behaves when

a term appears many times. In TF, the term that appears 20 times has

more effect on relevance than terms that appears 5 times, while in BM25

the term that appears 10 and 20 times are treated the same way. This is

called a "nonlinear term-frequency saturation" and is illustrated in Fig-

ure 4.5

FIGURE 4.5: limit influence of tf on the score

Note. Figure from Elasticsearch Documentation [9]
link:

https://www.elastic.co/guide/en/elasticsearch/guide/current/pluggable-
similarites.html

38 Chapter 4. Social Data Mining Platform

Another advantage of BM25 over TF/IDF, is that it is tunable by ad-

justing two parameters: k and b:

• k: controls a term-frequency saturation; we use the default value

of 1.2 which is the recommended for most types of documents;

• b: controls an effect of field-length normalization; a value of 0.0

disables normalization, while a value of 1.0 normalizes fully; we

use a value of 0.75 which is the recommended for most types of

documents.

4.3.9 Elasticsearch Mapping

Mapping in Elasticsearch means adding index configuration metadata

per field. In our data set the mapping for our data set includes the choice

of: the similarity algorithm, the analyzer algorithm; and the type and

format of each field.

Setting the mapping of an index the right way is very important be-

cause unlike relational databases where we can easily make changes re-

garding type and structure of the data, in Elasticsearch a lot of process-

ing, like tokenizing and term weight calculations, happens at the time of

indexing a document (tweet in our case) and depends on the algorithm

that we choose. We have to re-index all documents for most of changes

we make in the mapping. Unfortunately if the mapping contains some

parts of the old mapping, Elasticsearch does not use values that are cal-

culated before. Therefore, it is recommended to start with tests on small

data sets and to keep changing the mapping until desired results fit our

needs.

4.3. Platform Architecture 39

4.3.10 Elasticsearch Bulk Insert and Update

Using the regular indexing API to insert and update document is not

very practical. Especially, if we need to insert or update a big data set

that should be re-indexed time to time. The two main issues are high in-

dexing time and high network bandwidth usage. To boost this process

we use the Bulk API to push data to Elasticsearch in chunks. Each data

chunk is a file that contains data from the data set of tweets together

with indexing metadata like index name, type, and document id.

We have created Linux shell scripts and Python scripts to automate this

process and dynamically create and add metadata. Using the Bulk fea-

ture we have been able to minimizing the time of indexing and updating

the whole data set in Elasticsearch on a sigle node from six hours to one

hour.

4.3.11 Elasticsearch Query Matching

To classify user tweets we start with scoring tweets from each party sep-

arately. It is done dynamically via building a query based on the text of

the user’s tweet, hash-tags and noun phrases. Results of scoring calcu-

lations perform on each party are aggregated and compared to find the

party with the highest aggregated score.

After filtering, we use a full text matching called "Match Query". It

allows us to perform an exact-value term search in the tweet’s text. We

also add a query boost for hash-tags matching to double the importance

of hash-tags when compared to the text of a tweet. This decision was

made after a data set exploration phase.

40 Chapter 4. Social Data Mining Platform

In Figure 4.5, we illustrate how the query is build based on a tweet

from a regular user. This query takes the output of the filter as input

and Use Lucene Practical Scoring Function with the specified similarity

algorithm and terms weights to compute the score for each tweet that

passed the filter. In the next sections we provide more details regarding

the used algorithm.

4.3. Platform Architecture 41

FI
G

U
R

E
4.

6:
Tw

ee
tS

co
ri

ng
A

lg
or

it
hm

42 Chapter 4. Social Data Mining Platform

4.3.12 Elasticsearch Fuzzy Query

In order to ensure a bit more flexible text matching, we use an Elastic-

search option called ’fuzzy query’. This helps in identifying terms that

are mistyped or contain repeated characters.

The fuzzy matching query uses the Damerau-Levenshtein edit dis-

tance (Damerau 1964; Levenshtein 1966) for a text field. Based on the

fuzzy match query parameters, Elasticsearch determines all possible terms

by doing a number of character modification operations: deletion; in-

sertion; substitution and transposition; called edits. This operation is

controlled by: the limit of max expansions; and the edit distance.

We use a recommended value of 50 for the default max_expansions,

and the AUTO edit distance. The AUTO edit distance means that de-

pending of the length of a term the following behavior is expected:

• [0; 2] no edits, the query must match without fuzziness;

• [3; 5] one edit is allowed;

• > 5 two edits are allowed.

"match": {

"text": {

"max_expansions" : 50

"fuzziness": "AUTO",

"query": "tweet text"

}

4.3. Platform Architecture 43

4.3.13 Lucene Practical Scoring Function

This section explains how the final relevance score is calculated in Elas-

ticsearch. Our explanation will be based on the book by Gormley and

Tong [12] and the Apache Lucene Documentation [1].

Vector Space Model Vector Space Model is actually a vector that con-

tains weights terms. Both document and query will be represented as

multi-term vectors. The weights in the Vector Space Model are calcu-

lated using the similarity algorithm. The problem of comparison was

solved by comparing the angle between multidimensional vectors via

computing Cosine similarity cos θ. For two non-zero query vector �q and

document �d :

�q · �d = ‖�q‖‖�d‖ cos θ

cosine similarity equation :

cos θ =
�q · �d

‖�q‖‖�d‖

Lucene Practical Scoring Function formula Lucene Practical Scoring

Function formula is a combination of the Boolean model and the vector

space model.We based our explination on the Elasticsearch Documenta-

tion [9] and the Lucene Practical Scoring Function [19].The Boolean model

simply filters the documents. An approximation of the vector space

44 Chapter 4. Social Data Mining Platform

model is used and its refining is done by introducing multiple factors.

score(q, d) = coordFactor(q, d) · queryBoost(q)

· �q ·
�d

‖�q‖ · docLenNorm(d) · docBoost(d)

(4.2)

Many terms in this formula are calculated during indexing at the

time a document (tweet in our case) is added to Elasticsearch:

• Query-boost for the query is from the query q.

• Document length norm doc-Len-Norm(d) and document boost doc-

Boost(d) values can be computed in advance at indexing time and

their multiplication is saved as norm(t in d) where t means term.

For TF/IDF similarity, the rearranged final formula is as follows:

score(q, d) = coord(q, d) · queryNorm(q)

·
∑

tf(t in d) · idf(t)2 · t.getBoost() · norm(t, d)

(4.3)

where:

• tf(t in d): the Term’s Frequency, calculated based on the formula

introduced in the TF/IDF Similarity Section;

• idf(t): the Inverse Document Frequency, calculated based on the

formula introduced in the TF/IDF Similarity Section;

• coord(q,d): Query Coordination, a higher score is given to docu-

ments that have more query terms

coord(q, d) =
overlap

maxOverlap

4.3. Platform Architecture 45

where :

overlap: a number of query terms that exist in the document

maxOverlap: a total number of terms in the query

• queryNorm(q): Query Normalization Factor, Lucene attempt to

normalize query scores to be able to compare it. However, this

comparison is not very accurate if scores form different queries

are compared

queryNorm = 1/
√

sumOfSquaredWeights

For a Boolean Query (OR, AND) the Sum of Squared Weights is :

sumOfSquaredWeights = q.getBoost()2·
∑
t in q

(idf(t) · t.getBoost())2

• t.getBoost() is a search time boost of term t in the query q as speci-

fied in the query text

• norm(t,d) encapsulates Field boost f.boost() and length factor length-

Norm

norm(t, d) = lengthNorm ·
∏

field f in d named as t

f.boost()

4.3.14 Elasticsearch Kibana UI

To have a complete social data mining platform (SDMP), we have added

a user interface layer. We utilize a plugin for Elasticsearch called Kibana

ElasticSearch [8] that allows to visualize data. Kibana helps in creating

quick and interactive visualization. It is very useful in data exploration

46 Chapter 4. Social Data Mining Platform

phase to query the index in real time and view the results quickly. Af-

ter we have implemented our algorithm which include filtering, query-

ing and aggregation, the final results are stored in the form of tables so

Kibana has been not used. For more complex visualization a full cus-

tomization is possible. Another good alternative is to use the web ap-

plication Shiny and create scripts in R language to query and plot data.

Here, the advantage is an access to all powerful R packages.

47

Chapter 5

Data Set , Analysis Methodology

& Results and Discussion

5.1 Data Set Statistics

Table 5.1 shows the basic statistics related to data sets containing tweets

from parties involved in US elections 2012. The process of collecting

those tweets was described in Chapter 3, Section 3. As it can be seen

some parties had more tweets than others, this problem will be ad-

dressed in the aggregation phase of our algorithm to minimize ’the size

effect’ on our analysis.

TABLE 5.1: Data Set Tweets Count for Parties

Party Republican Democrats Justice Green
Socialism
and Lib-
eration

Libertarian

Number of
Tweets 95193 95731 62618 8625 2128 13202

Number of
Twitter

Accounts
560 361 43 175 16 63

48Chapter 5. Data Set , Analysis Methodology & Results and Discussion

5.2 User Tweet Matching and Scoring Method-

ology

5.2.1 Users Data Filtering

First we filter the users’ tweets to eliminate tweets that are neutrals, i.e.,

tweets with −0.2 ≤ SentimentPolarity ≤ 0.2. Those tweets are not very

useful in our analysis since they do not carry the users’ position toward

a party. The output of this filter will be our new regular a users data set

TU_FN .

5.2.2 Party Matching

To match or classify a user tweet tui to a certain party, we calculate scores

that represent the relation between the user tweet and each tweet from

the party. We repeat this process for each party Ph where h ∈ [1, 6], and

i ∈ [1, n] with n representing a total number of user’s tweets. Before

scoring tweets, we filter tweets from each party to eliminate ones that

are not relevant to the current user tweet tui.

5.2.3 Parties Tweets Filtering

To filter parties tweets, we dynamically build a filter Fi(tui). This filter

eliminates irrelevant tweets from all tweets of a given party tphe where

e ∈ [1, w] and w is a number of tweets for Ph. The output of this filter

represents the filtered tweets of a party tphj where j ∈ [1,m] and m ≤ w.

This process is described in Figure 4.4. We use the same filter Fi on all

5.2. User Tweet Matching and Scoring Methodology 49

parties for each user tweet tui, so the number of tweets that pass the

filter depends on the filter and party.

5.2.4 Filtered Users Tweets Statistics

Table 5.2 contains statistics about user tweets after all neutral tweets are

removed. Our users tweets data set TU_FN is a collection of positive

tweets T+ and negative tweets T−.

TABLE 5.2: Sentiment based Filtered Users Tweets Statis-
tics

Tweets
Filter All Users Users T+ Users T− Users TN

Tweets
Count 88011 20555 7663 59793

T+ :Users tweet with SentimentPolarity ≥ 0.2
T− : Users tweet with SentimentPolarity ≤ −0.2
TN :Neutral Users tweet with −0.2 ≤ SentimentPolarity ≤ 0.2

The filtering of the data set TU_FN processes can be presented in two

stages. First, there is filtering of tweets that belong to each party based

on the user’s tweet. It is possilbe that the user’s tweet would not have

any relevent tweets from a given party. Second, the scores represtning

maching of tweets of a given user to tweets from all parties could be

zero. The score values depend on the applied similarity algorithm. Ta-

ble 5.3 contains statics about tweets data set TU_FN after filtering, and

for different similarity algorithms and the sentiment polarity.

50Chapter 5. Data Set , Analysis Methodology & Results and Discussion

TABLE 5.3: Similarity and Sentiment based Filtered Users
Tweets Statistics

Tweets
Filter

Users TF_IDF
T+

Users BM25 T+

Tweets
Count 5058 3484

Tweets
Filter

Users TF_IDF
T−

Users BM25 T−

Tweets
Count 2369 1369

T+ :Users tweet with SentimentPolarity ≥ 0.2
T− : Users tweet with SentimentPolarity ≤ −0.2

5.2.5 Scoring

The output of the filtering process is the input for the scoring. Query

Qi() is applied. It uses a similarity algorithm to determine a score scoreij

between the user’s tweet and each tweet from the party tweets tphe

where i ∈ [1, n] and j ∈ [1,m]. Each query Qi() is built dynamically

from fields in the user’s tweet tui. This process is already explained in

Section 4.3.11 and Figure 4.6.

It is very important to notice that the same query is applied to each

party. This makes aggregated score for each party comparable per a

user tweet.

5.2.6 Aggregation

To aggregate the scores for a given user’s tweet ti across all party tweets

tphj, we calculate the sum of squares Aggij =
n,m∑
i,j=1

score2ij . Therefore, for

5.2. User Tweet Matching and Scoring Methodology 51

each user’s tweet we have a vector:

Aggi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Aggi1
...
...

Aggi6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

The sum of squares provides us with a measure representing the mag-

nitude of scores associated with each party. The sum of squares will

boost tweets that have higher scores and minimize the effect of tweets

with lower scores. This makes sense since the scores for the user’s tweet

against one parties will only have few tweets with high scores while the

majority of scores will be close to zero. We do not want to eliminate

tweets with low scores because they still carry information related to

matching of tweets. It is the result of the filtering stage where all tweets

that contain at least one hash-tag or noun phrase from the user tweet

are selected. The sum of squares is also useful to make aggregated score

results from parties that contain less tweets comparable to the other ag-

gregated score results from parties with high number of tweets.

5.2.7 Party Matching and Classification

We assign Mij for a user tweet ti across all party tweets tphj, Mij takes

the value of Mij = Aggij if Aggij = max(Agg1..Agg6) and 0 otherwise.

5.2.8 Tweets Party Matching and Scoring Results

Finally, in order to interpret the results we split the users tweets to two

sets: one set of positive tweets T+; and one of negative tweets T−. We

52Chapter 5. Data Set , Analysis Methodology & Results and Discussion

analyze each set separately. We do not include neutral tweets in the final

results because they do not provide any valuable information regarding

sentiment of the user to the party.

• T+: Users with tweets with SentimentPolarity ≥ 0.2

• T−: Users with tweets with SentimentPolarity ≤ −0.2

• TN : Users with tweets with −0.2 ≤ SentimentPolarity ≤ 0.2

In order to have a better understanding how users thought about

parties and how popular they were, a number of indicators have been

proposed:

• We calculate a score called AvgofMaxScore that combine the sen-

timent and the aggregated scores Mij of a party

AvgOfMaxScoreh = Avg(Mij · senti)

this score gives us a general indication of pepole’s attitude toward

a certain party and how strong it was.

• We calculate a rank of parties based on descending values

of AvgOfMaxScoreh

• We calculate FrequencyOfMaxScore by counting a number of Mij �=
0 for party Ph, this score reflects the voting tendency because even

if one likes or hates a party so much her vote still counts as one;

here we assume that each tweet represent the user’s opinion about

a given party.

Results from the last three measures are in table 5.4 and table 5.5

5.2. User Tweet Matching and Scoring Methodology 53

• We calculate FrequencyT+−T− by subtracting FrequencyOfMaxS-

core for T− from FrequencyOfMaxScore for T+.

FrequencyT+−T− = FrequencyOfMaxScoreT+−FrequencyOfMaxScoreT−

Results of FrequencyT+ − T− are in table 5.6

TABLE 5.4: Positive Tweets Results

Republican Democrats Justice Green
Socialism
and Lib-
eration

Libertarian

Avg of Max
Score TF IDF

T+

4.182 8.286 2.459 0.148 0.222 0.464

Rank TF IDF
T+

2 1 3 6 5 4

Frequency
of Max Score

TF IDF T+

1142 1373 875 123 1039 506

Avg of Max
Score BM25

T+

4185.915 9959.371 1692.346 61.792 16.587 267.25

Rank BM25
T+

2 1 3 6 5 4

Frequency
of Max Score

BM25 T+

1026 1576 567 48 41 226

54Chapter 5. Data Set , Analysis Methodology & Results and Discussion

TABLE 5.5: Negative Tweets Results

Republican Democrats Justice Green
Socialism
and Lib-
eration

Libertarian

Avg of Max
Score TF IDF

T−
-4.147 -19.449 -2.08 -0.102 -0.085 -1.228

Rank TF IDF
T−

2 1 3 5 6 4

Frequency
of Max Score

TF IDF T−
547 740 443 66 237 336

Avg of Max
Score BM25

T−
-3541.749 -21712.28 -1135.709 27.002 -9.098 -804.541

Rank BM25
T−

2 1 3 5 6 4

Frequency
of Max Score

BM25 T−
378 651 194 21 9 116

TABLE 5.6: Frequency T+ - T−

Republican Democrats Justice Green
Socialism
and Lib-
eration

Libertarian

Frequency
TF IDF (T+ -

T−)
479 836 124 -18 -196 -110

Frequency
BM25 (T+ -

T−)
648 925 373 27 32 110

5.3. Election Results 55

5.3 Election Results

In table 5.7 we include USA 2012 election results from Wikipedia. These

results allow us to compare our findings with the real election results.

TABLE 5.7: Actual Election Results Retrieved from
Wikipedia

Presidential
candidate Party Popular vote

Percentage
Barack

Obama(Incumbent) Democratic 51.06

Mitt Romney Republican 47.20
Gary Johnson Libertarian 0.99

Jill Stein Green 0.36
Virgil Goode Constitution 0.09

Roseanne Barr Peace and Freedom 0.05
Rocky Anderson Justice 0.03

Tom Hoefling America’s 0.03
Other 0.17

Note. Data From Wikipedia
URL : https://en.wikipedia.org/wiki/United_States_presidential_election
,_2012

5.3.1 Algorithm validation

To validate our algorithm and convince ourselves that it works, we have

created two data test sets. The first one has contained a subset of Tweets

from the members of Democratic party, while the second one contained

a subset of Tweets from the members of Republican party. Tweets in

both data test sets have been used as the users’ tweets. The results ob-

tained from our algorithm provided expected outcome. The tweets of

users – members of each party in reality – have been classified (matched)

correctly to their parties.

56Chapter 5. Data Set , Analysis Methodology & Results and Discussion

Results of the validation process for the Democratic and Republican

parties are presented in Table 5.8 and 5.9

TABLE 5.8: Party Classification Algorithm Validation for
the Democratic Party

Republican Democrats Justice Green
Socialism
and Lib-
eration

Libertarian

Frequency
of Max Score

/ TF IDF
2 113 0 0 0 0

Test Data Set consist of 115 tweets (after filtering) form the Democratic Party

TABLE 5.9: Party Classification Algorithm Validation for
the Republican Party

Republican Democrats Justice Green
Socialism
and Lib-
eration

Libertarian

Frequency
of Max Score

/ TF IDF
94 5 0 0 0 0

Test Data Set consist of 99 tweets (after filtering) form the Republican Party

5.4 Term Vectors

Term Vector for each party represent the signature of that party. They

give us a good idea of the most important topics and interests discussed

in it. Terms vectors details for each party are included in Tables 5.10 to

5.15. We also added Word-Clouds of these vectors in Figures 5.1 to 5.6.

5.4. Term Vectors 57

TABLE 5.10: Term Vectors of the Republican Party

Term ttf doc_freq
job 9173 8439

4job 6067 6057
bill 5488 5284
here 5465 5410
tax 4510 4072

obama 4294 4211
vote 4134 3901
hear 4050 3963
senat 3694 3547

american 3694 3621
budget 3634 3365
presid 3614 3551

us 3601 3446
discuss 3586 3571

pass 3259 3146
gop 3223 3167
tcot 3163 3163
debt 3154 2978
work 3023 2955
energi 3020 2735

ttf: total term frequency (the number of is the number of occurrences of a
term in all tweets in the party’s index)
doc_freq: document frequency (the number of tweets that include a term
in in the party’s index)

58Chapter 5. Data Set , Analysis Methodology & Results and Discussion

FIGURE 5.1: Word cloud of Term vector from the Repub-
lican party

FIGURE 5.2: Word cloud of Term vector from the Demo-
cratic party

5.4. Term Vectors 59

TABLE 5.11: Term Vectors of the Democratic Party

Term ttf doc_freq
barackobama 8544 8538
obama2012 6996 6980

vote 6567 5844
job 6124 5512

presid 5676 5529
romnei 5647 5503
obama 5540 5422

us 5244 4951
help 4793 4679
make 4295 4141

support 4156 4080
american 4039 3936

work 3987 3823
tax 3591 3176

women 3378 3071
bill 2987 2861

plan 2963 2874
gop 2838 2763
act 2658 2609

health 2564 2421

ttf :total term frequency (the number of is the number of occurrences of a
term in all tweets in the party’s index)
doc_freq : document frequency (the number of tweets that include a term
in in the party’s index)

60Chapter 5. Data Set , Analysis Methodology & Results and Discussion

TABLE 5.12: Term Vectors of the Justice Party

Term ttf doc_freq
occupi 5039 4769
peopl 2571 2438

occupywallstreet 2352 2331
protest 2346 2291
polic 2040 1961
just 1955 1920

arrest 1774 1677
vote 1687 1480

wiunion 1550 1550
tcot 1544 1544

teaparti 1448 1414
sai 1445 1388

support 1444 1397
call 1396 1351

march 1386 1331
obama 1381 1330
make 1366 1314

occupyseattl 1329 1276
street 1240 1210

occupyoakland 1232 1158

ttf :total term frequency (the number of is the number of occurrences of a
term in all tweets in the party’s index)
doc_freq : document frequency (the number of tweets that include a term
in in the party’s index)

5.4. Term Vectors 61

FIGURE 5.3: Word cloud of Term vector of the Justice
party

FIGURE 5.4: Word cloud of Term vector of the Libertarian
party

62Chapter 5. Data Set , Analysis Methodology & Results and Discussion

TABLE 5.13: Term Vectors of the Libertarian Party

Term ttf doc_freq
libertarian 2158 2062

liberti 1576 1553
parti 1082 1042

johnson 1060 1007
gari 936 896

independ 825 823
tcot 660 659

candid 656 627
vote 588 500
stori 579 579

govgaryjohnson 524 521
obama 500 481

us 488 459
freedom 484 472
teaparti 472 471

what 454 423
hess4governor 397 397

govern 396 380
ronpaul 372 353
romnei 340 331

ttf :total term frequency (the number of is the number of occurrences of a
term in all tweets in the party’s index)
doc_freq : document frequency (the number of tweets that include a term
in in the party’s index)

5.4. Term Vectors 63

TABLE 5.14: Term Vectors of the Socialism and Liberation
Party

Term ttf doc_freq
votepsl 483 421

petalindsai 313 313
candid 233 232

campaign 229 224
lindsai 202 202

presidenti 200 200
election2012 197 197
yari_nobord 175 172

live 166 159
peopl 141 135
right 135 128

us 134 127
social 122 117
fight 117 113

osorio 98 98
elect 91 91
polic 89 85

mikeprysn 89 89
protest 86 85
romnei 340 331

ttf :total term frequency (the number of is the number of occurrences of a
term in all tweets in the party’s index)
doc_freq : document frequency (the number of tweets that include a term
in in the party’s index)

64Chapter 5. Data Set , Analysis Methodology & Results and Discussion

FIGURE 5.5: Word cloud of Term vector of the Socialis-
mand Liberation party

FIGURE 5.6: Word cloud of Term vector of the Green party

5.4. Term Vectors 65

TABLE 5.15: Term Vectors of the Green Party

Term ttf doc_freq
green 2481 2224
parti 1597 1448

jillstein2012 1468 1402
greenparti 978 975

vote 859 719
stein 809 797

candid 806 789
jill 780 766

debat 677 627
us 619 576

gpu 539 523
presidenti 458 453

2012 360 356
state 355 339

watch 349 343
support 348 334

regist 347 325
live 321 311
join 313 310

romnei 340 331

ttf :total term frequency (the number of is the number of occurrences of a
term in all tweets in the party’s index)
doc_freq : document frequency (the number of tweets that include a term
in in the party’s index)

66Chapter 5. Data Set , Analysis Methodology & Results and Discussion

5.5 Term Context

From parties term vector we notice that for example the term obama

appears in almost every party .In many other studies which only uses

terms without it context and the measure of it’s relevance, this will cre-

ate many false positives. This proves that our methodology should be

more accurate. To further investigate this issue and show an example

of how we can create a context of term from each party , we used the

term obama in each party to find tweets that contain this term and we

calculated the frequency of hash-tags and noun-phrases that coexistence

in the same tweet for all the tweets. And we used this results to create

Word cloud of the context of the term obama for all parties.

FIGURE 5.7: Word cloud from terms in hash-tags hash-
tags from Democratic party that relates to the term Obama

5.5. Term Context 67

FIGURE 5.8: Word cloud from terms in noun phrases from
Democratic party that relates to the term Obama

FIGURE 5.9: Word cloud from terms in hash-tags from Re-
publican party that relates to the term Obama

68Chapter 5. Data Set , Analysis Methodology & Results and Discussion

FIGURE 5.10: Word cloud from terms in noun phrases
from Republican party that relates to the term Obama

FIGURE 5.11: Word cloud from terms in hash-tags from
Green party that relates to the term Obama

5.5. Term Context 69

FIGURE 5.12: Word cloud from terms in noun phrases
from Green party that relates to the term Obama

FIGURE 5.13: Word cloud from terms in hash-tags from
Justice party that relates to the term Obama

70Chapter 5. Data Set , Analysis Methodology & Results and Discussion

FIGURE 5.14: Word cloud from terms in noun phrases
from Justice party that relates to the term Obama

FIGURE 5.15: Word cloud from terms in hash-tags from
Libertarian party that relates to the term Obama

5.5. Term Context 71

FIGURE 5.16: Word cloud from terms in noun phrases
from Libertarian party that relates to the term Obama

FIGURE 5.17: Word cloud from terms in hash-tags from
Socialism and Liberation party that relates to the term

Obama

72Chapter 5. Data Set , Analysis Methodology & Results and Discussion

FIGURE 5.18: Word cloud from terms in noun phrases
from Socialism and Liberation party that relates to the

term Obama

5.6 Results Interpretations and Discussion

From these results, by using the FrequencyT+ − T− measure, we can

easily detect that the Democratic party is most likely to win this elec-

tion which was the case in the US elections 2012. The Republican party

comes second with a small difference. More people felt positively to-

wards the Democratic party.

Another interesting finding is that people felt negatively, were al-

most angry at the Democratic party. However, because each person can

only make one vote, this does not affect negatively the Democratic party.

The Justice party was third in our results but it did not received much

votes in the elections. To understand this we need to look at the term

vector of this party, where we can easily spot that this party was strongly

supporting the Popular movement ’Occupy Wall Street’ which had sup-

port from Americans from different parties. Another important factor

5.6. Results Interpretations and Discussion 73

is that the two-party system in USA forces a large number of people to

vote for the Democrats or Republicans to ensure that the other candidate

will not be elected.

For The Green, Socialism and Liberation and Libertarian parties we

can detect that results changes depending on the scoring algorithm TF/IDF

and BM25. This happened because the aggregation score of each tweet

was very low and this can easily be affected by the selection of similarity

algorithm. TF/IDF is good because it is easy to compute but from ex-

amining the results and the data set content, we can can see that BM25 is

more accurate. This confirms the decision to use BM25 in Elasticsearch

and Lucene. BM25 is a default similarity algorithm in the newer version

of Elasticsearch.

74

Chapter 6

Contributions, Conclusion and

Future Work

6.1 Contributions

In this thesis we have shown that our three initial goals have been achieved.

First, we created social data collectors that can be easily modified and

extended to cover other social networks (SN). It is true that we were

limited by privacy policies in some SNs and by the API rates in others,

but this issue for industrial application can be solved via purchasing the

appropriate perineum API access.

Second we implemented a Social Data Mining Platform (SDMP) based

on Elasticsearch that can scale easily and can be extended to use with

other SNs. SDMP is also cloud ready and very quick since parts of the

processing happens in inserting time.

Third we used our platform to test it with analysis of tweets related

to the US Elections 2012. We presented a new way of matching tweets

to entities(organizations ,events ,peoples,communities ...) that takes in

consideration many factors like hash-tags, noun phrases, text of tweets,

6.2. Conclusion 75

and entity unique signature.

6.2 Conclusion

Building a social data mining platform and making sure that it is cloud

ready and easily extensible was a challenging task. It required the use

of several new technologies that had to be integrated to compose the

desired system. Another big challenge was to work with a data set con-

taining ’political’ tweets. It is know that this topic is hard when includes

sentiment analysis and social mining.

In our analysis, we obtained interesting results that we believe gen-

uinely reflect the content of the data set. The proposed approach leads to

better understanding of social data that uses common language which

carry a certain ambiguity.

6.3 Limitation and Future Work

There are few limitation to our study. Firstly, a bigger data set of users’

tweets will give a more accurate results. Secondly, adding emotion anal-

ysis like the open source project by Krcadinac et al. [16], would increase

the depth of findings. Emotion detection in text is a relatively new field

of research. It is related to sentiment analysis that started to bring at-

tention of researchers. Using this technique will give us a more accurate

understanding of people reaction to parties by knowing their emotions

like joy, fear, sadness, anger.. . Finally adding twitter location data will

allow us to have an idea about the popularity of each party in every

Electoral district or seat. To add this feature to the analysis we need

76 Chapter 6. Contributions, Conclusion and Future Work

to build an address validation algorithm since we cannot use only the

geolocation field in a tweet – this option is not enabled by the majority

of users. We can combine geolocation field with the user location text

field which in input manually to obtain an address. To achieve this the

user’s location needs to be normalized, mapped and scored depending

on their relevance to a list of addresses taken as a reference.

From the current results we can find two possible future extension

of this social data mining platform using a training data from the score

results of our algorithm. The first one is development of a recommender

system that is able to match individuals to the party that best fits their

interests. The second possible extension it is to train a neural network

to automatically classify tweets to parties.

In the presented work Twitter and political tweets were used as the

example to test our algorithm. This work can easily modified to use data

sets from other social networks related to other interest area or commu-

nity. For example, we are currently considering modifications of the

algorithm to detect how people react to the use of green technologies

from tweets collected in different cities. We are also considering using

our current analysis for the next US presidential elections of 2016.

77

Bibliography

[1] Apache Lucene Documentation. URL: https://lucene.apache.

org/core/documentation.html.

[2] Apache Shindig. 2009. URL: https://shindig.apache.org/.

[3] Apache Software Foundation. Mule ESB. 2010. URL: https://

www.mulesoft.com/platform/soa/mule- esb- open-

source-esb.

[4] Pete Burnap et al. “140 characters to victory?: Using Twitter to pre-

dict the UK 2015 General Election”. In: Electoral Studies 41 (2016),

pp. 230–233. ISSN: 02613794. DOI: 10.1016/j.electstud.

2015.11.017. arXiv: 1505.01511. URL: http://dx.doi.

org/10.1016/j.electstud.2015.11.017.

[5] a. Ceron et al. “Every tweet counts? How sentiment analysis of so-

cial media can improve our knowledge of citizens’ political pref-

erences with an application to Italy and France”. In: New Media

& Society 16.2 (2013), pp. 1–19. ISSN: 1461-4448. DOI: 10.1177/

1461444813480466. URL: http://nms.sagepub.com/cgi/

doi/10.1177/1461444813480466.

[6] Docker. 2010. URL: www.docker.com.

[7] ElasticSearch. ElasticSearch. Version 2.3. URL: https : / / www .

elastic.co/products/elasticsearch.

78 BIBLIOGRAPHY

[8] ElasticSearch. Kibana. Version 4. Aug. 20, 2015. URL: https://

www.elastic.co/products/kibana.

[9] Elasticsearch Documentation. URL: https://www.elastic.co/

guide/index.html.

[10] Matthew S Gerber. “Predicting crime using Twitter and kernel

density estimation”. In: Decision Support Systems 61 (2014), pp. 115–

125.

[11] Google. Google Cloud. URL: https://cloud.google.com/.

[12] Clinton Gormley and Zachary Tong. Elasticsearch: The Definitive

Guide. " O’Reilly Media, Inc.", 2015.

[13] Daniel J. Hopkins and Gary King. “A method of automated non-

parametric content analysis for social science”. In: American Jour-

nal of Political Science 54.1 (2010), pp. 229–247. ISSN: 00925853. DOI:

10.1111/j.1540-5907.2009.00428.x.

[14] Vinay Kumar Jain and Shishir Kumar. “An Effective Approach

to Track Levels of Influenza-A (H1N1) Pandemic in India Using

Twitter”. In: Procedia Computer Science 70 (2015), pp. 801–807.

[15] A. Jungherr, P. Jurgens, and H. Schoen. “Why the Pirate Party

Won the German Election of 2009 or The Trouble With Predic-

tions: A Response to Tumasjan, A., Sprenger, T. O., Sander, P. G.,

& Welpe, I. M. "Predicting Elections With Twitter: What 140 Char-

acters Reveal About Political Sentiment"”. In: Social Science Com-

puter Review 30.2 (2012), pp. 229–234. ISSN: 0894-4393. DOI: 10.

1177 / 0894439311404119. URL: http : / / ssc . sagepub .

BIBLIOGRAPHY 79

com/content/30/2/229$%5Cbackslash$nhttp://ssc.

sagepub.com/cgi/doi/10.1177/0894439311404119.

[16] Uros Krcadinac et al. “Synesketch: An open source library for sentence-

based emotion recognition”. In: IEEE Transactions on Affective Com-

puting 4.3 (2013), pp. 312–325.

[17] Kubernetes. 2014. URL: http://kubernetes.io/.

[18] a. O. Larsson and H. Moe. “Studying political microblogging: Twit-

ter users in the 2010 Swedish election campaign”. In: New Media &

Society 14.5 (2012), pp. 729–747. ISSN: 1461-4448. DOI: 10.1177/

1461444811422894.

[19] Lucene Practical Scoring Function. 2016. URL: https://lucene.

apache.org/core/4_6_0/core/org/apache/lucene/

search/similarities/TFIDFSimilarity.html.

[20] Peter Molnar. “Twitter 2012 Presidential Election Data Set”. In:

(July 2015).

[21] OAuth. 2014. URL: https://oauth.net/.

[22] Opencl. 2016. URL: https://www.khronos.org/opencl/.

[23] OPENi. 2014. URL: http://www.openi-ict.eu/.

[24] Opensocial. 2008. URL: https://www.w3.org/blog/2014/

12/opensocial-foundation-moves-standards-work-

to-w3c-social-web-activity/.

[25] python cjson library. 2016. URL: https://pypi.python.org/

pypi/python-cjson.

[26] Python Natural Language Toolkit(NLTK). 2016. URL: http://www.

nltk.org/.

80 BIBLIOGRAPHY

[27] E Robertson Stephen et al. “Okapi at TREC-3”. In: Proceedings of

the Third Text REtrieval Conference (TREC 1994). Gaithersburg, USA.

1994.

[28] Stephen Robertson. “The Probabilistic Relevance Framework: BM25

and Beyond”. In: Foundations and Trends R© in Information Retrieval

3.4 (2010), pp. 333–389. DOI: 10.1561/1500000019.

[29] Selenium. 2016. URL: http://www.seleniumhq.org/.

[30] Spring Social. 2014. URL: http : / / projects . spring . io /

spring-social/.

[31] TextBlob. 2016. URL: https://textblob.readthedocs.io/

en/dev/.

[32] a. Tumasjan et al. “Election Forecasts With Twitter: How 140 Char-

acters Reflect the Political Landscape”. In: Social Science Computer

Review 29.4 (2011), pp. 402–418. ISSN: 0894-4393. DOI: 10.1177/

0894439310386557.

[33] Twitter API. 2016. URL: https://twitter.com/rest/public.

[34] Britta Weber. Improved Text Scoring with BM25. Mar. 2016.

[35] Steve Y Yang, Sheung Yin Kevin Mo, and Anqi Liu. “Twitter finan-

cial community sentiment and its predictive relationship to stock

market movement”. In: Quantitative Finance 15.10 (2015), pp. 1637–

1656.

