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Abstract

Convolution Neural Networks (CNNs) have rapidly evolved since their neuroscience

beginnings. These models efficiently and accurately classify images by optimizing the

model’s hidden representations to these images through training. These representa-

tions have been shown to resemble neural data from the primate visual system as the

accuracy of the model improves. Works have been produced to exploit these findings

to examine if the more (mammalian) brain-like a model’s hidden representations are,

the more (mammalian) brain-like the model’s performances will be. Further, perfor-

mance from a model that is human-like would achieve high accuracy, high super-class

accuracy, and robustness. We expand on this work by using a neural data (ND)

regularizer that uses Deep Canonical Correlation Analysis (DCCA). The regularizer

optimizes the resemblance between the CNN’s hidden representations to an image

and the representations found in the mammalian visual pathway to the same image.

Compared to CNNs without the ND regularizer, the ND regularized CNN resulted

in higher accuracy and super-class accuracy, as well as becoming more robust to ad-

versarial examples. These outcomes provide evidence that pushing CNNs to become

more brain-like is not only achievable, but will also result in a better performing

model.

Keywords: Machine Learning, Neuroscience, Convolutional Neural Networks, Com-

puter Vision
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Chapter 1

Introduction

1.1 Motivation

The human brain is capable of extraordinary feats. From rapid development in the

early stages of life to the ability to understand galaxies far from our reach, the skills

humans possess leave us wonderstruck. To translate these abilities into machine

learning algorithms is an attractive task for many researchers. The brain’s aptitude

to process what it sees quickly and accurately has been reproduced in many machine

learning models, including Convolutional Neural Networks (CNNs) [25].

These networks have been used in an array of applications such as image recognition

and object detection [3]. Neural networks are being used increasingly more to assist

people in their daily lives. This emphasizes the importance of having these algorithms

make appropriate choices for their users. Therefore, there is a need to create models

that will make more human-like decisions. In classification models, a few human-like

goals are improving the accuracy, super-class accuracy, and robustness to adversarial

examples.

In the context of object classification from images, these tasks can be defined as:

• Accuracy refers to the proportion of images a network classifies correctly. Hu-

mans have very high accuracy; they are able to identify the objects within

images even if they have not seen that particular image before.
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• Super-Class Accuracy measures how reasonable mistakes are. If the model

labels an image as the incorrect class, we prefer the chosen class to be related to

the image’s true class. For example, an image of a shrew could be misclassified

as a tractor or a mouse. Clearly, mistaking a shrew for a mouse is more human-

like than mistaking a shrew for a tractor.

• Robustness to Adversarial Examples is a robustness task. A robustness

task tests a model on its ability to perform classification on a dataset or images

the model has not seen. Adversarial examples are images designed to fool the

specific model of interest and are often unmistakable to humans. A popular

example is putting a small black rectangle on the image [2]. Often, a human

could still determine what object is in the image by the uncovered portion of

the image. However, this technique often causes models to misclassify images.

Previous studies have shown the relatedness that neuroscience and CNNs have

with each other. Recent works have tried to take advantage of these findings to make

CNNs more brain-like. However, these studies lack either significant improvements

or concentrate on improving brain-likeness in only one task. In this thesis, we look to

overcome these weaknesses using a Neural Data (ND) Regularizer. This regular-

izer is a deep network called Deep Canonical Correlation Analysis (DCCA).

We attach DCCA to the CNN we want to improve through a shared node. We eval-

uate of our model on the three tasks defined above: Accuracy, Super-Class Accuracy,

and Robustness to Adversarial Examples.

1.2 Objectives

In this thesis, our contributions can be summarized as the following:

• With our ND regularizer, a CNN will show improvement in the following tasks:

1. Accuracy (Section 5.1)
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2. Super-Class Accuracy (Section 5.2)

3. Robustness to Adversarial Examples (Section 5.3)

• Using our ND regularizer a CNN achieves higher accuracy and super-class ac-

curacy than previous works that attempt to make a model more brain-like

(Section 5.1.1, Section 5.2.1).

• We show our ND regularizer works best on unaltered neural data but also

performs well on generated neural data (Section 5.1.2).

• We find different contribution magnitudes of the regularizer on the CNN’s cost

function yields different results (Chapter 5).

1.3 Outline

This thesis is structured into 4 main chapters:

Chapter 2 will take a brief look at work that has inspired ours. An overview

of the important fundamentals and unique properties of CNNs will be presented.

We will discuss neuroscience findings that influenced the conception and creation

of CNNs. Research on CNNs’ ability to predict neural representations will also be

discussed. Then, a review of previous works that have attempted to achieve brain-like

behaviour in CNNs will be done. Lastly, we will seek a deeper understanding of an

RSM (representational similarity matrix) method used to achieve brain-likeness [9]

that heavily influences ours.

In Chapter 3, we will introduce the tools needed to successfully use our regularizer.

We first give an overview of Canonical Correlation Analysis (CCA) [14], a data reduc-

tion and covariance finding technique, before looking at its solution mathematically.

After discussing the limitations of the previous method and of CCA, we introduce a

deep version of CCA- DCCA [4]. Then, we examine DCCA’s benefits as well as its

technical fundamentals. Next, we introduce the CNN we improve upon, CORnetZ
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[17], as well as the two datasets we use. The first dataset [16] will be classified in our

model, and the second dataset [6] will be used in the ND regularizer. Lastly, we give

the procedure for preprocessing the second dataset.

In Chapter 4, we detail how the ND regularizer and the CNN are algorithmically

attached and work together. We then describe the tuning of the DCCA model sepa-

rate from the CNN. Lastly we discuss the experimental setup, before describing the

generated datasets we use as controls in our experiments.

Next, in Chapter 5, three experiments are examined, and the results are reported.

The experiments are Accuracy, Super-Class Accuracy, and Robustness to Ad-

versarial Examples. We explore the effect of the ND regularizer in these experi-

ments with different contribution magnitudes of the DCCA loss and with the gen-

erated datasets. Figures, interpretations, and discussions are also provided for each

experiment.

Finally, in Chapter 6 we concisely remind the reader of what was achieved and

the contributions provided in this thesis. Lastly, limitations and future works are

addressed.
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Chapter 2

Previous Work

Here we review previous works that influence ours. First, we give an overview of what

a CNN is and how it works. Then, we explore studies that give justification that

constraining machine learning models, specifically classification models, to achieve

brain-like representations is a logical objective. Next, we look at previous attempts

to create brain-like models and discuss their successes and shortcomings. Then, we

take a closer look at one study by Federer et al. [9] that influences and guides our

work. Lastly, we explore limitations and how to potentially improve upon Federer et

al.’s method.

2.1 Convolutional Neural Networks

Machine learning is a field of artificial intelligence that involves the use of algorithms.

These algorithms use vast amounts of data and many iterations to learn patterns

in order to make predictions on previously unseen data. This works by using a cost

function, which is specific to the task the model is trying to solve, and an optimization

algorithm. Inputs, X, are given to the model and are transformed to predict Y.

Mathematically this looks like:

h(X) = Y

where h is the transforming function or the machine learning algorithm.

One machine learning model of interest is the Convolutional Neural Network (CNN).

5



CNNs are primarily used in a computer vision task called image recognition to detect

and classify objects within images. CNNs are supervised models, which means that it

makes use of a labelled dataset and the training task is to predict those labels. These

labels are used in the cost function each epoch and the result determines the changes

of weights in the different levels (layers) of the network for the next epoch. This

change in weights is implemented with backpropagation. Backpropagation involves

calculating the gradient or partial derivatives of each weight and bias in the network.

This calculation enables every weight and bias to be individually updated to reduce

the cost. The identifying layers of convolutional neural networks are convolutional

and pooling layers.

A convolution is the application of a filter to an image input that helps it perform

feature-extraction or learn features in images. Feature-extraction refers to a trans-

formation of data that reduces it while maintaining the data’s important features.

The filters are two-dimensional arrays of weights and they are smaller than the input

image. Therefore, a filter is applied to patches of the image until each pixel belonging

to the image has encountered the filter at least once. The dot-product between the

filter and the patch of pixels is calculated and a single value is returned as shown

in Figure 2.1. When done repeatedly an array of values, called a feature map, is re-

turned. Convolving allows a filter to detect and indicate the location and strength of

a specific feature in the image. Usually many filters are used in a single convolutional

layer so it learns many features at once.

A pooling layer follows a convolutional layer in a CNN. As the name suggests, a

pooling layer applies a pooling function to its input (see Figure 2.2). A pooling func-

tion downsamples the feature map which creates invariance to translation. Invariance

to translation means that a model can prevent small changes, such as rotation and

cropping of the input image, from creating strikingly different feature maps. Some

common pooling functions used are max-pooling, min-pooling, and average-pooling.
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Figure 2.1: An illustration of a filter convolving over an input image. We see that the
dot product is performed on the filter and a subset of the image’s pixels. Once every
pixel in the image is covered at least once by the filter the result is a feature map.
Recall that usually a convolutional layer will have multiple filters and thus multiple
feature maps will be returned.
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Figure 2.2: An example of average pooling on an input. Here the upper 2x2 block of
the input is reduced to the average of its entries.
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A simple convolutional model has a series of alternating convolutional and pooling

layers. It is common that CNNs have a variety of other layers included in their

architecture as well, but convolutional and pooling layers always appear in these

models. The feature maps in the intermediate, or hidden layers of a CNN will be

referred to as hidden representations in this work.

2.2 The Connection between Machine Learning and

the Brain

The conception and advancement of machine learning models are often heavily at-

tributed to neuroscience. The mechanisms of convolutional and pooling layers were

shaped from a study done to further understand the physiological processes of the

visual pathway. This particular neuroscience experiment is often credited for the ori-

gins of machine learning vision models. Performed in 1956 by two neuroscientists,

Hubel and Weisel [13], this experiment included recording brain activity in the pri-

mary visual cortex of an anesthetized cat while its eyes responded to visual stimuli.

They found that in brain areas that responded first to stimuli, certain cells would

only respond to specific orientations and locations of lines. Further, every orientation

and placement had a group of these cells responding to it. The researchers concluded

that these cells, later named simple cells, had a preferred orientation and location of

stimuli. Moreover, as the stimuli shifted further away from the preferred positioning,

the simple cell would respond more weakly until it stopped responding entirely.

Interestingly, the researchers noticed a different phenomenon occur in later areas

of the visual pathway. The cells in these later areas would respond best to lines that

kept the same orientation but would traverse locations. These cells were later termed

complex cells. This discovery helped the researchers conclude that the complex cells

were not actually reacting to the stimuli itself but instead reacting to information

supplied to them from a set of simple cells. These simple cells would later be the

inspiration for convolutional layers in machine learning models, and the complex cells

8



would inspire pooling layers.

In 1979 a predecessor of modern CNNs, the Neocognitron model, was developed by

Fukushima [10]. This model consisted of multiple feature-extraction layers followed

by pooling layers which were directly inspired by Hubel and Weisel’s work [13]. The

Neocognitron was able to learn different patterns in Japanese hand written characters.

Also, the model was robust to shifts in the character’s position or distortions to the

character’s size. Further, the Neocognitron was able to learn these patterns on its

own through repeated exposure.

However, the Neocognitron could be improved by making it a supervised model.

LeCun et al. [18] devised a way to accomplish supervision with the LeNet model

which is considered the first CNN. The LeNet allowed for backpropagation and for

these feature-extraction layers to get updated depending on the model’s performance.

The feature-extraction layers from the Neocognitron were upgraded in the LeNet with

convolutional layers through the introduction of filters.

Since the conception of the CNN family, these models have been further developed

and studied to include more complex layers and mechanisms to address more com-

plex image recognition tasks. Such progress has led to some CNNs having near-perfect

performances in some tasks [20, 21, 23]. Not only have CNNs been directly inspired

by neuroscience, but Yamins et al. [30] showed that the hidden representations of

these models could also predict brain activation patterns. Yamins et al. developed

CNNs that are biologically plausible and looked at the hidden representations from

the model’s different layers. Even though the researchers did not constrain the net-

work with brain data, they found that the CNN’s hidden representations were highly

correlated to the neural activations in different areas of the mammalian visual path-

way. Furthermore, the researchers found these results most significant when the CNN

performed well in its recognition tasks. This high correlation leads to predictability

of the brain’s behaviour based solely on the network’s attributes.

CNNs were designed to mimic the roles and mechanisms of simple and complex cells
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identified in a neuroscience experiment. CNNs have continued to develop into their

own separate field, adding more complexity to their architectures and tackling more

challenging tasks, evolving past their neuroscience origins. Furthermore, these newer

and more developed models are highly correlated to neural activations in the visual

pathway, especially when they achieve high accuracy. This begs these questions:

• Can we push CNNs to become more brain-like?

• And what effect would that have on the performance of the model?

2.3 Constraining Networks to be More Brain-Like

Here we explore the possibility of constraining a network to have more brain-like

representations. We also investigate what effect having brain-like representations

would have on different metrics of the model’s performance. Two approaches to

achieve this have been used so far by machine learning researchers.

The first approach is to gather neural data from the visual pathway of subjects

looking at images and then use that data to regularize the model. Two examples

of this method are Federer et al. [9] and Safarani et al. [24]. This method uses the

model’s image recognition performance and similarity of the model’s hidden represen-

tations to the neural data to adjust the model parameters through its loss function.

This regularization can make the model’s representations more brain-like without

sacrificing its main-task capabilities. Safarni et al.’s [24] regularizing approach was

to train a readout of the intermediate layer activations in the CNN to predict neural

firing rates when a monkey views the same images as the model. Federer et al.’s

approach was to optimize the match between the representational similarity matrices

[15] of an intermediate CNN layer and the neural recordings.

The second approach used by Nassar et al. [22] was to identify spectral prop-

erties of neural representations. Namely, identifying the 1/n eigenspectrum of the

covariance matrix of neural firing rates as formulated in Stringer et al. [28]. After
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identifying the spectral properties, the CNN is regularized to match those spectral

properties while being trained for object recognition [22]. This approach led to CNNs

that demonstrated improved robustness to adversarial attacks compared to CNNs

that were not regularized to match the spectral properties of neural representations.

Reminder, robustness refers to a model’s ability to perform its intended task on un-

familiar datasets. An adversarial attack is one where the dataset consists of images

curated to deceive the model.

These two approaches both use neural data; in the first method, the data is di-

rectly used, and the second uses the data’s found properties to constrain the model.

Promising results emerged from these experiments. Compared to the unregularized

models, the researchers found brain-regularized models:

• Improved robustness to image distortions was found in Safarani et al. [24].

• Modestly improved classification accuracy and super-class accuracy was found

in Federer et al. [9].

• Improved robustness to label corruption during training was found in Federer

et al. [9].

• Improved robustness to adversarial attacks was found in Nassar et al. [22].

Although these are optimistic results, there is room for improvement. For one, we

would like to produce improved performance on datasets more complex and rich than

the grey-scaled, 10-class MNIST dataset [7] used by Nassar. Second, Sarfani et al.’s

and Nassar et al.’s experiments focused on improving only Classification Accuracy

or Robustness to Adversarial Examples in the model instead of multiple aspects

simultaneously. Finally, we aspire to find a single technique that would significantly

improve performance in more than one task. That is, a technique that can be applied

to a base model which will result in a more-than-modest improvement in classification

accuracy and robustness.
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2.4 An Examination of Federer et al.’s RSMs

Federer et al.’s [9] model uses a simple metric to determine how brain-like the model’s

hidden representations are. In our work, we want to find a metric that will more ac-

curately express how similar the hidden representations of the model are to the neural

data. However, before amending Federer et al.’s model, we first need to examine its

setup, properties, and limitations.

Federer et al. used representational similarity matrices (RSMs) [15] to look at

the similarities between the image representations in the brain data and the hidden

representations in the CNN for the same image. These RSMs consist of the cosine

similarities of image pair responses, which come from neural firing rates when subjects

were shown the images. There is a vector v of neuron responses from the brain data

for each image. For image i, j:

RSMi,j =
vi · vj

∥vi∥ × ∥vj∥

where · is the dot product, and ∥v∥ is the length of the vector.

Similarly, an ˆ︂RSM is computed from the hidden representations of one of the

model’s layers. In other words, the output of a layer in the model will have activations

associated with each image; these activations are treated the same way as the neuron

responses (see Figure 2.3).
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Figure 2.3: Federer et al. used a set of 270 images simultaneously to compute the
RSMs for the model’s hidden representation and the neural data. Image adapted
from Federer et al. 2020.
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The objective is that the model’s hidden representation would start to mimic the

brain’s representations. In other words, the hidden representation of the image will

start to resemble the neural data from the same image. This gives the cost function:

costRSM =
∑︂
i,j

(RSMi,j − ˆ︂RSM i,j)
2 (2.1)

This formulation imposes a small cost when the entries of the two RSM matrices

are similar and a high cost if there is a large difference. Federer et al. created a

composite cost function where this cost for the RSM-similarity task and the cost for

the classification task are both included. Note that the classification cost can be

computed on a different image dataset than the RSM-similarity task; therefore, the

costs use different indices. The composite cost function is:

λ
∑︂
i,j

(RSMi,j − ˆ︂RSM i,j)
2 −

∑︂
k

yk̂log(yk) (2.2)

where yk is the indicator variable for the true class of the image and ŷk is the proba-

bility the model assigns to the true class.

With:

r = λ
[
∑︁

i,j(RSMi,j − ˆ︂RSM i,j)
2]∑︁

k yk̂log(yk)
(2.3)

the model adjusts the parameter λ to keep r constant. r is a hyperparameter

set by the researcher. This adjustment controls the contribution of each half of the

composite cost function.
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Figure 2.4: The two tasks the regularized network performs. The top row is a clas-
sification task, where the inputted images have associated labels and the CNN tries
to assign those labels to the images. The bottom row shows the RSM-similarity task
where the network tries to optimize the resemblance between the model’s hidden
representations and the neural data.
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The cost function in Equation 2.2 allowed the researchers to achieve promising re-

sults using the representations from the V1 layer of the CORnetZ [17] model (for more

information, see: Section 3.2) with the CIFAR-100 [16] dataset (see: Section 3.3.1)

for classification. Not only did Federer et al. observe that the classification accuracy

improves with this regularizer compared to the unregularized model (Figure 2.4(a)),

but they also observed improved Super-Class accuracy (refer to Section 1.1 for more

details on Super-Class accuracy). Figure 2.4(b) shows that when there was a misclas-

sification in the regularized model, it was more likely that it was misclassified within

the correct super-class.
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(a) Accuracy using the RSM regularizer.

(b) Super-class accuracy using the RSM regularizer.

Figure 2.5: Federer et al.’s results. Using their regularizer, the model is able to out-
perform the unregularized model (r = 0) in both accuracy and super-class accuracy.
The best results use r = 0.1. Images from Federer et al. 2020 [9].
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Although the RSM constraint yields successful results in evaluating the hidden

representation similarities between the brain and the CNN, there are weaknesses.

Firstly, the pairwise limitation- the RSM method was limited to using pairs of im-

ages to build the representations. With this limitation, the model is prevented from

constructing the representation using more than two images at a time. Therefore,

there may be missing connections that could be found in groups of images. Secondly,

the linear limitation- these representations are restricted to linear information; the

model cannot create more complex relationships beyond simple linear combinations.

Finally, the RSM can not reweight certain units of the hidden representations more

than other unuseful units. That is, no matter how similar a unit is to the neuron

responses it will be weighed the same as a unit that is not similar to the neuron

responses.

With these limitations considered, and because the regularization has already been

shown to improve the model, we hope that using a more flexible metric than RSM

will yield more remarkable results.

2.5 Chapter Summary

In this chapter, we introduced CNNs and their important features. Then, we discussed

the interconnectedness between neuroscience and machine learning algorithms, espe-

cially CNNs. We reviewed previous works that attempted to use this information to

create better and more brain-like models. We then examined Federer et al.’s work

and determined the validity of their experiments as well as weaknesses that could be

addressed with a better metric than RSM. In Chapter 4 we will introduce the tools

or pieces needed to construct our improved model.

18



Chapter 3

Tools

Here we introduce the tools needed for our new method. First, we explore Canonical

Correlation Analysis (CCA), a method used to reduce data and uncover the causes

of correlation between different sets variables. We come to the conclusion that CCA

does not address all of the concerns from the previous RSM method and is not as

computationally efficient as other methods. We introduce Deep Canonical Correla-

tion Analysis (DCCA), a possible metric to improve and remedy Federer et al.’s [9]

previous RSM method. Then, we present the base model we use for classification,

CORnetZ. Lastly, we will familiarize ourselves with the datasets we use, as well as

the preprocessing procedure required for one of the datasets.

3.1 DCCA - A New Metric

Here we explore possible metrics that will alleviate the pairwise, linear, and reweight-

ing limitations of the past RSM method in Section 2.4. CCA is introduced as a

possible candidate, but we find that a deep network version of CCA would be best

suited for our model.

3.1.1 CCA

Canonical Correlation Analysis (CCA) is a statistical method used to reveal relation-

ships between two views (sets of variables that represent the same data). CCA is
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also used as a tool for data reduction. Here we use CCA for its first property, but

also find utility in reducing the size of the data.

Mathematically the two views can be represented as random vectors: xP×1 and

yQ×1.

So we can represent the covariance structure as:

cov(

⎡⎣x
y

⎤⎦) =
⎡⎣Σxx Σxy

Σyx Σyy

⎤⎦ (3.1)

Where:

cov(x) = Σxx(P×P ), , the covariance matrix of random vector x

cov(y) = Σyy(Q×Q), , the covariance matrix of random vector y

cov(x,y) = Σxy(P×Q) = ΣT
yx(Q×P ), , the covariance matrix between random vectors x, y

We want to find two coefficient vectors, a1(P×1) and b1(Q×1), which maximize the

correlation between the x and y:

ρ = corr(aT
1 x,b

T
1 y) =

aT
1Σxyb1√︁

(aT
1Σxxa1)

√︁
(bT

1Σyyb1)
(3.2)

(U1(1×1), T1(1×1)) = (aT
1 x,b

T
1 y) are the first canonical pair. We see that U1 is a linear

combination of the elements in the x vector. Similarly, T1 is a linear combination of

the elements in the y vector.

To get the second canonical variate pair (U2, T2), we again find a2 and b2 such that

ρ in Equation (3.2) is maximized. a2 and b2 are now also subject to the constraint:

aT
1Σxxa2 = bT

1Σyyb2 = 0 (3.3)
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Equation (3.3) ensures there is no correlation between U1 and U2. Similarly, the

constraint ensures there is no correlation between T1 and T2. This continues for all

min{P,Q} pairs so that:

aT
i Σxxai+1 = bT

i Σyybi+1 = 0, for all i ∈ {1, 2, ...,min{P,Q}} (3.4)

CCA can reduce the dimension of the data by storing the covariance information

in linear combinations of the vectors. Furthermore, the CCA algorithm finds the

most correlated linear combinations that have not already been found. Thus, the

covariance of each pair will be less than the covariance of the pairs before it. For

example, (U1, T1) will account for the most covariance, and (Umin{P,Q}, Tmin{P,Q}) will

have the least.

3.1.1.1 Solution of CCA

We can find the correlations of each canonical pair without explicitly finding the pairs

themselves. This is done using singular value decomposition and is detailed in Kanti

V. Mardia et al. [14]. Here we provide a brief overview of this method.

For x and y the canonical pair coefficients can be found from the eigenvectors, and

the correlations from the eigenvalues of the following:

C = Σ−1/2
xx ΣxyΣ

−1
yy ΣyxΣ

−1/2
xx (3.5)

More simply, the orthonormal eigenvectors of C, hi, and the orthonormal eigen-

vectors of CT , gi, are the canonical pairs of standardized x and y in order. The

non-zero eigenvalues of C, ρi, are the square of the corresponding correlation between

the elements in a pair.

Cgi = ρigi, CThi = ρihi

So that:

(Ui, Ti) = (gTi Σ
−1/2
xx x, hT

i Σ
−1/2
yy y) =⇒ ai = gTi Σ

−1/2
xx , bi = hT

i Σ
−1/2
yy
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Further,

corr(Ui, Ti) =
√
ρi

CCA always has a closed-form solution provided that the covariance matrices are

nonsingular; this is because the solution to CCA requires the inversion of the covari-

ance matrices. However, it is computationally expensive to find the solution when

the number of variables is large. We plan to use this metric with the hidden rep-

resentations of a deep neural network which has massive dimensions. To invert the

covariance matrix of a neural network’s hidden representation would be expensive

and unreasonable to perform multiple times.

3.1.2 Deep CCA

To remedy the computational burden caused by finding the closed-form of CCA,

we consider a method that will further reduce the data with minimal loss of infor-

mation. Principal Component Analysis (PCA) [8], a data reduction technique, is a

possible option to preprocess the data before performing CCA. However, PCA can

also become computationally expensive on large datasets, and it has been observed to

discard important information in more detailed classification tasks such as fine-grain

classification. PCA also does poorly when the underlying structure in the data is

nonlinear [19].

A gradient descent version of CCA is also a possibility. However, it would be

expensive as we would still need to reduce the data with PCA or another data reduc-

tion method after each gradient update. Also, it is still less desirable than finding a

closed-form solution or a solution that considers nonlinearity.

Deep CCA (DCCA) addresses the shortcomings of these methods and provides

other benefits. DCCA is a deep network version of CCA in which the two views of

data each go through their own independent deep network. After going through these

sub-networks, the final representations of the views are brought together, and CCA

is performed on these final representations (see Figure 3.1). This branched network
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Figure 3.1: A visual aid for Deep CCA. Each view goes through its own network,
transforming into their final form. CCA is then performed on these final forms, and
the result is backpropagated through the layers of each independent network.

uses CCA as its loss function. CCA will find the pairs that maximize the correlation

from the new reduced representations. Finally, with the cost computed, we can use

back-propagation to update the weights. Note that the CCA cost can be implemented

as seen in Section 3.1.1.1 as we do not need to know the explicit formulation of the

canonical pairs.

Deep CCA not only provides a fast and dynamic way to find the relationships or

correlations between the two data views, but it also reveals more complex relationships

between the two views. Deep CCA can produce nonlinear representations through

the use of nonlinear activation functions in its sub-networks’ layers. This alleviates

the linear limitation in Section 2.4 and prevents relationships between two views that

may be significant and nonlinear from being neglected. Also, the linear combinations

in the CCA cost rectifies the reweighting limitation. Further, using batches of

images is a solution for the pairwise limitation previously seen.
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3.1.3 Technical Description of Deep CCA

DCCA uses two independent deep neural networks for each data view, x and y. The

networks can have any type or number of layers. The network of x has dx many

layers, and y has dy many layers. Let fx(x) be the final representation of x after

being processed through its sub-network, similar for y. Then, the objective is to

maximize the correlation between the two final representations fx(x), fy(y).

To solve this we look at:

hi
x = sxi

(W i
xh

i−1
x + bix) (3.6)

where W i
x are weight matrices, bix are the biases, sxi

is some nonlinear function,

and hi
x are the hidden representations of the ith layer. Note if i = 0, then hi

x is the

original view of the data x. We can then represent fx(x) as:

fx(x) = sdx(W
dx
x hdx−1

x + bdxx ) (3.7)

And so we have our optimization function:

Θx,Θy = argmaxΘx,Θycorr(fx(x), fy(y)) (3.8)

Where Θx,Θy contain the weights (W ) and biases (b).

After the views are transformed and their dimensions are reduced by their respec-

tive networks, their final form is a nonlinear representation of the original view. The

two transformed views are used to calculate the DCCA’s loss function. This function

is the same as the CCA objective we preciously saw in Equation (3.2), but with func-

tions of the views instead of views themselves. In other words, fx(x), fy(y) are now

the x and y in Section 3.1.1.

The resulting CCA calculation, which we use as our loss function, is found using

a series of linear operations as seen above in Section 3.1.1.1, so the result is a linear

combination of the entities fed to it. However, because the fx(x), fy(y) are nonlinear
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forms of the original views, x and y, the CCA loss is inputted nonlinear versions

of the original features. So the CCA loss will produce a linear combination of the

nonlinear combinations of features, which will again be nonlinear with respect to the

input features.

The sub-networks for each of these views have their own hyperparameters to be

tuned. The activation functions, dropout rates, and learning rates are all to be

adjusted for the separate networks depending on the type of data being used and the

performance of the overall model. DCCA reduces the dimension of the data creating

a more computationally efficient method for a similarity task than other methods

we have explored. Further, DCCA allows us to find a more intricate and a more

complete idea of the correlation in the data by creating nonlinear combinations of

the views. This elevates the pairwise, linear, and reweighting limitations of the

previous RSM approach (Section 2.4).

3.2 CORnetZ

Similar to Federer et al. [9], we use the CORnetZ model [17] as our CNN. The CORnet

family was created to be structurally and behaviourally similar to the mammalian

visual pathway, making the family perfect candidates for an object recognition task.

The CORnet models have a V1, V2, V4, and IT layer. These layers map by name and

order to the lower visual system of mammals as shown in Figure 3.2. The final layer is

a softmax classification layer. This family of models was also created to be as simple as

possible while being correlated to the primate ventral visual pathway based on Brain-

Score [26], a composite benchmark for comparing models to the brain. In other words,

the creators of the CORnet family try to improve object recognition performance

while preserving the similarities the model has to brain activation patterns.

We choose to use the simplest member of the family, CORnet-Zero or CORnetZ.

The layers of CORnetZ each contain a convolutional layer followed by a pooling layer.

Although this model is not a top-performing CNN, it gives us a clear place to amend
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Figure 3.2: Architecture of the CORnet family [17]. Each layer in the model maps in
name and order to an area in the brain’s visual pathway.

the model with neural data (see Section 3.3.2) depending on where in the brain the

data is collected (in our case, the V1 layer). Also, it will give us more room to improve

the model, whereas if we use a model that results in near-perfect classification, it will

be difficult to see if any meaningful change resulted from our method.

3.3 Data

3.3.1 Classification Data

For our classification task we trained on the CIFAR-100 dataset [16], which consists

of coloured 32x32 images. This dataset has 100 classes, each containing 600 images.

The authors of this dataset specify a training split of 500 images for each of the 100

classes for training. The remaining 100 images of the 100 classes are used as a test

set. Figure 3.3 provides some examples from CIFAR-100.

The CIFAR-100 dataset is aggregated into 20 super-classes, each fully containing

5 of the classes. These super-classes are also intuitive in that similar classes are

grouped. For example, the super-class ‘Large Carnivores’ contains the classes ‘Bear,’
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Figure 3.3: Example images from CIFAR-100. From left to right, we have labels:
‘Pine tree,’ ‘Bicycle,’ and ‘Baby.’

‘Leopard,’ ‘Lion,’ ‘Tiger,’ and ‘Wolf’ (see Figure 3.4).

Figure 3.4: Example images from CIFAR-100’s [16] Large Carnivore Super-Class.

3.3.2 Brain Data

The data we use as one of the views for our DCCA model is from Coen-Cagli et al. [6].

This data was collected from 3 different fully anesthetized macaque monkeys using

the Utah electrode array. The multi-electrode recordings are from the primary visual

layer, also termed the V1 layer, of the subjects’ visual pathway. Natural images and

gratings were presented to the subjects presented in two windowed sizes and various

orientations totaling 956 different stimuli (Figure 3.5).

With 3 subjects, 10 sessions were recorded. Subject 1 contributed 1 session, Subject

2 contributed 6 sessions, and Subject 3 contributed 3 sessions. Neural recordings
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Figure 3.5: Example images from Coen-Cagli et al.’s [6] experiment. Note that there
are no labels associated with this dataset.

from each session are stored in a multidimensional array consisting of the following

variables:

• Neurons - there are a total of 94-106 (depending on the recording session)

instances of this variable, each representing a different neuron. It is important

to note that due to the method chosen (electrode implantation), it is unlikely

that the equivalent neuron was found in different monkeys or even in different

sessions of the same monkey. Electrode implantation is a less sophisticated

method than the state-of-the-art methods for brain data collection, such as

fMRIs. For example, the neuron could have died from previous implantation of

the electrode. However, for our purposes, the exact neuron does not need to be

re-recorded, and the neighboring neurons suffice as our preprocessing will take

these imprecise measures into account, and we are more interested in the V1

layer as a whole.

• Images - 956 different stimuli images are presented. They are all grey-scaled

natural images with pixel size 227x227x3. The 3 in the pixel size tuple denotes

the image’s RGB values, which determines the pixel’s colour. Although these

are grey-scaled images, we use RGB values because the images need to be in

the same form as the classification data, which is coloured. Some images are

repeated but presented in a different orientation or zoomed in or out.
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• Time - neural responses from the subjects were recorded for the duration that

the stimuli images were presented (106ms). There is no neural data given for

the time between images.

• Trials - within each session, there are 20 sub-sessions (trials). In each trial, all

956 stimuli images are shown to the subject.

3.3.2.1 Preprocessing the Monkey Data

We are interested in how different neurons react to different stimuli to build a mean-

ingful representation for the neural network to mimic. Therefore, we look to reduce

the data into an (images x neurons) format because this format shows clear similarity

to the structure of the network’s hidden representation (images x hidden units).

For each session, we consider the 106ms that are recorded and choose to exclude

the tail ends to avoid problems such as response latency. The time is then cropped to

50ms-100ms. We then average over the 20 trials leaving us with images x time(ms) x

neurons (956 x 50 x 94-106). Because of the unpredictability of neurons, we consider

each neuron at each recorded millisecond as its own ‘pseudo’ neuron, or measurement

of interest. This further gives us images x pseudo-neurons (956 x 4700-5300).

At this point the dimension of our data is still large for being auxiliary information

for our model, and each session has different dimensions. Ideally, we would like each

session to contribute equally. Therefore, because we will further process the data in a

linear combination in the DCCA model, we are comfortable reducing the dimension

of the data via linear combinations. To do this, we use PCA to find a predetermined

amount, in our case, 80, linear combinations of the ‘pseudo’ neurons against the image

dimension. This is done so that each session has the same number of recorded neurons

and so the least amount of information (or variance) is lost while doing so. These 80

representations are now our measurements of interest.

After the previous preprocessing, each session now has 956 images x 80 principal

components. Again, because equivalent neurons were not captured between monkeys,
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we simply concatenate these representations for all 10 sessions for each image. Our

final form of the data is 956 images x 800 principal components. Throughout the rest

of this work, we will refer to this preprocessed data as our network’s ‘Brain-View’.

3.4 Chapter Summary

Here we presented different tools we need to put our model together. First, we ex-

plored CCA, a possible solution to the RSM approach’s limitations. However, through

a detailed discussion, we came to the conclusion that a deep network version of CCA

called DCCA would be best suited for our model. We then explored an overview as

well as mathematical details of DCCA. Next, we introduced the CORnetZ model,

the CNN we will use. We explain why it was created and why it is an appropriate

model to use with neural data. Lastly, we introduced the datasets we used. The first

dataset is the popular CIFAR-100 dataset that will be used in the classification task

by the CORNetZ model. The second dataset is a neural dataset consisting of monkey

neuron firings and its associated images. Then, we described the preprocessing of this

neural dataset and the result is the Brain-View for our DCCA model. In Chapter 4

we will assemble the tools discussed here to form our combined DCCA-CNN model.
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Chapter 4

Methods

To improve the performance of classification algorithms, we propose a regularizer that

uses neural data. In previous chapters, we discussed the origins of CNNs from neuro-

science and how unconstrained neural networks can achieve brain-like representations.

We detailed previous works that took advantage of these findings to improve neural

networks. In this chapter, we improve upon Federer et al.’s [9] RSM approach in

Section 2.4 by using a DCCA-based neural data (ND) regularizer. To do this we first

construct a combined DCCA-CNN model from the tools introduced in Chapter 3.

4.1 New Model: CNN with a DCCA Regularizer

To alleviate the linear, pairwise, and reweighting limitations of Federer et al.’s

work (Section 2.4) we design a CNN model with a DCCA model as the regularizer.

Our CNN, the CORnetZ model, uses cross-entropy (CE) as its loss function (LCE).

We add LCE to the DCCA loss (LDCCA) to create a joint loss function L. To control

how much each loss contributes to the joint loss, we use a hyperparameter λ.

LCE = −
∑︂
i

pi log(pî) (4.1)

LDCCA = −corr
(︁
fx(x), fy(y)

)︁
/F (4.2)
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= − 1

F

F∑︂
j

corr(aTj x, b
T
j y), as in Equation (3.2)

L = λ LDCCA + (1− λ) LCE (4.3)

where pi is the indicator variable for the true class of the image and p̂i is the

probability the model assigns to the true class. We scale LDCCA by F , the number

of canonical pairs, so it has the same range as LCE, (0,1). λ can now be described as

the proportion LDCCA contributes to L. For example, if λ = 0 then DCCA would not

contribute to the loss function. If λ = 0.5, then LDCCA and LCE contribute equally

to L.

The stimuli images from Coen-Cagli et al. [6] (described in Section 3.3.2) that we

use for our DCCA model, do not have associated labels, so we cannot use them to

compute LCE. Instead, LCE is computed with images from CIFAR-100; while LDCCA

is computed using the stimuli images from the monkey experiment along with the

neural recordings. Because the size of the datasets differ, for each epoch of training

on CIFAR-100, we cycle through the neural data 20 times. In our figures, the epoch

count on the horizontal axes refers to the epochs of training on the CIFAR-100 data.

Next, we create the CORnetZ model originally developed by Kubilius et al. [17]

(Section 3.2) and link a DCCA model to the CNN through a shared node. CORnetZ’s

V1 layer is chosen as the shared node because the neural data (Section 3.3.2) was

collected from the subjects’ V1 areas in the visual pathway. We also find V1 to be

the most appropriate layer to be shared because CORnetZ was created to behave like

the visual pathway with labelled layers for each brain area (see Figure 3.2).

The images described in Section 3.3.2 are inputted to CORnetZ’s V1 layer. The V1

hidden representations of these images are then inputted as the CNN-View of the

DCCA model. At the same time, the recorded neural responses to those same images

are the Brain-View for the DCCA model. Batches of image/neural-recording pairs
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are passed through the two DCCA sub-models. The final representations of the two

views are then used in the CCA loss function, which is completely differentiable [4].

Finally, backpropagation proceeds through both sub-models, including the shared V1

node of CORnetZ.

At the same time, a classification task using the CIFAR-100 dataset and the COR-

netZ architecture, including the V1 layer, also occurs. This results in a CNN model

with DCCA attached acting as a regularizer, as depicted in Figure 4.1.

V1 V2 V4 IT

CNN-View

Brain-View
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y 
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CCA

DCCA

CORnetZ

Figure 4.1: Architecture of the combined CNN-DCCA model. The V1 layer is shared
between the CORnetZ model and the DCCA model. The DCCA’s pipeline is in red,
while the CORnetZ’s pipeline is in black. Notice the similar structure to Federer et
al.’s [9] model in Figure 2.4.
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4.2 Experiment Details

4.2.1 Experimental Set-up

The platform Tensorflow [1] and its various libraries were used for this project. One

such library, Keras [5], allowed us to work with the user-friendly Keras paradigm

without sacrificing the computational power of Tensorflow. The architectures for

the CORnetZ [17] model and the DCCA model were independently created. Then,

we connect these two models together by having the DCCA model use the hidden

representations for the brain images from CORnetZ’s V1 layer as an input.This allows

V1 to process batches of CIFAR-100 data for the CORnetZ to classify while also

processing batches of the monkey images for the DCCA model. Even sharing a node,

the DCCA branch and the CNN branch can both independently find their individual

loss functions. These loss functions, LDCCA and LCE, are then weighted by λ (and

1-λ) to calculate L before the back-propagation is performed.

4.2.2 Experimental Tuning

To determine the effects of the ND regularizer on CNN performance, we trained

CORnetZ with different regularization strengths λ. For easy comparison, we used

the same CORnetZ settings as Federer et al. [9]: learning rate of 0.01, CIFAR-100

batch size of 128, and a dropout rate of 0.5.

Each DCCA sub-model consists of 3 dense layers of width 1024, followed by a 0.0001

dropout layer, and finally, a dense layer with a width of 10. The DCCA branch of

the network required independent hyperparameter tuning, which was accomplished

by fitting the DCCA branch alone, without the CNN branch. We optimized for

a minimal loss function, which is the negated sum of the correlations from the F

identified canonical pairs. Because the amount of images in the brain experiment is

small (956), we chose to use 10 canonical pairs to avoid exhausting the samples too

quickly. To ensure that DCCA has sufficient information to extract for the pairs, we
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use a batch size of 50. With these hyperparameters set, we found the optimal settings

to yield high DCCA correlation were: a 0.00001 L2 weight decay, a Random Normal

kernel initializer with a standard deviation of 0.01, and using the ReLU activation

function.

The combined CNN-DCCA model was trained for 100 epochs and 5 randomly-

seeded initializations were used for each tested regularization strength λ. We experi-

mented with pretraining the DCCA before incorporating it into the CNN and found

only a modest improvement. Because pretraining the DCCA adds computational

overhead, and the effect on accuracy is negligible, we did not pursue this approach.

4.2.3 Experimental Controls

As a control, to determine if any of the performance gains obtained with the ND

regularizer depended on the specific response of the brain to an image, we repeated

our CNN regularization experiments with randomized neural data. This was accom-

plished in three ways:

1. Shuffled Labels- The images associated with each measured neural response

were randomly permuted. This ensured that the shuffled dataset matched each

neuron’s distribution of firing rates but removed any of the neuron’s sensitivity

to specific image features, as the images were randomly assigned.

2. V1 Statistics- The mean and standard error was extracted from each of the

10 monkey recording sessions, and random data was produced using a normal

distribution with the same statistics. This random data preserved the size

of the real recordings, meaning the number of neurons observed in each session

remained the same. These sessions were then preprocessed as in Section 3.3.2.1.

3. N(0,1) Statistics- Lastly, using the same sizes as the monkey sessions, im-

ages x neurons, random data is generated from a standard normal distribution

(N(0,1)). Again, these sessions are then preprocessed as in Section 3.3.2.1.
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These newly shuffled or generated datasets were then used in place of the real neural

data in the model. We compared the difference in performance between the original

neural data and this permuted or randomly generated data to reveal important in-

formation about the capabilities and limitations of the neural data and of the DCCA

regularizer. More precisely, these experiments measure the extent to which the brain’s

image representations, as opposed to its other statistical properties, are helpful in the

DCCA-regularizer for CNNs.

4.3 Chapter Summary

This chapter introduced our new model that attaches DCCA to a CNN model. We

looked at the resulting composite cost function from the two models sharing COR-

NetZ’s V1 layer. Next, a comprehensive report of the experimental set-up including

the libraries and the tuning procedure for both the DCCA and CNN models were

discussed. Lastly, we introduced three generated datasets all with different degrees

of likeness to the original Brain-View data. We will use these datasets as controls

for the experiments presented in Chapter 5.
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Chapter 5

Experiments and Results

In this chapter, we present experiments to determine the performance of our com-

bined DCCA-CNN model. We determine the effect our model has on: Accuracy,

Super-Class Accuracy, Robustness to Adversarial Examples. Next, visual aids, as

well as thorough discussion of the results will be provided. We also offer possible

interpretations and insights to the patterns that emerge with each experiment.

5.1 Accuracy

Accuracy is defined as the proportion of images that the model classifies correctly.

#correctly classified images

#images

5.1.1 Accuracy Results
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Figure 5.1: A comparison of accuracies achieved with different λ values in the ND
regularizer. The best performing RSM model’s results are also included. Note that
these results are the mean of 5 repetitions, and the lighter colours around the bold
lines are the standard error. We see that the mid-magnitude lambda values yield
better performance compared to the baseline (λ = 0) and the RSM models. The
accuracy achieved by the baseline is 47.38%. Whereas, the best accuracy with the
regularizer is 52.61% with λ = 0.75 followed by 51.99% with λ = 0.5
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(b) Accuracy using the ND regularizer and
V1 Statistics data
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(c) Accuracy using the ND regularizer and
N(0,1) Statistics data

Figure 5.2: A comparison of λ values for the ND regularized network using different
transformed neural data described in Section 4.2.3. (a) Using Shuffled Labels neu-
ral data, similar to the original neural data, the best performance at 100 epochs is
obtained from λ = 0.75 with 52.34%. (b) λ = 0.75 surpasses λ = 0.5 at around 70
epochs and is the best performing at 52.31% for the V1 Statistics data. (c) Again,
for the N(0,1) Statistics data λ = 0.75 is the best performing λ value with 52.26%
accuracy. Figure 5.3 compares the best results across all generated and original data.
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Figure 5.3: Comparison of the best performing setting for all of the generated or
original neural datasets and the baseline model. Note that the vertical black lines are
the standard error between runs at the 100th epoch for each λ value. λ = 0.75 is the
best performer for each. We see that the original data does slightly better than the
generated data. Note that (b) is the same data displayed but zoomed in, and the y
axis starts at 47.
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Figure 5.4: A comparison of the best performing settings for accuracy for each type
of data. λ = 0.75 is the best performer for each at 100 epochs. We see they all follow
a similar pattern. Note that (b) is the same data displayed but zoomed in, and the
y axis starts at 40.
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5.1.2 Accuracy Discussion

The accuracy experiments in Section 5.1.1 tested the effectiveness of the ND regular-

izer on accuracy. This is done with the CORnetZ model classifying the CIFAR-100

dataset. With the monkey neural recordings as our Brain-View of the DCCA and

the monkey stimuli images as our CNN-View of the DCCA, we trained the model

for 100 epochs. We found a large improvement in accuracy from the baseline model,

which is the CORnetZ model without a regularizer. A reminder that the λ parameter

controls the contribution of each half of the loss function: L = λLDCCA+(1−λ)LCE.

Our implementation normalizes LDCCA giving it the same range as the LCE (0,1),

which gives us a more intuitive understanding of λ. We can interpret λ as the per-

centage LDCCA contributes to L.

λ = 0.75 was optimal for the ND regularizer and achieved validation accuracy

of 52.61% which is over 5% higher than the previous baseline achieved of 47.38%.

Following closely behind, λ = 0.5 reached a validation accuracy of 51.99%. We

observed that when λ is too small, it often still does better than the baseline, but not

a significant amount. However, when λ is too large, it does not reach the baseline

accuracy within 100 epochs. A pattern emerges with further inspection of the λ

values. The smaller the λ, the quicker the model finds its plateau, but the larger

values may achieve higher accuracy after more than 100 epochs. For example, the

baseline can be considered as λ = 0, and it plateaus first, followed by λ = .1, .25, .5.

Looking at Figure 5.1, we see that λ = .75 and .9 are still following an upward trend

at 100 epochs.

To determine how much improvement is owed to the neural data itself, we re-

run our analysis on the Shuffled Labels, V1 Statistics, and N(0,1) Statistics

datasets described in Section 4.2.3. The Shuffled Labels dataset preserves the

neural recording’s latent structures and features, such as the distribution the data

follows, in response to a visual processing task. At the same time, this data separates
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the recording from the specific image that the subjects viewed. The V1 Statistics

would preserve some lower-level statistics such as the mean and standard deviation

but would not capture the same higher order statistics as the recorded data. Finally,

theN(0,1) Statistics dataset is not influenced at all by the neural data and is simply

generated from a standard normal distribution. We find that the more similar the

data is to the actual neural data, the better the performance. That is, we find the

original dataset to perform the best, followed by the Shuffled Labels dataset, then

the V1 Statistics dataset, and finally the N(0,1) Statistics dataset. The signifi-

cant improvement from the baseline may suggest that the neural data may not be as

important as we previously thought as all of the datasets used in the ND regularizer

significantly improved the baseline model. Furthermore, we observe the same trend

or pattern in the λ values for all 3 of the generated datasets as the original data (see

Figure 5.2).

Further experimented with turning the regularizer on and off at different epochs;

essentially only using the DCCA ND regularizer for a subset of epochs. In doing so,

we found that using the DCCA branch of the network for all 100 epochs continued to

improve the model’s accuracy, unlike previous work by Federer et al. [9] that found the

most increase in accuracy was realized in the first 10 epochs. We also experimented

with delaying the onset of the DCCA branch, contributing to various epochs but

found this approach less beneficial.

5.2 Super-Class Accuracy

Next, we look at the performance of the ND regularized models for super-class accu-

racy. Although it is most desirable to correctly classify all samples, when errors in

classification do occur, we prefer a model that makes more human-like errors than un-

natural errors. For example, if an image of a shrew gets misclassified as a mouse, we

would consider that a more reasonable mistake than if the shrew image was misclas-

sified as a tractor image. The CIFAR-100 creators [16] have provided super-classes
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to group concepts. For instance, the shrew class is contained in the same super-class

as the mouse, while the tractor is not (see Figure 5.5). In humans, the ability to

recognize these similarities or relationships between objects is innate. Because we

are creating this model to make more brain-like representations, we expect the reg-

ularized model to achieve higher super-class accuracy than the unregularized model.

We also explore how the generated and shuffled datasets from Section 4.2.3 perform

at this task. This helps determine how much the ND regularizer or the neural data

contribute to the improvement.

Figure 5.5: An example to demonstrate super-class accuracy. The image on the left
is a shrew. It is more reasonable to classify it as a mouse (center-most) than a tractor
(right).

To test the super-class accuracy of our models, we load the saved model weights

at the 100th epoch from the accuracy experiments and run the test set through the

model. Then the evaluated classification labels are mapped to the super-class it

belongs to. The super-class accuracy is the proportion of examples mapped to their

proper super-class, even if the example image is classified incorrectly.

5.2.1 Super-Class Accuracy Results
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Figure 5.6: A comparison of super-class accuracies achieved with different λ values
with the ND regularizer. The best performing RSM model’s results are also included.
The super-class accuracies follow a similar pattern to what is seen with the (true)
accuracies in Section 5.1.1. λ = 0.75 performs the best with 64.61% accuracy followed
by λ = 0.5 at 63.92%. Most of the tried λ values outperform both the baseline and
the RSM models.
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(a) Super-class accuracy using the ND regu-
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(b) Super-class accuracy using the ND regu-
larizer and V1 Statistics data
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(c) Super-class accuracy using the ND regu-
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Figure 5.7: A comparison of super-class accuracy for λ values with the ND regularized
network using different transformed neural data. λ = 0.75 achieved the highest super-
class accuracy for all transformations of the data. (a) Shuffled Label data achieved
63.50%. (b) V1 Statistics data achieved 64.19%. (c) N(0,1) Statistics data achieved
64.11%. A comparison of the best performances from each dataset are presented in
Figure 5.9.
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Figure 5.8: Stacked bar graph of the accuracies and super-class accuracies of the data
variations from λ = 0.75 in the ND regularizer. (b) Is the same data displayed but
zoomed in, and the yaxis starts at 45.
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Figure 5.9: The proportion of errors within the correct Super-Class for the differ-
ent datasets, including error bars. We see that the original dataset has the highest
proportion of errors within the correct Super-Class.
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5.2.2 Super-Class Discussion

We saw impressive results with the ND regularization on the model’s accuracy. How-

ever, we are still interested in how reasonable of mistakes the model makes when it

misclassifies an image. In other words, we wish to explore whether the model makes

reasonable or intuitive mistakes or if it makes mistakes that are unhuman-like. The

super-class experiments in Section 5.2.1 tested this.

Again we find that λ = 0.75 is the optimal λ value for all the datasets. Furthermore,

for each individual dataset, the pattern of the super-class accuracy closely follows the

same curve seen in the accuracy experiments for ordered λ as seen in Figure 5.6 and

Figure 5.7. Like the accuracy results, we find that the original data does the best

at correctly classifying the images in their proper super-class with 64.61% accuracy

compared to the baseline’s 59.33% super-class accuracy. However, unlike the accu-

racy results, we find that the second best performing dataset is the V1 Statistics

dataset with a super-class accuracy of 64.19%, followed by N(0,1) Statistics dataset

reaching 64.11% accuracy, and lastly, the Shuffled Labels dataset reaching 63.50%

super-class accuracy.

Although we find the neural data most beneficial, these results may suggest that

if we are not properly aligning the neural responses to the correct stimuli then it

confuses the model. Based on Yamins et al.’s work [30] we know that CNNs produce

brain-like representations . So perhaps by using a neural data regularizer with data

that is not matched to the stimuli, both LDCCA and LCE are trying to form brain-like

representations in the V1 hidden representation. However, these two representations

may contradict each other for a given image, causing an overall lower gain of brain-

likeness. Whereas, the other two datasets, N(0,1) Statistics and V1 Statistics

are more similar to noise. That is, these datasets are adding information without

disrupting the representations the model is developing on its own.

To view these super-class results another way, recall that all images classified cor-
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rectly are also super-class classified correctly. We examine the percentage of im-

ages classified incorrectly but mapped to the correct super-class. Using the results

from the accuracy experiments (Section 5.1.1) and the super-class experiments (Sec-

tion 5.2.1), we can calculate the percent of examples incorrectly classified but properly

super-classified. The percentages are as follows: original data 25.46%, V1 Statistics

24.91%, N(0,1) Statistics 24.82%, and Shuffled Labels 23.42%. The original neu-

ral data still has the most improvement even though it also has the highest accuracy.

This means that the ND regularizer with original data had a lower proportion of im-

ages that were misclassified, but could be correctly super-classified. Yet, the original

dataset still achieved a higher proportion of incorrectly-classified but correctly-super-

classified images than the other datasets (Section 4.2.3).

5.3 Adversarial Robustness

We are not only interested in the accuracies of the models but also in how robust

our new model is. Humans can identify objects in images properly even when slight

modifications are made to the image (See Figure 5.10 for an example). Here we look

at a specific robustness task where targeted noise is added to the image and fed to the

model to classify it. If the model is able to classify these modified images correctly,

then it is robust. The specific type of robustness we look at here is called Robustness

to Adversarial Examples.

Adversarial examples are images that are altered to deceive the model into mis-

classifying the images. The fast gradient sign method (FGSM) [11] is a well-known

technique for generating such derivative images. This method involves the typical

forward propagation, like when training neural networks. Then, instead of adjusting

the model weights in the direction of the gradients that will minimize the loss, the

image pixels are adjusted to maximize the loss.

The actual image is altered by: Pnew = Pold + ϵ ∗∆ , where P are the pixel values,

ϵ is the attack strength and ∆ is the gradients. Note that the resulting images are
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Figure 5.10: An demonstration of an adversarial example. On the left is the original
image of a stop sign, on the left is the same image but altered. The alterations
produce an image that is still recognizable as stop sign to humans, but will often
trick a model into classifying it incorrectly.

often unmistakable to humans, so an improvement in adversarial robustness would

indicate a more brain-like model.

Examining the above equation, the ϵ value determines the strength of the attack.

ϵ = 0 would mean that the attack has no effect and produces images identical to

the input images. There is no true upper bound for the ϵ value, but if it gets too

large, it distorts the image so much that even humans have difficulty classifying it.

Goodfellow et al. [11] used ϵ = 0.1 using CIFAR-10 dataset [16], similar to CIFAR-

100, so increments of 0.1 seem reasonable.

FGSM is a white box attack, meaning the attack has all of the architecture infor-

mation and weights of the model it is trying to deceive. In this method, it does not

matter which class the images gets misclassified as, the attack’s objective is simply

to cause the model to misclassify the images.

To accomplish this, we use an FGSM framework that uses the final trained model

from the accuracy experiments (Section 5.1) and runs the FGSM algorithm on that

model. Multiple attack strengths were tested on all the variations of models, including
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the baseline and shuffled models.

5.3.1 Adversarial Robustness Results
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Figure 5.11: A comparison of adversarial robustness for the ND regularized network
using different λ values. λ = 0.75 performs the best until around a strength of .3
when λ = 0.5 takes over.
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(a) Robustness to Adversarial Examples us-
ing the ND regularizer and Shuffled Labels
data.
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(b) Robustness to Adversarial Examples us-
ing the ND regularizer and V1 Statistics
data.
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(c) Robustness to Adversarial Examples us-
ing the ND regularizer and N(0,1) Statis-
tics data.

Figure 5.12: A comparison of the λ values for the ND regularized network using
different transformed neural data for adversarial robustness. Similar to the original
data (Figure 5.11), for all the generated datasets we see that λ = 0.75 is the most
robust to weaker attack strengths. λ = 0.5 is the most robust for stronger attacks
compared to other λ values.
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Figure 5.13: A comparison of the different data types at λ = 0.75. The original data
produced the most robust model for low adversarial strengths, but around strength
of .4 the N(0,1) Statistics data produces the most robust model.
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5.3.2 Adversarial Robustness Discussion

To analyze the adversarial robustness experiments in Section 5.3.1, recall that the

FGSM [11] adds perturbations that are nearly imperceptible to a human. These

attacks use information from the targeted model to add noise to images to deceive the

model. From Figure 5.11, compared to the baseline model, moderate strength attacks

seem to be better protected against by the ND regularizer using the original data.

Interestingly, we find that the larger the λ value, the lower the strength of the attack

is when the accuracy preservation declines. λ = .75 provides the most protection

for what we would consider reasonable attack strengths or before the images are

unrecognizable to any network.

This pattern is seen again with the other datasets (Figure 5.12). When comparing

all 4 datasets at λ = .75, we find that they all perform very similarly until a strength

of .2 when they diverge. Surprisingly after a strength of .2, the N(0,1) Statistics

dataset and the V1 Statistics dataset result in more protection than the original

data. However, the accuracy of all 4 datasets’ best performing λ values stay well

above the baseline’s accuracy throughout most of the strengths tested.

5.4 Chapter Conclusion

In this chapter, we established the motivation, techniques, and metrics of performance

for our experiments. For each of these experiments, multiple graphs were shown

illustrating the results for different λ and dataset settings. A detailed analysis of the

graphs and possible interpretations of the results were also given. In the next chapter

we will summarize these findings, as well as present our contributions, and discuss

the limitations of this work.
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Chapter 6

Conclusion and Future Work

Here we will conclude our work by reminding the reader the contributions achieved in

this thesis. We will give a brief overview of the content of each chapter as a reminder.

Lastly, we discuss the limitations this work has, as well as ideas that could be used

to improve it in future works.

6.1 Conclusion

While CNNs are exceptional at categorizing images [25], the usefulness of these algo-

rithms depend on whether humans would agree with their categorizations. That is,

the accuracy and the labels of images are in accordance with human judgement. It

is clear then, that CNNs should try to achieve outcomes that are similar to human

behaviour. However, there is a lack of research that produces algorithms mimicking

human behaviour in CNNs. In this thesis, we described a technique that causes a

CNN to simulate brain behaviours through the use of a regularizer.

6.1.1 Summary

First in Chapter 2, we discussed the established connection machine learning models

have to the brain. We found the conception of CNNs to be heavily influenced by

neuroscience findings, and noted that CNNs produce representations that are capable

of predicting neural patterns of the brain. We then took special interest in Federer
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et al. [9], a study that used RSMs to evaluate the similarity between a network’s

hidden representations and neural recordings. The similarity measurements were

used in the network’s cost function to influence the representations to mimic the

neural recordings. We also detailed Federer et al.’s successes and shortcomings with

this approach.

Second in Chapter 3, we described and examined potential metrics to use in place

of Federer et al.’s RSM. CCA [14] was a metric of interest, but we ultimately found

more utility in a deep network version of CCA, DCCA [4]. This method would

relieve the pairwise, linear, and reweighting limitations in the RSM method, while

also being computationally efficient. We then defined CORnetZ [17], our base CNN.

Additionally we described the datasets used and outlined the preprocessing procedure.

Thirdly, we introduce our new model in Chapter 4. This model was CORnetZ that

shared a node with DCCA. Through the use of a composite cost function L, the model

would become more brain-like. Each of the components of the loss function came

from either CORnetZ, which classified images, or DCCA, which found the correlation

between the shared node’s hidden representations and neural recording data. With

this, these hidden representations would start to resemble neural recordings.

Next in Chapter 5, we evaluated our model on three criteria. 1) Accuracy - how well

it classified images correctly. 2) Super-Class Accuracy - how intuitive the mistakes

model made were. 3) Adversarial Robustness - how well the model performed with

a dataset designed to trick it. We provided visuals of our results as well as offered

possible interpretations of the results for each experiment.

Lastly, here we summarized the thesis and will remind the reader of the major

contributions found. Finally, we discuss the limitations of this method as well as

possible remedies for these limitations that will be left as future work.

6.1.2 Contributions

Our findings can be summarized as the following,
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• The DCCA ND regularizer was able to improve the accuracy of the CORnetZ

model on CIFAR-100 data.

• The regularizer produced higher super-class accuracy than the baseline model.

Further, the improvement from the accuracy to the super-class accuracy is larger

for the regularized model than the baseline model.

• For reasonable strengths of FGSM-produced adversarial examples, the regular-

ized model was more robust.

• The regularized model also outperformed the previous RSM method in accuracy

and super-class accuracy.

• Using generated neural data in the DCCA also produced improved results from

the baseline and the RSMmethod in all three experiments (accuracy, super-class

accuracy, and adversarial robustness).

• Lastly, we tuned the hyperparameter λ to control the contribution of the DCCA

result in the composite cost function. We found that in general, for a weak model

like CORnetZ, a λ of 0.5 or 0.75 worked best.

6.2 Limitations and Future Works

Although we found promising results using DCCA with neural data as a regularizer

for a CNN, there are some future steps we would like to take.

We would like to try this method on a different CNN. CORnetZ was used mainly

because of its structural similarity to the mammalian visual pathway. This structure

gave us an obvious place to insert our ND regularizer- the same visual area the data

was recorded from (V1). It also allowed us to run proof-of-concept experiments as it

was not a top performing model and we would be able to see evident improvement if

there was any from our method. However, we would like to see if we could improve a

CNN that is already performing remarkably well on an image classification task with
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our method. We ran preliminary experiments on ResNet-50 (see Appendix A) and

saw promising results. However, more experimentation is needed with a variety of

models to really understand the capabilities and limitations of our regularizer.

Because of the availability of brain recording data, we had to use a dataset that

was not ideal. The data from Coen-Cagli et al. [6] had a few issues. Firstly, the

images were recorded from monkey subjects. Although mammalian brains all have

very similar visual pathway structures, we desire our model to mimic human brain

behaviour. Also, the images shown to the monkeys were often of objects they would

not have encountered or experienced themselves. For example, images of ships or

European landmarks were shown to the monkeys. It is difficult to determine whether

something so foreign would provoke a meaningful representation in their visual path-

way. Secondly, the subjects were anesthetized. Being anesthetized could possibly

mean that the neural responses to the stimuli were purely physiological. That is, the

monkey’s semantic understanding of what is being seen may not have been conveyed

in the recordings. This could lead to images of ships and bears that have large white

backgrounds to have very similar responses. Thirdly, the dataset is small in two ways.

1) The number of neurons captured is O(100), which is only a fraction of the range

of activity in V1. 2) The number and variety of images are very limited. We would

have liked the subjects to see more natural images akin to the classified CIFAR100

dataset. We also believe that 956 images is too small of a dataset to run a machine

learning algorithm on. This is evident from having to cycle through the data multiple

times for one epoch of the CNN.

6.3 Final Thoughts

In this thesis we introduced a method to bridge the gap between the knowledge that

CNNs were inspired by the brain and the knowledge that CNNs develop brain-like

representations on their own. Previous works have attempted to capture the connect-

edness of the brain and CNNs to improve models with great success (Section 2.2).
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However, our model achieved better results than these previous works in multiple

tasks and with more impressive architectures and/or datasets. With autonomous

technology becoming more common in people’s daily lives, it is important that this

technology use appropriate algorithms. Algorithms that not only achieve high perfor-

mance (for example in accuracy), but also make more human-like or logical decisions

(for example high super-class accuracy or robustness) must be prioritized. As we

enable people to use these algorithms to aid in important tasks, it is a researcher’s

duty to provide models that make more rational decisions, hence making the models

safer. The model we created is one step in that direction. Further work can be done

to apply this concept to larger and more sophisticated models and with human neural

data. Further, more metrics to determine how human-like a model is can be explored,

such as other robustness tasks. We hope our work will be sufficient motivation and a

solid building block for new research in this area.
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Appendix A: ResNet-50
Experiments

A.1 Experimental Details

To determine whether our ND regularizer works on a more powerful model than

CORnetZ we used ResNet-50 as our CNN.

ResNet-50 has a more elaborate architecture than the previously used CORnetZ.

Namely, ResNet-50 contains skip connections. An input x processed through some

layers of a model will give the transformed h(x). A skip connection is when the input

to an intermediate layer is h(x) + x. Skip connections allows the use of a deeper

architecture without degrading the accuracy [12]. The ResNet-50 model has a 50

total layers, often they are grouped in stages (see Figure A.1). In each stage there is

1 convolutional block, and several identity blocks. And in each of these blocks there

are a series of layers (for example convolutional layers).

According to Brain Score [27], a composite benchmark for comparing models to the

brain, the third block (second identity block) of the second stage forms representations

most similar to the V1 area of the brain. For this reason we chose to connect the

DCCA to this node. The combined architecture is depicted in Figure A.1.

We use the same hyperparmeter tuning for the DCCA model as in Section 4. We

used the architecture described in He et al. [12] along with an image size of 32,

batch normalization momentum of 0.9, and an orthogonal kernel initializer. Image

augmentation of random horizontal flips and rotations was also used in training.

The ResNet-50 experiments were ran for 200 epochs with a learning rate schedule

as follows: learning rate = 0.1 for epochs 1-60, learning rate = 0.02 for epochs 61-

120, learning rate = 0.004 for epochs 121-180, and learning rate = 0.0008 for epochs

181-200.
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Figure A.1: Architecture of ResNet-50 with the DCCA ND regularizer attached.

Smaller λ values were experimented with as we suspected the ResNet-50 model was

already achieving sophisticated and brain-like representations (Yamins et al. [30]) on

its own. Three random seeds were run for each λ = (0.01, 0.1, 0.25, 0.5).

A.2 Results

We found that the highest accuracy was achieved from using the ND regularizer for the

first 10 epochs only, similar to Federer et al. [9]. Note that using our configurations we

were unable to achieve state of the art results with the ResNet-50 baseline (Wightman

et al. [29]) which we contribute to not using transfer learning and using smaller image

sizes.
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Figure A.2: Accuracy experiment on ResNet-50 with CIFAR-100 data. Both [a] and
[b] are of the same data with axes starting at different points. It can be seen in figure
[b] that λ = 0.01, 0.1 consistently achieve higher accuracy than the unregularized
model (68.14%). λ = 0.01 has accuracy of 68.54% on the 200th epoch, = 0.1 has
accuracy of 68.61% on the 200th epoch. The larger λ values (0.25, 0.5) achieve lower
accuracy than the unregularized model.
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