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Abstract 

 

Ternary mixtures comprising cyclohexane + polystyrene + silica nanoparticles were recently 

shown to exhibit a closed loop two-phase region comprising colloid-gas and colloid-liquid phases1. 

This two-phase region is surrounded by single-phase colloid-gas and colloid-liquid phase regions 

and there are two colloid-gas colloid-liquid critical points along the two-phase to one-phase 

boundary. One of the critical points, C1, is essentially temperature invariant. The other critical 

point, C2, is temperature dependent and its placement impacts the shape and size of the two-phase 

region significantly as temperature is varied. The presence and impact of this second critical point 

in these phase diagrams has yet to be modelled for this example or in general, and the need to 

discriminate depletion interaction and depletion flocculation is underscored. Engineering tools are 

needed for process design and process operation optimization that include such mixtures. In this 

work, the experimental results and their basis are rehearsed, and a Statistical Associating Fluid 

Theory (SAFT) based model comprising: spheres of different size to represent the solvent, and the 

nanoparticles, and chains of spheres to represent the polymer, is described and then evaluated for 

this application. Qualitative, and quantitative outcomes are presented, and model limitations and 

required future work are discussed. 
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Chapter 1:  Introduction 

 

Colloidal dispersions have been studied for a long time and have many applications. The addition 

of polymers to colloidal dispersions introduces additional phenomena that are significant from 

industrial and theoretical perspectives2.  For polymers that adsorb onto the surface of colloidal 

particles, bridging flocculation and steric stabilization can occur depending on the concentration 

of polymer. This behavior is shown in Figure 1.1 (a) for bridging flocculation and Figure 1.1 (b) 

for steric stabilization. At low polymer concentration, polymers create bridges between colloids 

that then aggregate. At high polymer concentration, aggregates break down in order to free up 

space for polymer. For polymers that do not adsorb onto the surface of the colloidal particles 

depletion interaction and depletion restabilization2 can occur.   These latter phenomena, the focus 

of this work, are illustrated in Figure 1.1 (c) and (d), respectively. Because the polymer is not 

adsorbed, a layer depleted of polymers appears around the colloids. When these layers overlap, 

polymers are excluded and this creates an osmotic pressure difference leading to an effective 

attraction between colloids and coalescence of solvent + particle regions in the fluid. Depletion 

interaction may lead to particle flocculation adding to the complexity of the resulting phase 

behavior, as particle flocculation may or may not be reversible. Depletion stabilization is similar 

to steric stabilization but for non-adsorbing polymers.  

At a macroscopic scale, depletion interaction causes phase separation. One of the phases has a high 

colloid concentration and is called the colloid-liquid phase (L). The other phase contains a low 

concentration of colloid and is then called the colloid-gas phase (G). The resulting critical point 

(L=G) appearing on the two-phase to one-phase boundary is called C1. At critical point C1 the 

composition and nanoparticle behaviors in the two phases are identical. For reversible interactions, 

one would expect the two-phase region (L+G) to close at a second critical point C2 with a higher 

polymer concentration such as in Figure 1.2 because of depletion stabilization.  This type of 

behavior has been seen experimentally1,3. When the concentration of colloids is high, there can 

also be a solid phase called the colloid-crystal phase (C). The appearance and properties of colloid-

crystal phases is beyond the scope of this study. 
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Several approaches have been used to model phase diagrams of such mixtures but none of them 

reproduce both critical points C1 and C24-7. Statistical Associating Fluid Theory8 (SAFT) does not 

discriminate between colloids and molecules and is a promising approach for phase diagram 

prediction. SAFT provides an equation of state which models many classes of mixtures including 

polymers + solvents9-11 and has been applied to the modeling of the depletion flocculation 

effect12,13, but not the fluid portion of polymer + solvent + colloidal particle phase diagrams over 

all. Further, the terms depletion interaction and depletion flocculation are not well discriminated 

in the literature. Is the difference an issue of degree or is it simply a question of reversibility?  

 

In this work, the main objective is to model the phase diagram shown in Figure 1.2 qualitatively 

using a simple SAFT approach. The hard sphere version of SAFT called SAFT HS seems 

appropriate. It models molecules as non-penetrating spheres or chain of spheres. It also allows the 

presence of association sites on the surface of each component to model short-range attractions 

with specific directions. It is especially appropriate to model aromatic rings on polymers and it 

could work to model a short-range attraction around colloids. However, any other kinds of 

attraction are simply modeled as mean fields and thus this model does not accurately take into 

account medium-range effects such as electrical double layers. The objectives of this work are to 

create a program that simulates phase diagrams of ternary mixtures (solvent + polymer + 

nanoparticles) using the SAFT HS equation of state and apply it to model liquid phase behaviours 

of the cyclohexane + polystyrene + silica nanoparticle mixtures  qualitatively. The effects of 

association sites are also studied and results are compared to experiments.  

Figure 1.1 a) Bridging flocculation; b) Steric stabilization; c) Depletion flocculation; d) Depletion 

restabilization2. 
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This thesis comprises five chapters and three appendices. In addition to the introduction these are: 

• Chapter 2: Literature Review where previous works related to this study are presented. It 

includes overviews of depletion flocculation, a dominant phenomenon in the literature, 

thermodynamic perturbation theories and SAFT. 

• Chapter 3: The SAFT equation of state chosen and the way it is used are explained. A 

computer code is presented and validated. 

• Chapter 4: Phase diagram results obtained using different sets of parameters are presented 

and discussed. Where appropriate, parameters are taken from the literature. Other 

parameters are varied and their influence on qualitative aspects of the phase diagrams are 

reported. 

• Chapter 5: Concluding remarks are presented and future works are suggested on the basis 

of the results obtained. 

• Appendices:  

o A1 provides a detailed derivation of the SAFT HS model based on primary works. 

It provides a compact and sequential presentation of concepts and mathematical 

steps, not available elsewhere, and is intended for readers who want to understand 
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Figure 1.2 Sketch of the two-phase region observed experimentally. Black triangles represent 

critical points. 
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Statistical Association Fluid Theory. A modified chain term is also suggested based 

on a close reading of the literature. 

o A2 comprises the MATLAB14 code prepared for this work. 

o A3 provides supplemental cyclohexane + polystyrene + silica nanoparticle ternary 

phase diagrams with diverse parameter sets that support the related discussion in 

Chapter 4. 
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Chapter 2: Literature Review 

 

2.1 Ternary mixtures containing nanoparticles and non-adsorbing polymers 

The study of mixtures with nanoparticles and non-adsorbing polymers began with the study of 

depletion flocculation15. Both nanoparticles and polymers were modeled as hard spheres in a 

continuous medium. Because polymers cannot adsorb onto the surface of nanoparticles, if the latter 

are close enough, a region depleted of polymers appears causing a difference of osmotic pressure 

and so an effective attraction. This attraction then causes the formation of nanoaggregates, which 

is the cause of a phase separation. De Hek and Vrij16 theorized this behavior and later the Free 

Volume Theory6 and the Generalized Free Volume Theory7 were introduced. The temperature 

invariant phase diagrams given by these theories are shown in Figure 2.1. The characteristics of 

interest here are the presence of a colloid-gas colloid-liquid two-phase region (G+L) and critical 

point C1 that arises if the ratio of the polymer radius to the colloid size is large enough. 

Figure 2.1 Phase diagrams obtained with Free Volume Theory and Generalized Free Volume 

Theory for different values of the ratio Rg/a = polymer radius of gyration/colloid size. (a) Rg/a = 

0.08; (b) Rg/a = 0.33; (c) Rg/a = 0.5716. The critical point C1 is indicated with the solid triangle. 

F is the fluid phase. 

 

Recent experiments1,3 show that the two phase region (G+L)  may form a closed loop and thus 

there may be two critical points (G=L) C1 and C2 in temperature invariant phase diagrams. The 

case of a cyclohexane + polystyrene + silica nanoparticles is shown in Figure 2.2 and the case of 

Athabasca pentane asphaltenes + polystyrene + toluene is shown in Figure 2.3. This behavior 
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appears because depletion stabilization2 arises at high polymer concentration and this introduces a 

second critical point C2, and temperature variation in the phase boundary location in the resulting 

phase diagram. For these latter cases, the depletion interaction need not include particle 

flocculation. 

 

Figure 2.2 Superimposed phase diagrams for mixtures of cyclohexane + polystyrene (237 

Kg/mole) + silica nanoparticles (7 nm diameter) showing two-phase to one phase boundaries at 

296 K ( ), 303 K ( ) and 313 K ( ). Symbols: G=L critical points at 296 K ( ), 303 K (

) and 313 K (  ); (  ) UCEP for the polystyrene + cyclohexane binary (299 K)17.  

 

The temperature dependence arises in part because at low temperatures the G + L region intersects 

the polymer mass fraction axis, e.g.: at 296 K in Figure 2.2.  This occurs because cyclohexane and 

polystyrene are not miscible at low temperatures. This transition to two-phase behavior arises at 

the upper critical end point (UCEP) temperature. The immiscibility effect is attributed to a 

conformational transition in the polymer from coil (below the UCEP) to globule18 (above the 

UCEP). The radius of gyration of the polymer is thus temperature dependent in this temperature 

interval. 

Critical point C1 is effectively temperature independent as expected from depletion interaction 

theories over temperature ranges where the radius of gyration of the polymer is temperature 
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independent, while critical point C2 is hypothesized to move along a critical locus starting at the 

UCEP as shown in Figure 2.417. 

 

Figure 2.3 Experimental phase diagram for Athabasca pentane asphaltenes + polystyrene + 

toluene. (G) colloid gas like phase, (L) colloid liquid like phase, (G+L) coexisting colloid liquid 

like and gas like phases, (  ) phase boundary, (x) 0.5 (volume fraction of L and G), (C1) first critical 

point, and (C2) second critical point, (■) two phase region, (▲) single phase region3.  

 

Figure 2.4 Movement of critical points as temperature increases above the UCEP temperature17. 
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Cyclohexane and polystyrene are well-defined compounds. Their thermophysical properties are 

well known experimentally and are well-approximated using theoretical and empirical models.  

This is not the case for nanoparticles. From Derjaguin–Landau–Verwey–Overbeek (DLVO) 

theory19,20, one can have a good understanding of the local behavior of individual nanoparticles in 

a solution, but the physics and chemistry become more complicated if related potentials are 

included rigorously in an equation of state. The question of how nanoparticles should be modeled 

thus arises. Poon21,22 discussed how colloids can be treated as big atoms. While it might not be 

appropriate in general, the approach can be used to explain depletion flocculation effects. 

However, it is not well established whether the “big atom” point of view is applicable to other 

features of phase diagrams, such as depletion restabilization effects, or to special particle properties 

such as hygroscopy1, and the modeling of poorly defined particles such as asphaltenes3. Further, 

Dr. Remco Tuinier, a founder of the field, asserted (during a discussion on July 17, 2018) that 

depletion interaction and depletion flocculation must be discriminated and that the phase behavior 

observed around critical point C1 in Figures 2.2, 2.3 and 2.4 is not depletion flocculation but 

depletion interaction, because two distinct phases are observed and the phase behaviors are 

reversible. However, it remains unclear, mechanistically whether or how, exactly, these two 

phenomena differ – one of degree or reversibility. 

 

2.2 Thermodynamic Perturbation Theories 

Perturbation theories are a set of methods that give approximate solutions to equations around a 

reference state that cannot be solved analytically, using Taylor series.  If the perturbation is small 

enough, only a few terms in the Taylor series are needed. This type of method was first used for 

gravitational systems. For two planets, equations of motion can easily be solved but this is not 

possible once additional planets are added. For example, if the influence of a third planet is small 

enough (because it is small or far enough), its interaction energy can be seen as a perturbation and 

an approximate solution is obtained. These methods were first applied by Zwanzig in 

thermodynamics in 195423,24. He developed the general formalism, with the hard sphere potential 

as a reference, but second order or higher terms were difficult to calculate, requiring radial 

distribution functions between more than two particles. Barker and Henderson25,26 found 
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approximations to the second order terms where only the usual radial distribution function is 

required, and introduced an effective temperature dependent diameter for spheres. These equations 

have been combined with the depletion flocculation interaction4,5 and provide phase diagrams that 

are qualitatively similar to those obtained from Free Volume Theory, i.e.: a second critical point 

C2 on the two-phase to one-phase boundary at higher polymer concentration is not obtained. 

Around the same time, Wertheim27-30 developed a more elaborate Thermodynamic Perturbation 

Theory (TPT) for a specific kind of potential energy. The reference potential is still the hard sphere 

potential but perturbations are association sites so that short-range attractions in specific directions 

can be modeled. Wertheim’s perturbation theory is applied in a specific way. Graph theory is 

reformulated in order to take different kinds of bonding into account (referred to as multidensity 

formalism) and steric effects corresponding to some of the neglected configurations when hard 

spheres are non-penetrating. The first order of this TPT is the basis of the Statistical Associating 

Fluid Theory (SAFT). 

 

2.3 Statistical Associating Fluid Theory  

With works from Boublík31 and Mansoori et al.32 to model hard spheres, SAFT8,33,34 uses 

Wertheim’s first order TPT to model chains of hard spheres and association sites. The hard sphere 

equation of state is thus modified to take short range attractions with specific directions into 

account. Dispersion interactions differ depending on the way actual spheres (also called segments) 

are modeled. For hard spheres, a simple mean field term is added to an equation of state33,34. If 

segments already include an attractive part in their potential energy, a different perturbation theory 

must be used. The perturbation theory and the Wertheim first order TPT should be applied 

sequentially and are not independent. However, this is a difficult process leading to complicated 

equations and in general the two are treated as if they are independent. Consequently there are 

numerous SAFT based equations of state that take different effects into account35-42. For example, 

for the perturbed chain variant PC-SAFT36,37 Equation of State, segments are modeled with a 

square-well potential. A perturbation theory similar to Barker and Henderson perturbation 

theory25,26 is applied, with the attractive part of the segment potential as a perturbation, once 

Wertheim first order TPT has been applied to model chains of spheres. PC-SAFT is both a rigorous 

and accurate model when association sites are not considered. The hard sphere variant SAFT HS 
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10,11,43 (segments are simple hard spheres and dispersion is a mean field) has received limited 

practical as opposed to theoretical use. It is inaccurate but provides interesting qualitative 

results10,11,43.  

The main drawback of SAFT equations of state is their numerical difficulty44,45, especially when 

association sites are used. Association requires solution of a system of non-linear equations to 

calculate Helmholtz free energy plus a linear system of equations for each derivative (pressure, 

chemical potentials, Hessian, etc). The other contributions, without association, are also 

significantly more complex than cubic equations of state (seventh order45). Overall, there can be 

more than three compressibility roots and computation times are significant. Despite this, SAFT 

EOS has already been used, in combination with Density Functional Theory, to model local 

depletion flocculation effects13. AlHammadi et al.12 were the first to study ternary diagrams 

(comprising toluene + polystyrene + asphaltenes) where asphaltenes are modeled as a chain of 

spheres and without association sites. Their results agreed with available experimental results 

concerning depletion flocculation criticality and the adjacent two-phase to one-phase boundaries 

but show no indication of a second critical point C2, driven by depletion restabilization. 

In this work, the goal is to model the two-phase region of solvent + polymer + nanoparticle 

mixtures including observed critical phenomena. The SAFT HS equation of state was chosen for 

its simplicity and its clear theoretical background, which allows three different types of attraction 

(association, chain formation and dispersion as a mean field) on top of the hard sphere reference 

state. The effects of these three attractive interactions is studied as a basis for more detailed 

evaluations including different potential energies. We are particularly interested in whether a 

simple form of SAFT models can mimic the existence and properties of the phase diagram 

exemplified by cyclohexane + polystyrene + silica nanoparticles mixtures in Figure 2.2 with the 

critical properties shown diagrammatically in Figure 2.4. This has not been demonstrated 

previously and it is not clear that available theories possess the required nanoscopic physics to 

explain observed macroscopic behaviors. Based on the current understanding of the depletion 

interaction phemonenon, an entropic effect, it should be modelable with the hard sphere term of 

the SAFT HS equation of state. However, it is not clear what the influence of molecular 

interactions is, and especially whether SAFT HS can model the coil/globule behavior of polymers. 
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Chapter 3: Model Development 

 

In this chapter the method used to reach the objectives detailed in chapter 1 and 2 is elaborated. 

First, the SAFT HS equation of state is presented and explained in summary form. A complete 

derivation is provided in Appendix A1. Second, the phase equilibrium conditions and equations 

are rehearsed. Then a numerical model, presented as a MATLAB14 code in Appendix A2, for 

generating ternary phase diagrams using SAFT HS is explained. Finally, the code is evaluated and 

validated against outcomes from previous works obtained using the same equation of state. 

 

3.1 The SAFT HS model 

The first SAFT model33,34, known as SAFT HS, was chosen for its simplicity and because it can 

capture phase behavior effects that are expected to arise at a macroscopic scale. With SAFT HS, 

molecules are modeled as hard spheres and chains of hard spheres with some attractive interactions 

enabled among them. A complete derivation of this model is presented in appendix A1, except for 

the solution of the Percus-Yevick equation for the hard sphere potential. In the SAFT HS model, 

a system is described by its molar Helmholtz free energy 𝑎 written as follow: 

𝑎 = 𝑎ig +  𝑎hs +  𝑎chain +  𝑎assoc +  𝑎disp (3.1) 

Figure 3.1 provides a summary for the meaning of each term. In the case of an ideal gas, particles 

are points with a mass and a position. A hard sphere potential can be accurately accounted for with 

the hard sphere equation of state provided by Mansoori32. This is the reference potential for 

Wertheim first order TPT which enables the formation of chains and association i.e. attraction 

between different association sites. The latter type of attraction is only possible when association 

sites are overlapping (represented by blue circles in Figure 3.1). Only certain types of attractions 

are considered with these two forms of potential and thus a dispersion potential must be added. In 

the SAFT HS approach, this term is modeled as a simple mean field. 
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Figure 3.1 SAFT HS Equation of State physical meaning. 
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The molar quantities are defined as moles of molecules and not by moles of spheres. The ideal gas 

term 𝑎𝑖𝑔 is given by: 

𝑎ig(𝑇, 𝜌, 𝑥𝑖) = 𝑅𝑇 ∑ 𝑥𝑖  ( ln( 𝑁𝑎𝜌𝑥𝑖𝜆𝑖
3 ) − 1 )

𝑖

 (3.2) 

Where the sum means that it is carried out over each component. The thermal de Broglie 

wavelength 𝜆𝑖 of component 𝑖 is : 

𝜆𝑖 =
ℎ

√2𝜋𝑀𝑖𝑘𝐵𝑇
 (3.3) 

With 𝑀𝑖 the mass of component 𝑖. The hard sphere term is given with the following form39: 

𝑎hs(𝑇, 𝜌, 𝑥𝑖) =
6𝑅𝑇

𝜋𝑁𝑎𝜌
 ( 

3 𝜉1𝜉2

1 − 𝜉3
+

𝜉2
3

𝜉3(1 − 𝜉3)2
+ ln(1 − 𝜉3) (

𝜉2
3

𝜉3
2 − 𝜉0)) (3.4) 

Where: 

𝜁𝑘 =  
𝜋

6
𝑁𝑎𝜌 ∑ 𝑥𝑖𝑚𝑖𝜎𝑖

𝑘

𝑖

 ; 𝑘 = 0,1,2,3 (3.5) 

𝑚𝑖 is the number of spheres in molecule 𝑖. The packing fraction 𝜂 of the mixture is exactly equal 

to 𝜁3. This general form is preferred to the one chosen by Chapman8 as the mixture can contain 

spheres with significantly different diameters (e.g.: nanoparticles and molecular segment). The 

chain term is8: 

𝑎chain(𝑇, 𝜌, 𝑥𝑖) = 𝑅𝑇 ∑(1 − 𝑚𝑖) ln(𝑔𝑖𝑖(𝜎𝑖)
hs)

𝑖

 (3.6) 

Where: 

𝑔𝑖𝑗(𝜎𝑖, 𝜎𝑗)
hs

=  
1

1 − 𝜁3
+  

3𝜎𝑖𝜎𝑗

𝜎𝑖 + 𝜎𝑗

𝜁2

(1 − 𝜁3)2
+ 2 (

𝜎𝑖𝜎𝑗

𝜎𝑖 + 𝜎𝑗
)

2
𝜁2

2

(1 − 𝜁3)3
 (3.7) 

is the hard sphere radial distribution function between components 𝑖 and 𝑗 in a mixture. For the 

chain term where 𝑖 = 𝑗, equation (3.7) becomes: 

𝑔𝑖𝑖(𝜎𝑖)
hs =  

1

1 − 𝜁3
+  

3𝜎𝑖

2

𝜁2

(1 − 𝜁3)2
+ 2 (

𝜎𝑖

2
)

2 𝜁2
2

(1 − 𝜁3)3
 (3.8) 
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The association term is8: 

𝑎assoc(𝑇, 𝜌, 𝑥𝑖) = 𝑅𝑇 ∑ 𝑥𝑖 (∑ ln(𝑋𝐴𝑖
) −

𝑋𝐴𝑖

2
+

1

2
𝐴𝑖

)

𝑖

 (3.9) 

 

The second sum is carried out over all the association sites on component 𝑖. It is written here in a 

slightly simplified form where the number of association sites per molecule is hidden inside the 

second sum. It comes from the fact that the number of association sites on a molecule 𝑖 is ∑ 1𝐴𝑖
. 

𝑋𝐴𝑖
 is implicitly given by: 

𝑋𝐴𝑖
=  

1

1 + 𝑁𝑎𝜌 ∑ ∑ 𝑥𝑗𝑋𝐵𝑗
𝛥𝐴𝑖𝐵𝑗𝐵𝑗𝑗

 (3.10) 

The association strength 𝛥𝐴𝑖𝐵𝑗
 is given by: 

𝛥𝐴𝑖𝐵𝑗
=  𝜎𝑖𝑗

3𝑔𝑖𝑗(𝑑𝑖𝑗)
hs

𝜅𝐴𝑖𝐵𝑗
[exp (

𝜀𝐴𝑖𝐵𝑗

𝑘𝐵𝑇
) − 1] (3.11) 

𝜎𝑖𝑗 =  
𝜎𝑖 + 𝜎𝑗

2
 (3.12) 

 

where 𝜅𝐴𝑖𝐵𝑗
 is the bonding volume and 𝜀𝐴𝑖𝐵𝑗

 is the association energy, between association sites 

𝐴𝑖 and 𝐵𝑗. More details about the meaning of 𝜅𝐴𝑖𝐵𝑗
 are given in the appendix but it should be borne 

in mind that it corresponds to the overlapping volume between association site  𝐴𝑖  and  𝐵𝑗 

(although it has no unit here). Finally, the dispersion term is43: 

𝑎disp(𝜌, 𝑥𝑖) =  −𝑁𝑎 (
𝜋𝑁𝑎𝜌

6
) ∑ 𝑥𝑖𝑥𝑗𝑚𝑖𝑚𝑗𝜎𝑖𝑗

3 𝜀𝑖𝑗

𝑖,𝑗

   (3.13) 

with: 

𝜀𝑖𝑗 = (1 − 𝑘𝑖𝑗)√𝜀𝑖𝜀𝑗 (3.14) 

where 𝑘𝑖𝑗 is a binary interaction parameter and 𝜀𝑖 is the mean field value of the dispersion energy 

of interaction of component 𝑖.  
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The dispersion term in this model, while necessary, does not arise from a rigorously defined 

interaction potential and value of 𝜀𝑖 are often higher (by one or two orders of magnitude) than the 

values used in other SAFT equations of state, where it is better defined. The hard sphere and chain 

terms explain the basic shape of molecules and it is permissible to use non-integer values of 𝑚𝑖 in 

order to fit data for molecules with known properties. The combination of the association and 

dispersion terms explains the attractive interactions.  Association sites model oriented short-range 

attractions. Dispersion is used to model all other attractions. The main problem of the dispersion 

term is that it does not take local variations of potential energy into account. 

In the first order theory used for association in SAFT, the association term, does not depend on the 

position of association sites as illustrated in equations (3.9), (3.10) and (3.11). Moreover, ring-like 

structures cannot be modeled as explained in Appendix A1. In SAFT, the radial distribution 

function only considers spheres that are touching. 𝜅𝐴𝑖𝐵𝑗
 and 𝜀𝐴𝑖𝐵𝑗

 lose a part of their physical sense 

because different pairs of these parameters can provide the same value for 𝛥𝐴𝑖𝐵𝑗
. In this work, 

𝜅𝐴𝑖𝐵𝑗
 is estimated using equation (A.235) so that the impact of the one degree of freedom allowed 

by equation (3.11) is studied by changing 𝜀𝐴𝑖𝐵𝑗
. 

The Wertheim first order perturbation theory also considers some steric effects, as explained with 

more detail in the Appendix A1. These steric effects are represented in Figure 3.2. Steric effect I 

appears when three hard spheres are considered. If association sites are small enough compared to 

the radius of the hard spheres, it is not possible for three association sites to overlap. Steric effect 

II prevents one association site from bonding with two association sites of another hard sphere. 

This happens when association sites are small but also when association sites (on hard sphere 2) 

are not close enough to one another. Finally, steric effect III prevents one hard sphere from bonding 

to another hard sphere with two or more different association sites (on each hard sphere). Again, 

this happens when association sites are small and not close enough to one another.  
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Figure 3.2 Steric effects considered in SAFT8. Black circles represent hard spheres and blue circles 

represent association sites. 

 

3.2 Phase equilibria 

For a set of parameters (temperature, pressure, interaction energies, size of the particles… and an 

overall composition), the number of phases, the fraction and the composition of each phase can be 

obtained from an equation of state. By repeating these “flash calculations” for many different 

conditions, PT (at fixed composition), Px (at fixed T), Tx (at fixed pressure) phase diagrams are 

obtained. For the most common isothermal flash calculation, the main physical principle to get 

this information is the minimization of the Gibbs free energy at constant pressure and temperature. 

In simplest terms, the Gibbs free energy, as a function of composition, is generated and then the 

tangent plane criterion developed by Michelsen46 is applied.  

The first step is to calculate 𝑎 in equation (3.1). There is no difficulty except for the association 

term, equation (3.10), which is a non-linear system of as many equations as there are different 

association sites. From the form of this system of equations, one can see that all  𝑋𝐴𝑖
 are between 

0 and 1. Xu et al.44 showed that there can be only one solution for equation (3.10). Thus, successive 

iteration  𝑋𝐴𝑖
 → 𝑓𝐴𝑖

 with  𝑓𝐴𝑖
=  

1

1+𝑁𝑎𝜌 ∑ ∑ 𝑥𝑗𝑋𝐵𝑗
𝛥𝐴𝑖𝐵𝑗𝐵𝑗𝑗

 is sufficient to find the solution and this 

iterative method was chosen here because it converges faster than the MATLAB solver routine. 

The next step is to calculate chemical potentials 𝜇𝑖 of all component𝑠 𝑖: 

𝜇𝑖 =
𝜕𝐴

𝜕𝑛𝑖|𝑇,𝑉,𝑛𝑗≠𝑖

; 𝐴 = 𝑛𝑎 (3.15) 
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Chemical potentials obtained from equation (3.15) are derived in Appendix A1. From these, the 

Gibbs free energy 𝐺 is obtained with: 

𝐺 =  ∑ 𝜇𝑖𝑛𝑖  

𝑖

(3.16.1) 

Or the molar version: 

𝑔 =  ∑ 𝜇𝑖𝑥𝑖

𝑖

 (3.16.2) 

From: 

𝐺 = 𝐴 + 𝑃𝑉 (3.17) 

It is directly shown that: 

𝑃(𝜌) =  𝜌(𝑔(𝜌) − 𝑎(𝜌)) (3.18) 

where the molar density dependence is written. Pressure can also be calculated as a partial 

derivative of 𝑎: 

𝑃(𝜌) = 𝜌2
𝜕𝑎

𝜕𝜌
|𝑇,𝑛𝑖

  (3.19)  

The fact that equation (3.18) and (3.19) give the same result is a consequence of Gibbs-Duhem 

equation. Pressure is fixed so the molar density must verify the following equation: 

𝑃∗ = 𝑃(𝜌) (3.20) 

Where 𝑃∗ is the fixed pressure and 𝑃 is the pressure given by equation (3.18) or (3.19). There are 

in general several solutions to this equation. The solution that minimizes Gibbs free energy must 

be kept. Once this is done, one can calculate Gibbs free energy and chemical potentials with 

equations (3.15) and (3.16).  

For an overall composition of interest 𝒙0, the tangent plane distance 𝐷𝐺  at 𝒙0 as a function of the 

composition vector 𝒙 = (𝑥1, 𝑥2, … ) is: 

𝐷𝒙0
𝐺 (𝒙) =  ∑ 𝑥𝑖(𝜇𝑖(𝒙) − 𝜇𝑖(𝒙0)) 

𝑖

(3.21) 



18 
 

According to Michelsen46, this function must always be a positive function if one-phase is stable 

at composition 𝑥0. This is the tangent plane criterion. The mole balance defines the composition 

space: 

∑ 𝑥𝑖

𝑖

= 1 ; ∀ 𝑖 , 0 ≤ 𝑥𝑖 ≤ 1 (3.22) 

If it happens that the tangent plane distance is not positive for a given composition, one-phase 

cannot be stable at composition 𝑥0 and there must be a phase separation. Then two or more phases 

have to be present and each of them must satisfy the tangent plane criterion. In addition to that, 

chemical potentials in each given phase 𝛼 and 𝛽 (for each component) must be the same: 

∀ 𝑖, 𝜇𝑖
𝛼 =  𝜇𝑖

𝛽 (3.23) 

Introducing 𝑥𝑖
𝛼 which is the mole fraction of component 𝑖 in phase 𝛼, all the equations needed in 

the case where multiple phases are present in the system can be written. The mole balance 

becomes: 

∀ 𝑖, 𝑥𝑖 =  ∑ 𝑥𝑖
𝛼𝑓𝛼  

𝛼

(3.24) 

∀ 𝛼, ∑ 𝑥𝑖
𝛼

𝑖

= 1 (3.25) 

Where in equation  (23)  𝑓𝛼  is the mole fraction of phase  𝛼  in the system. Equation  (3.23) 

becomes: 

∀ 𝑖,  𝜇𝑖(𝒙𝛼) =  𝜇𝑖(𝒙𝛽) (3.26) 

Where 𝒙𝛼 is the vector of all the 𝑥𝑖
𝛼.  

Minimizing Gibbs free energy can lead to numerical problems and thus one might prefer to 

minimize Helmholtz free energy47. Only temperature is then fixed. In this case, it is more 

convenient to work with molar density vectors instead of mole fraction vectors. These are defined 

as: 

𝝆 = 𝜌𝑥 (3.27) 

In component form: 
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𝜌𝑖 = 𝜌𝑥𝑖  (3.28) 

Therefore, 𝝆𝛼 is the molar density vector in phase 𝛼 and 𝜌𝑖
𝛼 is the molar density of component 𝑖 

in phase 𝛼. In this case, the set of independent thermodynamic variables becomes (𝑇, 𝝆). In the 

previous section, this set had three variables (𝑇, 𝜌, 𝒙) but was subject to equation (3.22). The 

tangent plane distance 𝐷𝐴 at 𝝆0 as a function of 𝝆 is in this case: 

𝐷𝝆0
𝐴 (𝝆) =  −

𝑃(𝜌) − 𝑃∗

𝜌
+  ∑

𝜌𝑖

𝜌
(𝜇𝑖(𝝆) − 𝜇𝑖(𝝆0)) 

𝑖

(3.29) 

Note that 𝜌 is the sum of each component of 𝝆. This is one of the reasons molar density vectors 

are more convenient. One can get composition and molar density simultaneously. The same 

remarks as above apply to this case. The main difference is that with the Gibbs free energy 

approach, one has to find all the roots of equation (3.20) while with the Helmholtz free energy 

approach one has to deal with an additional dimension (pressure). Moreover, as pressure is still 

fixed: 

𝑃(𝝆𝛼) =  𝑃(𝝆𝛽) (3.30) 

and pressure equality (3.20) must be verified on top of equations (3.26) in the Helmholtz free 

energy approach. How these equations are actually used is shown in section 3.3.  

It is convenient to use the Helmholtz free energy approach to calculate critical points47,48. A critical 

point is a point where two or more phases become one. Thus, it must be on the one-phase/multi 

phase limit (i.e. the binodal in the case of the one-phase/two-phase limit). This implies that the 

minimum value of the tangent plane distance at a critical point must be exactly zero. For a point 

inside the multiphase region, this value is negative, and it is zero for points inside a one-phase 

region. When pressure and temperature are fixed in a ternary mixture, a critical point depends on 

two parameters, the mole fraction of two of the compounds (the other mole fraction is found so 

that equation (3.22) is verified). Thus, the condition that the minimum value of the tangent plane 

distance is zero is not sufficient to find a critical point. The fact that phases become identical means 

that around critical points, one-phase is only slightly unstable. It means that a critical point is also 

on the limit between the region where one-phase is unstable and the region where one-phase is not 

unstable (i.e. metastable or stable). This work focuses on critical points where only two-phases 

become identical. They are ordinary critical points and also are the intersection points between a 
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binodal and a spinodal in binary and ternary phase diagrams. One can show47,48 that, in the 

Helmholtz free energy approach, an ordinary critical point verifies the two following equations: 

𝜆1 = 0 (3.31) 

𝑑𝜆1

𝑑𝝆
. 𝒖𝟏 = 0 (3.32) 

Where 𝜆1 and 𝒖𝟏 are the smallest eigenvalue of the Helmholtz free energy Hessian (at constant 

temperature) and the corresponding eigenvector respectively. The Helmholtz free energy Hessian 

is: 

(𝑯𝐴(𝑇, 𝝆))𝑖,𝑗  =  
𝜕2𝜌𝑎

𝜕𝜌𝑖𝜕𝜌𝑗|𝑇,𝜌𝑘

(3.33) 

The derivative in equation (3.32) is the gradient of 𝜆1 so that the entire left hand side is a directional 

derivative along 𝒖𝟏. In the Helmholtz free energy approach, pressure is not fixed. Thus, equations 

equation (3.20) must be verified on top of equations (3.31) and (3.32). Note that the condition: 

𝒖𝟏
𝑇 .

𝑑2𝜆1

𝑑𝝆2
. 𝒖𝟏 > 0 (3.34) 

(gradient of the vector field 𝑑𝜆1

𝑑𝝆
 in the direction 𝒖𝟏) is also verified but is not necessary to find the 

critical point. Note that the instability region is determined by the sign of 𝜆1. 

 

3.3 MATLAB program 

The MATLAB14 program embodying the concepts and equations noted above and used to generate 

the results presented in the next chapter is provided in Appendix A2. It is organized into three 

parts: functions that give values for the main equations (Helmholtz free energy, chemical potential, 

pressure and Helmholtz free energy Hessian), subroutines that solve equations introduced in the 

previous section and the main script for ternary mixtures. The script for binary mixtures is 

essentially the same as the one for ternary mixtures and is not included. However, subroutines that 

are specific to the binary mixtures case are included. 

There is not much to say about the first part. Equation (3.1) to (3.14) plus similar equations for the 

other thermodynamic quantities (given in Appendix A1) are directly translated into MATLAB 
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code. The only difficulty is the association term. For Helmholtz free energy, a “while” loop is used 

in order to find the fixed point of equation (3.10). The criteria to stop this loop is determined by 

the parameter “error_assoc”. It is possible to use the approximate forms of SAFT HR38-40 as 

starting points for the loop but this is not applicable for the mixtures studied here and any starting 

point led to a solution with similar computation times. The other properties (chemical potential, 

pressure and Helmholtz free energy Hessian) require solving a linear system of equations as 

explained in Appendix A1. Also, in order to simplify the use of association sites, a parameter 

“n_Ai” is introduced. It is an array whose elements are the number of identical association sites 

𝐴𝑖 (i.e. sites with the exact same properties). Indeed, because the position of association sites does 

not matter in Wertheim’s first order TPT, one can consider only one representative element for 

each different kind of site and accordingly multiply each Δ𝐴𝑖𝐵𝑗
 (or identically 𝑘𝐴𝑖𝐵𝑗

) by the number 

of identical site of each kind. Equation (3.9) must also be changed accordingly to take this into 

account in the sum carried out over association sites. Each contribution (association, dispersion,…) 

are calculated separately and then combined in functions “helmholtz”, “chempot”, “pressure” and 

“hessian”. 

The other subroutines are presented following the main script. The first part of the code is 

dedicated to preparing the environment and defining all required parameters. The MATLAB 

function “addpath” is used to call subroutines from different subfolders and the following lines: 

coresenv=str2num(getenv('SLURM_CPUS_PER_TASK')) 
c = parcluster('local'); 
c.NumWorkers = coresenv; 
parpool(c, c.NumWorkers); 

 

are required to use more than twelve cores on clusters. The “parpool” function enables parallel 

computation on a given number of cores.  

The next part of the code provides data for pure components. 

Then, variables are created in order to store thermodynamic properties on a grid of points. This is 

done because the tangent plane criterion requires a global study of the Gibbs free energy. The 

Gibbs free energy approach is then used first as it easily provides a good idea of the entire phase 

diagram. The main idea is to calculate the Gibbs curve on this grid of points at fixed temperature 

and pressure and then apply the tangent plane criterion to each point on the grid. In order to 

calculate the Gibbs curve at constant pressure and temperature, one has to solve equation (3.20) 
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for each grid point. Then the tangent plane criterion is applied with a double “for” loop on all the 

elements of the grid to verify whether or not, for each grid point, there exists another grid point so 

that the tangent plane distance (given by equation (3.21)) is negative. The grid is characterized by 

three parameters (defined in the first part of the code). Parameter “n” gives the number of point on 

each row and column of the grid. Two other parameters “za” and “zb” are used to reduce the 

observed region of the composition space (explained below). Each point of the grid is a set of three 

numbers in the case of ternary mixtures, or two in the case of binary mixtures, that satisfy equation 

(3.22). In order to store these three numbers for each grid point, a cell structure is more convenient 

than arrays (arrays can only store numbers whereas cells can store any type of data). If the phase 

diagram is a function of mass fractions and not mole fractions, grid points have to be converted. 

Finally, the cell array is transformed into a cell vector in order to be usable with parallel computing 

(explained below).  

The next part of the code focuses on solving equation (3.20) but with pressure given as a function 

of the packing fraction instead of molar density. For each point this is done via the subroutine 

“thermo_properties_p”. Equation (3.20) is translated into an objective function called 

“obj_pressure” whose zeros are found using the MATLAB function “fzero”. The difficulty is that 

“fzero” can only find one zero and only if the objective function has a different sign at the 

beginning and at the end of a starting interval. The starting packing fraction interval is specified 

by two parameters “eta_start_a” and “eta_start_b” so that to verify the latter condition and 

surround all possible zeros of equation (3.20). To find all zeros, the following simple algorithm is 

used: find one zero → bisect the starting interval around this point → repeat on the new starting 

intervals. If the objective function does not have different signs on a given starting interval, it is 

bisected. The algorithm stops when a given number of zeros “max_n_roots” has been found or 

when a given number of bisections (related to “max_counter”) have been done. As this work 

focuses on liquids, it is possible to accelerate calculations by choosing a starting interval that does 

not include gas roots. While there is only one liquid root in the systems studied here and 

“max_n_roots” and “max_counter” can be set to 1, “max_n_roots = 5” and “max_counter = 6” are 

used first with a small resolution “n” to be certain that no zeros are missed in the computational 

space. The “for” loop used in this case is a “parfor” loop so that each available worker can work 

on a different part of the grid. That is why the grid is transformed into a vector, otherwise one 
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needs two “for” loops to cross the entire grid and it is not possible to use nested “parfor” loops. 

All subsequent parallel calculations are made with this “parfor” loop. 

Once the Gibbs curve is calculated (and the corresponding chemical potentials), a phase stability 

test is applied to the grid with the subroutine “Stability”. For each point of the grid (𝑥0), it calls 

another subroutine “TPD_x0” whose output is 1 if one-phase is stable at this point and 2 otherwise. 

In order to do this, the latter function calls another function “TPD_fast” for every point on the grid, 

which calculate the tangent plane distance 𝐷𝑥0
𝐺  at these other points. If it gives a negative number 

at some point, then one-phase cannot be stable at 𝑥0. A parameter “threshold” is used to get rid of 

numerical noise that may give negative tangent plane distances inside the one-phase region. At the 

end of this process, two sets of points are created (single and non single phase points). This method 

needs to have a resolution parameter “n” high enough so that the resulting one-phase 

region/multiphase region boundary converges to the actual boundary. However, it provides good 

results when combined with appropriate value of “za” and “zb” (which depend on the size of the 

multiphase region) and more importantly, it is numerically reliable because only one (one 

dimensional) solver is used and otherwise only analytical derivatives values are compared. This 

provides a computational advantange compared to the part of the code that generates tie lines 

which is unreliable in certain cases (discussed in chapter 4). 

A similar process is done to find the instability region on the grid. The molar density has already 

been fitted at each point of the grid to ensure that pressure is constant. Using these values of molar 

densities and corresponding compositions, one can calculate the Helmholtz free energy Hessian at 

constant pressure and temperature and then calculate its smallest eigenvalue with the MATLAB 

function “eig”. Two sets of points are then generated depending on the sign of the eigenvalue. 

First, points inside the multiphase region and inside the instability region are stored in a vector. 

Then the MATLAB function “boundary” is used to create a polygon around the multiphase region 

and the instability region (separately) so that the two respective boundaries can be plotted. 

Multiphase behaviours including phases with high nanoparticle mass/mole fractions are excluded 

from consideration as colloid crystal behavior is not part of the model. 

Compositions near the intersection of the single-phase instability curve (spinodal) with the two-

phase to one phase boundary (binodal), provides good starting points for the determination of 

critical points. Equations (3.31) and (3.32) are implemented in the subroutine “critical_functions”. 
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Eigenvectors and eigenvalues are found using the MATLAB function “eig” and the third order 

derivative of equation (3.32) is calculated numerically from the Helmholtz free energy gradient 

given by the subroutine “gradient”. This is then combined with equation (3.20) as an objective 

function in the function “critical_obj_ternary”. Finally, this objective function is minimized using 

the MATLAB function “lsqnonlin” in the subroutine “critical_point_ternary”. A similar 

subroutine “critical_point_binary” is used to find critical points for binary mixtures. When using 

these subroutines with starting points found graphically, the solver does not converge well (by 

looking at the value of the objective function). However, using the solution provided by the 

subroutine as a new starting point for the calculation, one finds accurate values. There is a graphical 

way to verify that this solution corresponds to a critical point. Using the subroutine “Dsup”, one 

can plot the tangent plane distance of the critical point 𝐷𝝆𝒄
𝐴  (𝝆𝒄 is the molar density vector of the 

critical point of interest) in the direction 𝒖𝟏  corresponding to the minimum eigenvalue of the 

Helmholtz free energy Hessian 𝜆1 . According to the previous discussion this tangent plane 

distance should be always positive outside the multiphase region and is sometimes negative inside 

it. So at the critical point, 𝐷𝝆𝒄
𝐴 is also positive but equation (3.31) and (3.32) imply that it should be 

very flat around the critical point. Equation (3.34) implies that the function should also be convex. 

This is illustrated in the next section. The subroutine “Dsup” does not plot the tangent plane 

distance at constant pressure but this is not required here because one wants to see what happens 

locally, around the critical point. 

Tie lines are calculated two different ways depending on whether the Gibbs or Helmholtz free 

energy approach is used. However, in the end, equations (3.20), (3.26) and (3.30) are always the 

ones that need to be solved, on top of mole the balance. In the Gibbs free energy approach, starting 

points are first guessed with the subroutine “min_TPD” which globally minimizes 𝐷𝑥0
𝐺  for a point 

𝑥0 inside the multiphase region. In this case, 𝐷𝑥0
𝐺  is given by the subroutine “TPD”. This global 

minimization is done with the MATLAB Global Optimization Toolbox14. This provides a starting 

point for each phase. In this work, only two-phase equilibria are calculated. Three phase regions 

are not calculated. Thus, one can take two starting points that are graphically good compared to 

the previously plotted binodal and spinodal. When only tie lines are wanted (and not the amount 

of each phase), they are determined by four parameters and thus four equations are required. Three 

of them are provided by equations (3.26) and another one is given by equation (3.24) for a phase 
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mole fraction of 0.5 for instance. The subroutine “phase_split_t” solves these equations with 

“lsqnonlin”. The objective function is given by “equi_pot_t”. “phase_split_b” solves these 

equations in the binary case. In the Helmholtz free energy approach, one starts by calculating tie 

lines close to critical points. The function “pre_tielines” creates two molar density vectors slightly 

away from a critical point in a direction perpendicular to 𝒖𝟏. Using the one inside the two-phase 

region, one can plot the tangent plane distance of this composition in the direction 𝒖𝟏  (the 

subroutine “TPDA_u1”, very similar to “Dsup”, is used for that purpose). Being inside the two-

phase region, the tangent plane distance should have two minima, which are used as starting points 

to find the tie lines. One needs five equations in this case because pressure is not fixed. Equations 

(3.20) and (3.30) provide two of them and equations (3.26) provide the remaining three. The 

objective function is given by “equi_cond” and solved by “tie_line_A” also with “lsqnonlin”. Note 

that there are six components overall with the two molar density vectors for each phase so one of 

them must be fixed. Once one tie line is found, the same process is repeated but with the middle 

of the tie line instead of a critical point. This approach is not as convenient as the Gibbs free energy 

approach even if it converges faster. Indeed, one can only have tie lines step by step whereas with 

the Gibbs free energy approach, one can get any tie line first. It is not an issue in general but with 

the system studied here, starting points are difficult to get because the tangent plane distance 𝐷𝝆0
𝐴  

does not have two minima for a composition too far from a critical point or the middle of a tie line. 

Finally, one can plot a phase diagram combining the binodal, the spinodal, critical points and tie 

lines. Tie lines cannot always be calculated accurately and one can qualitatively know their trend 

once critical points are calculated, thus they are only plotted for the final results of chapter 4. Here 

in binary cases, tie lines do not bring any information thus they are not plotted neither, except for 

the next section to test the program. 

 

3.4 Validation of the method 

This program was tested for internal consistency during development, against different methods 

for the same calculations and was then tested against a prior work11 that used the same equation 

but a different mixture. For example, one must ensure that all the equations are correctly 

implemented. Indeed, equations for derivatives of Helmholtz free energy are quite complex. These 

derivatives can be obtained numerically and these values must agree with analytical derivatives. 
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For pressure this can also be done by verifying that equations (3.18) and (3.19) give the same 

result. For chemical potentials, equations (3.16.1) and (3.17) should provide the same Gibbs free 

energy. Finally regarding the Hessian, it should provide a spinodal which remains inside the 

binodal and which touches it at a certain number of points (depending on the number of 

components and the number of phases). The binodal and the spinodal can be tested with a binary 

case at fixed pressure and temperature and one can see that the corresponding Gibbs curve agrees 

with the binodal and the spinodal. Critical points should be at the instersection of the spinodal and 

the binodal and the tangent plane distance (at these points) should be flat. Finally, one can test that 

tie lines are correct by verifying that the corresponding two-phases are located on the binodal and 

that tie lines shrink close to critical points. These internal checks were performed and verified for 

the temperature/composition phase diagram of water + 1-butanol at 200 MPa obtained by Garcia-

Lisbona  et al.11 shown in Figure 3.3. Parameters used in the MATLAB program include11: 

P = 2e8; 
sigma_i = [3.6 3.86]; 
mw_sol = 18.0153; 
mw_pol = 74.1216; 
mw = [mw_sol mw_pol]; 
m_i = [1 2.2]; 

 
%Dispersion term parameters 
e_i = kb * [4452 3135]; 
k_ij = [0 -0.035356978321922;-0.035356978321922 0]; 

  
%Identical association sites are counted as one here 
e1 = kb*1558; 
e2 = kb*3236; 
e12 = kb*1803; 
e_AiBj(1,1,:,:) = [0 0;e1 e12;0 e12]; 
e_AiBj(2,1,:,:) = [e1 e12;0 0;0 0]; 
e_AiBj(1,2,:,:) = [0 0;e12 e2;0 0]; 
e_AiBj(2,2,:,:) = [e12 e2;0 0;0 0]; 
e_AiBj(3,2,:,:) = [e12 0;0 0;0 0]; 

  
%Number of identical association sites 
n_Ai = [2 1;2 1;0 1]; 
%Multiply each k_AiBj by the number of identical association site 
k1 = 1.3578/(sigma_i(1)^3); 
k2 = 0.3910/(sigma_i(2)^3); 
k12 = 0.777/((sigma_i(1)+sigma_i(2))/2)^3; 
k_AiBj(1,1,:,:) = [0 0;2*k1 k12;0 k12]; 
k_AiBj(2,1,:,:) = [2*k1 k12;0 0;0 0]; 
k_AiBj(1,2,:,:) = [0 0;2*k12 k2;0 0]; 
k_AiBj(2,2,:,:) = [2*k12 k2;0 0;0 0]; 

k_AiBj(3,2,:,:) = [2*k12 0;0 0;0 0]; 
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Figure 3.4 Water + 1-butanol temperature/composition phase diagram at 200 MPa obtained in this 

work with the MATLAB program. The blue solid line is the binodal and the red dashed line is the 

spinodal, both obtained using stability and instability criteria on a grid of points. Black circles are 

coexisting compositions obtained by solving equilibrium equations with “phase_split_b”. Solid 

traingles are critical points obtained by solving critical conditions with “critical_point_binary”. 

Figure 3.3 Water + 1-butanol temperature/composition phase diagram obtained by Garcia-

Lisbona  et al.11. 𝒙𝟐 is the 1-butanol mole fraction. 
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Results obtained with the MATLAB program are in Figure 3.4. First, one can see that the binodal 

corresponds with the one on Figure 3.3. “max_n_roots” and “max_counter” were set to 1, 

“eta_start_a” to 0.4 and “eta_start_b” to 0.6 once it was verified that the code was able to find the 

compressibility root which minimizes the Gibbs free energy. The spinodal is inside the binodal 

and touches the binodal at the top and the bottom of the two-phase region, as it should when 

pressure is invariant. Tie lines (only represented by circles in Figure 3.4) do lie on the calculated 

binodal. The objective function “equi_pot_b” was found to be well-minimized for these 

temperatures. The sum of the residual functions squares is below 10-25 except near the critical 

points where the objective function was around 10-20. The low temperature critical point is at (Tc1 

= 242.69 K, 0.20053) and the high temperature critical point is at (Tc2 = 338.61 K, 0.22137). One 

can verify graphically that these points correspond to critical points. The tangent plane distance in 

the 𝒖𝟏 direction for these two points and for slightly different temperatures and around critical 

point compositions are shown in Figure 3.5. 

 

Figure 3.5 Tangent plane distance functions around the critical points (pressure is not fixed). 

 

The abscisa represents the molar density variation around the molar density at the critical point, in 

the 𝒖𝟏 direction. One can see that at the critical points, equations (3.31), (3.32) and (3.34) are 

verified. Indeed, the curve is convex and flat around the critical point. For temperatures slightly 
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below the critical temperature, the curve is not flat anymore even if the slope is zero at the critical 

point composition. For temperatures above critical temperatures, one also looses the convexity 

because these temperatures are inside the two-phase region. Note that pressure is not fixed here, 

which is why, for the high temperature critical point, the system has two phases above and not 

below the critical temperature as one would expect from Figure 3.4. Overall, this example 

demonstrates that the MATLAB program simulates phase diagrams using the SAFT HS equation 

of state. Results provided by this code also agree with a code prepared independently by Dr. Sergio 

Quiñones Cisneros (April 2018).  
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Chapter 4: Results and Discussion 

 

Phase behavior simulation for cyclohexane + polystyrene + silica nanoparticle provides a test case 

for the assessment of SAFT HS. Can realistic parameters for the qualitative study of solvent + 

polymer + nanoparticle mixtures that exhibit a closed loop phase boundary with two critical points 

be identified, and can a transition to a phase diagram where the two-phase region intersects the 

polymer composition axis be predicted? The literature fixes parameters for cyclohexane and 

polystyrene and Kumar1 provides some fixed parameters for the silica nanoparticles. Pressure is 

also fixed at 0.1 MPa. Phase diagrams are presented in terms of mass fractions of polystyrene 𝑤2 

and nanoparticles 𝑤3. The exposition in this chapter focuses on the case where the hard core of 

each component (size of hard spheres plus chain length) is fixed and energy parameters are 

constrained by the density of cyclohexane and polystyrene. The qualitative influence of other 

parameters is studied and only a configuration of parameters that has the simplest and best physical 

sense is kept. Other configurations and the corresponding phase diagrams are showed in Appendix 

A3. 

  

4.1 Cyclohexane 

It is convenient to start by modeling cyclohexane. It is a simple compound. Values for its sphere 

diameter, chain length and molar mass are shown in Table 4.138. Cyclohexane is a non-associating 

compound so no association sites are used. However, the dispersion term only models the mean 

field. Association sites could be used to take into account the fact that close to individual 

molecules, the dispersion energy depends on orientation. Doing so provides better results for 

cyclohexane densities as a function of pressure but does not change the nature of the ternary phase 

diagram. Thus, the simplest model without association sites was retained. Adjusting the 

cyclohexane dispersion energy 𝜀1, one finds that the value 𝜀1 = 𝑘𝐵3100 J provides qualitatively 

good results for density. At 298 Kelvin and 1 bar, the density it provides is 775.00 g/L which is in 

agreement with the 779 g/L density provided by Kumar1. A liquid-vapor transition is also observed 

at 0.003 MPa against a value of 0.013 MPa provided by NIST49. 



31 
 

4.2 Cyclohexane + Polystyrene 

Polystyrene has also been studied with the SAFT equations of state50. There are binary phase 

diagrams available for polystyrene + cyclohexane, as well51. Kumar used atatic polystyrene with 

a molar mass of 237 kg/mol1,  fixing the molar mass value in this work. The chain length is then 

the ratio of the molar mass of a polystyrene molecule to the molar mass of a styrene molecule. The 

molar mass of styrene is 104.152 g/mol52. The corresponding value for the chain length of 

polystyrene is given in Table 4.1. The radius of a sphere representing a monomer is also given in 

Table 4.1 and is obtained from a previous SAFT work50. The dispersion energy 𝜀2 is adjusted so 

that pure polystyrene has a density of 1.05 g/mL1. 

Experimental temperature/composition phase diagrams of this binary mixture are given in Figure 

4.1. Polymer molar mass is a parameter. The importance of association sites on the polymer is 

easily demonstrated in the case of SAFT HS. One can try to get qualitatively similar phase 

diagrams, in their absence, by varying the binary interaction parameter 𝑘12. Results for various 

values of this parameter are shown in Figure 4.2. One can clearly see that qualitative agreement is 

not possible. There is a UCEP for negative values of 𝑘12 and at high polystyrene mass fraction.  

From the experiments the UCEP is at low polystyrene mass fraction. Although it is possible to 

model this mixture without association sites using a different dispersion term9,50, the dispersion 

term in SAFT HS is inadequate. One can then assume that there is a specific kind of attraction 

between cyclohexane and the aromatic rings of polystyrene as well as an attraction between 

aromatic rings on polystyrene themselves. However, according to Wertheim’s first order TPT, 

attraction between aromatic rings in the same molecule cannot be accounted for.  Considering the 

symmetry of cyclohexane and aromatic rings in the polystyrene monomer, two association sites 

are added to each cyclohexane molecule and two for each polystyrene monomer. A value for all 

the 𝜅𝐴𝑖𝐵𝑗
 parameters is estimated using the function “kappa” in the MATLAB program. A 

cyclohexane molecule with an association site whose center is at the surface of a cyclohexane hard 

sphere and whose diameter is half the diameter of a cyclohexane hard sphere provides a value of 

0.0873.  For the association energy 𝜀𝐴𝑖𝐵𝑗
, a value of 𝑘𝐵500 J between cyclohexane and polystyrene 

association sites and a value of 𝑘𝐵 230 J for polystyrene self-association provides the 

temperature/composition phase diagram in Figure 4.3. The dispersion energy 𝜀2 is then 𝑘𝐵970 J. 

The computed phase boundaries agree qualitatively with the experimental data (Figure 4.1). The 
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computed UCEP temperature 299.6 K and polystyrene mass fraction 0.0197 are also similar to the 

corresponding experimental values (298.7 K ± 0.2 K, 0.087 ± 0.005)17. 

 

 

 

Figure 4.1 Liquid-liquid to liquid phase boundary experimental data for polystyrene + 

cyclohexane binary mixtures.17 Open symbols: polystyrene molar mass 237 kg/mol ( )1, 250 

kg/mol ( )53 and 200 kg/mol ( )51; Solid markers show UCEPs.  

 

Table 4.1 Fixed parameters for the mixture considered 

Component (𝑖) Cyclohexane (1) Polystyrene (2) Silica nanoparticles (3) 

𝜎𝑖 (Ångström) 3.165 4.1071 70 

𝑚𝑖 3.970 2 275.520 1 

𝑀𝑊𝑖(g/mol) 84.162 237 000 248 754.810 
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Figure 4.2 Temperature/composition phase diagram for polystyrene + cyclohexane binary 

mixtures with various values of 𝑘12. The blue solid line is the binodal and the red dashed line is 

the spinodal. Solid triangles represent the UCEP. a) 𝑘12 = 0, b) 𝑘12 = -0.1, c) 𝑘12 = -0.2, d) 𝑘12 = 

-0.24, e) 𝑘12 = -0.25, f) 𝑘12 = -0.26. 

 

a) b) 

c) d) 

e) f) 
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Figure 4.3 Temperature/composition phase diagram for polystyrene + cyclohexane binary 

mixtures with association sites and 𝑘12 = 0. The blue solid line is the binodal and the red dashed 

line is the spinodal. Solid triangles represent the UCEP. 

 

4.3 Cyclohexane + Polystyrene + Silica Nanoparticles 

Adding silica nanoparticles raises several issues. The only fixed parameters are the ones in Table 

4.1. Kumar used 7 nm diameter, non-porous and amorphous nanoparticles1. It is assumed that these 

nanoparticles are perfectly spherical and monodispersed hard spheres here. The molar mass is 

calculated from the intrinsic density of silica (2.3 g/mL) and the diameter of the nanoparticles. 

Silica is well-known to be hygroscopic, so association sites can be used to model water particles 

at the surface of the nanoparticles, if desired. How nanoparticles interact with cyclohexane and 

polystyrene is not clearly defined. Polystyrene does not adsorb onto the surface of nanoparticles 
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so there cannot be any association interaction between polystyrene and nanoparticles. The only 

way interaction between the latter two components can be modeled is then through the dispersion 

term. This term can be varied but is constrained to be attractive within the model. Variation of this 

term has no qualitative effect as illustrated in Figure A3.4. For nanoparticles and cyclohexane, 

both dispersion attraction and association are possible. 

Model Variant 1: No association sites on nanoparticles and 𝑘𝑖𝑗 = 0.  

In a first set of calculations, no association sites are added to the nanoparticles and 𝑘𝑖𝑗  values are 

set to zero in the SAFT HS model. This calculation focuses on the role of density. One expects the 

silica particle packing fraction to be between 0.6 and 0.6351.  This provides a first order estimate 

of the magnitude of the dispersion energy parameter 𝜀3. Before studying the influence of this 

parameter, another issue that arises for the ternary mixture must be considered. Even though only 

one part of the phase diagram is studied in this work, a global study of the phase diagram has to 

be done in order to be certain that additional multiphase regions are not missed. Then one can 

focus on the part of the phase diagram of interest. It is possible that the packing fraction exceeds 

the close-packing fraction for monodispersed spheres 𝜏 = 𝜋/(3√2) ≈ 0.74. This occurs if small 

diameter spheres occupy the free volume among closely packed large spheres. A larger upper limit 

for the packing fraction can then be approximated by considering the voids among close packed 

spheres of diameter 𝜎3. A fraction, 𝜏, of the voids can be filled by spheres of radius 𝜎2 ≪  𝜎3, 

yielding a filled volume fraction of 𝜏 + (1 − 𝜏)𝜏 ≈ 0.93. This limit cannot be reached in this case, 

because the nanoparticles have a narrow size distribution, but clearly the limit 𝜏 is too restrictive. 

One can verify that, in this work, there is only one liquid compressibility root for packing fractions 

below this higher upper limit.  

With this higher packing limit, ternary phase diagrams were generated over a broad range of values 

of 𝜀3. These phase diagrams are shown in Figure 4.4. (below the UCEP temperature) and in Figure 

4.5 (above the UCEP temperature)1. The corresponding packing fraction of silica nanoparticles is 

also shown.  

                                                 
1 For values of 𝜀3 of 𝑘𝐵15000 J and higher, the subroutine “critical_point_ternary” is not able to 
provide a critical point accurately (the results do not pass the graphic test of section 3.4 as well). 
This comes from the way the derivative in equation (32) is calculated numerically. If this derivative 
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In these diagrams, only the silica nanoparticles dispersion energy parameter 𝜀3 is varied. Some 

ranges of 𝜀3 values generate phase diagrams similar to ones anticipated by Figures 2.1-2.3.  Others 

generate phase diagrams that are inconsistent with known behaviors and which constrain the 

feasible range for this parameter. For example, 𝜀3 values less than or equal to 𝑘𝐵7000 J lead to 

phase separation for cyclohexane + silica nanoparticle binary mixtures. For 𝑘𝐵 7000 J < 𝜀3  < 

~ 𝑘𝐵9000 J, the two-phase region has two critical points below 280K. It is possible to increase the 

temperature for which the second critical point C2 appears by increasing the value of 𝜀3 which 

further constrains the minimum 𝜀3 value to ~ 𝑘𝐵9000 J. 

For values of 𝜀3 around 𝑘𝐵13000 J there is no two-phase region for temperatures above the UCEP. 

For 𝜀3 values above ~ 𝑘𝐵15000 J there are two critical points above the UCEP. However, for 

values of 𝜀3 from ~ 𝑘𝐵15000 J (Figure 4.5) to ~ 𝑘𝐵18000 J, there is a two-phase region above the 

UCEP temperature, but it quickly vanishes as temperature increases so this range of values of 𝜀3 

is excluded. Consequently, the first range of 𝜀3 values which simulates an appropriate two-phase 

region above and below the UCEP (corresponding to the phase diagrams with 𝜀3 = 𝑘𝐵9000 J and 

𝑘𝐵10000 J in Figures 4.4 and 4.5) is referred to as the low silica nanoparticle packing fraction 

range where the packing fraction of pure silica nanoparticles is roughly between 0.59 and 0.63 

(corresponding to 𝜀3 = 𝑘𝐵12000 J) at 280K. The other one (corresponding to the phase diagrams 

with 𝜀3 = 𝑘𝐵20000 J and 𝑘𝐵30000 J in Figures 4.4 and 4.5) is referred to as the high pure silica 

nanoparticle packing fraction range. In the latter range, an upper limit for 𝜀3 is set by the fact that 

the packing fraction of pure silica nanoparticles cannot exceed 𝜏 and thus the packing fraction is 

between ~ 0.67 and 𝜏 at 280K. 

In the low silica nanoparticle packing fraction range, the critical point C1 is on the right side of 

the two-phase region and does not have the same relative location as experimental C1 critical 

points (Figure 2.2 and 2.3). Further, a critical point C2 appears below the UCEP temperature. This 

means that close to and below the UCEP temperature there is a three-phase region, which is not 

                                                 
is estimated too accurately, values for the objective function to be minimized it provides diverge. 
Otherwise, one must evaluate values of chemical potential for molar densities that return complex 
values. In these cases, critical points are shown with a white triangle and were found as the 
intersection points between the spinodal and the binodal. 
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observed experimentally. This is the case for the entire low silica nanoparticle packing fraction 

range (including 𝜀3  = 𝑘𝐵9000 J and 𝑘𝐵 10000 J) but that three-phase region appears at lower 

temperatures for lower values of 𝜀3. For the high silica nanoparticle packing fraction range, the 

critical point C1 is also on the right side of the two-phase region but at a higher polymer mass 

fraction (this is especially visible at 305K in Figure 4.5). The critical point C2 appears exactly at 

the UCEP temperature and remains on the left side of the two-phase region. However, it is not 

present below the UCEP, an expected behavior from experiments. Quantitatively, the low silica 

nanoparticle packing fraction range gives better results than the higher packing fraction range with 

respect to the experimental phase diagram in Figure 2.2. Moreover, packing fractions of that range 

correspond better to what is expected for randomly packed spheres. Thus, the value 𝜀3 = 𝑘𝐵 10 

000 J is kept, corresponding to a silica nanoparticle packing fraction of ~ 0.6. With the latter value, 

the two-phases region exists on a broader range of temperatures above the UCEP temperature and 

the three-phase region appears only around 290K, which is convenient for this qualitative study. 

Values of all dispersion energies, when no association sites are present on the nanoparticles and 

when 𝑘𝑖𝑗 values are zero, are summarized in Table 4.2. This topic is explored in more detail in 

Appendix A3 where phase diagrams for 𝜀3  = 𝑘𝐵  20 000 J over a range of temperatures are 

presented. From a computational perspective, the choice of 𝜀3 parameter value is clear. Critical 

point C1 must exist above and below the UCEP temperature. Critical point C2 should arise close 

to the UCEP temperature. Irrespective of choice there is compromise with respect to behavior. In 

this case, the preferred choice of parameter indicates a three-phase region close to the UCEP. This 

is not an experimentally observed behavior but is feasible.   
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Figure 4.4  Ternary phase diagrams for cyclohexane + polystyrene + silica nanoparticles mixtures 

at 280K for different values of the nanoparticle dispersion energy. η designates the packing fraction 

of pure silica nanoparticles. The blue solid line is the binodal and the red dashed line is the 

spinodal. Solid triangles represent the critical points calculated with “critical_point_ ternary”. 

Open triangles represent critical points for which the graphic test failed. a) 𝜀3 = 𝑘𝐵7000 J, b) 𝜀3 =

𝑘𝐵9000 J, c) 𝜀3 = 𝑘𝐵10000 J, d) 𝜀3 = 𝑘𝐵15000 J, e) 𝜀3 = 𝑘𝐵20000 J, f) 𝜀3 = 𝑘𝐵30000 J. 

a) b) 

c) d) 

e) f) 
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Figure 4.5 Ternary phase diagrams for cyclohexane + polystyrene + silica nanoparticles mixtures 

at 305K for different values of the nanoparticle dispersion energy. η designates the packing fraction 

of pure silica nanoparticles. The blue solid line is the binodal and the red dashed line is the 

spinodal. Solid triangles represent the critical points calculated with “critical_point_ternary”. Open 

triangles represent critical points for which the graphic test failed. a) 𝜀3 = 𝑘𝐵7000 J, b) 𝜀3 =

𝑘𝐵9000 J, c) 𝜀3 = 𝑘𝐵10000 J, d) 𝜀3 = 𝑘𝐵15000 J, e) 𝜀3 = 𝑘𝐵20000 J, f) 𝜀3 = 𝑘𝐵30000 J. 

c) d) 

e) f) 

b) a) 
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Table 4.2 Dispersion energies parameters for no association sites on the nanoparticles and 𝑘𝑖𝑗=0 

Component (i) Cyclohexane (1) Polystyrene (2) Silica nanoparticles (3) 

𝜀𝑖/𝑘𝐵 (K) 3 100 970 10 000 

 

Model Variant 2: Self Association of Silica nanoparticles. 

From the first set of experiments, it is clear that the position of C1 on the two-phase to one-phase 

boundary could be improved. In this second set of calculations the question whether self-

association of nanoparticles qualitatively changes phase diagrams or not is addressed. It is assumed 

that 2000 semi-spheres with a diameter of 2.75 Ångström are added on the surface of each 

nanoparticle. Using the “kappa” function as above, the 𝜅𝐴𝑖𝐵𝑗
 parameter is estimated to be 3.70 10-

6. These values do not qualitatively change the following reasoning. Without changing the 

dispersion energy (and it is not possible to keep a packing fraction around 0.6 for nanoparticles if 

the dispersion energy is reduced so that to provide a qualitative change in the phase diagram), the 

Helmholtz association energy must be small in order to maintain a packing fraction for silica 

nanoparticles of ~ 0.6. The smallest possible value for 𝑋𝐴𝑖
 is 0.9989 (which corresponds to ~ 2 

bonded association sites on one nanoparticle, an association energy parameter 𝜀𝐴𝑖𝐵𝑗
  = 𝑘𝐵 2.904 J 

and packing fraction for silica nanoparticles of 0.6229, which is in agreement with the random 

close packing fraction value). However, calculating the ternary diagram with this additional term 

does not lead to visible change in the placement of phase boundaries and critical points. For values 

of 𝜀𝐴𝑖𝐵𝑗
 slightly greater (the standard double precision accuracy in MATLAB i.e. eps ≈ 2.22 10-

16), the value of 𝑋𝐴𝑖
 drops to 0.7210 leading to a packing fraction of 0.9500 which is then greater 

than 𝜏  (this change appears to be discontinuous with the available precision). Thus, one can 

conclude that self-association of silica nanoparticles does not explain a significant fraction of the 

phase behavior of silica nanoparticle + cyclohexane +polystyrene mixtures, at least regarding 

association as it is modeled in SAFT. 
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Model Variant 3: Association between silica nanoparticles and cyclohexane. 

Depletion interaction is a phenomenon that appears for nanoparticles in solution. Thus, it is 

reasonable to think that association between the solvent and nanoparticles could impact the phase 

diagrams. Association is only attractive and thus there cannot be any association between polymers 

and nanoparticles as polymers must not adsorb onto the surface of nanoparticles. In order to model 

association between the solvent and nanoparticles, the chosen value for 𝜅𝐴𝑖𝐵𝑗
 between the two 

association sites of the solvent and association sites of nanoparticles is set at 3.70 10-6. This value 

is four orders of magnitude smaller than the one between cyclohexane and polystyrene association 

sites, so it is reasonable to think that the overlapping volume between cyclohexane association 

sites and silica nanoparticles association sites is the volume of an association site on the 

nanoparticle (from geometrical reasons). Again, even if this value is not accurate, this is not an 

issue as it can be compensated by the value of 𝜀𝐴𝑖𝐵𝑗
. What can be seen is that association in this 

case does not show a qualitative difference. The two-phases region does disappear at a lower 

temperature but the phase diagrams are qualitatively similar to the ones that are shown in Figure 

4.5. For instance, at 307 K, a value for  𝜀𝐴𝑖𝐵𝑗
 between cyclohexane and silica nanoparticles of 𝑘𝐵 

20 J makes the entire two-phase region vanish. Smaller values such as 𝑘𝐵 5 J have the same effect 

but at higher temperature. Calculations with association for different values of the dispersion 

energy cannot have a qualitative impact on results either (in this case, the combination of two 

effects, dispersion and association, that do not have a qualitative impact on results separately, do 

not lead to a qualitative change). Thus, association between the solvent and nanoparticles does not 

impact the orientation of the tie lines and critical points. 

Model Variant 4: non-zero 𝑘𝑖𝑗 values. 

One could vary 𝑘𝑖𝑗  values, especially 𝑘23  between polystyrene and silica nanoparticles. 

Polystyrene should not adsorb onto the surface of nanoparticles. One way to reduce the attraction 

between these two components (inherent in the SAFT HS model) is to increase 𝑘23. However, one 

sees the same outcome as for association between the solvent and nanoparticles. No qualitative 

difference is observed when either 𝑘12, 𝑘13 and 𝑘23 are changed. Thus, non-zero 𝑘𝑖𝑗 values are 

also not warranted. Association parameters are summarized in Table 4.3.  
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Table 4.3 Association parameters for the cyclohexane + polystyrene + silica nanoparticles mixture 

Components (i) Cyclohexane (1) Polystyrene (2) 
Silica nanoparticles 

(3) 

𝑛𝐴𝑖
 2 2𝑚2 0 

𝑒𝐴1𝐵𝑖
/𝑘𝐵(K) 0 500 0 

𝑒𝐴2𝐵𝑖
/𝑘𝐵(K) 500 230 0 

𝜅𝐴1𝐵𝑖
 0 0.0873 0 

𝜅𝐴2𝐵𝑖
 0 0.0873 0 
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Figure 4.6 Ternary phase diagrams of cyclohexane + polystyrene + silica nanoparticles mixtures 

at 307K when different contributions in the equation of state (3.1) are accounted for. a) All the 

terms, b) All the terms except the association and chain terms, c) All the terms except the 

association term, d) All the terms except the chain term. 

 

In Figure 4.6, phase diagrams obtained by neglecting the association term, the chain term and both 

of these terms are compared to the phase diagram obtained with all the terms present in equation 

(3.1) at 307 K. Dispersion energies were adjusted in each case to match the liquid densities of pure 

cyclohexane and polystyrene. One can see that association has a significant impact on the phase 

diagram. In cases where it is not present, the two-phase region expands significantly. The effect of 

a) b) 

c) d) 
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the chain term when association is not accounted for is very small. However, when only the chain 

term is omitted, the phase diagram is still qualitatively changed. Thus, association tends to form 

critical point C2 and thus horizontal tie lines. This is easily understandable because association 

between cyclohexane and polystyrene prevents a phase with a high polystyrene concentration 

separating from a phase with a high cyclohexane concentration. Regarding the chain formation 

term, it favors the formation of C1 and so near vertical tie lines. As one can expect, the chain 

formation term does not involve attraction between unlike components. Thus, the main repulsive 

effect is due to the size of nanoparticles. This explains the similarity between the no association 

and no chain term case with the no association only case. When both terms are accounted for, tie 

lines are more oblique. A better qualitative match with experiments would be obtained if tie lines 

were nearly horizontal. This suggests that modification of these terms or use of different SAFT 

models might be productive routes to explore in a subsequent study. 

Figures 4.7 and 4.8 give phase diagrams obtained with the final parameters (Tables 4.1, 4.2, and 

4.3) for temperatures below and above the UCEP. At low temperatures, the two-phase region is 

very close to the axes. Thus, for certain overall compositions, one of the phases has a very low 

polystyrene or silica nanoparticles mass fraction. This leads to numerical difficulties and the 

MATLAB function which finds tie lines does not converge or, if it does, very slowly. No 

appropriate scaling of the variables has been found in this work to calculate tie lines robustly. As 

an example for a failure of the code, two tie lines corresponding to two cases where the solver did 

not converge are included in Figure 4.7 (for 280 and 285K). At higher temperatures, the two-phase 

region moves away from the axis and it becomes easier to calculate tie lines. By contrast, critical 

points were calculated without difficulty. 

At 280K and 285K, the two-phase region is similar to the low temperature case of Figure 2.2 

except that critical point C1 is on the right of the two-phase region instead of being in the low 

silica nanoparticle mass fraction area. As temperature increases and gets closer to the UCEP 

temperature, the spinodal gets closer to the binodal at high polystyrene mass fraction and the two-

phase region starts to move away from the polystyrene mass fraction axis. Thus, critical point C2 

appears, between 285K and 290K. At 290K and 295K, as the two-phase region still touches the 

polystyrene mass fraction axis, a three-phase region must arise. In this case, Gibbs’ phase rule 

implies that this three-phase region must be a triangle whose three vertices are located on the 
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binodal. One side of this triangle must be the part of the multiphase region that touches the 

polystyrene mass fraction axis. Thus, two vertices of this triangle are already known. 

 

 

Figure 4.7 Ternary phase diagrams of cyclohexane + polystyrene + silica nanoparticles mixtures 

at different temperatures. The blue solid line is the binodal and the red dashed line is the spinodal. 

Solid triangles represent the critical points calculated with “critical_point_ternary”. Open squares 

and lines joining them represent tie lines. a) T=280K, b) T=285K, c) T=290K, d) T=295K. 

 

a) 

d) c) 

b) 
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Figure 4.8 Ternary phase diagrams of cyclohexane + polystyrene + silica nanoparticles mixtures 

at different temperatures. The blue solid line is the binodal and the red dashed line is the spinodal. 

Solid triangles represent the critical points calculated with “critical_point_ternary”. Open squares 

and lines joining them represent tie lines. Magenta squares are stationary points. a) T=299.4K, b) 

T=299.6K, c) T=305K, d) T=307K. 

 

The computed multiphase behavior is composed of a triangular three-phase region, two two-phase 

ternary regions, as well as the solvent + polymer binary two-phase behaviour. In the two two-phase 

ternary regions and close to the three-phase region, tie lines must have different orientations. This 

results in a discontinuity of the slope of the binodal (although it is slight) around the third point 

a) 

d) c) 

b) 



47 
 

defining the three-phase region. This becomes more visible at higher temperatures as the 

appearance of C2 starts to open up the three-phase region. At 290K and 295K, tie lines close to 

the left of the three-phase region were calculated. Thus, they are almost where the three-phase 

region is situated (almost defining two of its vertices and the last one being around (0,0); see Figure 

4.3 for a more accurate value of the two vertices situated on the polystyrene mass fraction axis). 

Right below the UCEP temperature, at 299.4K, the two-phase region almost does not touch the 

polystyrene mass fraction axis anymore. Two arrows show contact points. The tie line with 

magenta squares has not been calculated by solving equilibrium equations but they are the minima 

of the tangent plane distance for some overall composition. Using the MATLAB code with these 

points does not work but it must be noted that stationary points (i.e. minima of the tangent plane 

distance) are usually close to the actual phase compositions. As temperature is increased further, 

the three-phase region tends toward a line because two of its points are merging. Exactly at the 

UCEP temperature, the three-phase region must be a tie line and thus the three-phase region ceases 

to exist. In addition, at this temperature and this temperature only, there should be three critical 

points. Above the UCEP temperature, there remains one two-phase region only with two critical 

points. At temperatures above the UCEP, the two critical points get closer until the two-phase 

region vanishes. In order to show how close the two phase region can be to axes, one provides the 

following compositions of one of the two phases at 299.4K (𝑤2 = 1.52 . 10-6, 𝑤3 = 0.0514) and at 

307K (𝑤2 = 0.00132, 𝑤3 = 5.75 . 10-5).  

The evolution of the multiphase region with temperature (from below to above the UCEP)  is 

summarized in Figure 4.9 and comprises a major contribution of this work as it provides an 

alternate hypothesis for the origin and movement of critical point C2 in such phase diagrams. In 

the prior experimental work, C2 was hypothesized to emerge from the UCEP of the solvent + 

polymer binary. In this computational work, C2 and the UCEP are shown to coexist and to be 

separate phenomena. For example, critical point C2 is shown to move down and to the right (in 

phase diagrams with polymer composition (y-axis) and nanoprarticle composition (x-axis)) as 

temperature increases. At 290K, it is located at (𝑤2 = 0.1833, 𝑤3 = 0.0016) and at 307K it is 

located at (𝑤2 = 0.0451, 𝑤3 = 0.0021). This movement agrees with experiments, if the apparent 

upward motion, in the experiments, is due to the presence of a three-phase region just below the 

UCEP. Critical point C1 is not temperature independent according to calculations: at 280K, it is 
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located at (𝑤2 = 0.0103, 𝑤3 = 0.2769) and at 307K it is located at (𝑤2 = 0.0139,𝑤3 = 0.0357). 

Below the UCEP temperature when there still is not critical point C2, the computed tie lines are 

nearly vertical remote from critical point C1 (i.e. close to the polymer mass fraction axis) and 

oblique near it. Experimental results show that tie lines trend to vertical near the polymer mass 

fraction axis, but they are horizontal near critical point C1. Above the UCEP temperature, the 

computed tie lines are oblique while they are horizontal in experimental results. If C2 is present 

and below the UCEP temperature, the three-phase region is thin and all the tie lines are oblique 

even though they have a slightly different orientation in the two different two-phase regions. The 

fact that the three-phase region is thin is of great importance. As one can see in Figure 4.9 b), it is 

possible to have tie lines nearly vertical close to the polymer mass fraction axis and still have a 

three-phase region with a critical point C2. As it is still possible for critical point C2 to move along 

the critical point locus of Figure 2.4 and have the apparent rapid motion of Figure 2.2 between the 

UCEP temperature (299K) and 303 K, it could also be possible that a three-phase region exists 

between 296K and the UCEP temperature. A three-phase region could also explain the drastic 

change of orientation of the tie lines of Figure 2.2 from nearly vertical below the UCEP 

temperature to nearly horizontal above the UCEP temperature. 

 

Figure 4.9 Sketches of the evolution of the phase diagrams with temperature. a) T1 < b) T2 < c) T3 

< d) T4  < e) TUCEP  < f) T5. Blue lines represent the binodal, black triangles represent critical points 

and green triangles represent three-phase region. 

a) b) c) 

d) e) f) 
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Chapter 5: Conclusion and Future Work 

 

5.1 Conclusions 

The SAFT HS equation of state reproduces qualitatively some aspects of the phase behavior 

observed experimentally when physically meaningful parameters are employed. The temperature-

composition phase diagram of cyclohexane + polystyrene presents the expected characteristics 

when the model includes association sites on the polymer with a predicted chain length and usual 

size parameters for cyclohexane and polystyrene, which is not achievable by adjusting 𝑘𝑖𝑗 values 

only. Association between cyclohexane and polystyrene permits the two-phase region of the 

ternary phase diagram to intersect the polymer mass fraction axis below the UCEP temperature. 

The entropic effect due to the size of silica nanoparticles and polystyrene chains, balanced by the 

cyclohexane/polystyrene interaction, qualitatively explains the shape of the binodal. However, it 

is not the only effect that is required to model the depletion interaction.  

For temperatures low enough compared to the UCEP temperature, there is only one critical point 

C1. This critical point is not the expected depletion interaction critical point but the spinodal has a 

tendency to remain close to the binodal where the latter critical point is expected to be. For 

temperatures closer to the UCEP temperature, a second critical point C2 appears and thus a three-

phase region. Above the UCEP temperature, the three-phase region vanishes which shows that in 

this case, critical point C2 does not move along a critical locus as indicated in Figure 2.4 but there 

would actually be two independent critical points (the UCEP and C2).  

The following hypotheses may resolve the outstanding differences between the experiments and 

the SAFT HS model: 

• This model does not include medium-range interactions, which is one of the main 

characteristics of nanoparticles as it can be seen from DLVO theory. Including this type of 

attraction in the model might be sufficient to explain the observed characteristics of this 

kind of phase diagram even if it would not be the only necessary effect. The “big atom” 

point of view would not be enough to understand the nanoparticles behavior because 

colloids show a specific kind of potential and surfaces energies that may explain how 

nanoparticles interact with the other species present. An association interaction between 
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the solvent and the nanoparticles does not change the computed results qualitatively. 

Overall, it seems that the potential energy of the nanoparticles is not well modeled. Ionic 

interactions could also be included as nanoparticles have a surface charge. However, it is 

theoretically difficult to include more interactions in the theory while still keeping a 

rigorous physical meaning. A perturbation theory is required for each new interaction. 

• The behavior of cyclohexane + polystyrene is qualitatively reproduced but not 

quantitatively reproduced. It is possible that a quantitative reproduction of the phase 

behavior of this binary is sufficient to have critical point C1 located at a low silica 

nanoparticles mass fraction. For example, Wertheim's first order TPT does not include the 

formation of ring-like structures (e.g.: intramolecular interactions for the polymer), and the 

SAFT HS equation of state might not model the behavior of polymer molecules. 

• Overall, it is very difficult to tell which interactions explain the phase behavior obtained 

experimentally. Using a more elaborated model such as PC SAFT12 (with nanoparticles 

also modeled as chains) permits quantitative agreement (at low polystyrene and 

nanoparticle mass fraction) but fails to reproduce, even qualitatively, the remaining part of 

the phase diagram. However, it is still not clear what physics is happening at the 

molecular/nanoparticle scale. Adding more terms in the equation of state in order to include 

more interactions may be enough to model these types of system but one would want to 

make sure that the influence of all these interactions is properly taken into account (by the 

means of perturbation theories) and appropriate physics is modeled or simulated. So there 

is a real risk that models that are more sophisticated than SAFT HS but that require 

parameters fitted, for example, in the dispersion term, as is the case for SAFT HR and PC 

SAFT, that the quality of computed outcomes may be a consequence of fitting and not a 

consequence of the phenomena being modelled. 

 

5.2 Future work 

There are a number of short term and longer term works that follow naturally from this exploratory 

contribution.  
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1. One might enhance the efficiency and accuracy of the code for generating phase diagrams by 

translating it into another language. For example, MATLAB14 minimization routines are not 

appropriate for these kinds of equations and do not provide robust results. 

2. The polymer plays a major role in these phase diagrams. Thus, it is also recommended to modify 

the chain term according to equation (A.215) in Appendix A1, before changing the dispersion 

term. Equation (A.215) is very similar to equation (7) and so would not significantly impact 

computation time. The chain length values might differ and so they have to be fitted to 

experimental data directly. 

3. Another SAFT equation of state with an improved dispersion term could be used. PC SAFT is 

appropriate as it has been widely used and tested. It also has a rigorous theoretical background. 

One may want to change the potential energy parameters (such as the square-well width) as the 

ones used for atoms might not be appropriate for nanoparticles, especially if the “big atom” point 

of view is not appropriate. An ionic interaction term could also be added to one of the SAFT 

equations of state, but as previously explained, this should be done with care. 

4. Additional experiments are warranted to determine whether a three-phase region can be detected 

near the UCEP.  These experiments would require tight temperature control to be meaningful and 

compositions close to the UCEP and C2 compositions would need to be explored in detail. 

5. Wertheim’s first order TPT does not allow the formation of ring-like structures, which are 

actually present within long polymer chains. It might be relevant to include more terms in the TPT 

so that attraction between association sites in the same molecule can be accounted for. This would 

significantly increase the complexity of the physics modeled and would increase the computation 

time dramatically. 
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In this section, I derive the Statistical Associating Fluid Theory1 (SAFT). The different concepts
involved in this derivation may be interesting to people who want to use any SAFT equation of state.
However they are not always easily accessible and they can be difficult to understand without a solid
knowledge of statistical physics. The purpose of this section is to showwhere the SAFTHS equation
of state comes from by condensing the main physical concepts in one document and by detailing
the underlying mathematics. I reiterate the required ideas of Statistical Physics here but I advise
reading any introduction to Statistical Physics beforehand to understand the underlying concepts. I
suggest, for instance, reading Statistical Mechanics by Davidson2 up to chapter 13 (chapter 8 to 12
may be skipped). Then I introduce graph theory as it is the main theory on which SAFT is based.
Following this, I expose the main equations needed to get the hard sphere equation of state but I do
not solve them as it is not my main focus here. From graph theory I then derive the Thermodynamic
Perturbation Theory developed by Wertheim3–6 which will directly lead to SAFT. Finally I give the
derivatives of the Helmholtz energy formula needed in the model.

1 Statistical Physics

The objective of this derivation is to obtain an equation of state for mixtures. An equation of
state is an equation that relates some thermodynamic variables of interest together. For example
these variables can be temperature T , volume V , the total number of particlesN and mole fractions
xi of each type of particles i. All these variables are related to a system that has to be defined. It is
sometimes better to use pressure P rather than volume. In the frame of this derivation, two types
of system will be studied and most of the time the system will contain only one type of particles.
I will show in each case how the properties for mixtures can be obtained from the ones for a pure
component.

The two main systems (with only one component) that are usually used are linked to one sta-
tistical ensemble each. The first one is called the canonical ensemble. It is used for systems with
a fixed volume and a fixed number of particles but energy can cross the boundaries of the system.
At equilibrium, the system has the same temperature Ts as the surrounding one (it is assumed that
the surrounding is so big that its temperature remains constant). The mathematical tool used to
describe this type of system is called the canonical partition function Z and can be written, in the
semiclassical case and for a pure component, as:

Z = 1
N !

1
h3N

∫
e−βE(r1,p1,r2,p2,...,rN ,pN )d3r1d3p1d3r2d3p2 · · · d3rNd3pN (A.1)

Where β = 1/kBT , kB is Boltzmann constant, h is Planck constant, ri is the position vector of
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particle i, pi is the momentum of particle i and E is the energy which depends on the position
vector and the momentum of each particle. The integration has to be done over all the possible
position vectors and momenta of each particle (in the most general case over the whole phase space
which can include other type of degrees of freedom). The canonical partition function is related to
the Helmholtz energy A of the system by:

A = −kBT ln(Z) (A.2)

The second system is called the grand canonical ensemble. It is used for systems with a fixed
volume but with energy and particles that can cross the boundaries of the system. At equilibrium,
the system has the same temperature Ts and chemical potential µs as the surrounding (it is as-
sumed that the surrounding is so big that its temperature and chemical potential remain constant).
The mathematical tool used to describe this type of system is called the grand canonical partition
function Ξ and can be written, in the semiclassical case and for pure component, as:

Ξ =
∑
s≥0

zsZs (A.3)

With the configuration integral Zs given by:

Zs = 1
s!

∫
e−βV (r1,r2,...,rs)d3r1d3r2 . . . d3rs (A.4)

And the fugacity z given by:

z = eβµ

λ3 (A.5)

In equation (A.4), V is the potential energy and in equation (A.5), λ is the thermal de Broglie
wavelength. Recall that:

λ = h√
2πmkBT

(A.6)

With m the mass of one particle. In equation (A.3), the sum is over all the possible number of
particles s in the system (which can vary in the grand canonical ensemble). The grand canonical
partition function is related to the grand potential Ω of the system by:

Ω = −kBT ln(Ξ) (A.7)

It can be useful to rewrite this equation in the following manner, knowing that Ω = −PV :

Z = PV

kBT
= ln(Ξ) (A.8)

With Z the compressibility factor. Davidson2 details these concepts.
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Afirst application of these results is the ideal gas lawwhich is needed in any equation of state. In
this framework, an ideal gas is represented by a potential energy function V = 0which means that it
is a set of non interacting indiscernible point particles (the indistinguishability actually comes from
the presence of a 1/N ! factor inside the canonical partition function or a 1/s! factor inside the grand
canonical partition function; these factors must be removed if the particles are distinguishable). In
the case of an ideal gas inside a closed box and surrounded by a medium of temperature T , E is
reduced to kinetic energy only and equation (A.1) becomes:

Z = 1
N !

1
h3N

∫
exp

(
−β

N∑
i=1

p2
i

2m

)
d3r1d3p1d3r2d3p2 · · · d3rNd3pN (A.9)

With the fundamental property of the exponential function and Fubini’s theorem, it becomes:

Z = 1
N !

1
h3N

N∏
i=1

∫ ∞−∞ e
−βp2

2m dp


3 ∫

V
d3ri (A.10)

Where p = px = py = pz as no direction is favored in the absence of potential energy i.e. the phase
space is isotropic. Using the well known result about Gaussian integrals

∫∞
−∞ exp(−ax2)dx =

√
π
a
,

equation (A.10) becomes:

Z = V N

N !λ3N (A.11)

Using Stirling’s approximation and equation (A.2), the ideal gasHelmholtz energyAig can be found:

Aig

NkBT
= aig
RT

= ln(Naρλ
3)− 1 (A.12)

With ρ the molar density, R the ideal gas constant and Na the Avogadro number. It is possible to
get this result in the case of a mixture. In a general case, one can simply rewrite one of the partition
functions in the case of mixtures. As noticed by Morita and Hiroike7, the case of a mixture and of
a pure component are mathematically similar. The two main differences are that there usually are
interactions between different components (this is written inside the potential energy V ) and the
entropy of the system changes if different components are discernible (and this implies changes in
the partition function). In the case of the grand canonical partition function, it can be written as7:

Ξ =
∑

s1,s2,...,sσ

zs11 z
s2
2 . . . zsσσ

s1!s2! . . . sσ!

∫
e−βVs1,s2,...,sσ (r1,r2,...,rs)d3r1d3r2 . . . d3rs (A.13)

Here the subscripts 1 to σ designate the σ different type of components. So zi is the fugacity of
component i, si is the number of particles i in the system and Vs1,s2,...,sσ is the potential energy for
a given set of particles. The fugacity zi depends on the mass mi and the chemical potential µi of
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component i. The total number of particles s in the system is the sum of all the si. The different
interactions between all kinds of particles must be taken into account inside Vs1,s2,...,sσ and the factor

1
s1!s2! . . . sσ! in front of the integral is there to take the entropy effect into account (related to the
different possibilities of counting the indistinguishable particles). It is possible to rewrite equation
(A.13) as:

Ξ =
∑
s≥0
Z ′s (A.14)

Where Z ′s is a function of the different Vs1,s2,...,sσ . The interesting result that Morita and Hiroike7

show is that one can treat Z ′s in the same way that one would treat zsZs in equation (A.3). Thus in
sections 2 and 4, only the pure component system will be studied as was done in the literature3–6,8.
Then in section 5, the potential energy for a mixture will be introduced and the results for mixtures
will be directly obtained, as Chapman did9. It may be instructive to detail this calculation in the
case of an ideal gas. In this case, it is easier to work with the canonical partition function. Some
particles become discernible from each others if they are not related to the same component. Thus,
if there are σ different components and if the total number of particles N is related to the number
of particles Ni, i ∈ [1 . . . σ] by N = ∑

iNi, the number of permutations of particles becomes
N1!N2! . . . Nσ! instead of N !. So equation (A.10) becomes:

Z =
σ∏
i=1

1
Ni!

1
h3Ni

Ni∏
k=1

∫ ∞−∞ e
−βp2

2mi dp


3 ∫

V
d3ri =

σ∏
i=1

V Ni

Ni!λ3Ni
i

(A.15)

With equation (A.2) and a calculation similar to the one that leads to equation (A.12), the Helmholtz
energy for an ideal gas mixture is:

Aig

NkBT
= aig
RT

=
σ∑
i=1

xi
(
ln(Naρxiλ

3
i )− 1

)
(A.16)

With xi = Ni
N

the mole fraction of component i.

2 Graph Theory

This section is mainly a detailed version of a work made by Stell8 using ideas from Morita
and Hiroike7 and Zmpitas10. Morita and Hiroike7 provide a very helpful and rigorous presentation
of all the concepts introduced here. Zmpitas10 gave a version of this theory (and of Wertheim’s
Thermodynamic Perturbation Theory) that is simpler to understand but which does not explain
certain points. The purpose of this section is to rewrite equation (A.8) in a way that is easier to
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manipulate and in particular as a function of density instead of fugacity (in the case of a system
with only one component as explained before). The general idea is developed here and then used
in section 4. The concepts introduced in this section are the ones that are used to derive the hard
sphere equation of state. This section will show the main equation to solve for the latter purpose
and the next presents the final solution (but skips the major part of the calculations as it is not the
purpose of this derivation).

2.1 Mathematical needs

Before doing any calculation, one can introduce the following notation: all the coordinates re-
lated to a given particle i will be noted i. For instance, if a particle 1 has six degrees of freedom
(three translational and three rotational) represented by three coordinates r1 = (x1, y1, z1) and
three angles ω1 = (θ1, φ1, ψ1) (in Euler’s representation), a given differential form d3r1d3ω1 =
dxdydz|r1| sin(θ)dθdφdψ will simply be written d(1). In the same way, the potential energy de-
pending onN particles will be written V (1, 2, . . . , N). With this notation, equation (A.3) becomes:

Ξ =
∑
s≥0

zs

s!

∫
e−βV (1,2,...,s)d(1)d(2) . . . d(s) (A.17)

The origin of any deviation to equation (A.16) is the existence of a potential energy that is not
zero. In the most general case, each particle interacts with all the other particles and with any
external force (even a force caused by the particle itself). Knowing that, it is assumed that the
potential energy for a system with N particles can be written in the following way:

V (1, 2, . . . , N) =
∑

1≤i≤N
ϕ1(i) +

∑
1≤i<j≤N

ϕ2(i, j) +
∑

1≤i<j<k≤N
ϕ3(i, j, k) + . . . (A.18)

Where ϕ1 describes potentials that depend on only one particle (i.e. due to external forces or a field
created by the particle itself) and ϕn describes potentials that depend on n particles. In equation
(A.18), potentials that depend on up toN particles are included. However what is usually assumed
is that only ϕ1 and the pair potential ϕ2 contribute to V i.e. that the potential energy is pairwise
additive. Sometimes ϕ3 is included as well (see for example Rushbrook et al.11). In SAFT and in
this graph theory, it is assumed that the potential energy is pairwise additive. Introducing z1(i) =
z exp(−βϕ1(i)) and e(i, j) = exp(−βϕ2(i, j)) for any given particle i and j, equation (A.17)
becomes:

Ξ =
∑
s≥0

1
s!

∫ ∏
1≤i≤s

z1(i)
∏

1≤i<j≤s
e(i, j)

∏
1≤i≤s

d(i) (A.19)
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An important concept in graph theory is functional derivative. Let F be a function that takes
other functions as argument i.e. a functional. For all functions of real variables f and h, the func-
tional δF is defined such that:

lim
‖h‖→0

F [f + h]− F [f ]− δF [h] = 0 (A.20)

It is assumed here that all these functions are in the appropriate mathematical spaces, especially
so that it is possible to define a norm ‖ . ‖. Riesz representation theorem says that there exists a

function noted
δF

δf
which is called the functional derivative of F and which verifies:

δF [h] =
∫ δF

δf
(y)h(y)dy (A.21)

This derivation does not include all the mathematical details related to functional derivatives. It
will be assumed that it mostly behaves like regular derivatives and equation (A.21) will be used in
calculations.

The singlet density ρ1 (also known as grand canonical 1-particle distribution function) is given
by Zmpitas10:

ρ1(1) =
〈∑

i

δ(1, i)
〉

Ξ
(A.22)

Where δ is the Dirac delta function defined here so that it verifies
∫
δ(i, j)f(j)d(j) = f(i) for all

i and all function f . The bracket here means an average defined by the probability on the grand
canonical ensemble. The singlet density is the probability of finding a particle at a given point of
the phase space so the definition given by (A.22) makes it clearer than the definition given by Stell8.
Equation (A.22) can be written by calculating the average:

ρ1(1) = 1
Ξ
∑
s≥0

1
s!

∫  ∏
1≤i≤s

z1(i)
∏

1≤i<j≤s
e(i, j)

(
s∑
i=1

δ(1, i)
) ∏

1≤i≤s
d(i)

 (A.23)

Note that the 1 in ρ1(1) is not the same as the one inside the integral (when the dummy variable
i = 1) but we note them the same way for simplicity. Using the property of δ and remembering
that particles are indiscernible (which means one can choose i to be 1 s times in∑s

i=1 δ(1, i) with
an appropriate change of dummy variables) it becomes:

ρ1(1) = 1
Ξ
∑
s≥1

1
(s− 1)!z1(1)

∫  ∏
2≤i≤s

z1(i)
∏

1≤i<j≤s
e(i, j)

∏
2≤i≤s

d(i)
 (A.24)

The first term of the main sum vanishes as there is no integral. In order to simplify the previous
equation, it is possible to calculate the functional derivative of Ξ with respect to z1. Ξ is a sum of
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many terms with the following form: F =
∫ ∏

1≤i≤s z1(i)A∏1≤i≤s d(i) where A doesn’t contain
any z1 function. With this functional, δF [h] = ∑

1≤j≤s
∫
h(j)∏i6=j z1(i)A∏1≤i≤s d(i) (only keep

integrals with an integrand linear in h) so that
δF

δz1
= ∑

1≤j≤s
∫ ∏

i6=j z1(i)A∏i6=j d(i). Knowing
that particles are indistinguishable:

δΞ
δz1

(1) =
∑
s≥1

1
(s− 1)!

∫  ∏
2≤i≤s

z1(i)
∏

1≤i<j≤s
e(i, j)

∏
2≤i≤s

d(i)
 (A.25)

And so
ρ1(1) = z1(1)

Ξ
δΞ
δz1

(1) (A.26)

The singlet density is related to the number density ρ if the system is uniform by:

ρ = ρ1Ω (A.27)

Where Ω is the integration over all coordinates that are not position ( for instance three angles of
orientation). Indeed, in a uniform system N =

∫
ρ1(1)d(1) = ρ1

∫
d(1) (N being the average

number of particles i.e. the number of particles that can be found in the whole phase space) and
one can extract the volume from the last integral.

Likewise it is possible to define the grand canonical s-particle distribution function:

ρs(1, 2, . . . , s) =
〈∑

i

∑
j 6=i

∑
k 6=i,j

. . .
∑

l 6=i,j,k,...
δ(1, i)δ(2, j)δ(3, k) . . . δ(s, l)

〉
Ξ

(A.28)

As was done for the singlet density, the relation between ρs and Ξ is:

ρs(1, 2, . . . , s) = 1
Ξ

∏
1≤i≤s

z1(i)δ
sΞ
δzs1

(1, 2, . . . , s) (A.29)

In this derivation, only the case with s = 2 will be used. The results for s > 2 will always be
given but not always derived as they are not useful here. Another kind of functions that are useful
in graph theory are Ursell functions. Stell8 gives them with the following definition: they are the
functions us(1, 2, . . . , s) that verify:

ρs(1, 2, . . . , s) =
∑

P (1,2,...,n)={γ}

∏
γ={eα}

uα(i1, i2, . . . , iα) (A.30)

Where the sum is carried out over all possible partitions γ of the set {1, 2, . . . , n}. The product is
then carried out over each element of γ noted eα where α is the length of eα (elements of eα are
noted iβ with β being a number between 1 and α). For instance P (1, 2) = {({1}, {2}), ({1, 2})}
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and P (1, 2, 3) = {({1}, {2}, {3}), ({1, 2}, {3}), ({1, 3}, {2}), ({2, 3}, {1}), ({1, 2, 3})} and so:

ρ1(1) = u1(1)
ρ2(1, 2) = u1(1)u1(2) + u2(1, 2)
ρ3(1, 2, 3) = u1(1)u1(2)u1(3) + u2(1, 2)u1(3)

+u2(1, 3)u1(2) + u2(2, 3)u1(1) + u3(1, 2, 3)

(A.31)

Ursell functions are given as functions of the grand canonical partition function with:

us(1, 2, . . . , s) =
∏

1≤i≤s
z1(i)δ

s ln(Ξ)
δzs1

(1, 2, . . . , s) (A.32)

With ln the natural logarithm defined for functionals by the Mercator series. It can be showed that
it has the same properties as the real-valued function with respect to functional derivatives. Thus
equation (A.32) is obviously true for s = 1 and it can be easily shown that it is true as well for s = 2
by direct calculation. The general case can be proved by induction. The functions gs and hs with
s ≥ 2 are defined by the following equations:

gs(1, 2, . . . , s) = ρs(1, 2, . . . , s)
ρ1(1)ρ1(2) . . . ρ1(s) (A.33)

hs(1, 2, . . . , s) = us(1, 2, . . . , s)
ρ1(1)ρ1(2) . . . ρ1(s) (A.34)

For s = 1, h1 can be defined:

h1(1) = ln
(
u1(1)
z1(1)

)
= ln

(
ρ1(1)
z1(1)

)
(A.35)

For the special case where s = 2:

g2(1, 2) = u1(1)u1(2) + u2(1, 2)
ρ1(1)ρ1(2) = h2(1, 2) + 1 (A.36)

In a system of coordinates where the origin is particle 1 and if (1, 2) only represents translation
degrees of freedom, (1, 2) = |r1 − r2| and g2 (or simply written g) is called the radial distribution
function which is related to the probability of finding a second particle at a distance |r1 − r2| from
particle 1. h2 is called the two particle correlation function.

One need to introduce the Ornstein-Zernike direct correlation function for the next section (Hard
Sphere Equation of State). It is the function c(1, 2) that verifies the Ornstein-Zernike equation:

h2(1, 2) = c(1, 2) +
∫
c(1, 3)h2(3, 2)ρ1(3)d(3) (A.37)

It can be shown that this is equivalent to:

c(1, 2) = δ

δρ1(2)

[
ln
(
δ ln(Ξ)
δz1(1)

)]
(A.38)
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2.2 Graphs

The definition and vocabulary given by Stell8 will be used:

Definition 1. A linear graph is a collection of circles between some pairs of which there are bonds.

An example of such a graph is given on Figure A1.1.

Circle Bond

Path

1

2

3

4
5

Figure A1.1: Example of one graph.

Definition 2. Two circles are said to be adjacent if there is one bond joining them directly.

For instance circles 1 and 2 on Figure A1.1 are adjacent but not circles 1 and 3.

Definition 3. A path is a sequence of adjacent circles joined by bonds.

The red part of the graph in Figure A1.1 is a path.

Definition 4. Two paths between two circles are independent if they have no intermediate circles
in common.

For instance there are two independent paths between circles 2 and 4 but there is just one between
circles 3 and 4. Two kind of circles will be considered: black and white (such as circle 5 on Figure
A1.1). A meaning will be given to each kind of circle later. It is also possible to define different
types of bond.

Definition 5. A graph is connected if there exists a path between any pair of circles in the graph.

Thus the graph in Figure A1.1 is not connected.

Definition 6. A graph is said to be at-least-n-tuply-connected if there are at least n independent
paths between any pair of circles in the graph.
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Definition 7. A graph is said to be root-connected if there is a path from each black circle to a
white circle.

Definition 8. A subgraph is a part of a graph i.e. any collection of circles and bonds of a graph.

Definition 9. A maximal subgraph possessing a given property is a subgraph which is not con-
tained in another subgraph with the same property. Likewise, a minimal subgraph possessing a
given property is a subgraph that contains no other subgraph with the same property.

Definition 10. A component is a maximal connected subgraph.

For instance the graph in Figure A1.1 has two components.

Definition 11. A simple graph is a graph such that between any pair of adjacent circles there is
only one path which is a single bond.

For instance the graph in Figure A1.1 is simple but not the graph in Figure A1.2. A graph that
is not simple is called composite.

1 2

Figure A1.2: Example of a composite graph.

The purpose of these graphs is to simplify integrals that can appear in equation (A.19) and
also to represent with one single graph different integrals that could be equal. Indeed, the idea is
to attach a function to each part of a graph. A circle will always represent a particle and a bond
will always represent an interaction between two particles. These interactions will come from the
potential energy. Thus, if a triplet potential was kept in equation (A.18), a graph with surfaces
joining three circles should be added to the graphs. In the case of this derivation, typical integrals
that will appear will have the following form:

∫ [∏
S

∏
a∈A

Ba(i, j)
]  ∏

1≤i≤n
γ1(i)

  ∏
n+1≤i≤N

γ2(i)d(i)

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Where S is a subset of all the pairs {i, j}, 1 ≤ i < j ≤ N , A is the set of different type of bond
(that will be introduced later), Ba is a function that verifies Ba(i, j) = Ba(j, i), γ1 and γ2 are two
functions. FunctionsBa will be represented by a bond, γ1 will be represented by a white circle with
a label i (note that there is no integration for all i between 1 and n) and γ2 will be represented by a
black circle (with no label as this function is integrated and so it does not depend on any coordinate).
Note that the graph in Figure A1.2 is not the representation of any integral with the previous form
as it is not a simple graph. Otherwise terms with a factor Ba(i, j)ma(i,j) should be included with
ma(i, j) the number of bonds Ba between i and j.

Thus in equation (A.19), the term
∫
z1(1)z1(2)z1(3)e(1, 2)e(1, 3)e(2, 3)d(1)d(2)d(3)is repre-

sented by the graph . In some cases (but not in equation (A.19)), several identical integrals
can appear in an equation as integrals can be invariant by permutations of the variable names. For
instance the previous integral does not change after the following permutations:

1→ 2; 2→ 3; 3→ 1

1→ 3; 2→ 1; 3→ 2

1→ 1; 2→ 2; 3→ 3

1→ 3; 2→ 2; 3→ 1

1→ 1; 2→ 3; 3→ 2

1→ 2; 2→ 1; 3→ 3

Which are the 3! permutations between three objects. So graphs defined as above have the same
invariance to permutations as integrals. In order to simplify the manipulations of these graphs, the
symmetry number of a graph can be introduced.

Definition 12. If temporary labels are given to black circles, the symmetry number of a graph
is the number of permutations that can be done to the latter labels so that it does not change the
original integral.

A given integral I is related to its graph Γ and symmetry number σ by the following formula:

I = σΓ (A.39)

One can also speak of the symmetry number of an integral (as the symmetry number of the graph
representing the integral) but integrals and graphs are always related by the previous equation. Thus
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one integral will represent all the different possible graphs that are equal by permutations of labels
on black circles. For example:∫

z1(1)z1(2)z1(3)e(1, 2)e(1, 3)e(2, 3)d(1)d(2)d(3) = 6× (A.40)

∫
z1(1)z1(2)z1(3)z1(4)e(1, 2)e(2, 3)e(3, 4)e(4, 1)d(1)d(2)d(3)d(4) = 8 × (A.41)

∫
z1(1)z1(2)z1(3)z1(4)e(1, 3)e(3, 2)e(2, 4)e(4, 1)f(3, 4)d(3)d(4) = 2× 1 2 (A.42)

Equation (A.40) corresponds to the term that was previously mentioned. The integrated func-
tions z1 are represented by black circles and the functions e by straight lines. The symmetry number
is 3! as each circle is connected to all the other ones. The general result is that the symmetry num-
ber of a graph withN identical circles that are all connected between each other isN !. In equation
(A.41), there is no connection between 2 and 4 and between 1 and 3. Thus when repositioning tem-
porary labels, 1 is always between 4 and 2, 2 is always between 1 and 3,etc. 8 permutations similar
to the ones for equation (A.40) can be found (4 "clockwise" and 4 "counterclockwise" circular per-
mutations). In equation (A.42), non integrated z1 functions are represented by white circles and the
function f is represented by a zigzag line. There are only two ways to add labels to black circles, so
the symmetry number is 2. If two graphs do not represent the same graph, they are called distinct.
As integrals, graphs are functionals (of the functions defining bonds and circles).

With this definition, it will be possible to write equations with graphs only and no prefactors. It
is also possible to have a definition different than (39) and keep prefactors as is done by Zmpitas10

and Wertheim3.
Finally it is possible to define the product of graphs that have some or no 1-white circles (white

circles that represent non integrated functions x 7−→ 1). Let Γ1 and Γ2 be two graphs with respec-
tively n1 and n2 white 1-circles such that:

Γ1 = I1

σ1
= 1
σ1

∫ ∏
S1

∏
a∈A1

Ba(i, j)
  ∏

1≤i≤n1

γ1(i)
  ∏

n1+1≤i≤N1

γ2(i)d(i)


Γ2 = I2

σ2
= 1
σ2

∫ ∏
S2

∏
a∈A2

Ba(i, j)
  ∏

1≤i≤n2

γ1(i)
  ∏

n2+1≤i≤N2

γ2(i)d(i)


The product of graph Γ1 × Γ2 is the collection of all black circles and bonds in Γ1 and Γ2 such
that the white 1-circles with same labels are in common. It thus represents the integral I1 × I2

(with the usual product). Its symmetry number σ3 defined as before will usually be different from
σ1 × σ2. For example the product of the graphs in equation (A.40) and (A.41) is given in Figure
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Figure A1.3: Product of graphs from equations (A.40) and (A.41).

1 2

Figure A1.4: Product of two graphs.

A1.3 and the product of the graph in equation (A.42) by itself is in Figure A1.4. The symmetry
number of the graph in Figure A1.3 is, in this case, the product of the symmetry numbers of each
graph so 6 × 8 = 48. For the graph in Figure A1.4, both original graphs are identical so it is
possible to exchange the labels between each subgraph without changing the integral it represents.
The symmetry number of each subgraph is 2 so the symmetry number of the graph in Figure A1.4
is (number of permutations between identical graphs) × (product of the symmetry numbers of the
original graphs) = 2× 22 = 8.

It is now possible to derive two lemmas that will be used further in order to express equations
(A.8), (A.29), (A.32) and (A.34) (and so (A.36)) in terms of graphs.

Lemma 1: Let G be a set of an infinite number of distinct connected graphs Γi, each consisting
of some or no black circles, some or no white 1-circles and some or no bonds such that no Γi is the
product of other graphs in G. Let F be the set of all graphs in G and all products of graphs in G.
Then, the sum of all graphs in F = exp(the sum of all graphs in G)−1.

Proof. Any graph in F noted ΓF can be written∏n
i=1 Γpii by definition of F, with n different graphs

Γi from G. pi is the number of identical Γi in ΓF . As in all the later other proofs regarding graph
properties, the most difficult part is to find the symmetry number of new created graphs i.e. here
ΓF , knowing that the symmetry number of Γi is σi. Each factor Γpii as an independent set of labels
as Γi 6= Γj if i 6= j. Indeed if two graphs are different, they do not have the same set of bonds and/or
the same number of circles (see for instance the case of the graph in Figure A1.3) so labels of a graph
cannot be exchanged with a different graph. Another way to see that is to understand that two circles
can exchange their labels if they are indistinguishable and two circles from two different graphs are
distinguishable exactly because they are in two different graphs. So the number of permutations
of labels in ΓF are the combinations of all the permutations allowed in each factor Γpii and the
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symmetry number of ΓF is the product of the symmetry numbers of all the Γpii . Conversely, in a
factorΓpii it is possible to exchange labels between the pi graphsΓi as they are all the same. However
when exchanging labels, all the labels from one Γi have to be exchanged with all the labels from
another Γi. For instance with the graph in Figure A1.4, if black circles are labeled 1,2,3 and 4 with
a zigzag bond between 1 and 2 and between 3 and 4, it is not possible to exchange labels 2 and
3 as it would change the zigzag bonds (which would be between 1 and 3 and between 2 and 4).
So the permutation of labels allowed between all the Γi are the permutations of the entire set of
labels of each Γi. There are pi! such permutations as all Γi are indistinguishable. Once one of the
pi! permutations is chosen, it is then possible to exchange labels inside each Γi. By definition, the
number of such permutations is σi and the combinations of all permutations in Γpii is σpii once one
of the pi! previous permutations is chosen. So overall the symmetry number of Γpii is pi!σpii and the
permutation number σF of ΓF is:

σF =
n∏
i=1

pi!σpii

The integral represented by ΓF is ∏n
i=1 I

pi
i if Ii is the integral represented by Γi. So:

ΓF =
∏n
i=1 I

pi
i

σF
=
∏n
i=1

(
Ii
σi

)pi∏n
i=1 pi!

Using exp as its Taylor series, the right hand side of the equation to be proved can be written:

exp
(∑

i

Γi
)
− 1 =

∞∑
k=1

(
(∑i Γi)k

k!

)

Where the sum over index i represents the sum carried out over all the infinite (but countable)
number of graphs in G. Using the multinomial theorem, it becomes:

exp
(∑

i

Γi
)
− 1 =

∞∑
k=1

 1
k!

∑
p1+p2+...+pi+...=k

(
k!∏
i pi!

∏
i

Γpii
)

The second sum in the right hand side means that the sum must be carried out over all the infinite
numbers of pi (some can be zero) as there are an infinite number of graphs Γi in

∑
i Γi. Similarly∏

i pi! and
∏
i Γpii are products over all the pi defined by the previous sum. Finally:

exp
(∑

i

Γi
)
− 1 =

∞∑
k=1

∑
p1+p2+...+pi+...=k

∏
i

(
Ii
σi

)pi∏
i pi!

(?)

It is now easy to see that the right hand side of (?) is the sum of all the graphs in F. In order to prove
that, it is required to prove that each term in the right hand side of (?) is a graph from F (which
is obvious with the previously given form of a graph in F) and that each graph in F is in the right
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hand side (?). A graph ΓF in F is characterized by some pi and some Γi. All combinations of pi
are allowed by the right hand side of (?) (some have to be zero if a given Γi is not in ΓF ). So each
graph in F is in the right hand side of (?) which proves lemma 1.

Lemma 2: Let Γ be a graph with some bonds, some black γ2-circles and some white circles
and let n be any natural number other than 0. Then

δnΓ
δγn2

(1, 2, . . . , n) = the sum of all the distinct graphs that are obtained from Γ by changing

n black γ2-circles into n white 1-circles labeled by 1, 2, . . . , n respectively

Proof. The case for n = 1 must be proved first. Then the case for any n is evident by induction. A
graph Γ can be written I

σ
by definition. The functional derivative is calculated for the functional I

as was done before. Then the challenge is to verify that the symmetry numbers are correct.
First if there is no black γ2-circle in Γ, then the functional derivative of I is 0 and so is the

functional derivative of Γ and lemma 2 is verified in the sense that there is no graph that can be
obtained from Γ by changing a black γ2-circle into a white 1-circle. If there is at least one black
γ2-circle:

δΓ
δγ2

(1) = 1
σ

δ

δγ2

∫ A×
∏

1≤i≤s
γ2(i)d(i)


Where s is the number of black γ2-circles and A a product of bonds and white circles (such that
none of them has a label 1). There are s γ2 functions so:

δΓ
δγ2

(1) = 1
σ

s∑
k=1

∫ A×
∏

1≤i≤s
i6=k

γ2(i)d(i)


The problem is that σ might not be the symmetry number of the graphs representing the integrals
inside the sum.

If there was no white circle in Γ and a bond between each pair of black circles, σ would be s! as
all black circles would be indistinguishable and so all the terms inside the sum would be equal. So
the sum would become a prefactor s and the overall prefactor would be s

s! = 1
(s−1)! and the lemma

would be verified as there would be only one distinct graph with a symmetry number of (s − 1)!
(which is the symmetry number of a graph with one white circle and bonds between each of the s
circles as one label is already fixed).

In general there is not a bond between each pair of black circles and so the sum will not be
entirely simplified as above (some graphs will not be identical anymore). In the general case it can
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be written:
δΓ
δγ2

(1) =
r∑

k=1

tkσ
∫
A×

∏
1≤i≤s
i6=k

γ2(i)d(i)


Where r is the number of distinct graphs Γk and tk is the number of identical integrals of type k
(that appeared in the former equation). In order to finish the proof, it is required to show that the
symmetry number of each graph Γk representing integrals in the sum is σ

tk
. Let σk be the symmetry

number of each graph Γk. Then the lemma is proved if tkσk = σ. In order to better understand
the following explanation, the graph in Figure A1.5 will be used. The symmetry number of the

1

2

3

4

5

6

7

Figure A1.5: Graph with two white circles and five black γ2-circle. Its symmetry number is 4.

graph in Figure A1.5 is 4 as the labels 3 and 4 can be exchanged and so can labels 5 and 6 (all
combinations gives 4 different configurations). It is not possible to exchange labels 3 and 4 with
labels 5 and 6 as the latter have to be connected to the circle with the label 7. When taking the
functional derivative of this graph, any black circle can be transformed into a white 1-circle. This
gives three distinct types of graphs whether the white 1-circle is placed on labels 3 and 4 or 5 and
6 or 7. If the graph with a white 1-circle on either label 3 or 4 is chosen, tk is 2 as it is possible
to have a white 1-circle on these two different places without changing the integral that the graph
represents. Then the symmetry number σk of the graph is 2 as it is possible to exchange labels 5
and 6. So in this case tkσk = 4 = σ. With any other graph, its symmetry number can always be
calculated in the following way:

First place one fixed label, where there will be one more white circle, on any black circle and
calculate the different ways to place this label so that it gives the same graph. The number of
different ways is exactly tk. Then it is possible to calculate the number of ways to place temporary
labels on the remaining black circles. This is the symmetry number of the graph with a fixed label
i.e. σk. So σ = σktk.

The idea behind this result is that a first classification is done to all the allowed permutations
(when the first fixed label is placed) and then temporary labels are placed so that all permutations are
found. The underlying mathematical result is that the group of permutations among the temporary
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labels on black circles, once some fixed labels have been placed, is a subgroup of the group of
permutations of the graph among all the labels (fixed and temporary) on black circles. This is
illustrated in the following array for the graph on Figure A1.5 with 3 or 4 that can be a fixed label:

3 6 7 3 5 7
4 5 4 6
4 6 7 4 5 7
3 5 3 6

Each row represents a choice of a first fixed (red) label and each column represent a permutation of
the remaining labels. The symmetry number is thus the number of column (σk) times the number
of rows (tk) which is the result proved before. There will be a similar idea for lemma 3, which was
noticed by Stell8.

2.3 Fugacity expansions

It is now possible to rewrite equation (A.19) in terms of graphs. z1 functions will be represented
as black circles if integrated or as white circles otherwise and e functions will be represented as
solid lines for now. Note that in equation (A.19), there is one e-bond between each pair of particles
so all particles are indistinguishable and so are circles of graphs representing these integrals. Thus
the symmetry number of these graphs are s! and so Ξ already has the form of a sum of graphs.
When s = 0 the term is one by convention with the notation ∏. So:

Ξ = 1 + + + + + + . . .

This type of results will always be given with words as well instead of graphs. Indeed the most
interesting aspect of graphs is that it is possible to describe them with topological properties only
(connected, simple, distinct, etc.). Thus:

Ξ = the sum of all the distinct simple graphs consisting of black z1-circles and some
or no e-bonds such that there is one e-bond between each pair of z1-circles

(A.43)

This equation is called a fugacity expansion of Ξ as it gives Ξ as a sum of terms that depend on
fugacity. However it is more appropriate to rewrite it by introducing the Mayer f-function defined
by f(i, j) = e(i, j)− 1. All the e-bonds in the previous equation will be replaced by f -bonds and
1-bonds. Now and until the end of this section solid lines will represent f -bonds. 1-bonds represent
the fact that there is no bond between two particles. Putting e = 1 + f in equation (A.43), it is easy
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to realize that each e-bond can become an f -bond or no bond (a 1-bond) and this in all the possible
configurations. Indeed, choosing any graph from equation (A.43) and an e-bond in it, transforming
it into an f -bond and a 1-bond results in duplicating the graph and replacing the e-bond by an f -
bond or no bond. Doing this and remembering that graphs that represent identical integrals must
be counted as one graph:

Ξ = 1 + + + + + + + + + . . .

= 1 + the sum of all distinct simple graphs consisting of black z1-circles and
some or no f -bonds

(A.44)

It can be verified by the same reasoning as the one used to prove lemma 2 (but by labeling bonds
instead of circles for the classification) that, by summing identical graphs, prefactors in front of each
integral is the inverse of the symmetry number of each graph. This is actually the whole purpose of
symmetry numbers, most of the time the prefactor of each integral is the inverse of the symmetry
number of the corresponding graph. Indeed, transforming a graph changes its symmetry but there
usually are symmetrical ways to do the same transformation.

In equation (A.44), all the graphs that are not connected are products of graphs and so by direct
application of lemma 1 (Ξ− 1 = exp(ln(Ξ))− 1):

ln(Ξ) = + + + + + + . . .

= the sum of all distinct connected simple graphs consisting of black
z1-circles and some or no f -bonds

(A.45)

With equation (A.8), this gives the fugacity expansion of the equation of state for the given potential
(A.18). It is now useful to find the fugacity expansion of the singlet density and s-particle distri-
bution function using equation (A.30). With lemma 2 and equations (A.32) and (A.45), it results
in:

un(1, 2, . . . , n) = the sum of all distinct connected simple graphs consisting of n
white z1-circles labeled by 1,2,. . . ,n respectively, some or no black
z1-circles and some or no f -bonds

(A.46)

White circles are z1-circles and not 1-circles because in equation (A.32) the functional derivative
is multiplied by n z1 functions. In the case where s = 2 this gives:

u2(1, 2) =
1 2

+
1 2

+
1 2

+
1 2

+
1 2

+
1 2

+ . . .
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Then the s-particle distribution function can easily be obtained from equation (A.30). Indeed, in
this case, equation (A.30) means that the s-particle distribution function will be a sum of product of
graphs of Ursell functions so that there are s white z1-circles. The important point is that, except for
s = 1, these graphs will not be connected anymore as the Ursell functions considered have white
circles with different labels (the product of two graphs with different white circles is not a connected
graph). However each component will be connected and so each black circle will be connected to
a white circle. Then the sum over all the different partitions means that all the configurations of
Ursell functions that give s white circles have to be considered. The result is:

ρn(1, 2, . . . , n) = the sum of all distinct simple graphs consisting of n white
z1-circles labeled by 1,2,. . . ,n respectively, some or no black
z1-circles and some or no f -bonds such that the graphs are
root-connected

(A.47)

When s = 1 this result is obvious (from equation (A.46)) and gives the singlet density:

ρ1(1) = u1(1) =
1

+
1

+
1

+
1

+
1

+
1

+ . . .

If equation (A.47) does not seem obvious, it can be easily understood with the case s = 2 because
ρ2(1, 2) = u2(1, 2)+u1(1)u1(2) and so the 2-particle distribution function is the sum of the graphs
in u2 plus product of graphs in u1 with labels 1 and 2:

ρ2(1, 2) =
1 2

+
1 2

+
1 2

+
1 2

+
1 2

+
1 2

+
1 2

+ . . .

The first three terms come from u1(1)u1(2) and the other ones from u2. A useful version of equation
(A.47) is the following:

ρn(1, 2, . . . , n) = the sum of all distinct connected simple graphs consisting of n
white z1-circles labeled by 1,2,. . . ,n respectively, some or no black
z1-circles and some or no f -bonds and an e-bond between every
pair of white circles

(A.48)

The transformation between equations (A.47) and (A.48) is obvious by changing each e-bond
in equation (A.48) by f + 1. Indeed, this transformation doesn’t change the connections involving
black circles so there is always one path from each black circle to a white circle and all e-bonds
become a f -bond or nothing (and so the graphs are not all connected anymore).
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2.4 Topological reduction

The previous equations express certain quantities as functionals of fugacity. However it is usu-
ally preferred to have these quantities as functionals depending on singlet density (and so density via
equation (A.27)) as it is more easily measured. Moreover such transformation simplifies equations
as will be explained below.

It is convenient to introduce the concept of articulation circles for the purpose of this section.

Definition 13. An articulation circle is a circle which, when removed, separates a component of
a graph into two or more parts with at least one without a white circle.

Definition 14. A graph without articulation circles is called 1-irreducible or irreducible. In a
graph with no more than one white circle, irreducible and at-least-doubly-connected are equivalent
terms.

For instance on Figure A1.6, the white circle labeled 2 is an articulation circle (and the only
one on this graph). The transformation that will be shown in this section makes possible to rewrite

1 2

Figure A1.6: Example of graph with an articulation circle.

quantities as functionals of singlet density and to have graphs without articulation circles. Thus
all "sum of distinct connected graph" will concern graphs with ρ1-circles and without articulation
circles which permits fewer possibilities for the topology of the graphs i.e. their general form. That
is why this step is often called topological reduction. Still following Stell8 it is convenient to first
reduce graphs in hn given by equation (A.34) and equation (A.35) for n = 1. Indeed, it is easy to
first get rid of white articulation circles by noticing that:

hn(1, 2, . . . , n) = the sum of all distinct connected simple graphs consisting of n
white 1-circles labeled by 1,2,. . . ,n respectively, some or no black
z1-circles and at least one f -bond such that the graphs are free of
white articulation circles

(A.49)

The case n = 1 is proved using lemma 1 and equation (A.35). Indeed, u1(1)/z1(1) is the sum
of all the graphs in equation (A.46) but with one 1-white circle instead of one z1-circle (the graph
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consisting of one z1-circle divided by z1 being equal to 1). The white circle in this type of graph

may be an articulation circle like in
1

in the given fugacity expansion of u1 which is the product

of two graphs
1

. If the white circle is not an articulation circle, the graph can still be seen as a

product as it can be a product with the 1-white circle. So using lemma 1, u1(1)/z1(1) = exp(h1(1))
(1 is included in the sum of graphs u1(1)/z1(1)) makes the link between equations (A.35) and
(A.49). Note that the simplest graph in h1 is

1
as there must be at least one f -bond.

When n ≥ 2, it is proved using equation (A.34) written as hn(1, 2, . . . , n)ρ1(1)ρ1(2) . . . ρ1(n)
= un(1, 2, . . . , n). Indeed in this case, graphs in un that have white articulation circles can be
written as a product of one graph without white articulation circles times the parts in the graphs
that were the cause of the presence of articulation circles (as before if there is no articulation circle,
it can be written as the product with a single white circle). As the latter parts are connected and
have one white z1-circle, they are inside ρ1. For instance:

1z1 2z1
=

1 2
×

1z1
×

2z1

The graph on the left hand side belongs to u2. z1 subscripts have been added to show the difference
between 1-circles and z1-circles. The first graph of the right hand side is a graph of equation (A.49)
and the two others are in the singlet density. Here it is not necessary to pay attention to symmetry
numbers as no prefactor is changing (all terms in hn(1, 2, . . . , n)ρ1(1)ρ1(2) . . . ρ1(n) are obviously
distinct because graphs in hn are distinct).

(a)
1 2

(b)
1 2

(c)

Figure A1.7: (a):Example of a graph; (b): The maximal 1-irreducible rooted subgraph of graph (a).
The original graph on figure (a) is obtained by replacing the black circle on graph (b) by the graph
(c) and making the white circle black.

Some graphs in hn still have black articulation circles. Thus it is possible to define the maximal
1-irreducible rooted subgraph of a graph Γ. It is the largest subgraph Γm of Γ that contains all
the white circles (white circles are sometimes called rooted circles) but no articulation circle. The
differences between a graph and its maximal 1-irreducible rooted subgraph are only some more
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parts attached to the original graph. These parts are attached at the articulation circle and are
connected graphs. They actually are graphs from the singlet density with a black circle instead of
a white circle. An example is shown on Figure A1.7. This fact is summarized in the following
lemma:

Lemma 3: The sum of all graphs appearing in the expansion of hn given by equation (A.49)
that have the same maximal 1-irreducible rooted subgraph Γm is equal in value to the graph Γm
obtained by replacing all the black z1 circles of Γm by ρ1-circles.

Proof. The singlet density can be written as an infinite sum of graphs that are functionals of z1 (and
f ):

ρ1(i) =
∑
α

Γα(i) =
∑
α

Iα(i)
σα

Where all the Γα are for instance given by equation (A.47) and Iα and σα are respectively the
integrals they represent and their symmetry number. Let Γm be one of the maximal 1-irreducible
rooted subgraph found in a graph of hn withm black circles and Γm the corresponding graph with
ρ1-circles instead of z1-circles. Γm can be written as Im/σm where Im is the integral represented
by Γm and σm is its symmetry number (and the symmetry number of Γm). Rewriting each ρ1(i)
appearing in Γm as a sum of graphs and expanding the products, a new infinite sum of terms (they
are not graphs yet) appears but this time as functionals of z1. Let t be one of these new terms. It
obviously has the following form:

t = 1
σmσα1σα2 . . . σαm

I

Where each σαi is the symmetry number of a graph Γαi that has been used in the product that creates
t. I divided by its symmetry number is a graph of hn and it has Γm for maximal 1-irreducible rooted
subgraph. As for previous proofs with graphs, the only thing that has to be proved is that prefactors
in front of integrals have the correct symmetry number. But in general, σmσα1σα2 . . . σαm is not the
symmetry number of t. In this case it means that there are other terms in the expanded form of Γm
that have the same integral I (in value but with different dummy variables). Let T be the sum of
all the terms that have the same integral I and s the number of such terms. All the terms naturally
have the same prefactor 1

σmσα1σα2 ...σαm
as they have the same integral. So:

T = s

σmσα1σα2 . . . σαm
I

Γm is the sum of all these terms T and each T (with the good prefactor) is one graph in the expansion
of hn that has Γm as its maximal 1-irreducible rooted subgraph. In order to reach a conclusion, it
is required to prove that σmσα1σα2 ...σαm

s
is the symmetry number σT of each T (and so T will be a
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graph). This proof is essentially the same kind of proof that has been done for lemma 2 but with
two different classifications. Figure A1.8 will be used as an example to explain the reasoning.

(a)
1

(b)
1

(c)
1

(d)

1

Figure A1.8: (a): Graph Γm; (b): Graph Γα1 ; (c): Graph Γα2; (d): Graph representing T

T (Figure A1.8(d) gives an example of such a graph) has some articulation circles because of
the subgraphs Γαi coming from the singlet density (figures A.8(b) and A.8(c)). Any label given to
one circle of these subgraphs must remain inside the same subgraph when a permutation is applied
to any label, unless all labels in identical subgraphs are switched (for instance all the labels of one
blue subgraph can be switched with all the labels of the other blue subgraph). Each black circle
of T that belongs to Γm (Figure A1.8(a)) receives a label αi corresponding to a graph Γαi . In
Figure A1.8(d), the green color represents a label α1 and the blue color a label α2. In order to
count the different possible permutations of some temporary labels given to the black circles of T ,
one can first count the number of permutations of identical graphs Γαi and then multiply it by the
symmetry number of the latter graphs. This gives a classification of allowed permutations for T .
So σT = σσα1σα2 . . . σαm where σ is the number of permutations of labels αi that do not change
the labeling. In Figure A1.8(d), σ = 2 (the two blue subgraphs can be switched i.e. the two labels
α2), σα1 = 6, σα2 = 2 and σT = 48.

Now it must be proved that sσ = σm to conclude. In order to prove this, one must find a
classification of the permutations of Γm. The equation to be proved involves σ so the αi labels need
to be considered. As before, in order to count the number of permutations of temporary labels on
black circles, one can first count the permutations of theαi labels which is σ by definition. But doing
so, some permutations have been missed, unless all the αi are identical. So one has to multiply σ
by the number of distinct ways to place the αi labels so that T is unchanged. This means that the
configurations where the graphs Γαi have been placed in a different way, but so that the integral
represented by T is still the same, have to be counted. This number is s by definition and it may be
seen by expanding the product that first appears when the singlet density is changed into a sum of
graphs in Γm. In the case of Figure A1.8(d), the green subgraph can be switched with any of the
two blue subgraphs so that s = 3. σ = 2 and σm = 6 so sσ = σm is verified for this example. The
different configurations of αi labels is summarized in the following array:
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α1 α2 α2 α1 α2 α2

α2 α2 α1

For each of these configurations, labels α2 can be switched and it gives the six ways to label Γm.

This lemma can now be used to express hn as a sum of irreducible graphs. Equation (A.49)
becomes:

hn(1, 2, . . . , n) = the sum of all distinct connected simple graphs consisting of n
white 1-circles labeled by 1,2,. . . ,n respectively, some or no black
ρ1-circles and at least one f -bond such that the graphs are irreducible

(A.50)

Combining equations (A.30), (A.33) and (A.34), one can see that gn will be a sum of all possible
products of functions hm (2 ≤ m ≤ n). So graphs in gn will not be connected anymore but will
still be root-connected:

gn(1, 2, . . . , n) = the sum of all distinct simple graphs consisting of n white
1-circles labeled by 1,2,. . . ,n respectively, some or no black ρ1-circles
and some or no f -bonds such that the graphs are irreducible and
root-connected

(A.51)

The different terms u1(i)/ρ1(i) correspond to unconnected white 1-circles. Thus the only parts of
the graphs of gn which are not connected are white 1-circles. With the same reasoning that allows
to go from equation (A.47) to equation (A.48), gn can be given as a sum of connected graphs by
changing f -bonds between white 1-circles into e-bonds:

gn(1, 2, . . . , n) = the sum of all distinct and at-least-doubly-connected simple graphs
consisting of n white 1-circles labeled by 1,2,. . . ,n respectively, some
or no black ρ1-circles, some or no f -bonds and an e-bond between
each pair of white circle

(A.52)

It is not required to go any further here as topological reduction of other quantities will be done in
section 4.

3 Hard Sphere Equation of State

The hard sphere (hs) equation of state written here is given by Mansoori12. The main idea is to
find first the radial distribution function ghs2 (or simply noted ghs) using equations (A.36) and (A.37)
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for hard spheres. Equation (A.38) shows the dependency in the potential energy. In the case of N
identical hard spheres, this potential energy Vhs is related to the pair potential ϕhs:

Vhs(1, 2, . . . , N) =
∑

1≤i<j≤N
ϕhs(|ri − rj|) (A.53)

ϕhs(r) =

 ∞ , if r ≤ σ

0 , otherwise
(A.54)

Where σ here is the diameter of a sphere and there are only translation degrees of freedom here, so
the previously introduced notation i reduces to the position vector ri. In the case of a mixture of hard
spheres different values of σ and the radial distribution function ghsij between each pair of compo-
nents {i, j} have to be considered. Equation (A.37) is solved using the Percus-Yevick approximation
(approximation explained for instance by Stell8). It is then possible to find the compressibility fac-
tor Zhs. In SAFT, the solutions for the radial distribution function and the compressibility factor for
mixtures are given by Boublik13 and Mansoori12. The following forms of the two given equations
are usually used:

ghsij = 1
1− ξ3

+ σiσj
σi + σj

3ξ2

(1− ξ3)2 +
(

σiσj
σi + σj

)2 2ξ2
2

(1− ξ3)3 (A.55)

Zhs = 1
1− ξ3

+ 3ξ1ξ2

ξ0(1− ξ3)2 + 3ξ3
2 − ξ3

2ξ3

ξ0(1− ξ3)3 (A.56)

ξk = π

6Naρs
∑
i

xiσ
k
i (A.57)

Where the sum in equation (A.57) is carried out over every component i, σi is the diameter of the
spheres of component i and ρs is the overall molar density of spheres. In order to get the Helmholtz
energy change Ahs due to the presence of Vhs, the following departure function is used:

Ahs

NskBT
(ρs, Nsi) = A− Aig

NskBT
(ρs, Nsi) =

∫ ρs

0
(Zhs(ρ)− 1)dρ

ρ
(A.58)

Where Ns is the overall number of spheres in the system and Nsi is the number of spheres of
component i (the dependence is for all i). The density dependence of Zhs has been noted with the
dummy variable ρ. Skipping the tedious but not difficult calculations, the result is:

Ahs

NskBT
(ρs, Nsi) = 1

ξ0

(
3ξ1ξ2

1− ξ3
+ ξ3

2
ξ3(1− ξ3)2 + ln(1− ξ3)

(
ξ3

2
ξ2

3
− ξ0

))
(A.59)

SAFT allows the presence of chains of molecules as will be explained further on. Thus in the
general case molecules will not be modeled as spheres but as chains of spheres. If component i is
a chain ofmi spheres the number Ni of molecules i is given by:

Ni = Nsi

mi

(A.60)
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So the functions ξk become functions of the molar density of molecules:

ξk = π

6Naρ
∑
i

ximiσ
k
i (A.61)

As it is more convenient to work with molar Helmholtz energy (per mole of molecules):

ahs
RT

(ρ,Ni) = Ahs

NskBT
(ρs, Nsi)

Ns

N
= Ahs

NskBT
(ρs, Nsi)

∑
imiNi

N
= Ahs

NskBT
(ρs, Nsi)mx (A.62)

With mx = ∑
i ximi the average number of spheres in a component. So overall, without showing

dependencies:

ahs
RT

= 6
πNaρ

(
3ξ1ξ2

1− ξ3
+ ξ3

2
ξ3(1− ξ3)2 + ln(1− ξ3)

(
ξ3

2
ξ2

3
− ξ0

))
(A.63)

The overall molar Helmholtz energy a is given by the sum of equations (A.16) and (A.63) times
RT . This is the hard sphere equation of state.

4 Wertheim’s Thermodynamic Perturbation Theory

The previous section showed an equation of state for a potential energy that only allows repul-
sion. In this section it will be shown how an attractive interaction with specific directions can be
rigorously added on the top of Vhs or any other repulsive potential, in the case of a pure component.
As explained in the first section, it will be then possible (in section 5) to extend these results to
mixtures. Here the derivation made by Wertheim3–6 is followed. It will be assumed that the system
is uniform i.e. ϕ1 = 0 and the pair potential ϕ2 that will be considered here is the following:

ϕ2(1, 2) = ϕR(1, 2) +
∑
A

∑
B

ϕAB (|r2 + dB(Ω2)− r1 − dA(Ω1)|) (A.64)

Where ϕR is the reference pair potential that is only repulsive and represents the hardcore of the
particle (it will be ϕhs in the version of SAFT of interest) and ϕAB is the attractive interaction
potential between what are called association sites A and B. The sums are carried out over all
association sites. The (1, 2) dependence of ϕAB has been written: |r2 + dB(Ω2)− r1 − dA(Ω1)| =
x. As before r1 and r2 are the position vectors of particles 1 and 2. Ω1 and Ω2 designate the
orientation of particles 1 and 2. These can be for instance a vector with three elements that are
Euler angles. In the case where there would be no association site, molecules would be perfectly
symmetrical and Ω in equation (A.27) would be

∫ π
θ=0

∫ 2π
φ=0

∫ 2π
ψ=0 sin(θ)dθdφdψ = 8π2. When there

are association sites, their relative position from the center of the particle is given by the vectors
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dA, for an association site A, which naturally must depend on the orientation of the particle. For
educational purposes, the case with one association site is studied first following Wertheim3,4. In
this case ϕ(1, 2) = ϕR(1, 2) + ϕA(1, 2) with ϕA = ϕAA. The simplest case for ϕA is considered:

ϕA(1, 2) = ϕA(x)

 < 0 , if x ≤ a

0 , otherwise
(A.65)

Where x was defined above. Thus here an association site is a sphere with a square-well potential
situated at a distance |dA| = d from the center of the hardcore of the particle. If, as in the previous
section, σ is the diameter of the hardcore, then the whole situation is explained in Figure A1.9. In

.

.

.

.
r1

r2

dA(Ω1)

dA(Ω2)

x

σ

a

Figure A1.9: 2-D section of two particles 1 and 2 with both one association site.

order to have an impact, association sites must be at least partially outside of hardcores and it is
assumed that the center of these association sites must be inside the hardcore so that:

(σ − a)
2 < d <

σ

2 (A.66)

4.1 Pair potential with one association site

Adaptation of Graph Theory
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In order to use Graph Theory, one must define what will be circles and bonds. Circles will
become z-circles as it is assumed the system is uniform (exp(−βϕ1) = 1) and bonds will be
written in a more natural way which takes advantage of the form of equation (A.64). For the case
first considered of only one association site, equation (A.64) becomes:

ϕ2(1, 2) = ϕR(1, 2) + ϕA(1, 2) (A.67)

The e function then become:

e(1, 2) = exp(−βϕ2(1, 2)) = eR(1, 2)eA(1, 2)

= eR(1, 2)(1 + fA(1, 2)) = eR(1, 2) + eR(1, 2)fA(1, 2) (A.68)

Where the fundamental property of exp has been used and any function eX is naturally defined by
exp(−βϕX) and any function fX is naturally defined by eX − 1. In equation (A.68), eR has not
been transformed into an fR function as it is already done when f -bonds are considered:

f(1, 2) = e(1, 2)− 1 = fR(1, 2) + eR(1, 2)fA(1, 2) = fR(1, 2) + F (1, 2) (A.69)

This decomposition is inspired by an idea of Lockett14. It is now possible to put equation (A.69)
into equation (A.45). Each f -bond in equation (A.45) will become an fR-bond plus an F -bond.
Doing this f -bond by f -bond, each graph will be transformed into a new graph which symmetry
might have changed. As it was done several times in section 2, all graphs representing the same
integral are summed so that the prefactor in front of each integral is its symmetry number. One can
notice now that a transformation a = b + c of a bond can change the symmetry of a graph if and
only if this transformation can be done in a symmetric manner to other bonds. That is the reason
why there is no need to add any prefactor with such transformations. Thus:

ln(Ξ) = + + + + + + + + + + . . .

= the sum of all distinct connected simple graphs consisting of black z-circles,
some or no fR-bonds and some or no F -bonds

(A.70)
F -bonds are represented with zigzag lines and fR-bonds with solid lines. eR-bonds will be repre-
sented with dashed lines. One more step can be done. Although graphs in the previous equation
are connected, there still are some pairs of black z-circles which are not connected. In particular
there might still be no bond between a pair of black z-circles inside a maximal subgraph which
is only made of F -bonds. Such a subgraph is for instance in Figure A1.10 (a). In Figure A1.10
prefactors have been shown in order to better understand what happens. In order to simplify graphs
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(a)
1
2× (b) 1×

(c)
1
2× = 1

2 +1
2 +1

2×

(d)
1
2× = 1

2× +1
2×

Figure A1.10: Filling s-mers with eR-bonds.

it is assumed that the graph in Figure A1.10 (a) is the entire graph found in equation (A.70) (other-
wise other f -bonds and black z-circles should be included but they would not be affected by these
transformations). Equation (A.70) shows as well graphs corresponding to the missing bonds. Such
a graph is in Figure A1.10 (b). The symmetry number (and so the prefactor) is different from the
graph in Figure A1.10 (a) but this is not a problem as it can be written as the sum of the first two
terms of the right hand side of Figure A1.10 (c). Then using the definition of fR, it can be seen in
Figure A1.10 (c) that adding graph (b) to graph (a) makes two er-bonds appear and the prefactor
still corresponds to the symmetry number. In Figure A1.10 (d) is showed how the last missing bond
can be added. Subgraphs created in that way are called s-mers.

Definition 15. An s-mer is a connected simple graph consisting of s z-circles, some or no F -
bonds (such that the graph would be connected with only F -bonds) and a eR-bond between each
pair of circle that are not directly connected by an F -bond. A z-circle without bonds is a 1-mer or
monomer.

So it is possible to sum together graphs with identical incomplete s-mers (i.e. with missing eR-
bonds and the same set of F -bonds) with the same procedure explained in Figure A1.10 in order
to form complete s-mers. When doing such a sum, if prefactors are not identical between all the
graphs, it means that some graphs can be decomposed into a sum of graphs with fR-bonds placed
in a different way but still representing the same integral (this is the case for graph (b) in Figure
A1.10). Then in equation (A.70) all maximal subgraphs which are only made of F -bonds belong
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to a s-mer. Thus it becomes clear that:

ln(Ξ) = the sum of all distinct connected simple graphs consisting of s-mers (s = 1 . . .∞)
and fR-bonds between pairs of black z-circles in distinct s-mers

(A.71)
Note that a single z-circle is a monomer. That is why in equation (A.71) fR-bonds are only joining
s-mers. All the s-mers for s= 1 . . . 4 are showed in Figure A1.11. Any s-mer with s≤ 4 satisfying
definition 15 must be equivalent to one of these graphs even if it may look different at first.

Figure A1.11: All s-mers for s= 1 . . . 4.

Using equations (A.31) and (A.32) and lemma 2, it is possible to get the singlet density ρ1, as
in section 2, by summing all the distinct graphs obtained from ln(Ξ) by changing a black z-circle
into a white z-circle. As only ρs with s = 1 will be used from now on, the singlet density should
be only noted ρ in order to simplify forthcoming notations.

Topological reduction
Still from an idea of Lockett14, Wertheim3 introduces a multi-density formalism. The idea is

to distinguish particles that are bonded at certain association sites. In a graph of the singlet density
ρ, the white z-circle represents a particle 1 and the graph represents a possibility of how particle
1 can interact with other particles (and all these graphs are summed to take all configurations into
account). Each particle in the real system should correspond (on average at equilibrium) to such a
graph. Assuming there is just one association site, if the graph corresponding to a particle has no
F -bond connected to its white z-circle, it means that the particle itself is not attracted to any other
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particle and so is a monomer. This is how ρ0 is defined:

ρ0(1) = sum of graphs in the singlet density ρ(1) such that the white z-circle labeled 1 has
no incident F -bond

=
1

+
1

+

1

+

1

+

1

+

1

+

1

. . .

(A.72)
Furthermore ρ1 can be defined:

ρ1(1) = ρ(1)− ρ0(1)

=
1

+

1

+

1

+

1

+

1

+

1

+

1

. . .

(A.73)
The previous graphs are still made of s-mers but containing a white z-circle. There should still be
referred to as s-mers. Now that this has been done, it is possible to reproduce what has been done
in section 2 in order to have quantities made of irreducible graphs. First it is possible to create a
quantity from ρ0 which has no white articulation circle. This quantity is equivalent to h1 concerning
the singlet density. In this case, it will be noted c0 following Wertheim3:

c0(1) = ln
(
ρ0(1)
z

)

= subset of graphs in
ρ0(1)
z

that are free of white articulation circles

= subset of graphs in
ρ0(1)
z

that remain connected when all connections

at the white 1-circle are broken

(A.74)

As for h1 this is proved using lemma 1 but with ρ0 instead of u1. The proof is exactly the same.
Indeed, even if there are more types of bonds in this case, they are not connected to the white circle
by definition.

Now considering ρ1, it is possible to notice that ρ0 is a factor of this quantity. Indeed, there are
two types of graphs in ρ1 whether their white z-circle is an articulation circle or not. If the white
z-circle is not an articulation circle then it is part of one and only one s-mer with s≥ 2 by definition
of a s-mer (each black circle connected to the white circle by a F -bond must also be connected to
the white circle by at least one eR-bond) and is the product of itself by the white circle. If the
white z-circle is an articulation circle then it means that the graph can be written as the product of
two graphs: by definition of ρ1, the white z-circle is part of one and only one s-mer with s ≥ 2;
the subgraph containing this s-mer is the first graph of the product and the remaining part of the
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graph is the second (they are independent because the white circle is an articulation circle). In the
second graph, the white circle cannot be part of an s-mer with s ≥ 2 otherwise it could not be an
articulation circle. So the second graph is in the sum defining ρ0. For instance

1
=

1
×

1

So the quantity c1 is defined as follows:

c1(1) = ρ1(1)
ρ0(1)

= subset of graphs in ρ1(1) that are free of white articulation circles
= subset of graphs in ρ1(1) that remain connected when all connections
at the white 1-circle are broken, 1 being part of an s-mer with s≥ 2

(A.75)

The second equality immediately follows from what has been discussed above. Note that c1 is built
in a similar manner to h2 was. As c0 and c1 are similar to hn functions, lemma 3 can be used in
order to get rid of black articulation circles. However this lemma must be slightly changed. Indeed,
considering a black articulation circle that is part of an s-mer with s ≥ 2, the part of the graph
attached to this circle cannot be any graph in the singlet density. If it was a graph from ρ1, it would
mean that there would be missing eR-bonds in the s-mer by definition. So if a black circle is part
of an s-mer with s ≥ 2, it must be replaced by a ρ0-circle instead of a ρ-circle. Thus:

c0(1) = sum of all distinct irreducible connected simple graphs consisting of some
or no s-mers (s ≥ 2) made of ρ0-cirles, some or no monomers made of a single
ρ-circle, fR-bonds between pairs of circles (not necessarily black) in distinct
s-mers, one white 1-circle with no incident F -bond and there must be at least
one bond

(A.76)

c1(1) = sum of all distinct irreducible connected simple graphs consisting of s-mers
(s ≥ 2) made of ρ0-cirles, monomers made of a single ρ-circle, fR-bonds
between pairs of circles (not necessarily black) in distinct s-mers and one
white 1-circle with at least one incident F -bond

(A.77)

Defining the following quantity:

c(0) = sum of all distinct irreducible connected simple graphs consisting of s-mers
(s ≥ 2) made of ρ0-cirles, monomers made of a single ρ-circle, fR-bonds
between pairs of circles in distinct s-mers and there must be at least one bond

(A.78)

88



It follows that:
c0(1) = δc(0)

δρ
(1) (A.79)

c1(1) = δc(0)

δρ0
(1) (A.80)

The first terms of c(0) are shown in Figure A1.12.

. . .

Figure A1.12: First terms of c(0); black circles inside s-mers (s ≥ 2) are ρ0-circles and others are
ρ-circles.
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Thermodynamics
As mentioned at the very beginning of the first section, the objective is to relate thermodynamic

quantities between each other starting from a certain potential energy. The link between thermody-
namic properties and potential energy is then provided by equations (A.8) and (A.32) (with s = 1
and remember that ρ = u1):

ρ(1) = z
δ ln(Ξ)
δz

= z
δ(βPV )
δz

(A.81)

However this equation still has z in it and it would be better to have densities which can be measured
instead. Previously introduced quantities can be used for that. Moreover in equation (A.81), it is
the functional derivative of βPV that appears and not βPV itself. So this equation needs to be
integrated and it is not necessary to keep the constant that should appear as energies are given with
a certain reference energy. It is easier, for the purpose of this derivation, to start from the result and
then prove that it is equivalent to equation (A.81). The result is:

βPV =
∫
ρ0(1)d(1)−

∫
ρ(1)c0(1)d(1) + c(0) (A.82)

In order to show that this is equivalent to equation (A.81), onemust calculate the variation of (A.82):

δ(βPV ) =
∫
δρ0(1)d(1)−

∫
δρ(1)c0(1)d(1)−

∫
ρ(1)δc0(1)d(1) + δc(0) (A.83)

Noting that c(0) is a functional of two functions ρ and ρ0, using equation (A.21) and equations (A.79)
and (A.80), the result is:

δc(0) =
∫
c1(1)δρ0(1)d(1) +

∫
c0(1)δρ(1)d(1) (A.84)

Regarding c0(1), one easily finds:

δc0(1) = δρ0(1)
ρ0(1) −

δz

z
(A.85)

Substituting equations (A.84) and (A.85) in equation (A.83) and canceling identical terms gives:

δ(βPV ) =
∫ δz

z
ρ(1)d(1) ⇐⇒ δ(βPV )

δz
= ρ(1)

z
(A.86)

Which is equation (A.81) and so equation (A.82) is proved. In general for perturbation theories,
Helmholtz energy is used. Using Euler’s theorem for homogeneous functions, theHelmholtz energy
is given by A = Nµ− PV . With equations (A.74) and (A.5):

βµ = ln
(
ρ0(1)

Λ

)
− c0(1) (A.87)
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Where Λ = 1/λ3. Multiplying the previous equation by ρ(1) and integrating:

βµN =
∫
βµρ(1)d(1) =

∫
ρ(1)

[
ln
(
ρ0(1)

Λ

)
− c0(1)

]
d(1) (A.88)

Where the first equality comes from the fact that chemical potential and temperature are the same
everywhere in the system at equilibrium. So overall:

βA =
∫ [

ρ(1) ln
(
ρ0(1)

Λ

)
− ρ0(1)

]
d(1)− c(0) (A.89)

Perturbation Theory
Equation (A.89) is the general equation that gives the Helmholtz energy for a pair potential

given by equation (A.67). Even though the first term of equation (A.89) itself is not complicated,
c(0) as can be seen in Figure A1.12, it contains many complicated terms. Terms with many F -
bonds become more complicated to calculate as the number of F -bonds increases even if this is
not theoritically impossible as showed by Zmpitas10. That is why perturbation theories are usually
used. It consists in only keeping terms (here in c(0)) up to a certain order of effects added to a
reference potential (here ϕR). These effects called perturbations have to be small enough to justify
that not all terms are kept. It is especially important that they be small enough so that high orders
terms are smaller that low order terms. For instance here the perturbation potential is of course
ϕA and it appears in c(0) as F -bonds. A term of the first order only contains one of such bonds, a
term of the second order contains two, etc. Thus a term of the first order has an order of magnitude
proportional to the order of magnitude of F , F 2 for a term of the second order, etc. Higher order
terms need to have a smaller order of magnitude in order to be neglected so the function F has to
give values smaller than 1 and in general very small compared to 1 so that the perturbation theory
works even better. Looking at the definition of F in equation (A.69), it can in general provide
conditions on ϕA. However in the specific case of potential (A.67) when parameter a in equation
(A.65) is small enough compared to σ, steric effects appear. In the case of one association site, this
is showed in Figure A1.13.

Considering first two particles 1 and 2 both with one association site, the only way the particles
can attract each other is that they are close enough and with an orientation such that the parts of the
association site which are outside of the hardcore overlap. Assuming that these two particles do not
have too much inertia and that temperature is not too high, once they attract each other, they stay
in this attraction state for a while. Assuming now that a third particle arrives with a configuration
such as particle 3 in Figure A1.13, it is easy to see that if the size of the association site a is small
enough compared to the size σ of the hardcore, it is not possible for three particles to be bonded
at the same time. If this is actually the case in a real system, it means that even without doing
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1 2

3

Figure A1.13: Steric effect between three molecules having each one identical association site.
Sketch inspired by Chapman1.

any approximation, all the graphs in c(0) that have at least two consecutive F -bonds vanish. All
that remain are graphs without F -bonds or graphs with separated F -bonds. For example, with an
obvious numbering, graphs 5,6,17,18,19,20,21,22,23,24,25,26 and 27 in Figure A1.12 are equal to
0. Thus, in such a case, a first order theory only assumes that graphs with multiple separateF -bonds
vanish. For the example of Figure A1.12, the first order theory would get rid of graphs 14,15 and
16 on the top of the ones previously mentioned.

From now on, and even when multiple association sites will be dealt with, the first order pertur-
bation theory will be considered (See Zmpitas10 for any order). In this case, as explained before,
only graphs with one F -bond or none are kept in c(0). Graphs that have no F -bond obviously cor-
respond to the case when there is no association. The system without association is the reference
system (related to the reference potential) and c(0) will be noted c(0)

R in this case. Equation (A.89)
in the case of the reference potential is assumed to be known and will be given by results of section
3 in the case of this derivation. As there is no association in this case, ρ0 = ρ and equation (A.89)
becomes:

βAR =
∫ [

ρ(1) ln
(
ρ(1)
Λ

)
− ρ(1)

]
d(1)− c(0)

R (A.90)

Thus the only thing that is needed is the difference:

βAassoc = β(A− AR) =
∫ [

ρ(1) ln
(
ρ0(1)
ρ(1)

)
− ρ0(1) + ρ(1)

]
d(1)− (c(0) − c(0)

R ) (A.91)

Where Aassoc is the contribution to the Helmholtz energy due to association sites. c(0) − c(0)
R is the
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sum of all the graphs in c(0) that have exactly one F -bond. So it can be formulated as follows:

c(0) − c(0)
R = sum of all distinct irreducible connected simple graphs consisting of

one F -bond connecting two ρ0-circles, some or no ρ-circle and some or
no fR-bonds

(A.92)

Now, rewriting equation (A.52) in the case n = 2 for pair potential ϕR (which defines gR = g2):

gR(1, 2) = sum of all distinct and at-least-doubly-connected simple graphs
consisting of one eR-bond connecting two white 1-circle labeled 1 and 2,
some or no ρ-circles and some or no fR-bonds

(A.93)

Then the following relation holds:

c(0) − c(0)
R = 1

2

∫
ρ0(1)gR(1, 2)fA(1, 2)ρ0(2)d(1)d(2) (A.94)

Indeed, considering a graph in the sum (A.93), it can be transformed into a graph in the sum (A.92)
using the "transformation rule" defined by equation (A.94): first multiplying a graph from (A.93) by
ρ0(1)fA(1, 2)ρ0(2) transforms the eR-bond into a F -bond and white 1-circles into white ρ0-circles;
integrating transforms the two white circles into black circles; finally a factor 1/2 is needed so that
graphs have good symmetry numbers (having black circles instead of white circles allows two kinds
of labeling whether former white circles labeled 1 and 2 are respectively given temporary labels 1
and 2 or 2 and 1). Obviously the reversed transformation can be done for each graph of the sum
(A.92) to get one or two (depending on the symmetry) graphs from the sum (A.93).

One can get a simple expression for c1 as well using lemma 2:

c1(1) = δc(0)

δρ0
(1) =

∫
gR(1, 2)fA(1, 2)ρ0(2)d(2) (A.95)

And the factor 1/2 vanishes as there are two ways of turning a ρ0-circle into a white 1-circle.
Moreover, by definition of c1, ρ/ρ0 = 1 + ρ1/ρ0 = 1 + c1 so:

ρ(1) = ρ0(1) + ρ0(1)
∫
gR(1, 2)fA(1, 2)ρ0(2)d(2) (A.96)

Putting equation (A.94) in equation (A.91), one gets:

βAassoc =
∫ [

ρ(1) ln
(
ρ0(1)
ρ(1)

)
− ρ0(1) + ρ(1)

]
d(1)− 1

2

∫
ρ0(1)gR(1, 2)fA(1, 2)ρ0(2)d(1)d(2)

(A.97)
Using now equation (A.96):

βAassoc =
∫ [

ρ(1) ln
(
ρ0(1)
ρ(1)

)
− ρ0(1) + ρ(1)

]
d(1)− 1

2

∫
[ρ(1)− ρ0(1)] d(1) (A.98)
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Defining the fraction of association sites that are not bonded x (which does not depend on coordi-
nates "1" for the uniform system case as densities are constant) verifying:

x = ρ0(1)
ρ(1) = 1

1 +
∫
gR(1, 2)fA(1, 2)ρ0(2)d(2) (A.99)

It is possible to rewrite equation (A.98) as:

βAassoc =
∫
ρ(1)

[
ln(x)− x

2 −
1
2

]
d(1) = N

(
ln(x)− x

2 −
1
2

)
(A.100)

Where the second equality arises from the fact that the system is uniform. Equation (A.100) gives
the association contribution of an equation of state for a system consisting of a pure component
with one associating site.

4.2 General case of multiple association sites

It will now be shown how results of the previous part can be generalized to systems consisting
of a pure component with any number of association sites. The physical concepts are the same but
the mathematical aspect is more difficult.

The entire pair potential given by equation (A.64) will now be considered. Let Γ be the set of
all the association sites {A,B,C, . . .} so that:

ϕ2(1, 2) = ϕR(1, 2) +
∑
A∈Γ

∑
B∈Γ

ϕAB (1, 2) (A.101)

With:

ϕAB(1, 2) = ϕAB(x)

 < 0 , if x ≤ aAB

0 , otherwise
(A.102)

aAB being relative to a couple {A,B}. Then e-functions and f -functions are defined as before and:

e(1, 2) = eR(1, 2)
∏
A∈Γ

∏
B∈Γ

eAB(1, 2) (A.103)

f(1, 2) = eR(1, 2)
∏
A∈Γ

∏
B∈Γ

1 + fAB(1, 2)
− 1

Noticing that −1 = fR − eR:

f(1, 2) = fR(1, 2) + eR(1, 2)
∏

A∈Γ

∏
B∈Γ

1 + fAB(1, 2)
− 1

 (A.104)
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Equation (A.104) is very similar to equation (A.69) except that fA is replaced by
(∏A∈Γ

∏
B∈Γ 1 + fAB(1, 2)) − 1. It is possible to better understand the meaning of the latter term

with the following lemma that will be useful for later calculations:
Lemma 4: Let Γ be any type of finite set and let {zA}A∈Γ be a set of any type of objects

numbered with elements A belonging to Γ (such that commutative and associative product and
sum are defined). Then: ∏

A∈Γ
(1 + zA) =

∑
γ⊆Γ

∏
A∈γ

zA

Where the sum is carried out over all subsets γ of Γ (∅ included).
This lemma is easily proved by induction on the number of elements of Γ. So the term between

square brackets in equation (A.104) is a sum of all the different possible combinations of fAB-
functions (no more than one of each) with different pairs of association sites {A,B} (with at least
one of such pair). The remaining part of equation (A.104) means that there is an eR-bond between
two particles when some association sites among them are connected, otherwise there is a fR-bond
joining them.

Adaptation of Graph theory
It is now convenient to change the graphs that will be used. Black circles will now always be

represented as an empty circle with some points inside it representing association sites. A label will
be added to a circle if it is a white circle. Bonds will be represented as before except that fAB-bonds
(or previously fA-bonds) will join association sites and not directly circles. Thus in the case of two
association sites A and B, some graphs with two circles are presented in Figure A1.14.

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

Figure A1.14: Graphs for a system with two association sites.
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ln(Ξ) can still be obtained with equation (A.70) except that F -bonds are replaced by an eR-bond
(always) with some fAB-bonds. The singlet density can still be obtained from ln(Ξ) as it was done
before.

Now the problem is to find an efficient way to organize eR-bonds and fR-bonds as the former
can be written as the sum of no bond and an fR bond. In the case of one association site, the way
it has been done was actually motivated by the steric effect presented on Figure A1.13. Indeed,
filling graphs with eR-bonds implies that the s-mers are irreducible. So when topological reduction
is done, all the graphs with the same configuration of attractive bonds (i.e. the same maximal
subgraph which is only made of F -bonds) are reduced to the same graph in c(0). That way, steric
effect configurations represented by the same s-mers are gathered in only one graph. In the case
of multiple association sites, new steric effects can appear and so it will not be the best choice
anymore to fill s-mers with eR-bonds. Before tackling this point, the different steric effects that will
be considered should be presented.

The first steric effect, that will be noted I, is the same that was presented in the case of a single
association site and in Figure A1.13. The second steric effect (II) is similar to the previous one but
it involves one association site on one particle and two on another one. This effect implies that it is
not possible for one association site to bond with two association sites of another molecule. This
is especially true when association sites are not too close to each other. The third steric effect (III)
involves two association sites on one particle and two as well on another one. This effect implies
that two bonds between two molecules cannot appear simultaneously. Again, this is especially true
when association sites are not too close to each other. All these effects are summarized in Figure
A1.15. There is another steric effect that could be considered but it will not be the case here.
The reader can refer to Wertheim5 for more information about this subject. It will be seen in the
Perturbation Theory part how these steric effects are taken into account.

I:

1 2

3

II: 1 2 III: 1 2

Figure A1.15: Steric effects considered in SAFT. Graphs that represent this type of configuration
vanish. Sketch inspired by Chapman1.

It is better to introduce the following definitions5 before further development:
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Definition 16. Two sites A and B are bond-connected if and only if there is a path consisting of
attraction bonds (any kind of fCD-bond) and association sites connecting A and B.

Definition 17. Two sites are constraint-connected if and only if they are inside the same circle.

Definition 18. A circle is called a constraint-articulation circle if upon deletion of the constraint
connection (i.e. the circle around the association sites) the graph is separated into several connected,
but not mutually connected, fragments. Unbonded sites are not counted as fragments. A graph is
now irreducible if it is free of constraint-articluation circle.

These three definitions are illustrated in Figure A1.16.

A

B C

1

A

B C

2

A

B C
3

A

B C
4

Figure A1.16: Illustration of definitions 16 to 18 on a s-mer. Labels have been added for clarity.
Site B in circle 2 and site A in circle 3 are bond-connected. Site A and B in circle 1 are constraint-
connected. Circle 1 is a constraint-articulation circle; one of the two associated fragment is blue;
site C in circle 1 is not a fragment.

The new way to organize eR-bonds and fR will be given as a generalized definition of s-mers:

Definition 19. An s-mer is a connected simple graph consisting of s z-circles, some attraction bond
(any fAB-bond) such that all the z-circles are connected together by a network of attraction bonds
and an eR-bond between each pair of circles if a site inside one of the circles is bond-connected to
a site inside the other circle.

This definition is motivated by steric effects and a justification is provided by Wertheim5. This
obviously generalizes definition 15 as F = eR×fA and because, in the case of one association site,
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connected is equivalent to bond-connected. Thus, in Figure A1.16, there is an eR-bond between
circles 2 and 3 because site B in 2 is connected to site A in 3. There is no such connection between
circles 3 and 4 so there is no eR-bond between these two circles. The connection between 3 and 4
is done via a constraint connection provided by circle 1 which is therefore a constraint-articulation
circle.

With the exact same argument that was used in the case of one association site and the new
definition of s-mers, equation (A.71) still holds and the singlet density is still obtained in the same
way.

Topological reduction
As for the case with one association site, new densities will be introduced so that ln(Ξ) will not

depend on z anymore. All graphs are kept and steric effects will be taken into account only in the
approximations of the Perturbation Theory in the next part.

Let G be a graph in the singlet density ρ(1). G has one white z-circle labeled 1 with a certain
number of association sites depending on the model chosen. Let α be the set of all bonded sites in
1. Then ρα(1) is defined as the sum of all the graphs in ρ(1) such that their set of all bonded sites
in the white z-circle is exactly α. So:

ρ(1) =
∑
α⊆Γ

ρα(1) (A.105)

∅ is included in the subsets of Γ (and will always be) so that the monomer density ρ0(1) is in the
sum. The graph in Figure A1.16, with circle 1 as a white circle and the others as black circles, is a
term of ρA,B(1).

Again, the subset c0(1) of graphs in ρ0(1)/z for which circle 1 is not a constraint-articulation
circle is given by:

c0(1) = ln
(
ρ0(1)
z

)
(A.106)

The proof is the same as the proof of equation (A.74) (using lemma 1). Still as in the case of one

association site, ρ0(1) is a factor of ρα(1) for a given set α. Each
ρα(1)
ρ0(1) contains some graphs for

which 1 is not a constraint-articulation circle. The sum of these graphs defines cα(1). Regarding the
others, 1 is a constraint-articulation circle so they are made of different fragments (or subgraphs) for
which 1 is not a constraint-articulation circle anymore and they belong to different sum of graphs
cγ with γ ⊂ α and {γ} = P (α) (meaning the set of all the sets γ is a partition of α). So overall, it
gives the following result:
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ρα(1) = ρ0(1)
∑

P (α)={γ}

∏
γ

cγ(1) (A.107)

∀γ 6= ∅, cγ(1) = the subset of graphs in ργ for which 1 is not a constraint-articulation circle
(A.108)

Where γ is any set of bonded association sites and the sum in equation (A.107) is carried out
over all the partitions {γ} of α (these partitions do not contain ∅). It is easier to understand this
result with the graph in Figure A1.17.

C D
A B

1

C D
A B

C D
A B

C D
A B

C D
A B

C D
A B

Figure A1.17: Illustration of equation (A.107). The graph in this figure belongs to the sum of graph
ρ{A,B,C}(1). Only the central circle labeled 1 is a white z-circle.

The graph in Figure A1.17 belongs to the sum of graph ρ{A,B,C} because only association sites
A, B and C in the white circle 1 are connected with attractive bonds. The green fragment belongs
to c{A,B}, the purple fragment belongs to c{C} and the blue part (two fragments) belongs to ρ0(1).
The black central part belongs to each part (and each part with the central part forms a graph) and
the overall graph is the product of three graphs thus belonging to ρ0(1)c{A,B}c{C}. Of course there
are other partitions of {A,B,C}which explains the sum in (A.107). Seeing how cγ were defined in
equation (A.108) (or equation (A.106) when γ = ∅⇒ cγ = c0) it is clear that they do not contain
any white articulation circles. Moreover, because of the way they were filled by eR-bonds, bond-
connected subgraphs inside s-mers are free of constraint-articulation circles. Thus only constraint-
articulation circles between not bond-connected subgraphs need to be removed inside s-mers. Any
black constraint-articulation circle might still exist outside s-mers (s ≥ 2).

As for the case of one association site, lemma 3 will be adapted and used, noticing that cγ
functions behave like hn functions. Again, considering a black constraint-articulation circle i inside
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a s-mer of G with s≥ 2, a part Gp (which makes i a constraint articulation circle ) of G attached to
the s-mer cannot be any graph in the singlet density. This comes again from the manner s-mers have
been filled with eR-bonds. Indeed, let α(i) be the set of association sites of i which are connected.
Then Gp cannot be bond-connected to (meaning one association site of Gp is bond-connected to)
an association site in α(i). Otherwise according to definition 19, there would be eR-bonds between
Gp and each circle of the s-mer i is part of, and i would not be a constraint-articulation circle. This
reasoning needs to be repeated for each part of the graph which makes i a constraint-articulation
circle. Thus in lemma 3, each black z-circle i is not replaced by a ρ-circle but by the sum σΓ−α(i)

of all the graphs in ρ which are not connected to α(i). So the sums of graph σα verify:

∀α ⊆ Γ, σα(1) =
∑
γ⊆α

ργ(1) (A.109)

The only difficulty in this adapted version of lemma 3 is again to prove that symmetry numbers
are correct and that there is no need to add any prefactor. This is done by successively applying
lemma 3 for each σα separately.

In the case of a monomer black circle, the set of connected association sites is α = ∅ and
σΓ−α = σΓ = ρ. Indeed any graph in ρ can be connected to a monomer as all its association sites
are free. If α = Γ, σΓ−α = σ∅ = σ0 = ρ0 as only fR-bonds can be used to connect them to another
graph once all the association sites are connected.

So now c(0) is given by:

c(0) = the sum of all distinct irreducible connected simple graphs consisting of s-mers and
fR-bonds; each circle i is a black σΓ−α(i)-circle where α(i) is the set of connected
association sites in i

(A.110)
And using lemma 2, it is easy to verify that:

cα(1) = δc(0)

δσΓ−α
(1) (A.111)

In the case of one association site, one can retrieve equations (A.78) to (A.80).

Site Operators
In order to simplify calculations, Wertheim5 introduced site operators. For each site A in Γ of

a circle i, the site operator εA(i) is an operator which commutes and verifies:

ε2
A(i) = 0 (A.112)
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It is called an operator because it is not a number but nor is it a function as the value of εA(i) is
not useful. It should be seen as something similar to the complex number i verifying i2 = −1.
Wertheim details a bit more what these operators are but it is not needed here. For a set α of
connected association sites, εα is defined as follows:

εα(i) =
∏
A∈α

εA(i) (A.113)

With these operators, it is possible to create an object x̊ which gathers all the required values of a
physical quantity x depending on the state of each site:

x̊ = x0 +
∑
α⊆Γ
α6=∅

xαεα (A.114)

Regular summation and multiplication can be applied to these objects. Equation (A.112) assures
that when multiplying two objects of the form (A.114), it remains an object with the same form:

x̊ẙ = x0y0 +
∑
α⊆Γ
α6=∅

∑
β⊆Γ

xβyα−β

 εα (A.115)

Because all terms containing the same site operator several times vanish. It is possible to define
other functions for these objects using the general Taylor series of the functions of interest. For
instance the following equations will be needed:

ln(1± ε) = ±ε (A.116)

1
1 + ε

= 1− ε (A.117)

For any object of the type given by equation (A.114), 〈̊x〉 is defined by:

〈̊x〉 = xΓ (A.118)

For instance, from equation (A.115), it follows that:

〈̊xẙ〉 =
∑
β⊆Γ

xβyΓ−β (A.119)

Now using this formalism for different quantities introduced before:

ρ̊(1) = ρ0(1) +
∑
α⊆Γ
α6=∅

ρα(1)εα(1) (A.120)

σ̊(1) = σ0(1) +
∑
α⊆Γ
α6=∅

σα(1)εα(1) (A.121)
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c̊(1) = c0(1) +
∑
α⊆Γ
α6=∅

cα(1)εα(1) (A.122)

The following relation will now be derived:

σ̊(1) = ρ̊(1)
∏
A∈Γ

(1 + εA(1)) (A.123)

This is the equivalent of equation (A.109) with site operators. Using equation (A.109) and remem-
bering that σ0 = ρ0, the left hand side becomes:

σ̊(1) = ρ0(1) +
∑
α⊆Γ
α6=∅

∑
γ⊆α

ργ(1)εα(1) (A.124)

In the sum, separating cases γ = α and γ 6= α and using equation (A.120), it becomes:

σ̊(1) = ρ̊(1) +
∑
α⊆Γ
α6=∅

∑
γ⊂α

ργ(1)εα(1) (A.125)

Using lemma 4 in the right hand side of equation (A.123) plus equation (A.120) again:

ρ̊(1)
∏
A∈Γ

(1 + εA(1)) = ρ̊(1) + ρ̊(1)
∑
α⊆Γ
α6=∅

εα(1) (A.126)

= ρ̊(1) +

ρ0(1) +
∑
γ⊆Γ
γ 6=∅

ργ(1)εγ(1)

 ∑
α⊆Γ
α6=∅

εα(1) (A.127)

= ρ̊(1) + ρ0(1)
∑
α⊆Γ
α6=∅

εα(1) +
∑
γ⊆Γ
γ 6=∅

ργ(1)εγ(1)
∑
α⊆Γ
α6=∅

εα(1) (A.128)

Using equation (A.112), it becomes:

ρ̊(1)
∏
A∈Γ

(1 + εA(1)) = ρ̊(1) + ρ0(1)
∑
α⊆Γ
α6=∅

εα(1) +
∑
α⊆Γ
α6=∅

∑
γ⊆Γ
γ 6=∅

γ∩α=∅

ργ(1)εγ∪α(1) (A.129)

In the last term, the sum is done for all the (non-empty) possible sets γ ∪ α so that εγ∪α(1) 6= 0
(implied by the condition γ ∩ α = ∅). For all these sets, there is a second summation over all the
non-empty sets γ ⊆ Γ and obviously the constraint γ ⊆ γ ∪ α is more restrictive. So the first sum
can be carried over all the non-empty sets γ ∪ α ⊆ Γ and the second one over all the non-empty
sets γ ⊂ γ ∪ α (the inclusion symbol here is ⊂ and not ⊆ because α can not be empty). Simply
renaming α all the sets α ∪ γ (the outer sum does not depend on the inner one):

ρ̊(1)
∏
A∈Γ

(1 + εA(1)) = ρ̊(1) + ρ0(1)
∑
α⊆Γ
α6=∅

εα(1) +
∑
α⊆Γ
α6=∅

∑
γ⊂α
γ 6=∅

ργ(1)εα(1) (A.130)
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Including the second term corresponding to γ = ∅ in the third term:

ρ̊(1)
∏
A∈Γ

(1 + εA(1)) = ρ̊(1) +
∑
α⊆Γ
α6=∅

∑
γ⊂α

ργ(1)εα(1) (A.131)

Equation (A.125) and (A.131) prove equation (A.123). By applying equation (A.117) for each
factor in the product of equation (A.123), ρ̊(1) is:

ρ̊(1) = σ̊(1)
∏
A∈Γ

(1− εA(1)) (A.132)

The following relation will also be derived:

ρ̊(1)
ρ0(1) = exp(̊c(1)− c0(1)) (A.133)

This is the equivalent of equation (A.107) with site operators. Using equation (A.120) followed by
equation (A.107), the left hand side becomes:

ρ̊(1)
ρ0(1) = 1 +

∑
α⊆Γ
α6=∅

 ∑
P (α)={γ}

∏
γ

cγ(1)
 εα(1) (A.134)

The right hand side of equation (A.133) can be written as:

exp(̊c(1)− c0(1)) =
∏
α⊆Γ
α6=∅

exp(cα(1)εα(1)) (A.135)

With equation (A.112), is is easily seen that exp(ε) = 1 + ε so:

exp(̊c(1)− c0(1)) =
∏
α⊆Γ
α6=∅

(1 + cα(1)εα(1)) (A.136)

Now using lemma 4 (with α ⊆ Γ being equivalent to α ∈ the set {Γ} of all the subsets in Γ) it
becomes:

exp(̊c(1)− c0(1)) =
∑
γ⊆{Γ}

∏
α∈γ

cα(1)εα(1) (A.137)

According to equation (A.112), the product can be different from 0 only if all the α form a partition
of the reunion of the sets forming γ. But the different α are elements of γ so that means that all the
elements in γ must be disjointed. Thus it is equivalent to carrying out the sum over all the partitions
of subsets of Γ (by first summing over all the subsets and then the partitions of each subset):

exp(̊c(1)− c0(1)) =
∑
γ⊆Γ

∑
P (γ)={α}

∏
α

cα(1)εα(1) (A.138)
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Separating the term γ = ∅ and calculating the product of the association site operators:

exp(̊c(1)− c0(1)) = 1 +
∑
γ⊆Γ
γ 6=∅

 ∑
P (γ)={α}

∏
α

cα(1)
 εγ(1) (A.139)

The right hand side of the previous equation is the same as the right hand side of equation (A.134)
by exchanging the names of dummy variables α and γ so equation (A.133) is proved. Taking the
logarithm of equation (A.133) and using equations (A.132) and (A.116):

c̊(1)− c0(1) = ln
(
σ̊(1)
σ0(1)

)
−
∑
A∈Γ

εA(1) (A.140)

From now on, it is convenient to introduce the following notation for any quantity x:

x̂ = x

x0
(A.141)

From equation (A.140), it is possible to calculate cα(1) as a function of the more useful quantities
σα. The second term of this equation means that if α is a set containing only one association site,
there must be a −1 term added to cα(1). Using the Taylor series of ln, equation (A.140) becomes:

∑
α⊆Γ
α6=∅

cα(1)εα(1) =
∞∑
n=0

(−1)n
n+ 1

∑
α⊆Γ
α6=∅

σ̂α(1)εα(1)


n+1

−
∑
A∈Γ

εA(1) (A.142)

Expanding the product in the first sum of the right hand side, each non-zero term appears (n+ 1)!
times. This can be seen from the multinomial theorem or from the fact that identical term appears
with factors in a different order and that there are (n + 1)! different orders (for example a term
containing a, b and c can appear as 3! = 6 terms abc, acb, bac, bca, cab and cba). Therefore:

∑
α⊆Γ
α6=∅

cα(1)εα(1) =
∞∑
n=0

(−1)nn!
 ∑
{α,n+1}

∏
α

σ̂α(1)εα(1)
−∑

A∈Γ
εA(1) (A.143)

Where the second sum is carried out over all the sets {α, n + 1} of n + 1 disjointed sets α. In the
latter sum, if n + 1 is greater than the total number of association sites, the following product is
zero. So the sum carried out over n must go up to n = n(Γ) − 1 where for any set α, n(α) is the
number of association sites inside the set α. As before, {α, n + 1} must be the partition of a set
γ. So the sum carried out over {α, n + 1} can be replaced by a (double) sum carried out over all
the sets (with at least n+ 1 elements) included in Γ and over all the partitions {α} of γ with n+ 1
elements. Exchanging the dummy variables α and γ, it becomes:

∑
α⊆Γ
α6=∅

cα(1)εα(1) =
n(Γ)−1∑
n=0

(−1)nn!

 ∑
α⊆Γ

n(α)≥n+1

∑
P (α)={γ,n+1}

∏
γ

σ̂γ(1)εα(1)

−∑
A∈Γ

εA(1) (A.144)
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In the right hand side, by exchanging the order of the first two sums, it is possible to get rid of the
constraint n(α) ≥ n+ 1 and then the sum carried out over n can be included in the sum carried out
over P (α) = {γ, n+ 1}:

∑
α⊆Γ
α6=∅

cα(1)εα(1) =
∑
α⊆Γ

 ∑
P (α)={γ,n+1}

(−1)nn!
∏
γ

σ̂γ(1)
 εα(1)−

∑
A∈Γ

εA(1) (A.145)

So the sum carried out over P (α) = {γ, n + 1} means now over all the partitions γ of α, n + 1
being the number of element in P (α) needed to calculate the inner product. Finally, cα is given by:

cα(1) =
∑

P (α)={γ,n}
(−1)(n−1)(n− 1)!

∏
γ

σ̂γ(1)− δn(α),1 (A.146)

Where δ is the Kronecker delta.
Combining equations (A.106) and (A.133), one gets:

exp [̊c(1)] = ρ̊(1)
z

(A.147)

Or again, using equations (A.132) and (A.116):

c̊(1) = ln
(
σ̊(1)
z

)
−
∑
A∈Γ

εA(1) (A.148)

This equation will be useful later.

Thermodynamics
Repeating what as been done for the single association site case, it will now be proven that:

βPV =
∫
〈̊σ(1) [1− c̊(1)]〉 d(1) + c(0) (A.149)

Is equivalent to equation (A.81). Again, the variation of the previous equation must be taken:

δ(βPV ) =
∫
〈δσ̊(1)− δσ̊(1)̊c(1)− σ̊(1)δc̊(1)〉 d(1) + δc(0) (A.150)

The variation of equation (A.148) gives:

δc̊(1) = δσ̊(1)
σ̊(1) −

δz

z
⇒ δσ̊(1)− σ̊(1)δc̊(1) = σ̊(1)δz

z
(A.151)

Equation (A.111) implies:

δc(0) =
∫ ∑

α⊆Γ
cα(1)δσΓ−αd(1) =

∫
〈̊c(1)δσ̊(1)〉 d(1) (A.152)
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Where equation (A.119) has been used. Putting the two previous equations in (A.150) gives exactly
equation (A.81) because 〈̊σ(1)〉 = σΓ(1) = ρ(1). Using equation (A.119), it is easy to notice that
equation (A.149) can be written as:

βPV =
∫ ρ(1)−

∑
α⊆Γ

σΓ−α(1)cα(1)
 d(1) + c(0) (A.153)

Then using equation (A.88):

βA =
∫ ρ(1) ln

(
ρ0(1)

Λ

)
− ρ(1) +

∑
α⊆Γ
α6=∅

σΓ−α(1)cα(1)

 d(1)− c(0) (A.154)

It is useful to have an expression with densities only. Thus equation (A.146) can be used:

βA =
∫ [

σΓ(1) ln
(
σ0(1)

Λ

)
+Q(1)

]
d(1)− c(0) (A.155)

Where:

Q(1) =
∑
α⊆Γ
α6=∅

σΓ−α(1)
 ∑
P (α)={γ,n}

(−1)n−1(n− 1)!
∏
γ

σ̂γ(1)− δn(α),1

− σΓ(1) (A.156)

Taking out the Kronecker delta and separating the case α = Γ in the first sum, one gets:

Q(1) = −
∑
A∈Γ

σΓ−A(1) + σ0(1)
∑

P (Γ)={γ,n}
(−1)n−1(n− 1)!

∏
γ

σ̂γ(1)− σΓ(1) (A.157)

+ σ0(1)
∑
α⊂Γ
α6=∅

∑
P (α)={γ,n}

(−1)n−1(n− 1)!σ̂Γ−α(1)
∏
γ

σ̂γ(1)

Where equation (A.141) for σΓ−α(1) has been used. In the first sum, the case n = 1 gives a term
σΓ(1)whichwill cancel itself with the−σΓ(1) term. In the last sum carried out overP (α) = {γ, n},
one wants to introduce the σ̂Γ−α(1) term inside the product. Doing so, γ will become a partition of
Γ with n′ = n + 1 elements. It must be remembered that there is a outer sum carried out over all
the α included in Γ. Performing the change n→ n′ − 1, Q(1) can be rewritten as follows:

Q(1) = −
∑
A∈Γ

σΓ−A(1) + σ0(1)
∑

P (Γ)={γ,n≥2}
(−1)n−1(n− 1)!

∏
γ

σ̂γ(1) (A.158)

+ σ0(1)
∑
α⊂Γ
α6=∅

∑
P (Γ)={γ,n′≥2}

α∈γ

(−1)n′−2(n′ − 2)!
∏
γ

σ̂γ(1)

For a given n′, all the sums carried out over P (Γ) = {γ, n′ ≥ 2} will be equal no matter what α is.
So the outer sum carried out over α simply multiplies each inner sum for a given n′ by the different
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possible choices of α in {γ, n′ ≥ 2}. This is the number of elements n′ in γ. Thus, changing the
dummy variable n′ to n:

Q(1) = −
∑
A∈Γ

σΓ−A(1) + σ0(1)
∑

P (Γ)={γ,n≥2}
(−1)n−1(n− 1)!

∏
γ

σ̂γ(1) (A.159)

− σ0(1)
∑

P (Γ)={γ,n≥2}
(−1)n−1n(n− 2)!

∏
γ

σ̂γ(1)

Noticing that n(n− 2)!− (n− 1)! = (n− 2)!:

Q(1) = −
∑
A∈Γ

σΓ−A(1) + σ0(1)
∑

P (Γ)={γ,n≥2}
(−1)n(n− 2)!

∏
γ

σ̂γ(1) (A.160)

Equation (A.155) gives the exact value of Helmholtz energy for any number of association
sites. Q(1) given by equation (A.160) only depends on different density quantities and cannot be
simplified any more for now. c(0) is the only term which depends on the attractive part of the pair
potential. As before, a perturbation will be used in order to simplify that term.

Perturbation Theory
As evoked above, steric effects have to be taken into account and, in the case of SAFT, all three

effects summarized in Figure A1.15. These configurations correspond to some type of graphs in
c(0), the only part in Helmholtz energy which contains attractive energies. The first two steric effects
I and II imply what Wertheim calls the single bonding condition which means that one association
site can be either not bonded or bonded to only one other association site. Configurations where a
site is bonded to multiple other association sites must be terms of order 2 (for instance containing a
product fABfAC) inside c(0) so they would be neglected in the first order perturbation theory. Thus
in the square bracket of equation (A.104), only terms which satisfy steric effects I and II can be
kept. It is convenient to create an operator f̊ :

f̊(1, 2) =
∑
A∈Γ

∑
B∈Γ

fAB(1, 2)εA(1)εB(2) (A.161)

So that all the terms inside the square bracket of equation (A.104), which satisfy steric effects I and
II, are inside the operator exp

[
f̊(1, 2)

]
− 1 (this is easily seen by considering the Taylor series of

exp). However it would still contain terms like fAB(1, 2)fCD(1, 2)εA(1)εB(2)εC(1)εD(2) which
are not allowed because of steric effect III. These terms are of order 2 as well because they contain at
least two attractive bonds and so they are neglected in the first order perturbation theory. Attractive
terms satisfying all three steric effects are then exactly the ones in f̊ .

Using equation (A.155) directly with all the possible combinations of fAB-bonds would lead to
exactly the same result as only using it with combinations inside f̊ if association sites were not too
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big and angles between them great enough. Thus using f̊ simplifies calculations and leads to the
same results.

However even in this case there still are graphs containing more than one attractive bond which
are difficult to take into account (again, the reader can refer to Zmpitas10 to see a generalization of
the perturbation theory to any order). That is why only graphs with one attractive bond will now
be kept.

As for the one association site case, it is assumed that the Helmholtz energy is known in the
case of the absence of association sites (it is given by equation (A.90)) and the following difference
(similar to equation (A.91)) is considered:

βAassoc = β(A− AR) =
∫ [

σΓ(1) ln
(
σ0(1)
σΓ(1)

)
+ σΓ(1) +Q(1)

]
d(1)− (c(0) − c(0)

R ) (A.162)

c(0)−c(0)
R is evaluated the same way as before (equation (A.94)), the only difference is that all the al-

lowed attractive bonds have to be considered. These bonds are all the fAB(1, 2). Monomer densities
in equation (A.94) must be changed accordingly so that it satisfies equation (A.110) i.e. σΓ−A(1) in-
stead of ρ0(1) and σΓ−B(2) instead of ρ0(2). The sums of all the products σΓ−A(1)fAB(1, 2)σΓ−B(2)
to be considered is noted

〈
σ̊(1)f̊(1, 2)̊σ(2)

〉
1,2
. Finally:

c(0) − c(0)
R = 1

2

∫
gR(1, 2)

〈
σ̊(1)f̊(1, 2)̊σ(2)

〉
1,2

d(1)d(2) (A.163)

=
∑
A∈Γ

∑
B∈Γ

1
2

∫
gR(1, 2)σΓ−A(1)fAB(1, 2)σΓ−B(2)d(1)d(2) (A.164)

And directly from equation (A.111):

cA(1) =
∑
B∈Γ

∫
gR(1, 2)σΓ−B(2)fAB(1, 2)d(2) (A.165)

cα = 0, if n(α) ≥ 2 (A.166)

Then for all α 6= ∅, it directly comes from equation (A.107):

ρα(1) = ρ0(1)
∏
A∈α

cA(1) (A.167)

ρα(1)
ρ0(1) =

∏
A∈α

ρA(1)
ρ0(1) (A.168)

Equation (A.168) is proved by noticing that equation (A.167) implies that ρA(1) = ρ0(1)cA(1).
Equation (A.140) can then be used to give a similar expression for the σα densities. Putting equation
(A.166) into it and applying exp to both sides of the resulting equation:

σ̊(1)
σ0(1) = exp

∑
A∈Γ

(cA(1) + 1)εA(1)
 =

∏
A∈Γ

exp ((cA(1) + 1)εA(1)) (A.169)
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Then successively applying equation (A.116) written as exp(ε) = 1 + ε and lemma 4, one gets:

σ̊(1)
σ0(1) =

∑
α⊆Γ

∏
A∈α

(cA(1) + 1)εα(1) (A.170)

From this, it directly follows that:
σ̂A = cA(1) + 1 (A.171)

And so:
σ̂α =

∏
A∈α

σ̂A(1) (A.172)

This is all that is needed in SAFT from Wertheim’s work3–6. Chapman did some simplifications
in his Ph.D. thesis9 following what Wertheim did for the pure component case. They are shown
below.

The first step is to introduce ∆AB(1, 2):

∆AB(1, 2) = gR(1, 2)fAB(1, 2) (A.173)

Then combining equations (A.171) and (A.165):

σ̂A − 1 =
∑
B∈Γ

∫
σΓ−B(2)∆AB(1, 2)d(2) (A.174)

Combining equations (A.164) and (A.165), one gets:

c(0) − c(0)
R = 1

2
∑
A∈Γ

∫
cA(1)σΓ−A(1)d(1) = 1

2
∑
A∈Γ

∫
(σ̂A(1)− 1)σΓ−A(1)d(1) (A.175)

Then a particular case of equation (A.172) gives:

ρ(1) = σΓ(1) = σA(1)σΓ−A(1)
σ0(1) (A.176)

Putting the previous equation in equation (A.175), one gets:

c(0) − c(0)
R = 1

2
∑
A∈Γ

∫
[ρ(1)− σΓ−A(1)] d(1) (A.177)

Which is the generalized version of the last term of equation (A.98) in the case of multiple asso-
ciation sites. Q given by equation (A.160) can also be simplified. Using equation (A.172) in the
product of equation (A.160):

Q(1) = −
∑
A∈Γ

σΓ−A(1) +
∑

P (Γ)={γ,n≥2}
(−1)n(n− 2)!σΓ(1) (A.178)

109



It will now be shown that:

Am =
∑

P (Γm)={γ,n≥2}
(−1)n(n− 2)! = n(Γm)− 1 = m− 1 (A.179)

Where Γm is any set withm association sites. This is not trivial. It can be shown by induction. For
m = 1, there is only one partition of Γm with one element soA1 = 0 = n(Γ1)−1. Form = 2, there
is only one partition with at least two elements so A2 = (−1)2 × 0! = 1 = n(Γ2) − 1. Assuming
that equation (A.179) is proved for allm up to a positive integerM , it is required to show that it is
also true form = M + 1 in order to prove equation (A.179). P (ΓM+1) (with at least two elements)
can be divided into two sets whether the subset {M + 1} is added to a partition of ΓM with at least
two elements (first set) or ifM + 1 is added to one of the subsets of the partitions of ΓM (second
set). There also is the partition {1, 2, . . . ,M}, {M + 1} in P (ΓM+1) which has two elements (and
is not in one of the previous two sets). The partitions in the first set are essentially partitions of ΓM
but with one more subset so its contribution to AM+1 is:

∑
P (ΓM )={γ,n≥2}

(−1)n(n− 2)!× (−1)(n− 1)

Where ×(−1)(n − 1) appears because of the subset {M + 1} but the sum is still carried out
over P (ΓM) = {γ, n ≥ 2} because there are as many partitions in the first set as in P (ΓM) =
{γ, n ≥ 2}. The partitions in the second set are all the different partitions that can be made from
the partitions in P (ΓM) = {γ, n ≥ 2} by adding M + 1 inside one of their subsets. For each n,
there are n possibilities of addingM+1 as there are n subsets in the partitions. So the contribution
of the second set to AM+1 is:

∑
P (ΓM )={γ,n≥2}

(−1)n(n− 2)!× n

The contribution of {1, 2, . . . ,M}, {M + 1} to AM+1 is 1 so finally:

AM+1 =
 ∑
P (ΓM )={γ,n≥2}

(−1)n(n− 2)!× (−1)(n− 1)


+
 ∑
P (ΓM )={γ,n≥2}

(−1)n(n− 2)!× n
+ 1 (A.180)

Using again the fact that n(n− 2)!− (n− 1)! = (n− 2)!:

AM+1 =
 ∑
P (ΓM )={γ,n≥2}

(−1)n(n− 2)!
+1 = AM+1 = n(ΓM)−1+1 = n(ΓM+1)−1 (A.181)
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Which therefore proves equation (A.179). So:

Q(1) = −
∑
A∈Γ

σΓ−A(1) + ρ(1)(n(Γ)− 1) (A.182)

Putting equations (A.177) and (A.182) into equation (A.162), one gets after simplifications:

βAassoc =
∫
ρ(1)

ln
(
ρ0(1)
ρ(1)

)
− 1

2
∑
A∈Γ

σΓ−A(1)
ρ(1) + n(Γ)

2

 d(1) (A.183)

Introducing the fraction of sites A which are not bonded xA(1) = σΓ−A(1)
σΓ(1) and using equations

(A.172) with α = Γ and (A.176):

ρ0(1)
ρ(1) =

∏
A∈Γ

σΓ−A(1)
σΓ(1) =

∏
A∈Γ

xA(1) (A.184)

And so equation (A.183) becomes:

βAassoc =
∑
A∈Γ

∫
ρ(1)

[
ln (xA(1))− xA(1)

2 + 1
2

]
d(1) (A.185)

It remains to show how the xA(1) terms can be calculated. Multiplying equation (A.174) by σΓ−A(1)
and using equation (A.176), it gives:

ρ(1)− σΓ−A(1) = σΓ−A(1)
∑
B∈Γ

∫
σΓ−B(2)∆AB(1, 2)d(2) (A.186)

Dividing both side of this equation by σΓ−A(1) and rearranging:

xA(1) = 1
1 + ∑

B∈Γ

∫
ρ(2)xB(2)∆AB(1, 2)d(2) (A.187)

In the case of a uniform system, all the quantities related to densities do not depend on any coordi-
nate so that:

xA = 1
1 + ∑

B∈Γ
ρxB∆AB

(A.188)

With:
∆AB =

∫
gR(1, 2)fAB(1, 2)d(1)d(2) (A.189)

And:
βAassoc = N

∑
A∈Γ

(
ln (xA)− xA

2 + 1
2

)
(A.190)

The latter equation can written in the form:
aassoc
RT

=
∑
A∈Γ

(
ln (xA)− xA

2 + 1
2

)
(A.191)

Improvements to the first order theory are discussed by Zmpitas10.
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5 SAFT HS

In this section it will be shown how everything that has been discussed before can be combined
to create an equation of state which can describe a system made of a mixture of different chains
of spheres (connected by covalent bonds) with association sites. This is the Statistical Association
Fluid Theory, first developed by Chapman1. Here, works done by Chapman in his Ph.D. thesis and
in later papers are followed1,9,15,16.

What is presented here is the case where spheres are modeled by a pair potential given by
equation (A.53) but this can be extended to any type of potential17.

Wertheim’s Thermodynamic Perturbation Theory has to be applied to a reference potential. In
SAFT HS this is the Hard Sphere potential. The corresponding reference molar Helmholtz energy
is then:

AR(T, ρi) = Aig(T, ρi) + Ahs(T, ρi) (A.192)

Where here the choice of independent variables are temperature T and molar densities ρi of
molecules i (for all molecules). This choice is motivated by the way partial derivatives will be
calculated later and is subjected to the constraint that V ∑ ρi is the total number of moles in the
system. It can also be useful to choose the more natural set of independent variables T, V, ni with
ni the mole number of molecule i (for all molecules). The latter set has one more variable but it is
not subjected to any constraint. The ideal gas term is obtained from equation (A.16) and the hard
sphere term from equation (A.63), for now for the pure component case.

The total Helmholtz energy is then given by equation (A.190):

A(T, ρi) = AR(T, ρi) + Aassoc(T, ρi) (A.193)

It is now possible to extend this to mixtures. It has already been done for the reference term so
only the association term needs changes. Quantities for different components will be noted with
a subscript ι or κ. Only the main changes will be given as calculations do not change. First the
potential energy of the system can be written. In order to simplify notation, the potential energy
will still be written V and the pair potential ϕικ. For homogeneous (uniform) systems, equation
(A.18) becomes:

V (1, 2, . . . , N) =
∑
ι,κ

∑
1≤i<j≤N

ϕικ(i, j) (A.194)

Where the first sum is carried out over all combinations of components. Equation (A.101) for pair
potential is given by:

ϕικ(1, 2) = ϕRικ(1, 2) +
∑
A∈Γι

∑
B∈Γκ

ϕAιBκ(1, 2) (A.195)
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ϕRικ designate the reference hard sphere pair potential between components ι and κ. It is the pair
potential used in the Hard Sphere Equation of State section for the case of a mixture. Γι is the set of
association sites on component ι and ϕAιBκ is the attraction energy between site A of component ι
and site B of component κ. Equation (A.104) for the Mayer f-functions becomes:

fικ(1, 2) = fRικ(1, 2) + eRικ(1, 2)
 ∏

A∈Γι

∏
B∈Γκ

1 + fAιBκ(1, 2)
− 1

 (A.196)

Molar density ρι of component ι is given by:

ρι = xιρ (A.197)

Where ρ is now the total molar density (instead of the number density) and xι is the mole fraction
of component ι (different from xA with a capital letter which is the fraction of sitesAwhich are not
bonded). Each number densityNaρι of component ι is associated with a singlet density ρι(1ι). For
all these new singlet densities, the topological reduction previously introduced can be applied noting
that the only things that matter in this part are the connections at the white circle (either fugacity
or density circles) labeled 1ι. Modifications in the thermodynamics part appear in the fact that
variation of βPV is implied by independent variations in the different components of the mixture.
Mathematically, this is shown by the fact that, before any topological reduction is performed, ln(Ξ)
is a functional of all the fugacities zι. Then equation (A.21) for ln(Ξ) becomes:

δ(βPV ) =
∑
ι

∫ δ ln(Ξ)
δzι

(1ι)δzιd(1ι) (A.198)

Singlet densities ρι(1ι) defined by equation (A.22) replacing 1 by 1ι are then directly given by:

ρι(1ι) = zι
δ ln(Ξ)
δzι

(1ι) (A.199)

Then equation (A.153) becomes:

βPV =
∑
ι

∫ ρι(1ι)− ∑
αι⊆Γι

σΓι−αι(1ι)cαι(1ι)
 d(1ι) + c(0) (A.200)

Where:
cαι(1ι) = δc(0)

δσΓι−αι
(1ι) (A.201)

Which also defines c(0). Then equation (A.155) becomes:

βA =
∑
ι

∫ [
σΓι(1ι) ln

(
σ0ι(1ι)

Λι

)
+Qι(1ι)

]
d(1ι)− c(0) (A.202)
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The main difference appears in the perturbation theory because interactions are considered inside
c(0) and so interactions between two different particles can happen. However, the only graphs that
are kept still have only one attraction bond so that equation (A.163) becomes:

c(0) − c(0)
R = 1

2
∑
ι,κ

∫
gRικ(1, 2)

〈
σ̊ι(1)f̊ικ(1, 2)̊σκ(2)

〉
1,2

d(1)d(2) (A.203)

Where 1ι and 2κ have been equivalently written 1 and 2. Calculations are then identical to the ones
that were performed in the previous part. Finally, changing subscripts ι and κ to i and j respectively:

aassoc
RT

=
∑
i

xi
∑
Ai∈Γi

(
ln (xAi)−

xAi
2 + 1

2

)
(A.204)

xAi = 1
1 +∑

j

∑
Bj∈Γj

NaρjxB∆AiBj

(A.205)

∆AiBj =
∫
gij(1, 2)fAiBj(1, 2)d(1)d(2) (A.206)

Where gRij(1, 2) has simply been written gij(1, 2). In general gij(1, 2) is a function of the distance
|r2 − r1| between two points 1 and 2 (where there can potentially be particles; the integration is
formally done over the whole available space where a particle could be but that does not mean that
in general there are particles at points 1 and 2). But it should be anticipated that gij will be usually
given by equation (A.55) because of the fact that interaction energies for association sites have a
short range and so it can be assumed that the hardcore of two bonded particles are touching. Also,
xi is the mole fraction of molecule i and is different from xAi (with a capital letter designating an
association site).

In order to better understand the following calculations, it can be helpful to anticipate the final
form of the SAFT HS equation of state. This is summarized in Figure A1.18 for a pure component.

In the top left corner of Figure A1.18, a system described by the ideal gas law is presented.
Particles are represented by points having a mass. Then adding the hard sphere potential to the
description of the system adds a spherical volume to each sphere. Using association sites (and this
will be shown a bit later) it is then possible to create chains of particles, each chain containing
exactly the same number of spheres. There are two properties implied by Wertheim’s first order
Thermodynamic Perturbation Theory. First, the relative position of each association site is of no
importance as can be seen from the equations derived in the previous section. Thus chains can have
any shape as long as no spheres overlap. The second property (closely related to the first one) is
that no ring can be formed with this level of theory. Actually only tree structures can be formed i.e.
there is only one path (made of hard spheres) joining any two spheres in such a structure. This is
seen from equation (A.175) by the fact that the only cα in this equation involves sets α made of one

114



Hard Sphere
potential

Dispersion
potential

Chain potential

Association
potential

Figure A1.18: Physical meaning of the SAFT HS Equation of State.

site and so the corresponding graphs have only one attractive bond on their white circle. However
that does not mean that only dimers can be formed like in the one association site case (even if the
graphs that were kept in c(0) only have one attraction bond at most) because the contributions for
each site are summed in equation (A.175). One of Chapman’s9 contributions here was to limit these
tree structures to chains of equal length when association sites have a strong energy corresponding
to covalent bonds.

In the general case, there can still be some association sites that were not used to form chains.
They can then form bonds but these are not as strong as in chains because the corresponding asso-
ciation energy is usually weaker, satisfying the perturbation theory requirements.

All the previous contribution have been rigorously derived (as will be done further for the chain
contribution) but a major issue arises if no other potential is added. Indeed, there would be no long
range attraction energy that could force the system to be liquid under certain circumstances. That
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is why a dispersion term must be added to the equation. This term can be more or less rigorously
added to the equation in general. Usually it is considered as a perturbation potential as well and
so two consecutive perturbation theories must be performed (the multidensity formalism used in
the previous section is only suitable for short range potentials with a specific direction) which is
very difficult considering the complexity of Wertheim’s Thermodynamic Perturbation Theory. The
manner to add a dispersion potential in SAFT HS will also be discussed.

As a consequence the next step will be to show how chains of definite length can be created in
the system, only using association sites. The starting equation is (A.204). The way Chapman forces
chains to form is the following:

Let component i form chains ofmi identical spheres of diameter σi. Each sphere has a number
from 1 tomi, 1 andmi being the first and last spheres of the chain. If a sphere has neither 1 normi

as a number, then it receives two association sites; otherwise just one. Ifmi is 1, then no association
site is given. Let βi be a number between 2 andmi− 1. Then one association site on sphere βi will
be allowed to bond with only one association site of sphere βi − 1 and the other will be allowed
to bond with only one association site of sphere βi + 1. If βi = 1, its association site is allowed
to bond with only one of the association site (always the same one) of sphere 2 and if βi = mi, its
association site is allowed to bond with only one of the association site (always the same one) of
spheremi−1. This is summarized on Figure A1.19. On top of these association sites only allowed
to create bonds in order to form the chain, there can be any other number of association sites and
their position does not matter as it was noted above.

1 2 3 mi − 2 mi − 1 mi

Figure A1.19: Chain formation. Sketch inspired by Chapman9.

Each sphere in a component can be treated as a distinct component so that, separating terms
involving association sites used to form chains, equation (A.204) becomes:

aassoc
RT

=
∑
i

xi
∑
Ai∈Γi

(
ln (xAi)−

xAi
2 + 1

2

)
+
∑
i

mi∑
βi=1

xβi
∑

Aβi∈Γ′
βi

(
ln
(
xAβi

)
−
xAβi

2 + 1
2

)
(A.207)

Where βi designates as before the different spheres in a chain of component i, xβi is the mole
fraction of sphere βi and now Γ designates a set of association sites that are not used to form
chains and on the opposite Γ′ designates a set of association sites that are only used to form chains
according to the manner previously explained. It is then possible to redefine aassoc/RT as the first
term of equation (A.207) (which thus does not change) and the second term will define the chain
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contribution achain/RT . Noticing that the mole fraction of a sphere inside a chain is equal to the
mole fraction of the chain itself (because there always is the same numbermi of spheres in a chain
of component i), the chain term can be written as follows:

achain
RT

=
∑
i

xi

mi∑
βi=1

∑
Aβi∈Γ′

βi

(
ln
(
xAβi

)
−
xAβi

2 + 1
2

)
(A.208)

Giving the same properties to each association site forming the chain, noticing that there are 2mi−2
such sites in a chain (so that the two inner sum can be factorized) and factorizing by (1−mi):

achain
RT

=
∑
i

xi(1−mi)
(
x(i) − 2 ln

(
x(i)

)
− 1

)
(A.209)

Where x(i) is the fraction of not bonded association sites that form chains i. From equation (A.205),
x(i) is given by:

x(i) = 1
1 +Naρi∆iix(i) (A.210)

⇔ x(i) = 1−Naρi∆iix
(i)2 (A.211)

⇔ x(i)2 = 1− x(i)

Naρi∆ii

(A.212)

With, from equation (A.206):

∆ii =
∫
gii(1, 2)fii(1, 2)d(1)d(2) (A.213)

And fii(1, 2) = exp(−βϕii(1, 2))−1withϕii(1, 2) the attraction potential between association sites
forming a chain i. Using the fact that −2 ln(x) = ln(1/x2) with equations (A.211) and (A.212),
equation (A.209) becomes:

achain
RT

=
∑
i

xi(1−mi)
(

ln
(
Naρi∆ii

1− x(i)

)
−Naρi∆iix

(i)2
)

(A.214)

If covalent bonds are wanted between spheres inside a chain, then the limit ϕii(1, 2)→∞ must be
considered. That is in agreement with the developed perturbation theory, even if the potential energy
is not a perturbation anymore, because of the restrictions that have been given to the association
sites forming chains. It implies that ∆ii =∞ and so from equation (A.211) x(i) = 0 (x(i) is always
between 0 and 1 by definition). Putting this into the previous equation, it becomes:

achain
RT

=
∑
i

xi(1−mi) ln (Naρi∆ii) (A.215)

Further simplifications can be done based on the fact that association interaction energy has a
short range (see Chapman9,16). As mentioned above the radial distribution function can be approx-
imated by its value when two hard spheres i and j are actually touching i.e. for |r2 − r1| = σij =
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(σi+σj)/2 and so it is given by equation (A.55). For the same reason, it can be assumed that ϕAiBj
is a constant inside an association site (i.e. corresponding to a square well potential). Choosing one
of the two particles as the origin of the system (particle 1) and using spherical coordinates, equation
(A.206) becomes:

∆AiBj =
∫
gij(r12)fAiBj(r12, ω1, ω2)dr12r

2
12dθ sin(θ)dφdω1dω2 (A.216)

Where r12 = |r2 − r1| generally varies from 0 to∞, θ varies from 0 to π, φ varies from 0 to 2π
and ωl is the different possible orientations of particle l depending on three angles in general. For
the same reason evoked for the radial distribution function, r12 can be approximated by σij . fAiBj
only depends on the distance between association sites Ai and Bi. Thus:

∆AiBj ' 4πσ2
ijgij(σij)

∫
r12

(∫
ω1,ω2

fAiBj(r12, ω1, ω2)dω1dω2

)
dr12 (A.217)

Remembering that gij(σij) is given by equation (A.55), it shall simply be written gij . The integral
over orientations (at constant r12) will be dealt with first. Using Euler angles and the z’s axes
passing through the center of the particle and the center of the association site, each particle is
invariant by a rotation around its z axis. However it is not invariant with respect to a rotation over
the nutation angle θ and the precession angle φ. However, fixing the orientation of one particle, the
system is symmetric with respect to a rotation on φ (the symmetry plane passing through the center
of both particles and the center of the fixed association site) so it is actually convenient to calculate
the average of fAiBj(r12, ω1, ω2) over orientation (only depending on the two nutation angles from
what has been said) instead of the actual integral. So:

∆AiBj ' 4πσ2
ijgij

∫
r12

〈
fAiBj(r12, ω1, ω2)

〉
ω1,ω2

dr12 (A.218)

The average
〈
fAiBj(r12, ω1, ω2)

〉
ω1,ω2

will be calculated using Figure A1.20 for the case Ai = Bj .
It was first done by Wertheim18.

The first step is to calculate the average with respect to the orientation of particle 2. As explained
above, considering the centers of the particles and their association sites in the same plane as in
Figure A1.20, only the average with respect to the angle θ2 (defined in Figure A1.20) needs to be
done. This is equivalent to saying that fAiBj only depends on r12, θ1 and θ2. With the definition of
an average quantity and simply writing fAiBj as f for now, one gets:

〈f(r12, ω1, ω2)〉ω2
=
∫
f(x(θ2))d sin(θ2)dθ2∫

d sin(θ2)dθ2
(A.219)

Where the distance d is defined as the length of vectors d1 and d2 and θ2 varies between 0 and π.
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Figure A1.20: Calculation of the angle average in equation (A.218).

Using the law of cosines, one gets:

x2 = z2 + d2 − 2zd cos(θ2) (A.220)

⇔ cos(θ2) = z2 + d2 − x2

2zd (A.221)

Differentiating the previous equation and remembering that z is fixed at constant θ1:

dθ2 sin(θ2) = xdx
zd

(A.222)

And changing variable θ2 to x:

〈f(r12, ω1, ω2)〉ω2
=
∫ z+d
x=z−d f(x)xdx∫ z+d

x=z−d xdx
(A.223)

f(x) is always zero if x > a so:

g(z) = 〈f(r12, ω1, ω2)〉ω2
=
∫ a
x=z−d f(x)xdx

2zd (A.224)

Similarly performing the average for θ1 and applying again the law of cosines:

z2 = d2 + r2
12 − 2dr12 cos(θ1) (A.225)

It becomes:

〈f(r12, ω1, ω2)〉ω1,ω2
=
∫ a+d
z=r12−d g(z)zdz

2r12d
(A.226)
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Combining equations (A.224) and (A.226), the required average is:

〈f(r12, ω1, ω2)〉ω1,ω2
= 1

4d2r12

∫ a+d

z=r12−d

∫ a

x=z−d
f(x)xdx (A.227)

The order of integration can be changed using Fubini’s theorem. In order to do that, it must be
noticed that when z = r12 − d then x = r12 − 2d and for a given x, z = x+ d so that:

〈f(r12, ω1, ω2)〉ω1,ω2
= 1

4d2r12

∫ a

x=r12−2d

∫ x+d

z=r12−d
f(x)xdxdz (A.228)

= 1
4d2r12

∫ a

x=r12−2d
f(x)x(x+ 2d− r12)dx (A.229)

In the approximation mentioned above when f is constant inside an association site, the integration
is easily calculated. Returning to full notations, it becomes:

〈
fAiBj(r12, ω1, ω2)

〉
ω1,ω2

=
fAiBj

24d2r12
(a+ 2d− r12)2(2a− 2d+ r12) (A.230)

Where fAiBj is given by the constant value ϕAiBj of the association energy inside an association
site:

fAiBj = exp(−βϕAiBj)− 1 (A.231)

It must be noticed that if ϕAiBj is given as its absolute value (as it is often done when using SAFT),
then:

fAiBj = exp(βϕAiBj)− 1 (A.232)

The remaining integral in equation (A.218) can be directly calculated. The result is given by Chap-
man16. Defining for instance:

kAiBj = 4π
σijfAiBj

∫
r12

〈
fAiBj(r12, ω1, ω2)

〉
ω1,ω2

dr12 (A.233)

∆AiBj gets its final form:
∆AiBj = σ3

ijgijkAiBjfAiBj (A.234)

With:

kAiBj = 4π
72d2σ

(
ln
(
a+ 2d
σ

)
(6a3 + 18a2d− 24d3)

+(a+ 2d− σ)(22d2 − 5ad− 7dσ − 8a2 + aσ + σ2)
) (A.235)

WhenAi = Bj . The previous equation is convenient to give a physical meaning to the equation but
it can be preferred to leave kAiBj as a parameter. If Ai 6= Bj , it is usually better to use some kind
of mixing rules or to simply leave kAiBj as a parameter.
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In equation (A.215), it can be convenient to get rid of some factors inside the logarithm as they
do not play any role, any energy being defined with a reference state. The form that is usually used
is the following:

achain
RT

=
∑
i

xi(1−mi) ln(gii) (A.236)

But the missing factor ρi might have a significant impact.
The dispersion term introduced by Chapman15 can be explained as follows. In the pure compo-

nent case, it can be considered that the internal energy due to the dispersion energy is proportional
to the total number of spheres Nm (N is the number of molecules and m the number of spheres
in a molecule) and an energy parameter ε corresponding to a mean field. It is also clear that in a
liquid phase, this dispersion energy should be more important than in a gas phase so the dispersion
energy can also be assumed to be proportional to the total packing fraction of the system v/V where
v is the total volume taken by all the molecules and V is the volume of the system. The dispersion
energy must be attractive so, choosing ε as a positive number, the dispersion contribution to the
internal energy is Udisp:

Udisp = −Nm v

V
ε (A.237)

The previous equation does not depend on temperature so it is the same expression for theHelmholtz
energy dispersion contribution. Molecules being made ofm spheres of diameter σ, one gets:

Adisp = −N πNa

6 ρm2σ3ε (A.238)

With ρ again being the molar density. With molar Helmholtz energy it becomes:

adisp = −Na
πNa

6 ρm2σ3ε (A.239)

This can be extended to mixtures using Van der Waals mixing rules:

adisp = −Na
πNa

6 ρ
∑
i,j

σ3
ijεijmimjxixj (A.240)

With as before:
σij = σi + σj

2 (A.241)

And:
εij = (1− kij)

√
εiεj (A.242)

Where εi is the dispersion energy parameter for component i and kij is the binary interaction pa-
rameter between components i and j.
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Finally, combining all previous equations, the SAFT HS equation of state is given by:

A(T, V, ni) = Aig(T, V, ni) + Ahs(T, V, ni) + Achain(T, V, ni) + Aassoc(T, V, ni) + Adisp(T, V, ni)
(A.243)

It can be written with different forms depending on whether the molar Helmholtz energy is used or
if the set of independent variables is different. For instance one can use:

a(T, ρi) = aig(T, ρi) + ahs(T, ρi) + achain(T, ρi) + aassoc(T, ρi) + adisp(T, ρi) (A.244)

The ideal gas term is given by equation (A.16), the hard sphere term by equation (A.63), the chain
term by equation (A.236), the association term by equation (A.204) and the dispersion term by
equation (A.240).

6 Chemical Potentials

In order to calculate chemical potentials, it is convenient to use the set of independent variables
(T, V, ni). But before performing any derivative calculation, it is useful to rewrite all the required
equations so all the products ρxi becomes ρi. Looking at the equations, it is indeed possible and
then derivatives of factors ρ or xi with respect to ni are avoided. Then using the definition of the
chemical potential µi of component i:

µi = ∂A

∂ni |T,V,nj 6=i
(A.245)

One gets after another change of (more convenient) variables:

µi(T, ρi) = µi,ig(T, ρi) + µi,hs(T, ρi) + µi,chain(T, ρi) + µi,assoc(T, ρi) + µi,disp(T, ρi) (A.246)

The ideal gas term is easily calculated:

µi,ig
RT

= ln(Naρxiλ
3
i ) (A.247)

The hard sphere term is given by Xu et al.19:

µi,hs
RT

= 3BiCξ + 3BCiξ − 3C2Ci/D + 2C3Di/D
2

D(1− ξ)

+ 1
D(1− ξ)2

[(
3BCξ − C3

D

)
ζi + 3C2Ci

D
− 2C3Di

D2

]
+ 2C3ζi
D2(1− ξ)3

+
[

3C2Ci
D2 − 2C3Di

D3 − Ai
]

ln(1− ξ)−
[
C3

D2 − A
]

ζi
1− ξ (A.248)
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Where:

ξ = ξ3 = π

6Naρ
∑
i

ximiσ
3
i ζi = π

6Namiσ
3
i (A.249)

A = 6ξ0

πNa

=
∑
i

ρimi Ai = mi (A.250)

B = 6ξ1

πNa

=
∑
i

ρimiσi Bi = miσi (A.251)

C = 6ξ2

πNa

=
∑
i

ρimiσ
2
i Ci = miσ

2
i (A.252)

D = 6ξ3

πNa

=
∑
i

ρimiσ
3
i Di = miσ

3
i (A.253)

The chain term is given by Xu et al.19 or Chapman1

µi,chain
RT

= (1−mi) ln(gii) +
∑
j

ρj(1−mj)
1
gjj

∂gjj
∂ρi |T,ρj 6=i

(A.254)

Where:
∂gij
∂ρk |T,ρl6=k

= πNa

6
mkσ

2
k

(1− ξ)2

{
σk + 3σiσj

σi + σj

[
1 + 2σkξ2

1− ξ

]
+ 2

(
σiσj
σi + σj

[
2ξ2

1− ξ + 3σkξ2
2

(1− ξ)2

])}
(A.255)

The dispersion term is easily calculated:

µi,disp
RT

= −2miNa
πNa

6
∑
j

σ3
ijεijmjρj (A.256)

The association term is given by Xu et al.19 or Chapman1:

µi,assoc
RT

=
∑
Ai

(
ln(xAi)−

xAi
2 + 1

2

)
+
∑
j

ρj

∑
Aj

∂xAj
∂ρi |T,ρk 6=i

(
1
xAj
− 1

2

) (A.257)

Where Ai ∈ Γi has simply been written Ai. As noticed by Xu et al.19, all the ∂xAi
∂ρk |T,ρj 6=k

for each
site form a vector yk which is the solution of the following linear system (once the non linear system
defined by equation (A.205) is solved):

Qyk = ck (A.258)

Where Q is a matrix whose coefficients are:

(Q)Ai,Bj = δAi,Bj +Naρjx
2
Ai

∆AiBj (A.259)

And ck is given by:

(ck)Ai = −Nax
2
Ai

∑
Bk

xBk∆AiBk +
∑
j

∑
Bj

ρjxBj
∂∆AiBj

∂ρk |T,ρl6=k

 (A.260)
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There is a small mistake in the expression of ck provided by Xu et al.19. The partial derivative in
the previous equation is easily calculated with equations (A.234) and (A.255) as only the radial
distribution function depends on molar densities. The characteristic size of this system is the total
number of association sites considered.

7 Pressure

Regarding pressure, the same set of independent variable as before will be used but, as volume
does not explicitly appear in the SAFTHS equation, it is convenient to calculate pressure as a partial
derivative with respect to the total molar density. One has:

P = −∂A
∂V |T,ni

= −∂(A/n)
∂(V/n) |T,ni

= −∂a
∂ρ |T,ni

∂ρ

∂(1/ρ) |T,ni
(A.261)

And so:
P = ρ2∂a

∂ρ |T,ni
(A.262)

Explaining each contribution and changing variables, one get:

P (T, ρi) = Pig(T, ρi) + Phs(T, ρi) + Pchain(T, ρi) + Passoc(T, ρi) + Pdisp(T, ρi) (A.263)

The ideal gas term is:
Pig(T, ρi) = ρRT (A.264)

The hard sphere term is:
Phs(T, ρi) = RTρZhs (A.265)

With Zhs given by equation (A.56). The chain term is given by Chapman9:

Pchain(T, ρi) = RTρ
∑
i

ρi(1−mi)
∂ ln(gii)
∂ρ |T,nj

(A.266)

Where:

∂ ln(gii)
∂ρ |T,nj

= 1
gii

1
(1− ξ)2

[
ξ3 + 3

2σiξ2 + 3σiξ2ξ3

1− ξ + σ2
i ξ

2
2

1− ξ + 3σ2
i ξ

2
2ξ3

2(1− ξ)2

]
(A.267)

The dispersion term is easily calculated:

Pdisp(T, ρi) = −Na
πNa

6 ρ2∑
i,j

σ3
ijεijximixjmj (A.268)
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The association term is given for instance by Zmpitas10

Passoc(T, ρi) =
∑
i

ρi

∑
Ai

∂xAi
∂ρ |T,nj

(
1
xAi
− 1

2

) (A.269)

The partial derivative in the previous equation can be calculated in a similar manner as for chemical
potentials. The system given by equation (A.258) still needs to be solved but with ck given by:

(ck)Ai = −Nax
2
Ai

∑
j

∑
Bj

xjxBj

[
∆AiBj + ρ

∂∆AiBj

∂ρ |T,nl

] (A.270)

In order to calculate the partial derivative in the previous equation, one must calculate the par-
tial derivative of the radial distribution function with respect to the total molar density. A direct
calculation gives:

∂gij
∂ρ |T,nl

= 1
ρ(1− ξ2)2

{
ξ3 + 3σiσj

σi + σj

(
ξ2 + 2ξ2ξ3

(1− ξ3)

)

+ 2
(

σiσj
σi + σj

)2 ( 2ξ2
2

(1− ξ3) + 3ξ2
2ξ3

(1− ξ3)2

) (A.271)

8 Hessian

It is also required for this work to calculate the Hessian of the Helmholtz energy density A/V .
For this purpose, the chosen set of independent variables is (T, ρi). The wanted Hessian (H)i,j is
then defined by:

(H)i,j = ∂2(A/V )
∂ρi∂ρj |T,ρk 6=i,j

(A.272)

Explaining each contribution, one gets:

(H)i,j(T, ρi) = (Hig)i,j(T, ρi) + (Hhs)i,j(T, ρi) + (Hchain)i,j(T, ρi)

+ (Hassoc)i,j(T, ρi) + (Hdisp)i,j(T, ρi) (A.273)

The ideal gas term is easily calculated:

(Hig)i,j(T, ρi) = RT

ρi
δi,j (A.274)

The hard sphere term is given by Xu et al.19:

(Hhs)i,j(T, ρi) = ζj
D(1− ξ)2

(
3BiCξ + 3BCiξ − 3C

2Ci
D

+ 2C
3Di

D2

)
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+ 1
D(1− ξ)

(
3BiCjξ + 3BjCiξ − 6CCiCj

D

+ 6C
2CiDj

D2 + 6C
2CjDi

D2 − 6C
3DiDj

D3

)

+ 2 ζiζj
(1− ξ)3

(
3BCξ
D
− C3

D2

)
+ 2 ζj

D2(1− ξ)3

(
3C2Ci − 2C

3Di

D

)

+ ζi
D(1− ξ)2

(
3BjCξ + 3BCjξ − 3C

2Cj
D

+ 2C
3Dj

D2

)

+ 1
D2(1− ξ)2

(
6CCiCj − 6C

2CiDj

D
− 6C

2CjDi

D
+ 6C

3DiDj

D2

)

+ 6 ζiζjC
3

D2(1− ξ)4 + 6 C2Cjζi
D2(1− ξ)3 − 4 C3ζiDj

D3(1− ξ)3

− ζj
1− ξ

(
3C

2Ci
D2 − 2C

3Di

D3 − Ai
)

+ ln(1− ξ)
D2

(
6CCiCj − 6C

2CiDj

D
− 6C

2CjDi

D
+ 6C

3DiDj

D2

)

− ζiζj
(1− ξ)2

(
C3

D2 − A
)
− ζi

1− ξ

(
3C

2Cj
D2 − 2C

3Dj

D3 − Aj
)

(A.275)

The chain term is given by Xu et al.19:

(Hchain)i,j(T, ρi) = (1−mi)
∂gii
∂ρj |T,ρk 6=j

+ (1−mj)
∂gjj
∂ρi |T,ρk 6=i

+
∑
k

ρk(1−mk)
∂2 ln(gkk)
∂ρi∂ρj |T,ρl6=i,j

(A.276)
And the following second order derivative is required to in order to calculate the previous equation:

∂2gij
∂ρk∂ρl |T,ρm6=k,l

=
(
πNa

6

)2 2mkml(σkσl)2

(1− ξ3)3

{
σkσl + 3

(
σiσj
σi + σj

)[
σk + σl + 3ξ2σkσl

1− ξ3

]

+ 2
(

σiσj
σi + σj

)2 [
1 + 3 σkξ2

1− ξ3
+ 3 σlξ2

1− ξ3
+ 6 σkσlξ

2
2

(1− ξ3)2

] (A.277)

The dispersion term is easily calculated:

(Hdisp)i,j(T, ρi) = −2Na
πNa

6 mimjσ
3
ijεij (A.278)

The association term is given by Xu et al.19:

(Hassoc)i,j(T, ρi) =
∑
Ai

∂xAi
∂ρj |T,ρk 6=j

(
1
xAi
− 1

2

)
+
∑
Aj

∂xAj
∂ρi |T,ρk 6=i

(
1
xAj
− 1

2

)

+
∑
k

ρk

∑
Ak

 ∂xAk
∂ρi∂ρj |T,ρl6=i,j

(
1
xAk
− 1

2

)
− 1
x2
Ak

∂xAk
∂ρi |T,ρl6=i

∂xAk
∂ρj |T,ρl6=j


(A.279)
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As before, the second order partial derivative in the previous equation can be calculated by solving
the following system of linear equations:

Qykl = ckl (A.280)

WhereQ is the same matrix as above, ykl is the solution vector
(
∂xAi
∂ρk∂ρl |T,ρj 6=k,l

)
Ai

and ckl is given

by Xu et al.19

ckl = rkl + skl + tkl (A.281)

Where:
(rkl)Ai = 2

xAi

∂xAi
∂ρk |T,ρj 6=k

∂xAi
∂ρl |T,ρj 6=l

(A.282)

(skl)Ai = −Naρx
2
Ai

∑
j

∑
Bj

xj

(
xBj

∂∆AiBj

∂ρk∂ρl |T,ρm6=k,l
+
∂xBj
∂ρk |T,ρm6=k

∂∆AiBj

∂ρl |T,ρm6=l

+
∂xBj
∂ρl |T,ρm6=l

∂∆AiBj

∂ρk |T,ρm6=k

)}
(A.283)

(tkl)Ai = −Naρx
2
Ai

∑
Bk

(
xBk

∂∆AiBk

∂ρl |T,ρj 6=l
+ ∂xBk

∂ρl |T,ρj 6=l
∆AiBk

)

+
∑
Bl

(
xBl

∂∆AiBl

∂ρk |T,ρj 6=k
+ ∂xBl

∂ρk |T,ρj 6=k
∆AiBl

) (A.284)

Again, there is a small mistake in the expression of tkl provided by Xu et al.19. The second order
derivatives of ∆AiBj can be calculated using equation (A.277).
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A2: MATLAB Code 

In this part, a MATLAB code that creates phase diagrams using SAFT HS is presented. It is 

organized into three main parts. First all the equations to calculate the Helmholtz energy, chemical 

potentials, pressure and the Hessian are implemented. Then different subroutines are implemented 

to generate different data (phase diagram, tie lines, critical points...). Finally the main script gather 

all these subroutines and all the required parameters in order to generate different graphs (binary 

and ternary phase diagrams, Pressure/density diagrams...). 

Names for parameters 

kb = 1.38064852 * 10^(-23);%Boltzmann constant 

nav = 6.022140857 * 10^23;%Avogadro number 

R = kb * nav;%Ideal gas constant 

 

%   Components are always written with the following order: (solvent, polymer,  

%nanoparticle) 

%   rho: molar density (mol/Angstrom^3) 

%   eta: reduced density (i.e. packing fraction) 

%   rho_i: molar component density vector (mol/Angstrom^3) 

%   x: mole fraction vector  

%   w: mass fraction vector  

%   P: pressure imposed to the system (Pa) 

%   T: temperature of the system (K) 

%   sigma_i: sphere diameters vector (Angstrom) 

%   m: mass (of one particle) vector of all the components in the system 

%   (kg) 

%   m_i: chain length vector 

%   e_i: dispersion energy vector (J) 

%   k_ij: binary interaction parameters as an array 

%   e_AiBj: associating energy given as a 4 dimensions array (first and 

%   third indexes give different association sites and the others different 

%   molecules) 

%   n_Ai: array of numbers of identical site A (row) on molecule i (column) 

%   k_AiBj: associating volume given as a 4 dimensions array (first and 

%   third indexes give different association sites and the others different 

%   molecules) 

%   error_assoc: error on the final result for the association contribution 

%   rc: reciprocal condition number for the matrix associated to the linear system  

%that has to be solved in order to calculate the association contribution to chemical  

%potential 

% 

%Four input arguments are related to the way the equation P(rho) – P*=0 is solved in  

%thermos_properties_p: 

%   [eta_start_a,eta_start_b]: starting interval 

%   max_counter: maximum number of loops done in the while loop 

%   max_n_roots: the while loop stops if more roots than this parameter 

%   have been found 

 

 



131 
 

 
Published with MATLAB® R2017b 

 

Helmholtz free energy 

function [a] = 

helmholtz(rho,x,T,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc) 

%HELMHOLTZ gives the helmholtz energy for mixtures  

 

aideal = a_ideal( rho,x,T,m ); 

ahs = a_hs( rho,x,T,sigma_i,m_i ); 

achain = a_chain( rho,x,T,m_i,sigma_i ); 

adisp = a_disp( rho,x,sigma_i,m_i,e_i,k_ij ); 

if ~isempty(e_AiBj) 

    aassoc = a_assoc( rho,x,T,sigma_i,m_i,e_AiBj,n_Ai,k_AiBj,error_assoc ); 

else 

    aassoc = 0; 

end 

a = aideal+ahs+achain+adisp+aassoc; 

 

end 

 

function [ a ] = a_ideal( rho,x,T,m ) 

%A_IDEAL gives the ideal gas contribution to the molar Helmholtz energy a 

%of a mixture 

 

kb = 1.38064852 * 10^(-23);%Boltzmann constant 

nav = 6.022140857 * 10^23;%Avogadro number 

R = kb * nav;%Ideal gas constant 

 

nn = length(x); 

 

a = 0; 

for i = 1:nn 

    if x(i)~=0 

        a = a + R*T*x(i)*(log(x(i)*nav*rho*10^30*(broglie(i,T,m))^3)-1); 

    end 

end 

 

end 

 

function [ l ] = broglie( i,T,m ) 

%BROGLIE gives the Thermal de Broglie wavelength l of a component i 

 

kb = 1.38064852 * 10^(-23);%Boltzmann constant 

h = 6.626070040 * 10^(-34);%Planck constant 

 

l = h/(2*pi*m(i)*kb*T)^(1/2); 

 

end 

 

 

function [ a ] = a_ideal2( rho,x,T ) 

%A_IDEAL2 gives the classical ideal gas contribution to the molar Helmholtz energy a 

%of a mixture 

 

kb = 1.38064852 * 10^(-23);%Boltzmann constant 

nav = 6.022140857 * 10^23;%Avogadro number 

R = kb * nav;%Ideal gas constant 

http://www.mathworks.com/products/matlab/
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nn = length(x); 

 

a = R*T*log(R*T*rho); 

for i = 1:nn 

    if x(i)~=0 

        a = a + R*T*x(i)*log(x(i)); 

    end 

end 

 

end 

 

function [ a ] = a_hs( rho,x,T,sigma_i,m_i ) 

%A_HS gives the hard sphere contribution to the molar Helmholtz energy a of 

%a mixture  

 

kb = 1.38064852 * 10^(-23);%Boltzmann constant 

nav = 6.022140857 * 10^23;%Avogadro number 

R = kb * nav;%Ideal gas constant 

 

%Auxiliary parameters 

A = rho.*sum(x.*m_i.*sigma_i.^0); 

B = rho.*sum(x.*m_i.*sigma_i.^1); 

C = rho.*sum(x.*m_i.*sigma_i.^2); 

D = rho.*sum(x.*m_i.*sigma_i.^3); 

cc = (pi/6)*nav.*D; 

 

%Helmholtz energy 

a = (R*T./rho).*((3.*B.*C.*cc./D)./(1-cc)+(cc.*C.^3./(D.^2))./((1-cc).^2)+... 

    log(1-cc).*(C.^3./(D.^2)-A)); 

 

end 

 

function [ a ] = a_chain( rho,x,T,m_i,sigma_i ) 

%A_CHAIN gives the chain formation contribution to the molar Helmholtz 

%energy a of a mixture  

 

kb = 1.38064852 * 10^(-23);%Boltzmann constant 

nav = 6.022140857 * 10^23;%Avogadro number 

R = kb * nav;%Ideal gas constant 

 

nn = length(x); 

 

a = 0; 

for i = 1:nn 

    g = mixraddist(rho,x,i,i,sigma_i,m_i); 

    a = a + R*T*x(i)*(1-m_i(i))*log(g); 

end 

 

end 

 

function [ g ] = mixraddist( rho,x,i,j,sigma_i,m_i ) 

%MIXRADDIST gives the radial distribution function g for components i and j 

%in a mixture 

 

nav = 6.022140857 * 10^23;%Avogadro number 

 

%Auxiliary parameters 

c2 = (pi/6)*nav.*rho.*sum(x.*m_i.*sigma_i.^2); 

c3 = (pi/6)*nav.*rho.*sum(x.*m_i.*sigma_i.^3); 

 

%Radial distribution function for mixtures of hard spheres 

g = 1./(1-c3) ... 
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    + (3.*sigma_i(i).*sigma_i(j))./(sigma_i(i)+sigma_i(j)).*(c2./(1-c3).^2) ... 

    + 2.*((sigma_i(i).*sigma_i(j))./(sigma_i(i)+sigma_i(j))).^2.*(c2.^2)./((1-c3).^3); 

 

end 

 

function [ a ] = a_assoc( rho,x,T,sigma_i,m_i,e_AiBj,n_Ai,k_AiBj,error_assoc ) 

%A_ASSOC gives the association contribution to the molar Helmholtz energy a 

%of a mixture 

 

kb = 1.38064852 * 10^(-23);%Boltzmann constant 

nav = 6.022140857 * 10^23;%Avogadro number 

R = kb * nav;%Ideal gas constant 

 

d = deltaAiBj( rho,x,T,sigma_i,m_i,e_AiBj,k_AiBj ); 

Xa = XA( rho,x,T,sigma_i,m_i,e_AiBj,k_AiBj,error_assoc ); 

 

siz = size(d); 

n = siz(1); 

p = siz(2); 

 

a = 0; 

for i = 1:p 

    s1 = 0; 

    for j = 1:n 

        s1 = s1 + n_Ai(j,i)*(log(Xa{j,i})-Xa{j,i}/2+1/2); 

    end 

    a = a + R*T*x(i)*s1; 

end 

 

end 

 

function [ y ] = XA( rho,x,T,sigma_i,m_i,e_AiBj,k_AiBj,error_assoc ) 

%XA gives y the cell array of fractions of not bonded association sites of a 

%mixture 

 

deltaaibj = deltaAiBj( rho,x,T,sigma_i,m_i,e_AiBj,k_AiBj ); 

a = size(deltaaibj); 

n = a(1);%maximum number of association sites 

p = a(2);%number of different molecules 

 

%Initialization 

X = cell(n,p);%matrix of mole fractions of molecules i not bonded at site A 

X(:,:) = {0.5}; 

y = cell(n,p);%identical as X but one more step in the iterative process 

y(:,:) = {0.5}; 

for i = 1:n 

    for j = 1:p 

        y{i,j}=iteration(i,j,rho,x,X,T,sigma_i,m_i,e_AiBj,k_AiBj); 

    end 

end 

 

%Stop condition initialization 

nor = cell2mat(X)-cell2mat(y); 

 

%Iteration 

while norm(nor)>error_assoc 

 

    X = y; 

    for i = 1:n 

        for j = 1:p 

            y{i,j}=iteration(i,j,rho,x,y,T,sigma_i,m_i,e_AiBj,k_AiBj); 

        end 

    end 
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    %Test for end condition 

    nor = cell2mat(X)-cell2mat(y); 

 

end 

 

end 

 

function [ y ] = iteration( A,i,rho,x,X,T,sigma_i,m_i,e_AiBj,k_AiBj ) 

%ITERATION gives f_Ai(X) where X is the array of fractions of not bonded 

%association sites and f_Ai the function given by SAFT for molecule i and 

%site A 

%   X: cell array of fractions of not bonded association sites (rows 

%   represent different association sites and columns different molecules) 

 

nav = 6.022140857 * 10^23;%Avogadro number 

 

deltaaibj = deltaAiBj( rho,x,T,sigma_i,m_i,e_AiBj,k_AiBj ); 

 

a = size(deltaaibj); 

n = a(1); %maximum number of association site 

p = a(2); %number of different molecules 

d = deltaaibj; 

 

s2 = 0; 

for l = 1:p %sum on molecules 

    s1 = 0; 

    for j = 1:n %sum on association sites for a given molecule 

        s1 = s1 + d{A,i,j,l}.*X{j,l}; 

    end 

    s2 = s2 + x(l)*s1; 

end 

 

y = 1./(1+nav.*rho.*s2); 

 

end 

 

function [ y ] = deltaAiBj( rho,x,T,sigma_i,m_i,e_AiBj,k_AiBj ) 

%DELTAAIBJ gives the delta quantity (noted here as y) required for the 

%association contribution to the molar Helmholtz energy 

 

kb = 1.38064852 * 10^(-23);%Boltzmann constant 

 

siz = size(e_AiBj); 

D = zeros(siz); 

G = cell(siz); 

y = cell(siz); 

for i = 1:siz(1) 

    for j = 1:siz(2) 

        for k = 1:siz(1) 

            for l = 1:siz(2) 

                D(i,j,k,l) = (sigma_i(j)+sigma_i(l))/2; 

                G{i,j,k,l} = mixraddist(rho,x,j,l,sigma_i,m_i); 

                y{i,j,k,l} = 

G{i,j,k,l}.*D(i,j,k,l)^3*k_AiBj(i,j,k,l)*(exp(e_AiBj(i,j,k,l)/(kb*T))-1); 

            end 

        end 

    end 

end 

 

end 

 

function [ a ] = a_disp( rho,x,sigma_i,m_i,e_i,k_ij ) 
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%A_DISP gives the dispersion contribution to the molar Helmholtz energy a 

%of a mixture  

 

nav = 6.022140857 * 10^23;%Avogadro number 

 

nn = length(x); 

 

%diameters and energies of mixing 

sig = zeros(nn); 

eps = zeros(nn); 

for i = 1:nn 

    for j = 1:nn 

        sig(i,j) = (sigma_i(i)+sigma_i(j))/2; 

        eps(i,j) = (1-k_ij(i,j)) * (e_i(i)*e_i(j))^(1/2); 

    end 

end 

 

%matrix x_im_ix_jm_j 

xmxm = (transpose(x.*m_i)*(x.*m_i)); 

 

%Helmholtz energy 

a = -nav*(pi*nav.*rho/6).*sum(sum(sig.^3.*eps.*xmxm)); 

 

end 

 

 

 
Published with MATLAB® R2017b 

 

Chemical potential 

function [mu,rc] = chempot( 

rho,x,T,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc ) 

%CHEMPOT gives the chemical potential for mixtures 

 

nn = length(x); 

 

mu = cell(1,nn); 

for i = 1:nn 

    muideal = mu_ideal( rho,x,i,T,m ); 

    muhs = mu_hs( rho,x,i,T,sigma_i,m_i ); 

    muchain = mu_chain( rho,x,i,T,sigma_i,m_i ); 

    mudisp = mu_disp( rho,x,i,sigma_i,m_i,e_i,k_ij ); 

    if ~isempty(e_AiBj) 

        [muassoc,rc] = mu_assoc( rho,x,i,T,sigma_i,m_i,e_AiBj,n_Ai,k_AiBj,error_assoc 

); 

    else 

        muassoc = 0; 

        rc = 0; 

    end 

    mu{i} = muideal+muhs+muchain+mudisp+muassoc; 

end 

 

end 

 

 

http://www.mathworks.com/products/matlab/
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function [ mu ] = mu_ideal( rho,x,i,T,m ) 

%MU_IDEAL gives the ideal gas contribution to the chemical potential mu of 

%component i in a mixture  

 

kb = 1.38064852 * 10^(-23);%Boltzmann constant 

nav = 6.022140857 * 10^23;%Avogadro number 

R = kb * nav;%Ideal gas constant 

 

if x(i) == 0 

    mu = 0;%in order to avoid -InF*0 issues when calculating Gibbs energy 

else 

    mu = R*T*log(x(i)*nav*rho*10^30*(broglie(i,T,m))^3); 

end 

 

end 

 

function [ mu ] = mu_ideal2( rho,x,i,T ) 

%MU_IDEAL gives the classical ideal gas contribution to the chemical potential mu of 

%component i in a mixture  

 

kb = 1.38064852 * 10^(-23);%Boltzmann constant 

nav = 6.022140857 * 10^23;%Avogadro number 

R = kb * nav;%Ideal gas constant 

 

if x(i) == 0 

    mu = 0;%in order to avoid -InF*0 issues when calculating Gibbs energy 

else 

    mu = R*T*(log(R*T*x(i)*rho)+1); 

end 

 

end 

 

function [ mu ] = mu_hs( rho,x,i,T,sigma_i,m_i ) 

%MU_HS gives the hard sphere contribution to the chemical potential mu of 

%component i in a mixture 

 

kb = 1.38064852 * 10^(-23); 

nav = 6.022140857 * 10^23; 

R = kb * nav; 

 

%Auxiliary parameters 

A = rho.*sum(x.*m_i.*sigma_i.^0); 

B = rho.*sum(x.*m_i.*sigma_i.^1); 

C = rho.*sum(x.*m_i.*sigma_i.^2); 

D = rho.*sum(x.*m_i.*sigma_i.^3); 

cc = (pi/6)*nav.*D; 

Ai =m_i(i)*sigma_i(i)^0; 

Bi =m_i(i)*sigma_i(i)^1; 

Ci =m_i(i)*sigma_i(i)^2; 

Di =m_i(i)*sigma_i(i)^3; 

cci = (pi/6)*nav*Di; 

 

%Chemical potential 

 

mu = R*T*(... 

    1./(1-cc).*... 

    (3.*Bi.*C.*cc./D+3.*B.*Ci.*cc./D-C.^3.*cci./D.^2+A.*cci)... 

    +1./(1-cc).^2.*... 

    (3.*B.*C.*cc.*cci./D+3.*C.^2.*Ci.*cc./D.^2-C.^3.*cci./D.^2) ... 

    +1./(1-cc).^3.*... 

    (2.*C.^3.*cc.*cci./D.^2) ... 

    +log(1-cc).*... 

    (3.*C.^2.*Ci./D.^2-2.*C.^3.*Di./D.^3-Ai)... 
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    ); 

 

end 

 

function [ mu ] = mu_chain( rho,x,i,T,sigma_i,m_i ) 

%MU_CHAIN gives the chain formation contribution to the chemical potential 

%mu of component i in a mixture  

 

kb = 1.38064852 * 10^(-23);%Boltzmann constant 

nav = 6.022140857 * 10^23;%Avogadro number 

R = kb * nav;%Ideal gas constant 

 

nn = length(x); 

g = mixraddist(rho,x,i,i,sigma_i,m_i); 

mu = R*T*(1-m_i(i))*log(g); 

for j = 1:nn 

    dlg = d_ln_raddist(rho,x,i,j,sigma_i,m_i); 

    mu = mu + R*T*(x(j)*rho.*(1-m_i(j)).*dlg); 

end 

 

end 

 

function [ dlg ] = d_ln_raddist( rho,x,i,j,sigma_i,m_i ) 

%D_LN_RADDIST gives the derivative dlg of the ln of the radial distribution 

%function for component j with respect to the molar density of component i 

%in a mixture  

 

gg = mixraddist(rho,x,j,j,sigma_i,m_i); 

dg = d_raddist(rho,x,i,j,j,sigma_i,m_i); 

dlg = dg./gg; 

 

end 

 

function [ dg ] = d_raddist( rho,x,i,j,k,sigma_i,m_i ) 

%D_RADDIST gives the derivative dg of the radial distribution function 

%between components j and k with respect to the molar density of component 

%i in a mixture  

 

nav = 6.022140857 * 10^23;%Avogadro number 

 

%Auxiliary parameters 

c2 = (pi*nav/6).*rho.*sum(x.*m_i.*sigma_i.^2); 

c3 = (pi*nav/6).*rho.*sum(x.*m_i.*sigma_i.^3); 

 

%Derivative  wrt component i of the radial distribution function of 

%mixtures of hard spheres 

dg = (pi/6).*nav.*m_i(i).*(sigma_i(i).^3./((1-c3).^2)+... 

    3.*sigma_i(j).*sigma_i(k)./(sigma_i(j)+sigma_i(k)).*(sigma_i(i).^2./((1-

c3).^2)+... 

    2.*sigma_i(i).^3.*c2./((1-c3).^3))+... 

    

2.*(sigma_i(j).*sigma_i(k)./(sigma_i(j)+sigma_i(k))).^2.*(2.*sigma_i(i).^2.*c2./((1-

c3).^3)+... 

    3.*sigma_i(i).^3.*c2.^2./((1-c3).^4))); 

 

end 

 

function [ mu,rc ] = mu_assoc( rho,x,i,T,sigma_i,m_i,e_AiBj,n_Ai,k_AiBj,error_assoc ) 

%MU_ASSOC gives the association contribution to the chemical potential mu 

%of component i in a mixture 

 

kb = 1.38064852 * 10^(-23);%Boltzmann constant 

nav = 6.022140857 * 10^23;%Avogadro number 
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R = kb * nav;%Ideal gas constant 

 

a = size(e_AiBj); 

n = a(1); %maximum number of association site 

p = a(2); %number of different molecules 

 

Xa = XA( rho,x,T,sigma_i,m_i,e_AiBj,k_AiBj,error_assoc ); 

[dXa,rc] = dXA(rho,x,Xa,i,T,sigma_i,m_i,e_AiBj,k_AiBj); 

 

s1 = 0; 

for j = 1:n 

    s1 = s1 + n_Ai(j,i)*(log(Xa{j,i}) - Xa{j,i}/2 + 1/2); 

end 

 

s2 = 0; 

for k = 1:p 

    s3 = 0; 

    for j = 1:n 

        s3 = s3 + n_Ai(j,k)*(dXa{j,k}.*(1./Xa{j,k}-1/2)); 

    end 

    s2 = s2 + x(k)*s3; 

end 

 

mu = R*T*(s1 + rho.*s2); 

 

end 

 

function [dxa,rc] = dXA(rho,x,Xa,q,T,sigma_i,m_i,e_AiBj,k_AiBj) 

%dXA gives dxa the derivative with respect to the molar density of component q 

%of the cell array of fractions of not bonded association sites for a 

%system with the following properties: 

%   Xa: cell array of fractions of not bonded association sites 

 

nav = 6.022140857 * 10^23;%Avogadro constant 

 

d = deltaAiBj( rho,x,T,sigma_i,m_i,e_AiBj,k_AiBj ); 

dd = d_deltaAiBj( rho,x,q,T,sigma_i,m_i,e_AiBj,k_AiBj ); 

 

siz = size(d); 

n_assoc = siz(1)*siz(2);%total number of association sites (some can be "0") 

 

%Creation of a matrix used to convert a matrix to a vector and back 

conv = zeros(siz(1),siz(2)); 

for i = 1:siz(1) 

    for j = 1:siz(2) 

        conv(i,j)=j+(i-1)*siz(2); 

    end 

end 

 

%Creation of Q and c 

Q = zeros(n_assoc,n_assoc); 

c = zeros(n_assoc,1); 

 

for i = 1:siz(1) 

    for j = 1:siz(2) 

 

        %c 

        s1 = 0; 

        for k = 1:siz(1) 

            s1 = s1 + Xa{k,q}.*d{i,j,k,q}; 

        end 

 

        s2 = 0; 
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        for l = 1:siz(2) 

            s3 = 0; 

           for k = 1:siz(1) 

               s3 = s3 + Xa{k,l}.*dd{i,j,k,l}; 

           end 

           s2 = s2 + x(l)*s3; 

        end 

 

        c(conv(i,j)) = -nav*Xa{i,j}.^2.*(s1 + rho.*s2); 

 

        %Q 

        for k = 1:siz(1) 

           for l = 1:siz(2) 

              Q(conv(i,j),conv(k,l)) = eq(conv(i,j),conv(k,l)) + 

Xa{i,j}.^2.*nav.*rho.*x(l).*d{i,j,k,l}; 

           end 

        end 

 

    end 

end 

 

%Solve linear system 

dxa = cell(siz(1),siz(2));%final solution as a matrix (cell) 

rc = rcond(Q); 

y = Q\c;%solution as a vector 

 

%Convert vectors back to matrices 

for i = 1:siz(1) 

    for j = 1:siz(2) 

        dxa{i,j} = y(conv(i,j)); 

    end 

end 

 

end 

 

function [ y ] = d_deltaAiBj( rho,x,q,T,sigma_i,m_i,e_AiBj,k_AiBj ) 

%D_DELTAAIBJ gives the derivative with respect to the molar density of 

%component q of the delta quantity (noted here as y) required for the 

%association contribution to the molar Helmholtz energy 

 

kb = 1.38064852 * 10^(-23);%Boltzmann constant 

 

siz = size(e_AiBj); 

D = zeros(siz); 

G = cell(siz); 

y = cell(siz); 

for i = 1:siz(1) 

    for j = 1:siz(2) 

        for k = 1:siz(1) 

            for l = 1:siz(2) 

                D(i,j,k,l) = (sigma_i(j)+sigma_i(l))/2; 

                G{i,j,k,l} = d_raddist(rho,x,q,j,l,sigma_i,m_i); 

                y{i,j,k,l} = 

G{i,j,k,l}.*D(i,j,k,l)^3*k_AiBj(i,j,k,l)*(exp(e_AiBj(i,j,k,l)/(kb*T))-1); 

            end 

        end 

    end 

end 

 

end 

 

function [ mu ] = mu_disp( rho,x,i,sigma_i,m_i,e_i,k_ij ) 

%MU_CHAIN gives the chain formation contribution to the chemical potential 
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%mu of component i in a mixture  

 

nav = 6.022140857 * 10^23;%Avogadro number 

 

nn = length(x); 

 

%diameters and energies of mixing 

sig = zeros(nn); 

eps = zeros(nn); 

for k = 1:nn 

    for j = 1:nn 

        sig(k,j) = (sigma_i(k)+sigma_i(j))/2; 

        eps(k,j) = (1-k_ij(k,j)) * (e_i(k)*e_i(j))^(1/2); 

    end 

end 

 

mu = -nav*(pi*nav.*rho/6)*m_i(i)*2.*sum(x.*m_i.*(sig(i,:).^3).*eps(i,:)); 

 

end 

 

 
Published with MATLAB® R2017b 

 

Pressure 

function [p] = pressure( rho,x,T,sigma_i,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc ) 

%PRESSURE gives the pressure (directly derivated from Helmholtz energy) for 

%mixtures 

 

pideal = p_ideal(rho,T); 

phs = p_hs(rho,x,T,sigma_i,m_i); 

pchain = p_chain(rho,x,T,m_i,sigma_i); 

if ~isempty(e_AiBj) 

    passoc = p_assoc(rho,x,T,sigma_i,m_i,e_AiBj,n_Ai,k_AiBj,error_assoc); 

else 

    passoc = 0; 

end 

pdisp = p_disp(rho,x,sigma_i,m_i,e_i,k_ij); 

p = pideal+phs+pchain+passoc+pdisp; 

 

end 

 

function [p] = p_ideal(rho,T) 

%P_IDEAL gives the ideal contribution to the pressure p of a system  

 

kb = 1.38064852 * 10^(-23);%Boltzmann constant 

nav = 6.022140857 * 10^23;%Avogadro number 

R = kb * nav;%Ideal gas constant 

 

p = rho * 1e30 * R * T; 

end 

 

function [p] = p_hs( rho,x,T,sigma_i,m_i ) 

%P_HS gives the hard sphere contribution to the pressure p of a system  

 

kb = 1.38064852 * 10^(-23);%Boltzmann constant 

http://www.mathworks.com/products/matlab/
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nav = 6.022140857 * 10^23;%Avogadro number 

R = kb * nav;%Ideal gas constant 

 

%Auxiliary parameters 

c0 = (pi/6)*nav.*rho.*sum(x.*m_i.*sigma_i.^0); 

c1 = (pi/6)*nav.*rho.*sum(x.*m_i.*sigma_i.^1); 

c2 = (pi/6)*nav.*rho.*sum(x.*m_i.*sigma_i.^2); 

c3 = (pi/6)*nav.*rho.*sum(x.*m_i.*sigma_i.^3); 

m = sum(x.*m_i); 

 

%Pressure 

p = m*R*T*rho*1e30*(1/(1-c3) + 3*c1*c2/(c0*(1-c3)^2)+(3*c2^3-c2^3*c3)/(c0*(1-c3)^3)-

1); 

 

end 

 

function [p] = p_chain( rho,x,T,m_i,sigma_i ) 

%P_CHAIN gives the chain formation contribution to the pressure p of a 

%mixture 

 

kb = 1.38064852 * 10^(-23);%Boltzmann constant 

nav = 6.022140857 * 10^23;%Avogadro number 

R = kb * nav;%Ideal gas constant 

 

nn = length(x); 

 

p = 0; 

for i = 1:nn 

    dlg = d_ln_raddist_rho(rho,x,i,sigma_i,m_i); 

    p = p +R*T*rho*1e30*x(i)*(1-m_i(i))*dlg; 

end 

 

end 

 

function [dlg] = d_ln_raddist_rho(rho,x,i,sigma_i,m_i) 

%D_LN_RADDIST_RHO gives the derivative dlg of the ln of the radial distribution 

%function for component i with respect to the overall molar density (times the molar 

%density) in a mixture  

 

nav = 6.022140857 * 10^23;%Avogadro number 

 

%Auxiliary parameters 

c2 = (pi*nav/6).*rho.*sum(x.*m_i.*sigma_i.^2); 

c3 = (pi*nav/6).*rho.*sum(x.*m_i.*sigma_i.^3); 

 

%Derivative  wrt component i of the radial distribution function of 

%mixtures of hard spheres 

 

g = mixraddist( rho,x,i,i,sigma_i,m_i ); 

dlg = 1/g*(c3/(1-c3)^2+3/2*(sigma_i(i)*c2)/((1-c3)^2)... 

    +(3*sigma_i(i)*c2*c3)/((1-c3)^3)+(sigma_i(i)^2*c2^2)/((1-c3)^3)... 

    +3/2*(sigma_i(i)^2*c2^2*c3)/((1-c3)^4)); 

 

end 

 

function [ dg ] = d_raddist_rho( rho,x,i,j,sigma_i,m_i ) 

%D_RADDIST_rho gives the derivative dg of the radial distribution function 

%between components i and j with respect to the overall molar density 

%in a mixture  

 

nav = 6.022140857 * 10^23;%Avogadro number 

 

%Auxiliary parameters 
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c2 = (pi*nav/6).*rho.*sum(x.*m_i.*sigma_i.^2); 

c3 = (pi*nav/6).*rho.*sum(x.*m_i.*sigma_i.^3); 

 

%Derivative  wrt component i of the radial distribution function of 

%mixtures of hard spheres 

dg = 1/rho*(... 

    c3/((1-c3).^2)+... 

    3.*sigma_i(i).*sigma_i(j)./(sigma_i(i)+sigma_i(j)).*(c2/((1-c3).^2)+... 

    2.*c3.*c2./((1-c3).^3))+... 

    2.*(sigma_i(i).*sigma_i(j)./(sigma_i(i)+sigma_i(j))).^2.*(2.*c2.^2./((1-

c3).^3)+... 

    3.*c3.*c2.^2./((1-c3).^4))... 

    ); 

 

end 

 

function [p] = p_assoc( rho,x,T,sigma_i,m_i,e_AiBj,n_Ai,k_AiBj,error_assoc ) 

%P_ASSOC gives the association contribution to the pressure p 

%of a mixture  

 

kb = 1.38064852 * 10^(-23);%Boltzmann constant 

nav = 6.022140857 * 10^23;%Avogadro number 

R = kb * nav;%Ideal gas constant 

 

a = size(e_AiBj); 

n = a(1); %maximum number of association site 

p = a(2); %number of different molecules 

 

Xa = XA( rho,x,T,sigma_i,m_i,e_AiBj,k_AiBj,error_assoc ); 

dXa = dXA_rho(rho,x,Xa,T,sigma_i,m_i,e_AiBj,k_AiBj); 

 

s2 = 0; 

for k = 1:p 

    s3 = 0; 

    for j = 1:n 

        s3 = s3 + n_Ai(j,k)*(dXa{j,k}.*(1./Xa{j,k}-1/2)); 

    end 

    s2 = s2 + x(k)*s3; 

end 

 

p = R*T*rho*1e30*(rho.*s2); 

 

end 

 

function dxa = dXA_rho(rho,x,Xa,T,sigma_i,m_i,e_AiBj,k_AiBj) 

%XA gives dxa the derivative with respect to the overall molar density 

%of the cell array of fractions of not bonded association sites for a 

%system  

%   Xa: cell array of fractions of not bonded association sites 

 

nav = 6.022140857 * 10^23;%Avogadro constant 

 

d = deltaAiBj( rho,x,T,sigma_i,m_i,e_AiBj,k_AiBj ); 

dd = d_deltaAiBj_rho( rho,x,T,sigma_i,m_i,e_AiBj,k_AiBj ); 

 

siz = size(d); 

n_assoc = siz(1)*siz(2);%total number of association sites (some can be "0") 

 

%Creation of a matrix used to convert a matrix to a vector and back 

conv = zeros(siz(1),siz(2)); 

for i = 1:siz(1) 

    for j = 1:siz(2) 

        conv(i,j)=j+(i-1)*siz(2); 
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    end 

end 

 

%Creation of Q and c 

Q = zeros(n_assoc,n_assoc); 

c = zeros(n_assoc,1); 

 

for i = 1:siz(1) 

    for j = 1:siz(2) 

 

        %c 

        s1 = 0; 

        for l = 1:siz(2) 

            s2 = 0; 

           for k = 1:siz(1) 

               s2 = s2 + Xa{k,l}.*(d{i,j,k,l} + rho.*dd{i,j,k,l}); 

           end 

           s1 = s1 + x(l).*s2; 

        end 

 

        c(conv(i,j)) = -nav*Xa{i,j}.^2.*s1; 

 

        %Q 

        for k = 1:siz(1) 

           for l = 1:siz(2) 

              Q(conv(i,j),conv(k,l)) = eq(conv(i,j),conv(k,l)) + 

Xa{i,j}.^2.*nav.*rho.*x(l).*d{i,j,k,l}; 

           end 

        end 

 

    end 

end 

 

%Solve linear system 

dxa = cell(siz(1),siz(2));%final solution as a matrix (cell) 

y = Q\c;%solution as a vector 

 

%Convert vectors back to matrices 

for i = 1:siz(1) 

    for j = 1:siz(2) 

        dxa{i,j} = y(conv(i,j)); 

    end 

end 

 

end 

 

function [ y ] = d_deltaAiBj_rho( rho,x,T,sigma_i,m_i,e_AiBj,k_AiBj ) 

%D_DELTAAIBJ gives the derivative with respect to the overall molar density 

%of the delta quantity (noted here as y) required for the 

%association contribution to the molar Helmholtz energy 

 

kb = 1.38064852 * 10^(-23);%Boltzmann constant 

 

siz = size(e_AiBj); 

D = zeros(siz); 

G = cell(siz); 

y = cell(siz); 

for i = 1:siz(1) 

    for j = 1:siz(2) 

        for k = 1:siz(1) 

            for l = 1:siz(2) 

                D(i,j,k,l) = (sigma_i(j)+sigma_i(l))/2; 

                G{i,j,k,l} = d_raddist_rho(rho,x,j,l,sigma_i,m_i); 
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                y{i,j,k,l} = 

G{i,j,k,l}.*D(i,j,k,l)^3*k_AiBj(i,j,k,l)*(exp(e_AiBj(i,j,k,l)/(kb*T))-1); 

            end 

        end 

    end 

end 

 

end 

 

function [p] = p_disp( rho,x,sigma_i,m_i,e_i,k_ij ) 

%A_DISP gives the dispersion contribution to the pressure p 

%of a mixture  

 

nav = 6.022140857 * 10^23;%Avogadro number 

 

nn = length(x); 

 

%diameters and energies of mixing 

sig = zeros(nn); 

eps = zeros(nn); 

for i = 1:nn 

    for j = 1:nn 

        sig(i,j) = (sigma_i(i)+sigma_i(j))/2; 

        eps(i,j) = (1-k_ij(i,j)) * (e_i(i)*e_i(j))^(1/2); 

    end 

end 

 

%matrix x_im_ix_jm_j 

xmxm = (transpose(x.*m_i)*(x.*m_i)); 

 

%Pressure 

p = -nav*(pi*nav.*rho^2/6).*sum(sum(sig.^3.*eps.*xmxm))*1e30; 

 

end 

 

 
Published with MATLAB® R2017b 

 

Hessian 

function [h] = hessian( 

rho,rho_i,T,sigma_i,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc ) 

%HESSIAN gives the Hessian (wrt molar component densities) of the Helmholtz 

%energy density for mixtures 

nn = length(rho_i); 

 

h = zeros(nn); 

for i = 1:nn 

    for j =1:nn 

        hideal = h_ideal(rho_i,T,i,j); 

        hhs = h_hs(rho,rho_i,T,m_i,sigma_i,i,j); 

        hchain = h_chain(rho,rho_i,T,m_i,sigma_i,i,j); 

        hdisp = h_disp(sigma_i,m_i,e_i,k_ij,i,j); 

        if ~isempty(e_AiBj) 

            hassoc = 

h_assoc(rho,rho_i,T,sigma_i,m_i,e_AiBj,n_Ai,k_AiBj,error_assoc,i,j); 

http://www.mathworks.com/products/matlab/
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        else 

            hassoc = 0; 

        end 

        h(i,j) = hideal+hhs+hchain+hdisp+hassoc; 

    end 

end 

 

end 

 

function [h] = h_ideal(rho_i,T,i,j) 

%H_IDEAL gives the ideal contribution to the (i,j) coefficient of the 

%Hessian of the Helmholtz energy density in a mixture  

 

kb = 1.38064852 * 10^(-23);%Boltzmann constant 

nav = 6.022140857 * 10^23;%Avogadro number 

R = kb * nav;%Ideal gas constant 

 

h=0; 

if i == j 

    h = R*T/(rho_i(i)); 

end 

 

end 

 

function [h] = h_hs( rho,rho_i,T,m_i,sigma_i,i,j ) 

%H_HS gives the hard sphere contribution to the (i,j) coefficient of the 

%Hessian of the Helmholtz energy density of a mixture  

 

kb = 1.38064852 * 10^(-23);%Boltzmann constant 

nav = 6.022140857 * 10^23;%Avogadro number 

R = kb * nav;%Ideal gas constant 

x = rho_i/rho; 

 

%Auxiliary parameters 

A = rho.*sum(x.*m_i.*sigma_i.^0); 

B = rho.*sum(x.*m_i.*sigma_i.^1); 

C = rho.*sum(x.*m_i.*sigma_i.^2); 

D = rho.*sum(x.*m_i.*sigma_i.^3); 

cc = (pi/6)*nav.*D; 

Ai =m_i(i)*sigma_i(i)^0; 

Bi =m_i(i)*sigma_i(i)^1; 

Ci =m_i(i)*sigma_i(i)^2; 

Di =m_i(i)*sigma_i(i)^3; 

cci = (pi/6)*nav*Di; 

Aj =m_i(j)*sigma_i(j)^0; 

Bj =m_i(j)*sigma_i(j)^1; 

Cj =m_i(j)*sigma_i(j)^2; 

Dj =m_i(j)*sigma_i(j)^3; 

ccj = (pi/6)*nav*Dj; 

 

%Hessian 

h = ccj/(D*(1-cc)^2) * (3*Bi*C*cc + 3*B*Ci*cc - 3*C^2*Ci/D + 2*C^3*Di/D^2)... 

    + 1/(D*(1-cc)) * (3*Bi*Cj*cc + 3*Bj*Ci*cc - 6*C*Ci*Cj/D... 

    + 6*C^2*Ci*Dj/D^2 + 6*C^2*Cj*Di/D^2 - 6*C^3*Di*Dj/D^3)... 

    + 2*cci*ccj/(1-cc)^3 * (3*B*C*cc/D-C^3/D^2) + 2*ccj/(D^2*(1-cc)^3)*(3*C^2*Ci-

2*C^3*Di/D)... 

    + cci/(D*(1-cc)^2) * (3*Bj*C*cc + 3*B*Cj*cc - 3*C^2*Cj/D + 2*C^3*Dj/D^2)... 

    + 1/(D^2*(1-cc)^2) * (6*C*Ci*Cj - 6*C^2*Ci*Dj/D - 6*C^2*Cj*Di/D + 

6*C^3*Di*Dj/D^2)... 

    + 6*cci*ccj*C^3/(D^2*(1-cc)^4) + 6*C^2*Cj*cci/(D^2*(1-cc)^3) - 

4*C^3*cci*Dj/(D^3*(1-cc)^3)... 

    - ccj/(1-cc) * (3*C^2*Ci/D^2 - 2*C^3*Di/D^3 - Ai)... 

    + log(1-cc)/D^2 * (6*C*Ci*Cj - 6*C^2*Ci*Dj/D - 6*C^2*Cj*Di/D + 6*C^3*Di*Dj/D^2)... 
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    - cci*ccj/(1-cc)^2*(C^3/D^2-A) - cci/(1-cc) * (3*C^2*Cj/D^2 - 2*C^3*Dj/D^3 - Aj); 

 

h = R*T*h; 

 

end 

 

function [h] = h_chain( rho,rho_i,T,m_i,sigma_i,i,j ) 

%H_CHAIN gives the chain contribution to the (i,j) coefficient of the 

%Hessian of the Helmholtz energy density of a mixture  

 

kb = 1.38064852 * 10^(-23);%Boltzmann constant 

nav = 6.022140857 * 10^23;%Avogadro number 

R = kb * nav;%Ideal gas constant 

 

x = rho_i/rho;%mole fraction vector 

nn = length(x); 

 

dli = d_ln_raddist( rho,x,j,i,sigma_i,m_i ); 

dlj = d_ln_raddist( rho,x,i,j,sigma_i,m_i ); 

 

h = R*T*((1-m_i(i))*dli+(1-m_i(j))*dlj); 

 

for k = 1:nn 

    d2lk = d2_ln_raddist( rho,x,k,i,j,sigma_i,m_i ); 

    h = h + R*T* rho_i(k)*(1-m_i(k))*d2lk; 

end 

 

end 

 

function [dlg] = d2_ln_raddist( rho,x,k,i,j,sigma_i,m_i ) 

%D2_LN_RADDIST gives the derivative dlg of the ln of the radial distribution 

%function for component k with respect to the molar density of components i 

%and j in a mixture  

 

g = mixraddist(rho,x,k,k,sigma_i,m_i); 

dgi = d_raddist(rho,x,i,k,k,sigma_i,m_i); 

dgj = d_raddist(rho,x,j,k,k,sigma_i,m_i); 

ddg = d2_raddist( rho,x,i,j,k,k,sigma_i,m_i ); 

 

dlg = ddg/g-dgi*dgj/g^2; 

 

end 

 

function [dg] = d2_raddist( rho,x,i,j,k,l,sigma_i,m_i ) 

%D2_RADDIST gives the second order derivative dg of the radial distribution function 

%between components k and l with respect to the molar density of components 

%i and j in a mixture  

 

nav = 6.022140857 * 10^23;%Avogadro number 

 

%Auxiliary parameters 

c2 = (pi*nav/6).*rho.*sum(x.*m_i.*sigma_i.^2); 

c3 = (pi*nav/6).*rho.*sum(x.*m_i.*sigma_i.^3); 

 

%Derivative 

dg = (pi*nav/6)^2*(2*m_i(i)*m_i(j)*(sigma_i(i)*sigma_i(j))^2)/(1-c3)^3*(... 

    sigma_i(i)*sigma_i(j) + 3*(sigma_i(k)*sigma_i(l)/(sigma_i(k)+sigma_i(l)))... 

    *(sigma_i(i)+sigma_i(j) + (3*c2*sigma_i(i)*sigma_i(j))/(1-c3))... 

    +2*(sigma_i(k)*sigma_i(l)/(sigma_i(k)+sigma_i(l)))^2*... 

    (1+3*sigma_i(i)*c2/(1-c3)+3*sigma_i(j)*c2/(1-c3)... 

    +6*c2^2*sigma_i(i)*sigma_i(j)/(1-c3)^2)... 

    ); 
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end 

 

function [h] = h_assoc( rho,rho_i,T,sigma_i,m_i,e_AiBj,n_Ai,k_AiBj,error_assoc,i,j ) 

%H_ASSOC gives the association contribution to the (i,j) coefficient of the 

%Hessian of the Helmholtz energy density of a mixture  

 

kb = 1.38064852 * 10^(-23);%Boltzmann constant 

nav = 6.022140857 * 10^23;%Avogadro number 

R = kb * nav;%Ideal gas constant 

 

a = size(e_AiBj); 

n = a(1); %maximum number of association site 

p = a(2); %number of different molecules 

 

x = rho_i/rho; 

 

Xa = XA( rho,x,T,sigma_i,m_i,e_AiBj,k_AiBj,error_assoc ); 

dXai = dXA(rho,x,Xa,i,T,sigma_i,m_i,e_AiBj,k_AiBj); 

dXaj = dXA(rho,x,Xa,j,T,sigma_i,m_i,e_AiBj,k_AiBj); 

dXaij = d2XA(rho,x,Xa,dXai,dXaj,i,j,T,sigma_i,m_i,e_AiBj,k_AiBj); 

 

s1 = 0; 

for k = 1:n 

    s1 = s1 + n_Ai(k,i)*(1/Xa{k,i} - 1/2) * dXaj{k,i}; 

end 

 

s2 = 0; 

for k = 1:n 

    s2 = s2 + n_Ai(k,j)*(1/Xa{k,j} - 1/2) * dXai{k,j}; 

end 

 

s3 = 0; 

for l = 1:p 

    s4 = 0; 

    for k = 1:n 

        s4 = s4 + n_Ai(k,l)*(1/Xa{k,l}-1/2)*dXaij{k,l} - 

n_Ai(k,l)*dXai{k,l}*dXaj{k,l}/(Xa{k,l})^2; 

    end 

    s3 = s3 + rho_i(l)*s4; 

end 

 

%Hessian 

h = R*T*(s1+s2+s3); 

 

end 

 

function dxa = d2XA(rho,x,Xa,dXap,dXaq,p,q,T,sigma_i,m_i,e_AiBj,k_AiBj) 

%D2XA gives dxa the derivative with respect to the molar density of components p 

%and q of the cell array of fractions of not bonded association sites for a 

%system  

%   Xa: cell array of fractions of not bonded association sites 

%   dXap: cell array of  derivative wrt p of fractions of not bonded association sites 

%   dXaq: cell array of  derivative wrt q of fractions of not bonded association sites 

 

nav = 6.022140857 * 10^23;%Avogadro constant 

 

d = deltaAiBj( rho,x,T,sigma_i,m_i,e_AiBj,k_AiBj ); 

ddp = d_deltaAiBj( rho,x,p,T,sigma_i,m_i,e_AiBj,k_AiBj ); 

ddq = d_deltaAiBj( rho,x,q,T,sigma_i,m_i,e_AiBj,k_AiBj ); 

d2d = d2_deltaAiBj( rho,x,p,q,T,sigma_i,m_i,e_AiBj,k_AiBj ); 

 

siz = size(d); 

n_assoc = siz(1)*siz(2);%total number of association sites (some can be "0") 
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%Creation of a matrix used to convert a matrix to a vector and back 

conv = zeros(siz(1),siz(2)); 

for i = 1:siz(1) 

    for j = 1:siz(2) 

        conv(i,j)=j+(i-1)*siz(2); 

    end 

end 

 

%Creation of Q and c 

Q = zeros(n_assoc,n_assoc); 

c = zeros(n_assoc,1); 

 

for i = 1:siz(1) 

    for j = 1:siz(2) 

 

        %r 

        r = 2*dXap{i,j}*dXaq{i,j}/Xa{i,j}; 

 

        %s 

        s1 = 0; 

        for l = 1:siz(2) 

            s2 = 0; 

            for k = 1:siz(1) 

                s2 = s2 + Xa{k,l}*d2d{i,j,k,l} + dXap{k,l} * ddq{i,j,k,l} + 

dXaq{k,l}*ddp{i,j,k,l}; 

            end 

            s1 = s1 + x(l)*s2; 

        end 

        s = -nav*rho*(Xa{i,j}^2) * s1; 

 

        %t 

        s1 = 0; 

        for k = 1:siz(1) 

            s1 = s1 + ddq{i,j,k,p}*Xa{k,p} + d{i,j,k,p}*dXaq{k,p}; 

        end 

        s2 = 0; 

        for k = 1:siz(1) 

            s2 = s2 + ddp{i,j,k,q}*Xa{k,q} + d{i,j,k,q}*dXap{k,q}; 

        end 

        t = -nav*(Xa{i,j}^2) * (s1+s2); 

 

        %c 

        c(conv(i,j)) = r+s+t; 

 

        %Q 

        for k = 1:siz(1) 

           for l = 1:siz(2) 

              Q(conv(i,j),conv(k,l)) = eq(conv(i,j),conv(k,l)) + 

Xa{i,j}.^2.*nav.*rho.*x(l).*d{i,j,k,l}; 

           end 

        end 

 

    end 

end 

 

%Solve linear system 

dxa = cell(siz(1),siz(2));%final solution as a matrix (cell) 

y = Q\c;%solution as a vector 

 

%Convert vectors back to matrices 

for i = 1:siz(1) 

    for j = 1:siz(2) 
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        dxa{i,j} = y(conv(i,j)); 

    end 

end 

 

end 

 

function [ y ] = d2_deltaAiBj( rho,x,p,q,T,sigma_i,m_i,e_AiBj,k_AiBj ) 

%D_DELTAAIBJ gives the derivative with respect to the molar density of 

%components p and q of the delta quantity (noted here as y) required for the 

%association contribution to the molar Helmholtz energy 

 

kb = 1.38064852 * 10^(-23);%Boltzmann constant 

 

siz = size(e_AiBj); 

D = zeros(siz); 

G = cell(siz); 

y = cell(siz); 

for i = 1:siz(1) 

    for j = 1:siz(2) 

        for k = 1:siz(1) 

            for l = 1:siz(2) 

                D(i,j,k,l) = (sigma_i(j)+sigma_i(l))/2; 

                G{i,j,k,l} = d2_raddist( rho,x,p,q,j,l,sigma_i,m_i ); 

                y{i,j,k,l} = 

G{i,j,k,l}.*D(i,j,k,l)^3*k_AiBj(i,j,k,l)*(exp(e_AiBj(i,j,k,l)/(kb*T))-1); 

            end 

        end 

    end 

end 

 

end 

 

function [h] = h_disp( sigma_i,m_i,e_i,k_ij,i,j ) 

%H_DISP gives the dispersion contribution to the (i,j) coefficient of the 

%Hessian of the Helmholtz energy density of a mixture  

 

nav = 6.022140857 * 10^23;%Avogadro number 

 

nn = length(sigma_i); 

 

%diameters and energies of mixing 

sig = zeros(nn); 

eps = zeros(nn); 

for k = 1:nn 

    for l = 1:nn 

        sig(k,l) = (sigma_i(k)+sigma_i(l))/2; 

        eps(k,l) = (1-k_ij(k,l)) * (e_i(k)*e_i(l))^(1/2); 

    end 

end 

 

%Hessian 

h = -nav*pi*nav/6*m_i(i)*m_i(j)*2*sig(i,j)^3*eps(i,j); 

 

end 

 

 
Published with MATLAB® R2017b 

 

http://www.mathworks.com/products/matlab/
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Subroutines 

In this section, parameters for each solver must be adjusted depending on the system, starting 

points, etc. Some values are given as examples. 

 

function [f] = 

critical_functions(rho_i,T,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc) 

%CRITICAL_FUNCTIONS gives the critical functions i.e. the two functions to minimize in 

order to find critical points (on top of the pressure difference) 

 

rho = sum(rho_i); 

 

%First critical function 

h = hessian(rho, rho_i, T, sigma_i, m_i, e_i, k_ij, e_AiBj, n_Ai, k_AiBj, 

error_assoc); 

[u,e] = eig(h); 

f1 = min(diag(e)); 

 

%Second critical function 

[~,col] = find(diag(e)==f1); 

u1 = u(:,col).'; 

if sum(u1)<0 

    u1 = -u1; 

end 

d = norm(rho_i)*1e-3;%1e-3 

rhoc = rho_i; 

rhol = rho_i - d*u1; 

rhor = rho_i + d*u1; 

 

gradc = gradient(rhoc,T,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc); 

gradc = gradc(2:end); 

gradl = gradient(rhol,T,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc); 

gradl = gradl(2:end); 

gradr = gradient(rhor,T,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc); 

gradr = gradr(2:end); 

 

f2 = sum(rho_i)*(sum(gradr.*u1) - 2*sum(gradc.*u1) + sum(gradl.*u1))/(d^2); 

f = [f1 f2]; 

 

end 

 

function [f] = 

critical_obj_binary(rhoT,P,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc) 

%CRITICAL_OBJ gives an objective function to find critical points in 

%binary systems 

%   rhoT = [rho_i T] 

rho_i = rhoT(1:end-1)*1e-26; 

T = rhoT(end)*1e2; 

rho = sum(rho_i); 

x = rho_i/rho; 

 

c = critical_functions(rho_i,T,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc); 

p = pressure(rho,x,T,sigma_i,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc); 

 

f = horzcat(c*1e-30,(P-p)/P); 

 

end 
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function [f] = 

critical_obj_ternary(rho_i,T,P,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc) 

%CRITICAL_OBJ gives an objective function to find critical points in 

%ternary systems 

 

rho_i = rho_i*1e-26;%multiply by a scaling factor to improve minimization 

rho = sum(rho_i); 

x = rho_i/rho; 

 

c = critical_functions(rho_i,T,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc); 

p = pressure(rho,x,T,sigma_i,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc); 

 

f = horzcat(c*1e-30,(P-p)/P); 

 

end 

 

function [rhoc] = 

critical_point_binary(rho_start,P,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_asso

c) 

%CRITICAL_POINT finds a critical point (in a binary system) close to the 

%starting configuration rho_start (molar densities vector (mole/Angstrom^3) 

%and temperature). The final molar densities are multiplied by 1e26 due to previous  

%scaling 

%   rho_start: starting point in the form [molar density vector, Temperature] 

 

nn = length(rho_start); 

 

rho_start(1:nn-1) = rho_start(1:nn-1)*1e26; 

rho_start(nn) = rho_start(nn)*1e-2; 

 

fun = 

@(rhoT)critical_obj_binary(rhoT,P,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_asso

c); 

 

options = optimoptions('lsqnonlin','MaxFunctionEvaluations',(nn+1)*500,... 

    'Display','iter','StepTolerance',1e-10,'FunctionTolerance',1e-

18,'OptimalityTolerance',1e-17,... 

    'UseParallel',true,'TypicalX',rho_start); 

problem.options = options; 

problem.solver = 'lsqnonlin'; 

problem.objective = fun; 

problem.lb = 0.8*rho_start; 

problem.ub = 1.2*rho_start; 

problem.x0 = rho_start; 

rhoc = lsqnonlin(problem); 

 

rhoc(nn) = rhoc(nn)*1e2; 

 

end 

 

function [rhoc] = 

critical_point_ternary(rho_start,T,P,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_a

ssoc) 

%CRITICAL_POINT finds a critical point (in a ternary system) close to the 

%starting configuration rho_start (molar densities vector (mole/Angstrom^3) 

%). Some scaling factor are used. 

%   rho_start: starting molar density vector 

 

nn = length(rho_start); 

 

rho_start = rho_start*1e26; 
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fun = 

@(rho_i)critical_obj_ternary(rho_i,T,P,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error

_assoc); 

 

options = optimoptions('lsqnonlin','MaxFunctionEvaluations',(nn+1)*500,... 

    'Display','iter','StepTolerance',1e-16,'FunctionTolerance',1e-

24,'OptimalityTolerance',1e-16,... 

    'UseParallel',true,'TypicalX',rho_start); 

problem.options = options; 

problem.solver = 'lsqnonlin'; 

problem.objective = fun; 

problem.lb = 0.8*rho_start; 

problem.ub = 1.2*rho_start; 

problem.x0 = rho_start; 

rhoc = lsqnonlin(problem); 

 

end 

 

function [ rho ] = density( eta,x,sigma_i,m_i ) 

%DENSITY gives the molar density rho of a mixture for a reduced density (or packing  

%fraction) eta 

 

nav = 6.022140857 * 10^23;%Avogadro number 

 

rho = 6*eta/(pi * nav * sum(x.*m_i.*sigma_i.^3)); 

 

end 

 

function [dsup] = 

Dsup(Tc0,rhoc0,rhot,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc) 

%DSUP gives the support function around critical points defined by their 

%temperature Tc0 and molar density vector rhoc0. rhot is the total density 

%perturbation and it is taken along the direction of the eigenvector of the 

%hessian whose eigenvalue is the smallest.  

 

rho = sum(rhoc0); 

xc0 = rhoc0/rho; 

n = length(rhot); 

dsup = zeros(1,n); 

nn = length(rhoc0); 

 

%Find eigenvector at the critical point 

h = hessian(rho, rhoc0, Tc0, sigma_i, m_i, e_i, k_ij, e_AiBj, n_Ai, k_AiBj, 

error_assoc); 

[u,e] = eig(h); 

f1 = min(diag(e)); 

 

[~,col] = find(diag(e)==f1); 

u1 = u(:,col).'; 

 

%Pressure and chemical potential at the critical point 

pc = pressure( rho,xc0,Tc0,sigma_i,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc ); 

muc = chempot( rho,xc0,Tc0,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc ); 

 

%dsup 

for i = 1:n 

    i 

    rhoi = rhoc0+rhot(i)*u1; 

    x = rhoi/sum(rhoi); 

    p = pressure( sum(rhoi),x,Tc0,sigma_i,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc 

); 

    mu = chempot( 

sum(rhoi),x,Tc0,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc ); 
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    dsup(i) = -(p-pc)/(sum(rhoi)*1e30); 

    for j = 1:nn 

        dsup(i) = dsup(i)+ x(j) * (mu{j}-muc{j}); 

    end 

end 

 

end 

 

function [f] = 

equi_cond(rho_ab,rhob3,scale,P,T,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc

) 

%EQUI_COND gives the equilibrium equations to be solved in order to find 

%tie lines in the Helmholtz energy representation. 

%If rho_a is the molar density vector of phase "a" and rho_b is the molar 

%density vector of phase "b", then rho_ab=[rho_a(1) rho_a(2) rho_a(3) 

%rho_b(1) rho_b(2)]. rhob3 = rho_b(3) (fixed); 

%scale is a vector to scale densities. It is used to improve minimization 

 

kb = 1.38064852 * 10^(-23);%Boltzmann constant 

nav = 6.022140857 * 10^23;%Avogadro number 

R = kb * nav;%Ideal gas constant 

 

f = zeros(5,1); 

 

%Scale molar density vector 

rho_a = rho_ab(1:3); 

rho_b = horzcat(rho_ab(4:5),rhob3); 

rho_a = rho_a./scale; 

rho_b = rho_b./scale; 

 

xa = rho_a/sum(rho_a); 

xb = rho_b/sum(rho_b); 

 

mua = chempot(sum(rho_a),xa,T,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc); 

mub = chempot(sum(rho_b),xb,T,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc); 

Pa = pressure(sum(rho_a),xa,T,sigma_i,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc); 

Pb = pressure(sum(rho_b),xb,T,sigma_i,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc); 

 

%Chemical potential has to be the same in each phase 

for i = 1:3 

    f(i) = (mua{i}-mub{i})/(R*T); 

end 

 

%Pressure is the same in each phase 

f(4) = (Pa-P)/P; 

f(5) = (Pb-P)/P; 

 

end 

 

function [f] = 

equi_pot_b(x_I,P,T,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc,eta_start_a,e

ta_start_b,max_counter,max_n_roots) 

%EQUI_POT_B gives the equations to solve to find tie lines in the Gibbs free energy  

%approach in binary mixtures i.e. equality of chemical potentials in each phase  

%x_I is a vector which describes the composition of the system:[x_I(1) 1-x_I(1)] is 

%the composition (mole fraction) of the first phase and [x_I(2) 1-x_I(2)] is the 

%composition of the second phase 

 

f = zeros(2,1); 

 

muI = thermo_properties_p([x_I(1) 1-

x_I(1)],P,T,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc,eta_start_a,eta_star

t_b,max_counter,max_n_roots); 
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muII = thermo_properties_p([x_I(2) 1-

x_I(2)],P,T,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc,eta_start_a,eta_star

t_b,max_counter,max_n_roots); 

 

%Chemical potential has to be the same in each phase 

for i = 1:2 

    f(i) = (muI{i}-muII{i})/muII{i}; 

end 

 

end 

 

function [f] = 

equi_pot_t(w_I,mw,P,T,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc,eta_start_

a,eta_start_b,max_counter,max_n_roots) 

%EQUI_POT_T gives the equations to solve to find tie lines in the Gibbs free energy  

%approach in ternary mixtures i.e. equality of chemical potentials in each phase  

%plus mole balance (the mole fraction of each phase is set to 0.5). 

%This function is made to get tie lines with mass fractions. 

%w_I is an vector which describes the composition of the system:[1-w_I(1)-w_I(3)  

%w_I(1) w_I(3)] is the composition of the first phase and [1-w_I(2)-w_I(4) w_I(2) 

%w_I(4)] is the composition of the second phase (as mass fractions). 

 

f = zeros(4,1); 

 

%Transform mass fractions into mole fractions 

x_I = zeros(2,3); 

W1 = sum([1-w_I(1)-w_I(3) w_I(1) w_I(3)] ./mw); 

W2 = sum([1-w_I(2)-w_I(4) w_I(2) w_I(4)] ./mw); 

x_I(1,2) = (w_I(1)/mw(2))/W1; 

x_I(1,3) = (w_I(3)/mw(3))/W1; 

x_I(1,1) = 1-x_I(1,2)-x_I(1,3); 

x_I(2,2) = (w_I(2)/mw(2))/W2; 

x_I(2,3) = (w_I(4)/mw(3))/W2; 

x_I(2,1) = 1-x_I(2,2)-x_I(2,3); 

 

muI = 

thermo_properties_p(x_I(1,:),P,T,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc

,eta_start_a,eta_start_b,max_counter,max_n_roots); 

muII = 

thermo_properties_p(x_I(2,:),P,T,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc

,eta_start_a,eta_start_b,max_counter,max_n_roots); 

 

%Chemical potential has to be the same in each phase 

for i = 1:3 

    f(i) = 1000*(muI{i}-muII{i})/muII{i}; 

end 

 

%Mole balance 

xi = (x_I(1,:)+x_I(2,:))/2; 

a = 0.5; 

f(4) = (xi(1) - a*x_I(1) - (1-a)*x_I(2)); 

 

end 

 

function [grad] = 

gradient(rho_i,T,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc) 

%GRADIENT gives the gradient of the Helmholtz energy density with respect to the molar 

density of each component 

 

rho = sum(rho_i); 

x = rho_i/rho; 

muu = chempot( rho,x,T,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc ); 
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p = pressure(rho, x, T, sigma_i, m_i, e_i, k_ij, e_AiBj, n_Ai, k_AiBj, error_assoc); 

 

nn = length(muu); 

mu = zeros(1,nn); 

 

for i = 1:nn 

    mu(i) = muu{i}; 

end 

 

grad = horzcat(-p,mu); 

 

end 

 

function [ k ] = kappa( dsite,rc,d ) 

%KAPPA gives the bonding volume parameter k_AiBj for one site in a pure component  

%system 

%d: hard sphere diameter  

%dsite: distance between a site and the center of the segment 

%rc: diameter of the site 

a = (d^2)*(log((rc+2*dsite)/d)*(6*(rc^3)+18*(rc^2)*dsite-24*(dsite^3))+ (rc+2*dsite-

d)*(22 * (dsite^2)-5*rc*dsite-7*dsite*d-8*(rc^2)+rc*d+(d^2)))/(72*(dsite^2)); 

k = (4*pi)*a/(d^3); 

end 

 

function [fval,Mins] = 

min_TPD(xi,iter,P,T,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc,eta_start_a,

eta_start_b,max_counter,max_n_roots) 

%MIN_TPD finds all minima of the tangent plane distance at xi, provided that iter 

%is big enough 

%xi is the mole composition where the tangent plane distance is calculated from 

%iter is the number of random starting points to find minima 

 

nn = length(xi); 

 

%Define the tangent plane distance function 

muxi = thermo_properties_p( 

xi,P,T,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc,eta_start_a,eta_start_b,m

ax_counter,max_n_roots ); 

tpd_fun = @(x)TPD( 

x,xi,muxi,P,T,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc,eta_start_a,eta_st

art_b,max_counter,max_n_roots ); 

 

%Define the solver to find all minima for the previous function 

options = optimoptions('fmincon','Algorithm','interior-

point','Display','off','OptimalityTolerance',1e-10,'StepTolerance',1e-

10,'FunctionTolerance',1e-10,'UseParallel',false); 

problem.options = options; 

problem.solver = 'fmincon'; 

problem.objective = tpd_fun; 

problem.x0 = zeros(1,nn); 

problem.Aeq = ones(1,nn); 

problem.beq = 1;%sum(xi) = 1 

problem.lb = zeros(1,nn);%xi>=0 

problem.ub = ones(1,nn);%xi=<1 

 

%Create a MultiStart object for the global minimization 

ms = MultiStart('StartPointsToRun','bounds','FunctionTolerance',1e-

6,'Display','iter','UseParallel',true); 

 

%number of iterations for the global minimization 

iterations = iter; 

 

%Find minima with MATLAB Global Optimization Toolbox  
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[~,fval,~,~,Mins] = run(ms,problem,iterations); 

 

end 

 

function [ obj_p ] = obj_pressure( 

eta,x,P,T,sigma_i,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc ) 

%OBJ_PRESSURE defines the objective function related to the equation P*=P(eta) which  

%is solved in thermo_properties_p 

 

rho = density( eta,x,sigma_i,m_i ); 

p = pressure(rho,x,T,sigma_i,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc); 

obj_p = (P-p)/P; 

 

end 

 

function [x_I] = 

phase_split_b(Mins,P,T,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc,eta_start

_a,eta_start_b,max_counter,max_n_roots) 

%PHASE_SPLIT_B finds tie lines in the Gibbs free energy approach for binary mixtures. 

%Mins is a 1x2 cell whose elements are starting points obtained with min_TPD  

%x_I is given as a 2x2 matrix whose rows are mole composition vectors for each phase 

 

%Create starting points 

x_I0 = zeros(1,2); 

min1 = Mins{1}; 

min2 = Mins{2}; 

x_I0(1) = min1(1); 

x_I0(2) = min2(1); 

 

%Define the objective function 

fun_equi_pot = 

@(x_I)equi_pot_b(x_I,P,T,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc,eta_sta

rt_a,eta_start_b,max_counter,max_n_roots); 

 

%Minimize the objective function 

options = optimoptions('lsqnonlin','MaxFunctionEvaluations',3*300,... 

    'Display','iter','StepTolerance',1e-10,'FunctionTolerance',1e-

17,'OptimalityTolerance',1e-17,... 

    'UseParallel',true); 

problem.options = options; 

problem.solver = 'lsqnonlin'; 

problem.objective = fun_equi_pot; 

problem.x0 = x_I0; 

problem.lb = zeros(1,2);%xi>=0 

problem.ub = ones(1,2);%xi=<1 

x_I = lsqnonlin(problem); 

 

end 

 

function [w_I] = 

phase_split_t(mw,Mins,P,T,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc,eta_st

art_a,eta_start_b,max_counter,max_n_roots) 

%PHASE_SPLIT_T finds tie lines in the Gibbs free energy approach for ternary mixtures. 

%Mins is a 1x2 cell whose elements are starting points obtained with min_TPD  

%w_I is given as a 2x3 matrix whose rows are mass fraction vectors for each phase 

 

%create starting points 

w_I0 = zeros(1,4); 

min1 = Mins{1}; 

min2 = Mins{2}; 

w_I0(1) = min1(2); 

w_I0(2) = min2(2); 

w_I0(3) = min1(3); 
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w_I0(4) = min2(3); 

 

%Define the objective function 

fun_equi_pot = 

@(w_I)equi_pot_t(w_I,mw,P,T,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc,eta_

start_a,eta_start_b,max_counter,max_n_roots); 

 

%Minimize the objective function 

options = optimoptions('lsqnonlin','MaxFunctionEvaluations',4*150000,... 

    'Display','iter','StepTolerance',1e-8,'FunctionTolerance',1e-

17,'OptimalityTolerance',1e-17,... 

    'UseParallel',true,'FiniteDifferenceType','central','MaxIterations',200000); 

problem.options = options; 

problem.solver = 'lsqnonlin'; 

problem.objective = fun_equi_pot; 

problem.x0 = w_I0; 

problem.lb = zeros(1,4);%wi>=0 

problem.ub = ones(1,4);%wi=<1 

w_I = lsqnonlin(problem); 

 

w_I = [1-w_I(1)-w_I(3) w_I(1) w_I(3);1-w_I(2)-w_I(4) w_I(2) w_I(4)]; 

 

end 

 

function [up,ep,um,em,rhop,rhom] = pre_tielines( 

nc,rhoc1,rhoc2,T,sigma_i,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc ) 

%PRE_TIELINES gives various quantities used to find starting point for tie lines in 

%the Helmholtz free energy approach. 

%rhoc1 and rhoc2 are the molar density vectors at two critical points or at the middle  

%of some previously calculated tie lines. 

%rhop and rhom are the molar density vectors of two points away from rhoc1 in a  

%direction perpendicular to u_1 (eigenvector corresponding to the minimum eigenvalue  

%of the Helmholtz free energy Hessian at rhoc1). 

%up and um are the eigenvectors at rhop and rhom. They correspond to the minimum 

%eigenvalues ep and em of the Helmholtz free energy Hessian at rhop and rhom. 

%nc characterizes the proximity between rhoc1 and rhop (and rhom) 

 

%Define the distance away from rhoc1 and rhoc2 

DL = norm(rhoc1 - rhoc2)/nc; 

UL = (rhoc2-rhoc1)/norm(rhoc1 - rhoc2); 

 

%Create rhom and rhop  

hc1 = hessian( sum(rhoc1),rhoc1,T,sigma_i,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc 

); 

[uc1,ec1] = eig(hc1); 

e1 = min(diag(ec1)); 

[~,col] = find(diag(ec1)==e1); 

uc1(:,col) = []; 

u2 = uc1(:,1).'; 

u3 = uc1(:,2).'; 

VL = dot(UL,u2)*u2+dot(UL,u3)*u3; 

Uv = VL/norm(VL); 

rhop = rhoc1 + DL*Uv; 

rhom = rhoc1 - DL*Uv; 

 

%Eigenvalues and eigenvectors at rhop and rhom 

hp = hessian( sum(rhop),rhop,T,sigma_i,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc ); 

[ucp,ecp] = eig(hp); 

ep = min(diag(ecp)); 

[~,col] = find(diag(ecp)==ep); 

up = ucp(:,col).'; 

 

hm = hessian( sum(rhom),rhom,T,sigma_i,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc ); 
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[ucm,ecm] = eig(hm); 

em = min(diag(ecm)); 

[~,col] = find(diag(ecm)==em); 

um = ucm(:,col).'; 

 

end 

 

function [ phase ] = Stability ( mu,xi,thresh ) 

%STABILITY gives a vector phase. phase(i) is 1 if one phase is stable at 

%composition xi(i) and 2 otherwise. 

%mu: chemical potential grid corresponding to a molar composition grid xi 

 

n = length(xi); 

phase = zeros(1,n); 

 

xi0 = xi; 

mu0 = mu; 

 

parfor p = 1:n 

    x0 = xi0{p}; 

    mux0 = mu0{p}; 

    phase(p) = TPD_x0(xi,x0,mu,mux0,thresh) 

end 

 

end 

 

function [ mu,rho,g,p,rc,n_roots,eta_f,x0,eta_all ] = thermo_properties_p( 

x,P,T,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc,eta_start_a,eta_start_b,ma

x_counter,max_n_roots ) 

%THERMO_PROPERTIES_P gives thermodynamic quantities at constant 

%pressure P for a given molar composition x by solving P=p(eta). These 

%quantities are: 

%   mu: chemical potential (J/mol) (as a cell vector) 

%   rho: molar density (mol/Angstrom^3) 

%   g: Gibbs energy (J) 

%   p: pressure (Pa) 

%   eta_f: reduced density corresponding to rho 

%rc: reciprocal condition number related to the matrix inverted in 

%the calculation of the association contribution to the chemical potential 

%n_root: number of roots of P(rho)=P* 

%x0: vector of all the starting points created 

 

%Solver initial parameters 

x0 = [eta_start_a eta_start_b]; 

x0_next = x0; 

n_roots = 0; 

counter = 0; 

 

%Define the objective function 

fun = @(eta) obj_pressure( 

eta,x,P,T,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc ); 

eta_f = zeros(1,max_n_roots); 

 

%Find all roots of P(rho)=P* 

while counter<=max_counter && n_roots<max_n_roots 

    cut = 0;%number of bissections done during one "for" loop 

    counter = counter + 1; 

    for i = 1:(length(x0)-1) 

        x0i = [x0(i)+10*eps x0(i+1)-10*eps]; 

        if x0i(2)-x0i(1)>10*eps%to avoid finding the same root multiple times 

            if fun(x0i(1))*fun(x0i(2))<=0 

                n_roots = n_roots + 1; 

                options = optimset('TolX',eps); 
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                sol = fzero(fun,x0i,options); 

                eta_f(n_roots) = sol; 

                x0_next = [x0_next(1:i+cut) sol x0_next(i+1+cut:end)]; 

                cut = cut + 1; 

%                 if n_roots == max_n_roots cannot have "break" in a parfor loop 

%                     break 

%                 end 

            else 

                x0_next = [x0_next(1:i+cut) (x0(i)+x0(i+1))/2 x0_next(i+1+cut:end)]; 

                cut = cut + 1; 

            end 

        end 

    end 

    x0 = x0_next; 

end 

 

%Number of roots 

eta_f = nonzeros(eta_f); 

eta_all = eta_f; 

n_eta = length(eta_f); 

n_roots = n_eta; 

 

%Find the root corresponding to the minimum Gibbs free energy 

rho_f = density( eta_f,x,sigma_i,m_i ); 

g_f = zeros(1,n_eta); 

for i = 1:n_eta 

    [~,~,g_f(i),~] = thermo_properties_rho( 

rho_f(i),x,T,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc ); 

end 

gmin = min(g_f); 

index = g_f == gmin; 

eta = eta_f(index); 

eta_f = eta; 

 

%Final wanted quantities 

rho = density( eta,x,sigma_i,m_i ); 

rho = rho(1);%in order to make sure that there is exactly one root in rho 

[~,mu,g,p,rc] = thermo_properties_rho( 

rho,x,T,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc ); 

 

end 

 

function [ a,mu,g,p,rc ] = thermo_properties_rho( 

rho,x,T,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc ) 

%THERMO_PROPERTIES_RHO gives thermodynamic quantities at constant molar 

%density rho for a given molar composition x. These quantities are: 

%   a: Helmholtz energy 

%   mu: chemical potential (as a cell vector) 

%   g: Gibbs energy 

%   p: pressure (Pa) 

%rc: reciprocal condition number related to the matrix inverted in 

%the calculation of the association contribution to the chemical potential 

 

nn = length(x); 

 

%Helmhotz energy 

aideal = a_ideal( rho,x,T,m ); 

ahs = a_hs( rho,x,T,sigma_i,m_i ); 

achain = a_chain( rho,x,T,m_i,sigma_i ); 

adisp = a_disp( rho,x,sigma_i,m_i,e_i,k_ij ); 

if ~isempty(e_AiBj) 

    aassoc = a_assoc( rho,x,T,sigma_i,m_i,e_AiBj,n_Ai,k_AiBj,error_assoc ); 

else 
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    aassoc = 0; 

end 

a = aideal+ahs+0*achain+adisp+aassoc; 

 

%Chemical potential and Gibbs energy 

mu = cell(1,nn); 

g = 0;%g has same size and type than rho 

for i = 1:nn 

    muideal = mu_ideal( rho,x,i,T,m ); 

    muhs = mu_hs( rho,x,i,T,sigma_i,m_i ); 

    muchain = mu_chain( rho,x,i,T,sigma_i,m_i ); 

    mudisp = mu_disp( rho,x,i,sigma_i,m_i,e_i,k_ij ); 

    if ~isempty(e_AiBj) 

        [muassoc,rc] = mu_assoc( rho,x,i,T,sigma_i,m_i,e_AiBj,n_Ai,k_AiBj,error_assoc 

); 

    else 

        muassoc = 0; 

        rc = 0; 

    end 

    mu{i} = muideal+muhs+0*muchain+mudisp+muassoc; 

    g = g + x(i)*mu{i}; 

end 

 

%Pressure 

p = rho.*(g-a).*10.^30;%in order to have p in Pa (because we use angstrom as the main 

distance unit) 

 

end 

 

function [rho_ab] = 

tie_line_A(rho_ab_start,rhob3,scale,P,T,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,erro

r_assoc) 

%TIE_LINE_A gives the molar density vectors of each phase if the system 

%splits into two phases, using the Helmholtz free energy approach. 

%If rho_a is the molar density vector of phase "a" and rho_b is the molar 

%density vector of phase "b", then rho_ab=[rho_a(1) rho_a(2) rho_a(3) 

%rho_b(1) rho_b(2)]. rhob3 = rho_b(3) (fixed); 

%scale is a vector to scale densities 

 

%Scale molar density vector 

rho_a = rho_ab_start(1:3); 

rho_b = horzcat(rho_ab_start(4:5),rhob3); 

rho_a = rho_a.*scale; 

rho_b = rho_b.*scale; 

rho_ab_start = horzcat(rho_a,rho_b(1:2)); 

rhob3 = rho_b(3); 

 

%Define the objective function 

fun_equi_cond = 

@(rho_ab)equi_cond(rho_ab,rhob3,scale,P,T,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,er

ror_assoc); 

 

%Minimize the objective function 

options = optimoptions('lsqnonlin','MaxFunctionEvaluations',5*1000,... 

    'Display','iter','StepTolerance',1e-17,'FunctionTolerance',1e-

17,'OptimalityTolerance',1e-17,... 

    'UseParallel',true,'FiniteDifferenceType','central','MaxIterations',25); 

problem.options = options; 

problem.solver = 'lsqnonlin'; 

problem.objective = fun_equi_cond; 

problem.lb = 0.99*rho_ab_start; 

problem.ub = 1.01*rho_ab_start; 

problem.x0 = rho_ab_start; 
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rho_ab = lsqnonlin(problem); 

 

rho_ab = vertcat(rho_ab(1:3),horzcat(rho_ab(4:5),rhob3)); 

 

end 

 

function [ tpd ] = TPD ( 

x,x0,mux0,P,T,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc,eta_start_a,eta_st

art_b,max_counter,max_n_roots ) 

%TPD gives the tangent plane distance tpd at x0. It is evaluated at the molar  

%composition x. 

%mux0 is the chemical potential at x0. 

 

nn = length(x); 

 

tpd = 0; 

mux = thermo_properties_p( 

x,P,T,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc,eta_start_a,eta_start_b,ma

x_counter,max_n_roots ); 

 

for i = 1:nn 

    if x(i)~=0 && x0(i) ~=0 

        tpd = tpd + x(i).*(mux{i}-mux0{i}); 

    end 

end 

 

for i = 1:nn 

   if x0(i) == 0 && x(i) ~= 0 

       tpd = 0; 

   end 

end 

 

end 

 

function [ tpd ] = TPD_fast ( x,x0,mux,mux0 ) 

%TPD gives the tangent plane distance tpd with x0. It is 

%evaluated at the composition x. mux and mux0 are the chemical potentials 

%at compositions x and x0 respectively 

 

nn = length(x); 

 

tpd = 0; 

 

for i = 1:nn 

    if x(i)~=0 && x0(i) ~=0 

        tpd = tpd + x(i).*(mux{i}-mux0{i}); 

    end 

end 

 

for i = 1:nn 

   if x0(i) == 0 && x(i) ~= 0 

       tpd = 0; 

   end 

end 

 

end 

 

function [phase] = TPD_x0(xi,x0,mu,mux0,thresh) 

%TPD_X0 gives phase=1 if one phase in the system is stable at the molar 

%composition x0 and phase=2 otherwise. 

%xi: vector (grid) of all molar composition tested for the tangent plane criterion 

%mu: vector of chemical potential for compositions given by xi 

%mux0: chemical potential at x0 
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%thresh: numerical noise threshold 

 

n = length(xi); 

 

phase = 1; 

 

for q = 1:n 

    x = xi{q}; 

    mux = mu{q}; 

    tpd = TPD_fast(x,x0,mux,mux0); 

    if abs(tpd) < thresh 

        tpd = 0; 

    end 

    if tpd < 0 

        phase=2; 

    end 

end 

 

end 

 

function [tpd] = TPDA_u1( 

rhoz,s,T,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc ) 

%TPDA_PLOT gives a vector for tangent plane distance values in the 

%Helmholtz energy representation along a direction defined by u1. u1 is the 

%eigenvector of the hessian at molar density vector rhoz whose eigenvalue 

%is the smallest. sum(rhoz)+s is the vector of the corresponding overall 

%molar densities. 

 

rho = sum(rhoz); 

xz = rhoz/rho; 

n = length(s); 

tpd = zeros(1,n); 

nn = length(rhoz); 

 

%Find eigenvector at rhoz 

h = hessian(rho, rhoz, T, sigma_i, m_i, e_i, k_ij, e_AiBj, n_Ai, k_AiBj, error_assoc); 

[u,e] = eig(h); 

f1 = min(diag(e)); 

 

[~,col] = find(diag(e)==f1); 

u1 = u(:,col).'; 

 

%Pressure and chemical potential at rhoz 

pz = pressure( rho,xz,T,sigma_i,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc ); 

muz = chempot( rho,xz,T,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc ); 

 

%Tangent plane distance 

for i = 1:n 

    i 

    rhoa = rhoz+s(i)*u1; 

    x = rhoa/sum(rhoa); 

    p = pressure( sum(rhoa),x,T,sigma_i,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc ); 

    mu = chempot( sum(rhoa),x,T,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc 

); 

    tpd(i) = -(p-pz)/(sum(rhoa)*1e30); 

    for j = 1:nn 

        tpd(i) = tpd(i)+ x(j) * (mu{j}-muz{j}); 

    end 

end 

 

end 
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Main Script 

format long 

 

addpath('Intermediary functions') 

addpath('Helmholtz energy') 

addpath('Chemical potential') 

addpath('Pressure') 

addpath('Hessian') 

 

coresenv=str2num(getenv('SLURM_CPUS_PER_TASK')) 

c = parcluster('local'); 

c.NumWorkers = coresenv; 

parpool(c, c.NumWorkers); 

 

%Parameters 

 

T = 300; 

P = 10^5; 

kb = 1.38064852 * 10^(-23); 

nav = 6.022140857 * 10^23; 

sigma_i = [3.165 4.1071 70]; 

mw_sol = 84.162; 

mw_pol = 2.37e5; 

mw_nan = (4/3)*pi*(sigma_i(3)/2)^3*2.3*10^(-24)*nav; 

mw = [mw_sol mw_pol mw_nan]; 

m = [mw_sol mw_pol mw_nan]*10^(-3)/nav; 

m_i = [3.970 mw_pol/104.152 1]; 

threshold = 1e-14; 

nn = length(m); 

 

e_i = kb * [3100 970 10000]; 

k23 = 0; 

k13 = 0; 

k_ij = [0 0 k13;0 0 k23;k13 k23 0]; 

 

%Identical association sites are counted as one here 

e1 = kb * 0;%1800 (sol assoc + pol2) 

e12 = kb * 500; 

e13 = kb * 0; 

e2 = kb*230; 

e3 = kb*0; 

e_AiBj(:,:,1,1) = 0*[e1 e12 e13]; 

e_AiBj(:,:,1,2) = 0*[e12 e2 0]; 

e_AiBj(:,:,1,3) = 0*[e13 0 e3]; 

 

%Number of identical association sites 

n_Ai = [2 2*m_i(2) 0]; 

 

%Multiply each k by the number of identical association site 

k1 = kappa(sigma_i(1)*0.5,sigma_i(1)*0.5,sigma_i(1)); 

k12 = k1; 

k2 = k1; 

k13 = kappa(sigma_i(3)/2, 2.75, sigma_i(3)); 

k3 = kappa(sigma_i(3)/2, 2.75, sigma_i(3)); 

 

k_AiBj(:,:,1,1) = n_Ai.*[k1 k12 k13]; 

k_AiBj(:,:,1,2) = n_Ai.*[k12 k2 0]; 

k_AiBj(:,:,1,3) = n_Ai.*[k13 0 k3]; 

 

error_assoc = 10^(-15); 
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%Parameters to solve P(rho) = P* 

eta_start_a = 0.1; 

eta_start_b = 0.95; 

max_n_roots = 1;%5  

max_counter = 1;%6 

 

%Resolution of the phase diagram 

n = 600; 

za=1; 

zb=1; 

 

%Pure components study 

 

%Solvent density 

[~,rho_sol] = 

thermo_properties_p([1,0,0],P,T,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc,

eta_start_a,eta_start_b,max_counter,max_n_roots ); 

rho_sol_gl = sum(rho_sol*[1,0,0].*mw/1000)*1e30;%g/L 

 

%Polymer density 

[~,rho_pol] = 

thermo_properties_p([0,1,0],P,T,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc,

eta_start_a,eta_start_b,max_counter,max_n_roots ); 

rho_pol_gl = sum(rho_pol*[0,1,0].*mw/1000)*1e30;%g/L 

 

%Nanoparticle density 

[~,rho_nan] = 

thermo_properties_p([0,0,1],P,T,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc,

eta_start_a,eta_start_b,max_counter,max_n_roots ); 

rho_nan_gl = sum(rho_nan*[0,0,1].*mw/1000)*1e30;%g/L 

 

%Ternary mixture initial property 

 

%Mass fraction grid 

wi_grid = cell(n+1);%cell (n+1,n+1) of (1,3) vectors = mass fraction of 

%(solvent,polymer,nanoparticle) 

conv = zeros(n+1); 

np = 0; 

for i = 1:n+1 

    a = (i-1)*za/n; 

    for j = 1:n+1 

        b = (j-1)*zb/n; 

        if n-za*(i-1)-zb*(j-1)>=0 

            wi_grid{i,j} = [(1-a-b) a b]; 

            np = np+1; 

            conv(i,j) = np; 

        else 

            wi_grid{i,j} = [0 0 0]; 

        end 

        if i+j == n+2 && za+zb==2 

            wi_grid{i,j}(1) = 0;%in order to avoid round off problems 

        end 

    end 

end 

 

%Corresponding mole fraction grid 

xi_grid = cell(n+1); 

for i = 1:n+1 

    for j = 1:n+1 

        w = wi_grid{i,j}; 

        if norm(w)~=0 

            x = w./mw; 

            xi_grid{i,j} = x/sum(x); 
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        end 

    end 

end 

 

%Mole fraction grid transformed into a vector in order to generalize 

%functions and use parallel computing 

xi = cell(1,np);%vector version of xi_square 

p = 0; 

for i = 1:n+1 

   for j = 1:n+1 

       if norm(xi_grid{i,j})~=0 

           p = p+1; 

           xi{p} = xi_grid{i,j}; 

       end 

   end 

end 

 

%Definition of the quantities to study 

g = zeros(1,np); 

mu = cell(1,np); 

eta = zeros(1,np); 

rho = zeros(1,np); 

n_roots = zeros(1,np); 

h = zeros(1,np); 

 

%Calcul Gibbs curve and chemical potentials 

parfor p = 1:np 

    [mu{p},rho(p),g(p),~,~,n_roots(p),eta(p)] = thermo_properties_p( 

xi{p},P,T,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc,eta_start_a,eta_start_

b,max_counter,max_n_roots ); 

    rho(p) = sum(rho(p)*xi{p}.*mw/1000)*1e30;%g/L 

end 

 

x_nan = NaN(1,np); 

x_pol = NaN(1,np); 

 

for p = 1:np 

    x_pol(p) = xi{p}(2); 

    x_nan(p) = xi{p}(3); 

end 

 

figure 

stem3(x_nan,x_pol,g,'LineStyle','none','Marker','.') 

title('Gibbs curve') 

xlabel('nanoparticle mole fraction') 

ylabel('polymer mole fraction') 

 

%Phase stability 

stability = Stability(mu,xi,threshold); 

 

xphase1 = NaN(1,np); 

yphase1 = NaN(1,np); 

xphase2 = NaN(1,np); 

yphase2 = NaN(1,np); 

 

for p = 1:np 

    x = xi{p}(2); 

    y = xi{p}(3); 

    if stability(p) == 1 

        xphase1(p) = x; 

        yphase1(p) = y; 

    else 

        xphase2(p) = x; 
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        yphase2(p) = y; 

    end 

end 

 

figure 

hold on 

stem(yphase1,xphase1,'Color','blue','LineStyle','none','Marker','.') 

stem(yphase2,xphase2,'Color','red','LineStyle','none','Marker','.') 

title('Phase diagram') 

xlabel('nan mole fraction') 

ylabel('pol mole fraction') 

hold off 

toc 

 

%Mass fraction phase diagram 

w_nan1 = NaN(1,np); 

w_pol1 = NaN(1,np); 

w_nan2 = NaN(1,np); 

w_pol2 = NaN(1,np); 

 

for p = 1:np 

    w_pol = mw(2)*xi{p}(2)/sum(mw.*xi{p}); 

    w_nan = mw(3)*xi{p}(3)/sum(mw.*xi{p}); 

    if stability(p) == 1 

        w_pol1(p) = w_pol; 

        w_nan1(p) = w_nan; 

    else 

        w_pol2(p) = w_pol; 

        w_nan2(p) = w_nan; 

    end 

end 

 

figure 

hold on 

stem(w_nan1,w_pol1,'Color','blue','LineStyle','none','Marker','.') 

stem(w_nan2,w_pol2,'Color','red','LineStyle','none','Marker','.') 

title('Phase diagram') 

xlabel('nanoparticle mass fraction') 

ylabel('polymer mass fraction') 

hold off 

 

%Smallest eigenvalue of the Hessian 

parfor p = 1:np 

    r = rho(p)/sum(xi{p}.*mw/1000)*1e-30; 

    hes = hessian( r,r*xi{p},T,sigma_i,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc ); 

    x = xi{p}; 

    l = 1:1:nn; 

    for i = 1:nn 

        if x(i) == 0 

            t = find(l==i); 

            l(t)=[]; 

        end 

    end 

    hes = hes(l,l); 

    ev = min(eig(hes)); 

    h(p) = ev; 

end 

 

xphase1 = NaN(1,np); 

yphase1 = NaN(1,np); 

xphase2 = NaN(1,np); 

yphase2 = NaN(1,np); 
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for p = 1:np 

    w_pol = mw(2)*xi{p}(2)/sum(mw.*xi{p}); 

    w_nan = mw(3)*xi{p}(3)/sum(mw.*xi{p}); 

    if h(p) > 0 || abs(h(p)) < threshold 

        xphase1(p) = w_pol; 

        yphase1(p) = w_nan; 

    else 

        xphase2(p) = w_pol; 

        yphase2(p) = w_nan; 

    end 

end 

 

figure 

hold on 

stem(yphase1,xphase1,'Color','blue','LineStyle','none','Marker','.') 

stem(yphase2,xphase2,'Color','red','LineStyle','none','Marker','.') 

title('Instability Phase diagram') 

xlabel('polymer mole fraction') 

ylabel('nanoparticle mole fraction') 

hold off 

 

%Contours: plots the binodal and the spinodal 

bxs = []; 

bys = []; 

bxins = []; 

byins = []; 

 

for p = 1:np 

    if ~isnan(w_pol2(p)) && w_pol2(p)+w_nan2(p)<0.8 && w_pol2(p)+w_nan2(p)~=0 

        bxs = [bxs w_pol2(p)]; %#ok<AGROW> 

        bys = [bys w_nan2(p)]; %#ok<AGROW> 

    end 

    if ~isnan(xphase2(p)) && xphase2(p)+yphase2(p)<0.8 && xphase2(p)+yphase2(p)~=0 

        bxins = [bxins xphase2(p)]; %#ok<AGROW> 

        byins = [byins yphase2(p)]; %#ok<AGROW> 

    end 

end 

 

bxs = bxs.'; 

bys = bys.'; 

bxins = bxins.'; 

byins = byins.'; 

s = boundary(bys,bxs,0.4);%use shrink factor if the two phase region is not convex 

ins = boundary(byins,bxins,0.4); 

 

figure 

hold on 

plot(bys(s),bxs(s),'blue')%,'LineWidth',2) 

plot(byins(ins),bxins(ins),'--r')%,'LineWidth',2) 

title('T = 307K') 

xlabel('Nanoparticle mass fraction') 

ylabel('Polystyrene mass fraction') 

set(gca, 'Layer', 'Top'); 

set(gcf,'color','w'); 

hold off 

 

%Critical points 

wc = [1-0.06433-0.001983 0.06433 0.001983];%starting point 

xc = (wc./mw)/sum(wc./mw); 

 

%Find the corresponding molar density and molar density vectors 
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[~,rho_start] = thermo_properties_p( 

xc,P,T,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc,eta_start_a,eta_start_b,m

ax_counter,max_n_roots ); 

rho_start = rho_start*xc; 

 

%Solve critical points equations 

rhoc0 = 

critical_point_ternary(rho_start,T,P,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_a

ssoc); 

xc = rhoc0/sum(rhoc0); 

wc = xc.*mw/sum(xc.*mw); 

 

%Support function at the critical point 

[~,rhotest] = thermo_properties_p( 

xc,P,T,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc,eta_start_a,eta_start_b,m

ax_counter,max_n_roots ); 

rhot = linspace(-0.001*rhotest,0.001*rhotest,1000); 

rhotest = rhotest*xc; 

dsup = Dsup(T,rhotest,rhot,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc); 

 

figure 

plot(rhot,dsup) 

title('Support function') 

xlabel('Molar density') 

ylabel('Support function value') 

 

%Calculate tie lines in the Helmhotz free energy approach 

 

%Initial guess for tie lines from two given points; start with critical points 

%then use middle of tie lines 

 

%Molar density vector at CP1 or middle of a tie line 

w1 = (wa+wb)/2; 

xc1 = w1./mw/sum(w1./mw); 

[~,rhoc] = thermo_properties_p( 

xc1,P,T,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc,eta_start_a,eta_start_b,

max_counter,max_n_roots ); 

rhoc1 = rhoc*xc1; 

 

%Molar density vector at CP2 or middle of a tie line 

w2 = wc1; 

xc2 = w2./mw/sum(w2./mw); 

[~,rhoc] = thermo_properties_p( 

xc2,P,T,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc,eta_start_a,eta_start_b,

max_counter,max_n_roots ); 

rhoc2 = rhoc*xc2; 

 

%Find rhop (or rhom), a molar density vector close to CP1 and inside the 

%two phase region. up (or um) gives the corresponding direction of interest 

%in the composition space 

[up,ep,um,em,rhop,rhom] = pre_tielines( 

50000,rhoc1,rhoc2,T,sigma_i,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc ); 

 

%Calculate the tangent plane distance in Helmholtz energy representation around the 

%new molar density vector 

xp = rhop/sum(rhop); 

[~,rhoz] = thermo_properties_p( 

xp,P,T,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc,eta_start_a,eta_start_b,m

ax_counter,max_n_roots ); 

ss = linspace(-0.01*rhoz,0.01*rhoz,1000); 

rhoz = rhoz*xp; 

tpd = TPDA_u1( rhoz,ss,T,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc ); 
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%Plots the tangent plane distance in order find two starting points 

figure 

plot(ss,tpd) 

title('Support function') 

xlabel('Molar density') 

ylabel('Support function value') 

 

%Minima of the previous plot 

%Phase "b" contains more nanoparticles 

sa = 6.163*1e-29; 

sb = -5.849*1e-29; 

 

%Corresponding molar density vectors 

rho_a = rhop + up*sa; 

rho_b = rhop + up*sb; 

rho_ab_start = horzcat(rho_a,rho_b(1:2)); 

rhob3 = rho_b(3); 

 

%Find a tie line 

scale = 1e16;%scaling factor to improve minimization of the objective function 

rho_ab = 

tie_line_A(rho_ab_start,rhob3,scale,P,T,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,erro

r_assoc); 

rho_ab = rho_ab./scale; 

 

rho_ab_start = horzcat(rho_ab(1,:),rho_ab(2,1:2)); 

rhob3 = rho_ab(2,3); 

equi_cond(rho_ab_start,rhob3,1,P,T,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_ass

oc);%test 

 

%Transform into mass fraction 

xa = rho_ab(1,:)/sum(rho_ab(1,:)); 

wa = xa.*mw/sum(xa.*mw); 

xb = rho_ab(2,:)/sum(rho_ab(2,:)); 

wb = xb.*mw/sum(xb.*mw); 

wab = vertcat(wa,wb); 

 

%Calculate tie lines in the Gibbs free energy approach 

 

%Global minimization of the tangent plane distance to find stationary points 

w0 = [1-0.0455 0.042 0.0035]; 

x0 = (w0./mw)/sum(w0./mw); 

[fval,Mins] = 

min_TPD(x0,30,P,T,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc,eta_start_a,et

a_start_b,max_counter,max_n_roots); 

 

%Choose stationary points 

 

%Transform mole fractions into mass fractions 

w0 = mw.*x0/sum(mw.*x0); 

nm = length(Mins); 

mins = cell(1,nm); 

for i = 1:nm 

    minn = Mins(i).X; 

    mins{i} = mw.*minn/sum(mw.*minn); 

end 

 

figure 

hold on 

plot(bys(s),bxs(s),'blue') 

plot(byins(ins),bxins(ins),'--r') 

title('Phase diagram') 

xlabel('nan mass fraction') 
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ylabel('pol mass fraction') 

for i = 1:nm 

    m = mins{i}; 

    plot(m(3),m(2),'+','Color','green') 

end 

plot(w0(3),w0(2),'+','Color','black') 

 

%Find a tie line 

Min = {mins{1},mins{3}};%use previous points 

 

[w_I,resnorm] = 

phase_split_t(mw,Min,P,T,sigma_i,m,m_i,e_i,k_ij,e_AiBj,n_Ai,k_AiBj,error_assoc,eta_sta

rt_a,eta_start_b,max_counter,max_n_roots); 

 

Min={w_I(1,:),w_I(2,:)};%redefine if needed to restart the solver with a better   

%starting point 

 

%Final Phase Diagram 

figure 

hold on 

plot(bys(s),bxs(s),'blue') 

plot(byins(ins),bxins(ins),'--r') 

title('T=307') 

xlabel('Nanoparticle mass fraction') 

ylabel('Polystyrene mass fraction') 

set(gca, 'Layer', 'Top'); 

set(gcf,'color','w'); 

plot(wc1(3),wc1(2),'^','MarkerSize',6,'MarkerEdgeColor','black','MarkerFaceColor','bla

ck')%need to define wc1 first 

plot(wc2(3),wc2(2),'^','MarkerSize',6,'MarkerEdgeColor','black','MarkerFaceColor','bla

ck')%need to define wc2 first 

plot([w_I(1,3) w_I(2,3)],[w_I(1,2) w_I(2,2)],'Color','black') 

plot([w_I(1,3) w_I(2,3)],[w_I(1,2) w_I(2,2)],'s','Color','black')%can be repeated to 

plot more tie lines 

 
Published with MATLAB® R2017b 
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A3: Parametric study 

Other ternary phase diagrams with different set of parameters are presented here. When not 

specified, the parameters are provided by table 4.1, 4.2 and 4.3 with 𝑘𝑖𝑗 values set to 0. Dispersion 

energy values are adjusted to match liquid densities of cyclohexane and polystyrene and a pure 

silica nanoparticle packing fraction of 0.6. 

 

Figure A3.1 Ternary phase diagrams for cyclohexane + polystyrene + silica nanoparticles 

mixtures for 𝜀3 = 𝑘𝐵 20000 J and different temperatures. The blue solid line is the binodal and 

the red dashed line is the spinodal. Open triangles represent critical points for which the graphic 

test failed. a) T=280K, b) T=285K, c) T=290K, d) T=295K. 

  

b) 

c) d) 

a) 
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Figure A3.2 Ternary phase diagrams for cyclohexane + polystyrene + silica nanoparticles 

mixtures for 𝜀3 = 𝑘𝐵 20000 J and different temperatures. The blue solid line is the binodal and 

the red dashed line is the spinodal. Solid triangles represent the critical points calculated with 

“critical_point_ternary”. Open squares and lines joining them represent tie lines. Open triangles 

represent critical points for which the graphic test failed. a) T=299.4K, b) T=299.6K, c) T=305K, 

d) T=307K. 

  

a) 

d) c) 

b) 
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Figure A3.3 Ternary phase diagrams for cyclohexane + polystyrene + silica nanoparticles 

mixtures for different nanoparticle diameters and different temperatures. The blue solid line is the 

binodal and the red dashed line is the spinodal. Solid triangles represent the critical points 

calculated with “critical_point_ternary”. Open squares and lines joining them represent tie lines. 

Open triangles represent critical points for which the graphic test failed. a) T=280K, 𝜎3 = 20Å, b) 

T=305K, 𝜎3  = 20Å, c) T=280K, 𝜎3  = 60Å, d) T=305K, 𝜎3  = 60Å, e) T=280K, 𝜎3  = 80Å, f) 

T=305K, 𝜎3 = 80Å. 

a) b) 

c) d) 

e) f) 
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Figure A3.4 Ternary phase diagrams for cyclohexane + polystyrene + silica nanoparticles 

mixtures for different values of 𝑘23. The blue solid line is the binodal and the red dashed line is 

the spinodal. Solid triangles represent the critical points calculated with “critical_point_ternary”. 

a) T=280K, 𝑘23 = 0.01, b) T=305K, 𝑘23 = 0.01, c) T=280K, 𝑘23 = 0.05, d) T=305K, 𝑘23 = 0.05, 

e) T=280K, 𝑘23 = 0.1, f) T=305K, 𝑘23 = 0.1. 

a) b) 

c) d) 

e) f) 
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Figure A3.5 Ternary phase diagrams for cyclohexane + polystyrene + silica nanoparticles 

mixtures for different values of 𝑘13. The blue solid line is the binodal and the red dashed line is 

the spinodal. Solid triangles represent the critical points calculated with “critical_point_ternary”. 

a) T=280K, 𝑘13 = -0.015, b) T=305K, 𝑘13= -0.05, c) T=280K, 𝑘13 = -0.01, d) T=305K, 𝑘13 = -

0.01, e) T=280K, 𝑘13 = 0.1, f) T=305K, 𝑘13 = 0.1. 

a) 

f) e) 

d) c) 

b) 
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Figure A3.6 Ternary phase diagrams for cyclohexane + polystyrene + silica nanoparticles 

mixtures for different values of the association energy 𝜀13  between cyclohexane and silica 

nanoparticles as explained in section 4.3. The blue solid line is the binodal and the red dashed line 

is the spinodal. Solid triangles represent the critical points calculated with “critical_point_ternary”. 

a) T=280K, 𝜀13 = 𝑘𝐵10 J, b) T=305K, 𝜀13= 𝑘𝐵10 J, c) T=280K, 𝜀13 = 𝑘𝐵20 J, d) T=305K, 𝜀13 = 

𝑘𝐵20 J. 

d) c) 

b) a) 
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