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Abstract

Particle transport and deposition in porous media are central to a wide gamut

of natural and engineering processes. In order to establish optimal macro-

scopic performance, it is essential to understand the microscopic colloid trans-

port fundamentals that ultimately manifest at the macroscopic scale. The

present body of work intends to provide an insight into the fundamentals of

particle transport and deposition onto ideal porous media geometries. An

Eulerian model, was developed to evaluate particle deposition rates onto ho-

mogeneous and heterogeneous surfaces of two model geometries-a spherical

collector and a cylindrical microchannel. For a homogeneous spherical col-

lector, in the absence of Electrostatic Double Layer interactions, the correct-

ness of the Levich solution was established for Brownian particle deposition.

Further, it was shown that surface chemical heterogeneity can be effectively

tuned to design novel fluidized bed filters. Surface heterogeneity in cylindrical

channels was identified as an effective tool in drug targeting and controlling

analyte/biomolecule transport in microfluidic devices.

Keywords: Particle deposition, Convection-Diffusion-Migration equation, Eu-

lerian analysis, Patterned Heterogeneity
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Chapter 1

Introduction

1.1 Background and Overview

Particle deposition is a frequently encountered phenomenon in wide a range

of industrial and natural processes spanning fouling of surfaces [Ngene et al.,

2010], filtration techniques [Rajagopalan and Tien, 1976], coating paint on sur-

faces [Ali et al., 2000], particle capture by microbubble floatation [Liu et al.,

2010], chromatographic separation [Buffham, 1996], biomolecular devices [Soli-

man et al., 2010], etc. Particle deposition can be defined as particle transport

from flowing suspensions to a substrate followed by its attachment to the sub-

strate. Depending upon the application, particle deposition can be desirable

or undesirable. Hence it is important to understand and devise methods to

control the deposition process. With the advent of nanotechnology and state-

of-the art micro- and nano- fabrication methods, considerable emphasis has

been given to the development a deeper understanding of the sub-micron scale

particle deposition process.

Particle deposition has been a subject of immense interest since the 1960’s.

Different flow regimes and geometries have been considered for studying parti-

cle deposition including rotating disk systems [Adamczyk et al., 1978], imping-

ing jet geometry [Adamczyk et al., 1986], rectangular and cylindrical channels

[Adamczyk and van de Ven, 1981], and spherical collectors [Elimelech et al.,

1995, Rajagopalan and Tien, 1976]. A through review of deposition processes

on these geometries have been summarized in various texts [Elimelech et al.,

1995, Masliyah and Bhattacharjee, 2006]. Of these, evaluating particle depo-

sition on a spherical collector in a packed bed system has been widely used
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to simulate particle transport and deposition in porous media. For a packed

bed of spheres, the Happel sphere-in-cell model [Happel, 1958] is a commonly

adopted tool to investigate the fundamental mechanisms of particle deposi-

tion. As stated earlier, deposition involves particle transport to large surfaces

(called collectors) where adsorption occurs. Three major factors contribute to

particle transport, namely, Brownian motion (diffusion) , fluid motion (con-

vection) and external forces (migration) acting on the particle. As a particle

approaches the collector surface, the colloidal interactions, which account for

the external forces acting on the particle, becomes the predominant mode of

transport. The colloidal interactions are modeled using the classical DLVO

(Derjaguin-Landau-Verway-Overbeek) theory [Derjaguin and Landau, 1941,

Verwey and Overbeek, 1948]. According to the DLVO theory, the net force

between the particle and the collector depends on the surface-to-surface sepa-

ration distance h as shown in Figure 1.1. The DLVO theory also suggests that

the nature of the interactions (whether attractive or repulsive) depends upon

the physical and chemical properties of the surfaces of both the collector and

the particle. Since, the DLVO interactions deal with surface forces, colloid

deposition studies are valid (i.e, surface to volume ration must be significant)

for particles between 10−9 m < ap < 10−5 m, where ap is the paricle radius.

Figure 1.1 – Schematic depiction of particle depostion onto a spherical sub-
strate. The semi-transparent shell denotes the zone of particle capture where
colloidal interactions are dominant. The interactions are a function of the sur-
face to surface separation distance h between particle and substrate as indicated
in the figure. The figure also depicts the effect of surface charge distribution on
the colloidal particle’s trajectory.
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In addition to colloidal interactions, particles also respond to the viscous

fluid motion they are suspended in. Hence, the moving fluid drags the par-

ticle along with it as it flows (convection). Conversely, the motion of the

particle also affects the fluid flow field. However, for laminar, creeping flow

systems (Re << 1), viscous damping effects significantly mask the inertial

effects [Kemps, 2010]. Thus there is a direct relationship between the force

acting on the particle due to the fluid and the disturbance it creates in the

flow field. Hydrodynamic interaction (or hydrodynamic drag) is defined as the

resistance to a particle approaching a surface due to the fluid molecules be-

ing squeezed out of the shrinking space between the surfaces. Hydrodynamic

interactions affect all three transport mechanisms (convection, diffusion and

migration) to different extents and must be accurately accounted for to predict

particle deposition rates.

Theoretical investigation of particle transport and deposition can be per-

formed by employing two approaches - Eulerian and Lagrangian. In the Eule-

rian method, the generalized convection-diffusion-migration equation is solved

in space using a continuum assumption to evaluate the spatial distribution of

particles. The convection-diffusion-migration equation is representative of the

three mechanisms of particle transport due to Brownian motion (diffusion),

fluid flow (convection) and external field forces (migration). The second ap-

proach which is the Lagrangian framework focusses on tracking the trajectory

of a single colloidal particle using simple force balace (Newton’s laws). Al-

though the two methods are different in their implementations, they capture

the same physics of particle transport and should point to identical conclu-

sions regarding particle deposition. The present body of work employs the

Eulerian method to evaluate particle transport in two geometries most rel-

evant to porous media transport, namely the sphere-in-cell geometry for a

packed bed and cylindrical microchannel which serves as an approximation to

the pores in porous media.

In context of particle deposition, heterogeneities on the collector surface has

a profound influence on the overall deposition behavior. Heterogeneities can be

in the form of surface roughness (physical heterogeneity) or due to presence

of charged species on the collector surface (chemical heterogeneity). When

heterogeneities are present, the collector surface cannot be approximated as
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smooth and homogeneous. It is worth noting that most natural and engineer-

ing process involve surface heterogeneity (both physical and chemical) and

hence it is imperative to evaluate the role of surface heterogeneity on particle

deposition. Effect of surface heterogeneity on particle deposition has attracted

a lot of interest of late and significant amount of relevant research has been

performed [Rizwan and Bhattacharjee, 2009, Vaidyanathan and Tien, 1991].

Majority of these works have focussed on deposition of planar heterogeneous

substrates [Duffadar and Davis, 2008, Kemps and Bhattacharjee, 2005]. In a

recent study by Saiers and Ryan [2005], physical heterogeneity was modeled

as hemispherical asperities on the surface of a spherical collector and its effect

on particle deposition was reported. However, there is a paucity of theoret-

ical work dealing with surface chemical heterogeneity on spherical collectors

and cylindrical microchannels. The present study evaluates the role of surface

chemical heterogeneity on particle deposition on a spherical collector and in a

cylindrical microchannel and captures the effect of the collector geometry on

particle deposition.

Chemical heterogeneity results from uneven surface charge distribution on

the collector surface. Figure 1.1 qualitatively depicts the effect of surface

charge on the trajectory of a particle in the vicinity of the collector. The sur-

face has two types of randomly distributed charges which determines whether it

is favorable or unfavorable to deposition of a charged colloidal particle. Surface

impurities, difference in mineral constituents etc contribute to chemical het-

erogeneity. Modeling the random surface charge distribution is difficult from

the theoretical point of view. One of the common methods to approximate

the surface charge distribution is the use of patterning technique [Nazemifard

et al., 2006] which facilitates tractable analysis of particle deposition. In this

two types of surface charge is defined on the surface of the collector as alter-

nate stripes. It is noteworthy that surface charge distributions varies over large

length scales and it has been proven that spatial averaging (patchwise hetero-

geneity model) [Song et al., 1994] works remarkably well only for macroscopic

length scales [Elimelech et al., 2003]. For microscopic chemical heterogeneity,

this approximation leads to erroneous results and appropriate modifications to

the modeling must be incorporated to capture the effect of the heterogeneity

on particle deposition correctly. The present body of work deals entirely with

microscopic surface charge distribution and captures the combined effect of

4



the other transport mechanisms and the surface charge distribution on parti-

cle deposition.

1.2 Problem Statement

In light of particle transport in porous media, it must be understood that

it is almost impossible to characterize the random geometry of real porous

structures. Hence approximations must be made with regards to the porous

media geometry, in order to enable tractable modeling analysis. In the present

study, two geometries are considered as approximations to the real porous me-

dia. Firstly, the porous media is approximated as a packed bed of spheres

following which the single collector efficiency is calculated using the Happel

sphere-in-cell model [Happel, 1958]. Particle deposition behavior is first in-

vestigated on a smooth homogeneous spherical collector in order to validate

the fundamental mass transport principles. The initial validation part of the

model development (involving deposition onto homogeneous collectors) was

important in light of the existing debate on the deposition behavior of parti-

cles on spherical collectors especially for sub-micron sized particles (Brownian

regime). Although a lot of research has been directed towards it over the past

three decades, the question as to why these models predict different deposition

rates for the same geometry is still unanswered. It was initially proposed that

the analytical Levich solution [Levich, 1962] defines the deposition efficiency

for Brownian particles. This however was later refuted. How accurate is the

analytical Levich solution in predicting deposition efficiency of Brownian par-

ticles? Does it represent the true limiting mass transport behavior? Upon

logically answering these questions, the model is improved by incorporating

micropatterned surface charge heterogeneity and its effect on the particle de-

position rate is investigated. The particle deposition model with surface charge

heterogeneity formed the second subpart for analyzing deposition onto spher-

ical collectors.

Porous structures are also characterized by pores of varying lengths and di-

ameters which donot allow systematic evaluation of particle transport. Hence,

approximating the pores as cylindrical microchannels provides a viable solu-

tion to overcome the modeling difficulties and facilitate systematic analysis of
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particle transport. Thus, in the second problem, a cylindrical microchannel

with patterned surface heterogeneity is considered and the transport and de-

position of particles suspended in a fluid flowing through the microchannel is

investigated. Considering transport of particles suspended in a carrier fluid in

micro/nano scale channels is central to numerous microfluidic and nanofluidic

systems, the model would provide enhanced understanding of how these parti-

cles tend to stick to the walls of the microchannel or get transported through

it. In both problems, the fluid is assumed to be operating in the Stoke’s flow

regime which is consistent with porous media systems.

The effect of the surface chemical heterogeneity coupled with the geome-

try and flow parameters on the deposition behavior is investigated (for both

the spherical collector and the cylindrical microchannel). For the cases where

micropatterned surface charge heterogeneity is considered, it is important to

understand the rationale behind patterning. Is it merely to replicate the sur-

face chemical heterogeneities? Can artificial patterning be useful in controlling

the deposition rates? If they can, what are the prospects of developing novel

particle separation systems by tuning these patterned surfaces?

1.3 Objectives and Scope

1.3.1 Objectives of the Present Study

With the preceding questions in mind, the major objectives of the present

thesis can be summarized as

1. Evaluate the contribution of each of the particle transport mechanisms

individually in the sphere-in-cell geometry. Investigate the accuracy

of the analytical Levich equation in predicting deposition efficiency of

Brownian particles. Explain the reasons for the disagreements between

existing models. Establish a correct correlation which accurately pre-

dicts particle deposition efficiency for a range of particle sizes.

2. Develop a model to investigate the effect of surface charge heterogeneity

on the local and overall particle deposition behavior in a sphere-in-cell

geometry. Analyze the effect of change in orientation of the fluid flow ap-

proaching the collector and the available area fraction on the deposition

rates.
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3. Develop a computational model to investigate the effect of surface charge

heterogeneity on the particle transport behavior in a micropatterned

cylindrical microchannel.

4. Propose techniques to tune these artificially prepared collectors for de-

signing novel particle separation systems with enhanced retention effi-

ciency and improved operational life.

1.3.2 Scope of the Present Study

In order to reconcile the disagreements of the previous models in predicting the

single collector efficiency, it was important to maintain the same physical and

chemical properties of the system as in the other models. Thus the the only

colloidal interactions considered for the validation part of the problem was

the attractive van der Waals interactions between the collector and particle.

Electrostatic Double Layer (EDL) interactions were neglected. Real surfaces

however are almost always charged due to the presence of ions in solution and

on the surfaces. The evaluation of the single collector efficiency in itself comes

with inherent assumptions which include very dilute particle concentrations

and totally clean collector. In other words it gives an indication of the ini-

tial deposition rates only and does not consider the transient blocking of the

collector surface due to surface fouling by the particles. Very dilute particle

concentration is assumed to ensure inter particle interactions are negligible.

Further, large particle to collector aspect ratio systems have been considered

which makes the sphere-in-cell system very similar to the deposition onto a

flat plate system especially near the collector wall.

The assumption of smooth and chemically homogeneous surface greatly

simplifies evaluation of particle transport around such surfaces but at the cost

of pragmatic depiction of the real systems. Since in most real systems, the

heterogeneity is random, modeling deposition onto such surfaces is practically

impossible using the conventional continuum type approach. Hence, the het-

erogeneity was modeled as alternate stripes of positive and negative surface

charges (or alternate attractive and repulsive regions). Further, the analysis

in this model is restricted to chemical heterogeneity due to surface charges

only. Physical heterogeneities have not been considered in the present body of

work to maintain modeling simplicity. Most real systems however have both
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physical and chemical heterogeneities on the surface of the substrates.

For evaluating particle transport in a patterned microchannel, the flow

was assumed to be fully developed and parabolic in nature. This again is

an idealization as flow in microchannels is never truly parabolic. Further,

the pores in a real porous matrix are hardly ever cylindrical throughout their

lengths. Similarly, for the sphere-in-cell geometry the assumptions that the

packed bed is made up of uniform spheres is an idealization for modeling

tractability.

1.4 Overview of the Thesis

The content of this thesis has been subdivided into 6 chapters with each chap-

ter looking at different aspects of particle deposition onto porous media.

In the present chapter (Chapter 1), a general overview of the deposition

process has been described followed by a concise problem statement and the

objectives of the present study. The present chapter also highlights the scope

of problem statement which basically describes the underlying simplifying as-

sumptions which were employed to enable tractable analysis of the deposition

problem.

In Chapter 2, a thorough review of existing work on particle deposition

has been presented. This includes deposition onto both homogeneous and

heterogeneous substrates. Further, a critical review of the existing analytical

correlations for predicting single collector efficiency has been performed. This

chapter sets the foundation for the remaining chapters of the thesis in which

we discuss particle deposition onto various porous media geometries with dif-

ferent surface chemistries.

Chapter 3 discusses particle deposition onto homogenous sphercical col-

lectors in the absence of Electrostatic Double Layer (EDL) interactions. The

results are compared with other models in literature with the objective of es-

tablishing the correct deposition behavior for Brownian particles. In the later

half of the chapter, a new correlation is presented for predicting single collector

efficiency as a function of particle size.
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Most real substrates are chemically heterogeneous in aqueous solution.

Chapter 4 investigates the effect of surface chemical heterogeneity on particle

deposition. In this chapter, the packed bed is assumed to be an assemblage

of micropatterned charged spheres. The numerical model from chapter 3 is

modified and surface heterogeneity is incorporated.

In Chapter 5, effect of surface charge heterogeneity on particle transport

in a cylindrical channel is presented. Chapter 5 lends significant insight into

particle/analyte transport in microfluidic devices involving cylindrical chan-

nels.

In the final chapter, the most important conclusions from each chapter are

summarized and possible areas of improvement of the developed model are

discussed.
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Chapter 2

Literature Review

2.1 Introduction

Particle transport and deposition in porous media geometries has been a sub-

ject of intense research for over half a century. The fundamental principles of

particle transport and interactions have been used in various engineering and

biomedical systems ranging from ground water transport, chromatographic

separation, filtration methods, surface fouling, in developing materials with

novel surface properties, transport of biomolecules and analytes, drug deliv-

ery and many more. The subject of particle deposition in porous structures

has evolved over the years involving extensive theoretical and experimental

studies with an attempt to replicate real porous media and the particle wall

interactions associated therewith. This literature review aims to summarize

the relevant previous works on particle transport in porous structures using the

sphere-in-cell geometry and cylindrical microchannel. The review is divided

into three main parts dealing with evaluation of particle transport in a homo-

geneous sphere-in-cell model, relevant works and applications of heterogeneous

substrates and its extension to the sphere-in-cell models and finally particle

transport in heterogeneous microchannels. The discussion maintains a flow

starting from particle transport in homogeneous systems and then develops

into investigating transport in the presence of surface heterogeneity.

2.2 Happel sphere-in-cell Model

In studies dealing with Colloid Filtration Threory (CFT) [Shen et al., 2010,

Yao et al., 1971], the Happel sphere-in-cell model [Elimelech et al., 1995, Hap-
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pel, 1958] is a commonly used tool to evaluate particle deposition rates in

granular porous media. A packed bed of spherical collectors is often used

to simulate particle transport in such systems [Payatakes et al., 1974, Ra-

jagopalan and Tien, 1976, Tufenkji and Elimelech, 2004, Yao et al., 1971].

Figure 2.1(a) schematically depicts a porous medium approximated as an as-

semblage of spheres. According to the Happel cell model, the porous medium

is a packed bed of identical spheres (of radius ac) in which each sphere is

enveloped by a thin film of fluid. The thickness of the fluid shell, b in Fig-

ure 2.1(b) is defined by the porosity of the medium or conversely, the volume

fraction of the spheres in the packed bed. The transport behavior around the

single isolated spherical collector gives an indication of the deposition char-

acteristics of the entire porous bed. It is important to note that, although

the analysis considers only one spherical collector, the fluid flow field in the

fluid shell will be affected by the presence of the other neighboring collectors.

This is accounted for by modifying the flow field in the shell using the porosity

factor [Tien, 1989]. The Happel cell model neglects the interactions between

the collectors and only considers particle-collector interactions.

The transport efficiency parameter which gives an indication of the initial

deposition rate in the Happel cell model is known as the single collector effi-

ciency [Elimelech et al., 1995, Payatakes et al., 1974, Ruckenstein, 1964, Tien,

1989]. Single collector efficiency is defined as the ratio of the rate at which

colloidal particles strike the collector surface to the rate at which the parti-

cles are flowing towards the collector [Shen et al., 2010, Yao et al., 1971]. In

essence the single collector efficiency quantifies the initial deposition rate on a

“clean” collector. The single collector efficiency (η) is directly related to the

overall filter coefficient of the medium (λ) defined as [Elimelech et al., 1995,

Tien, 1989]

λ =
3

2

1− f
(2ac)

αη (2.1)

where f is the medium porosity, ac is the radius of the spherical collector and

α is the sticking efficiency which is defined as the ratio of the number of par-

ticles striking the collector surface to the number of particles sticking to it.

Under ideal cases α is approximated as 1. Evaluation of this single collector ef-
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Figure 2.1 – Particle transport in saturated porous media (a) Schematic repre-
sentation of porous media as an assemblage of spheres. (b) Happel sphere-in-cell
geometry showing a single collector with radius ac and shell radius b.
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ficiency parameter involves rigorous numerical calculation by employing either

the particle tracking method (Lagrangian framework) or the field evaluation

method (Eulerian framework).

2.2.1 Happel’s Flow Field

Before reviewing the methods and models to evaluate single collector efficiency,

it is important to discuss the fluid and mass transport mechanisms in the

Happel cell model. This subsection focuses on the hydrodynamic aspects of

the cell model. As mentioned earlier, the thickness of the fluid shell b in the

Happel cell model is a function of the porosity of the granular medium as is

given by the expression [Elimelech, 1994, Masliyah and Bhattacharjee, 2006]

ac
b

= (1− f)1/3 (2.2)

f is the medium’s porosity, ac and b are as defined by Figure 2.1(b). Equation

2.2 simply assigns the shell thickness b such that the collector to cell volume

ratio is equal to the volume fraction of the entire medium. Thus, the cell thick-

ness is characteristic of the porous medium and is independent of the flow and

other transport parameters involved. To solve a mass transport problem how-

ever, the governing fluid transport and mass flux equations need to be solved

in the fluid shell of the cell model.

Since most porous media flows operate in the creeping flow regime (i.e,

Re << 1), the fluid transport in the shell is governed by the Stokes equation

[Masliyah and Bhattacharjee, 2006] which describes the motion of the fluid

relative to the collector.

µ∇2u = ∇P − fb (2.3)

where µ is the fluid viscosity, u is the fluid velocity vector, and fb is the

sum of the body force vectors. Solution of the Stokes equation in conjunction

with the continuity equation gives the fluid flow field distribution in the shell.
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Ofcourse, appropriate boundary conditions must be provided along with the

Stokes and continuity equation to establish the fluid flow field. The boundary

conditions for solving the flow field are

u = 0 at r = ac (2.4)

which signifies no slip condition at the wall of the spherical collector and

τrθ = µ∇u = 0 at r = b (2.5)

where τrθ is the shear stress and ∇u is the gradient of the velocity vector (in

spherical co-ordinates). Thus, Equation 2.5 states that at the outer bound-

ary of the shell there is no shear stress. The boundary condition given by

Equation 2.5 is known as the Happel’s boundary condition proposed by Hap-

pel [1958] and Happel and Brenner [1965]. Careful observation reveals that

the Happel boundary condition states that the shell thickness is larger than

the hydrodynamic boundary layer (where shear stress vanishes due to absence

of viscous effects). Due to the shape of the spherical collector the hydrody-

namic boundary layer thickness is varies along the tangential position on the

collector. Figure 2.2 schematically depicts the hydrodynamic boundary layer

thickness and the Happel’s boundary. It is very interesting to note that the

shell thickness does not impose any restriction on the hydrodynamic bound-

ary layer thickness. Thus, for low flow velocities it is actually possible that

the hydrodynamic boundary layer thickness is greater than the shell thickness

where shear flow is maximum. In such a scenario, the Happel’s boundary con-

dition will not be valid and hence, the Happel cell model must be employed

judiciously.

For an incompressible fluid, the stream function (Ψ) for an axisymmetric

creeping flow in spherical co-ordinates is given as [Elimelech et al., 1995, Tien,

1989] [
∂2

∂r2
+
sinθ

r2

∂

∂θ

(
1

sinθ
− ∂

∂θ

)]2

Ψ = 0 (2.6)

14



Figure 2.2 – Happel boundary condition and hydrodynamic boundary layer
thickness in the sphere-in-cell geometry. Stagnation and shear flow regimes
exist in the cell model due to the sphericity of the collector.
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where r and θ denote the radial and tangential co-ordinate in the cell. The

appropriate steam function expression which accounts for the disturbances in

the flow field around the cell due to the presence of the neighboring collectors

was given by Tien [1989] as

Ψ = Â

[
K1

(ac
r

)
+K2

(
r

ac

)
+K3

(
r

ac

)2

+K4

(
r

ac

)4
]
sin2θ (2.7)

Here U is the free stream velocity, and Ki, i ∈ [1, 4] are porosity dependent

parameters which can be determined by employing the appropriate boundary

conditions for the flow model. The exact expressions for the Ki’s are given

in Table 2.1. Using the analytical stream function expression, the radial and

tangential components of the fluid velocity can be be evaluated readily by cal-

culating the derivatives in the radial and tangential directions.

Parameter Expression

Â Ua2
c/2

K1 1/w
K2 −(3 + 2p5)/w
K3 (2 + 3p5)/w
K4 −p5/w
w 2− 3p+ 3p5 − 2p6

p ac/b = (1− f)
1
3

Table 2.1 – Constants used for defining flow field around a unit collector in
granular porous media

2.2.2 Particle Transport Mechanisms in the Cell Model

The three major mechanisms which contribute to particle transport and depo-

sition are convection, diffusion and migration [Molla and Bhattacharjee, 2007,

Nazemifard et al., 2006]. Particle transport by convection occurs due to Stokes

drag which pulls the particle along with the flowing fluid. Diffusive transport

is driven by the random motion of the suspended particle due to molecular
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collisions from the surrounding fluid and migration is governed by the colloidal

interactions between the particle and the collector surface. Depending upon

the conditions of the flow system in question, these three mechanisms affect

the particle transport to different extents and at different length scales. It is

important to evaluate each of these three mechanisms carefully to develop a

deep understanding of the deposition processes.

Convective Transport and Hydrodynamic Interactions

For a particle suspended in an unbounded flowing fluid, its velocity can be

assumed to be the same as the fluid velocity and the particle is follows the

fluid streamlines [Kemps, 2010]. In most colloidal deposition systems, it is

usually assumed that the particle does not disturb the fluid flow field [Elim-

elech et al., 1995]. The factors that effect convective particle transport are

the fluid viscosity (which defines the viscous damping effect) and the particle

radius (defining the projected drag area). Thus the Stokes drag is directly

proportional to both these quantities (Drag ∝ apµ where ap is the particle

radius) [Dickinson, 1985]. The situation however changes dramatically near a

bounding surface. Near the surface, the particle experiences enhanced resis-

tance as the fluid molecules squeeze out of the thin bounding space [Dickinson,

1985, Kim and Karrila, 2005]. Thus, the fluid and particle velocities are very

different. To account for this, analytical hydrodynamic correction factors were

developed to accurately calculate the particle velocities near the wall [Brenner,

1961, Goldman et al., 1967, Goren and Oneill, 1971, Spielman, 1977, Spielman

and Fitzpatr., 1973]. For the Happel cell model, the particle and fluid velocities

are coupled as

vr = f1(H)f2(H)ur (2.8)

and

vθ = f3(H)uθ (2.9)

where ur and uθ denote the fluid velocity components in the radial and tan-

gential directions while vr and vθ denote the corresponding particle velocity
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components. H(= h/ap) is the scaled surface-to-surface separation distance

between particle and collector. f1(H), f2(H), f3(H) are the correction factors

that account for the hydrodynamic interactions between the particle and the

collector at close separation distances. At large separation distances (or con-

versely in an unbounded flowing fluid) the hydrodynamic correction functions

decay to a value of 1, in which case the fluid and particle velocities are equal.

Several correlations these correction factors exist in literature [Brenner, 1961,

Goldman et al., 1967, Payatakes et al., 1974, Spielman and Fitzpatr., 1973].

The present body for work employs the curve fit expressions extracted from

the book by Masliyah and Bhattacharjee [2006]. Table 2.2 provides these cor-

relation expressions.

i ai bi ci di ei

1 0.9267 -0.3990 0.1487 -0.6010 1.2020
2 0.5695 1.3550 1.3600 0.8750 0.5250
3 0.1500 -0.3750 3.9060 -0.6250 3.1050
4 1.2600 -2.6760 0.3581 1.9990 0.2320

fi(H) = 1.0 + bi exp(−ciH) + di exp(−eiHai)

Table 2.2 – Hydrodynamic correction factors to relate the particle velocity to
the fluid velocity in the proximity of the collector.

Another important aspect of hydrodynamic interactions which is not of-

ten discussed is the effect of the particle size. Following the reasoning for the

enhanced particle drag near the surface, an important question arises as to

what happens when the particles are “point-like”. Physically, for a vanish-

ingly small particle, it has to squeeze a very small amount of fluid between

itself and the collector surface. Hence, the near wall drag is negligible and

it is safe to assume that the fluid and particle velocities are the same at all

times. Further, for ”point-like” particles the Stokes drag is also insignificant

for realistic values of fluid viscosity [Dickinson, 1985]. Hence, it can be sum-

marized that for vanishingly small particles, particle transport by convection

has negligible impact on the deposition process.
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Diffusive Transport and Hydrodynamic Interactions

As discussed earlier, diffusive transport occurs due to Brownian motion of the

particle as a result of molecular collisions from the surrounding fluid. It is

intuitive that Brownian motion is more pronounced for “point like” particles

as inertial resistance is small. Also, as viscosity increases, diffusion decreases

due to viscous damping. Hence, the two main factors affecting diffusion are

particle size and viscosity [Dickinson, 1985]. The diffusion coefficient is given

by the Stokes Einstein expression as [Edward, 1970]

D∞ =
kBT

6πµap
(2.10)

where kB is the Boltzmann constant and T is the absolute temperature in

Kelvin scale. The other terms retain their usual meanings. The thermal energy

term in the numerator of Equation 2.10 quantifies the extent of molecular col-

lisions. As Equation 2.10 suggests, diffusion decreases as particle size becomes

larger for a given value of viscosity but is the dominant mode of transport for

“point like” particles. It is important to note that hydrodynamic interactions

effect diffusive particle transport near the collector surface just like it does

for convection [Elimelech et al., 1995, Kemps, 2010, Nazemifard et al., 2006].

Hence, it experiences increased resistance near the wall as it tries to squeeze

the fluid molecules out of the thin space during its course of vibration. To ac-

count for the hydrodynamic interactions near the surface [Honig et al., 1971,

van de Ven, 1989] the particle diffusion coefficient tensor is formulated as

D = D∞

[
f4(H) 0

0 f1(H)

]
(2.11)

where f4(H) and f1(H) are the correction factors enumerated in Table 2.2.

Colloidal Interactions and DLVO Theory

Particle transport by migration occurs due to short range (about a few hun-

dred nanometers) colloidal interactions between the particle and the collector

surfaces. Colloidal interactions are evaluated using the classical DLVO theory

developed by Derjaguin and Landau [1941], and Verwey and Overbeek [1948].
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The DLVO model is basically a theoretical tool which qualitatively interprets

the colloidal phenomenon induced by the Lifshitz-van der Waals and electro-

static interactions. The DLVO theory is, however, approximate and is based

upon a few underlying assumptions which are

• The solvent is treated as a continuum

• The ions in the solvent are point like (i.e, there is no volume associated

with the ions) and they do not interact with each other and,

• The interacting bodies have smooth surfaces and are well defined geome-

tries such as planes, spheres or cylinders.

Although, the DLVO model has been subject to controversy and criticism [Is-

raelachvili, 1992, Kemps, 2010, Ninham, 1999], its assumptions have proven to

be fairly robust in evaluating colloidal interactions for many systems [Torrie

and Valleau, 1979].

As mentioned earlier, the two main components of the DLVO model are the

attractive van der Waals interactions and the attractive/repulsive (depending

upon the surface charge of the collector and the particle) electrostatic double

layer interactions. Both these interactions play an important role in particle

transport and attachment to the substrate. The van der Waals interaction

energy is calculated from the classical Lenard-Jones potential which summa-

rizes the interaction between a pair or atoms (in the particle and the collector)

when they are brought very close to each other [Israelachvili, 1992].

ULJ = εD

[(σ
r

)12

−
(σ
r

)6
]

(2.12)

where εD is the characteristic energy for dipolar interaction, σ is the distance of

neutral approach, and r is the separation distance between the atoms. There

are two well known methods for calculating the attractive van der Waals in-

teractions, namely, the Hamaker approach [Hamaker, 1937] which is based on

microscopic molecular model and the macroscopic continuum model by Lif-

shitz [1956]. The present study evaluates the van der Waals interactions using

the Hamaker approach. It must be mentioned that the Hamaker approach

uses volume integrals for calculating the van der Waals energy which might
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be cumbersome when the interacting bodies are of arbitrary geometric shapes.

A simplified approximation to calculate van der Waals energy, known as the

Derjaguin approximation, is often used. In the Derjaguin technique, the inter-

action energy per unit area is calculated between two infinite planar surfaces

(half spaces) over the surfaces of the interacting particles [Masliyah and Bhat-

tacharjee, 2006]. Further, van der Waals interaction energy can be retarded

(Born repulsion [Hunter, 2001]) or unretarded depending upon whether the

repulsive part (r12) of the Lenard-Jones potential in Equation 2.12 is consid-

ered. In reality, when two atoms are brought very close to each other (0.1

nm), their electron clouds overlap resulting in strong repulsive forces known

as Born repulsion [Hunter, 2001]. The non-retarded sphere-plate interaction

energy based on Derjaguin approximation is given as

φDA = −AH ap
6h

(2.13)

and the non-retarded interaction energy based on Hamaker approach is

φHam = −AH
6

[
ap
h

+
ap

h+ 2ap
+ ln

(
h

h+ 2ap

)]
(2.14)

with AH being the Hamaker constant. The retarded van der Waals interaction

based on Derjaguin approximation is given by [Schenkel and Kitchener, 1960]

φr,DA = −AHap
6h

[
1

1 + 11.12h/λ

]
(2.15)

whereas the corresponding expression based on Hamaker approach is [Czar-

necki, 1979]

φr,Ham = −AHλ
12π

[
2.45

5

(
h− ap
h2

− h+ 3ap
(h+ 2ap)2

)
− 2.17λ

60π

(
h− 2ap
h3

− h+ 4ap
(h+ 2ap)3

)
+

0.59λ2

420π2

(
h− 3ap
h4

− h+ 5ap
(h+ 2ap)4

)]
(2.16)
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where λ = 100 nm. h and ap retain their usual meanings as before. It is

important to note that all four expressions indicate that the interaction energy

diminishes as particle size decreases. Thus

φvdW → 0 as ap → 0 (2.17)

Equation 2.17 will have important implications in determining the correct

limiting mass transport behavior when the single collector efficiency is evalu-

ated.

In addition to the van der Waals interaction energy, electrostatic interac-

tions also play a key role in particle transport and deposition. Solid surfaces

in aqueous solution often acquire different surface charges as a result of which

they interact [Hogg et al., 1966]. Acquisition of surface charge may be due to

ionization of surface groups, physical restriction of a particular type of ion to

one phase or specific affinity of surfaces towards ions. In order to maintain

electro-neutrality, an excess amount of oppositely charged ions (counter-ions)

arrange themselves next to the surface and a deficit of an equal amount of

similarly charged ions (co-ions) is created simultaneously. This redistribution

of ions in solutions gives rise to the Electrostatic Double Layer (EDL) [Hunter,

1981]. The Stern model is often used to describe the double layer [Hiemstra

and VanRiemsdijk, 1996, Westall and Hohl, 1980] interactions between sur-

faces in solution. According to this model, outside the Stern layer (which is

the immobile layer of counter ions adjacent to the surface), the mobile counter

ions are distributed and their motion is balanced by the electrostatic attraction

and the diffusion due to thermal energy. This layer of mobile counter ions is

called the diffuse layer. Electrostatic double layer interactions take place when

the diffuse layers of two approaching surfaces overlap [Nazemifard, 2006]. The

EDL interaction energy, assuming constant surface potential on the particle

and the collector and symmetric (z:z) electrolyte, is given by the Hogg Healy

Fuerstenau (HHF) [Hogg et al., 1966] expression
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φEDL = πεap

{
2ψsψp ln

[
1 + exp(−κh)

1− exp(−κh)

]
+ (ψ2

s + ψ2
p) ln[1− exp(−2κh)

}
(2.18)

where ψs, ψp are the surface potentials on the collector and the particle re-

spectively, and κ is the inverse Debye length [Hunter, 1981, Masliyah and

Bhattacharjee, 2006] given by the expression

κ =

√
2n∞z2e2

ε0εkBT
(2.19)

Here n∞ is the bulk ionic number concentration of the electrolyte, ε is the sol-

vent dielectric constant and ε0 is the permitivity of vacuum. Depending upon

the signs of the surface potentials, the EDL interactions can be attractive or

repulsive in nature.Both the van der Waals interaction energy and EDL energy

expressions used in the present study apply to a spherical particle interacting

with a flat plate. Although the sphere-in-cell model defines a spherical collec-

tor, the ratio of the collector to particle size is very large (>100) which allows

the sphere-flat plate approximation. Thus, near the surface, the particle does

not feel the curvature effect of the collector due to the large size of the collector

compared to that of the particle.

Summarizing all the three particle transport mechanisms, it can be proven

mathematically as well as logically that for small particles convection and

colloidal interactions are negligible as is hydrodynamic interaction. These

transport mechanisms start taking effect only as particle size becomes large.

For small particles the dominant mode of transport and deposition is diffusion.

Figure 2.3 schematically depicts the three modes of particle transport near the

collector surface. With this background, the obvious question is what is the

definition of a small particle? At what particle size does hydrodynamic and

colloidal interactions cease to have any significant effect on particle transport

and deposition?
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Figure 2.3 – Schematic depicting all three modes of particle transport near the
collector surface

2.3 Limiting Deposition Behavior and Levich

Equation

As previously discussed, the three mechanisms of particle transport predom-

inate at different length scales and particle sizes. The non-dimensional mass

transport coefficient (Sherwood number, Sh) in the absence of hydrodynamic

retardation and colloidal interactions was given by [Levich, 1962]. According

to the analytical Levich solution, the Sherwood number and Peclet number

(which is the ratio of particle convection to particle diffusion), for a packed

bed, are related as

Sh ∝ Pe1/3 (Pe >> 1) (2.20)

It has already been discussed that both hydrodynamic retardation and the col-

loidal interactions become insignificant for “point-like particles” and diffusion

is the predominant mode of particle transport in such cases. Hence for such

strongly diffusive systems, Levich equation should be the valid limiting condi-

tion for predicting the Sherwood number. Some earlier studies [Rajagopalan

and Tien, 1976, Ruckenstein, 1964, van de Ven, 1989, Yao et al., 1971] es-
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tablished that for all particle sizes upto 1 micron, Levich equation is valid.

van de Ven [1989] argued that in the absence of electrostatic interactions and

below 1 micron particle size, the hydrodynamic retardation forces balance the

attractive van der Waals interactions thereby adhering to the Levich solution.

This claim, however, is hypothetical and there is no mathematical proof that

the two factors counter each other below 1 micron particle size. In a recent

article by Tufenkji and Elimelech [2004], it was highlighted that the Levich

solution is not the true limiting behavior even for Brownian particles. This

has instigated a debate regarding the limiting mass transport behavior for

the sphere-in-cell model. There is a rift between the two schools of thought,

one which agrees with the Levich solution [Long and Hilpert, 2009, Nazemifard

et al., 2006, Rajagopalan and Tien, 1976, Yao et al., 1971] and the other which

does not [Civan, 2010, Lin et al., 2008, Tufenkji and Elimelech, 2004]. It is

thus important to establish the correct fundamental limiting behavior before

investigating complicated deposition systems.

2.4 A Review of Existing Models Predicting

Particle Deposition onto Homogenous At-

tractive Collectors: Limiting Case Conjec-

tures

As discussed earlier, in colloid filtration theory, the most important link be-

tween the micro-scale physics of particle deposition around a single collector

and the macroscopic filtration efficiency (or filter coefficient) of a granular

packed bed is the initial deposition rate of colloidal particles onto a clean

collector grain, generally referred to as the single collector efficiency. Over

the years, various models have evolved for evaluation of single collector effi-

ciency. In this section, a comprehensive review of these models are discussed.

In all these models, the effect of the EDL interactions has not been considered.

The first comprehensive study on an isolated spherical collector was con-

ducted by Ruckenstein [Ruckenstein, 1964]. Following this, cell models for an

assemblage of spherical collectors were used extensively as a means of elucidat-

ing the mechanisms of colloid filtration by granular porous media [Kemps and

Bhattacharjee, 2009, Nelson and Ginn, 2005, Prieve and E, 1974, Rajagopalan
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and Tien, 1976, Tufenkji and Elimelech, 2004]. Recently, Ma and Johnson

[2010] developed a theoretical model for evaluating single collector efficiency

on a hemisphere-in-cell model incorporating grain to grain contact. Among

various methods, Eulerian and Lagrangian particle transport models employ-

ing the Happel sphere-in-cell model [Happel, 1958] to describe the flow field

remains the most widely used approach for this purpose. In a study by Long

and Hilpert [2009], Lattice Boltzmann method has also been used to evaluate

single collector efficiency. Although these models qualitatively indicate similar

deposition trends, over the recent years, some confusion seems to have crept

in literature related to the description of the diffusion dominated deposition

rendering significant differences in the slope of the overall single collector effi-

ciency curve for Brownian particles.

Yao et al. [1971] provided the first model to calculate single collector effi-

ciencies for Brownian and non-Brownian particles by considering the finite size

of the particles. This work proposed the additivity rule by which the overall

single collector efficiency could be evaluated by adding the contributions from

the three mechanisms of diffusion, interception, and gravity. A Lagrangian

analysis using the additivity principle was performed by Rajagopalan and

Tien [Rajagopalan and Tien, 1976] in developing their correlation for par-

ticle deposition efficiency, referred hereafter as the RT correlation. The RT

correlation improved upon the Yao et al. [1971] correlation by accounting for

the attractive van der Waals interaction between the particle and the collector,

as well as, by incorporating the hydrodynamic retardation of the particle ow-

ing to its proximity to the collector on the convective and migration transport

(both deterministic) terms. However, Rajagopalan and Tien, who only calcu-

lated the deterministic particle trajectories, simply added the Levich solution

to their trajectory analysis results assuming the linear additivity principle to

obtain their correlation. In this respect, both the Yao et al. [1971] and RT

[Rajagopalan and Tien, 1976] results revert to the classical Levich solution for

purely diffusive systems. Neither of these solutions explicitly account for hy-

drodynamic interactions on the diffusive particle transport. A comprehensive

summary of these early correlations is given in Elimelech et al. [1995]

Tufenkji and Elimelech [2004] developed a new correlation, referred here-

after as the TE correlation, for predicting single collector efficiency for the
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sphere-in-cell geometry by numerically solving the convection-diffusion-migration

equation. The TE correlation is obtained by performing a regression analysis

on the results obtained from a numerical solution of the governing transport

equations. The Eulerian approach adopted by Tufenkji and Elimelech in de-

veloping the correlation can be considered the most rigorous because of the

following reasons: (i) All three transport mechanisms are considered fully cou-

pled through the governing equation, and are not linearly combined; and, (ii)

the hydrodynamic retardation effects are considered in the particle diffusion

term in addition to convection and migration. The single collector efficiency

predicted by the TE correlation, however, has a distinct deviation from the

Levich slope, and hence, from the slope of the RT correlation in the diffusion

dominated regime. The authors attribute this deviation to the van der Waals

attraction and the hydrodynamic retardation, which were not considered in

Levich’s solution [Rajagopalan and Tien, 2005, Tufenkji and Elimelech, 2005].

Brownian trajectory analysis of the same problem was later performed by

Nelson and Ginn [2005] and Kemps and Bhattacharjee [2009]. Both these

works take into account the van der Waals interaction between the particle

and the collector. Although both these studies included the diffusional trans-

port mechanism directly in the particle tracking model, the Brownian motion

term in the original Nelson and Ginn model did not consider hydrodynamic

retardation. In contrast, the model of Kemps and Bhattacharjee considered

hydrodynamic retardation in the Brownian motion term. The single collector

efficiencies predicted by Kemps and Bhattacharjee tend to agree closely with

the RT correlation in the diffusion dominated region. In contrast, the original

work of Nelson and Ginn predicted a consistently lower single collector effi-

ciency in the diffusion dominant regime, which was later corrected and their

revised results [Nelson and Ginn, 2009] agree well with the RT correlation

values using the Lagrangian approach. However, Nelson and Ginn depicted

in their comment [Nelson and Ginn, 2009] that the diffusive regime of the

single collector efficiency vs. particle diameter plot can attain different values

depending on how the hydrodynamic interactions have been included in the

particle tracking model. Notwithstanding these, the slopes of the single col-

lector efficiency plots against particle diameter obtained from the Lagrangian

models used by Kemps and Bhattacharjee [2009] as well as Nelson and Ginn

[2005, 2009] tend to follow the slope of the RT plot in the diffusion dominated
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(small particle size) regime. It has been shown more recently that the slope of

single collector efficiency vs. particle size curve for strongly diffusive systems

agrees with the Levich slope even when collector grain-to-grain contact is con-

sidered in a hemisphere-in-cell geometry, which retains most of the attributes

of Happel’s cell model [Ma and Johnson, 2010, Ma et al., 2009]. However,

these authors have also used Brownian trajectory analysis. The correlation

developed by Long and Hilpert [2009] using Lattice Boltzmann simulations

also indicates that the Levich slope is correct for Brownian particles.

This brings us to one of the central question to be addressed in this thesis.

One would expect that as the particle size becomes smaller, or the deposition

process becomes diffusion dominated, all colloid deposition model predictions

should approach the classical Levich behavior in two ways. First, the single

collector efficiency will become proportional to Pe−2/3. Second, in the limit

of point like particles, the single collector efficiency should approach unity.

This limiting behavior is automatically ensured in all trajectory model based

correlations which do not explicitly calculate Brownian motion, but utilize

the Levich solution in the diffusion dominated regime [Rajagopalan and Tien,

1976, Yao et al., 1971]. It also appears that Lagrangian methods that explic-

itly incorporate Brownian motion also respect this limiting behavior [Kemps

and Bhattacharjee, 2009, Nelson and Ginn, 2005, 2009]. Finally, for most ge-

ometrically well-defined (ideal) deposition systems, such as stagnation point

flow, parallel-plate channel, slot impinging jet, isolated spherical collector, and

rotating discs, these limiting Levich trends are always recovered as the particle

size is diminished [Adamczyk and van de Ven, 1981, Adamczyk et al., 1978,

1983, Dabros and Adamczyk, 1979, Dabros and van de Ven, 1983, Nazemifard

et al., 2006, Ruckenstein, 1964]. In sharp contrast, for the Happel cell geome-

try involving a spherical collector, the rigorous Eulerian calculations done by

Tufenkji and Elimelech seem to show a different slope in the diffusion dom-

inated regime, rendering the single collector efficiency to be proportional to

Pe−0.715 in the Tufenkji-Elimelech (TE) correlation [Tufenkji and Elimelech,

2004].

Use of the TE correlation gives rise to two discrepancies from the Levich

solution. As the particle size becomes smaller, a mass transfer correlation

must revert to the Levich slope magnitude of −2/3, which the TE correlation
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Correlation Expression for single collector efficiency (η0)

Yao et al. [1971] 4.04N
−2/3
Pe +

3N2
R

2
+NG

Rajagopalan
and Tien [1976]

4A
1/3
s N

−2/3
Pe + AsN

0.125
Lo N1.875

R + 0.0038AsN
1.2
G N−0.4

R

Tufenkji and
Elimelech [2004]

2.4A
1/3
s N−0.081

R N−0.715
Pe N0.052

vdw + 0.55AsN
1.675
R N0.125

A +
0.22N−0.24

R N1.11
G N0.053

vdw

Long and
Hilpert [2009]

(15.56 ± 0.21) (1−ε)3
ε

N−0.65±0.023
Pe N0.19±0.03

R +
0.55AsN

1.675
R N0.125

A + 0.22N−0.24
R N1.11

G N0.053
vdw

Ma and Johnson
[2010]

γ2[2.3A
1/3
s N−0.080

R N−0.65
Pe N0.052

A + 0.55AsN
1.8
R N0.15

A +
0.2N−0.10

R N1.1
G N0.053

A N0.053
Pe ]

Table 2.3 – Single collector efficiency correlations by various researchers.

fails to attain, and second, when the particle size approaches zero, the TE

correlation predicts values of the single collector efficiency that are above 1.

Thus, although there is excellent agreement between the TE correlation and a

host of independent experimental data on colloid filtration [Godinez and Dar-

nault, 2011, Phenrat et al., 2010, Sunkara et al., 2010, Torkzaban et al., 2010],

the fundamental mass transfer characteristics of the deposition process in the

Brownian regime seem to be missing in the TE correlation. These fundamental

limiting behaviors must be ensured in a correlation to render them theoretical

as opposed to empirical. To the best of our knowledge, this discrepancy has

still not been resolved [Petosa et al., 2010]. A list of available correlation to

evaluate single collector efficiency is provided in Table 2.3 while the list of non

dimensional numbers used in the correlations is given in Table 2.4.

Parameter Definition Meaning

NR ap/ac Interception Number
NPe 2Uap/D∞ Peclet Number
NLo 4AH/(9πρfν(2ap)

2U) London Number, AH is the Hamaker
constant

NG (2ap)
2(ρp − ρf )g/18ρfνU Gravity Number

NA AH/3πρfν(2ap)
2U Attraction Number

NvdW AH/kBT van der Waals Number

Table 2.4 – List of non-dimensional numbers used in the correlations of Table
2.3.

An important observation from Table 2.3 is that barring the Tufenkji and
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Elimelech [2004] correlation, the exponent of the Peclet number in allthe other

correlations is −2/3 which is the Levich solution. In the following chapters,

the cause of this discrepancy will be discussed and a closure correlation for

evaluating single collector efficiency will be presented.

2.5 Surface Heterogeneity and its Role in Par-

ticle Deposition

The discussions in the previous sections of this chapter delved into particle

transport and deposition onto smooth homogeneous surfaces. Rarely are real

surfaces smooth and uncharged in aqueous solution. In a quest to develop

more sophisticated and realistic models for particle deposition, a lot of focus

has been laid on experimental and theoretical studies dealing with surface

heterogeneity [Hoek et al., 2003, Sun and Walz, 2001]. Surface heterogeneity

can be either in the form of physical heterogeneity due to roughness [Saiers

and Ryan, 2005] or chemical heterogeneity due to non-uniform distribution of

charged species [Duffadar and Davis, 2008, Rizwan and Bhattacharjee, 2009].

In most real systems physical and chemical heterogeneity are concurrent. How-

ever, incorporating both effects together poses challenges towards systematic

analysis and it is rare to find such models [Kemps, 2010].

Several models to study the effect of physical heterogeneity on the inter-

actions energies and particle deposition [Das and Bhattacharjee, 2005, Henry

et al., 2011, Herman and Papadopoulos, 1990, Kemps and Bhattacharjee, 2005,

2009, Saiers and Ryan, 2005] have been developed since the initial works by

Czarnecki [1986], Czarnecki and Dabros [1980]. Reduced energy barrier to

particle deposition in presence of surface heterogeneity compared to a smooth

surface was a reported by Suresh and Walz [1996]. Similarly, Zhao and Mason

[2008] determined the depletion interaction potential for both ordered and dis-

ordered surface roughness and explained the self-assembly of rough platelets

using the model. Chen et al. [2010] demonstrated that greater surface rough-

ness of like samples resulted in higher colloid deposition even for roughness

dimensions which were two orders of magnitude smaller than the colloidal

particles. Most of these studies have focussed on modeling physical hetero-

geneity on planar substrates. To the best of our knowledge, a recent article
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by Saiers and Ryan [2005] is the only work that deals with surface roughness

on a sphere-in-cell geometry but does not consider chemical heterogeneity.

The present body of work focuses on the effects of chemical heterogeneity on

particle deposition in a sphere-in-cell model with an otherwise smooth surface.

Chemically patchy surfaces are ubiquitous in natural and engineered sys-

tems as collectors or adsorbents in a wide gamut of applications spanning wa-

ter treatment [Loveland et al., 2003], environmental remediation [Miller et al.,

2010], biomedical devices [Bendersky and Davis, 2011, Kalasin and Santore,

2010, Pegueroles et al., 2010] and molecular diagnostics [Soliman et al., 2010].

Like in the case of physical heterogeneity, there has been a lot of research deal-

ing with particle deposition onto planar chemically heterogeneous substrates

[Bendersky and Davis, 2011, Duffadar and Davis, 2008, Kalasin and Santore,

2010, Kemps and Bhattacharjee, 2005, Nazemifard et al., 2006, Rizwan and

Bhattacharjee, 2009]. However, there is a paucity of rigorous models of parti-

cle deposition onto chemically patterned substrates in other geometries, such

as spherical collectors [Kemps and Bhattacharjee, 2009]. It is of interest to

note that such chemically heterogeneous surfaces are also widely encountered

in porous media flows [Chen et al., 2001, Shellenberger and Logan, 2002, Song

et al., 1994, Vaidyanathan and Tien, 1991]. In naturally occurring substrates,

the charge heterogeneity is random and of arbitrary geometric shapes render-

ing it almost impossible for systematic evaluation of deposition characteristics

on such substrates [Ryan and Elimelech, 1996]. It is therefore important to

devise a technique to systematically define the charge heterogeneity on the

surface of the collector such that particle transport modeling and analysis is

tractable. Surface patterning remains one of the most widely used techniques

to model chemical heterogeneity with regards to particle deposition [Nazemi-

fard et al., 2006, Rizwan and Bhattacharjee, 2009].

Several experimental studies dealing with particle deposition onto planar

patterned surfaces have been reported. Chen et al. [2000] demonstrated self-

organization of SiO2 and polystyrene particles onto patterned polyelectrolyte

substrate. Similarly, Zheng et al. [2002] discussed methods to develop small

scale patterned features onto multi-layer polyelectrolyte substrates and use

them as templates for controlled particle deposition. Interestingly, various ex-

perimental works on spherical particles with surface patchiness have also been
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reported. Binks and Fletcher [2001] showed how the amphiphilicity of Janus

particles can be tuned to influence the strength of particle adsorption. Petit

et al. [2001] discussed techniques to adsorb gold nanoclusters on the surface

of only one hemisphere of silica nanobeads thereby giving it Janus charac-

teristics. Molecular simulations were performed by Zhang and Glotzer[Zhang

and Glotzer, 2004] to investigate the self assembly of particles with discrete

patches of attractive sites on their surface. Recent development in state-of-

the-art fabrication technology has enabled facile production of such particles

with chemical anisotropy in bulk [Perro and Manoharan, 2010]. Numerous

applications of such patchy or Janus particles have been also been reported re-

ported [Walther and Mueller, 2008], including their use as nanomotors [Wheat

et al., 2010], emulsion stabilizers [Bormashenko et al., 2011], ion exchange clus-

ters [Pardhy and Budhlall, 2010], optical probes for rheological measurements

[Behrend et al., 2004], nanoscale chemical locomotion [Howse et al., 2007] to

name a few. Surprisingly however, not much has been reported with respect

to particle deposition onto such patchy and Janus spherical collectors. This

thesis reports particle deposition onto such patchy and Janus spherical collec-

tors employing patterning techniques to mimic the patchiness. The analysis

opens up a frontier in artificially prepared porous media for studying particle

transport and deposition.

Of the available methods to evaluate particle transport over charged hetero-

geneous surfaces, the patchwise heterogeneity model remains the most widely

used[Elimelech et al., 2003, Erickson and Li, 2002, Mamleev et al., 2002]. In

this model, two types of surface charge is defined on the collector surface and

the surface area fraction occupied by one type of surface charge is evaluated

using a two site averaging process [Nazemifard et al., 2006, Rizwan and Bhat-

tacharjee, 2009]. It has, however, been pointed out that the spatial averaging

in patch models gives accurate results only for macroscopic surface hetero-

geneity (i.e. when the patch dimensions are much larger than the particle

dimensions) but disintegrates when the patch size is comparable to that of the

particle [Elimelech et al., 2003, Nazemifard et al., 2006]. Since the analysis in

this work involves surface patterns of dimensions comparable to the particle

size, deviations from the patchwise heterogeneity model for the sphere-in-cell

geometry are explored.
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In addition to modeling porous media as planar and assmblage of spheri-

cal collectors, investigating particle transport in micropores is also important.

For simplicity, the micropores can be approximated as microchannels and het-

erogeneity can be incorporated to render realism to the model. Transport of

particles suspended in a carrier fluid in micro/nano scale channels is central to

numerous microfluidic and nanofluidic systems. Lab-on-Chip (LOC) systems

[Felten et al., 2008], flow of biomolecules in microchannels and micro capil-

laries [Waghmare and Mitra, 2010a], porous media flows [Sbai and Azaroual,

2011], chromatographic analysis [Bernate and Drazer, 2011], membrane sep-

arations [Bacchin et al., 2011, Das et al., 2003] are some of the examples of

such systems in which particle transport in micro and nano channels is ubiq-

uitous. Adamczyk and van de Ven [1981] investigated particle transport and

deposition in narrow homogeneous cylindrical channels almost three decades

back. Since then, fundamental concepts of particle transport has been used in

various microfluidic applications. Waghmare and Mitra [2010a] discussed the

transport of microbead suspension in rectangular capillaries. In a recent arti-

cle by Fridjonsson et al. [2011], NMR microscopy and CFD simulations were

used to investigate transport of fluids with colloidal suspensions in a bifur-

cated capillary system. The study was linked to applications in microvascular

physiology and other microfluidic devices. Waghmare and Mitra [2010b] have

also investigated transport of biomolecules and cells through buffer solution

in microchannels for immunoassay based sensing devices. Saadatmand et al.

[2011] focussed on blood transport in a capillary tube to investigate mixing

in biomedical microdevices and microcirculation. Several other similar ap-

plications for particle transport in micro and nano channels can be found in

literature [Chein and Dutta, 2009, Gudipaty et al., 2011, Zhao et al., 2010].

As in other real geometries, surface heterogeneity (in the form of surface

roughness or chemical heterogeneity) is inevitable in these microchannel walls

as well. Erickson and Li [2003] investigated electroosmotic flow in a microchan-

nel with patchwise surface heterogeneity. A similar study to investigate elec-

troosmotic flow in a circular microchannel with periodic surface potentials was

performed by Yang et al. [2004]. Although a lot of theoretical investigations

have been performed to analyze electrolyte transport in these microfluidic

and nanofluidic systems [Liu et al., 2011, Santillo et al., 2011, Waghmare and

Mitra, 2009, 2010], there is no significant theoretical model which predicts
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particle transport and deposition in microchannels considering the effects of

the surface heterogeneities. The last section of this thesis delves into particle

transport modeling in such chemically patterned microchannels. Using simple

approximations as in other porous media geometries, the deposition character-

istics onto the walls of the microchannel is discussed and possible applications

in microfluidic/nanofluidic systems are presented.

2.6 Summary

It is evident from the literature review of this chapter that although colloid

transport is a mature subject, there is confusion regarding the fundamental

mass transport behavior in the sphere-in-cell model. Further, effects of chem-

ical heterogeneity on particle transport and deposition in non-planar geome-

tries have still not been rigorously investigated, especially from the theoretical

standpoint. With this basic premise, the present work aims to develop an

enhanced understanding of the fundamental mass transport behavior in the

Happel sphere-in-cell geometry, explore the effects of surface chemical hetero-

geneity in modifying particle transport in non-planar geometries (sphere-in-cell

model and microchannels) and discuss applications of tuning these chemically

heterogeneous substrates in designing efficient deposition systems pertinent

to porous media and microfluidic/nanofluidic transport. The next chapter

introduces a model for investigating particle deposition onto a homogeneous

favorable spherical collector in the absence of double layer interactions.
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Chapter 3

Colloid Deposition onto
Homogenous Collectors in
Absence of Double Layer
Interactions

3.1 Introduction

In this chapter, an Eulerian model for colloid deposition onto a spherical col-

lector representing a porous medium employing the Happel sphere-in-cell ge-

ometry is presented. The convection-diffusion-migration (C-D-M) equation is

numerically solved to evaluate the particle deposition efficiency (single collector

efficiency) as a function of particle radius and the contribution of each of the

transport mechanisms to the single collector efficiency is described. The study

includes a comprehensive assessment of several hitherto unexplored aspects

of colloid transport involving cell models. These include: influence of differ-

ent expressions for the unretarded and retarded van der Waals interactions

used in the analysis, which turns out to be highly insightful, the suitability

of Dirichlet and Neumann boundary conditions in conjunction with the cell

model, and complications that can arise due to overlap of the concentration

and Happel (momentum) boundaries. The implications of pairwise additivity

of the transport mechanisms, and regimes of validity of such simplifications

are systematically revisited. The objective of this chapter is to present a the-

oretically consistent interpretation of the results obtained from the various

deposition models in porous media. Finally, a new correlation predicting sin-

gle collector efficiency for deposition of colloidal particles onto a packed bed of

35



spherical collectors is presented. The correlation represents an improvement

to the existing correlations for predicting single collector efficiency, especially

for Brownian particles.

3.2 Numerical Formulation of the Problem

3.2.1 Sphere-in-cell Geometry

Figure 3.1(a) depicts the sphere-in-cell geometry for the spherical collector

with the Happel fluid envelope, as well as, the relative directions of the con-

vection and gravity. The system considered here is identical to the model con-

sidered in most of the earlier studies, either Eulerian or Lagrangian [Kemps

and Bhattacharjee, 2009, Nelson and Ginn, 2005, Rajagopalan and Tien, 1976,

Song and Elimelech, 1992, Tufenkji and Elimelech, 2004]. We use a spherical

coordinate system assuming azimuthal symmetry. Figure 3.1(b) depicts the

geometric parameters, as well as the forces and velocities acting on a spherical

particle in the fluid envelope. The particle radius is ap, h denotes the normal

surface to surface separation distance between collector and particle, whereas

vr and vθ denote the radial and tangential particle velocity components, re-

spectively, in the spherical coordinate system. The forces considered are the

attractive van der Waals force between the particle and the collector (FvdW ),

and gravity (Fg). The direction of gravity depends on the density of the par-

ticle relative to the fluid. For a particle heavier than the fluid, the direction of

gravity is as shown. The model can be employed to calculate deposition under

both gravity assisted and gravity hindered conditions.

3.2.2 Governing Equations

The governing transport equation is the well-known steady-state convection

diffusion-migration equation Elimelech et al. [1995], Masliyah and Bhattachar-

jee [2006], Tufenkji and Elimelech [2004], van de Ven [1989]

∇ ·
[
vc−D · ∇c+

D · F
kBT

c

]
= 0 (3.1)

36



Figure 3.1 – (a) Spherical collector with a Happel fluid cell. The vertical
dashed line represents the line of symmetry. The right half of the diagram
represents the computational domain within the fluid envelope (ABDC). The
curve PQ denotes the region within which the mesh refinement is applied. (b)
Velocity components and the forces acting on a particle in the fluid cell. The
particle radius is ap, h denotes the normal surface to surface separation distance
between collector and particle. vr and vθ denote the radial and tangential
particle velocity components in the spherical coordinate system. The forces
considered are the particle-collector van der Waals attraction (FvdW ) and gravity
(Fg).

where v ≡ (vr, vθ) is the particle velocity vector, c is the particle concentra-

tion, D is the diffusion tensor, kB is the Boltzmann constant, T is the absolute

temperature and F is the sum of all the non-hydrodynamic (i.e., van der Waals

and gravity) forces acting on the particle. Equation 3.1 can be solved if the

particle velocity, the diffusion tensor and the sum of the external forces acting

on the particle are defined.

The undisturbed fluid velocity, u ≡ (ur, uθ), is obtained from the Happel

solution of the Stokes equation [Elimelech et al., 1995, Tien, 1989] by calcu-
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lating the derivatives of Equation 2.7. The expressions for the scaled fluid

velocities in the radial and tangential directions are given as

Ur = ur/U = −cosθ

[
K1

(ac
r

)3

+K2

(ac
r

)
+K3 +K4

(
r

ac

)4
]

(3.2)

Uθ = uθ/U =
sinθ

2

[
−K1

(ac
r

)3

+K2

(ac
r

)
+ 2K3 + 4K4

(
r

ac

)2
]

(3.3)

The expressions for the porosity dependent factors K1, K2, K3, K4 have been

listed in Table 2.1. The particle velocities are calculated from the undis-

turbed fluid velocities by incorporating the hydrodynamic correction func-

tions as [Elimelech, 1994, Nazemifard et al., 2006] vr = f1(H)f2(H)ur and

vθ = f3(H)uθ, where H is the dimensionless surface to surface separation

distance between the particle and the collector (defined as H = h/ap). To

account for the hydrodynamic interactions on the Brownian diffusion, [van de

Ven, 1989] the diffusion tensor terms incorporating the hydrodynamic inter-

actions is formulated as, Drr = f1(H)D∞ and Dθθ = f4(H)D∞, where D∞ is

the Stokes-Einstein diffusion coefficient. The functions f1(H), f2(H), f3(H)

and f4(H) are the universal hydrodynamic correction functions [Elimelech,

1994, Goldman et al., 1967, Kemps and Bhattacharjee, 2009, Masliyah and

Bhattacharjee, 2006, Nazemifard et al., 2006] as explained in Chapter 2. The

expressions for these functions used in the present study are listed in Table 2.2.

The net radial force includes the radial component of the gravitational

force (Fg) and the attractive van der Waals force (FvdW ) between the particle

and the collector:

Fr = −dφT
dr
− 4

3
πa3

p(ρp − ρf )g cos θ (3.4)

where φT is the van der Waals interaction energy in this study. Although

it is trivial to add electrostatic interactions in the model, we have not included
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these interactions in our analysis presented in this paper simply because in-

clusion of electrostatics is not warranted for the discussion at hand.

The van der Waals interaction energy between the particle and collector

can be expressed in four different ways. Two expressions of the interaction en-

ergy can be obtained based on Hamaker’s microscopic approach (one including

electrodynamic retardation and the other without). The other two additional

expressions are possible based on Derjaguin’s approximation (again, one con-

sidering retardation and the other not). We consider all these four expressions

in our calculations because they have all been used in prior studies, However,

no previous study has compared the influence of these different expressions on

the prediction of the single collector efficiency. The 4 possible van der Waals

interaction energies are given by Equations 2.13, 2.14, 2.15, 2.16.

The net tangential force on the particle arises from gravity, yielding

Fθ =
4

3
πa3

p(ρp − ρf )g sin θ (3.5)

In the above expressions, ap is the particle radius, ρp and ρf are the particle

and fluid densities, respectively, and g is the gravitational acceleration.

The explicit non-dimensionalization form of the governing equation (Equa-

tion 3.1) [Elimelech, 1994, Elimelech et al., 1995] can be expressed as

∇ · (vc) = f1(H)f2(H)ur
∂c

∂r
+
f3(H)uθ

r

∂c

∂r
+

[
f1(H)f2(H)

∂ur
∂r

+f1(H)ur
∂f2(H)

∂r
+ f2(H)ur

∂f1(H)

∂r

+
2

r
f1(H)f2(H)ur +

2

r
f3(H)uθcotθ

]
c

(3.6)

∇ · (D · ∇c) =

[
f1(H)

∂2c

∂r2
+

2f1(H)

r

∂c

∂r
+
∂f1(H)

∂r

∂c

∂r
+ f4(H)

cotθ

r2

∂c

∂θ

+
f4(H)

r2

∂2c

∂r2

]
D∞

(3.7)
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∇ ·
(
D · F
kBT

c

)
=

([
2f1(H)Fr
rkBT

+
Fr
kBT

∂f1(H)

∂r
+
f1(H)

kBT

∂Fr
∂r

+
f4(H)Fθ cotθ

rkBT

+
f4(H)

rkBT

∂Fθ)

∂θ

]
c+

f1(H)Fr
kBT

∂c

∂r
+
f4(H)Fθ
rkBT

∂c

∂θ

)
D∞

(3.8)

The reduced form of Equation 3.1 upon combining Equations 3.6, 3.7, 3.8 can

be written as

∂C∗

∂θ
= a1(H, θ)

∂2C∗

∂H2
+ a2(H, θ)

∂C∗

∂H
+ a3(H, θ)C

∗ (3.9)

where C∗ is the non dimensional particle concentration scaled with respect

to bulk concentration c0 (C∗ = c/c0), H is the scaled separation distance.

a1(H, θ), a2(H, θ), a3(H, θ) are the coefficients which are formulated by rear-

ranging the terms of Equations 3.6, 3.7, 3.8. Thus

a1(H, θ) = f1(H)/

[
Pe

2
f3(H)NRUθ + f4(H)NRF

∗
g sinθ

]
(3.10)

a2(H, θ) =

{
f1(H)

[
∂Φ

∂H
+ F ∗g cosθ

]
+
∂f1(H)

∂H
+ 2F1(H)NR

−Pe
2
f1(H)f2(H)Ur

}
/

[
Pe

2
f3(H)NRUθ + f4(H)NRF

∗
g sinθ

] (3.11)

a3(H, θ) =

{[
2f1(H)NR +

∂f1(H)

∂H

] [
∂Φ

∂H
+ F ∗g cosθ

]
+ f1(H)

∂2Φ

∂H2

−2f4(H)NRF
∗
g cosθ −

Pe

2

[
f1(H)f2(H)

∂Ur
∂H

+ f1(H)Ur
∂f2(H)

∂H

+f2(H)Ur
∂f1(H)

∂H
+ 2f1(H)f2(H)NRUr + 2f3(H)NRUθ cotθ

]}
/[

Pe

2
f3(H)NRUθ + f4(H)NRF

∗
g sinθ

]
(3.12)
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The list of various dimensionless numbers required in solving Equation 3.9 is

given in Table 3.1.

Dimensionless group Expression

Scaled surface to surface separation distance H = h/ap
Scaled radial velocity of particle Vr = vr/U

Scaled tangential velocity of particle Vθ = vθ/U
Scaled radial velocity of fluid Ur = ur/U

Scaled tangential velocity of fluid Uθ = uθ/U

Particle Peclet number Pe = 2Uap

D∞

Sherwood number Sh = apJr

D∞c0

Scaled total interaction energy Φ = φT

kBT

Particle aspect ratio NR = ap/r

Scaled gravitational force F ∗g = Fg ap

kBT

Collector to particle aspect ratio γ = ac/ap

Table 3.1 – Dimensionless groups and constants used in the scaled Convection-
Diffusion-Migration equation

3.2.3 Boundary Conditions

Here we first focus on the radial direction boundary conditions, required at the

collector surface, and at the cell outer edge. The first set of radial direction

boundary conditions defined at the collector surface and the cell outer edge in-

volves the classical perfect sink and the bulk Dirichlet conditions, respectively,

c = 0 at r = ac (∂Ω ∈ ÂD) (3.13)

c = c0 at r = b (∂Ω ∈ B̂C) (3.14)
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where ÂD and B̂C denote the arc lengths AD and BC, respectively. In

practical applications, Eq. (3.13) is modified to

c = 0 at r = ac + δ (3.15)

where δ is a small cut-off separation that prevents the divergence of the van

der Waals interaction at contact (h = 0, corresponding to r = ac) [Elimelech

et al., 1995, Nazemifard et al., 2006, Prieve and E, 1974, Ruckenstein, 1964,

Tien, 1989, Tufenkji and Elimelech, 2004]. We have used a value of 1 nm for

the cut-off separation distance δ in most of the simulations [Adamczyk and

van de Ven, 1981, Nazemifard et al., 2006].

Near the collector surface, the migration flux is predominant [Song and

Elimelech, 1993]. Thus, an alternative boundary condition at the collector

surface is the constant migration flux condition, which is expressed as

d(vrc)

dh
= 0 at h = ∆ (3.16)

where vr is the particle radial velocity and ∆ is the cut-off separation dis-

tance [Song and Elimelech, 1993]. Typically ∆ is taken as 0.159 nm from

the collector surface [Nazemifard et al., 2006]. This constant migration flux

boundary condition is physically more appropriate and does not violate any of

the underlying assumptions made in defining the perfect sink condition. Also,

it does not result in any discernible change in the deposition rates compared

to the perfect sink condition defined by Equation 3.13. It, however, improves

numerical stability when the particle migration velocity becomes extremely

large resulting in steep gradients at the wall. The developed computer pro-

gram has an option of implementing this boundary condition, but owing to the

similarity of results with the perfect sink condition, we have mainly employed

Equation 3.15 in our calculations.

It is important to note that use of Equation 3.14 as a boundary condition

on the outer boundary is not valid under all conditions. The limitations of

Equation 3.14 and suitable alternatives have been discussed in earlier studies
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[Song and Elimelech, 1993]. This boundary condition establishes that at the

outer boundary the particle concentration is the same as that in the fluid bulk.

This boundary condition was originally used for predicting colloid retention on

isolated spherical collectors [Levich, 1962, Spielman, 1977] and later extended

to sphere-in-cell models. For an isolated sphere surrounded by an unbounded

fluid medium, the outer boundary is defined far away from the surface of the

collector where the particle concentration is not affected by the particle re-

moval rate at the collector surface. Thus Equation 3.14 is unconditionally

valid for an isolated sphere. However, for a sphere-in-cell geometry, the outer

boundary, b, is defined as a function of the bed porosity. In this latter case, one

cannot unconditionally apply the Dirichlet condition at the outer boundary.

The thickness of the diffusion boundary layer is dictated by the relative

magnitudes of convection and diffusion in the system, which is quantified by

the particle Peclet number (Pe = 2Uap/D∞). Figure 3.2(a) depicts a scenario

where the diffusion boundary layer thickness is much smaller than the thickness

of the Happel boundary. Here, the particle concentration has already reached

the bulk concentration well within the Happel boundary. Hence, imposing

Equation 3.14 as a boundary condition on the outer boundary is valid. How-

ever, as the particle Peclet number decreases, the diffusion boundary shifts to

the right and approaches the Happel boundary as depicted by Figure 3.2(b).

At a limiting Peclet number, the two boundaries overlap. Below this lim-

iting Peclet number, imposing a Dirichlet condition at the outer boundary

violates the continuity of mass transport toward the collector. Thus, Equa-

tion 3.14 cannot be used unconditionally in conjunction with Happel’s flow

field, without ensuring the continuity of mass transfer, particularly for small

Peclet numbers. Only at moderate and high Peclet numbers, where the mass

transfer boundary layer thickness is smaller than the thickness of the fluid en-

velope, Equation 3.14 can be used legitimately as a boundary condition to the

sphere-in-cell model [Ruckenstein, 1964]. It is also important to note that at

low Peclet numbers, the concentration of particles leaving the lower quadrant

of the cell is not equal to the bulk concentration.

A more general boundary condition can be derived by performing a mass

balance across the outer cell boundary [Song and Elimelech, 1992]. The radial

particle flux into the fluid envelope is balanced with the radial particle flux
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inside the fluid envelope to ensure conservation.

Figure 3.2 – Relative positions of the bulk concentration limit with respect
to Happel’s outer boundary. The dashed line AB denotes the position in the
domain where c = c0, and b is the outer radius of the cell. (a) Diffusion boundary
layer thickness smaller than the thickness of the fluid envelope. In this case bulk
concentration is reached well before Happel’s boundary. (b) Diffusion boundary
layer thickness approaching Happel’s boundary and bulk concentration is not
reached even at the outer cell radius. The color gradient in the figure also
indicates the particle concentration gradient where the darker regions depict
higher particle concentrations.

.

vrc−Drr
∂c

∂r
= −Uc0 cos θ at r = b, 0 ≤ θ <

π

2
(3.17)

∂c

∂r
= 0 at r = b,

π

2
≤ θ ≤ π (3.18)

Here, Drr is the radial diffusion coefficient, c0 is the bulk particle concentration,

vr is the local radial velocity of the fluid and θ is the azimuthal angle. For
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the lower half of the cell, since particles are being convected away from the

collector, c0 is replaced by c in Equation 3.17 which gives Equation 3.18.

Rewriting Equations 3.17 and 3.18 in non dimensional form,

2

Pe

∂C∗

∂H
= (1− C∗) cos θ at H = (b− ac)/ap , 0 ≤ θ <

π

2
(3.19)

∂C∗

∂H
= 0 at H = (b− ac)/ap ,

π

2
≤ θ ≤ π (3.20)

At higher Peclet numbers, the left hand side of Equation 3.19 becomes negli-

gible, which gives C∗ = 1 as the boundary condition in the upper half of the

cell. Since at high Peclet numbers, the rate of particle capture by diffusion is

negligible, the concentration of the particles in the fluid leaving the cell in the

lower half is also nearly equal to c0 allowing use of the Dirichlet condition at

the outer boundary.

Finally, for the outer cell surface, one can simply use the Neumann bound-

ary condition

∂C∗

∂H
= 0 at H = (b− ac)/ap, 0 < θ ≤ π (3.21)

with C∗ = 1 at θ = 0 and H = (b−ac)/ap. It can be easily shown that this last

Neumann condition will yield similar results as Equation 3.19 for the upper

hemisphere. To summarize, different combinations of boundary condition can

be applied at the collector surface and the cell outer surface. These boundary

conditions need to be applied judiciously depending on the parameter values,

particularly the particle Peclet number.

We now consider the boundary conditions for θ = 0 and π. Along the for-

ward stagnation line (AB), one can employ the symmetry condition, yielding,

∂C∗

∂θ
= 0 at θ = 0 (∂Ω ∈ AB) (3.22)
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However, the numerical technique used in the present model does not require

this boundary condition, as will be explained later. Finally, noting that Equa-

tion 3.9 is parabolic in θ, there is no need to specify the boundary condition

at θ = 180o.

3.2.4 Particle Deposition Rate

Once the particle concentration distribution is numerically determined, the

non-dimensional flux of particles at the collector surface can be evaluated by

J∗(Hmin, θ) = −2f1(Hmin)

Pe

∂C∗

∂H
+ f1(Hmin)f2(Hmin)UrC

∗−

2f1(Hmin)

Pe

[
∂Φ

∂H
+ F ∗g cosθ

]
C∗

(3.23)

where Hmin = δ/ap and J∗ = Jr/(Uc0), with Jr being the normal flux to the

wall.

The overall deposition rate for the unit cell is calculated by integrating

Equation 3.23 over the collector surface, yielding

I = 2π(ac + δ)2(Uc0)

∫ π

0

J∗(Hmin, θ) sin θ dθ (3.24)

The overall particle deposition efficiency can be directly calculated from Equa-

tion 3.24 as [Elimelech et al., 1995]

η =
I

πa2
cUc0

(3.25)

One can define the Sherwood number as Sh = apJr/(D∞c0). A non dimen-

sional average Sherwood Number, Shavg(= 1/S
∫
S
Sh(θ)dθ, where S is the

total collector surface area), which quantifies the overall deposition on the

ideal collector is related to the single collector efficiency as
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Shavg =
ηPe

4
(3.26)

Equations 3.25, 3.26 provide the overall particle retention characteristics for

flow through the porous media. The overall modeling scheme is summarized

in Figure 3.3.

Figure 3.3 – Overall modeling scheme employed in evaluating particle deposi-
tion rate.

3.3 Numerical Technique and Solution Method-

ology

Numerical solution of the convection-diffusion-migration (C-D-M) equation

with the prescribed boundary condition as discussed in the previous section

was obtained using the method of lines [Zwillinger, 1998] employing a code
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implemented in FORTRAN77. Equation 3.9 was discretized in the radial di-

rection using a central difference scheme with the terms in the coefficients

also expressed using finite difference formulae. The finite differencing in the

radial direction resulted in a set of coupled ordinary differential equations for

∂C∗/∂θ, which were simulaneously solved using a Differential Algebraic Equa-

tion (DAE) solver DASSL [dda]. The solver DASSL is an open source code that

can be found in the SLATEC library from Netlib’s repository (www.netlib.org).

DASSL is a numerical solver which solves an implicit system of differential

algebraic equations (DAE) of the form F (y, y′, t) = 0. The algorithm approx-

imates the derivative using a kth order backward differencing formula (BDF)

and then solves the resulting system of equations using iterative Newton’s

method. DASSL selects the current time step ∆t and the value of k (which

can be any number between 1 and 5) according to the nature and stiffness of

the solution making it adaptive by nature. The algorithm estimates the values

of the local error at a constant step size and current order k. It then checks

what the error would have been at orders k − 1, k − 2 and k + 1. Depending

upon the estimate comparison and the predefined tolerance values set by the

user, the order and step size for the next iteration are selected. DASSL also

requires the user to supply the initial value of the dependent variable and its

derivative and the algorithm works most efficiently when the initial guess is

accurate.

The computational domain was discretized using Chevyshev’s meshing

scheme in the radial coordinate with a gradually increasing density of mesh

points near the collector surface. This is to ensure a stable and non-oscillating

solution since particle concentration gradients are significantly large near the

collector surface due to short range colloidal interactions [Kemps and Bhat-

tacharjee, 2009, Nazemifard et al., 2006, Song and Elimelech, 1993]. A smaller

sub-domain depicted in Figure 3.1(a) as the area enclosed between the collec-

tor surface and the dotted line (area APQC) is used to further refine the mesh

with a high density of grid points to accurately capture the sharp changes in

concentration gradients. The radial distance of the arc PQ from the collector

surface was fixed at 50nm for all simulations since the colloidal interactions

are the dominant in this range. The thinner sub-domain was discretized into

5000 Chevyshev’s mesh points with increasing mesh density near the collector
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surface. The outer sub-domain was discretized with 7000 Chevyshev’s mesh

points also with gradually increasing mesh density near the boundary P̂Q.

Thus the entire domain consisted of 12000 mesh points divided between two

sub domains. The above discretization scheme also ensured that sudden jump

in mesh density was not encountered at the interface of the two sub domains.

In the tangential coordinate, the computational domain was discretized into

360 mesh points with a gradually increasing mesh density near the forward

stagnation line. This ensured a speed up of the solution process. However,

since the ODE solver uses adaptive stepping based on a predefined tolerance,

the initial discretization in the θ direction does not influence the solution ac-

curacy.

The solution of the ODEs marches in the tangential coordinate starting

from the forward stagnation line (AB) where an initial guess solution is pro-

vided. All mesh points along the forward stagnation line is initialized with

a non dimensional concentration of 1 (i.e, C∗ = 1) except at the collec-

tor surface where the non dimensional concentration is initialized to 0 (i.e,

C∗ = 0). The rationale for choosing such a guess solution was the fact

that at the forward stagnation line, the concentration boundary layer is very

thin and bulk concentration is reached at a very short distance from the col-

lector wall. This technique saves computational cost in solving the forward

stagnation line concentration as a separate Boundary Value Problem (BVP)

by employing the third boundary condition (Equation 3.22). The solution

method described here would significantly reduce memory consumption and

accelerate the solution time.

3.4 Validation of the Computational Model

To test the accuracy of the numerical solution, the model results were com-

pared against analytical results available in literature for limiting cases of the

convection-diffusion-migration equation. Table 3.2 summarizes the values of

the parameters used in the numerical solution.

In the absence of colloidal interactions, gravity, and hydrodynamic retarda-

tion, Equation 3.1 reduces to the classical convective diffusion equation. Levich

[Levich, 1962] provided the analytical solution to the problem. The average
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Table 3.2 – Physical properties of the system used in the numerical simulations

Parameter Value

collector radius, ac 164 µm
particle radius, ap 5nm - 2µm
particle density, ρp 1077 kg/m3

particle density, ρf 997 kg/m3

temperature, T 298 K
Boltzmann constant, kB 1.38 × 10−23 J/K

fluid freestream velocity, U 3.44× 10−4 m/s
Hamaker constant, AH 1× 10−21 − 5 × 10−20 J

Sherwood number for a spherical collector, as given by the Levich-Lighthill

equation, takes the form

Shavg = 0.624Pe1/3c (3.27)

where Pec is the Peclet number defined with respect to the collector and

expressed as

Pec = AS
2acU

D∞
= AsPeγ (3.28)

It is emphasized here that Pec has been used only to evaluate the analytical av-

erage Sherwood number in this study. For all numerical simulations presented

in this work, particle Peclet number (Pe = 2Uap

D∞
), as previously defined, has

been used consistently.

In Equation 3.28, As is the porosity dependent parameter for the sphere-

in-cell geometry [Elimelech et al., 1995], ac is the collector radius, U is the

fluid free stream velocity, and D∞ is the bulk diffusion coefficient and γ is the

particle to collector aspect ratio (γ = ac/ap). These dimensionless numbers are

described in detail in Table 3.1. Our numerical model can replicate Levich’s

assumptions by setting Fg = FvdW = 0 and f1 = f2 = f3 = f4 = 1.
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Figure 3.4 compares the results from the numerical model with Levich’s

analytical solution. Excellent agreement between the two solutions is observed

for particle Peclet numbers of 100. At larger values of Peclet number, the so-

lution starts deviating from Levich’s solution because as particle size increases

beyond a certain value, Levich’s assumption of treating the particle as a point

is violated and interception effects come to the fore. For this simulation, par-

ticle Peclet number was changed by changing the particle size. The numerical

model captures this effect due to the finite size of the particle [Ruckenstein,

1964]. The comparison demonstrates the ability of the numerical model to

accurately predict the fundamental mass transport behavior over a spherical

collector in a packed bed.

Figure 3.4 – Variation of Average Sherwood number with Peclet number for
a spherical collector using Happel cell model. The solid line denotes the value
of the average Sherwood number calculated by the Levich equation (Equation
3.27) whereas the closed circles denote our numerical solution of the convection-
diffusion-migration equation with Levich’s assumptions.
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3.5 Particle Transport Behavior-Results and

Discussion

In this section, we present the numerical results of the local particle deposi-

tion rates, as well as the single collector efficiencies by considering the coupled

influence of attractive van der Waals interaction and gravity on the particle

transport near a spherical collector. Unless otherwise stated, all our simula-

tions were performed employing the perfect sink condition on the collector and

the bulk concentration boundary condition at the outer cell surface.

3.5.1 Diffusion Dominated Deposition: Levich Solution

One of the limiting cases of particle deposition is diffusion dominated deposi-

tion in the absence of hydrodynamic, gravitational, and colloidal interactions

[Levich, 1962]. This limiting behavior (as ap → 0) should be displayed by

any particle transport and deposition model irrespective of whether the van

der Waals attraction, hydrodynamic retardation, and gravitational forces are

considered in the model or not. Figure 3.5 compares the numerical results

from the present study to Levich’s solution under different parametric condi-

tions. Figure 3.5(a) depicts the influence of different Hamaker constants on the

average Sherwood number in presence of hydrodynamic retardation whereas

Figure 3.5(b) represents the influence of hydrodynamic retardation in absence

of van der Waals interaction on the average Sherwood number. The expres-

sion for the van der Waal’s interaction is based on Derjaguin approximation

in absence of electrodynamic retardation (cf. Equation 2.13). In all simula-

tions, the other parameters are as given in Table 3.2. It is evident that under

all combinations of hydrodynamic retardation and van der Waals interactions

commonly encountered in deposition systems, and for negligible gravity, it is

virtually impossible to observe a significant deviation from the Levich solution

for particle Peclet numbers less than 100. The deviations above this Peclet

number are mainly due to interception. As expected, hydrodynamic interac-

tions will lower the Sherwood number from the Levich result in absence of van

der Waals attraction.
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Figure 3.5 – Variation of average Sherwood number with particle Peclet num-
ber. (a) Effect of Hamaker constant on average Sherwood number with hydrody-
namic interactions present. (b) Effect of hydrodynamic retardation on average
Sherwood number with colloidal interactions absent. The solid line represents
the Levich solution. The parameters used in the numerical simulations have
been enumerated in Table 3.2. Effect of gravity has been neglected in all the
above results.

.

In Figure 3.6, variations of the convective and diffusive flux terms with

particle size at a surface to surface separation distance of 1 nm is shown in the

presence (solid lines) and absence (dashed lines) of hydrodynamic interactions.

It is clear that for particle radii smaller than 100 nm, inclusion of the hydro-

dynamic retardation functions have no measurable influence on the particle

convection or the diffusion. It is interesting to note that although the diffu-

sion coefficient is significantly reduced owing to hydrodynamic retardation, the

overall diffusive flux remains relatively unaltered as the concentration gradient

adjusts itself to account for the reduced diffusivity in presence of hydrodynamic

interactions.
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Figure 3.6 – Effect of hydrodynamic correction factors on dimensionless par-
ticle velocity and dimensionless particle diffusive flux. The local values of the
dimensionless particle velocities and dimensionless diffusive particle flux have
been calculated at an azimuthal angle of θ =45o. (a) The solid line represents
the non dimensional particle velocity (Vr) without the hydrodynamic correc-
tions incorporated while the dashed line represents the non dimensional parti-
cle velocity with the hydrodynamic corrections incorporated. (b) The solid line
depicts the dimensionless diffusive particle flux near the collector in the absence
of hydrodynamic interactions while the dashed line represents the flux when
hydrodynamic interactions are accounted for. The parameters used to perform
the simulations are listed in Table 3.2.

These observations clearly re-establish that the Levich assumption of point-

like particles is attained for particles smaller than about 100 nm. For the given

set of parameters in Table 3.2, the numerical results tend to deviate from the

analytical solution only as the particle radius exceeds 100 nm. Even then, the

attractive van der Waals and the hydrodynamic retardation seem to counteract

each other, leaving the Sherwood number relatively close to the Levich result.
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3.5.2 Significance of Happel’s Boundary for the Sphere-
In-Cell model

As discussed previously, the Happel sphere-in-cell model is an approximation

for granular media where the outer cell radius, b, is defined as a function of the

medium porosity [Elimelech et al., 1995, Happel, 1958, Payatakes et al., 1974,

Ruckenstein, 1964]. This outer boundary is not a true physical boundary. In

the original definition by Happel, the outer boundary was treated as a free

surface such that there is no tangential stress component on it [Happel, 1958].

Under these circumstances, there could be a profound influence of the choice of

outer cell surface boundary condition on the solution of the convection diffu-

sion migration equation, particularly as the diffusion boundary layer thickness

tends to extend to the Happel cell thickness. This behavior is depicted in

Figure 3.7, which shows the influence of the Dirichlet and Neumann boundary

conditions on the dimensionless concentration profiles. For moderately high

Peclet numbers, such as in Figures 3.7(a) and 3.7(b), the concentration profiles

with the Dirichlet and Neumann boundary conditions at the outer cell surface

are quite similar. The only difference is the unphysical step discontinuity at

the outer cell surface for larger azimuthal angles θ ≥ 170o observed with the

Dirichlet boundary condition. With Neumann condition at the outer cell sur-

face, the discontinuity is avoided.

At low Peclet numbers (or strongly diffusive systems), the concentration

maps with the two boundary conditions give very different results as shown

in Figures 3.7(c) and 3.7(d). Figure 3.7(d), which incorporates the Neumann

condition derived in Equations 3.19 and 3.20, clearly indicates the contin-

uous decrease in the concentration at the outer cell surface with increasing

azimuthal angle. In contrast, use of Dirichlet condition in Figure 3.7(c) at the

outer boundary for such low Peclet numbers grossly misrepresents the particle

transport behavior, artificially altering the mass transfer to the collector sur-

face. The choice of the above Peclet numbers for depicting the difference in

the concentration profiles are only representative. With this background it is

possible to define a threshold Peclet number (for a given thickness of the fluid

envelope which is a function of the porosity of the medium) beyond which the

Dirichlet boundary condition cannot be legitimately used.
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Figure 3.7 – Variation of concentration with radial distance from the collector
at different azimuthal angles. (a) Simulation results with Dirichlet boundary
conditions. (b) Simulation results with Neumann boundary conditions. The
parameters used in these simulation are ap = 25 nm, U = 5×10−3m/s, f = 0.4
and ac = 0.05 mm.(c) Simulation results with Dirichlet boundary conditions.(d)
Simulation results with Neumann boundary conditions. The parameters used in
these simulation are ap = 25 nm, U = 5×10−6m/s, f = 0.4 and ac = 0.05 mm.

.

Figure 3.8 shows the regions in the Peclet number-porosity space where use

of Dirichlet boundary condition is valid. The region demarcated as δDiff <

δHappel gives the values of porosity and Peclet number where the diffusion

boundary layer is well within the Happel’s boundary as depicted earlier by the

schematic in Figure 3.2 the outer boundary. Thus, the grey region in Figure

3.8 denotes the porosity-Peclet number phase space in which δDiff 6< δHappel.

Using any single collector efficiency correlation beyond the acceptable Peclet

number-porosity phase space (i.e., where δDiff < δHappel) could lead to erro-

neous predictions of the deposition rate. This error has a greater chance of

manifesting itself only in case of the sphere-in-cell geometry as its outer hy-
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drodynamic boundary is artificially imposed and depends on porosity. This

ambiguity is not present in other regular collector geometries, such as stagna-

tion point flow, parallel plate channel, or an isolated spherical collector.

Figure 3.8 – Regions in Peclet and Porosity domain showing thickness of the
diffusion boundary layer relative to the thickness of the Happel’s boundary.
ShDir and ShNeu are the average Sherwood number values calculated by using
Dirchlet and Neumann boundary conditions respectively at r = b. The two
regions are separated by an iso line such that ShDir/ShNeu = 1.2 on all points
on the line. For a given porosity, the corresponding values of Peclet number
on this iso line define the limit beyond which the Dirichlet condition cannot be
used at the outer boundary.

3.5.3 Effect of Gravity on Particle Deposition

The influence of gravity on deposition is represented through the non dimen-

sional Gravity number

Gr =
4πa4

p(ρp − ρf )g
3kBT

(3.29)
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where ap is the particle radius, ρp and ρf are the particle and fluid densities

respectively, kB is the Boltzmann constant, and T is the temperature. Depend-

ing on the density of the particle relative to the fluid, gravity either assists or

opposes the deposition process. Also, depending upon the sign of the gravity

number, gravity aids deposition in one quadrant of the collector and opposes it

in the other quadrant. Influence of gravity on deposition has been extensively

studied in context of many standard collector geometries, most notably by

Prieve and Ruckenstein for isolated spherical collectors [Prieve and E, 1974];

however, a detailed analysis of the influence of gravity on the Sherwood num-

ber in a sphere-in-cell geometry is still lacking.

Figure 3.9 – Variation of Sherwood number with Peclet number under different
gravitational intensities. The solid lines represent the results from the numerical
solution using a Dirichlet condition at the outer boundary whereas the closed
circles represent the corresponding results from the numerical solution with a
Neumann condition at the outer boundary. The Peclet number for this sim-
ulation was varied by changing the flow velocity. Similar low values of Peclet
number can otherwise also be obtained by employing particles of less than 1 nm
size which would be unrealistic.

Figure 3.9 depicts the effect of the gravitational intensity on the particle
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deposition rate at different Peclet numbers obtained for the sphere-in-cell ge-

ometry. The solid lines show predictions using the Dirichlet condition at the

outer boundary, whereas the symbols are based on the Neumann condition.

At higher values of Gr, the deposition rate becomes almost constant at lower

Peclet numbers. This indicates that for larger Gr, gravity masks the effect of

convection and diffusion. At very high Peclet numbers, convection dominates,

and the Sherwood number becomes independent of Gr. At lower values of Gr

and Pe, there is significant difference between the deposition rates when Neu-

mann and Dirichlet conditions are used at the outer boundary. For high Gr

values, even at low Peclet numbers, this disagreement is not observed. This is

because the transport is dominated by migration, which confines the diffusion

boundary layer to well within the Happel cell thickness. Such a difference is

not observed in case of an isolated collector [Prieve and E, 1974]. As previously

mentioned, one of the contributions of the present analysis is to highlight the

difference in particle deposition behavior of an isolated sphere and a packed

bed of spheres in presence of gravity, which has not been previously studied.

3.5.4 Single Collector Efficiency

The dependence of particle deposition efficiency on particle size has been a sub-

ject of interest in several studies over the past four decades [Kemps and Bhat-

tacharjee, 2009, Nazemifard et al., 2006, Nelson and Ginn, 2005, Rajagopalan

and Tien, 1976, Tufenkji and Elimelech, 2004, Yao et al., 1971]. As stated in

the introduction, the correlations of Rajagopalan and Tien [Rajagopalan and

Tien, 1976] and Tufenkji and Elimelech [Tufenkji and Elimelech, 2004] differ

in the diffusion dominated region, with the Tufenkji and Elimelech correlation

showing a different slope compared to the Levich slope.

Figure 3.10 compares the numerically computed single collector efficiency

values from our Eulerian model with the two correlations. All the plots are

characterized by a minimum single collector efficiency at a particular value

of particle radius, which will henceforth be referred to as (ap)min. For parti-

cle radii smaller than (ap)min, deposition is diffusion dominated, whereas for

particle radii greater than (ap)min, deposition is dominated by interception,

gravity, and migration forces.
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Figure 3.10 – (a) Variation of van der Waals interaction energies with scaled
separation distance. The curves represent four different van der Waals inter-
action energy definitions as follows - solid line: unretarded, Derjaguin approx-
imation; open circles: unretarded, Hamaker approach; dashed line: retarded,
Derjaguin approximation (Schenkel and Kitchener [?]); dotted line: retarded,
Hamaker approach (Czarnecki [?]).The expressions for these interaction ener-
gies are provided in the supporting information. −φvdW /AH denotes the ab-
solute scaled energy calculated by these expressions. (b) Single collector effi-
ciency variation with particle size. The solid and dashed lines represent the
Rajagopalan-Tien and Tufenkji-Elimelech correlation, respectively. The sym-
bols represent the numerically calculated values with different van der Waals
expressions.The parameters used for these simulations are: ac = 1.64× 10−4m,
U = 3.44× 10−4m/s, AH = 1× 10−20J , ∆ρ = 0, T = 298K, f = 0.37

.

The numerical results obtained from our Eulerian model (symbols) all coincide

with the RT correlation for particle sizes below 100 nm (the Levich limit). For

100 nm < ap < 2000 nm, the numerical results show two distinct trends de-

pending on whether the unretarded (solid symbols) or the retarded (open sym-

bols) van der Waals interactions are employed. The expressions considering
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the retarded van der Waals interactions coincide with the Tufenkji-Elimelech

correlation near (ap)min. Indeed, Tufenkji and Elimelech used the Hamaker

expression for the retarded van der Waals interaction in their work, and hence,

it is not a surprise that our Eulerian model gives their result. However, Ra-

jagopalan and Tien also used the retarded van der Waals interaction in their

trajectory analysis. Why does their correlation predict higher values of η in

this regime of particle size? This is because it is derived by linear superposi-

tion of the Levich equation to their deterministic trajectory analysis solution

in the interception/migration regime. This approximation could be avoided

in more rigorous Lagrangian particle tracking models that account for Brow-

nian motion. Indeed, use of the Hamaker expression for retarded van der

Waals interaction in the particle tracking model [Kemps and Bhattacharjee,

2009] yields results that match the corresponding result of our Eulerian model.

The simulation results show that near the deposition minimum, the Tufenkji-

Elimelech correlation should be more accurate. However, if a correlation is de-

veloped based on linear regression from a data set that has more bias (larger

number of points) from near the deposition minimum, the exponents of such

correlations could be unrealistic. We note here that Tufenkji and Elimelech

obtained their correlation for the diffusion based single collector efficiency, ηD,

as

ηD ∝ Pe−0.715 (3.30)

employing linear regression of their numerical results over the entire range

of particle radius of 0.01 to 10 µm. However, our simulation results clearly

show two distinct regimes in the diffusion dominated range, with ηD ∝ Pe−0.67

for ap < 100 nm, followed by a different exponent for approximately 100 nm <

ap < (ap)min. As Figure 3.10 suggests, the disagreement in the slope of the

single collector efficiency curve from the Tufenkji-Elimelech correlation is quite

significant below (ap)min when compared to the RT correlation (or the Levich

slope). This calls for the development of an improved correlation which accu-

rately estimates the deposition efficiency below the (ap)min range. It is also

important to note that the efficiency values would differ depending upon the

expressions used for the van der Waals interactions. This aspect has been pre-
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viously overlooked in the existing body of literature related to single collector

efficiency evaluation.

To summarize, the Levich solution represents the correct limiting behaviour

of colloidal systems as particle sizes become smaller. This behavior is ubiqui-

tous in all classical deposition systems and hence, it should also be exhibited

in sphere-in-cell systems.

As discussed previously, caution must be exercised in choosing the bound-

ary condition at the outer boundary for low particle Peclet numbers. Figure

3.11 shows the difference in the single collector efficiency vs. Peclet num-

ber plots when Neumann and Dirichlet boundary conditions are used at low

Peclet numbers. As the classical correlations are not based on the Neumann

boundary condition, but instead on the Dirichlet condition, they will predict

unphysically high values of the single collector efficiency (η > 1) in the limit

Pe→ 0. This unphysical behavior can be avoided by employing the Neumann

condition at the outer mass transfer boundary, which will limit the value of

the single collector efficiency to 1 as Pe → 0. In light of this, proper bounds

must be defined when employing the correlations to ensure their accuracy. For

the range of parameters considered in development of Rajagopalan-Tien, as

well as Tufenkji-Elimelech correlations, assumption of Dirichlet boundary con-

dition at the outer cell surface is valid. However, one should not extrapolate

these conditions to cases where the diffusion boundary layer thickness merges

with the Happel boundary, and then claim these correlations to be unphysical -

these correlations simply should not be used under such low Peclet numbers.In

light of this, the present study proposes the threshold Peclet number and the

Peclet-porosity space in which the Dirichlet condition can be used legitimately.

The analysis also explains the shortcomings of the two most widely used corre-

lations pertinent to particle deposition in saturated porous media and explains

the grounds on which the two differ. The findings from the study opens up

the scope for the development of a more accurate correlation to predict the

single collector efficiency, particularly for Brownian particles.
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Figure 3.11 – Comparison of efficiency plots using Dirichlet and Neumann
boundary conditions on the outer boundary. Parameters used for this simulation
are the same as that in Figure 3.7. However, the efficiency here has been defined
with respect to the fluid cell instead the collector.

3.6 New Correlation for Predicting Single Col-

lector Efficiency in Sphere-in-cell Models

Different correlations for predicting single collector efficiency have evolved over

the years as discussed in the previous section. However, it was only in 2004 that

Tufenkji and Elimelech [2004] performed studies to capture the effect of col-

loidal and hydrodynamic interactions on single collector efficiency for particles

of all sizes. They performed linear regression analysis on the numerical data

generated by their Eulerian model and proposed an analytical correlation to

establish a relationship between the single collector efficiency and the relevant

non-dimensional parameters involved [Tufenkji and Elimelech, 2004]. Prior to

the Tufenkji and Elimelech (TE) correlation, the Rajagopalan and Tien (RT)

correlation [Rajagopalan and Tien, 1976] remained the most widely used cor-

relation for predicting single collector efficiency. In essence, the TE correlation

is an improvement on the RT correlation for Brownian particles by incorpo-

rating the effects of colloidal and hydrodynamic interactions. Although other

correlations have also been developed since then [Long and Hilpert, 2009, Ma
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and Johnson, 2010], the RT and TE correlations remain the most widely used

and will be our focus in this thesis for comparison.

Classical correlations predict a minimum single collector efficiency at a

particle size around 1µm (cf. Figure 3.10), which we refer to here as (ap)min,

where ap is the particle radius. The difference in the RT and TE correla-

tion is essentially in predicting the deposition efficiency for Brownian particles

(ap ≤ 1µm). However, both correlations fall short of predicting theoretically

correct results for the entire range of particle sizes below (ap)min. The RT

correlation does not consider colloidal interactions (namely van der Waals in-

teractions) and hydrodynamic retardation for particles smaller than (ap)min

and uses the analytical Levich equation to characterize the deposition be-

havior in this regime [Rajagopalan and Tien, 1976]. Tufenkji and Elimelech

[Tufenkji and Elimelech, 2004] corrected this by accounting for the effects of

the van der Waals and hydrodynamic interaction for particles smaller than

(ap)min but their correlation violates the fundamental limiting behavior given

by the Levich’s equation [Levich, 1962]. Levich’s equation, like in all other

geometries, represents the true limiting behavior of mass transfer as parti-

cles approach point-like dimensions even for the Happel sphere-in-cell model

[Kemps and Bhattacharjee, 2009, Nazemifard et al., 2006]. The present work

proposes a new correlation which overcomes these limitations of the RT and

TE correlations by incorporating correction factors in a theoretically consistent

manner.

3.6.1 Development of the Correlations

Figure 3.12 compares the the numerically obtained values for the single col-

lector efficiency with the RT and TE correlations for a representative set of

parameters (Table 3.2). It appears from Figure 3.12 that the numerical results

tend to follow the RT line approximately up to a particle radius of 100 nm.

Beyond this, the efficiency values tend to dip below the RT line progressively

to finally meet the TE line around the (ap)min of ca. 1µm. The efficiency val-

ues predicted by both correlations and the numerical model for particle sizes

greater than (ap)min are in good agreement with each other upto the 2µm size

we studied in this letter. Thus, three distinct regions can be demarcated on

the efficiency curve. We call these the Brownian deposition regime for η corre-

sponding to ap < 100 nm, the transition deposition regime for η corresponding
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Figure 3.12 – Comparison of single collector efficiency curves for the RT corre-
lation, TE correlation and results from the numerical analysis. The parameters
used for this simulation are ac = 0.2 mm, f = 0.4, AH = 1.0 × 10−20 J,
U = 4.0× 10−5 m/s, T = 298 K, ρf = 997 Kg/m3 and ρp = 1050 Kg/m3

to 100 nm < ap < (ap)min and the interception and migration dominated de-

position regime for ap > (ap)min. These regions have been indicated in Figure

3.12 as well.

Consistent with the earlier discussions, Figure 3.12 suggests that the RT

correlation, containing the Levich equation [Levich, 1962], is correct for Brow-

nian deposition but must be corrected for the transition deposition regime to

accurately predict deposition below (ap)min. It is important to note that the

slope of the efficiency curve is different in the Brownian and transition regions.

As a matter of fact, the slope of the curve in the transition region is greater

than Pe−0.715
c . In this context, the slope of the TE correlation below (ap)min

only represents an average slope of the deposition curve in the Brownian and

transition regions and thus misinterprets the correct deposition in the Brown-

ian and transition regime.
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The deviation of the efficiency values from the Levich equation in the tran-

sition regime can been attributed to the retardation in the van der Waal’s

expression [Kemps and Bhattacharjee, 2009, Tufenkji and Elimelech, 2004].

Further, it has been shown that when un-retarded van der Waal’s interaction

energy is used in evaluating the efficiencies, this deviation is not observed and

numerical results agree perfectly with the RT correlation below (ap)min (cf.

Figure 3.10). This suggests that the retardation in the van der Waals expres-

sion is the significant factor in determining the slope of the efficiency curve in

the transition region.

Based on the above discussions, we define our new correlation which is

given as

η = 4.04A1/3
s Pe−0.667

c ηret︸ ︷︷ ︸
ηD

+ 0.55Asγ
1.675N0.125

A︸ ︷︷ ︸
ηI

+ 0.22γ−0.24N1.11
gravN

0.053
vdW︸ ︷︷ ︸

ηG

(3.31)

where ηret is the proposed correction factor to accommodate for the dip in

the efficiency values beyond the Brownian regime and is of the form

ηret = (1 + ap/ζ)−χ (3.32)

Here, ζ and χ are values which are to be determined by non-linear regres-

sion analysis of the numerical results. Careful observation indicates that ηret

shares the same form as that of the retardation term in van der Waals energy

expression as per Dejaguin approximation. The remaining non-dimensional

numbers used in Equation 3.31 have been summarized in Table 2.4. Since

the TE correlation does not require any correction in the interception and mi-

gration regime, the new correlation retains the ηI and ηG terms from the TE

correlation [Tufenkji and Elimelech, 2004] in Equation 3.31.
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3.6.2 Non-Linear Regression Methodology

A robust non-linear regression analysis subroutine LMDIF from the FOR-

TRAN library MINPACK (www.netlib.org/minpack) was used to obtain the

values of ζ and χ in Equation 3.32. LMDIF uses a modified Levenberg-

Marquardt algorithm and optimizes the values of the unknown parameters

by minimizing the sum of squares of the residuals. Thus, for a set of m

independent-dependent variable pair (xi, yi), the algorithm optimizes the value

of the fitting parameter β of the hypothetical curve f(x, β) such that the sum

of the square of the difference

G(β) =
m∑
i=1

[yi − f(xi, β)]2 (3.33)

is minimum. In this a user defined subroutine calculates the function G(β) for

an initial guess solution to be provided by the user. The algorithm then auto-

matically performs multiple iterations for evaluating the optimized value for β.

For the problem in question, the f(x, β) function is given by Equation

3.31 and the data set (xi, yi) is obtained from the numerical C-D-M model

described in the previous section. It is important to note that unlike all previ-

ous studies which have used linear regression analysis to derive the correlation

for predicting single collector efficiency, the present work employs non-linear

regression analysis. This enables the model to capture the different slopes of

the Brownian and transition regimes accurately by performing a non-linear

fit rather than fitting a straight line with an average slope for the entire size

range of particles below (ap)min.

3.7 The New Correlation for Predicting Single

Collector Efficiency

The expression for ηret obtained from the non-linear regression analysis is given

as

ηret =

(
1 +

ap
2.0× 10−7

)−0.243

(3.34)
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and thus the overall correlation takes shape as

η = 4.04A1/3
s Pe−0.667

c

(
1 +

ap
2.0× 10−7

)−0.243

︸ ︷︷ ︸
ηD

+ 0.55Asγ
1.675N0.125

A︸ ︷︷ ︸
ηI

+ 0.22γ−0.24N1.11
gravN

0.053
vdW︸ ︷︷ ︸

ηG

(3.35)

Figure 3.13 compares the new correlation with the RT and TE correlations

as well as the numerically calculated values of the single collector efficiency. It

is clear that the new correlation matches the theoretically calculated efficiency

values much more accurately compared to the RT and TE curves. The most

significant improvement, however, lies in the fact that the developed correla-

tion obeys the limiting Levich solution for Brownian particles and captures the

deposition behavior in the transition regime correctly where the colloidal and

hydrodynamic interactions start taking effect. In essence, it corrects the slope

of the TE correlation in the diffusion regime which violates the Levich equa-

tion and improves on the RT correlation for particles roughly larger than 100

nm in radius by accounting for the colloidal and hydrodynamic interactions.

The parameters used for the simulations in Figure 3.13 depict the conditions

that are most widely encountered practical filtration scenarios.

Comparing the ηD term of the new correlation with the ηD term of the

TE correlation, it is easy to see that unlike in the latter, the former does not

have a NvdW term. For particles smaller than 100 nm in radius this would not

have any effect whatsoever as already established [Kemps and Bhattacharjee,

2009]. Near (ap)min, the correlation slightly over-predicts the deposition effi-

ciency values for strongly convective conditions with low attraction intensity

as suggested by Figure 3.13(d) . But even then the deviation between the

numerical values and that predicted by the correlation is less than 10 percent.

Thus, the correction term in ηD of the new correlation accommodates for these

variations quite accurately. It is also interesting to note that the exponent of

the NvdW term in the TE correlation is a small number (0.052) which indicates

68



Figure 3.13 – Comparison of the new correlation with RT and TE correlations.
For all 4 simulations shown in this figure ρp = 1.05 g/cm3, ρf = 0.997 g/cm3,
AH = 10−20 J . (a) ac = 1.64 × 10−4 m, U = 3.44 × 10−4 m/s, f = 0.37,
T = 298 K (b) ac = 0.3× 10−3 m, U = 9.0× 10−6 m/s, f = 0.39, T = 298 K
(c) ac = 0.2 × 10−3 m, U = 4.0 × 10−5 m/s, f = 0.4, T = 298 K (d) ac =
0.2× 10−3 m, U = 1.0× 10−3 m/s, f = 0.36, T = 288 K

that the effect of this parameter on the diffusion dominated deposition is not

significant. Also, as elaborated in the previous section, the deviation from the

Levich equation in the transition regime stems from the retardation in the

van der Waals interaction energy and not the attraction. If retardation is not

accounted for in the van der Waals energy, the numerical results are in perfect

agreement with the RT correlation [Kemps and Bhattacharjee, 2009].

Figure 3.14 establishes the accuracy of the new correlation statistically and

compares it with that of the TE correlation. It is important to note that the

primary focus of the present work is to propose a theoretically correct correla-
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tion. Comparison with experimental results to establish its accuracy could be

misleading as the experimental data would form a random scatter around the

dashed line in Figure 3.14. It is clear that the newly developed correlation is

almost an ideal fit (with a slope of 0.98) and is far more accurate compared to

the TE correlation (slope of 0.84). The TE correlation seems to over-predict

the higher efficiency values which would typically be in the Brownian regime.

Since the TE correlation violates the Levich equation in the Brownian regime,

it is important to investigate the nature of this correlation separately for point

like particles. The RT correlation has not been used for comparison in Figure

3.14 since it does not consider the effects of the colloidal and hydrodynamic

interactions below (ap)min and statistical comparison with the RT correlation

could be misleading.

It has already been pointed out that the major shortcoming of the TE

correlation lies in the fact that it violates the limiting mass transport behavior

given by Levich equation for Brownian particles. Figure 3.15 compares the

Levich equation with the TE correlation and the newly developed correlation

for 3 different cases. The parameters listed in Table 3.2 were used for this sim-

ulation but for particles upto 100 nm in radius where the Levich equation must

be obeyed. In a recent review article by Petosa et al.[Petosa et al., 2010] it

has been mentioned that the TE correlation over-predicts the efficiency values

for particles below 30nm in diameter. This is true only for strongly diffusive

systems as indicated by Figure 3.15(a) where the open circles fall below the

dashed line. As the intensity of convection is increased, the results from the

TE correlation starts to under-predict and fall below the Levich equation for

the entire range of particle sizes as indicated by 3.15(b) and (c). This is purely

a mathematical manifestation of the average Pe−0.715
c slope which renders the

correlation physically untenable in the Brownian regime. Compared to this,

the new correlation, depicted by the filled circles, obeys the limiting Levich

behavior accurately and falls perfectly on the dashed line for all conditions.
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Figure 3.14 – Statistical comparison of the correlation and numerical results.
(a) Single collector efficiency values from the new correlation compared with the
numerically generated results. (b) Single collector efficiency values from the TE
correlation compared with the numerically generated results. The numerical
results are obtained over the entire parameter space in Table 3.2. For an ideal
linear fit, the dashed and solid lines should coincide.
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Figure 3.15 – Comparison of TE and the new correlation results with the
Levich Solution for 3 cases. (a) Strongly diffusive (or weakly convective) system:
ac = 0.3 mm, AH = 1 × 10−20 J , U = 8.0 × 10−6 m/s, ρp = 1050 Kg/m3,
ρf = 997 Kg/m3, f = 0.37 (b) Mildly diffusive (or mildly convective) system:
ac = 0.3 mm, AH = 1 × 10−20 J , U = 8.0 × 10−5 m/s, ρp = 1050 Kg/m3,
ρf = 997 Kg/m3, f = 0.37 (c) Weakly diffusive (or strongly convective) system:
ac = 0.3 mm, AH = 1 × 10−20 J , U = 8.0 × 10−4 m/s, ρp = 1050 Kg/m3,
ρf = 997 Kg/m3, f = 0.37. For all three cases 5 nm< ap <100nm which
defines the Brownian regime.
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3.8 Summary

In this chapter, systematic evaluation of particle deposition models in litera-

ture to calculate single collector efficiency is performed and their disagreements

with one another is addressed. Discussions from this chapter indicate that the

Eulerian approach for predicting Sherwood number and the single collector

efficiency for the Happel sphere-in-cell geometry provides the same results as

the Lagrangian approach when all governing transport mechanisms are consid-

ered simultaneously. The study re-establishes that Levich’s solution cannot be

violated for point like particles and the deviation of the TE correlation from

the Levich slope for Brownian particles(ap < 100 nm) is not physical. Further,

a new correlation with the correct particle deposition behavior for the entire

range of particle sizes and other parameters was presented. This new cor-

relation represents an improvement on the established correlations for single

collector efficiency prediction. Having evaluated and established the correct

mass transport on homogeneous collectors, in the next chapter, we look at

more realistic cases of particle deposition onto spherical collectors with sur-

face heterogeneity. The same Eulerian model will be retained but unlike in

the present chapter, EDL interactions will be incorporated and their role in

particle deposition will be analyzed.
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Chapter 4

Particle Deposition onto Patchy
and Janus Spherical
Collectors-Effect of Surface
Chemical Heterogeneity on
Deposition 1

4.1 Introduction

In the previous chapter, particle deposition onto a smooth homogeneous spher-

ical collector in the absence of electrostatic double layer interactions were pre-

sented. However, in most cases physical heterogeneity in the form of roughness

and chemical heterogeneity in the form of surface charge is inevitable. Real

heterogeneity is however, random and too complex to facilitate systematic

analysis. Further, including both types of heterogeneity in the same model

makes it rather difficult to evaluate the effect of each on particle deposition.

To the best of the author’s knowledge, there is no existing model that incor-

porates both physical and chemical heterogeneity together. In this chapter,

we present a numerical model to evaluate the effect of surface chemical het-

erogeneity on particle deposition in a sphere-in-cell geometry using DLVO

interactions (EDL+vdW). In order to enable tractable analysis, the surface

chemical heterogeneity is modeled using the commonly employed patterning

technique [Nazemifard et al., 2006, Rizwan and Bhattacharjee, 2009]. Two par-

ticular types of surface patterning are discussed thereby giving the collector

1Parts of this chapter have been published in Langmuir, June 2011,
doi:10.1021/la201421n., In press
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Janus and patchy characteristics. The choice of these two types of collectors

are in line with the recent verve in developing methods to fabricate particles

(which can be used as collectors) with such surface properties. The other

important aspect of this model is that it considers chemical heterogeneity on

spherical collector surfaces. To the best of the author’s knowledge most other

works dealing with chemical heterogeneity have focused only on planar sur-

faces. Towards the end of the chapter, we discuss novel applications of using

such collectors as efficient collectors in filter beds.

4.2 Modification of Cell Model to Predict De-

position on Heterogeneous Surfaces

A schematic representation of sphere-in-cell geometry with micropatterned

surface charge distribution is indicated in Figure 4.1(a). The collector consists

of concentric circular bands with alternate positive and negative surface po-

tentials. The figure depicts flow at a tilt angle χ to the vertical. The section

denoted by ÂBC constitutes Half I of the geometry and the remaining part

of the collector constitutes Half II. When the tilt angle χ is 0 and π, the entire

transport process is symmetric about the line AC and the deposition in the

two halves are identical. For all other values of χ, the deposition is different

in the two halves due to the combined effect of gravity and the fluid flow field.

It is important to note that the flow symmetry about AC is not broken. This

symmetry is retained to keep the analysis tractable while keeping the essential

physics of heterogeneity intact. Fg and Fint denote the force due to gravity

and colloidal interactions (van der Waals and Electrostatic Double Layer in-

teractions) respectively. The 0 and π shown in the figure indicates the start

and end points of the θ discretization for numerical evaluation. Figure 4.1(b)

shows the angular pitch (p) given as the total angular width of the positive

(wp) and negative (wn) stripes, all angles measured in radians. Each band is

separated by the horizontal dashed lines.

A qualitative picture of the particle trajectory as it is transported around

the collector is shown in Figure 4.1(b). The repulsion over the positive band

makes the particle to move away from the collector followed by an attractive

stretch which causes it to migrate towards the collector. All other features

of the original Happel cell model [Elimelech et al., 1995, Happel, 1958] are

maintained in the present analysis. For a positively charged particle, the ratio
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Figure 4.1 – (a) Schematic representation of a collector with micropatterned
surface charge distribution showing preferential particle accumulation. (b) The
collector consists of concentric circular bands with alternate positive and nega-
tive surface potentials. The figure depicts flow at a tilt angle χ to the vertical.
The section denoted by ÂBC constitutes Half I of the geometry and the re-
maining part of the collector constitutes Half II. Fg and Fint denote the force
due to gravity and colloidal interactions (van der Waals and Electrostatic Dou-
ble Layer interactions) respectively. (c) Collector showing the positive (wp)
and negative (wn) stripes and the angular pitch (p)(all in radians). h is the
dimensional surface-to-surface separation distance.
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of the negative stripe thickness (wn) to the angular pitch quantifies the fraction

of the collector surface that attracts the particle and favors deposition. The

favorable area fraction is denoted as λp = Af/A where Af is the area of

collector favoring deposition and A is the total surface area of the collector.

Thus

λp =
Af
A

=

n=Nb∑
n=1

np∫
(n−1)p+wp

2πa2
csin(θ)dθ

4πa2
c

(4.1)

where n is the index and n ∈ (1, Nb), p is the angular pitch, Nb is the

total number of bands on the collector surface. If Nb is sufficiently large, then

Equation 4.1 can be approximated fairly accurately as

λp =
Af
A
' wn

p
(4.2)

In the present study, the particle is positively charged and the first stripe

of each band is always positively charged and unfavorable to deposition as

indicated in Figure 4.1. The charge heterogeneity is incorporated by varying

the scaled surface potential (Ψs) over the white and shaded regions giving it a

periodic profile along θ. Thus, Ψs,n and Ψs,p, denote the negative and positive

scaled surface potentials. Although the profile indicates discontinuity at the

edges of the stripes, the accuracy of such a profile in calculating the EDL ener-

gies has been established earlier [Nazemifard et al., 2006]. Thus, the periodic

variation of Ψs, represents a simplified model to simulate surface charge het-

erogeneity effects on the double layer interaction energies. In this model, it is

assumed that the EDL energies are governed entirely by the surface potentials

of the particle and the collector region directly facing it (distance of closest

approach). Such approximation has been shown to be sufficiently realistic as

long as κap > 5 [Nazemifard et al., 2006]. Solution of the Poisson-Boltzman

equation over the heterogenous surface provides a more robust evaluation of

the EDL energies for lower values of κap [Das and Bhattacharjee, 2005].
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4.2.1 Modified Governing Equations

Although the fundamental governing equations for the particle transport (Equa-

tions 3.1, 3.2, 3.3) do not change, subtle modifications must be made to in-

corporate the EDL interactions and the effect of the tilt angle χ. For the

geometry depicted in Figure 4.1(a), net radial force includes the radial compo-

nent of the gravitational force (Fg), the attractive van der Waals force (FvdW )

and the electrostatic double layer interactions (FEDL) between the particle and

the collector:

Fr = −dφT
dr
− 4

3
πa3

p(ρp − ρf )g cos(χ+ θ) (4.3)

where φT (= φHam + φEDL) is the total interaction energy due to attractive

van der Waals interaction and electrostatic double layer interactions. The

present model uses retarded van der Waals interaction energy evaluated using

the Hamaker’s approach (Equation 2.16) [?]. The electrostatic double layer

interaction is calculated using the well established Hogg, Healy and Fuerstenau

(HHF) [Hogg et al., 1966] expression under the assumptions that linearized

Poisson-Boltzmann equation is applicable, surface potentials are constant and

the electrolyte in question is a symmetric (z:z) electrolyte. The interaction

energy is expressed as

φh,EDL = 4πεε0ap

(
kBT

ze

)2

ΨpΨs

[
ln(1 + e−κh)− (Ψp −Ψs)

2

4ΨpΨs

ln(1− e−2κh)

]
(4.4)

Here, ε and ε0 are the dielectric constant and permittivity of vacuum, Ψp and

Ψs are the scaled particle and surface potentials, κ is the inverse Debye length,

z is the valency and e is the electronic charge. It is easy to observe that for

equipotential surfaces, Ψp, Ψs, the last term in Equation 4.4 becomes zero.

The expression used for the Double Layer interaction energy in Equation 4.4

applies to sphere-flat plate interactions. For small particle to collector aspect

ratio systems (ap/ac < 0.1), this expression is sufficiently accurate, especially

near the wall of the collector where these colloidal interactions are predomi-
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nant.

The coefficients a1(H, θ), a2(H, θ) and a3(H, θ) in the explicit form of the

C-D-M equation in Equation 3.9 are modified for the geometry in question.

Thus

a1(H, θ) = f1(H)/

[
Pe

2
f3(H)NRUθ + f4(H)NRF

∗
g sin(χ+ θ)

]
(4.5)

a2(H, θ) =

{
f1(H)

[
∂Φ

∂H
+ F ∗g cos(χ+ θ)

]
+
∂f1(H)

∂H
+ 2F1(H)NR

−Pe
2
f1(H)f2(H)Ur

}
/

[
Pe

2
f3(H)NRUθ+

f4(H)NRF
∗
g sin(χ+ θ)

]
(4.6)

a3(H, θ) =

{[
2f1(H)NR +

∂f1(H)

∂H

] [
∂Φ

∂H
+ F ∗g cos(χ+ θ)

]
+ f1(H)

∂2Φ

∂H2
−

f4(H)NRF
∗
g sin(χ+ θ)/tanθ − f4(H)NRF

∗
g cos(χ+ θ)−

Pe

2

[
f1(H)f2(H)

∂Ur
∂H

+ f1(H)Ur
∂f2(H)

∂H
+ f2(H)Ur

∂f1(H)

∂H

+2f1(H)f2(H)NRUr + 2f3(H)NRUθ cotθ]} /[
Pe

2
f3(H)NRUθ + f4(H)NRF

∗
g sin(χ+ θ)

]
(4.7)

The list of relevant non-dimensional parameters used for solving Equation 3.9

remain the same as provided in Table 3.1. The boundary conditions used for

solving the C-D-M equation are identical to the ones used for solving the stan-

dard sphere in cell model.[Elimelech, 1994, Elimelech et al., 1995, Masliyah

and Bhattacharjee, 2006, Ruckenstein, 1964, Tufenkji and Elimelech, 2004]

Once the particle concentration distribution is numerically determined, the

non-dimensional flux of particles at the collector surface can be evaluated by

J∗(Hmin, θ) = −2f1(Hmin)

Pe

∂C∗

∂H
+ f1(Hmin)f2(Hmin)UrC

∗−

2f1(Hmin)

Pe

[
∂Φ

∂H
+ F ∗g cos(χ+ θ)

]
C∗

(4.8)
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where Hmin = δ/ap and J∗ = Jr/(Uc0), with Jr being the normal flux to the

wall. δ = 1 nm is the wall cut off separation to prevent non-physical divergence

of van der Waals interaction at contact. The expressions for calculating the

overall deposition efficiency (η) and the overall deposition rate (Sh) are given

in the previous chapter (Equations 3.24, 3.25, 3.26). The numerical technique

used to solve the governing set of equations is the same as described in the

previous chapter (Section 3.3)

4.3 Particle Deposition onto Janus Collectors

In this section, deposition behavior on Janus collectors is discussed. The spher-

ical collector is assumed to be attractive in the upper half and repulsive in the

lower half as shown by the unit cell inset in Figure 4.2. As stated in the pre-

vious section, the orientation of the line demarcating the two halves on the

collector must be perpendicular to the flow direction to maintain azimuthal

symmetry. The overall deposition behavior for such a collector is compared

against that of a homogeneously favorable collector which is used as a bench-

mark.

Two possible cases can be used to describe the surface heterogeneity of

a Janus collector. The first one, which we shall refer hereafter as Configu-

ration1, has an attractive lower half (shown by the shaded region in Figure

4.2(a)) which favors deposition and a repulsive lower half which hiders depo-

sition. The other scenario, referred to as Configuration2, favors deposition in

the shaded upper half and hinders deposition in the lower half. Such differ-

ential surface characteristics are typical to Janus particles [Chute et al., 2011,

Liang et al., 2011]. In order to determine the deposition behavior, it is impor-

tant to first investigate the concentration distribution of the particles near the

collector surface.

For Configuration 1, the concentration profile shows a sharp peak at the

leading edge of the shaded favorable half where the surface potential flips

from being positive to negative (or in other words repulsive to attractive) for

a positively charged particle. Such a sharp rise in concentration indicates an

accumulation of particles near the edge. This happens because in the leading

half of the collector, the particles are not able to penetrate the repulsive energy
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Figure 4.2 – Scaled concentration of particles around the collector near the
wall (at a separation distance of ∼5 nm). The shaded regions indicate the
attractive halves. Thus for Configuration 1, the lower half (90◦ ≤ θ ≤ 180◦)
is shaded and for Configuration 2, the upper half (0◦ ≤ θ ≤ 90◦) is shaded.
The dashed lines correspond to the concentration distribution for a lower Peclet
number (Pe ' 900) while the solid lines represent a higher Peclet number (Pe '
6500). Sub-parts (a) and (b) correspond to Configuration1 and Configuration2
respectively.
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barrier due to double layer interactions and are convected around the collector

due to the fluid flow. Upon reaching the edge where there is a sudden change

in surface potentials, the particles quickly migrate towards the wall due to

the attractive colloidal interactions. The peak is sharper as the intensity of

convection is increased, as more particles are being transported to the edge

at a faster rate resulting in greater accumulation. The concentration profile

shows a decaying behavior after the peak, which indicates that the probability

of finding a particle decreases along θ as most particles have already deposited

at the edge. The decay is less steeper with greater convection as there is a

greater chance of a particle to be carried along with the flow past the leading

edge of the attractive region.

For Configuration 2, the upper half being attractive, the particles deposit

as it would for a homogeneously attractive collector until it reaches the trailing

edge of the attractive region. The particle concentration is highest near the

stagnation point due to the combined action of the impinging action of the

flow and the attractive colloidal interactions. As the particles are transported

around the collector in the tangential direction, the intensity of the shear flow

increases and radial flow decreases, carrying the particle further along the θ

direction indicated by a steady drop in the concentration till the trailing edge.

At the trailing edge, there is an abrupt drop in concentration due to the sud-

den change in surface potentials thereby making the interactions repulsive in

nature. Beyond this, no deposition occurs due to the repulsion. Thus a marked

difference in the transport behavior around the two collector configurations is

observed. Understandably, the overall deposition rate around each of these

collectors would be different.

Figure 4.3 depicts the variation in deposition efficiencies with Peclet num-

ber for a homogeneously attractive collector and a half attractive-half repulsive

Janus collector with the two possible configurations described earlier. The de-

position efficiencies show a decreasing trend upon increasing convection due

to the relatively higher tangential particle flux compared to the radial particle

flux. The dependence of the deposition rate on Peclet number is much stronger

for Configuration 2 compared to that of Configuration 1. This is expected due

to the convection of particles away from the collector in the lower half. Upon

comparison of the deposition efficiencies of the two configurations with that of
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Figure 4.3 – Particle deposition efficiency and its dependence on Peclet num-
ber for a homogeneously favorable collector and half favorable collector with two
possible configurations described earlier. Comparison of the deposition efficien-
cies of the half favorable collector with the homogeneously favorable collector
for different Peclet numbers under the same operating parameters (inset).

a homogeneous collector (inset Figure 4.3), it is remarkable to note that the

deposition rate on a Janus collector under Configuration 2 is almost identical

to that of a homogeneous collector (almost 80 percent minimally). Thus, it

can be conclusively summarized that, a Janus collector under Configuration

2 can be as effective in particle retention as a homogeneous collector. Also,

Figure 4.3 indicates the relative insignificance of the lower half of the collector

on particle deposition even when it is attractive. The advantages of using a

Janus collector over a homogeneous collector will be discussed later.

Having established that a half favorable collector has far superior deposi-

tion characteristics under Configuration 2 compared to that in Configuration

1, the present study now analyzes the variation of particle retention behavior

with tilt angle (χ). For non zero tilts, the deposition behavior in the right

and left halves of the unit cell are different due to the combined effect of

gravity and the fluid flow field. Figure 4.4(a) shows a somewhat sigmoidal

behavior for both curves. The deposition efficiency drops as χ is increased in
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Figure 4.4 – (a) Variation of single collector efficiency with tilt angle (χ)
for a homogeneous collector at three different velocities (b) Variation of single
collector efficiency with tilt angle (χ) for a Janus collector (configuration 2) at
three different velocities.

both cases. However, for a half favorable collector, the deposition efficiency

suffers a slightly greater dip compared to the homogeneous collector. For a

gravity assisted flow scenario, the effect of gravity in aiding particle deposi-

tion is maximum. As χ increases, the favorable impact of gravity in aiding

deposition decreases. At χ = 180 degrees, i.e. for gravity opposed flow, the

deposition efficiency is significantly reduced compared to a vertically down-

ward flow because in the attractive half, gravity hinders deposition. Figure

4.4(b) depicts the variation in deposition efficiencies at different tilt angles for

three different velocities. At higher velocities reflecting higher convection rate,

the deposition efficiency becomes less sensitive to the tilt. This is because, at

higher velocities, the effect of gravity is masked by the convective flow.
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4.4 Particle Deposition onto Patterned Col-

lectors

In this section, the deposition results from a micropatterned charged collector

surface are discussed. As for a half favorable-half unfavorable collector, the

particle concentration distribution due to the periodic colloidal interactions

near the collector surface is investigated. The concentration distribution pro-

vides the first picture of the particle accumulation around the collector and

hence gives an indication of the deposition process.

Figure 4.5 shows the variation of scaled particle concentration with tangen-

tial position on the surface of a heterogeneous collector at a separation distance

of approximately 5 nm from the collector surface (close to the collector). The

collector surface is patterned with alternate stripes of scaled surface potentials

Ψs,p = +1 and Ψs,n = −1. The angular width of each of these stripes is 3◦,

making the collector 50 percent favorable to deposition (λp = 0.5). A particle

radius of 1 micron, κap = 100 and Gr = 0.37 were used for this simulation.

The scaled surface potential for the particle is given as Ψp = +1. The par-

ticle concentration shows a periodic profile in the tangential direction with

zero concentration over the unfavorable sections due to the repulsive colloidal

interactions. Over the favorable sections, however, the particle concentration

indicates a sharp rise at the leading edge of each favorable stripe.

The concentration profile varies as the particle traverses the arc length

around the collector. Near the forward stagnation line, a sharp peak is ob-

served at the leading edge of each favorable stripe following which the con-

centration decays rapidly to settle to a constant value over the remaining part

of the favorable stripe. The concentration profile closely follows the periodic

nature of the surface potentials on the collector. The sharp rise in concentra-

tion near the leading edge of the favorable stripe indicates an accumulation

of particles at that location. Since the particles cannot come close to the

surface over the unfavorable stripe due to the repulsive interactions, they are

convected to the next favorable stripe. As soon as the particle reaches the fa-

vorable section, it experiences an attraction and deposits immediately on the

collector surface. The height of the peak decreases with distance away from

the forward stagnation line due as most particles will tend to deposit on the
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Figure 4.5 – Variation of scaled particle concentration with tangential position
on the surface of a heterogeneous collector at a separation distance of approxi-
mately 5 nm from the collector surface. (Inset) Scaled particle concentration as
a function of tangential position near the forward stagnation line (0◦ ≤ θ ≤ 20◦).
κap = 100 and Gr = 0.37 were used for this simulation.

first favorable stripe and hence the probability of particle accumulation over

the next set of favorable stripes gradually decreases.

At distances further away from the forward stagnation line, the peaks at

the leading edge of each favorable stripe becomes smoother and the particle

concentration does not decay continuously till the end of the stripe without set-

tling to a constant finite value. Interestingly, the peaks also tend to gradually

shift slightly to the right of the leading edge as tangential distance increases.

Similar behavior has also been reported for a impinging jet flow over a mi-

cropatterned flat plate [Nazemifard et al., 2006]. The gradual shift to the

right indicates the presence of an inaccessible region over the favorable stripe

which increases as the intensity of shear flow increases with tangential distance

from the forward stagnation line.
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It is also interesting to note from Figure 4.5 that despite the presence of

favorable stripes, there is virtually no deposition in the trailing half of the

collector (θ ≥ 90◦). This is unique to the cell model geometry. In the lower

half of the collector, the fluid flow tends to carry the particle away from the

collector surface as well as the fact that gravity opposes deposition in the lower

half. This further establishes the relative insignificance of surface interactions

in determining deposition in the lower half of the collector. The particles tend

to be sensitive to the surface interactions only in the upper half. The simu-

lation results also showed that even upon reducing the Peclet number, there

is no deposition in the lower half. However, as Peclet number decreases, the

concentration peak near the stagnation region decreases in magnitude.

Having analyzed the particle concentration around the collector, it is now

important to investigate the particle flux (represented by the local Sherwood

number) on the collector surface. It is also essential to understand how the

presence of patterned heterogeneity modifies the local particle flux on the col-

lector surface compared to that of a homogeneous favorable collector. Figure

4.6 compares the variation of local Sherwood number with tangential position

on the collector surface for a patchy collector and a homogeneous favorable

collector (Figure 4.6(inset)). The simulation parameters are identical to that

in Figure 4.5 and the local Sherwood number is calculated at the surface of

the collector (at the cut off distance of 1 nm).

The local Sherwood number is basically an indication of the radial par-

ticle flux at the collector surface. Figure 4.6 indicates that the local Sher-

wood number shows the same periodic variation with θ as was observed with

concentration in Figure 4.5. Like the scaled particle concentration, the local

Sherwood number is zero over the unfavorable stripes indicating no local depo-

sition. The particle flux increases sharply at the leading edge of the favorable

stripes near the forward stagnation line before decaying to a constant value

similar to the particle concentration. The local Sherwood number also dis-

plays the same decay and shift of the peaks to the right of the leading edge of

the favorable stripe as θ increases indicating an inaccessible fraction over the

favorable stripes [Nazemifard et al., 2006]. For the lower half of the collector,

Figure 4.6 also indicates virtually no particle deposition.
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Figure 4.6 – Comparison of variation of local Sherwood number for a homo-
geneous favorable collector (inset) and heterogeneous collector with patterned
surface charge heterogeneity. Parameters used for this simulation are identical
to that in Figure 4.5. The local Sherwood number is calculated at the surface
of the collector (at the cut off distance of 1 nm).

Comparison of the Sherwood numbers in Figure 4.6 indicates a significant

difference in the local deposition rates of the microscopically heterogeneous

and homogeneous collector. Near the forward stagnation line the local Sher-

wood for a heterogeneous collector is almost ten times that of a homogeneous

collector. This is attributed to the tangential convection of particles over the

first unfavorable stripe where no deposition occurs resulting in a much higher

particle flux over the first favorable stripe compared to that of a homogeneous

collector. This is significant as it indicates that having small pockets of favor-

able area on the otherwise unfavorable collector can result in significantly high

local deposition rates at these sites compared to the deposition on a homoge-

neous collector. It shows that microscopic heterogeneity can play significant

roles in preferentially ”doping” a particular site with particles of a specific
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kind. Essentially it leads to controlled deposition and can have significant

implications in areas spanning drug targeting to developing novel materials

with surface arrays. It is however important to note that although the local

deposition rate for a 50 percent favorable collector is higher than that of a ho-

mogenous favorable collector, the overall deposition rates of the two collectors

could be comparable.

Comparison of the Convection-Diffusion-Migration Model with the
Patchwise Heterogeneity Model

The overall deposition rate for a heterogeneous collector consisting of favorable

and unfavorable stripes, as given by the patchwise heterogeneity model in

context of the Eulerian analysis [Song et al., 1994] is

Shavg = λpShavg,f + (1− λp)Shavg,uf (4.9)

where Shavg,f and Shavg,uf are the average deposition rates over homoge-

neously favorable and homogeneously unfavorable surfaces respectively. Since

Shavg,uf = 0, the patchwise heterogeneity model reduces to a linear relation-

ship between the average deposition rate (Shavg) and the favorable area frac-

tion on a collector surface (λp). Thus, for a surface with 50 percent favorable

area fraction (i.e. λp = 0.5), the average Sherwood number for the heteroge-

neous collector is given as Shavg = 0.5Shavg,f .

The patchwise heterogeneity model predicts overall deposition rates inde-

pendent of the spatial characteristics of the surface heterogeneity. However, as

Figure 4.6 clearly points out, the local deposition rates at a given tangential

position for a patchy collector is significantly higher than that of a homoge-

neous collector owing to the coupling of various transport mechanisms (for

example, near the stagnation point, Shlocal for a patchy collector is 10 times

higher than that of a homogeneous collector). Since, the overall deposition

rate is evaluated by tangential averaging of the local deposition rates on the

collector surface, the comparatively high deposition rates over the favorable

stripes compensates for the zero deposition rates over the unfavorable stripes.

As a result, the overall deposition rates of the patchy collector is comparable

to the overall deposition rate of a homogeneous collector even at 50 % favor-

able coverage.
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In order to compare the current convection-diffusion-migration model with

the patchwise heterogeneity model exhaustively, the dependence of the overall

deposition rate on the favorable area fraction must be analyzed. For a pat-

terned heterogeneous collector with a constant pitch (p), the favorable area

fraction (λp) can be altered by changing the ratio of the favorable stripe to

the unfavorable stripe (wn/wp).

Figure 4.7 shows the variation of scaled overall particle deposition rate

Shp/Sh0 with favorable area fraction of the collector, λp. The open symbols

(squares and circles) denote the results from the convection diffusion migration

model for two particle sizes (0.5 micron and 1 micron, respectively) while the

line with closed triangles are the overall deposition rate prediction from the

patchwise heterogeneity model. Figure 4.7(a) and (b) show the dependence of

the overall deposition rate on the Peclet number (or the fluid flow rate). It

is evident from 4.7 that the numerical results from the convection-diffusion-

migration model deviates significantly from the patchwise heterogeneity model.

This deviation is however dependent on the coupling of other transport mech-

anisms such as particle size, collector size and flow velocity. For all the sim-

ulations, a slight increase in the value of λp (below λp = 0.5) results in a

significant increase in the value of overall deposition rate. The dependence of

the overall deposition rate on the favorable area fraction gradually decreases

beyond (λp = 0.5) indicated by the flattening of the plots for all cases. Also

for all the simulation conditions depicted, at λp = 0.5, the overall deposition

rate is inside 20% of the completely favorable analogue.

Figure 4.7 also shows the variation of the scaled particle deposition rates

with favorable area coverage for two particle sizes and two Peclet numbers (ob-

tained by changing the flow velocity). The deviation of the overall Sherwood

number predicted by the numerical model from the patchwise heterogeneity

model follows the same trend as the impinging jet flow discussed by Nazemifard

et al. [2006]. However, the variations with Peclet number were not discussed

for the impinging jet flow system. Figure 4.7(a) depicts a strongly convec-

tive system. The initial response of the deposition rates for the two particle

sizes are almost the same. The difference in the deposition rates of the two

particles are only observed for λp > 0.3. For higher λp, the 0.5 micron par-
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Figure 4.7 – Variation of scaled overall particle deposition rate Shp/Sh0 with
favorable area fraction of the collector, λp. The open symbols (squares and
circles) denote the results from the convection diffusion migration model for
two particle sizes (0.5 micron and 1 micron respectively) while the line with
closed triangles are the overall deposition rate prediction from the patchwise
heterogeneity model. (a) Comparison of the present model with the patchwise
heterogeneity model for a strongly convective transport system (U = 0.01m/s).
(b) Comparison of the present model with the patchwise heterogeneity model
for a strongly diffusive transport system (U = 5× 10−4/s). The scaled surface
potentials used for this simulation are Ψp = +1, Ψs,p = +1, Ψs,n = −1. The
ionic strength of the solution is I = 1× 10−3M .

ticle has greater deposition rates compared to a 1 micron particle. This is

primarily due to the fact that the larger particle is convected tangentially at

a much greater rate thereby making it less sensitive to the colloidal interac-

tions in the radial directions. For a strongly diffusive system however (Figure

4.7(b)), the behavior is just the opposite. Here, the tangential convection is

weak and the larger particle feels the interactions more intensely compared

to the smaller one. Thus, the deposition rate is greater for a larger particle.

The initial response is also different due to the difference in the intensity of
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the particle-collector interactions which now predominates in the absence of

the masking effect of the tangential convection. This shows the effect of the

complex transport mechanisms on the deposition behavior and how they cause

a deviation from the analytical patchwise heterogeneity model. The patchwise

heterogeneity model however serves as a good limiting solution at low λp val-

ues as long as the width of the stripes is larger than the particle diameter.

Figure 4.8 shows the change in deposition efficiencies with tilt orientation

compared to a vertically downward flow orientation (χ = 0). As explained

earlier, the deposition efficiency varies upon changing the orientation due to

the role of gravity. Upon increasing the Peclet number, by increasing flow

velocity, the effect of the gravity is masked as shown by the flattening nature

of the plots with increasing Peclet number. The results indicate that for high

Peclet number flows, the deposition efficiency hardly changes with change in

orientation. However, as Peclet number is reduced, the effect of gravity is more

predominant and the dip in the curve is more significant. This deviation de-

pends entirely upon the non dimensional gravity number (Gr = 4/3πa3
p∆ρg)

and increases as the relative density of the particle increases.

4.5 Applications of Janus and patchy Collec-

tors in Particle Deposition

The simulation results highlight three critical aspects about deposition on

patchy and Janus collectors.

• The trailing half (or lower half) of the collector is insensitive to deposition

even if it is favorably charged (Figure 4.6).

• A heterogeneous collector with even 50 percent favorable surface cov-

erage, can have deposition characteristics very similar to its completely

homogeneous analogue (Figure 4.7).

• At lower flow velocities, deposition efficiency is higher (Figure 4.3).

Is it possible to capitalize on these characteristics and use such collectors

with artificial surface heterogeneity to design energy efficient filter beds? As

the results have shown that the trailing half of a stationary, supported collector
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Figure 4.8 – Comparison of deposition efficiencies at a given tilt to vertically
downward flow. Parameters used for this simulation are identical to that of 4.7.

is relatively clean, if a mechanism can be developed to rotate the collector, it

would facilitate deposition on the cleaner trailing half. Keeping this in mind, it

is feasible to use the patchy or Janus collectors in a fluidized bed filter system,

as depicted in the schematic of Figure 4.9. In such a system, the collectors

could be kept floating with the fluid flow imposed in a direction opposite to

the gravity, which will allow the collectors to rotate and use the cleaner half

for deposition. Since the collectors have surface charge, it is also possible to

rotate the collectors using external force fields. However, the former option

is more energy efficient. Such a filter system would have longer operational

life and better particle retention properties. In most supported filter beds, the

bed porosity is constant and the collectors are held tightly in a close packed

formation. In a fluidized bed system, however, a combination of fluid drag and

the inter-collector interactions can be used to vary the filter porosity. Higher

porosity would mean a lower pressure drop across the filter bed defined by

Darcy’s equation dp/dz = −µu/k (where u is the superficial velocity, µ is the
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fluid viscosity and k is the bed permeability). This would result in further

reduction in pump energy. Secondly, an increase in porosity would also lead

to lower interstitial flow velocities thereby increasing the deposition efficiency

(cf. Figure 4.3). Using such patterned collectors, two types of charged parti-

cles can be collected on the same collector with near homogeneous efficiency.

Figure 4.9 – Schematic of a fluidized field variable porosity filter.

With Janus collectors, instead of being part attractive and part repulsive,

it is possible to make the two halves attractive to different extents. Collectors

with different Debye lengths in the two halves have been used in studies per-
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taining to aggregation [Pardhy and Budhlall, 2010]. Such collectors could be

used to preferentially capture particles in a suspension. They could also be

used in separation of components from emulsions where the components would

have varying magnitudes of attraction towards the two halves of the collector

surface.

4.6 Summary

An analysis of particle transport around a patterned charge heterogeneous

spherical collector is presented in this chapter using the sphere-in-cell ap-

proach. The cases discussed are for a Janus collector and a patchy collector

with micropatterned surface charge distribution. In both cases the results in-

dicate particle accumulation at the leading edge of the favorable stripe due to

tangential transport of particles over the unfavorable section of the collector.

For a sphere-in-cell geometry, the model shows the relative insignificance of

lower half of the collector playing a dominant role in the deposition process.

For Janus and patchy collectors, the effect of different flow orientations were

also analyzed. The results indicate the possibility of designing filter beds using

these heterogeneous collectors which can have longer operational life compared

to homogeneous collectors. For a micropattened charge surface, the compari-

son of the overall deposition rates with patchwise heterogeneity model showed

significant deviation. Having comprehensively analyzed particle deposition

onto spherical collectors (both homogenous and chemically heterogeneous), in

the next chapter we shall investigate particle transport in a microchannel with

chemical heterogeneity on its walls. The study would complete looking at the

entire gamut of particle transport problems in porous media geometries.
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Chapter 5

Transport and Deposition of
Colloidal Particles in a
Patterned Cylindrical
Microchannel 1

5.1 Introduction

In this chapter, we look at particle transport in a cylindrical microchannel

with surface charge heterogeneity on its walls. Rock structures, which clas-

sify as natural porous media, are often comprised of a network of pores and

throats. Most of these pores are arbitrary shapes rendering them inappropri-

ate for systematic analysis without making suitable approximations. In this

chapter we present a numerical model which investigates particle transport in

a chemically heterogeneous pore approximated as a cylindrical microchannel.

The model also has relevance to several microfluidic/nanofluidic devices in

which particle transport in microchannels is an integral part. A lot of research

has been performed to investigate electrokinetic and particle transport in ho-

mogeneous microchannels. There is, however, a dearth of theoretical work in

which particle transport is analyzed in a microchannel with chemical hetero-

geneity. Following the trend from the previous chapters, we shall present the

variation of typical particle transport parameters that characterize deposition.

The work is intended to provide a direction in improving existing pore network

models by incorporating surface charge heterogeneity, thereby making them

1Parts of this chapter have been published in Microfluidics and Nanofluidics, July 2011,
doi:10.1007/s10404-011-0847-9 In press.
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more practical and realistic.

5.2 Mathematical Modeling

5.2.1 Patterned Microchannel Geometry with Poiseuille
Flow

A schematic representation of patchy microchannel with micropatterned sur-

face charge distribution is indicated in Figure 5.1. The walls of the channel

consists of co-axial circular rings with alternate positive and negative surface

potentials with the particle assumed to be positively charged. The velocity

profile inside the microchannel is assumed to be fully developed and parabolic

in nature. In the absence of gravity, the model is axisymmetric in nature and

2D analysis can be performed to evaluate particle transport. Figure 5.1(c)

shows the pitch length (p) and the negative and positive band widths of the

co-axial rings denoted by wn and wp, respectively.

A qualitative picture of the trajectory of the particle as it gets transported

through the microchannel is shown in Figures 5.1(b) and (c). The repulsion

over the positive band makes the particle to move away from the channel wall

and towards the centerline followed by an attractive stretch which causes it to

migrate towards the wall. All other features of the original model developed

by Adamczyk and van de Ven [1981] for particle transport in a homogeneously

attractive channel are retained in the present analysis. For a positively charged

particle as in the present analysis, the ratio of the width of the negative band

(wn) to the pitch length (p) quantifies the fraction of the microchannel wall

surface area that is attractive and favors deposition. The favorable area frac-

tion is denoted as λp = Af/A where Af is the area of the microchannel wall

favoring deposition and A is the total surface area of the microchannel wall.

Thus, the area fraction can be calculated as

λp =
Af
A

=

n=Nb∑
n=1

np∫
(n−1)p+wp

2πRdL

2πRL
(5.1)
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Figure 5.1 – Schematic of a patterned microchannel geometry with Poiseuille
flow profile. The model is axisymmetric about the centerline. R is the radius
of the microchannel and ap is the particle radius. The schematic shows the
oscillatory trajectory of the particle under the influence of the attractive and
repulsive surface interactions. (a) 3D schematic representation of positively
charged particles depositing at the leading edge of the favorable stripes along the
length of the microchannel (cut section shown). The grey bands are negatively
charged and the black bands are positively charged. (b) 2D axisymmetric view
of the microchannel geometry showing the parabolic velocity profile, the channel
length, particle radius and the surface charges. Sub-part (c) shows the zoomed
in section of one pitch (p) length. wn and wp are the negative and positive band
widths of the co-axial rings.
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where Nb is the total number of bands on the channel wall and L is the mi-

crochannel length. Equation 5.1 can be simplified to

λp =
Af
A
' wn

p
(5.2)

The present study considers a positively charged particle and the first ring

of each band is always positively charged and unfavorable to deposition. The

charge heterogeneity is incorporated by varying the scaled surface potential

(Ψs) over the white and shaded regions as reported in Figure 5.1(b), giving

it a periodic profile along the channel length (L). Thus, Ψs,n and Ψs,p, would

denote the negative and positive scaled surface potentials. The other approxi-

mations involved with the modeling are the same as they were for the patterned

spherical collector in chapter 4.

5.2.2 Governing Particle Transport Equations

Particle transport in the microchannel is governed by the steady state C-D-M

equation given by Equation 3.1. For solving Equation 3.1, the fluid velocity

vector must be known. The present model employs a fully developed, laminar

parabolic velocity profile (Poiseuille flow) given by

uz(r) = 2Um

[
1−

( r
R

)2
]

(5.3)

where uz(r) is the fluid velocity in the axial direction, Um is the mean flow

velocity, r is the local radial co-ordinate in the microchannel and R is the

microchannel radius. For the Poiseuille flow profile, ur(r) = 0 (i.e, zero ra-

dial velocity). The hydrodynamic coupling of the fluid and particle velocities

are easily obtained by incorporating suitable hydrodynamic correction factors

f1(H), f2(H), f3(H) and f4(H) [Goldman et al., 1967, Kemps and Bhat-

tacharjee, 2009]. Thus, vr(r) = f1(H)f2(H)ur(r) and vz(r) = f3(H)uz(r)

where H is the dimensionless surface to surface separation distance between

the particle and the microchannel wall (defined as H = h/ap). Since ur(r) = 0,

there is no particle convection component in the radial direction (i.e, vr(r) = 0)

It must be mentioned here that the correction factors used in this study apply
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for a sphere approaching a flat surface. For the ratio of particle size to channel

radius used in the simulations (ap/R ≤ 0.05 maximally), the particle does not

feel the curvature of the channel wall and hence these correction factors can

be employed. In general, this approximation is correct as long as ap/R � 1

[Adamczyk and van de Ven, 1981]. For comparable particle to channel ra-

dius aspect ratios, other correction factors are available in literature which

can also be easily incorporated into the model [Al Quddus et al., 2008]. Even

in those expressions, it has been shown that for small aspect ratio systems

(ap/R < 0.1), the hydrodynamic corrections are insensitive to the channel

wall curvature. The particle diffusion tensor is defined in the same was as it

was done for the spherical collector case.

The non-hydrodynamic forces considered here are the attractive van der

Waals and the electrostatic double layer interactions. Thus, the net radial

force on the particle is given as

Fr = −dφT
dr

(5.4)

where φT (= φHam+φEDL) is the total interaction energy due to attractive van

der Waals interaction and electrostatic double layer interactions. We employ

the Derjaguin expression for the unretarded van der Waals interaction energy

in this model (Equation 2.13). For the electrostatic double layer interactions,

the well known Hogg, Healy and Fuerstenau (HHF) Hogg et al. [1966] expres-

sion is used (Equation 4.4).

The C-D-M equation for particle transport in a cylindrical channel with

Poiseuille flow is given by Adamczyk and van de Ven [1981]. Upon formulating

the equation explicitly and grouping the derivative terms, the C-D-M equation

can be expressed as

∂C∗

∂Z
= a1(H)

∂2C∗

∂H2
+ a2(H)

∂C∗

∂H
+ a3(H)C∗ (5.5)

where C∗(= c/c0) is the scaled particle concentration. The coefficients a1(H),

a2(H) and a3(H) are
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a1(H) = f1(H)/ [Pef3(H){2− (H + 1)γ}] (5.6)

a2(H) =

[
f1(H)

∂Φ

∂H
+
∂f1(H)

∂H
− f1(H)γ

]
/ [Pef3(H){2− (H + 1)γ}] (5.7)

a3(H) =

[
∂f1(H)

∂H

∂Φ

∂H
+ f1(H)

∂2Φ

∂H2
− γf1(H)

∂Φ

∂H

]
/ [Pef3(H){2− (H + 1)γ}]

(5.8)

Note that the correction factor f2(H) does not appear in Eqs. 4.5, 4.6, 4.7 due

to the absence of particle convection in the radial direction. However, migra-

tion due to the colloidal interactions, which is responsible for the transport of

particles towards the wall is corrected by the factor f1(H). A list of relevant

non-dimensional parameters used for solving Equation 5.5 is provided in Table

5.1.

Table 5.1 – Dimensionless groups and constants used in the scaled Convection-
Diffusion-Migration equation

Dimensionless group Expression

Scaled surface to surface separation distance H = h/ap

Particle Peclet number Pe =
2Uma3

p

D∞R2

Scaled total interaction energy Φ = φT

kBT

Particle aspect ratio γ = ap/R
Scaled distance along z Z = z

R

Scaled Surface Potential Ψ = zeψ
kBT

The boundary conditions used for solving Equation 5.5 are

C∗ = 1 at Z = 0 (h 6= dmin) (5.9)

C∗ = 0 at h = dmin (perfect sink) (5.10)
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∂C∗

∂H
= 0 at H = R/ap (symmetry along centerline) (5.11)

noindent Here, Here, h is the dimensional particle-wall separation distance

and dmin = 1 nm is the wall cut off separation to prevent non-physical diver-

gence of van der Waals interaction at contact. The local Sherwood number

which quantifies local deposition is evaluated as Adamczyk and van de Ven

[1981]

Sh =

[
f1(H)

∂C∗

∂H

]
dmin

(5.12)

Similarly, the overall deposition number (Shavg) is obtained by integrating the

local Sherwood number over the entire surface of the microchannel [Adamczyk

and van de Ven, 1981]. Thus

Shavg =
R

L

∫ L/R

0

ShdZ (5.13)

It is observed that Equation 5.13 is independent of θ (tangential) due to

axisymmetry. Although Equation 5.12 is devoid of the particle interaction

energy term, the change in deposition number due to the interaction is ac-

counted for by the wall concentration gradient which is a function of the total

interaction energy. The numerical scheme employed for solving the governing

set of equations is identically similar to those described in Chapters 3 and 4.

The parameters used for the simulations in this chapter are given in Table 5.2
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Table 5.2 – Physical and Chemical Properties of the system used in the simu-
lations

Property Value
Particle radius, ap 0.5− 1µm
Fluid viscosity, µ 1× 10−3N − s/m2

Free stream velocity, U 1.0× 10−5 − 1.0× 10−2 m/s
Temperature, T 298 K

Electronic charge, e 1.6× 10−19 C
Permittivity of vacuum, ε0 8.85× 10−12 C/V m

Dielectric constant, ε 78.54
Hamaker constant, AH 10−21 J − 10−20 J

Solution ionic strength, I 10−1 M
Valence of ion, z 1

Channel Radius, R 10 − 50 µm
Channel Length, L 50µm − 0.1 mm

5.3 Results and Discussion

5.3.1 Local Deposition Behavior

For the heterogeneous microchannel, it is important to first investigate the

near wall concentration profile along the length of the channel. Figure 5.2(a)

depicts the variation of near wall concentration along the length of the chan-

nel. The dashed line represents the concentration profile for a homogeneously

attractive channel while the solid line represents the concentration profile for

a patchy (micropatterned) channel. The inset plot represents the magnified

picture of the concentration profile for z/ap < 20. The near wall distance

was chosen to be 5 nm which lies just outside the secondary minima. The

concentration profile follows the oscillatory surface potential profile along the

channel length. The zero concentration regions are the repulsive regions where

no particle penetration occurs and consequently there is no deposition.

Three important observations are made from Figure 5.2(a). Firstly, a com-

parison with the concentration profile of the homogeneous microchannel shows

that for a micropatterned microchannel, the concentration peak over the at-

tractive stripe is significantly higher (i.e, the solid line peaks are much higher

over the attractive bands compared to the dashed lines). This is due to the

fact that the particles that are not deposited over the unfavorable region gets

convected over to the next favorable stripe. Secondly, the concentration peaks
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Figure 5.2 – (a) Variation of near wall concentration along the length of the
channel. The dashed line represents the concentration profile for a homoge-
neously attractive channel while the solid line represents the concentration pro-
file for a patchy (micropatterned) channel. The inset plot represents the mag-
nified picture of the concentration profile for z/ap < 20. Shaded regions depict
the attractive stripes and dashed vertical lines have been drawn to show how
particles tend to deposit near the leading edge of the favorable stripes. (b)
Variation of the concentration profile along the channel length at different sep-
aration distances (scaled) for a homogeneous channel. Parameters used for this
simulation are L/R = 5, ap = 0.5 µm, I = 0.1 M, p = 4 µm

tend to form at the leading edge of each favorable stripe. Similar behavior has

also been reported by Nazemifard et al. [2006] for an impinging jet geometry.

This behavior is expected as most of the particles will deposit as soon as they

experience an attraction from the wall. The height of the peaks decreases

upto a certain distance along the channel length and finally become constant

at a certain value. It is observed that beyond roughly the half channel length,

the concentration profile on each of the favorable stripes is almost identical.

Finally, there is a greater probability that a particle might travel the entire

length of a micropatterned channel than compared to a homogeneous channel.
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This is evident from the finite concentration peaks further down the channel

length which is higher compared to the case of a homogeneous channel. Hence,

it can be concluded that deposition is more uniform along the length of a mi-

cropatterned channel wall compared to a homogeneous one in which all the

particles will deposit within a very short distance from the inlet.

Figure 5.2(b) depicts the concentration profile for a homogeneous mi-

crochannel at different separation distances from the wall. Thus, as the sepa-

ration distance from the wall decreases, the concentration profile falls off more

sharply due to the influence of the attractive particle-wall interactions. At

further distances, most particles will travel the length of the channel almost

unaffected. In other words, particles that are near the centerline would be

transported along the microchannel without depositing. As can be seen from

Fig.5.2(a), the concentration profile for the micropatterned channel oscillates

around the dashed line. Hence, the flattening of the curves at a larger separa-

tion distance is observed even for the case of a micropatterned channel.

Once the concentration field and the corresponding gradients have been

calculated in the computational domain, the local Sherwood number is cal-

culated using Equation 5.12. Figure 5.3 depicts the variation of the local

Sherwood number (Shlocal) along the channel length for two different Peclet

numbers. The Peclet number in these simulations were varied by changing the

fluid flow velocity. Comparison of the two subparts show that the height of

the Shlocal peak is higher for a higher Peclet number (28 at the first peak for

Pe ' 5 compared to 10 for Pe ' 0.5). This again is due to convection along

the flow direction making particles available for deposition over the favorable

stripes at a faster rate. Also, the peaks at a lower Peclet number are much

sharper compared to smoother peaks at a higher Pe. As convection increases,

it tends to carry the particles faster allowing lesser time for the particles to

deposit at a particular location on the wall. Thus, there is a smoother gra-

dient in the Sherwood number along the flow direction as indicated by the

rounded edges. Another important observation is that for lower Peclet num-

bers, there is very little deposition towards the end of the channel (i.e, very

small peaks observed for Pe = 5 beyond the half channel length). Compared

to this, at higher Peclet numbers, deposition is significant towards the end

of the channel. Hence, one would expect the average deposition rate to be
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higher for higher Peclet numbers. This also indicates that more uniform depo-

sition can be achieved on the microchannel walls by allowing a faster flow rate.

Figure 5.3 – Variation of local Sherwood number (Shlocal) along the channel
length for two different Peclet numbers. The shaded regions are the areas fa-
voring deposition. Dashed vertical lines are drawn at the leading edge of each
favorable stripe to highlight the fact that particles tend to deposit at the lead-
ing edge of these favorable stripes. The simulation parameters are the same as
mentioned in Figure 5.2

5.3.2 Dependence of Deposition Behavior on Peclet num-
ber, Pitch Length and Favorable Surface Coverage

The overall deposition behavior of the channel is quantified by the average

Sherwood number which is obtained by integrating the local Sherwood num-

bers over the length of the channel. Figure 5.4 shows the variation of the av-

erage Sherwood number with Peclet number for three different channel radii.

As justified in the previous section, increased Peclet number would result in

enhanced deposition of particles on the channel wall indicated by the higher
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peaks further down the length of the channel. Again, this is expected as

more particles are being made available for deposition to the attractive bands

further down the length of the channel thereby increasing the average depo-

sition. Upon increasing the channel radius, the deposition rate is observed to

increase. The increase in channel radius yet keeping Peclet number constant

(Pe = 2Uma
3
p/D∞R

2) would require either a larger ap or larger Um. A larger

particle radius would mean that the particle interactions are stronger thereby

increasing deposition and a higher fluid velocity would also increase the aver-

age deposition number due to the reasons mentioned earlier.

Figure 5.4 – Variation of average Sherwood number with Peclet number for
cylindrical channels with three different radii. The parameters used for this
simulation are AH = 10−21 J , p = 4 µm, L = 50 µm, ap/R = 0.01, λp = 0.5

Figure 5.5 shows the overall deposition rate due to the variation in the

pitch length for two Peclet numbers. A larger L/p ratio indicates smaller

pitch width and thus smaller width of the positive and negative bands. The

plot shows the variation in deposition rates at λp = 0.5. Upon increasing the
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length to pitch ratio, the average deposition rate shows a tendency to increase

initially before flattening out. As previously discussed, the deposition rates

are higher for higher Peclet number. The figure indicates that although the

fraction of the surface area favorable for deposition is the same, a larger num-

ber of favorable stripes will result in better deposition as a particle can access

a larger number of favorable sections along a given length of the channel. As a

limiting case, one can have a channel which is half favorable and half unfavor-

able along the entire microchannel length. In such a situation, only one half of

the channel allows particle to deposit on the walls and there is a greater prob-

ability that a particle might be transported over the favorable section without

depositing. Compared to this, if the width of the stripe is small there is a

greater possibility of the particle being captured anywhere (on any one of the

favorable stripes) along the length of the microchannel. Thus, the deposition

is dependent on the distribution of the surface charge as well as the geometry

and is not determined solely by the λp parameter.

Figure 5.5 – Variation of overall deposition rate with pitch length for two Peclet
numbers. Larger L/p ratio indicates smaller pitch width and thus smaller width
of the positive and negative bands. λp = 0.5 has been used for this simulation.
All other simulation parameters are the same as that in Figure 5.4
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As we did for the spherical collectors, we investigate the dependence of

the overall Sherwood number on the favorable area fractions and compare

the results with the patchwise heterogeneity model Song et al. [1994] (Equa-

tion 4.9).The overall deposition rates predicted by the patchwise heterogeneity

model is independent of the spatial characteristics of the surface heterogeneity.

However, Figure 5.2 indicates that at a given location along the channel length,

the particle accumulation can be much higher compared to the homogeneous

analogue which will result in significantly higher deposition rates locally. This

is primarily due to the coupling of the various transport mechanisms. Since,

the overall deposition rate is simply a length averaging of the local deposition

rates on the channel wall, the comparatively high deposition rates over the

favorable stripes compensates for the zero deposition rates over the unfavor-

able stripes. Thus, the overall deposition rates at even 50% favorable surface

coverage are comparable to those of a homogeneously favorable channel.

Figure 5.6 shows the variation of scaled overall particle deposition rate

Shavg/Sh0 with favorable area fraction of the microchannel, λp. The open

circles and open squares denote the results from the convection diffusion mi-

gration model for two different Peclet numbers while the solid line with filled

triangles denotes the overall deposition rate prediction from the patchwise

heterogeneity model. The scaled surface potentials used for this simulation

are Ψp = +1, Ψs,p = +1, Ψs,n = −1. The ionic strength of the solution is

I = 1 × 10−1M and AH = 10−21 J . The plot indicates a significant differ-

ence between the C-D-M results and the patchwise heterogeneity model. As

mentioned earlier, this deviation is dependent on the coupling of the various

transport mechanisms. Thus for a higher Peclet number, the deviation is more

pronounced. An important observation from Figure 5.6 is that for all the sim-

ulation conditions depicted, at λp = 0.5, the overall deposition rate is within

30% of the completely favorable analogue. Increasing the Peclet number brings

the overall deposition rate even closer to the homogeneously favorable situa-

tion at λp = 0.5. It can be is expected that upon decreasing the ionic strength

of the solution and increasing the value of the Hamaker constant, the deposi-

tion rate will be further enhanced. The reason for the higher deposition rates

at higher Peclet number has already been discussed in the previous subsection.
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Figure 5.6 – Variation of scaled overall particle deposition rate Shavg/Sh0

with favorable area fraction of the microchannel, λp. The open circles and open
squares denote the results from the convection diffusion migration model for
two Peclet numbers while the solid line with filled triangles denotes the overall
deposition rate prediction from the patchwise heterogeneity model. The scaled
surface potentials used for this simulation are Ψp = +1, Ψs,p = +1, Ψs,n = −1.
The ionic strength of the solution is I = 1× 10−2M and AH = 10−21 J .

5.4 Summary

A comprehensive analysis of the transport of particles in chemically heteroge-

neous microchannels was provided in this chapter. The study highlights how

particle transport is modified strongly in the presence of surface chemical het-

erogeneity. Further, the model results showed that frequency of the stripes

and the favorable area fraction also effected the particle capture rate at the

walls. This suggests that the shape of the heterogeneous patches would also

have strong impacts on the particle transport. Most importantly, the analysis

showed how surface heterogeneity on the channel walls can be tuned to control

the path of the particle inside the channel. Enhanced particle capture at the
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leading edge of the favorable stripes also indicated that this technique could

be effectively used for drug delivery/targeting in capillaries to biomolecule

transport in microfluidic devices. The model can be further improved by in-

corporating more realistic fluid flow profiles and electrokinetic effects.
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Chapter 6

Conclusions and Future Work

The primary goal of this thesis was to investigate particle transport and de-

position in various porous media geometries. Further, we wanted to establish

the correct limiting particle transport behavior onto a homogeneous spherical

collector and then extend the model to include surface chemical heterogeneity.

Finally, a second model was developed to investigate particle transport in het-

erogeneous microchannels as it is relevant to various microfluidic/nanofluidic

as well as porous media systems. Initial investigation of existing literature in-

dicated a lack of agreement between various particle transport models onto ho-

mogeneous spherical collectors in the absence of double layer interactions. The

various correlations developed for predicting single collector efficiency seemed

to be deficient in some way or the other. Further, a dearth of theoretical

models dealing with particle deposition onto spherical collectors with surface

chemical heterogeneity was observed. Similarly, for flow in microchannels, no

significant model was found which analyzed particle transport in a microchan-

nel with chemically heterogeneous walls. In light of these issues, theoretical

results were reported which lends significant insight into particle transport in

both spherical and microchannel geometries. The numerical model developed

was robust and efficient in terms of computational cost and coding effort. The

results from the numerical models highlighted novel aspects of particle de-

position which could be employed to improve on the existing filtration and

microfluidic/nanofluidic systems.
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6.1 Concluding Remarks

From the results of the initial section of the thesis where we investigated

particle transport and deposition onto homogeneous spherical collectors in

the absence of double layer interactions, we conclude the following

1. The Lagrangian and the Eulerian methods both lead to the same conclu-

sion in terms of predicting single collector efficiency for a sphere-in-cell

model. The disagreements between the various deposition models was

not due to the adopted method, but due to systematic errors in approx-

imation or a manifestation of inappropriate statistical calculations.

2. The Levich solution represents the correct limiting behavior for particle

deposition for Brownian particles. For such particles, the effect of the

attractive van der Waals interactions and hydrodynamic retardation was

insignificant. Hence, the deviation between the collector efficiency values

predicted by the various correlations for Brownian particles was not due

to the presence of these interactions.

3. Previously it was established that all particles roughly below 1 micron

particle radius would lead diffusion dominated deposition. Our model

indicated that the Brownian deposition was only predominant for par-

ticles below 100 nm. Beyond 100 nm particle radius, the slope of the

efficiency curve depends upon the expression for the van der Waals in-

teractions used in the model. As a matter of fact, the deviation of the

single collector efficiency values from the Levich equation was due to the

retardation factor in the van der Waals interaction energy.

4. Finally, a new correlation was developed to accurately predict the depo-

sition efficiency for the entire range of particle size. The new correlation

improved upon the widely used RT and TE correlations. The developed

correlation showed remarkable accuracy for the entire parameter space

considered in this problem especially for Brownian particles which was

till then a matter of constant debate.

Next, the effect of surface chemical heterogeneity on particle deposition

onto patterned collectors were investigated. Major conclusions drawn from

the study included the following
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1. Surface chemical heterogeneity had significant impact on the particle

deposition rates. On the favorable stripes, higher local deposition rates

were observed compared to a homogenously favorable collector.

2. The particles showed an inherent tendency to deposit at the leading edges

of the favorable stripes. This rate of local deposition was dependent on

other transport parameters as well.

3. The lower half of the collector seemed to be completely insensitive to

deposition even under favorable deposition conditions. This led us to

conclude that a spherical collector which is said to have been fouled

completely is actually only half fouled. The cleaner lower half could be

used to collect particles and thereby increase the retention efficiency and

longevity of the filter bed if the collectors could be rotated dynamically.

4. The effect of collector rotation was captured by making the free flow

approach the collector at different angles to gravity. Even in gravity

opposed flow, the drop in efficiency was with 20% compared to that

of gravity assisted mode. This could however be compensated if the

collectors could be made to rotate.

5. For a patterned collector, the results indicated that a collector with even

50% favorable area fraction had deposition characteristics very similar

to that of a fully favorable collector.

6. We summarized the results from this section of the thesis to propose

fluidized field variable porosity filters in which the inter-collector inter-

actions could be employed for varying the system porosity in a fluidized

mode thereby reducing Darcy’s pressure drop across the bed. This would

lead to improved operational life and better deposition efficiency in the

filter bed.

Finally for the particle transport in chemically heterogeneous patterned

microchannels, we made the following major conclusions

1. As in the case of a spherical collector, particles deposition was maximum

at the leading edge of the favorable stripes. However, the extent of

deposition decreased along the length of the microchannel. Unlike in

a spherical collector though, some deposition was observed beyond half

the channel length and near the exit.
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2. The overall deposition rate was dependent on the favorable area fraction

as well as the width of each favorable stripes (or conversely, the number

of favorable stripes). For a given value of favorable area fraction, greater

deposition was observed for a greater frequency of the stripes.

3. The numerical results indicated that local deposition rate along the mi-

crochannel length could be tuned effectively using such patterning. This

would be particularly helpful in analyte and biomolecular transport in

microchannel for drug delivery/targeting or doping a particular site on

the channel wall.

6.2 Future Work

The work presented in this thesis were obtained under a few simplifying as-

sumptions. Although, the results provide a good indication of the particle

deposition process onto both homogeneous and heterogeneous surfaces, there

is still significant room for improvement in developing better models. Such

models would validate the hypotheses presented in this thesis and provide

more concrete and indepth knowledge of particle deposition onto the geome-

tries discussed. Among several aspects where the modeling could be improved,

the most notable ones are highlighted below.

1. In the evaluation of the particle velocities, we considered that the fluid

field is undisturbed by the particle. Although this would be fairly ac-

curate for Brownian particles, this assumption would not hold true for

larger particles. Addition modeling of the exact hydrodynamics of the

fluid-particle interaction is required to make the model more realistic.

2. In the present model, all the particle deposition rates are calculated for

very dilute solution such that inter particle interactions can be neglected.

A better model could be developed in which inter particle as well as inter

collector interactions would be incorporated.

3. The model developed for the patterned spherical collectors considers fluid

flow approaching the collector at different angles but maintains symme-

try by assuming that the stripes are always normal to the free stream flow

direction. There is a massive scope in improving this model by consider-

ing a full 3D geometry in which the flow direction and the orientation of
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the stripes could be varied independently. Since, the model talks about

developing a system in which the collectors are dynamically rotating,

this would be an apt direction to delve into further investigation.

4. In designing a fluidized bed system would require full porous bed mod-

eling. Although the single collector deposition rates present a good indi-

cation of what the overall deposition of the entire filter would be, more

concrete results must be produced to validate this claim. This can only

be achieved by considering a system in which a cluster of collectors is

considered and flow of suspension through it is investigated.

5. In the model where we discussed particle transport in a microchannel,

we considered neutrally buoyant particles to ensure 2D symmetry was

maintained. This would not be the case in all practical situations. Hence,

3D simulations must be performed once again to develop a complete

picture of particle transport in a microchannel.

6. Again, for the patterned microchannel model, fully developed Poiseuille

flow was considered. It will be interesting to investigate the reservoir

effects, particle deposition under the condition when flow is not fully

developed and also a more realistic flow field since a pure Poiseuille flow

is never really achieved in practice. Electrokinetic transport could also

be incorporated to improve the model.
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