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ABSTRACT

A composite reservoir is made up of two or more concentric regions with ditterent rock and
fluid properties. In well-test analysis for thermal recovery projects, reservoirs have mostly
been idealized as radial. composite systems. This idealization is adequate i’ the reservoir s
homogeneous and isotropic. and the well is vertical and not fractured. Howcever, the
increasing scope and complexity of thermal recovery projects, as well as, the general
heterogeneity of petroleum reservoirs. have necessitated the consideration of diftferent flow
geometries other than radial. Steam injection in a tractured well or an anisotropic reservoir,
may result in an elliptical swept region. A partially-completed injection well may create a
spherically-shaped swept region. while steam injection in a linear or channel reservoir may

result in a linear. composite reservoir.

The main objective of this study is to compare, in a comprehensive and systematic manner.
the transient pressure and rate behavior of composite reservoirs in radial, clliptical, lincar
and spherical flow geometries. Normalizing factors to enable comparison ol pressure
derivative and rate responses for the various flow geometries have been presented. The
effect of mobility and storativity ratio on the pseudosteady state behavior of the various
composite reservoirs has been investigated. Conditions have been established for the
occurrernice of pseudosteady state flov for various flow geometries. As well, a generalized
pressure derivative is presented that cases the identification of flow regimes characteristic of
the various flow geometries. New design and analysis equations based on the generalized
pressure derivative have been developed for well testing of composite reservoirs in the
various flow geometries. A comparison of the production decline from the various
composite reservoirs has also been undertaken. Some type curves for decline curve

analysis of linear and radial composite reservoirs are presented.



Finally. & new analytical model for the transient pressure bechavior of a three-region
composite reservoir with power law property variation in the intermediate region is
presented.  This model, which accounts for smooth changes in mobility and storativity
ahcad of the flood front in thermal recovery processes, offers a significant improvement

over the sharp-front idealizations of the composite reservoir models currently available.



ACKNOWLEDGEMENTS

I wish to express my sincere gratitude and appreciation to Dr. A, K. Ambastha tor his
guidance and support throughout this study. Financial support for this work and my
graduate studies was provided by a research contract from the Alberta Oil Sands
Technology and Research Authority (AOSTRA) and rescarch grants from Chevron Oil
Ficld Research Company, La Habra and NSERC. for which T am very thanktul. 1 would
also like to thank Louis Mattar of Fekete Associates Inc.. Calgary. for his support and
insightful discussions during the writing of this thesis. Finally, I wish to acknowledge the
patience, uncerstanding and support of my wife, Esi Toku-Afriyie, and my daughters

Fauzia. Sharifah and Janaan during my graduate studies.



TABLE OF CONTENTS

Chapter Page
1.0 IN T RODUC T ION e e e e e i 1
2.0 ANALYTICAL SOLUTIONS FOR COMPOSITE RESERVOIRS IN

VARIOUS FLOW GEOMETRIES .. 8
2.1 Introduction ... e 8
2.2 Constant Rate Solutions oo 10
2.2.1 Radial, Composite Reservoir .........ocoovviiiiiiiiiiiiiiiin i 10
2.2.2 Elhptical, Composite Reservoir ..., 16
2.2.3 Linear, Composite ReServolr ..........oooviiiiiiiiiiiiiiiiiiiinnn.. 21
2.2.4 Spherical, Composite Reservoir L o |
2.3 Wellbore Storage and SKin .. e 29
2.4 Constant Pressure SOIULONS ..o i i 30
2.5 Description of Computer Program ... 31
2.6 Computational Considerations ... i 33
2.7 Possible AppliCAtions ... i it e e 34

EVALUATION OF THE PSEUDOSTEADY STATE METHOD FOR VARIOUS

COMPOSITE RESERVOIRS e 41
3.1 INtroduction ... 41
3.2 Comparison of SOIULONS . e 45
3.2.1 Radial Reservoir ... 45
3.2.2 Ellptical RESErvoir ... 46
3.2.3 Linear Reservoir ... . i 46
3.2.4 Spherical RESEIVOIr  .ooiiiiiiii i 47
3.3 Discussion of Results ..o 48
3.4 Time Criteria for Pseudosteady State Flow ..., 50



4.0

6.0

GENERALIZED PRESSURE DERIVATIVE ANAL.YSIS OF COMPOSITE

RESERVOIRS 62
4.1 INrodUCION oo s 62
4.2 Generahized Pressure Derivative i, 03
4.3 DISCUSSION G-
4.4 Pressure Derivative Analysis and Design Equations ..o N
4.4.1 Spherical, Composite Reservoir 6O
4.4.1.1 Analysis and Design Equations 006

4.4.1.2 General Discussion ..o 70

4.4.2 Lincar. Composite Reservoir ... 73
4.4.2.1 Analysis and Design Equations 73

4.4.2.2 General Discussion ..o 70

4.5 Comparison of Analysis and Design Equations ... 77
DECLINE CURVE ANALYSiIS FOR COMPOSITE RESERVOIRS.............. 90
5.1 INFOAUCHION oo e e e e 0O
5.2 Solution Descriplion ... 92
5.3 Comparison of Solutions ... ... 94
5.3.1 Radial Reservoir . 04

5.3.2 Elliptical Reservoir ... ... 95

5.3.3 Linear ReSErvoir  oiiiiiiii i e 960

5.3.4 Spherical Reservoir ... 97

5.4 General DISCUSSION L .uiiii it e 9
5.5 Decline Curve AnalySisS i 100
5.5.1 Comparison of Production Decline Curves ... 101

5.5.2 Decline Curve Analysis for Radial, Composite Reservoirs........ 104

5.5.3 Decline Curve Analysis for Linear, Composite Reservoirs........ 106

THREE-REGION COMPOSITE RESERVOIR WITH POWER-LAW



VARIATION IN PROPERTIES o 120
6.1 INtrodUuction o 120
6.2 Muathematical Development oo 123
6.3 Verification of Solution 131
6.4 Results and Discussion oo 132
6.4.1 Effect of Intermediate Region Size ... 133
6.4.2 Effect of Spectral Exponents oo 135
7.0 DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS  ............. 150
7.1 DMSCUSSION i 150
7.2 CONCIUSIONS 152
7.3 Recommendations oo 156
R O eSS e e e 158
APPEN DI E S 164
Appendix A: - Computer Program for Analytical Solutions for Two-Region.
Composite Reservoirs of Various Geometries. ... 164
Appendix B: Derivation of Diffusivity Equation and Its Solution for the
Intermediate Region with Power Law Property Variation ... 183
Appendix C: Computer Program for Analytical Model of a Three-Region,
Composite Reservoir With Power Law Property Variation L 1R87



Table 3.1:

Table 3.2:

Table 3.3:

Tavle 4.1;

Table 4.2:

Table 4.3:

Table 4.4:;

Table 4.5;

Table 4.6:

LIST OF TABLES

Page
Time to the end of pseudosteady state behavior corresponding to the
inner region of a lincar. composite reservoir, ... co S
Time to the end of pseudosteady state behavior corresponding to the
inner region of a spherical. composite reservoir. Lo AN
Comparison of conditions for the occurrence ot a pscudosteady state
period of up to tpx = 0.2 for various composite reservoirs, ... . 50
Flow exponents for some soivcted flow regimes and geometries... ... 79
Maximum gencralized pressure derivative and the time to maximum
derivative for a spherical. composite reservoir L RO
Time to the beginning of infinite-acting. spherical flow corresponding
to the outer region for a spherical, composite reservoir. oL N
Time to the beginning of infinite-acting, lincar flow corresponding
1o the outer region for a lincar, composite reservoir. ........................ 82
Comparison of analysis equations based on the generalized pressure
derivative for composite reservoirs in radial, elliptical, spherical and
linear flow geometries. . K3

Comparison of design equations based on the generalized pressurc
derivative for composite reservairs in radial, elliptical, spherical and
linear flow gEOmELries. L e K4



Figure 2.1:

Figure 2.2:

Figure 2.3:

Figure 2.4:

Figure 2.5:

W
A
i

Figure

53]
i9

Figure

Figure 3.3:

Figure 3.4:

Figure 3.5:

Figure 3.6:

Figure 3.7:

Figure 4.1:

LIST OF FIGURES

Page

Schematic of a two-region, radial, composite reservoir. TR 1 ¢
Schematic of a two-region, elliptical, composite reservoir. ............... 37
Schematic of a two-region, linear, composite reservoir. ............... 38
Schematic of a two-region, spherical, composite reservoir. ............... 39

Various geometries and boundary conditions included in the comprehensive

mode] of composite reservoirs. ..ol e 40

Dimensionless semi-log pressure derivative responses for radial,
elliptical, linear and spherical, composite reservoirs. ........................ 57

Dimensionless Cartesian pressure derivative responses for radial,

elliptical, linear and spherical, composite reservoirs. ........................ 58

Comparison of dimensionless semi-log pressure derivative responses
for radial and elliptical, composite reservoirs. ...l 59

Effect of mobility and storativity ratios on the Cartesian pressure
derivative response for a linear, composite reservoir. ~ ............... 60

Correlations for the end of pseudosteady state for a linear, composite
FESEIVOLI. ittt ittt ttte e teetieteeeeeeunaetauaeetentieeenneeennnes 60

Effect of mobility and storativity ratios on the Cartesian pressure
derivative response for a spherical, composite reservoir.  ............... 61

Correlations for the end of pseudosteady state for a spherical, composite
reservoir.

Generalized pressure derivative responses for composite reservoirs



Figure 4.2:

Figure 4.3:

Figure 4.4:

Figure 4.5:

Figure 4.6:

Figure 4.7:

Figure 4.8:

Figure 4.9:

Figure 5.1:

Figure 5.2:

in radial, elliptical, spherical and linecar flow gecometrics.

Verification of accuracy of the correlation for predicting the maximum

generalized pressure derivative for a spherical. comusisate reservoir. ... 85

Verification of accuracy of the correlation for predicting the it tO
the maximum generalized pressure derivative for a spherical. composite
reservoir.

Verification of accuracy of the correlation for predicting the time to the
start of infinite-acting flow in the outer region of a spherical. composite

{3y = i 0} | U S6

Effect of mobility ratio on generalized pressure derivative responses
for a spherical, composite reservolir. ............cooiiiiiiiiiiiiiiiiiiiiiii. 87

Effect of storativity ratio on generalized pressure derivative responses

for a spherical, composite reservoir.

Effect of mobility and storativity ratios on generalized pressure derivative

responses for a spherical, composite reservoir. ... 88
Verification of accuracy of the correlation for predicting the time to the

start of infinite-acting flow in the outer region of a lincar, composite
TESEIVOIT. oottt ittt ittt ettt eaie et es 88
Effect of MF on generalized pressure derivative responses for a linear,
COMPOSIE TESETVOIT. ..ottt it e e, RO
Dimensionless flow rate for composite reservoirs in radial, elliptical,

linear and spherical geometries producing at a constant pressure. ... 109

Dimensionless cumulative production for composite reservoirs in
radial, elliptical, linear and spherical geometries producing at
a constant pressure.



Figurc 5.5:

Figure 5.6:

Figure 5.7:

Figure 5.8:
Figure 5.9:

Figure 5.10:

Figure 5.11:

rigure 5.13:

Figure 5.14:

Dimensionless rate responses for closed radial, elliptical, linear

and spherical, composite reservoirs producing at a constant pressure. ..110

Dimensionless cumulative production for closed radial. elliptical. lirear,

and spherical, composite reservoirs producing at a constant pressure. ..110

Tomparison of dimensionless rate responses for closed radial and

elliptical composite reservoirs producing at a constant pressure. 1l
Compurison of cumulative production responses for closed. radial

and elliptical composite reservoirs producing at a constant pressure. ...111
Effect of mobility ratio on dimensionless rate responses for a closed.

radial, composite reservoir producing at a constant pressure.  ......... 112

Effect of mobility ratio on cumulative production responses for a closed.

radial. composite reservoir producing at a constant pressure.  ......... 112
Effect of storativity ratio on dimensionless rate responses for a closed.
radial, composite reservoir producing at a constant pressure. ... 112

Effect of storativity ratio on cumulative preduction responses for a closed.
radial. composite reservoir producing at a constant pressure.

Effect of mobility and storativity ratio on dimensionless rate responses
for a closed, radiai, composite reservoir producing at a constant
pressure.

Effect of mobility and storativity ratio on cumulative production

responses for a closed, radial, composite reservoir producing at a
constant pressure
Effect of reservoir size on dimensionless rate responses for a closed,
radial. composite reservoir producing at a constant pressure.

Effect of reservoir size on cumulative production responses for a closed.



Figure 5.15:

Figure 5.16:

Figure 5.17:

Figure 5.18:

Figure 5.19:

Figure 5.20:

Figure 5.21:

Figure 5.22:

Figure 6.1:

Figure 6.2:

Figure 6.3:

radial. composite reservoir producing at a constant pressure. ... 115
Effect of mobility ratio on dimensionless rate responses for a closed.
linear, composite reservoir producing at @ constant pressure. ... 1o

Effect of mobitlity ratio on cumulative production responses for i closed,

linear, composite reservoir producing at & col. “ant pressurc. ... 116

Effect ot storativity ratio on dimensionless rate responses for a closed.

linear. composite reservoir producing at a constant pressure.

Effect of storativity ratio on cumulative production responses for a closed.

linear. composite reservoir producing at a constant pressurc. ... 117
Effect of mobility and storativity ratio on dimensionless rate responscs

for a closed, linear, composite reservoir producing at a constant

0 €221 1 o 118

Effect of mobility and storativity ratio on cumulative production responses

for a closed. linear, composite reservoir producing at a constant

03 L2301 o 118
Effect of reservoir size on dimensionless rate responscs for a closed,
linear, composite reservoir producing at a constant pressure. ... 119

Effect of reservoir size on cumulative production responses for a closed.

linear, composite reservoir producing at a constant pressure. ... 19
Schematic of an infinite three-region, radial, composite reservoir. ... 140
Schematic of mobility variation with distance for a three-region,

radial, composite TESEIVOIr.  ...ooiiiiiiiiiiiiiiieee e 141

Schematic of storativity variation with distance for a threc-region,
radial, COMPOSIIE TFESETVOIT.  ...iciveiiuiiinmiieiiireniirraeereeeieennes 142



Figure 6.4:

Figure 6.5:

Figure 6.6:

Figure 6.7:

Figure 6.8:

Figure 6.9:

Figure 6.10:

Figure 6.11:

Figure 6.12:

Figure 6.13:

Compuarison of this study with Fig. 6.46 of Ambastha (1988) solution

for an infinitely-large, three-region, composite reservoir.

Compuarison of this study with Fig. 6.3 of Ambastha (1988) solution

for an infinitely-large, two-region, composite reservoir.

Comparison of this study with Fig. 2 of Poon (1995) solution
for an infinitely-large, two-region, radial, composite reservoir

with a fractal outer region.

Effect of Ra/R; on the semi-log pressure derivative response for an
an infinitely-large. three-region, composite reservoir with power
law property variation.

Effect of R>/R; on the Cartesian pressure derivative response for an
an infinitely-large, three-region. composite reservoir with power

law property variation.

Mobility profile for an infinitely-large, three-region, radial. composite

reservoir with power law variation in the intermediate region.

Storativity profile for an infinitely-large, three-region. radial, composite

reservoir with power law variation in the intermediate region.

Effect of 6; on the semi-log pressure derivative response for an
an infinitely-large. three-region, composite reservoir with power
law property variation.

Effect of 67 on the Curtesian pressure derivative response for an

an infinitely-large. three-region. composite reservoir with power
law property variation.

Effect of 8> on the semi-log pressure derivative response for an
an infinitely-large. three-region, composite reservoir with power
law property variation.



Figure 6.14:

Figure 6.15:

Figure 6.16:

Effect of 62 on the Cartesian pressure derivative response for an
an infinitely-large. three-region. composite reservoir with power

law property varialion. . 148

Effect of equal variations of mobility and storativity on the semi-log

pressure derivative response for an infinitelyv-large, three-region,

COMPOSILE TESETIVOIT. ittt iiee e, 149
Effect of equal variations of mobility and storativity on the Cartesian
pressure derivative response for an infinitelv-farge. three-region,
COMPOSILE TESEIVOIT. ittt ee e e 149



a

an

Cop

2n
Dy,
D2n

2n

Fi>

NOMENCLATURE

distance to the discontinuity for linear and spherical flow geometries. m
dimensionless distance to the discontinuity for linear and spherical flow
geometries = a/ry, for spherical, and a/1 for linear

area of swept (inner) region. m2, or constant in Eq. (4.1)

arbitrary constants in the system of equations for radial geometry
terms in the system of equations for elliptical geometry ( Eq. (2.66) )
width of a linear composite reservoir, m

dimensionless width of a linear, composite reservoir = b//
Formation volume factor, m3/Sm3, or constant in Eq. (4.1)

arbitrary constants in the system of equations for linear geometry
Fourier coefficients of the system of equations for elliptical flow
terms in the system of equations for elliptical geometry ( Eq. (2.67) )
total conipressibility, Pa-!

real, even, periodic Mathieu function of integer order

wellbore storage constant, m3/Pa, or constant in Eq. (4.3)

modified Mathieu function of first kind of integer order
dimensionless wellbore storage constant

arbitrary constants in the system of equations for spherical geometry
Fourier coefficients of the system of equations for elliptical flow
terms in the system of equations for elliptical geometry ( Eq. (2.68) )
Fourier coefficients of the system of equations for elliptical flow
terms in the system of equations fur elliptical geomeiry ( Eq. (2:69} )
terms in the system of equations for elliptical geometry ( Eq. (2.70) *
storativity ratio for a two-region reservoir= (¢c;) /A dc;)2

storativity ratio at the discontinuity between regions 1 and 2



(three-region) = (0 ) 1/ &cy) >

storativity ratio between regions | and 3 (three-region) = (@, A Ocy) s
storativity ratio at the discontinuity between regions 2 and 3
(three-region) = (¢ )2/ ¢c;) 3

modified Mathieu function of second kind of integer order

Fourier coefficients of the system of equations for elliptical flow
terms in the system of equations for elliptical geometry ( Eq. (2.71))
terms in the system of equations for elliptical geometry ( Eq. (2.72))
reservoir thickness, m

terms in the system of equations for elliptical geometry ( Eq. (2.73))
modified Bessel function of first kind of order j

modified Bessel function of first kind of real order

terms in the system of equations for elliptical geometry ( Eq. (2 74))
permeability, m?

modified Bessel function of second kind of order

modified Bessel function of second kind of real order

Laplace parameter

fracture half-length, m

arbitrary exponent in the general polynomial equation for
dimensionless wellbore pressure, given by Eq.(4.1)

Cartesian slope, Pa/s

mobility ratio for a two-region reservoir = (k/u) /(k/u);

mobility ratio at the discontinuity between regions 1 and 2 (three-region)

(k/p) i)z

mobility ratio between regions 1 and 3 (three-region) = (k/u);/(k/u) 3

mobility ratio at the discontinuity between regions 2 and 3 (three-region)

(k/p)2(k/1) 3



n

PD
P
Pi
P we

P

[)“.,.

Pys
PywDe
Puwpi

Pwpn

PywDr
P whs
o

qn
T

4pe

qdpi

(]Dl'

9Dy

flow exponent in the generalized pressure derivative equation
pressure, Pa
dimensionless pressure drop

dimensionless pressure drop in Laplace space

initial reservoir pressure, Pa

wellbore pressure for elliptical flow geometry, Pa

wellbore pressure for linear flow geometry, Pa

wellbore pressure for radial flow geometry, Pa

wellbore pressure for spherical flow geometry, Pa

dimensionless wellbore pressure (elliptical flow)= 27k jhip; - pywe g B,
dimensionless wellbore pressure (linear flow)= k;bh(p; - pwi)/(qu;B1)

dimensionless normalized wellbore pressure for a flow geometry (see

. 3.2, 3.4, 3.7 and 3.12)

dimensionless wellbore pressure (radial flow)= 27k h(p; - pwy)/(qUBi
dimensionless wellbore pressure (spherical fiow)= 47k ;1\ (pi-pus/quUB)
injection or production rate, Sm3/s

dimensionless injectior: or production rate

dimensionless injection or production rate in Laplace space

dimensionless injection or production rate for elliptical geometry =

qMB/[27k 1h(Di - Pwe)]

dimensioniess injection or production rate for linear geometry =

qUB/[k bh(p; - pyi)]

dimensionless injection or production rate for radial geometry =

quB/[27tk 1h(p; - puwr)]
dimensionless injection or production rate for spherical geometry =
quU B/ 47k r(pi - pws)]

cumulative production or injection, m?



Op
o,
QDc

QDI'
QDs

pe

Rp
WD
Rp>2
R2n

DA
D¢

Ipi

IDr

IDs
(tDN)end
(tDN)max
(tpN)i
72n

Vs

a)

dimensionless cumulative production or injection

dimensionless cumulative production or injection in Lapiace space
dimensionless cumulative production or injection for elliptical geometry
dimensionless cumulative production or injection for lincar geometry
dimensionless cumulative production or injection for radial gcometry
dimensionless cumulative production or injection for spherical gecometry
radius or radial distance for radial and spherical flow geometries, m
dimensionless distance in radial or spherical geometry = 1/r,,.
dimensionless distance to outer boundary for radial or spherical geometry
= ro/ry

discontinuity radius for a two-region, radial composite reservoir. m
dimensionless discontinuity radius for a two-region reservoir = R/r,,
dimensionless wellbore radius (three-region) = r/R

dimensionless discontinuity radius for region 2 (three-region)= Ry/R
terms in the system of equations for elliptical geometry (Eq. (2.76) or (2.80))
skin factor

time, s

dimensionless time based on area = kjt /[(Quc,) 1A]

dimensionless time for elliptical flow = k1 /[(¢uc,) ;L2 ]

dimensionless time for linear flow = k1 /[(puc;)112]

dimensionless time for radial flow = k1 /[(¢uc,) jr2]

dimensionless time for spherical flow = k;t /[(¢uc,) 1ral)

dimensionless time to the end of infinite-acting flow in the inner region
dimensionless time to the maximum derivative in the transition region
dimensionless time to the start of infinite-acting flow in the outer region

terms in the system of equations for elliptical geometry (Eq. (2.77) or (2.81))

swept volume, m3



i

distance in linear flow geometry, m

dimensionless distance in linear flow geometry

dimensionless distance to the outer boundary for linear flow geometry = x.//

terms in the system of equations for elliptical geometry (Eq. (2.78) or (2.82))

distances in rectangular coordinate system

terms in the system of equatiens for elliptical geometry (Eq. (2.79) or (2.83))

variable defined in Eq. (2.49)
variable defined in Eq. (2.50)

Greek Symbols

)>

o

Wy

I

parameter detfined in Eq. (2.59)

terms in the system of equations for radial geometry

parameter defined in Eq. (2.60)

terms in the system of equations for linear geometry

pressure drop due to skin, Pa

wellbore pressure drop, Pa

spatial coordinate in elliptical geometry

terms in the system of equations for spherical geometry
viscosity. Pa-s

porosity, fraction

fractal exponent for mobility variation

fractal exponent for storativity variation

diffusivity ratio for a two-region reservoir= (k/@Lc;); / (K/¢uc;)?
diffusivity ratio at the discontinuity between regions 1 and 2 for a
three-region reservoir = (k/¢uc;); / (k/@uce)2

diffusivity ratio between regions 1 and 3 for a three-region reservoir



Subscripts

= (K/oucy); 7 (K@uct):

spatial coordinate in elliptical geometry

spatial coordinate of outer boundary in elliptical geometry
spatial coordinate of wellbore in elliptical geometry

spatial coordinate of discontinuity boundary in elliptical geometry

dimensionless

external or outer boundary

elliptical flow geometry

initial

linear flow geometry

normalized

radial flow geometry

spherical flow geometry

total

wellbore

inner region

outer region for a two-region reservoir or intermediate region
for a three-region reservoir

outer region for a three-region reservoir

periodic



1.0 INTRODUCTION

The pressure transient behavior of composite reservoirs has received considerable attention
in the literature. A composite reservoir is made up of two or more regions with different
rock and fluid properties. Composite reservoirs may occur naturally, or they may be
created artificially. An example of a naturally-occurring composite reservoir is an oil
reservoir in communication with an aquifer. Enhanced oil recovery processes such as
steam injection, in-situ combustion, polymer flooding and CO3 miscible flooding provide
examples of artificially-created composite reservoirs. Composite reservoirs have also been
used to represent reservoirs with a damaged zone around the wellbore (skin) or stimulated
wells (Olarewaju and Lee, 1987a). In this representation the damaged or stimulated zone

becomes the inner region while the rest of the reservoir is the outer region.

To analyze weli iests for thermal recovery projects, reservoirs have been idealized mostly
as radial, composite reservoirs. A reservoir undergoing steam injection through a fully-
penetrating, unfractured, vertical well in a homogeneous,‘is.ytropic reservoir may be
described as a radial, composite reservoir, consisting of a circular inner steam-swept region
and an cuter unswept oil region. However. steam injection, in a fractured well or an
anisotropic reservoir, may result in an ellipti'c'al swept region. A partially-completed
injection well may create a spherically-shaped swept region, while steam injection in a

linear or channel reservoir may result in a linear, composite reservoir.

Numerous analytical studies of the transient pressure behavior of composite reservoirs have
been reported in the literature. While most of these studies have considered radial,
composite reservoirs (Loucl:s and Guerrero, 1961; Carter, 1966; Bixel and van Poollen,

1967: Eggensclnwiler er al., 1980: Olarewaju and Lee, 1987b; Ambastha and Ramey,



1989). a number of studies have also considered composite reservoirs in other flow
geometries. Bixel ¢t al. (1963) presented analyt'cal solutions tor the buildup and
drawdown behavior of composite reservoirs with a Lnear discontinuity., Ambastha and
Sageev (1987) and Poon and Chhina (1989) have presented analytical solutions tor the
pressure behavior of linear, composite reservoirs. Analytical solutions of composite
reservoirs in an elliprical flow geometry have been presented by Obur and Errckin (1987)
and Sranislav et al. (1987 and 1992) to approximate the effects of steam injection through a
vertically-fractured well. The pressure transient behavior of composite reservoirs in a

spherical flow geometry has been presented by Onvekonwu and Horne (1983).

To monitor the progress of thermal recovery processes, a knowledge of the swept volume
is required. The swept volume will provide, among other things, & measure of the heat
loss from the heated zone, and the technical and economic feasibility of the project. Prats
(1982) has mentioned four of the common methods of estimating the swept volume from
thermal recovery projects. These include temperature observation wells, coring, well tests,

and mathematical analyses using heat balance.

Among the various methods used to estimate swept volume for thermal recovery projects,
well testing has been shown to be relatively quick and inexpensive. Well test data from
pressure falloff testing of a steam injection well can be used to estimate the volume of the
steam-swept region, based on the pseudosteady state method. The pseudosteady state
method, proposed by Eggenschwiler et al. (1980), is independent of the shape of the swept
region, and is applicable when large mobility and storativity contrasts exist between the
swept (inner) and unswept (outer) regions of the reservoir. If the mobility and storativity
contrasts are large enough, then it is possible for the swept region to behave like a closed
reservoir for a short period of time during the well test. A Cartesian graph of pressure

falloff data versus time during this period may yield a straight line. whose slope can be



related to the size of the swept volume. Using an analytical solution for a radial. composite
reservoir, Eggenschwiler et al. (1980) noted that the mobility contirast between the inner
and outer regions of the composite reservoir has to be at least 100 to observe the

pscudosteady state flow behavior.

Using Cartesian pressure derivative responses, Ambastha and Ramey (1939) established
conditions, of mobility and storativity ratio, for the occurrence of pseudosteady state flow
for radial, composite reservoirs. Sranislav et al. (1992) presented a brief discussion of
pseudosteady state flow behavior for an elliptical composite reservoir. To the best of my
knowledge, there have been no studies reported in the literature that establish the conditions
for the occurrence of pseudosteady state flow for linear and spherical composite reservoirs.
A comparison of such conditions for various flow geometries will help in determining
when the pseudosteady state method will be appropriate for the estimation of swept volume

for thermal recovery projects under various reservoir situations.

Pressure derivatives have been shown to be more sensitive to disturbances in the reservoir
than pressure signals. resulting in more detail on derivative graphs than is apparent on
pressure graphs. The semi-log pressure derivative, proposed by Bourdet et al. (1983), is
one of the most widely used pressure derivative functions in well-test analysis. One reason
for its popularity is that, for radial reservoirs, the response appears as a horizontal line
during the infinite-acting radial flow period, resulting in an easy identification of the flow
regime. However, when the semi-log pressure derivative is applied to other flow
geometries. such as linear or spherical, the responses are not horizontal, making
identification of these flow regimes more difficult. Jelnterr (1993a and b) has presented a
polynomial pressure derivative to simplify the identification of flow regimes for
homogeneous reservoirs in other flow geometries. An extension of the theory of the

rolynomial (or generalized) pressure derivative to the well-test analysis of composite



reservoirs in various flow geometries could yield design and analysis equations based on

the derivative responses to augment those based on the pressure responses.

Most composite reservoir models assume a constant flow rate at the well. However. under
some testing and production conditions. a constant pressure condition at the well may be
more appropriate. A constant pressure condition exists for flowing wells where the surface
pressure is controlled. It may also arise in the later stages of a well's history. when the
well is drawn down to a constant pressure (Doe, 1991). Decline curve analysis is one form
of constant-pressure, transient-rate analysis. Olurewaju and Lee (1987a) have used
production type curves from a constant-pressure. radial, composite model to forecast
incremental production from stimulated wells. While production decline curves for radial,
composite reservoirs have been discussed fairly well in the literature. the same is not the
case for composite reservoirs in elliptical. linear and spherical flow gecometries. A
comparative study of the production performance of composite rescrvoirs in the various
fiow geometries will be a significant addition to the knowlcdge base of composite reservoir

well testing.

Most of the composite reservoir models used to analyze thermal recovery well-test data
consist of two regions with different, but uniform, reservoir and fluid propertics separated
by a sharp ir.erface. In reality, the interface separating the two regions is not sharp.
Instead, there is an intermediate region between the inner and outer regions, which is
characterized by a sharp decline in mobility and storativity. This has led to the development
of three-region, composite reservoir (Onyekonwu and Ramey. 1986: and Barua and
Horne, 1987: Ambastha and Ramey, 1992), as well as multi-region, composite reservoir
solutions (Acosta and Ambastha, 1994), to model thermal recovery processes more
realistically. In the three-region, composite reservoir model, the intcrmediate region is

represented by a uniform set of mobility and storativity values, that are different from those



in the inner or outer region. In the muiti-region, composite reservoir model. the
intermediate region I1s represented by a series of mobility and storativity values that decrease

as a step function.

The three-region and multi-region composite reservoir models present some improvements
over the two-region composite reservoir model. However, they still have the problem of
abrupt changes in mobility and storativity in the intermediate region. Thus. a method that
allows for smooth changes in mobility and storativity in the intermediate region will result
in a significant improvement over the existing methods. This may be accomplished in a
three-region composite reservoir model where the mobility and storativity in the

intermediate region are made to decrease in a power law relationship with radial distance.

In the preceding discussion. a brief review of the literature on well test analysis for
composite reservoirs in various flow geometries has been presented. A more detailed
literature review for individual topics appears in the relevant chapters. Problems with
presently available well test analysis models have been pointed out and suggestions for
improvement mentioned. Where appropriate, suggestions for the extension of current
mcthods of analysis for homogenecus reservoirs to composite reservoirs have been made.

With the present discussion in mind, the main objectives of this study are:

I. To compare, in a comprehensive and systematic manner, the transient pressure
behavior of composite reservoirs in radial, elliptical, linear and spherical flow

geometries.

(]

To establish and compare mobility and storativity conditions for the occurrence of a

pseudosteady state flow period of reasonable duration for various flow geometries.



3. To develop a generalized pressure derivative analysis method for composite

reservoirs in various flow geometries.

4. To compare production decline curves for composite reservoirs in radial. cHiptical.

linear and spherical flow geometries.

5. To develop a more realistic three-region composite res rvoir model for thermal

recovery well test analysis.

Chapter 2 presents the development of the analytical solutions for the transient pressure
behavior of two-region, composite reservoirs in radial, elliptical, lincar and spherical flow
geometries. Solutions with both constant-rate and constant-pressure inner boundary
conditions are presented. Wellbore storage and skin effects are included. Possible
applications of this model to well-test analysis of composite reservoirs are also discussed.
This chapter also presents the algorithm and computer program for the model. The
computer program has been written in FORTRAN 77. The Bessel function routines from
IMSL Math Special Functions Library (1987) were used in the program when needed.
Application of this model to integrated well-test analysis for composite reservoirs is

explored.

Chapter 3 presents an evaluation of the pseudosteady state method for composite reservoirs
in radial, elliptical, linear and spherical flow geometries. The effects of mobility and
storativity ratio on the duration of the pseudosteady state period for the various flow
geometries are investigated. Normalizing factors to aid in a comparison of the various
responses are presented. In Chapter 4, a generalized pressure derivative analysis of well-
test data from analytical solutions for the various flow geometries is conducted. Design

and analysis equations, based on th= generalized pressure derivative, are presented.



Chapter 5 presents a comparison of the injection or production performance of two-region.
composite reservoirs in the various flow geometries. Injection or production occurs at a
constant pressure. while the outer boundary is considered infinite. closed or at a constant
pressurc. The effect of mobility and storativity ratios, as well as reservoir size, on the

production performances of the various flow geometries are investigated.

Chapter 6 presents an analytical solution for the pressure transient behavior of a three-
region. radial. composite reservoir with power law property variation in the intermediate
region. Mobility and storativity in the intermediate region decrease as power functions of
the radial distance from: the first discontinuity boundary. This representation of thermal
recovery processes 1s more realistic than the sharp front idealization of the composite
reservoir models currently available. The effects of conductivity indices or fractal
exponents for mobility and storativity on the semi-log and Cartesian pressure derivative
responses are investigated. Finally, Chapter 7 presents a general discussion and the

conclusions of the entire study. as well as recommendations for further studies.



2.0 ANALYTICAL SOLUTIONS FOR COMPOSITE RESERVOIRS
IN VARIOUS FLOW GEOMETRIES

2.1 Introduction

Most of the studies of composite reservoirs have considered the reservoir geometry 1o be
radial. Loucks and Guerrero (1961) presented analytical solutions for radial. composite
reservoirs found using the Laplace transformation. Carrer (1966) presented solutions for
the pressure transient behavior of a closed, radial. composite reservoir with the well
producing at a constant rate. Bixe! and van Poollen (1967) considered the effects of radial
discontinuities in composite reservoirs on pressure buildup and drawdown behayiors.
They recommended a semi-log type curve matching method to determine the distance to the
discontinuity. Eggensclvwiler et al. (1980) presented an analytical solution in Laplace
space for an infinitely-large, two-region, radial. composite rescrvoir producing at a
constant rate, with wellbore storage and skin. Ambastha (1988) presented pressure
derivative responses for two- and three-region, radial, composite reservoirs with wellbore
storage and skin, as well as a thin skin at the discontinuity. The outer boundary of the

reservoir was considered to be either infinite, closed or at a constant pressure.

Noting that composite reservoirs are not necessarily radial, Bixel et al. (1963) presented
sclutions for the buildup and drawdown behavior of composite reservoirs with a linear
discontinuity. Ambastha and Sageev (1987) presented analytical solutions for linear,
composite reservoirs including the effects of a thin skin at the discontinuity that may be
caused by a partially-communicating fault separating the two regions. Poon and Chhina

(1989) have also used an analytical model for a linear, composite reservoir to analyze well



test data from a steam injection process where highly permeable communication paths

between injection and production wells were observed.

Obut and Ertekin (1987) and Sranislav et al. (1987) presented analytical solutions for the
transient pressure responses of an infinite-conductivity, vertical fracture in an elliptical.
composite reservoir. Recently. Stanislav et al. (1992) have presented pressure derivative
responses for composite reservoirs in an elliptical flow geometry. including the effects of

wellbore storage and skin, as well as a thin skin at the discontinuity.

Onyckonwu and Horne (1983) studied the pressure transient behavior of composite
reservoirs in spherical flow geometry. The outer boundary was assumed to be infirite in

extent. No wellbore storage or skin effects were considered.

The preceding discussion on composite reservoirs shows that significant studies have been
conducted on each of the various flow geometries. However. to the best of my
knowledge. no attempt Las been made to compare the pressure transient behavior of

composite reservoirs in the various flow geometries.

This chapter presents the development of a general analytical pressure transient model for a
two-region, composite reservoir. The model encompasses composite reservoirs in radial,
elliptical, linear and spherical flow geometries. Wellbore storage and skin effects are
included. since these effects are observed in most practical well test data. Solutions with
both coustant-rate and constant-pressure inner boundary conditions are presented.
Constant-rate solutions are developed first in Laplace space for each of the flow
geometries. Wellbore storage and skin effects are then added using a method proposed by

van Everdingen and Hurst (1949). Subsequently, the constant-rate solutions are converted



to constant-pressure solutions using the well known formula proposcd by van Everdingen

and Hurst (1949),
2.2 Constant Rate Solutions

Constant-rate solutions in Laplace space for two-region. composite reservoirs in radial.
elliptical, linear and spherical flow geometries are developed first. The following

assumptions pertain to thie composite reservoirs in all four tlow geometries:

1. The formation consists of two discontinuous regions. with homogencous and
isotropic properties on each side of the discontinuity.

2. The front is of infinitesimal thickness, and is considered stationary throughout
the test period.

3. Laminar flow of a single phase fluid with slight. but constant. compressibility
occurs in each region.

4.  Gravity and capillarity effects are negligible.
2.2.1 Radial, Composite Reservoir

In this study, the Ambastha (1988) solution is used as a mode! for the radial. composite
reservoir, with some modifications. Wellbore storage and skin at the active well are
neglected for now. A constant flow ratc at the well is assumed. Also, a thin skin at the
discontinuity is not considered. Figure 2.1 shows a schematic of the two-region, radial

composite reservoir.

The diffusivity equations, governing fluid flow in a two-region. radial composite reservoir

are given by:
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-}7%(/'%{%/ (Q’H(,/a/’ for r., £r<R,and (2.1
i(;),( (;)/j )= /‘D“"/ (g) for R=sr <r.(or<eo). (2.2)

In dimensionless form, Eqgs. (2.1) and (2.2) become:

LR, Py Wi gy ] <rp <Rp,and (2.3)
r, or, aJdr, aJar,,

1 4

s Pus ) _ (x)ap’”
r, or,,

—(r
P ar " or,,

for Rp<rp <r.p(or<oe). (2.4

Initial conditions:

In dimensionless form. the initial cowlitions for the two regions are:

Py(r,.:0)=0. and (2.5)
plr,0)=0. (2.6)
Inner boundary condition:

Since the flow is laminar. and the rate is constant at the inner boundary (well). Darcy's law

is applicable. In dimensionless form. this condition is represented as:

al’m)
dr, "
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Also. since wellbore storage and skin effects are neglected for now. the dimensionless

wellbore pressure is:

Conditions at the discontinuity:

(2.8

At the discontinuity (R,). it is required that pressures and flow rates be continuous as fluid

moves from Region | to Region 2. These conditions are expressed as:

p,=p,, for r,=R, . and
Ip,- P, )
or, = M o7, for r,=R, .

Outer boundary condition:

(2.9)

(2.10)

The outer boundary may be infinite. closed or at a constant pressure. These conditions are

represented as:

Infinite: P lp, ) = 0.

[/

Closed: Py 1 =0.

- ‘.rll =rn
ory,

Constant-pressure: Pp(?ant,, )= 0.
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(2.13)



The dimensionless variables used in Equations (2.3) through (2.13) are defined as follows:

2nkh
wW=——(p, ~-p).
P 4Bl / Pi

2ntkh

Pu: = (p.—p,) .
! gBu,
21k, h
= (p,—p,.,)-
pul)l C/Bu‘ II I)u )
k, t

N .

{,, =
o (‘pl"lcl )I rn'

W= (I‘/(b“(/ )l .
(k/ouc, )

M=)
(k/p),

R
uql) = — .
r,

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

A solution of Egs. (2.3) and (2.4). subject to the appropriate initial and boundary

conditions (Egs. (2.5) through (2.13) ), is carried out in Laplace space. Following the

approach of Ambastha (1988). and dropping the wellbore storage and skin terms, the

dimensionless pressures in Laplace space for Regions 1 and 2 are given in terms of Bessel

functions as:

13



Pon(rp D)= Al rpNT)+ ALK (rpNT) tfor I =rp =R (2.23)
Poalrpd)= A;I(,(r,,\/m)+ A_‘K(,(r,,\'m) for Rp S rp S 1oy (01 < o0), (2.24

where / is the transformed time variable in Laplace space.

From Eq. (2.8). the dimensionless wellbore pressure in Laplace space is:

Pup ()= Al (NT)+ AK (V1) . (2

tJ
N

The constants. A, through A,, are obtained by solving the system of equations resulting

from the use of the boundary condition equations (Eqgs. (2.7). and (2.9) through (2.13) ).

Using Eq. (2.7): oA +0yLA, =—;— , (2.26)
using Eq. (2.9): oA+ 0asA, +00LA +0L,A, =0, (2.27)
using Eq. (2.10): Uy A +0L,A, +0A +0 A, =00 and (2.28)
using Eq. (2.11) or (2.12) or (2.13): 0,A,+0 A, =0 . (2.29)

The coefficients. o, are defined as follows:

o, == 1,(V1) . (2.30)
o, =K (V) . (2.31)
o, = I,(R,NT) . (2.32)

14



U, = Ko(R,NT) . (2.33)
O., = -Ky(R,Nol) . (2.34)
o, = MNTI(RWT) . (2.35)
O.= -MJIK(RNI) . (2.36)
o, = -vJol K(R,\Nol) . (2.37)

The remaining o's depend on the specified outer boundary condition. These are given by:
Infinite outer boundary:

Since Iy(r,Nol)— e as r, — e, a bounded solution for J,.(r, — e[} can be
obtained from Eq. (2.24) only if A; = 0. Consequently, 3. 3. 045 in Egs. (2.27).
(2.28) and (2.29) are set to zero. Also a4 =0, since K (rp,V®wl/)—0 as r, — . in
Eq. (2.29). Thus:

Oy =0 =0, =0,=0 . {2.38)

Closed outer boundary:

o, = -I,(R,Nol) . (2.39)
o= -Vl L(R,Nwl) . (2.40)
o,= I(r,Nol) . (2.41)
a, = -K(r,VJol) . (2.42)
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Constant-pressure outer boundary:

Oy = - lo(Ru'\'la)-]) . (2.43)
O = -Yol L(R,Nwl) . - (2.44)
Op= Ifrp,vol) . ' (2.45)
Oy, = Kyrp,vol) . (2.40)

To obtain the dimensionless wellbore pressure. and also the pressure derivative, Eq. (2.25)
is numerically inverted from Laplace space into real space using the Stehifest (1970)

algorithm.

2.2.2 Elliptical, Composite Reservoir

The model used for the ellipticul. composite reservoir is similar to that of Stanislay er al.
(1992). with wellbore storage and skin effects being neglected. The reservoir conststs of
two distinct elliptical regions. as shown in Fig. 2.2. An elliptical swept region is assumed
to occur in the presence of an infinite-conductivity, vertical fracture. The vertically-

fractured well is located at the center of the inner region, and fully penetrates the formation.

in rectangular coordinates. the two-dimensional diffusivity equations for Regions | and 2

are:

p A p  buc, dp.
L L ’ - . ~
e R 1t "F 7 or and (2.47)

I p,  Ip _ ouc, . '
- . L) === (2.48
o T S TE e ’
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Equations (2.47) and (2.48) can be transformed into elliptic coordinates by use of two

variables, 7 and 7, defined as:

T=a4= L('ll.i’/l/é-i—/ﬂ/ and (2.49)

F=ua—iv=Lcosh(E—-m). (2.50)

A detailed description of this transformaticn was presented by McLachlan (1947). In

elliptic coordinates. Egs. (2.47) and (2.48) become:

ap Jdp L . ouc, , dp.

: o= o — s ! : N<E<SE,. 2.
% + e 5 (cosh 28 — cos 20)(—=), Y for 0<E<E, . and (2.51)
op Idp L . ouc, . op .

: -~ o5l 28 — oy ) 22 <&éE<E, oo ). (2.52
5 + o 5 (cosh 28 — cos2n ) ya A 37 for E,SE<E(or<ee). (2.52)

where g and 1 are the spatial coordinates in elliptical geometry. and L is the fracture half-
length. The parameter &, is the elliptic distance to the discontinuity boundary. while &, 1s

the elliptic distance to the outer boundary.

In dimensionless form. the diffusivity equation:. in elliptic coordinates for Regions | and 2

become:

Py O ] p

Ll + LL = —(cosh2E — cos2n) =2 for 0<&E<E,.and (2.53)
ol o~ 2 5 n o, £=s
IFp,. I, ® ap

p: 9702 = D oen2E ~ cosan) 2oL §, E < E<E(or <o ). 2.54
28 T e T pleehemcosImin  for S S o s ol ) (259
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The dimensionless wellbore pressure and time for the elliptical reservoir are defined as:

21k, I
P.p = q:]\u (p-p.). (2.55)y
{
k, t
Ly ==———77 - 2.56)
“ " louc,), L ¢

Other dimensionless variables, as well as the initial and boundary conditions. are similar 1o

those for a radial. composite reservoir.

Equations (2.53) and (2.54) can be put into a form of Mathieu’s equation using a
separation of variables technique (McLachlan, 1947). A solution to these equations is then
carried out in Laplace space. The dimensionless pressures in Laplace space for Regions |

and 2 are given in terms of Mathieu functions as:

Po(& )= ce,(N.~B)[C,,Ce. (E.~B)+ F, Fek, (E.~B)] forO<E<E, (2.57;

n=0

Pp-(&M) = 2 ce,, (M.~ B,,Ce, (5. —01) + D, Fek,, (E, —a)] foré, & S Efor < 0 ).(2.58)

n=0

The parameters o and B in Eqs. (2.57) and (2.58) include the Laplace space time variable,

[/, and are defined as:

a:-(ﬂ . (2.59)
4

p=L (2.60)
4
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Since wellbore storage and skin are neglected. the dimensionless wellbore pressure in

Laplace space is given from Eq. (2.57) as:

I_)nll. (gu ’ n) = Z ('L’;.“(n. -B)[Clucelu(én ’ —B)+ FerFean(én . —ﬁ)]' (2‘61 )

n=0

By sctting &,, = 0 and n = /2, Eq. (2.61) becomes a line source solution or the pressure at

the fracture face.

The constants Ba,, Cs,. D), and F»,, are Fourier coefficients that are obtained by solving
the following system of equations resulting from the use of the boundary coaditions

(Stanisiav et aul.. 1987).

Using the flow rate condition (Darcy’s law) at the inner boundary:

C:"G.‘u + F H.’n — 1311. (2.62)

2n

The conditions of pressure and flow rate continuities at the interface boundary yield:
C.,, A"+ F,B"+D,C"+B,R" =0. (2.63)

C..D"+F

2n

E*+D, F"+B,T" =0. (2.64)

while the outer boundary condition yields:

DZHXI': + B:Il)’:': = O' (2.65)

- > 3
The terms A™". B™". C™". etc., are defined as follows:

AT =Ce, (§ .-B). (2.66)
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B::: = Fek:"(é',.—B). -

12.67)

C" =—Fek, (5,.—0).

(2.68)
D" =Cé; (&,.—B). (2.69)
E* = Fek] (E.,.-B). (2.70)
Fr=_—L Fek: (E,.—a). (2.7
a7 ek
G =-Cé, (5, .—B). (2.72)
H™" =—Fek! (S, .—B). (273
I =ﬂi (2.74)
2B

The remaining terms depend on the outer boundary condition.

Infinite outer boundaiy:
Since Ce,, (. —0t)— oo as & —ee, a bounded solution for [,.(& = e, 1/} can be
obtained from Eq. (2.58) only if Ba, = 0. Consequently, R™. T°", and Y™ in Eqs. (2.63),

(2.64) and (2.65) are set to zero. Also, X" = 0 in Eq. (2.65).

since
Fek, (§,—0)—> 0 as &— o in Eq. (2.58). Thus:
R"=T"=X"=Y"=0. (2.75)
Closed outer boundary:
R =-Ce,,(§, —0.). (2.76)
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T =——C¢i (L, ~0.). (2.77)
IYhak

X" = Fek} (E..—.). (2.78)

Y =Ceé; (E,.~0). (2.79)

Constant-pressure outer boundary:

R =-Ce, (E..~t). (2.80)
i l
T =-—Ce¢) (€, —0). (2.81)
ag (50
X" = Fek, (§ .—a). (2.82)
Y =Ce, (&, .—a). (2.83)
2.2.3 Linear, Composite Reservoir

The linear. composite reservoir solution employed in this study is modeled after the
Ambastha and Sageev (1987) solution. The zffect of skin at the discontinuity is. however,
neglected. The linear, composite reservoir is rectangular, and considered to be semi-

infinite. as shown ir Fig. 2.3. Finite outer boundaries are also considered.

The diffusivity equations for the pressure behavior in Regions 1 and 2 are:

— == Iyt for 0<x<a,and (2.84)
v A % oor
O p.  oue, I ,
= = L = <x<x oo R
Py (=74 57 for a Sx<x, (or< o). (2.85)



The dimensionless diffusivity equations for Regions 1 and 2 become:

a:Pp' a/’/;
e = L for 0 <xp<udp.and 2.8¢
a.l';) a ,0/ D [275] ( )

9" p,,- Ay,
/{- = = Lp: for Up SXp S X.p (Or < oo ), (2.87)
a.l’ al/)/
n d

The dimensionless pressure. time and distances are defined, using a characteristic length of

unity, as:

Pt = %}i(ﬂ =P/ (2.88)
lp = 7(1%14—}—;’— (2.89)
Xy, =% (2.90)
a,, =‘—l‘. (2.91)

Other dimensionless variables and boundary conditions are similar to what was presented

before for the radial flow geometry.

Transforming Egs. (2.86) and (2.87) into Laplace space, using the initial conditions. leads
to a pair of ordinary differential equations, which can be solved casily. The resulting

dimensionless pressures in Regions 1 and 2 in Laplace space are:

— i} —-ag a7
Poilxp )= Be'"' + Be ™" for 0 <xp<ap,and (2.92)
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P.(x,.1)=Be'" " + Be for ap <xp <x,p(or < oo ). (2.93)
D2 /] k 4 eD

Since wellbore storage and skin are neglected for now, the dimensionless pressure at the

inner boundary in Laplace space is obtained from Eq. (2.92) by setting x, = 0.

Ponll) =B+ B, (2.94)

The constants, B, B,. B; and B, are obtained by solving the following system of

equations resulting from the use of the boundary conditions.

BB +B,.B: =}. (2.95)
BB +PB..B, +B.:B, + BB, =0. (2.96)
B.B, +B:,B, + BB, +ByyB, =0. (2.97)
B..B.+B.,B, =0. (2.98)
The terms, B;. are defined in the following:

By, =—1. (2.99)
B,=A+1. (2.100)
By = e, (2.101)
B, = (2.102)
B,y =—e™ Y, (2.103)
By =le. (2.104)



By =—vleT, (2.10%)
Bz.; = —‘\/(DI e \

. 2.106)
M (=106

The remaining terms depend on the outer boundary condition.

Infinite outer boundary:

Using the same argument as in the radial and elliptical cases. the infinite outer boundary

conditic:i for th linear, composite reservoir leads to:

B2;=BSR=B43=B44=O- (2.107)
Closed outer boundary: (2.108)
By =—e". (2.109)
Vol wp, Nl

Baw=—— e (2.110)
B, = ol e (2.111)
B, =~Vol e ", (2.112)
Constant-pressure outer boundary:

By =~ (2.113)
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Buo = - e (2.114)
Ba=et (2.115)
By =e . (2.116)
2.2.4 Spherical, Composite Reservoir

The Onyekonwy and Horne (1983) solution for the pressure behavior of a reservoir with
spherically discontinuous properties is used for the spherical, composite reservoir in this
study. Figure 2.4 shows a schematic of a spherical, composite reservoir. The reservoir
model consists of two concentric spheres. representing the inner and outer regions of the

composite reservoir, with the wellbore at the center.

The diffusivity equations for the two regions of the spherical, composite reservoir are:

O p 20p,  ouc, oy, .
3 —_—— = 4 —— < p < [l 2
3. +— E)r_( yank Y, for I £ r<a,and (2.117)

9’ p, +ga/): _,0ue, , dp-
5. Y or SUTF Kk or

for a Sr<r.(or<oo), (2.118)

In dimensionless form. the diffusivity equations become:

0™y +ia1’m - P
ar;, r, dr, Or,

for l <rp<ap,and (2.119)



3y +_2_al7n: ,___wal’n:

3, . 3 for ap <rpy Srop tor < oo ). (2120
D D D D

The dimensionless pressurc and time are defined as:

47k, r
)u \=-—“'( )1— )u\)' (2.12‘)
Pub 4By, P 1
tp. = L (2.122)
‘ (¢ucr)l I';

The initial and boundary conditions are similar to those for the radial. composite reservaoir.
A solution of Egs. (2.119) and (2.120) is accomplished upon transformation into Laplace
space. The resulting dimensionless pressures in Regions 1 and 2 are given in Laplace

space as:

sinh(r,\1 osh(r \
Bol(r,0)=C 20 ’("'7\ e, ‘”’}’(1;’7‘”’ for 1 <r,<a,.and (2,123
rpw b
sinh(r,~wl osh(r, ol
Pualrp )= C"L”m'l’)(‘o/—}:[@ll'*‘ C.;i(*”—h—(’jn-o%) for au;, Srp <rgplor<eos ). (2.124)
Fp r

The dimensionless wellbore pressure in Laplace space is obtained from Eq. (2.123) by
setting rp = 1.
sinh(~1) cosh(~T)

P, (1)=C, + C. = . (2.125
P.o.(1) VT 2 N7 )

The constants, C,, C,, C3 and C,, are obtained by solving the following system of

equations resulting from the use of the boundary conditions.
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;-n(-.x +7~|:C: =-1I
7,C + 10, G+ 20,.C + A, C, =0,

70y C) + 7y Cy + AiCy + A4, C, = 0.

MG+ A,,C, =0,

The terms, /1,-1-. are defined as follows:

A,y =1 cosh~\1 =/l sinh 1.
Aya = 1 sinhNT =T coshA/l.
A, = sinh(a,N1).
Ay = coshla, ).

cosh(a, Nl )

A= ,
NGO
~ sinl(a, \/7)
A, =cosh(a,Nl ) — ——2——,
3 D (l,,\ﬁ
~ os] 7
A, =sinh(a,NI) —M
- apli

sinh(a,, Vol ) + cosh(a,, Vol )

A’X.‘ - —
’ M Ma,~N ol

The rest of the terms depend on the outer boundary condition.

Infinite outer boundary:

(2.126)

(2.127)

(2.128)

(2.129)

(2.130)

(2.131)

(2.132)

(2.135)

(2.136)

(2.137)



The assumption of an infinitely-large. outer region leads to:

As=Rhu=A,=h,=0.

(2138
Closed outer boundary:
oo = — sinlz(u_,L\f(ol ). (21399
’ A )
A= cosh(a,~ ol ) + .wnh(a,,\ﬁ(t_)l). IR
M Ma,~N ol
A = cosh( ¥ ,\ ol ) sinh(r.,\'ol ) 14
e = - = . -
v M Mr, ,~Nol
A = sinh( r‘,,,\fr(x—ﬁ ) _cosh( rNol) (2142
H M Mr  Nol T
Constant-pressure outer boundary:
Ao =~ .s‘ilzlz(({i,_xfa)_l_). (2.143)
) A 1
cosh(a,Nol ) sinh(a LNl )
;\..2 =— + . (2.144)
M Ma,,\[(a
A, = .smh(l‘,,lw_(x)l). (2.145)
: ropN ol
A, = coslz(r‘,,,_\f_c)l). (2.146)

r.p Nl
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2.3 Wellbore Storage and Skin

The solutions presented so far do not account for wellbore storage or skin effect. To add
these effects, new boundary conditions are imposed at the well. Using the radial.

composite reservoir as an example. the presence of skin at the well is represented as:

| ap
Py =P~ S{—'—“—] : (2.147)
where S is the skin factor.

The wellbore storage condition is represented as:

Jap ap
c P || 2.148)
b dr,, [a;-,, ], . (

where Cp is the dimensionless wellbore storage constant.

The skin factor. S. is defined as:

¢ 2mAS
T ghu,

where Ap, is the pressure drop due to skin damage.

The dimensionless wellbore storage constant. Cp. is defined as:

C

=
A0 17,

where C is the wellbore storage coefficient.



To include the skin and wellbore storage effects into the solution alrcady presented. van

Everdingen and Hurst (1949) developed the problem as a convolution integral. This was

solved to yvield the dimensionless wellbore pressure including skin and wellbore storage as:

_ [P, + 5] . ST
{1+ C,[lp,+5]} o

1—.).“[)(1)

where P, is the dimensionless wellbore pressure in Laplace space without wellbore storage

or skin effect.
2.4 Constant Pressure Solutions

Consider the case of a constant pressure inner boundary condition. If a constant pressure
condition is imposed at the wellbore. then the injection or production rate must vary with
time. Of interest here is the flow rate versus time response for a constant pressure
production or injection case. Using Duhamel's principle. van Everdingen and Hurst
(1949) showed that. in Laplace space. the constant-pressure solution is related to the

constant-rate solution by the following:

1

¢71)(/)=m-
wi)

where g, is the Laplace transform of dimensionless rate. ¢p), for a constant pressure
production condition. and 7, is the Laplace transform of the dimensionless wellbore

pressure for a constant rate production condition. Thus, the constant pressure solution

follows easily. once the constant rate solution is known.

2.5 Description of Computer Program
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Figure 2.5 shows various flow geometries and boundary conditions included in this

comprehensiv. model for analysis of composite reservoir well-test data. The computer

program for the solutions just described has been written in FORTRAN 77. The complete

source code and sample data files are provided in Appendix A. In writing the source code,

the following logical sequence has been used:

Main Program: COMPOSITE:

8]

6.

Read code for flow geometry via screen.

Read name of input data file via screen, and open input file.

The program requires separate input data files to be created for each flow geometry.
Depending on the geometry code chosen. the main program calls Subroutine
RADDATA, Subroutine ELLDATA, Subroutine LINDATA or Subroutine
SPHDATA, for radial. elliptical, linear and spherical geometries. respectively.
These subroutines read the necessary input data from the input data file provided.
Read the name of output data file via screen, and open output file.

Generate a set of time (TD) vector.

Call Subroutine INVERT, which numerically inverts the results from Laplace space

to real space.

Subroutine INVERT:

Subroutine INVERT uses the Stehfest (1970) algorithm to invert results from

Laplace space toc reai space.

6.1 Call Subroutine LAPRAD, Subroutine LAPELL, Subroutine LAPLIN, or
Subroutine LAPSPH: depending on the geometry code chosen, to compute

the results in Laplace space.
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Subroutine LAPRAD

This subroutine computes the dimensionless wellbore pressure and its
derivative. or the dimensionless flow rate and cumulative production in
Laplace space for the radial flow geometry. These solutions are expressed
in terms of modified Bessei functions. Results are returned 1o INVERT.
Subroutine LAPELL

This subroutine computes the dimensionless wellbore pressure and its
derivative, or the dimensionless flow rate and cumulative production in
Laplace space for the elliptical flow geometry. Thesce solutions are
expressed in terms of real and modified Mathieu functions. Results are
returned to INVERT.

Subroutine LAPLIN

This subroutine computes the dimensionless wellbore pressure and its
derivative, or the dimensioniess flow rate and cumulative production in
Laplace space for the linear flow geometry. These solutions are expressed
in terms of the exponential function. Results are returned to INVERT.
Subroutine LAPSPH

This subroutine computes the dimensionless welibore pressure and its
derivative, or the dimensionless flow rate and cumulative production in
Laplace space for the spherical flow geometry. These solutions are

expressed in terms of hyperbolic functions. Results are returned to

INVERT.

6.2 Invert pressure and Cartesian pressure derivative, or flow rate and
cumulative production, to real space and transfer results to main program.
Compute semilog pressure derivative or the generalized pressure derivative for the

geometry chosen.
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8. Write and store results in output fil2.

2.6 Computational Considerations

For the radial and elliptical geometries. the computational processes involve the calculation
of modified Bessel functions of large arguments, especially at small times. This creates an
overflow problem, which is eliminated by exponential scaling (IMSL Math Library. 1987).
For the radial, elliptical and linear geometries, the number of terms in the Laplace inverter.
NL = 8. was found to be adequate to generate correct results. For the spherical geometry.
NL = 12. was found to be optimum, even though this choice of NL sometimes led to some
instabilities in the computed responses. The results from numerical inversion were verified
by comparing with asymptotic analytical solutions for early and late time available in real

space for each geometry.

For the elliptical geometry. IMSL Math Library (1987) was used to calculate the
eigenvalues or characteristic values for the periodic Mathieu functions needed 1n the
solution. To calculate the real and the modified Mathieu functions, subroutines were
written based on formulas provided by McLachlan (1947). The formulas for modified
Mathieu functions are expressed in terms of Bessel functions. Bessel functions of several
integer orders are often required. For Bessel functions of mu'iple integer orders.
recurrence relations provided by Gradshteyn and Ryzhik (1965) were found to be helpful.
Also, it was not possible to generate transient-pressure and rate responses for the elliptical
geometry, at dimensionless times. tp < 0.1, due to instabilities in the Mathieu functions at

such times.

2.7 Possible Applications



In this study. a general analytical solution for a composite reservoir model has been
presented. This model is capable of generating the pressure transient responscs for
composite reservoirs in radial. elliptical. linear and spherical flow geometries for a constant
rate condition. as well as transient-rate responses for a constant pressure mjection or

production condition.

Reservoirs undergoing a thermal recovery process have been idealized mostly as two-
region. radial. composite reservoirs. With this idealization. the size of the inner (swept)
region may be determined from pressure falloff test data following constant rate injection, if’
the mobility and/or storativity ratios between the inner and outer regions are high enough.
Situations where the composite reservoir may not be radial. but instead may be elliptical,
linear or spherical have been discussed. This model could be used to compare the
conditions of mobility and storativity ratios under which the swept volume for these
different composite reservoir geometries can be calculated. This model is, however.
limited to the analysis of pressure falloff test data after constant rate injection. as opposed to

constant pressure injection.

A pressure derivative graph can enhance a pressure signal. and may be more sensitive 1o
disturbances in reservoir conditions. This results in greater detail on a derivative #r: sh
than is apparent on a pressure graph. Design and analysis equations based on t!":+ -« ..atog
pressure derivative have been presented for radial, composite reservoirs Crinbers i and
Ramey, 1989). and to a limited extent, for elliptical, composite reservoirs (Stciast.v ef al.,
1992). Pressure derivatives calculated for the different composite rescervoir geometries in
this model could be used to develop and compare design and analysis equations for well-

test analysis of various composite reservoir flow geometrics.
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Another application of the model in this study lies in constant pressure injection or in
decline curve analysis. From practical considerations, these curves are useful in well
performance prediction and rate decline analysis. Constant pressure solutions for radial.
composite reservoirs have been presented by Olarewaju and Lee (19874 and b). To the
best of my knowledge, constant pressure solutions for elliptical. linear and spherical.
composite reservoirs have not been presented. A comparison of the rate responses 1n the

various flow geometries could be carried out using this model.

This mode! could also be used in a computerized integrated well-test analysis of composite
reservoirs. In this well-test analysis scheme. reservoir parameters are first calculated from
well-test data using segmental analysis of straight line portions of the data (Marrar and
Sunio, 1995). These parameters then serve as input into an analvtical model of the
reservoir, which is used to generate synthetic well-test data. The synthetic well-test data
are compared to the actual well-test data. The whole procedure may be repeated several
times. cach time with an improved set of reservoir parameters, until a good match is
achieved. If the fit is still not very good, then the reservoir model itself may be altered. and
the procedure repeated until there is an acceptable match. The inclusion of wellbore storage
and skin effects. as well as accounting for different boundary conditions. makes this model
applicable to many practical reservoir-weij -ivations within the context of composite

reservoirs.
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Figure 2.1: Schematic of a t«o-region, radial, composite reservoir.
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Figure 2.2: Schematic of a two-region, elliptical, composite reservoir.
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Figure 2.3: Schematic o: : two-region, linear, composite reservoir.
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Figure 2.4:  Schematic of a two-region, spherical, composite reservoir.



TRANSIENT FLOW IN A TWO-REGION COMPOSITE RESERVOIR
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Figure 2.5: Various geometries and boundary conditions included in the
comprehensive model of composite reservoirs.



3.0 EVALUATION OF THE PSEUDOSTEADY STATE METHOD
FOR VARIOUS COMPOSITE RESERVOIRS

3.1 Introduction

The pseudosteady state method derives from the mobility and storativity contrasts between
the inner and outer regions of a composite reserveir. The method was proposed by
Eggenschwiler et al. (1980) to estimate the volume of the inner region of a radial.
composite reservoir. Eggenschwiler et al. (1980) observed that if the mobility and
storativity contrasts are large. the inner region could behave as a closed reservoir for a short
period of time after the end of the first semi-log straight line. A Cartesian graph of pressure
versus time during this period may indicate a straight line whose siope. m. can be related to
the swept (inner region) volume, Vj, by:

- 98
n.= e (3.1

Several investigators have attempted to confirm the existence of the pseudosteady state
period from thermal recovery well-test data. Walsh et al. (1981) proposed guidelines for
evaluating pressure falloff tests for both steam injection and in-situ combustion wells to
determine the swept volume. as well as the heat distribution within the reservoir. They
showed that for a steam injection process, accurate determination of the swept volume
requires the use of a two-phase effective compressibility, instead of the steam
compressibility, for the steam-swept zone. The use of the two-phase compressibility

accounts for volumetric changes caused by phase shifts when steam condenses.
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Using the Walsh et al.(1981) analysis procedure. Messner and Williams (1982) analyvzed
falloff test data from several steamflood projects. Temperature observation wells were
included in most of the steam flood projects to aid in verification of the analysis procedure.
In additior.. Messner and Williams (1982) used a fully-implicit. thermal simulator 1o
generate falloff data for a comparative analysis. They concluded that in both the field and
the simulated cases. the estimated swept volumes appeared reasonable. There was a
difference of about 10% between calculated and actual swept volumes in the simulated
cases. Thermal efficiencies were rather low, indicating larger overburden heat losses and
more channeling than expected. They stated that the low thermal efficiencies could also be
due to the inability of present analysis methods to assess accurately the reservoir heat
content ahead of the steam zone. Messner and Williams (1982) also found that both field
and simulated test results indicated consistently low estimates of the permeability in the
swept region. They attributed the low permeability estimates to relative permeability

veffects.

Further investigations of the applicability of the pseudosteady state method 10 in-situ
combustion projects have been carried out by Onyvekonwu et al. (1984 and Da Prar et al.
(1985). Onyekonwu et al. (1984) simulated pressure falloff tests of in-situ combustion
processes in a one-dimensional, radial reservoir. Analysis of the data using the Wulsh et
al. (1981) procedure yielded calculated swept volumes that were in good agreement with
the simulated swept volumes. They, however, found that the swept volume included both
the burned volume and the high gas saturation zone ahead cf the combustion front. Da Prat
et al. (1985) applied the pseudosteady state method to the locating of the burning front in an
in-situ combustion project in Eastern Venezuela. Two pressure falloff tests were conducted
on one air injector. Examination of the falloff data showed that some initial stabilization
time was required for the pressure probe to adjust to the ambient temperature. After

stabilization, falloff behavior matched theoretical predictions. Da Prat et al. (1985)
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concluded that the calculated front radius, derived from the burned volume, assuming it to

be cylindrical, was consistent with the actual locations of the injector and the producer.

Stanislay et al. (1989) investigated the effect of heat losses on the estimation of swept
volume based on the pseudosteady state concept. In analytical solutions of the composite
reservoir model for steam injection, the steam zone is assumed to be at a constant
temperature. However, heat losses to both the overburden and the underburden can iead 10
a drop in temperature, resulting in steam condensation. It is, therefore, possible to
underestimate the swept volume from analysis of falloff data. Sranisiav et al. (1989)
modified the Eggenschwiler et al. (1980) solution to the composite reservoir model by
including a term which accounts for heat losses from the steam chamber. They carried out
a sensitivity study of the solution to the heat loss term. Stanislav er al. (1989) concluded
that. under certain conditions, heat losses could have a significant effect on the pressure
falloff behavior and dominate the pseudosteady state period. Consequently, they proposed
a new analysis procedure for falloff data interpretation, when the heat loss effect is

significant.

Fassihi (1988) conducted a study to evaluate the applicability of the pseudosteady state
method 1or estimating swept volume from therma! sressure falloff tests in heterogeneous
reservoirs. He used a numerical simulator to simiut.«e injection falloff testing of steamflood
and in-situ combustion processes in both radial and two-dimensional (x-y) reservoir
models. Fassihi (1988) investigated the effect of such parameters as wellbore grid size,
non-uniform permeability, layering and oil vaporization, on the estimated swept volumc.
For steamfloods in relatively homogeneous reservoirs, Fassihi (1988) determined that the
calculated swept volumes using the pseudosteady state method were in agreement with the
simulated volumes. Differences between calculated and simulated swept volumes ranged

from 6 to 20 per cent. However, for very heterogeneous reservoirs, there was a very long
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transition period that masked the pseudosteady state data, making it impossible to estimate

the swept volume.

To determine the swept volume for thermal recovery projects using well test analvsis,
reservoirs have been idealized as radial. composite reservoirs. However. the increasing
scope and complexity of thermal recovery projzcts. as well as the general heterogenceity of
petroleum reservoirs. have necessitated the consideration of different flow geometries,

other than radial.

Analytical solutions for the pressure behavior of composite reservoirs of various flow
geometries have been presented in the literature. Ambastha (1988) presented semi-log and
Cartesian pressure derivative responses for two- and three-region. radial. composite
reservoirs. A similar study for elliptical, composite reservoirs was presented by Sranislay
et al. (1992). Ambaustha and Sagzev (1987). and Poon and Chitina (1989) presented
analytical solutions for the pressure behavior of linear, composite reservoirs. The pressure
transient behavior of composite reservoirs having spherical flow geometry was studied by

Onyekonmwu and Horne (1983).

The preceding discussion on composite reservoirs shows that significant analytical studies
have been conducted on each of the various flow geometries. However, to the best of my
knowledge, no attempt has been made to compare the pressure transient behuvior of
composite reservoirs in the various flow geometries. Using analytical solutions, this study
seeks to compare the pressure behavior of composite reservoirs in radial, elliptical, lincar
and spherical flow geometries, and, in particular, to establish the conditions under which
pseudosteady state flow will occur for each reservoir. Wellbore storage and skin effects
are neglected, since their effects, if any. on the pseudostcady state period of all four flow

geometries are expected to be the same.
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3.2 Comparison of Solutions

Details of the analytical solution used for each of the composite reservoirs was presented in
Chapter 2. Schematics of two-region. composite reservoirs in radial. elliptical. linear and
spherical flow geometries are presented in Figs. 2.1 through 2.4, respectively. A
comparison of the solutions is undertaken by examining the behavior of the dimensionless
pressure derivative responses. Both the Cartesian and the semi-log pressure derivatives are

considered.

To enable a comparison of the solutions, the dimensionless pressure and time values have
to be normalized to account for the different definitions for some of the dimensionless
variables in each reservoir. Though not necessary. the radial reservoir solution has been
chosen as the reference for the comparison. In addition. the time values for each of the
four solutions have been normalized by the area of the inner region of each composite
reservoir. Thus, in each reservoir, the results are not affected by the size of the inner
region (Ambastha. 1988: Sranislay et al.. 1992). The normalizing factors for each

reservoir are presented in the following.

3.2.1 Radial Reservoir

Since the radial reservoir is the reference. the normalized dimensionless wellbore pressure

is equal to the dimensionless wellbore pressure of the radial reservoir.

= I’u[)r ’ (3....

DPupy

The dimensionless variables in Eq. (3.2) and subsequent ones are defined in the

Nomenclature.



The normalized time coordinate for the radial reservoir is:

k, rof 1), 12
e = > T = R (8.)
(Opc)r; TR T R, -
3.2.2 Elliptical Reservoir

Since the dimensionless wellbore pressure for the radial and elliptical reservoirs are cqual.

by definition.

1)11[)_\' = ,)u De” (3-4)

The elliptic parameter, &, that defines the size of the inner region for the elliptical reservoir

is related to the radius of the radial reservoir by (Stanislav et al.. 1992):

R=—<e> (3.5

. 4
Ty =——=1, = ——1I,. (3.0)
DN n R_ I n.e__', Ix
3.2.3 Linear Reservoir

Considering the definitions of dimensionless wellbore pressure for the radial and linear
reservoirs. the normalized dimensionless wellbore pressure for the lincar reservon

becomes:

27
/}u'/l.\' = —/)_I)-/)ny'/)/ M ( 3 .7 )
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The normalizing factor for the time coordinate of the linear reservoir is determined by

equating the areas of the inner region for the radial and linear reservoirs.

TR =ab. (3.8)

The normalized time coordinate then becomes:

= = 3
Ipy = TR I = ”,)/)/} . (3.9)
3.2.4 Spherical Reservoir

Comparing the definitions of dimensionless wellbore pressure for the radial and spherical
reservoirs. the normalized dimensionless wellbore pressure for the spherical reservoir

becomes:

I
I)Il’l,‘\' = %l’ul}\' (3.10)

Letting ¢ = R. and then equating the inner region volumes of the radial and spherical

reservoirs, one gets:

h,, =%u,,. (3.11)

Substituting for hp in Eq. (3.10), the normalized dimensionless wellbore pressure for the

spherical reservoir becomes:

D
Pupy = ’;“nl’un\ . (3.12)

The normalized time coordinate for the spherical reservoir is:
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3.3 Discussion of Results

As discussed by Ambastha (19838), in the absence of wellbore storage and skin. the
parameters that affect the pressure derivative response of an infinitely-large. radial,
composite reservoir are the mobility ratio. M: the diffusivity ratio. . and the dimensionless
distance to the discontinuity, Rp. The normalization exercise carried out in the preceding
section eliminates the dependence on Rp. The remaining parameters are M and w. Since,
by definition, M is included in @. a storativity ratio. F, is defined that expresses only the
contrast in porosity-compressibility between the inner and outer regions. The storativity

ratio is given by:

_f(6c) _M

F —_—.
(Oc,),

(3.1

Ambastha (1988) presented a sensitivity study for the effect of M and F on the
dimensionless semi-log pressure derivative response for radial. composite reservoirs. To
compare the pressure derivative responses for the four flow geometries in this study, the
values of M and F have been fixed. Figure 3.1 shows a log-log graph of normalized
dimensionless semi-log pressure derivative versus normalized time for the four veservaoirs.,
The parameters M and F are /00 and 1000, respectively. The graph shows three clearly
defined flow regimes for each case. These flow regimes describe the flow behavior due to
the inner region, the discontinuity and the outer region of the various composite reservoirs.,
The transition between the inner and outer region flow behavior is characterized by unit
slope lines of varying lengths for the four flow geometries. A unit slope line. after the
inner region flow behavior, on a semi-log pressure derivative graph indicates pseudosteady

state behavior. Figure 3.1 shows that, for the same mobility and storativity ratios, the
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dimensionless semi-log pressure derivatives for the four flow geon. 'wics are identical
during pseudosteady state flow for each case. This observation confirms the pseudoesteady
state method as being independent of the shape of the regularly-shaped swept (inner)

region.

Figure 3.1 also shows that pseudosteady state flow starts at the saume time for all flow
reservoirs. However. the time to the end of pseudosteady state flow varies for different
geometrical shapes. The lincar flow reservoir shows the longest pseudosteady state period.
while the spherical flow reservoir shows the shortest. The radial and elliptical flow
reservoirs show the sume duration of pseudosteady state flow. Except for the inner region
flow behavior. the other pressure derivative characteristics of the radial and elliptical

reservoirs seem to be identical.

The responses from the four flow geometries are also compared in Fig. 3.2. which shows
a graph of normalized Cartesian pressure derivative versus normalized time for the same
parameters as in Fig. 3.1. Once again. three clearly defined flow regimes are shown for
cach flow geometry. In Fig. 3.2, the transition region between the inner and outer flow
regimes is characterized by horizontal lines (zero-slope) of varying lengths. A constant
Cartesian pressure derivative. or a horizontal line on a graph of Cartesian pressure
derivative versus time, is indicative of pseudosteady state flow. When the responses are
normalized by the area of the inner region. as in this study. then the constant Cartesian
pressure derivative during pseudosteady state flow should be 2m. Figure 3.2 shows that
the lincar flow reservoir exhibits the longest pseudosteady state flow period. while the
spherical flow reservoir gives the shortest. Thie radial and elliptical flow reservoirs show

the same duration of the pseudosteady state flow period.
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A detailed comparison of the responses from radial and elliptical flow reservoirs is shown
in Fig. 3.3, The figure shows a log-log graph of normalized dimensionless semi-log
pressure derivative versus normalized time for the radial and elliptical reservoirs. with
mobility and storativity ratios as cross parameters. The mobility ratio is varied from / to
100. while the storativity ratio ranges from / to /000. The etfects of mobility and
storativity ratios on the semi-log pressure derivative responses for the radial and elliptical,
composite reservoirs have been discussed separately by Ambastha (1988) and  Sranislav ¢t
al. (1992). respectively. Here, the responses for the two cases are compared. Figure 3.3
confirms the observation made in Figs. 3.1 and 3.2 that the responses for the radial and
elliptical reservoirs are identical, except for the inner region responses. Thus. for all
practical purposes, thermal well test data for fractured wells can be analyzed using a radial.
composite model solution within the context of automated (or automatic) tvpe-curve
matching, as long as the early-time linear flow data. due to the presence of the fracture if

observed, are excluded from the analysis.
3.4 Time Criteria for Pseudosteady State Flow

To be able to use the pseudosteady state method to determine the swept volume for thermal
recovery projects, there should be a means of choosing the correct pseudosteady state
Cartesian line. For a well located in the center of a closed drainage region of any regular
shape. pseudosteady state behavior may be observed when 174 > 0./, where 17,4 is based
on the drainage area (Earlougher, 1977). For a composite reservoir, pscudostcady state
behavior should also be observed for 1ps > 0.7 (1p4 based on the arca of the inner region),
if the mobility and storativity ratios are large enough for the inner region to approximate i
closed reservoir. Figures 3.1 and 3.2 show that pseudosteady state behavior is indeed
observed for r1pn 2 0.1 for all four flow geometries. Recall that the normalized

dimensionless time. Ipp:, is based on the area of the inner region for cach composite
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reservoir gecometry. Since the duration of the pseudosteady state period varies for the
different flow geometries, correlations are sought for the time to the end of pseudosteady

state flow.

Ambastha (1988) has presented correlations for the time to the end of pseudosteady state
flow, based on mobility and storativity ratios. for radial, composite reservoirs. To
establish the duration of pseudosteady state flow. Ambastha (1988) uses the criteria that the
Cartesian pressure derivative be within 2% or 5% of 27, For the 2% criserion, Ambastha
(1988) notes that pseudosteady state flow is likely to appear for cases with mobility-
storativity product. MF 2 10% and M 2 10, if pseudosteady state flow is required to last
up to tpa = 0.2. If the 5% criterion is used, then pseudosteady state behavior is likely to
appear for cases with MF 2 ]03 and M 2= 10, for pseudosteady state behavior lasting until

tpy = 0.2.

Noting from the previous discussion that the pseudosteady state flow behavior of the
elliptical reservoir is identical to the radial reservoir. it follows that, for the elliptical
reservoir, pseudosteady state flow lasting up to 1py = 0.2 occurs for the same conditions

as the radial reservoir.

For the linear, composite reservoir, Fig. 3.4 presents Cartesian pressure derivative
responses for selected mobility ratios between / and 700, and for storativity ratios between
1 and 1000. The transient responses are presented using the correlating parameter. MF, for
infinitely-large. linear, composite reservoirs as shown by Ambastha and Sageer (1987).
For pseudosteady state flow to occur, the Cartesian derivative response must be 27. Fig.
3.4 shows that pseudosteady state flow does occur, the length of which depends on the
product of the mobility and storativity ratios. The larger the mobility-storativity product.

the longer the duration of the pseudosteady state period.
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The normalized dimensionless time. 7py. for the eind of the pseudosteady state period. tor
the linear, composite reservoir. was calculated based on Cartesian pressure derivative
deviations of 29 and 5% from 2. Data for selected cases of mobility and storativity ratios
are presented in Table 3.1. Correlations for the time to the end of pscudosteady state flow
based on data from Table 3.1 are shown in Fig. 3.5. For the criterion of 2% deviation
from 27, a pseudosteady state period lasting till ipy = 0.2 is likely for cases of MF 2> 107,
If the 5% criterion is used. then a pseudosteady state period lasting up to rpy = 0.21s
likely for cases of MF 2>10°. In Fig. 3.5, the sharp change in trend of the solid curve
(2% deviation) just after MF = 1000 is due to fact that not enough data were taken.

Otherwise the curve should rise smoothly.

For the spherical. composite reservoir. Fig. 3.6 presents Cartesian pressure derivative
responses for selected mobility ratios between 7 and /00, and for storativity ratios between
1 and /000. Figure 3.6 shows that, for the spherical, composite reservoir, the length of
the pseudosteady state period is a strong function of the mobility ratio. The storativity ratio
has only a mild effect on the duration of the pseudosteady state period. This observation
holds true for the radial. composite reservoir, as well (Ambastha, 1988). but is in contrast
with the linear. composite reservoir. For the linear, composite reservoir, the length of the

pseudosteady state period appears to be equally dependent on both the mobility ratio and

the storativity ratio.

Table 3.2 presents selected data used to develop the correlations for the end to
pseudosteady state flow for a spherical. composite reservoir. The correlations are shown
in Fig. 3.7, for storativity ratios of /00 and 1000. Pseudosteady state behavior was not
observed for a storativity ratio of 10. Figure 3.7 shows that for the criterion of 2%

deviation from the Cartesian pressure derivative of 27, a pseudosteady state period lasting
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up to rpy = 0.2 is likely for cases of MF 2 10°, M 2> 100 and F > 100. 1f the 5¢
deviation criterion is used then the required duration of pseudosteady state flow is likely for
cases of MF 210, M 2100 and F 2 100. Abrupt changes in trend for the three lower

curves is due to inadequate data,

The conditions for the time to the end of pseudosteady state flow for the various flow
geometries are compared in Table 3.3, for pseudosteady state flow lasting until 7py = 0.2.
This duration of pscudosteady state behavior is considered reasonably long for a proper
analysis of the pressure data. For typical reservoir and fluid parameters of a steam injection
process ( k=200 md, u=0.01 cp, ¢;=0.04 psi-l, p =0.2, discontinuity radius =/00 fr ).
Ipn = 0.2 converts to a pseudosteady state period of about 5 hours. Table 3.3 shows that
the conditions for the occurrence of pseudosteady state flow differ for the various flow
geometries. The spherical flow geometry requires the highest mobility and storativity

contrasts. while the linear flow system requires the least.
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Table 3.1: Time to the end of pseudosteady state behavior corresponding
to the inner region of a linear, composite reservoir.

MF tpN for Cartesian slope tpN for Cartesian slope
within 2% of 2n within 5% of 2n

100 0.159 0.195
200 0.169 0.254
500 0.191 0.451
700 0.207 0.594
1000 0.223 0.795
2000 0.286 1.478
5000 0.636 3.533
7000 0.853 4.859
10000 1.164 6.918
20000 2.190 13.660
50000 5.308 34.266
70000 7.380 47.579
100000 10.447 68.031
200000 20.791 135.882
500000 51.981 341.425
700000 72.364 474.082
1000000 103.445 680.310
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Table 3.2: Time to the end of pseudosteady state behavior corresponding
to the inner region of a spherical, composite reservoir.

M E tpN for Cartesian slope tpN for Cartesian slope
within 2% of 2n within 5% of 2x
20 0.103 0.123
50 0.118 0.156
70 0.125 0.234
100 0.138 0.303
200 100 0.191 0.543
500 0.363 1.272
700 0.509 1.778
1000 0.704 2.545
20 : 0.112 0.151
50 0.143 0.274
70 0.168 0.358
100 1000 0.208 0.481
200 0.342 0.899
500 0.796 2.225
700 1.100 3.040
1000 1.541 4.316
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Table 3.3: Comparison of conditions for the occurrence of a pseudosteady
state period up to tpn = 0.2 for various composite reservoirs.

Conditions for the occurrence of pseudosteady state for
Flow Geometry
Slope within 2% of 2x Slope within 5% of 2n
Linear MF 2 103 MF > 102
Radial MF > 104, M 2 10 MF = 103, M 2> 10
Elliprical MF > 104 M > 10 MF > 103, M 2 10
Spherical MF = 105, M 2 100, F2 100 | MF 2 104, M 2 100, F 2 100
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Figure 3.1: Dimensionless semi-log pressure derivative responses for
radial, elliptical, linear, and spherical composite reservoirs.
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Figure 3.2: Dimensionless Cartesian pressure derivative responses for
radial, elliptical, linear and spherical composite reservoirs.
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Figure 3.3: Comparison of dimensionless semi-log pressure derivati
responses for radial and elliptical composite reservoirs.
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Figure 3.4: Effect of mobility and storativity ratios on the Cartesian pressure

derivative responses for a linear, composite reservoir.
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Figure 3.5: Correlations for the end of pseudosteady state for a linear,

composite reservoir.
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Figure 3.6: Effect of mobility and storativity ratios on the Cartesian pressure
derivative responses for a spherical, composite reservoir.
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4.0 GENERALIZED PRESSURE DERIVATIVE ANALYSIS OF
COMPOSITE RESERVOIRS

4.1 Introduction

Pressure derivatives have been shown to be more sensitive to disturbances in the reservoir
thun pressure signals. This results in greater detail on a derivative graph than is apparent
on a pressure graph. Pressure derivatives were first introduced by Tiab and Kumar
(1980). who presented the derivative of pressure with respect to time. Later. Bowrdet et al.
(1983) introduced the semi-log pressure derivative. defined as the derivative of the well
pressure with respect to the natural logarithm of time. For radial reservoirs. the semilog
pressure derivative response appears as a horizontal line during the infinite-acting radial
flow period, resulting in an easy identification of the radial flow regime. As a result. the
semilog pressure derivative is widely used in well test analysis of not only homogencous.

but also composite reservoirs.

To analyze well tests for thermal recovery projects. reservoirs have been idealized as
composite reservoirs. A reservoir undergoing stcam injection may be described as a
composite reservoir. consisting of an inner steam-swept rcgi()n and an outer unswept
region. Steam injection in a fractured well may result in un elliptical swept region. o1
fully-penetrating, unfractured. vertical well in a homogeneous, isotropic reservoir. the
swept region is likely 1o be radial (circular). A partially-completed injection well may create
a spherically-shaped swept region, while steam injection in a linear or channel reservoir
may result in a linear, composite reservoir. Analytical solutions for the pressure behavior

of composite rezervoirs of various flow geometries have been presented in Chapter 2.
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When the semi-log pressure derivative is applied to other flow geometries such as lineur or
spherical, the responses dre not horizontal: making identification of these flow regimes
more difficult.  Jelmert (1993a and b) presented a polynomial pressure derivative to
simplify the identification of flow regimes for homogeneous reservoirs in other flow
geometries. Using analytical solutions, this study extends the theory of the generalized
pressure derivative 1o well-test analysis of composite reservoirs in radial. elliptical, linear
and spherical flow geometries. Design and analysis equations, based on the generalized
pressure derivative, are presented for well testing of composite reservoirs in various flow

geomelries.

4.2 Generalized Pressure Derivative

The dimensionless wellbore pressure behavior characteristic of most flow geometries may

be represented as a polynomial of the following form:

noy=Al + B (4.1)

where A, B and m are constants that depend oi the particular flow geometry.

Upon differentiating Eq. (4.1) with respect to the dimensionless time. t;,. one gets:

‘I 1’\-[’

o 1y,

-

=mAt;," . (4.2)

Equation (4.2) can be simplitied and rearranged as:

”n ‘{I’ 1]
1, ——==C, 4.3
b dr,, ( )

wheren = /-m and C= mA .



Equation (4.3) represents the generalized pressure derivative. in dimensionless form,
where the exponent. 1. depends on the particular flow geometry. With an appropriate
choice of the exponent. n. the generalized pressure derivative becomes a constant, (.
Thus. u graph of the derivative versus time will appear as a horizontal line in any coordinate
system during the flow period characteristic of that geometry. It is noted that while the
ditnensionless wellbore during radial flow is not a polynomial of the form in Eq. (4.1). its
derivative is. Thus. the theory of the polynomial (generalized) derivative may also be

applied to functions whose first derivative is a polynomial (Jelmerr, 1993p).

Table 4.1 presents some flow regimes or geometries and their corresponding exponent, n.

For n=1, the generalized pressure derivative is equivalent to the semi-log pressure
derivative of Bourder er al. (1983). The choice of n=1/ will only lead 10 a constant
derivative. if the flow regime is radial. For linear flow, n = % while for spherical flow,

n=

|

. For n=0. the pseudosteady state flow regime. if present, will appear as a horizontal

line regardless of the geometry of the composite riservoir.  Also, when n=0. the
generalized pressure derivative is equivalent to the Cartesian pressure derivative proposed

by Tiab and Kumar (1980).

4.3 YDiscussion

The generalized pressure derivative was applied to pressure drawdown data generated from
analytical solutions for two-region, composite reservoirs in radial, clliptical, lincar and
spherical flow geometries. In this chapter, the generalized pressure derivative is used as a
means of flow regime identification and is used also 1o develop equations for the design

and analysis of pressure transient data for the various COMPOSILE reservoirs.
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In applying the generalized pressure derivative. flow exponents are chosen for the radiai.
lincar and spherical gecometries us per Table 4.1. For the elliptical geometry. which is not
shown on Table 4.1, 4 flow exponent. n=/, is chosen on the basis of its similarity with the
radial reservoir, as discussed by Issaka and Ambastha (1994). Figure 4.1 shows u log-log
graph of the generalized pressure derivative versus normalized dimensionless time (1;,) for
the four flow geometries. 1he dimensionless times are normalized by dividing the time
values by the cross-sectional area of the inner region of each composite reservoir. This
normalization makes the derivative responses independent of the size of the inner region.
For this graph, the responses are generated for a mobility ratio, M=/00. and a storativity
ratio, F=/000. The generalized derivative responses in Fig. 4.1 show that each of the four
geometries indicates three distinct flow regimes. These include an inner region flow
regime. where the responses  are all horizontal (zero-slope). except for the elliptical
reservoir. This ss follasved by a long transition period during which the eftects of the
discontinuiiz ave maniiesied. Pseudosteady state behavior during this period is
characterized »: slaros oual to the flow exponent, 71, chosen for each composite reservoir.
Finally. the ouic: segion flow becomes evident, characterized by horizontal lines. The
horizontal lines make the identification of the inner and outer region responses for all the
geometries much easier than is the case for identification based on the semi-log pressure
derivative only. In Fig. 4.1, the responses for the spherical geometry show some
irregularities for the outer region flow behavior. These are due to instabilities associated
with the numerical inversion of the Laplace space solution These instabilities are more

pror- - nweed as the storativity ratio increases and also for very long times.

4.4 Pressure Derivative Analysis and Design Equations

A detailed discussion of the behavior of the generalized pressure derivative for the various

composite reservoirs is presented now. Also presented are well-test analysis equations as



well as empirical design equations for composite reservoirs in the different geometries.
Ambastha and Ramey (1989 presented detailed discussions of the eftect of mobility ratio
and storativity ratio on the derivative response for radial. composite reservoirs.  In
addiion. they provided several empirical design equations. as well as a pressure derivative
type-curve for radial. composite reservoirs. Due to the similarity of pressure transient
responses between the radial and elliptical reservoirs (Issaka and Ambastha. 1994,
Stanislav er al.. 1992). the design equations presented by Ambastha and Ramey (1989) for
radial systems are considered appropriate for elliptical systems as well, In this study, the

discussion will emphasize the spherical and iincar. composite reservoirs.,

4.4.1 Spherical, Composite Reservoir

In this section. well-test analysis equations, as well as empirical design equations for the
start and end of some important flow regimes for spherical, composite reservoirs will be
provided. As well. detailed discussions of the effect of mobility and storativity ratios on
the generiiized pressure derivative responses for the spherical flow geometry wilt be

presented.

4.4.1.1 Analysis and Design Equations

The -analysis and design equations will be presented on the basis of the transient generalized
pressure derivative responses disring the inner region, the transition segi, ar:’ .o outes

region flow periods.
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Inner region flow:

In the absence of wellbore storage and skin effects, the dimensionless wellbore pressure

during infinite-acting spherical flow (Chatas. 1966) is given by:

1
) = l — ——mmee 4'4
I wih '\,/'Tt 1“\ ( )

Differentiating Eq. (4.4) with respect to t,.., gives the Cartesian derivative:

e
"Il)lrl)\ — II)\

S (4.5
(I’p\ 2‘\/7'C )

Multiplying both sides of Eq. (4.5) by 1., the generalized pressure derivative for the

spherical reservoir becomes a constant given by:

yodp,g, 1
1; R = . 4.6
D dr 2+/n .0)

I

In the analysis of practical well test-data from a pressure falloff test, the first step will be to
calculate the Cartesian pressure derivatives. using a differentiation algorithm such as that

. : . o dp,.
given by Bourder et al. (1989). The Cartesian pressure derivatives (—11“—") are then
dr

multiplied by 1 to yield the generalized pressure derivative for a spherical reservoir. A
constant generalized derivative ( a horizontal line) during the early part of the response is
indicative of infinite-acting spherical flow. Once the infinite-acting spherical flow period
has been identified. a graph of pressure falloff data (p,,) versus reciprocal square root time

(1/V1,). on the basis of Eq. (4.4), can be used to obtain an estimate of the mobility. &/u. in

the steam chamber.
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The constant gencralized pressure derivative from Eq. (4.6) provides another means of
determining the properties of the inner region. Using the value of the constant derivative
calculated from the pressure talloff data, and the definitions for the dimensionless variables
in Eq. (4.6,. another estimate of the mobility. A&/u . in the inner region can be obtained.
These two estimates must be consistent. and will serve to increase the degree of confidence

in the results.

Using the criterion of 2% deviation from /ox+ the time to the end of infinite-acting

spherical flow corresponding to the inner region is

(1pxsdewa = 0.041. +.7)

The dimensionless time shown in Eq. (4.7) appears to be less than the corresponding value
for a radial, composite reservoir. Accounting for the differences in the definitions of
normalized dimensionless time. the time to the end of the first semilog straight line for
radial, composite reservoirs. given by Ambastha and Ramey (1989). becomes 0.056.
Thus. infinite-acting flow corresponding to the inner region ends carlier for a spherical

reservoir than for a radial reservoir.

Transition region flow:

As shown in Fig. 4.1. for M = 100 and F = 1000, the transition region derivative response
for spherical geometry goes through a maximum value before dropping to an asymptotic
value in the outer region. Table 4.2 presents the maximum generalized pressure derivatives
and the time to reach the maximum derivative for several combinations of mobility and
storativity ratios. The data of Table 4.2 suggest that an approximate correlation for the

maximum derivative in the transition region can be given as:
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(r"-’i”—“ﬂ#; = (0.189+0.021 log F )M'*, (+.8)

1 e

¢ 7D

while the time io the miaximum derivative is

(1,0 Dae = (0.245-0.028 log F )M . (4.9)

Equations (4.8) and (4.9) apply if M 210 and F 2/0. The accuracy of Eqgs. (4.8) and
(4.9) in predicting the maximum generalized derivative and the time to the maximum
derivative are verified in Figs. 4.2 and 4.3. respectively. Figures 4.2 and 4.3 compare the
predicted values from Egs. (4.8) and (4.9) to the actual values for the maximum
generalized derivative and the time to the maximum derivative, respectively, from Table
4.2. The figures shov. good agreement. with the accuracy of the correlations increasing as

the storativity ratio increases.
Outer region flow:

Onyekonwu and Horne (1983) have shown that at late times the dimensionless wrllbore

pressure in a spherical. composite reservoir is given by:

Pupn =l=—— =M j———. (4.10)

Upon differentiating Eq. (4.10) with respect to tp,. one gets

dp.p. M [ M
dt,, 2> \nF’

4.11)

Multiplving both sides of Eq. (4.11) by r;;", the generalized pressure derivative response

in the outer region of the spherical. composite reservoir becomes
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. ‘ll’..n. _ﬂ M 3.10)
P dt,,  2\mF’ (=1

Equation (4.12) shows that the outer region derivative response for a spherical, composite
reservoir depends on both the mobility ratio and the storativity ratio. From Eq. (4.12). o

: \ . o . Iar .
correlating parameter for the outer region derivative response will be .17 \VF It is thus

impossible to find individual values of M and F, unless one of the variables is known from

a test prior to the thermal recovery process.

Using the criterion of 2% deviation from — g the times to the start of the second
T

M [ M

2\
horizontal line corresponding to the outer region. tfor various combinations of mobility and
storativity ratios. are presented in Table ¢ 3. The data of Tuble 4.3 suggest that an

approximate correlation for the time to the start of the second horizontal line corresponding

to the outer region can be given as:
(1o = (25 log F—9.4 )M . (+4.13)
A comparison of th~ 2dictions of Eq. (4.13) with the actual values from Table 4.3 i

shown in Fig. 4.4.} 4 shows a good agreement, with accuracy increasing with the

storativity ratio.

4.4.1.2 General Discussion

: . : _ dp,,,
Figure 4.5 shows a log-log graph of the generalized pressure derivative (7, ---{7;;"3'»4
.

versus the normalized dimensionless time (1,x.) for a spherical, composite reservoir. The

figure shows the effect of mobility ratio on the derivative response for a fixed storativity
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ratio, F = 100. The derivative response for a homogeneous. spherical reservoir (M = /, F
= /) is also shown on Fig. 4.5. The figure shows that all responses form one horizontal
line at eurly times. This indicates infinite-acting flow behavior in the inner region. during
which time the cffects of the discontinuity are net yet felt. A long transition period follows.
during which the derivative responses go through maximum values, before dropping to
asymptotic horizontal lines. These horizontal lines represent infinitz-acting flow behavior
in the outer regions. Here, the separate curves represent the different mobility ratios. The
irrcgularitics in the derivative responses just prior to flattening out is the result of numerical
instabilities as mentioned carlier. From Fig. 4.5, the mobility ratio is shown to affect
strongly the derivative response for spherical flow geometry. similar to the result for radial
and elliptical reservoirs (Ambastha and Ramey. 1989, Stanislav et ul.. 1992). Figure 4.5,
however, reveals some significant differences in the derivative responses for spherical and
radial. composite reservoirs. For radial reservoirs with M > 7 and F > /. the value of the
derivative in the outer region is always greater than, or ejual to, the derivative in the inner
region (Ambastha and Ramey, 1989). Figure 4.5 shows that this does not necessarily hold
truc for a spherical reservoir. An examination of Eq. (4.12) shows that for F > M3, the
derivative response in the outer region will be less than the response in the inner region. In
Fig. 4.5, the response for M = | and F = 100, illustrates the situation where th value of

the outer region derivative is less than that of the inner regior.

Figure -£.6 shows ilie e.-cct of storativity ratio on the derivative responses for a spherical
reservoir for a fixea mobility ratio. M = 100. For storativity ratios greater than unity, each
derivative response goes through a maximum value before approaching the asymptotic
value characteristic of infinite-acting spherical flow in the outer region. Figure 4.6 also
shows that the storativity ratio has very little effect on the derivative response during the
transition period leading to the maximum derivative value. The value of the maximum

derivative is only slightly affected by the storativity ratio. This behavior is simiiar to that



shown during the transition period for a radial. composite reservorr, except for one
difference. Fora radial reservoir. the derivative responses for the different storativity ratios
do not cross over during the transition period.  However, as shown in Fip, 4.6, the
derivative responses for the spherical reservoir do cross overs reversimg an carlier trend,
where the curve with the highest storativity ratio had the highest derivative. The derivative
responses in the outer region show another significant difference between spherical and
radial reservoirs. For radial reservoirs of the same mobility ratio, the derivative responses
in the outer region form one curve. reqardless v he storativity ratio ¢ abasiia and

L B
3 f !

Ramey, 1989). Figure 4.6 shows. however. 1 oroasphericai reservoir, different
storativity ratios result in different curves or ine outer region. Thus, for a spherical
reservoir. the outer region flow behavior is a’veted by both the mobility ratio and the

storativity ratio. which is evident from Eq. (4.12). For a radial reservoir, the outer region

flow behavior is affected by only the mobility :atio.

The effect of both mobility ratio and storativity ratio on the generalized pressure derivative
for a spherical. composite reservoir is shown on Fig. 4.7. The figure shows derivative
responses for selected mobility ratios between / and 700, and for storativity ratios between
I and 71000. Figure 4.7 again shows three clearly defined flow regimes for any
combination of M and F, except for the homogencous case (M=17 and F=1/). The curves
corresponding to F = 71000 tend to show some discontinuities in trend just before
approaching the asymptotic values characteristic of infinite-acting spherical flow in the
outer region. This is due to numerical instabilities in computing the derivative response.
rather than any reservoir effect. An examination of the outer region derivative responsces
shows that the response for M = /0 and F = 1000, on the one hand. and the respoase for
M = 1 and F = ]. on the other hand. are identical. For these two cases the parameter,

M\;'—/—r— 1s I, making it impossible 10 obtain independent estimates of the mobility ratio or

the storativity ratio.
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4.4.2 Linear. Composite Reservoir

This section presents analysis and design equations for well testing of linear. composite

reservoirs. In addition. a detailed discussion on the effect of mobility and storativity ratios

on the generalized pressure derivative responses for linear flow geomeury is presented.
4.4.2.1 Analysis and Design Equations
The analyvsis and design equations for a lincar. composite reservoir are presemted on the

basis of the transient generalized pressure derivative responses during the inner region, and

the outer region flow periods.

Inner region flow:

The dimensionless wellbore pressure during infinite-acting lincar flow, in the absence of

wellbore storage and skin effects. is given by:
T
2, = 2 2. (4.14)
/ wlil \, TT

Differentiating Eq. (4.14). with respect 10 1. gives the Cartesian derivative:

T — ——— ‘.5
71, : (4.15)



ir becomes a constant given by:

{(4.16)

and (4.14) may be used to provide two separate estimates of the mobility
n for a linear, composite reservoir, such as a channel reservoir undergoing '
These two estimate> must agree with each other.
criterion of 2% deviation from /,}—t . the time to the end of infinite-
1

¢ corresponding to the inner region is

N

(4.17)

ndicates that infinite-acting flow in the inner region lasts longer for linear

r either spherical or radial geometry.

Tow:

» dimensionless wellbore pressure, in the absence of wellbore storage and

t linear. composite reservoir is given by

- . (4.18)

srentiating with respect to 1p,. gives:
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(I?) s i‘:"l/ F -2
Z1,,; =\ o 3.1

Multiplying both sides of Eq. (4.19) by 7. the late time generalized pressure derivanve

for a linear. composite reservoir becomes

e ap.p _ | MF 190
2, TN (4.2

Equation (4.20) shows thart the late time derivative response for a lincar. composite
reservoir depends equaily on the mobility ratio and the storativity ratio. The mobility ratio
has the same effect on the derivative response as the storativity ratic. Thus, the product,
MF can be regarded as a single correlating parameter for infinite. lincar, composite
reservoirs. Here again it will not be possible to find separate values of M and F from well-

test data. unless one of the variables is known from a previous test.

The times 10 the start of infinite-acting lincar flow corresponding to the ouier region, tor
various combinations of mobility and storativity ratios, are presented in Tuble 4.4, These

times are based on the criterion of 2% deviation from {—— . Data from Table 4.4 suggest
T

that an approximate correlation for the start of the second infinite-acting lincar flow can be

presented as

(2o )y = T.ASMF. (4.21)

Equation (4.21) applies for M 2 JO and F = 10, and for instances where outer boundary
effects do not mask the development of the second infinite-acting linear flow regime.
Figure 4.8 shows a comparison of the times predicted using Eq. (4.21), with the actual

times from Table 4.4. The figure indicates that Eq. 74.21) generates very accurate
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predictions of the time to the start of the second infinite-acting linear flow regime for a

hincar. composite reservoir.
4.4.2.2 General Discussion

Figure 4.9 presents the effect of the product of mobility ratio and storativity ratio. MF. on
the generalized pressure derivative response for a linear. composite reservoir. Derivative
responscs are presented for selected values of ATF between [ and 700,000. As with all the
other flow geometries, Fig. 4.9 shows an early-time horizontal line. indicating infinite-
acting linear flow in the inner region. A transition period follows. during which the
derivative responses rise steadily due to the effect of mobility and/or storativity ratio. Here,
different curves represent different values of MF. The length of the transition period is
dependent on the value of MF. As expected, the larger the value of MF, the longer it takes
for the transient to cross the discontinuity boundary between the inner and outer regions.
Consequently. the transition period is longer. The derivative responses eventually level off
to constant values. indicating infinite-acting linear flow corresponding to the outer region.
Figure 4.9 shows that MF has a strong effect on the derivative response for linear

geometry.

Figure 4.9, however. illustrates one significant difference between linear reservoir. oﬁ the
one hand. and radial. elliptical and spherical reservoirs. on the other. For radiai. elliptical
and spherical reservoirs, the derivative responses in the trahsi‘tion region go through
maximum values before dropping to asymptotic values in the outer region. Figure 4.9
shows that no such maximum derivatives occur during the transition region for a linear.
composite reservoir. Instead. the derivative responses rise steadily through the transition

region and eventually level off to asymptotic values in the outer region.
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4.5 Comparison of Analysis and Design Equations

In the preceding sections. equations for the design and anatysis of pressure transient data
for various composite reservoirs. based on the generalized pressure derivative have been
presented. Tabie 4.5 compares the anaiysis equations for infinite-acting flow
corresponding to the inner and outer regions of the various composite reservoirs.  As
shown in Table 4.5. the value of the generalized derivative in the outer region depends only
on mobility ratio. for the radial and elliptical reservoirs. For the spherical and lincar
reservoirs. however. the derivative is dependent on both the mobility and the storativity
ratios. Where possible. reservoir parameters estimated using these cequations will add to

the degree of confidence in the estimated pararneters based on pressure analysis,

Table 4.6 compares the design equations based on the generalized pressure derivative for
composite reservoirs in radial. elliptical. spherical and lincar flow gcometries. Dita for the
end of infinite-acting flow corresponding to the inner region (second column) indicate that
the inner region infinite-acting flow lasts the longest for a lincar reservoir. This is followed
by a radial reservoir. and then a spherical reservoir. Data for the elliptical reservoir is not
available because there is no simple analytical solution in real space (as opposed 1o Laplace

space) for the early time behavior of an elliptical. composite reservoir.

The third and fourth columns of Table 4.6 give the correlations for the maximum derivative
in the transition region, and also the times to these maxima. Correlations for the lincar
reservoir are not available because the derivative response in the transition region shows no
maximum. A measure of the length of the transition period can be deduced from the
difference between the second column and the fifth column, which is the time to the start of
the second infinite-acting flow period corresponding to the outer region. With M = 00

and F = 1000 (typical values for a steam injection process), the transition period for a radial
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reservoir is about five-und-a-half log cycles. For a spherical reservoir this is about five log
cycles, while for a linear reservoir, it is seven log cycles. For such long transition periods.
it is unlikely that any well test will be conducted long enough to observe the second

infinite-acting flow behavior for any composite reservoir.
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Table 4.1: Flow exponents for some selected flow
regimes and geometries

Flow Regime/Geometry n
Radial 1
Linear 172
Spherical 32
Pseudosteady State 0
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Table 4.2:

Maximum generalized pressure derivative and the time to
maximum derivative for a spherical, composite reservoir.

Maximum derivative, { Time to maximum
M F 32 AP, p, derivative,
(ID" dt Ds )’mu (tD.\'N max
10 6.59 2.23
20 17.99 4.78
50 69.56 11.14
70 114.80 15.92
100 10 195.30 22.28
200 551.20 47.75
500 2172.00 111.40
700 3598.00 159.20
1000 6138.00 222.80
10 7.46 1.91
20 20.17 3.98
50 77.79 9.55
70 128.70 12.73
100 100 218.10 19.10
200 613.90 39.79
500 2421.00 95.49
700 4025.00 127.30
1000 6843.00 191.00
10 7.93 1.59
20 21.47 3.18
50 82.65 7.96
70 136.20 11.14
100 1000 231.70 15.92
200 652.50 31.83
500 2572.00 79.58
700 4259.00 111.40
1000 7270.00 159.20
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Table 4.3:

Time to the beginning of

infinite-acting
correspending to the outer region for a spherical, composite

reservoir.

M F (touwn
10 143.2
20 254.6
50 6360.6
70 954.9

100 10 1273.0
200 2546.0
500 6366.0
700 8847.0
1000 12315.0
16 397.9
R 795.8
Rl 1910.0
70 2832.0
10U AV 4268.0
200 8753.0
500 20598.0
700 28050.0
1000 42052.0
10 692.3
20 1353.0
50 3403.0
70 5345.0
100 1000 06841.0
200 13254.0
500 32013.0
700 46227.0
1000 66753.0
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Table 4.4: Time to the beginning of infinite-acting linear flow
corresponding to the outer region for a linear, composite
reservoir.

MF (toinu

100 755
z00 1492
500 3820
700 5372
1000 7371
2000 14960
5000 38970
7000 53056
10000 75120
20000 149200
50000 382000
70000 537200
100000 737100
200000 1496000
500000 3897000
700000 5305000
1000000 7512000




Table 4.5:

Comparison of analysis equations based
pressure derivative for composite systems in radial, elliptical,

spherical and linear flow geometries.

on the

generalized

Flow Generalized Value in Value in
Geometry Derivative Inner Region Quter Region
Radial ap. ., I M’
= 2
Elliptical . ap,p. N/A M
{0 d’Dt 2
Spherical 372 AP, 1 MM
o5 dip, 2+/n » 't /-
ancar ,]/2 d/)"./)/ ~—-L: /MI'
2l i Vo
#* Ambastha and Ramey (1989)
ok Stanislav et al. (1992)



Table 4.6:

Comparison of design equations based on the generalized
pressure derivative for composite systems in radial, elliptical,
spherical and linear flow geometries.

Flow Maximum
GeomEtry (IIIIV end Pre?sur.e (IDIV max (ID/V)II
Derivative
adi * ¥
Radial 0.057* 10.223+0.31810g F)m™ {0.573 + 0.12710g Fypm ™| 28:65(1+ log FIM
Elliptical N/A (0.223 + 0.318Jog F)M |(0.573 + 0.127log F)M|  28.65(1 + log F)M
Lincar 0.061 N/A N/A 7.45MF

Ambastha and Ramey (1989)
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Figure 4.1: Generalized pressure derivative responses for composite reservoirs
in radial, elliptical, spherical and linear flow geometries.
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Figure 4.2: Verificaiion of accuracy of the correlation for predicting the

maximum generalized pressure derivative for a spherical,
composite reservoir.
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Figure 4.3: Verification of accuracy of the correlation for predicting the time
to the maximum generalized pressure derivative for a spherical,
composite reservoir.
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Figure 4.4: Verification of the accuracy of the correlation for predicting the tim¢
to the start of infinite-acting flow in the outer region of a spherical,
composite reservoir.
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Figure 4.5: Effect of mobility ratio on generalized pressure derivative
responses for a spherical, composite reservoir.
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Figure 4.6: Effect of storativity ratio on generalized pressure derivative
responses for a spherical, composite reservoir.
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Figure 4.7: Effect of mobility and storativity ratio on generalized pressure
derivative responses for a spherical, composite reservoir.
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Figure 4.8: Verification of the accuracy of the correlation for predicting the
time to the start of infinite-acting flow in the outer region of a
linear, composite reservoir.
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5.0 DECLINE CURVE ANALYSIS FOR COMPOSITE RESERVOIRS

5.1 Introduction

Most well tests conducted in oil reservoirs utilize a constant flow rate at the wellbore. In
fact, much of the theory of transieat testing in oil reservoirs is based on constant-rate flow
or a series of discrete constant-rate flows (Earlougher, 1977). However. under some
testing and production conditions, a constant pressure condition at the well may be more
appropriate. The constant pressure condition exists for flowing wells where the surface
pressure is controlled. It may also arise in the later stages of a well's history, when the
well is drawn down to a constant pressure (Doe, 1991). Decline curve analysis is one form

of constant-pressure, transient-rate analysis using both short- and long-term data.

The constant pressure condition at the well may have some advantages over the constant
rate condition. For example, in low permeability reservoirs, it may be impossible to
maintain flowing well conditions at a constant rate. A constant pressure condition may be
the only recourse. Furthermore, because the wellbore is maintained at a constant pressure.
there is no transient change in storage in the wellbore. Thus, weilbore storage effects are
not a concern. Uraiet and Raghavan (1980a) cite the absence of wellbore storage in the
constant-pressure condition as one reason why a constant pressure test will be superior to a
constant rate test in interference tests whenever wellbore storage effects at the active well
influence the observation pressure response. Doe (1991) mentions the constant-pressure
condition as being well suited to injection testing, since constant-rate methods are
handicapped by requiring a knowledge of the permeability beforehand to select a rate.
Constant-rate injection is very sensitive to the rate. A rate that is too low will produce no

measurable results, while a rate that is too high may cause unintended hydraulic fracturing.
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A composite reservoir may occur during steam :njection into an oil reservoir or cold water
injection into a hot oil reservoir. Alternatively. the injection of cold water into a geothermal
reservoir to recover heat for power gencration can also create a compasite reservoir. In
these representations of a composite reservoir. the portion of the reserveir in the immediate
vicinity of the wellbore that is occupied by the injected fluid becomes the inner region.
while the uninvaded portion of the reservoir becomes the outer region. In the preceding
injection processes. the constant-pressure injection condition may be preferable to the

constant-rate injection condition.

Composite reservoirs may also be used to represent reservoirs with damaged wells (skin)
or stimulated wells (Olarewaju and Lee , 1987a). In this representation. the damaged or
stimulated zone becomes the inner region. while the rest of the reservoir is the outer region.
Olurewaju and Lee (1987a) have used production type curves from i constant-pressure
radial. composite model to forecast incremental production from the stimulation of damaged

wells.

A review of the literature on constant-pressure well testing reveals three main methods of
solving the constant-pressure inner boundary problem. The first is a numerical approach
using finite differences (Uraiet and Raghavan, 1980a and b). The second method.
presented by Cox (1979), converts constant-rate solutions into constant-pressure solutions
without using Laplace transforins. This method involves the expansion of the pressure
solution for the constant-rate condition into a pseudosteady-state form and a transient serics
of negative exponentials. The constant-pressure solution is then obtained directly from the
coefficients of the pressure expansion. The third solution scheme uses the Laplace
transform technique. The Laplace transform solutions are further divided into two groups.

In the first group, use is made of the constant-pressure inner boundary condition, together
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with the diffusivity equation and outer boundary condition, to arrive at the solution. An
example of this solution scheme, for two-region composite reservoirs. is that presented by
Olarewaju snd Lee (1987a). In the second group of Laplace transform solutions. the
constant-rate solution in Laplace space is first sought. Then, using Duharnel's principle,
the constant-rate solution is converted into a constant-pressure solution. This solution
scheme follows the development first presented by van Everdingen and Hurst (1949). In
this study. use is made of the van Everdingen and Hurst (1949) approach to convert
constant-rate solutions for two-region. composite reservoirs of various flow geometries

into the constant-pressure solutions.

This chapier presents a comparison of the injection or production performances of two-
region, composite reservoirs in radial, elliptical, linear and spherical flow geometries.
Injection or production occurs at constant pressure, while the outer boundary is considered
infinite, closed or at constant pressure. Wellbore storage effects are neglecied, since
wellbore storage does not occur during constant bottomhole pressure production or
injection. The effect of reservoir size. as well as mobility and storativity ratios, on the

production performance of the various flow geometries is investigated.

5.2 Solution Description

The composite reservoirs in this study are all considered to be made up of two regions.
Rock and fluid properties in one region of the composite reservoir are considered
homogeneous and isotropic, but different from those in the other region. The inner region
may be filled with high mobility injected fiuid, while the outer region comprises the low
mobility oil zone. This situation will be representative of ephanced recovery processes.
Alternatively. the inner region may contain low mobility injected fluid. while the outer

region is the uninvaded portion of the reservoir. This situation will be representative of



cold water injection into a hot oil reservoir or a geothermal reservoir. In vet another
scenario. the inner region could be the dumaged or stimulated zone immediately around the
wellbore. while the outer region is the oil zone. Injection into. or prediuction from. the
composite reservoir occurs at a constant pressure. The model encompisses composite

reservoirs in radial, elliptical, linear and spherical flow geometries. Schematics of the two-

region, composite reservoirs in radial. elliptical. linear and spherical flow geometries have

been presented in Chapter 2.

If a constant pressure condition is imposed at the wellbore, then the injection or production
rate must necessarily vary. Here, the flow rate versus time response for constant presstire
production or injection is of interest. Using Duhamel's principle, van Everdingen and
Hurst (1949) have shown that. in Laplace space. the constant-pressure sofution is related to

the constant-rate solution by the following:

-~ 1
gpll)= =— . (5.1)

1 ph'[)(l)

where g, is the Laplace transform of dimensionless rate, ¢, for constant pressure
production, and p,,, is the Laplace transform of the dimensionless wellbore pressure tor

constant rate production. Thus, the constant pressure solution follows easily. once the

constant rate solution is known.

In this study, the constant-rate solutions for two-region, composite reservoirs of various
flow geometries in Laplace space are generated first. Subsequently, Eq. (5.1) is used 1o
convert the constant-rate solutions into the constait-pressure solutions. Reponscs for both
the production (injection) rate and the cumulative production (injection) are generated.
These responses, which are in Laplace space, arc inverted into real space using the

numerical inversion algorithm of Stehfesi (1970).
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5.3 Comparison of Solutions

Following the approach outlined in Chapter 3, a comparison of the transient rate and
cumulative production responses for composite reservoirs in radial. elliptical. linear and
spherical geometries is sought. To facilitate a comparison of the responses, the
dimensionless rate and time values have to be normalized, as was done for the transient
pressure responses. Here again, the radial reservoir is chosen as the reference for

compaurison.

The definitions for dimensionless time for the various flow geometries are the same as in
Chapter 3. In the following. the normalized dimensionless rate and cumulative production

(injection) for cach flow geometry is presented.

5.3.1 Radial Reservoir

The dimensionless rate for the radial reservoeir is defined as:

_ g8
(//);» - 27‘(‘1/](/), _/)“'-) 0

(5.2)

where ¢(1) is the flow rate. which changes with time. All other variables are defined in the

Nomenclature.

Since the radial reservoir is the reference, the normalized dimensionless flow rate is the
dimensionless tflow rate for the radial reservoir.

4DrN = 4D (5.3)

The normalized dimensionless time for the radial reservoir is:
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/).
Iy = a (5.4
Dy T[R;,

where Rp is the dimensionless distance to the intertface or discontinuity boundary. In Eq.
(5.4). the dimensionless time for the radial reservoir was normalized by dividing it by the
area of the inner region. Ambastha (1988) and Stanislav et al. (1992) have shown that
normalizing the dimensionless time this way makes the responses independent of the size

of the inner region.

Over a given time. 1p,, the cumulative production, Qp, . for the radial reservoir. may be

defined as:

Lok
O =" 4p, dty,. (5.5)

From Egs. (5.2) through (5.5). the normalized dimensionless cumulative production for

the radial reservoir is

(27 '—‘—QL (5.6)
T D

5.3.2 Elliptical Reservoir

The dimensionless rate for the elliptical reservoir is defined as:

A comparison of Eq. {5.7) with Eq. (5.2) shows that the two equations arc the same.

Thus, the normalized dimensionless rate for the elliptical geometry remains the same
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GLeN = YD - (5.8)

The normalized dimensionless time is:

Tppn = T (5.9)
e

where &, is the elliptic distance to the discontinuity or interface.

In comparison with Eq. (5.6), the normalized dimensinnless cumulative production for the

elliptical reservoir is:

4
Cpev = —= .- (5.10)
e
5.3.3 Y.inear Reservoir

The dimensionless rate for the linear geometry is defined as:

___q(tnB
Ve = ZBI (P, =P (>-1h

Comparing Eq. (5.11) with Eq. (5.2), the normalized dimensionless rate for the linear

reservoir is:

G ey =_2_E(/1)/‘ (5.12)

The normalized dimensionless time is defined as:
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fo = Tpy <13
DN = ”nbn . (5.13)

where ap 1is the dimensionless distance to the discontinuity. while by, is the dimensionless
width of the linear, composite reservoir. Using Egs. (5.12) and (5.13), together with a
definition of Qp; analogous to Qp, (Eq. (5.5)). the normalized dimensionless cumulatve

production rate may be derived as

O =§t_(/;' (5.1

5.3.4 Spherical Reservoir

For spherical geometry, the dimensionless rate is defined as:

o g(1WE
g = 47t:(’11'.,./ 2=,

(5.15)

Once again, by comparing with the radial reservoir, the normalized dimensioniess rate for

the spherical reservoir is:

iy = 2a, 9 i (5.16)

where ap is the dimensionless distance to the discontinuity.

The normalized dimensionless time for the spherical geometry is given as:

,D\
’[).\4\'= .2 . (5.'7)
TC(ID
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For a sphernical reservorr, the normahized dimensionless cumulatuve producuon may be

given an:

2
-

Ly =— .- (5.18)
Gy 2rm,',(’

5.4 General Discussion

In the discussion that follows, the results obtained for transient flow in two-region,
composite reservoirs in radial, elliptical. linear and spherical geometries producing at a
constant pressure arc presented. The dimensionless production rate (gp) and the
dimensionless cumulative production (Qp) responses for both the infinite outer boundary
and also the closed finite outer boundary conditions are discussed. Wellbore storage and
skin effects were neglected in generating the results. After the normalization exercise
carried out in the preceding section, the only parameters that affect the transient rate
responses are the mobility ratio (M ), the storativity ratio (£ ) and the distance to the outer

boundary. if the reservoir is finite.

The transient rate responses for infinite coinposite reservoirs of the various flow geometries
arc compared first. The infinite composite reservoir situation may arise in two instances.
In the first instance. the reservoir may be physically so large that, within the testing period.
the effects of the reservoir boundaries are not felt. Alternatively, the reservoir itself may
not be very large. However, the formation may be so tight that the transients take a very

long time to reach the outer boundary.

To compare the transient rate responses for the various flow geometries. the values of M

and F are fixed. Figure 5.1 presents a comparison of the dimensionless rate responses for
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the various tlow geometrics. The figure is a log-log graph oi noimahized dimensionless
rate versus normalized dimensionless cumulative production tor A/ = 100 and F = 10,
Three transient flow regimes are apparent from the responses for the various tlow
geometries. The spherical system is less affected by the chosen values of M and F tor the
time period of interest. The three transient flow regimes describe the flow rate behavior

due to the inner region, the discontinuity. and the outer region of the various composite

resevvoirs.

Figure 5.1 shows that. at the onset of flow, the lincar reservoir shows the highest ftow
rate. This is followed by the elliptical. the radial and the spherical reservoirs, in descending
order. Using the concept of restricted entry, fluids in the linear reservoir will encounter the
least resistance to flow towards the inner boundary. Thus, it is expected that for the same
average reservoir pressure, the flow rate for the linear reservoir will be higher than that for
the spherical reservoir, which has the most resistance to flow. As time progresses, the
flow rate for all the reservoirs begins to decline gradually, with the lincar reservoir showing
the fastest decline. Just before the effect of the discontinuity begins to be felt, the flow
rates are about the same for all the geometries. Once the effect of the discontinuity is
encountered, the flow rates begin to decline sharply, with the lincar reservoir showing the
sharpest decline. During this transition period. the mobility and storativity contrasts
between the inner and outer regions of the composite reservoirs make the inner region
behave as a closed reservoir for a short period. Thus, a short pscudosteady state period 1s
encountered, during which the flow rates decline sharply. Once the fluid flow begins to be

affected by the outer region, the flow rates resume their normal rate of decline.

Figure 5.1 also shows that the dimensioniess rate responses for the radial and elliptical

reservoirs are identical after the effects of the discontinuity are felt. In Chapter 3, it was
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shown that the transient pressure derivative responses for infinitely-large, two-region.

radial and elliptical. composite reservoirs are identical, except for the inner region.

A comparison of the normalized dimensionless cumulative production responses for the
various flow geometries is shown in Fig. 5.2. Figure 5.2 shows that, except for the
spherical reservoir, the three transient flow regimes are evident from the responses for the
various flow geometries. As expected. the linear reservoir shows the highest cumulative
production at the onset of flow. With the progression of time, the cumulative production
for the other geometries increase faster, surpassing the linear reservoir by a normalized
dimensionless time (rpy ) of 20. For the chosen values of M and F. the cumulative
production response for the spherical reservoir surpasses that for the radial and elliptical

reservoirs by 1py = 50.

In the rest of this chapter, decline curves for composite reservotirs in radial elliptical. linear
and spherical flow geometries are discussed. The decline curves are obtained by generating
the transient rate responses for a closed finite outer boundary. Results for cumulative

production arc also discussed.

5.5 Decline Curve Analysis

Analysis of production decline curves presents a useful tool in forecasting the future
production from a well or reservoir. A knowledge of the future production is probably the
most important factor in the economic analysis of exploration and production expenditures.
Decline curve analysis can be used to estimate the production performance of a stimulated
well due to acidizing. A comparison of the production decline curves before and after acid
treatment will enable a determination of the technical and economic success of the

treatment.
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For homogeneous reservoirs. Ferkoviclh (1980) presented an extensive discussion of
decline curve analysis using type curves. Ferkovich (1980) showed. among other things,
how to use production decline type curves to estimate the formation tfiow capacity (k1 ) and
the porosity-compressibility (¢¢; ). For composite reservoirs, however. Qlarewaju and Lee
(1987a) have argued that the conventional homogeneous decline tvpe curves are not
appropriate. Olarewaju and Lee (1987a. b and c) have presented production decline curves
for the analysis of transient rate data from radial. composite reservoirs with a damaged or
stimulated well. Turki er al. (1989 presented rate decline and rate decline derivative type
curves for constant-pressure production in a two-region, radial. composite reservoir. They
conducted a parametric study of the effects of mobility ratio, storativity ratio and distance to
the discontinuity on the rate decline and rate decline derivative for both infinite and finite

COMPpOSsile reservoirs.

While production decline curves for radial, composite reservoirs have been presented fairly
well in the literature, the same is not case for composite reservoirs in elliptical. linear and
spherical flow geometries. In this study, a comparison of the production deciine curves
from composite reservoirs in radial, elliptical, linear and spherical flow gcometries s
presented. In addition, a detailed investigation of the effects of mobility and storativity
ratios, as wotl as the reservoir size on the transient rate responses from radial and lincar,

composite reservoirs is presented.
5.5.1 Comparison of Production Decline Curves
Figure 5.3 compares the dimensionless rate responses for composite reservoirs in radial.

elliptical, linear and spherical geometries with closed outer boundarics. The curves for the

spherical geometry do not begin at the same time as the other geometries. This is due to
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numerical instabilities in inverting the solution from Laplace space at early time. Figure 3.3
is generated for a storativity ratio of F = 1, and two mobility ratio values. M =1 und M =
10. For radial. linear and spherical composite reservoirs, the ratio of outer boundary
distance to the discontinuity boundary distance is 100. Thus. considering the different
shapes of the various geometries, the total reservoir volume is different for each geometry.
The spherical reservoir has the largest volume. followed by the radial reservoir. and then
the linear reservoir. For the elliptical reservoir. the ratio of the outer boundary elliptic
distance to the inner boundary elliptic distance ( £./& ) is 3.3. For &,/ = 3.3. the total
reservoir volume for the elliptical and radial geometries is equal. Figure 5.3, once again.
shows that the linear reserveir starts with the highest flow rate. while the spherical
reservoir has the lowest rate. In Fig. 5.3, the effect of the outer boundary is indicated by a
sharp drop in the flow rate towards zero at late times. This reflects true pseudosteady state
flow behavior. The figure shows that the effects of the outer boundary are encountered
first by the linear reservoir. This is expected. because the linear reservoir has the smallest
total volume. The next to show outer boundary effects are the radial and elliptical
reservoirs. which do so at the same time. The spherical reservoir. having the largest
volume, takes the longest time to encounter the outer boundary effects. In Fig. 5.3. the

curves for M = I and F = | represent homogeneous reservoirs.

Figure 5.4 compares the dimersionless cumulative production responses for the various
flow geometrics, for the same reservoir parameters as in Fig. 5.3. Here. outer boundary
effects are indicated by the cumulative production responses approaching asymptotic values
( i.c.. flattening out ). As expected. the linear reserveir responses flatten out first. followed
by the radial and elliptical reservoir responses. The spherical reservoir responses take the
longest time to encounter the outer boundary effects. Figure 5.4 also shows that. as
expected, the responses with higher mobility contrasts take a longer time to exhibit the

outer boundary effects than the responses with lower mobility contrasts. Focusing on the
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responses for the radial and elliptical reservoirs, Fig. 5.4 shows that for homogencous
reservoirs (M = 1. F = |). the cumulative production responses are quite different. until the
very end when outer boundary effects begin to be telt. The same observation can be made
from Fig. 5.3. For composite reservoirs (M = 10). however. the responses for the radial
and elliptical reservcirs start to become identical. once the effects of the discontinuity
boundary are felt. The next two figures present detailed comparisons of e transient rate

responses for the radial and elliptical, composite reservoirs.

The dimensionless production rates for the radial and elliptical. composite reservoirs are
compared in Fig. 5.5. The figure shows rate responses for selected mobility ratios
between 1 and 100. and for storativity ratios of 10 and 100. The rate responses for the
homogeneous reservoirs (M = 1. F = 1) are also shown in Fig. 5.5. Focusing on the rate
responses during the transition period. Fig. 5.5 shows that the higher the mobility ratio. the
sharper the drop in dimensionless production rate. From the outer region responses. it can
be seen that higher mobility and storativity ratios result in lower production rates. Higher
mobility and storativity ratios mean a higher pressure drop across the discontinuity

boundary. This results in a greater restriction of flow towards the wellbore.

Figure 5.6 compares the cumulative production responses for the radial and elliptical,
composite reservoirs. The figure shows that the responses for the 1two reservoirs are
similar for the composite reservoir responses. The homogeneous reservoir responses are
not the same. Figure 5.6 shows that the cumulative production for the elliptical reservoir is
higher than that for the radial reservoir at the onset of flow. In tact, the cumulative
production for the elliptical reservoir continues to remain higher until the effect of the
discontinuity boundary is encountered. This observation holds true for the production rate

as well (Fig. 5.5). This phenomenon is not surprising, since the elliptical reservoir
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represents a vertical fracture at the well. The flow rate to a fractured well should be higher

than that to an unfractured well.

In the following sections, a detailed sensitivity study on the effects of mobility and
storativity ratios, as well as reservoir size on the dimensionless rate and cumulative
production responses for radial and linear, composite reservoirs is presented. For brevity.

the radial and linear. composite reservoirs have been chosen as examples for discussion.

5§.5.2 Decline Curve Analysis for Radial, Composite Reservoirs

In this section, the effects of mobility and storativity ratios, and also the effect of reservoir
size on the dimensionless rate and cumulative production for a closed. radial. composite
reservoir producing at a constant pressure are discussed. Figures 5.7 and 5.8 show the
effect of mobility ratio on the normalized dimensionless rate and the normalized
dimensionless cumulative production responses, respectively. For these figures. the
storativity ratio, F, = 10. The ratio of the outer boundary distance to the discontinuity
boundary distance (r¢p/ Rp ) is 100. The transient rate responses for a homogeneous.

radial reservoir (M = 1, F = 1) are also shown for comparison.

Figures 5.7 and 5.8 show that all responses initially form one curve. This corresponds to
infinite-actig behavior in the inner region. during which time the effects of the
discontinuity boundary are not yet fet*. Once the discontinuity boundary is encountered,
the responses begin to drop sharply. Infinite-acting behavior is resumed once the transients
enter the outer region. The figures also show that, the higher the mobility ratio, the larger
the drop in rate or cumulative production. Furthermore, the responses for the higher
mobility contrasts take a longer time to show the outer boundary effects than the responses

tor lower mobility contrasts. By definition. a higher mobility ratio means that the outer
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region is tighter (less permeable) than the inner region. It stands to reason. then, that the

tighter the outer region. the longer it will take for the transients to travel to the outer

boundary.

A comparison of Fig. 5.7 with Fig. 5.8 shows that infinite-acting behavior. corresponding
to the inner region. ends sooner for the dimensionless rate ¢ Fig. 5.7) than it does for the
dimensionless cumulative produciion ( Fig. 5.8). This observation, which is found to hold
true in this study on transient rate behavior. has also been found 1o be true for transient
pressure behavior (Larsen. 1983: Aarstad. 1987). The explanation for this occurrence is
that the derivatives of a function are more sensitive to disturbances in the reservoir than is

the underlying function. Note that the dimensionless rate responses in Fig. 5.7 are the

derivatives. with respect to time. of the dimensionless cumulative production responses in

Fig. 5.8.

Figures 5.9 and 5.10 show the effect of storativity ratio on the normalized dimensionless
rate and the normalized dimensionless cumulative production responses, respectively.
These responses are generated for a fixed mobility ratio. M = 10. The other fixed
parameters are similar to those in Figs. 5.7 and 5.8. For composite reservoirs (M = 10 and
F >1 ). Figure 5.9 shows four distinct flow regimes. These are, sequentially. infinite-
acting flow in the inner region. transition flow due to the discontinuity. infinite-acting flow
in the outer region, and pseudosteady state flow due to the closed outer boundary. Figures
5.9 and 5.10 show that transient responses with higher storativity ratios encounter the outer
boundary sooner than those with lower storativity ratios. A higher storativity ratio means
that the outer region is much less compressible than if the storativity ratio were lower. It

foliows that transients will travel faster in a less compressible medium than they will in a

more compressible medium.
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A comparison of Figs 5.7 and 5.8, on the one hand, with Figs. 5.9 and 5.10. on the other,
shows that storativity ratio has less effect on the transient rate and cumulative production
responses than does mobility ratio. This observation is found to be true also for the

transient pressure derivative responses discussed in Chapter 4.

The combined effect of mot ity and storativity ratio on the normalized dimensionless rate
and the normalized dimensionless cumulative production responses is shown in Figs 5.11
and 5.12, respectively. The figures show transient responses for selected mobility ratios
between | and 100, and for storativity ratios between 1 and 100. Figure 5.11 shows four
clearly defined flow regimes for any combination of M and F. except for M = 1. Figure
5.11 could serve as a type curve for decline curve analysis of radial, compositc reservoirs.
However, such an undertaking might prove to be formidable, since Fig. 5.11 is only for

one fixed ratio of rep/Rp = 100.

Figures 5.13 and 5.14 show the effect of reservoir size on the normalized dimensionless
rate and the normalized dimensionless cumulative production responses. respectively.
These responses are generated for M = 10 and F = 10, and for selected ratios of r.p/Rp
between 50 and 1000. The infinite reservoir responses are also included for comparison.
As expected. Figs. 5.13 and 5.14 show that the larger the reservoir size, the longer it takes

for the effects of the outer boundary to be felt.

5.5.3 Decline Curve Analysis for Linear, Composite Reservoirs
Here, the effects of mobility and storativity ratios, as well as reservoir size. on the
dimensionless rate and cumulative production responses for a closed, linear, composite

reservoir with a constant-pressure inner boundary condition are discussed. Figures 5.15

and 5.16 show the effect of mobility ratio on the normalized dimensionless rate and the
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normalized dimensionless cumulative production responses. respectively.  For these
responses. the storativity ratio is fixed at 10, while the ratio of the reservoir length to the
length of the inner region (xep/up ) is 100. The transient responses are generated for
selected mobility ratios between 1 and 100. The response for a linear., homogeneous

reservoir (M = 1. F = 1) is included for comparison.

Figures 5.15 and 5.16 show that the higher the mobility ratio. the greater the deviation
from the homogeneous reservoir response. Also. responses for higher mobility ratios tend
to take longer to show the effects of the closed outer boundary than the responses with
lower mobility ratios. Furthermore, a comparison of Fig. 5.15 with Fig. 5.16 shows that,
once again, infinite-acting behavior in the inner region ends earlier for the dimensionless

flow rate response than it does for the dimensionless cumulative production response.

Figures 5.17 and 5.18 show the effect of storativity ratio on the normalized dimensionless
rate and the normalized dimensionless cumulative production responses, respectively.
These responses are generated for a fixed mobility ratio, M. = 10. Other fixed parameters
are similar to those in Figs. 5.15 and 5.16. Figures 5.17 and 5.18 show that storativity

ratio, just as the mobility ratio, has a significant effect on the transient rate and cumulative

production responses.

A comparison of Figs 5.15 and 5.16 with Figs. 5.17 and 5.18. respectively, shows that
storativity ratio has almost an identical effect on the transient rate and cumulative production
responses as mobility ratio. In fact, the responses are identical until the effect of the closed
outer boundary begins to be felt. In Chapter 4, it was shown that mobility ratio and
storativity ratio had identical effects on the transient pressure derivative responses because,

for infinitely-large, linear, composite reservoirs, the correlating parameter is MF.
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However, the above observation indicates that MF is not a correlating parameter for finite.

lincar, composite reservoirs.

The combined effect of mobility and storativity ratio on the normalized dimensionless rate
and the normalized dimensionless cumulative production responses is shown in Figs 5.19
and 5.20, respectively. The ratio, xop/ap, = 100. Transient responses are generated for
selected mobility ratios between 1 and 100, and for storativity ratios between 1 and 100. In
Fig. 5.19, the irregularity in the curve for M = 100, F = 100 is due to numerical
instabilities. and not reflective of the flow behavior. Figures 5.19 and 5.20 show clearly
that MF is not a correlating parameter for finite, linear, composite reservoirs. In these
figures, the responses for M = 10, F = 100 are different from the responses for M = 100, F
= 10, even though. for the two cases MF = 1000. Here again, Fig. 5.19 could serve as a

type curve for decline curve analysis of linear, composite reservoirs.

Figures 5.21 and 5.22 show the effect of reservoir size on the normalized dimensionless
rate and the normalized dimensinless cumulative production responses, respectively.
These responses are generated for A7 = 10 and F = 10, and for selected ratios, x.p/ap.
between 10 and 1000. The infinite reservoir responses are also included for comparison.
The figures confirm that the larger the reservoir size, the longer it takes for the effects of the
outer boundary to be felt. Figures 5.21 and 5.22 could serve as alternat.ive type curves for

matching of rate data from linear. composite reservoirs for pre-assumed values of M and F.
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Figure 5.1: Dimensionless flow rate for composite reservoirs in radial,
elliptical, linear and spherical geometries producing at a
constant pressure.
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Figure 5.2: Dimensionless cumulative production for composite reservoirs
in radial, elliptical, linear and spherical geometries producing
at a corstant pressure.
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Figure 5.3: Dimensionless rate responses for closed radial, elliptical, linear and
spherical, composite reservoirs producing at a constant pressure.
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Figure 5.4: Cumulative production responses for closed radial, elliptical, linear
and spherical, composite reservoirs producing at a constant pressure.
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Figure 5.5: Comparison of dimensionless rate responses for closed radial and
elliptical composite reservoirs producing at a constant pressure.
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Figure 5.7: Effect of mobility ratio on dimensionless rate responses for a
closed, radial, composite reservoir producing at a constant pressure.
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Figure 5.8: Effect of mobility ratio on cumulative production responses for a
closed. radial. composite reservoir producing at a constant pressure
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Figure 5.9: Effect of storativity ratio on dimensionless rate responses for a
closed, radial, composite reservoir producing at a constant pressure.
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Figure 5.11: Effect of mobility and storativity ratio on dimensionless rate
responses for a closed, radial, composite reservoir producing
at a constant pressure.
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Figure 5.13: Effect of reservoir size on dimensionless rate responscs fora
closed, radial, composite reservoir producing at a constant pressure.
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Figure 5.14: Effect of reservoir size on cumulative production responses for a
closed, radial, composite reservoir producing at a constant pressure.
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Figure 5.16: Effect of mobility ratio on dimensionless cumulative production

responses for a closed, linear, composite reservoir producing at a
constant pressure.
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Figure 5.17: Effect of storativity ratio on dimensionless rate responses fora
closed, linear, composite reservoir producing at a constant pressure
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Figure 5.18: Effect of storativity ratio on dimensionless cumulative production

responses for a closed, linear, composite reservoir producing at a
constant pressure.
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Figure 5.19: Effect of mobility and storativity ratio on dimensionless rate

responses for a closed, linear, composite reservoir producing
at a constant pressure.
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Figure 5.20: Effect of mobility and storativity ratio on dimensionless cumulative
production responses for a closed, linear, composite reservoir

producing at a constant pressure.
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Figure 5.21: Effect of reservoir size on dimensionless rate responses fora
closed, linear, composite reservoir producing at a constant pressurce.
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Figure 5.22: Effect of reservoir size on cumulative production responses for a
closed, linear, composite reservoir producing at a constant pressurc.
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6.0 THREE-REGION, COMPOSITE RESERVOIR WITH POWER-
LAW VARIATION IN PROPERTIES

6.1 Introduction

Most of the composite reservoir models used to analyze thermal recovery well-test data
consist of two regions with different, but uniform, reservoir and fluid properties, separated
by a sharp interface. In reality, the interface separating the two regions is not sharp.
Instead, there is an intermediate region between the inner and outer regions. which is

characterized by a rapid decline in mobility and storativity.

The quest to improve on the two-region, composite models. has led to the development of
three-region, composite reservoir models (Onyekonwu and Ramey. 1986: Barua and
Horne, 1987; and Ambastha and Ramey, 1992). In these models, the intermediate region
is represented by a uniform set of mobility and storativity values that lie (in magnitude)

between those in the inner region and the outer region.

To represent secondary recovery processes more realistically, analytical multi-region.
composite reservoir models have been proposed (Nanba and Horne. 1989 Abbaszadeh-
Dehghani and Kamal, 1989; Bratvold and Horne, 1990). In these studies, analytical
multi-region, composite reservoir models were used to analyze injection and pressure
falloff test data following cold water injection, to yield estimates of temperature-dependent
mobilities in the flooded and uninvaded regions. as well as oil and water relative
permeabilities. Acosta and Ambastha (1994) have used a multi-region. composite reservoir
model to study the effect of various trends of mobility and storativity variations on thermal
recovery well test data. Multi-region, composite reservoir models are made up of more

than three regions. The regions between the first and the last make up the intermediate
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region. The intermediate region is represented by a series of mobility and storativity values

that decrease as some step function of distance from the wellbore.

In recent years. a number of analytical models for the pressure transient behavior of
heterogeneous reservoirs have appeared. where the concept of fractal geometry has been
used to describe a fracture network (Chang and Yortsos. 1990: Beier. 1994 Acuia et al..
1995). Similar analytical models for constant pressure injection or production have been
presented by Barker (1988) and Doe (1991). The concept of tractal geometry suggesis that
structures which appear to be completely random cun be described within a mathematical

framework.

Extending t..e concept of fractal geometry to composite reservoirs. Chakrabarty (1993)
presented a two-region, composite reservoir model, where the inner region was assigned a
fractal property. while the outer region was homogeneous. The fractal inner region was
characterized by declining porosity and permeability. with distance from the wellbore. in a
power law relationship. Using semilog pressure derivative responscs. Chakrabariyv (1993)
presented a sensitivity study of the model to parameters. sisch as the size of the inner

region, the permeability ratio and the mass fractal dimension.

Recently. Poon (1995) has proposed an infinite two-region. radial. composite reservoir
model for thermal recovery processes. In this model, the outer region (oil bank) is
assigned a fractal property to represent the rapid decline of diffusivity, due to the rapid
decline in temperature, ahead of the flood front. The diffusivity in the inner region is
constant, while the diffusivity in the outer region decrcases in a power law relationship
with distance. Poon (1995) reported that it was not possible to develop a second semilog
straight line corresponding to infinite-acting flow in the outer region. since the rock and

fluid properties in the oil bunk were not constant (in his model). In reality, however, u
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reservoir undergoing thermal recovery is most likely to have three regions. The inner
region. which is filled with the injected fluid can be considered homogeneous. with
constant mobility and storativity. The intermediate region, which is characterized by
rapidly declining temperature, may be assigned a power law variation of properties with
distance. The third (outer) region. which is full of cold oil. can be considered
homogeneous also, with constant mobility and storativity values that are less than those in

the inner region.

This chapter presents an analytical solution for the pressure transient behavior of a three-
region, radial, composite reservoir, with a power law variation of properties in the
intermediate region. Mobility and storativity in the intermediate region decrease as power
law functions of the radial distance from the first discontinuity boundary. This
representation of thermal recovery processes is more realistic than the sharp front
idealization of the traditional two- and three-region. composite reservoir models. It is also
an improvement over the two-region. fractal. composite reservoir model presented by Poon
(1995). because the model presented in this chapter allows for a homogeneous outer
region. The effects of the conductivity indices or fractal exponents and the size of the
intermediate region on the transient semi-log and Cartesian pressure derivative responses

are investigated.

Figure 6.1 shows a schematic of a three-region, radial, composite reservoir. The outer
region is considered to be infinite in extent. The variables R; and R are the inner and
intermediate region radii, respectively. The intermediate region is characterized by a rapid
decline in fluid and rock properties. To make the model more general, mobility and
storativity are allowed to vary with different exponents, 8; and 6>, respectively, in a power
law fashion. Figures 6.2 and 6.3 show the mobility and storativity profiles, respectively.

for a three-region. radial. composite reservoir. The discontinuities in the mobility and



storativity profiles at Ry and R> are included to make the model more general. A choice of
Mi12=1 and M>; = 1 removes the discontinuities in the mobility profile. while a choice of
F;>=1and F>:=1 does the same for the storativity. Wellbore storage and skin etfects are
included. since these effects are observed in most practical well test data. The constant-rate
solution in Laplace space is developed first. Subsequently. the wellbove storage and skin
effects are added to the constant-rate solution in Laplace space using a method proposed by

van Everdingen and Hurst. (1949),

Other assumptions are:

1. The formation is horizontal and of uniform thickness.

2.  The fronts are of infinitesimal thickness. and are considered stationary throughout the

test period.

3.  Laminar flow of a single phase fluid with slight. but constant, compressibility occurs
in each region. In the intermediate region. the porosity-total compressibility product
changes with distance in a power law fashion.

4.  Gravity and capillarity effects are negligible.
6.2 Mathematical Development

For fluid flow in a three-region, radial, composite reservoir with a power law variation of
mobility and storativity in the interrnediate region. the dimensionless diffusivity equations

are given by:

9Py, + 1 dpy, - P,

; for raps<r,<lI. (6.1)
ar;, r, or, Jr,, ! P
IPp: (1m0 _ (90 WP for 1<r,<Rp,. (6.2)
a/‘;) ’/) d/.,) = d,[)
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where 6 and 6> are the scaling or spectral exponents in the power law equations for
mobility and storativity. respectively. A detailed derivation of Eq. (6.2) and its solution is

presented in Appendix B.

)Py s + 1 dpys » Iy =
- 2 k}
ar;, r, dr, : dt,,

for RD.’ S"[) < oo, (6.3)

Initial conditions:

In dimensionless form. the initial conditions for the tirree regions are:

/’1.,(",,'()) =0. (6.4)
p,(r,.0) =0 and (6.5)
p,“(rh.()) =0. (6.6)

Inner boundary condition:

Since flow is laminar. and the rate is constant at the inner boundary (well). Darcy’s law is
applicable. Neglecting the wellbore storage effect for the moment, this condition is

represented as:

ap,,
(r,,—a/—:,’/—)‘},l,:,m =-1. (6.7)
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Also. since skin effects are neglected for the development of the bavic solution. the

dimensionless wellbore pressure is:
p_=p for r,=ryp. (6.8)
Conditions at the discontinuities:

At the discontinuities. rp, =1 and R ). it is required that pressures and flow rvates be

continuous as fluid moves from one region to the next. These conditions are expressed as:

p =p at rp=1 and (6.9)

D1 D2

a/)/): _M a/lll_

o, e atrp=1. 6.10
ar, =M, D (6.10)
ph: = pn_; at r,= Rn: and (6.11)
Ql)L:A/’w_a/—}l)_:‘ at r =R L. ((312)
al'[) <2 a/'/} n n:

Outer boundary condition:

The outer boundary is considered to be infinite in extent. This condition is represented as:

Ppal(rp. 1y by = 0. (6.13)

The dimensionless variables used in the above equations are defined as follows:
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= (p,=p)
P aBI, P=n
27k,
» = (p — p.
pl)_ (/Bpl I: /-)
2nk,h
n = ()'— v
P BI, ] i)
Ankh
) = ( 7’ - )n )
Pu =g (P
’ =& 1
7 (q)“(,/ /\) .
F"=/¢(',//(¢(",}~ ill)‘D=],
M. = e atrp = 1.
B k),
), -
®..= o atrp = 1.
_ (kjoue, )
" (k/ouc, ),
M, = (k/'u L at rp = Rp>.
(kjp)
e
7, T’l
,.ll
,.nl) = —A—’;'
, R
R, =—A’—
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(6.14)

(6.15)

(6.16)

(6.17)

(6.18)

(6.19)

(6.20)

(6.21)



A solution of Eqgs. (6.1). (6.2) and (6.3), subject to the appropriate initial and boundars
conditions (Eqs. (6.4) through (6.13)). is carried out in Laplace space. The dimensionless

pressures in Laplace space for the three regions are given in terms of Bessel functions as:

Podrp )= AL r, A1+ ALK (1) for  ryp<r,si. (6.27)
Pty i= Al (2 )+ A b K (5 for I <r, <R . (6.28)
Pl rpd )= Ady(rp 000+ AK (5, ©,]) for  Rp:Srp < e (6.29)

where / is the transformed time variable in Laplace space.

Other variables introduced in Eq. (6.28) are:

y= %. (6.30)
=22 (6.31)
”'=61—32+2" (6.32)
From Eq. (6.8). the dimensionless wellbore pressure in Laplace space is:

Pl ripd)=AL(r, NI)+AK (r,,NT). (6.34)
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The constants A, through A, are obtained by solving the system of equations resulting from

the use of the boundary condition equations (Egs. (6.7) and (6.9) through (6.13)) n

Laplace space.

Using Eq. (6.7): U A +OLA, =% (6.23)
Using Eq. (6.9): 0,A +0 A +0.: A +0 A, =0 (6.36)
Using Eq. (6.10): O A + 0 A, +00A +0,A, =0 (6.37)
Using Eq. (6.11): U A+ O A O A+ 0 A =0 (6.38)
Using Eq. (6.12): U A; + 0 A, + 0L A+ O A, =0 (6.39)
Using Eq. 16.13): sy + U A, =0 (6.40}
The cocfficients. oy, are defined as follows:

o =—r, NI L, ,NT). (6.41)
o = r,,,,x/? A’;(/',,,)\/?/. (6.42)
o = /.(\N7). (6.43)
o= K77 (6.44)
o, =-/(8). (6.45)
a . =-K.r3). (6.46)
o= — ML\ ). (6.47)
o= M NI K. (6.48)



o..=Y/rS)+BSIrZ. (6.4

o..=YK.(E)+BSK(E/. (6.50)
oty = REL(ER)). (6.51)
o, = R}.K (ERE,). (6.52)
Oy = - K('(Rl»:\!'m)- (6.53)
Oz = —M:JYR;{,;]]\.(’;R?): )+ B&RZ)EB"IJ(éR}’,: 1} (6.54)
o, = =My IYRI KGR, )+ BERI T KU(ER), L. (6.55)
Oy = -0 JK (R0, ). (6.56)

The remaining o.'s are set to zero upon considering the implications of the infinite outer

boundary condition (Eq. (6.13)).

Since 1_(,(:-,,\W)—> oo as r, —eo. a bounded solution for p,, .(r, —ec.l) can be
obtained from Eq. (6.29) only if A5 = 0. Consequently. 035, Uss and O, in Egs. (6.38).

(6.39) and (6.40). respectively, are set to zero. Also o, drops out since

K,(r,Nol)— 0 as r,— o, in Eg. (6.29). Thus:
Oy =0 =0,.=0,=0. (6.57)

To obtain the dimensionless wellbore pressure, and also the pressure derivative. Fq. (6.34)
is inverted numerically from L.aplace space into real space using the Stehfest (1970,

algorithm.
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Wellbore Storage and SKkin:

The solutions pres—nted so far do not account for wellbore storage or skin effect. To add

these effects, new boundary conditions are imposed at the well. The presence of skin at the

well is represented as:

9,
LPon =P~ ‘S( 7 a,;‘ J

In Eq. (6.58). S is the skin factor defined as:
_2nk A

S= Ap,,
B

where Apy is the pressure drop due to skin damage.

The wellbore storage condition is represented as:

a/)n/l . a/)/ll —
2 T B

=l

The dimensionless wellbore storage constant. Cp, in Eq. (6.60) is defined as:

_ C
2RU(0c, LR

Ve

where C is the wellbore storage coefficient.

(6.58)

(6.59)

(6.60)

(6.61)

To include the skin and wellbore storage effects in the solution already presented, van

Everdingen and Hursr (1949) developed the problem as a convolution integral. This was

solved to yield the dimensionless wellbore pressure including skin and wellbore storage as:



_ [/ +5]
I)= ]
P.o(l) {1+ Cl[Ipn+5]/ (6.62)

where 7, is the dimensionless wellbore pressure in Laplace space without wellbore storage
or skin effect. Appendix C presents the computer program for the analytical solution

developed in this section.
6.3 Verification of Solution

The analytical solution presented in the preceding section was verified against other works
in the literature which can be considered subsets of this study. If the spectral exponents.
6; and 6>, are set to zero, then the model presented in this chapter is identical to the threc-
region, composite reservoir solution presented by Ambastha (1988). Figure 6.4 presents a
comparison of the semi-log pressure derivative responses generated from this study with
those from Fig. 6.46 of Ambastha (1988). Figure 6.4 shows an excellent match between

the two responses, for different mobility ratios (M2 ) between the first and the intermediate

regions.

The model response is also compared with the response from a two-region. composite
reservoir solution presented by Ambastha (1988). To convert the three-regior. counposite
reservoir model of this study into a two-region. composite reservoir. Rpys i~ gl to
unity. Again, 8; and 6> are set to zero. Figure 6.5 shows a comparisa: of S semi-log
pressure derivative responses generated from this model with similar respoases from Fig.
6.3 cf Ambastha (1588), which was used to show the effect of storativity ratio on the semi-
log pressure derivative response for a two-region, composite reservoir. Other parameter
values used in this model to generate the responses for comparison are shown on Fig. 6.5.

Figure 6.5 shows an excellent agreement between the two sets of responses.
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Further verification of the model presented in this chapter is carried out by comparing it
with the solution presented by Poon (1995). which is for an infinitely-large, two-region.
radial. composite reservoir, with a fructal outer region. To generate the two-region,
composite reservoir response of Poon (1995), using the solution in this study, the
dimensionless wellbore radius (r,,.p ) and the first dimensionless discontinuity radius (Rp;
) are both set equal to 1. The second dimensionless discontinuity radius. Xp>. = 100.
Figure 6.6 shows a comparison of dimensionless wellbore pressure response using the
model from this chapter with results from Fig. 2 of Poon (1995). For this comparison. 8;
and 6> should be equal to 2. However, for 8> equal to 2 (in this model), the order of the
mudified Bessel functions needed in generating the solution is either indeterminate or unity.
The modified Bessel functions are required to have fractional order. For the responses in
Fig. 6.6, the spectral exponents, 8; and 0> are 2 and 1.99. respectively. The figure
shows a very good match between the two results, for different dimensionless wellbore

storage constants. Thus, the solution presented in this studv can be considered validated.

6.4 Results and Discussion

For an infinitely-large. three-region radinl. composite reservoir. Ambastha (1988) has
shown that the parameters that affect the pressure behavior are M;>, M;3. Fi2. F;3. Rpy.
and Rp>. However. when the intermediate region properties are allowed to vary in a power
law fashion. then the spectral exponents for mobility and storativity. @; and 0, are
introduced. Ambastha (1988), and Ambastha and Ramey (1992) have presented
exhaustive discussions on the effect of the above parameters (except 8; and €>) on the
semi-log pressure derivative responses for three-region composite reservoirs. The effects
of these parameters on the responses generated in this study will not be discussed. since

they are largely the same as presented by Ambastha (1988), and Ambastha and Ramey
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(1992). However. the effect of R>/R; will be discussed in the presence of power law
variation of reservoir and fluid properties in the intermediate region. This will be tollowed

by a discussion of the effects of the spectral exponents. 8; and 6-.
6.4.1 Effect of Intermediate Region Size

Figures 6.7 and 6.8 show the effect of the intermediate region size on the dimensionless
semi-log and Cartesian pressure derivative responses. respectively. tor a three-region,
radial. composite reservoir with power law property variation in the intermediate region.
The parameters 6; and 0> are set equal to unity. The responses shown in Figs. 6.7 and
6.8 are for selected R»/R; ratios of 1.1, 2. 3.4 and 5. Other parameters are as given on the
figures. Fig. 6.7 shows that. at early times. all semi-log pressure derivative responses
form one curve, with a constant value of 0.5. This indicates infinite-acting radial flow
corresponding to the inner region mobility. During this time. the effect of the radial
discontinuities have not yet been felt. At intermediate times. all cases show a sharp rise,
due to changing mobility and storativity in the intermediate region. At this time, the
responses are ditfferent for the different sizes of the intermediate region. Each response
goes through a maximum value before approaching a constant value of My /2 in the outer
region. For the set of parameter values used, Fig. 6.7 shows that the parameter R>/R; has
a significant effect on the magnitude of the maximum derivative. However, Ry/R; values
up to 5 have only a mild effect on the time to the maximum semi-log derivative, and no
noticeable effect on the time to the beginning of infinite-acting radial flow corresponding 10
the outer region mobility. The effect of R2/R; on the semi-log derivative responses shown
in Fig. 6.7 is consistent with the efiect of R2/R; on the semi-log derivative responses for a
three-region, composite reservoir with uniform mobility and storativity in the intermediate

region (Ambastha, 1988) for Fjp 2 1.



Figure 6.7 also shows that the response for R2/R; = 1.1 indicates a unit-slope line during
the first half of the transition region. For other cases of R2/R; . the slope decreases further
from unity as R>/R; increases. A unit-slope line on a log-log graph of semi-log pressure
derivative versus time during the transition period implies pseudosteady state behavior due
to mobility and/or storativity contrasts. Thus, as Ry/R; increases. pseudosteady state
behavior becomes less noticeable. This suggests that analysis of well-test data during the
transition region will yield increasingly overestimated values of R;. as the size of the
intermediate region increases. The above observation is also similar to the effect of R2/R;
on the semi-log pressure derivative responses for a three-region. composite reservoir with

uniform mobility and storativity in the intermediate region presented by Ambastha (1988).

Figure 6.8 shows the effect of the intermediate region size on the Cartesian pressure
derivative responses for a three-region, composite reservoir with power law variation of
mobility and storativity in the intermediate region. At early times, all the responses form
one curve with a slope of -1. which is indicative of infinite-acting radial flow
corresponding to the inner region mobility. At intermediate times. the responses become
different. reflecting the differences in the size of the intermediate region. At late times. the
responses form one curve again with a slope of -1, indicating infinite-acting radial flow
corresponding to the outer region mobility. Figure 6.8 also shows that at intermediate
times. the Cartesian pressure derivative responses begin to flatten out approaching zero-
slope. A zero-slope on the graph of Cartesian pressure derivative versus time indicates
pseudosteady state behavior due to mobility and storativity contrasts. For pseudosteady
state flow corresponding to the inner region, the Cartesian pressure derivative is 2%.
Figure 6.8 shows that only the response for R>/R; = 1.1 indicates pseudosteady state
behavior during the early part of the transition period. For R>/R; = 2 through 5. the
Cartesian pressure derivative responses in the transition region all fall below 2n. Thus, for

the selected parameters, well-test data for R>/R; = 2 through 5 will yvield overestimated



values of the inner region volume. if analyzed using the pseudosteady state method.
Ambastha (1988) has presented equations for effective Cartesian pressure derivative and
effective time based on average reservoir and fluid properties in the intermediate region.
Ambastha (1988) showed that the pseudosteady state method would vield the front radius
R>, if effective properties are used to analyze the data. It should be noted that the use of
effective properties may still yield slightly overestimated values of R> as the size of the
intermediate region increases (Ambastha, 1988). Though not considered in this study. an
effort should be made to modify the equations for effective properties presented by
Ambastha (1988) to accouint for varying mobility and storativity in the intermediate region.

so as to mazke them applicable to the model presented in this study.
6.4.2 Effect of Spectral Exponents

Gefen et al. (1983) have shown that. for a permeable network with fractal properties. the
hydraulic diffusivity is governed by a powe: law relation with distance. This is given as:

A, -4

(W_} ~ 7 (6.63)

where @1is the fractal or spectral exponent of the power law relation.

The parameter, 0. is related to the topology of the permeable network, and is generally
positive. Beier (1994) notes that the value of 8 for petroleum reservoirs has not yet been

established. For non-composite, heterogeneous reservoirs, Chang and Yortsos (1990)

have shown that the value of 8 can be estimated from the slope of a log-log graph of

wellbore pressure drop versus time. This follows from the long-time approximate solution

for the pressure behavior of a fractal reservoir given as:
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ap, = Cr* (6.64)

where C; is a4 constant related to the flow geometry characteristic of the reservoir.

Poon (1995) has conducted a sensitivity study on the effect of 8 on the pressure behavior
of a two-region. composite reservoir. From the results, Poon (1995) concludes that. for all
practical purposcs, the value of 6 should be less than 4. However. this study has found
that practical values of 6 depend on the reference distance from where the properties begin
to vary in a power law relationship with distance. Moreover. mobility and storativity need
not vary with the sume spectral exponent. Mobility and storativity can vary independently
with different spectral exponents. Thus, instead of one value of 8 for diffusivity, one

should consider two values. 8; and 8>. for mobility and storativity. respectively.

Figures 6.9 and 6.10 present mobility and storativity profiles, respectively. for a three-
region, radial. composite reservoir representative of a thermal recovery process. The first
and mtermediate dimensionless discontinuity radii are 1 and 5, respectively. In the inner
and outer regions. the mobility and storativity are constant. However. in the intermediate
region. the mobility and storativity begin to drop. The rate of decline of mobility and
storativity in the intermediate region depends on the value of the spectral exponent. From
Fig. 6.9. for an intermediate region discontinuity radius of 5. 8; cannot exceed 2.86 for
the assunied mobility ratio values M2 and M;3. For 6; > 2.86, the mobility at the end of
the intermediate region will be less than the mobility in the outer region, which is not

physically possible for a thermal recovery process.

Figure 6.10 shows that the restrictions on the practical values of 8; for mobiiity variation

also apply to 82 for storativity variation. In addition. 8> cannot be equal to 2. This



follows frorm the mathematics of the problem. as evidenced from examining Eq. (60.32) for
the variable. v. The variable. v. defines the order of the maodificd Bessel functions., which
has to be a fraction. Equation (6.32) shows that for 8>= 2, v is cither indeterminate tor
€1 =0 or equal to unity for non-zero ;. Thus. practical values of 8; and 6> for a three-
region. radial. composite reservoir will depend on the size of the intermediate region. and
on specific values of M > M3 F>. and Fj; The effects of 6; and 6> on the scmi-log
and Cartesian pressure derivative responses for a three-region. radial. composite reservoir

are now discussed.

Figures 6.11 and 6.12 show the effect of 8; on the dimensionless semi-log and Cartesian
pressure derivative responses, respectively, from an infinitely-large. three-region. radial,
composite reservoir. Responses are presented for selected values of 8; between 0 and 2,
while 62is fixed at 1. Other parameters are shown on the figures. As expected. Fig. 6.11
shows that all semi-log pressure derivative responses form one curve at carly times,
indicating infinite-aciing radial flow corresponding to the inner region mobility. During the
transition region that follows, due to mobility and storativity contrasts. the semi-log
pressure derivative responses begin to separate, forming distinct curves at about the middle
of the transition period. Towards the end of the transition period, the responses for the
different cases of 6; tend toward one curve again. All responses go through maximums at
about the same time before approaching a constant value of M;3/2. Figure 6.11 shows that
6, affects the semi-log pressure derivative response only mildly, and this occurs during

the middle of the transition period.

Figure 6.12 shows the effect of 8; on the Cartesian pressure derivative responses. At
early times, the responses of all cases form one curve with a slope of -1, indicating infinite-
acting radial flow corresponding to the inner region mobility. During the transition period,

the responses start to flatten out, indicating an approach to pseudosteady state behavior.
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Figure 6.12, however, suggests that none of the responses reaches pseudosteady state.
This is shown by the fact that all responses during the transition period fall below 2.
Figure 6.12 also shows that the higher the value of 8; , the closer the transition region
Cuartesian derivatives approach 2n. Thus, while all cases will yield overestimated values of
R}, the overestimation will be less for higher values of ;. Higher values of 8; imply
larger drops in the mobility of the intermediate region. Also, the higher the mobility

contrast, the greater the chance of observing pseudosteady state behavior.

The effects of the spectral exponent for storativity. 8>, on the semi-log and Cartesian
pressure derivative responses are shown in Figs. 6.13 and 6.14, respectively. The
responses are generated for selected values of 82 from O to 1.99. The mobility spectral
exponent, 8, is 1. Figure 6.13 shows the usual early-time flattening of the semi-log
pressure dertvative response, indicative of infinite-acting, radial flow corresponding to the
inner region mobility. During the transition period, the responses for the various cases of
6> begin to separate. Each derivative response goes through a maximum at a slightly
different time before approaching a constant value of M;3/2 for the outer region mobility.
The magnitude of the maximum derivative is only mildly affected by 6>. Figure 6.13
shows that 8> has a significant effect on the transition region derivative responses. The
larger the value of 63. the closer the derivative response during the tra;nsition period
approaches a unit-slope. 8> also affects the time to the start of infinite-acting, radial flow

corresponding to the outer region mobility.

When Fig. 6.13 is compared with Fig. 6.11, one can see that €7 tends to have a greater
effect on the semilog derivative responses than 8;. Thus, for the same spectral exponents,
the changing storativity influences the derivative response more than the changing mobility.

An examination of Eq. (6.32) might offer an explanation as to why this is so. Equation
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(6.32) shows that while 8; appears in both the numerator and denominator, 65 only

appears in the denominator. Thus. 8> will affect the value of v more than 8; will.

Figure 6.14 shows the effect of 82 on the Cartesian pressure derivative responses tor a
three-region. radial composite reservoir. The figure shows that the transition region
derivative responses for all cases fall below 2rt. Thus, well-test data analvysis for any of
these cases will yield overestimated values of R;. However. the overestimation will be less

for larger values of 6-.

Figures 6.15 and 6.16 show the effect of equal values of @ and 6> on the semi-tog and
Cartesian pressure derivative responses, respectively. The responses have been generated
for selected equal values of 8; and 8> between 0 and 1.99. Other reservoir parameters are
shown on the figures. A comparison of Figs. 6.13 and 6.14 with Figs. 6.15 and 6.16.
respectively, shows that the derivative responses are almost identical. This scems to
suggest that the effect of the changing storativity overwhelms the effect of the changing

mobility. This might be expected in view of Eq. (6.32).
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Figure 6.1: Schematic of an infinite three-region, radial, composite reservoir.
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Figure 6.2:  Schematic of mobility variation with distance for a three-region, radial,
comjosite reservoir.
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Figure 6.3:  Schematic of storativity variation with distance for a three-region. radial.
composite reservoir.
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Figure 6.4: Comparison of this study with Fig. 6.46 of Ambastha (1988)
for an infinitely-large, thre:-region. composite reservoir.
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Figure 6.5: Comparison of this study with Figure 6.3 of Ambastha (1988)
for an infinitely-large. two-region, composite reservoir.
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Figure 6.6: Comparison of this study with Fig. 2 of Poon (1995) for an
infinitely large, two-region, radial, composite reservoir with a
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Figure 6.7: Effect of Rz/Rlon the semi-log pressure derivative response for an

infinitely-large, three-region, composite reservoir with power law
property variation.
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Figure 6.8: Effectof R, /R1 on the Cartesian pressure derivative response
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power law property variation.
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Figure 6.10:

Storativity profile for an infinitely-large, three-region, radial,
composite reservoir with power law variation in the
intermediate region.
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Figure 6.11: Effect of 6, on the semi-log pressure derivative response for an
infinitely-large, three-region, composite reservoir with power law

property variation.
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Figure 6.13: Effect of 6, on the semi-log pressure derivative response for an

infinitely-large, three-region, composite reservoir wi.th power law
property variation.
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Figure 6.14: Effect of 8, on the Cartesian pressure derivative response for an

infinitely-large, three-region, composite reservoir with power law
property variation.
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Figure 6.15: Effect of equal variations of mobility and storativity on the semi-loy
pressure derivative response for an infinitely-large, three-region,
composite reservoir.
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Figure 6.16: Effect of equal variations of mobility and storativity on the Cartesian
pressure derivative response for an infinitely-large, three-region,
composite reservoir.
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7.0 DISCUSSION, CONCLUSIONS, AND RECOMMENDATIONS

7.1 Discussion

This study has presented analytical solutions for two-region. composite reservoirs in radial.
elliptical, linear and spherical flow geometries. Both constant-rate and constant-pressure
inner boundary conditions have been included. The outer boundary could be infinite or
finite, with both closed and constant-pressure conditions. These solutions also include
wellbore storage and skin effecis, which are found in most practical well-test data. The
ultimate goal has been to present a comprehensive study of the transient pressure and rate
behavior of composite reservoirs with various flow geometries. A new analytical model
for a three-region, composite reservoir with power law property variation in the
intermediate region has been presented. The effects of mobility and storativity gradients in
the intermediate region on the transient pressure behavior of three-region, composite

reservoirs have also been investigated.

Numerous situations exist where a reservoir may not be considered homogeneous.
Enhanced oil recovery operations often lead to a situation where the reservoir has a high
mobility fluid bank in the immediate vicinity of the wellbore. Alternatively, processes such
as the injection of cold water into a hot oil reservoir, or the injection of cold water into a
geothermal reservoir to recover energy for power generation, may create a situation where a
low mobility fluid bank surrounds the wellbore. Primary recovery processes may have a
situation where a portion of the reservoir in the immediate vicinity of the wellbore may have
been damaged (lower permeability) during drilling, or may have been stimulated (higher
permeability) due to acidization. In all the above situations, the reservoir may be

represented as a composite reservoir with two or more discontinuous regions.
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The shape of composite reservoirs has mostly been assumed to be radial. However.
several situations have been mentioned where the geometry of the reservoir may be
elliptical. linear or spherical. While analytical solutions for two-region. composite
reser oirs in radial, elliptical. linear and spherical geometries are available in the literature.
no attempt has been made to compare the transient pressure and rate behavior of composite
reservoirs in the various flow geometries. This study seeks to fill this void. among other
things. To facilitate comparison of transient pressure and race responses for radial,
elliptical. linear and spherical flow geometries on an equal footing. normalizing factors
have been developed using the radial composite reservoir as the reference. To the best of
my knowledge. this is the first time these normalizing factors have appeared in the

literature.

The analytical solutions presented in this study have been used to investigate the effect of
mobility and storativity ratios on the estimation of the swept (inner region) volume for
composite reservoirs in the various fiow geometries using the pscudosteady state method.
Conditions for the occurrence of pseudosteady state period of a reasonable duration for the
various flow geometries have been established and compared. Results from this study
confirm that the pseudosteady state method is indeed independent of the gcometry of the
reservoir for regularly-shaped fronts. However, the duration of pseudosteady state period

may be different for different geometries, even if the mobility and storativity ratios are the

same.

Equations for a generalized pressure derivative analysis of well-test data from composite
reservoirs have been developed to enable easier identification of the principal flow regimes
for the various flow geometries. New design and analysis equations based on the

generalized pressure derivative for spherical and linear flow geometrics have bheen



developed and compared with those for radial and elliptical flow geometries. Together.
these new analysis and design equations constitute a significant addition to well test
analysis methods for composite reservoirs. Reservoir parameters estimated using these
equations will increase the degree of confidence in the estimated parameters based on

pressure analysis.

A comparison of the production performances of two region, composite reservoirs for the
various flow geometries has been carried out. Transient rate and cumulative production
responses for both infinite and closed. finite reservoirs for the various flow geometries
have been discussed and possible type curves for decline curve analysis of radial and
linear, composite reservoirs have been presented. Possible applications of this model to
computerized integrated analysis of well-test data from composite reservoir testing have

been mentioned.

Finally, a new analytical madel for the transient pressure behavior of a three-region,
composite reservoir with a power law variation of mobility and storativity in the
intermediate region has been presented. This model, which accounts for smooth changes
in mobility and storativity ahead of the flood front in thermal recovery processes. should
serve as an improvement over the sharp-front idealization of the composite reservoir model

currcntly available.

7.2 Conclusions

This study has compared the transient pressure and rate responses for two-region
composite reservoirs in radial, elliptical, linear and spherical flow geometries. Among

other things. the objectives have been to investigate the effect of mobility and storativity



ratios on the transient pressure and rie responses. as well as, to develop additional design

and analysis equations for well-test interpretation of composite reservoir well-test data.

The effects of mobility and storativity gradients in the intermediate region on the transient

pressure behavior of three-region composite reservoirs have also been investigated. The

following conclusions may be drawn from various aspects of this study:

Pseudosteady State Method for Composite Reservoirs

|8

Normalizing factors that enable comparison of solutions for composite reservoirs in

radial, elliptical, linear and spherical flow geometries have been presented.

Time criteria for the start and end of the pseudosteady state flow period for cach flow
geometry. as functions of mobility and storativity ratios, have been developed to

enable the correct choice of the pseudosteady state Cartesian straight line.

For the same mobility and storativity ratios, linear flow geometry results in the
longest pseudosteady state period. and spherical flow geometry yields the shortest
pseudosteady state period. The radial and elliptical flow geometries show the sume

duration of pseudosteady state.

The pressure derivative responses for composite reservoirs in radial and cllipucal

flow geometries are identical, except for the early-time inner region behavior.

The conditions under which a pseudosteady state period of reasonable duration
occurs for each of ihe flow geometries have been established. Taese criteria will be

of help in determining when the pseudosteady state method will be appropriate for the



estimation of swept volumes for thermal recovery projects under various reservoir

situations.

Generalized Pressure Derivative Analysis

19

Well-test analysis equations based on the generalized pressure derivative have been
presented for composite reservoirs in various flow geometries. Reservoir parameters
estimated using these equations will increase the degree of confidence in the estimated

parameters based on pressure analysis.

New design equations related to specific flow regimes observed in spherical and
linear, composite reservoir well tests have been developed and compared with similar

equations for radial and elliptical, composite reservoirs.

The linear, composite reservoir shows the longest transition period between inner and
outer region infinite-acting flow. This is followed by the radial and elliptical.
composite reservoirs. The spherical reservoir shows the shortest transition period.
This implies that outer region infinite-acting flow is less likely to occur for linear

reservoirs than it is for spherical reservoirs.

For radial and elliptical reservoirs, the late-time pressure derivative behavior is
influenced only by the mobility ratio between the inner and outer regions of
composite reservoirs. For linear and spherical reservoirs. however, late-time

pressure derivative behavior is governed by both the mobility ratio and the storativity

ratio.

Decline Curve Analysis



9

Normalizing factors to enable comparison of transient rate. as well as cumulative
production responses. for composite reservoirs in radial. elliptical, lincar .

spherical flow geometries have been presented.

Transient rate and cumulative production responses for radial and elliptical
reservoirs are not as identical as is the case for transient pressure derivative
responses. Flow rate and cumulative production tend to be higher for elliptical
reservoirs than for radial reservoirs, until the effects of the discontimuity boundary
are felt. Thereafter, the responses for the two composite reservoirs begin (o

approach one another.

The mobility-storativity product, MF, is not a correlating parameter for transient
rate and cumulative production responses from finite. linear. composite reservoirs.
However, MF is a correlating parameter for infinitely-large. lincar, composite

reservoirs.

Three-Region Composite Reservoirs with Power Law Property “ariation

(88

A new analytical solution has been presented for an infinitely-large, three-region.,
radial, composite reservoir with a power law variation of mobility and storativity in
the intermediate region. This model allows for smooth changes in mobility and

storativity, due to rapidly declining temperatures ahead of a flood front in a thermal

recovery process.

The size of the intermediate region has a significant effect on the magnitude of the

maximum semi-log pressure derivative, and a mild effect on the time to the
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maximum semi-log pressure derivative. The intermediate region size does not
affect the time to the start of infinite-acting radial flow corresponding to the outer
region mobility. In the light of the work by Ambastha (1988), this conclusion is

valid for Fjp 2 1.

Pseudosteady state behavior is less noticeable as the size of the intermediate region
increases. Thus, possible estimates of the swept region volume using the
pscudosteady state method may yield increasingly overestimated values as the size

of the intermediate region increases.

The spectral exponent for mobility variation in the intermediate region. 0. has only
a mild effect on the pressure derivative responses for an infinitely-large. three-

region. radial composite reservoir.

The storativity spectral exponent. 82, significantly affects the pressure derivative
responses for a three-region. radial, composite reservoir. When 6; and 0>
assume equafi values, the effect of 6; on the pressure derivative responses is

negligible.

Practical values of 8; and > for thermal recovery processes will depend on the
distance to the discontinuity boundary of the intermediate region. This value may
not be known with certainty, and in fact is one of the parameters being sought from

the analysis of weil-test data from thermal recovery projects.

Recommendations

Future studies on well-test analysis of composite reservoirs should address the following:



Application of the concept of fractional dimension presented by Barker (1988) and
Doe (1991) to well-test analysis of composite reservoirs needs to be investigated.
This concept suggests that. {for homogencous reservoirs, only one & N
equation is needed regardless of the geometry of the reservoir. The ¢ RIENS
equation contains a parameter, 1. which takes on different integer values tor the
different geometries. The fractional dimension concept has worked well for radial.

linear and spherical reservoirs (Barker. 1988: Doe. 1991). The extension of this

concept to elliptical reservoirs needs to be investigated.

Extension of the concept of fractional dimension to three-region. composite
reservoirs with power law property variation in the intermediate region needs to be

studied.

An in-depth investigation of the effect of fractal exponents for mobility and
storativity on the applicability of the pseudosteady state method to swept volume
estimation from thermal recovery processes should be carried out.  Effective
properties for the pseudosteady state analysis may be calculated using equations,
similar to those presented by Ambastha (1988), with modifications 1o account for

varying mobility and storativity in the intermediate region.
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APPENDICES

Appendix A: Computer Program for Analytical Solutions for Two-
Region, Composite Reservoirs of Various Geometries

This appendix gives the computer program for the analytical solutions for two-region
composite reservoirs in radial, elliptical, linear and spherical geometries used in this study.
Description of the program has been given in Chapter 2.

Source Code for Program: COMPOSITE

IR R R TR EEEEFEEEEEEEEEE SR ST EEEEEA R R R E RS R EEEEEESEESESEEEEEEISES RS S LS R SE S

.................. Source Code for Program: COMPOSITE
Purpose of this program is to generate the transient-pressure or
tranzielis-rate response for a well in a two-region composite
reservoir of different flow geometries.
The flow geometries are Radial, Elliptical, Linear and Spherical.

Wellbore storage and skin at the well are included.

Inner boundary (well) may be at constant-rate or constant-
pressure.

Outer boundary may be infinite, closed or at a constant pressure.

*

IR R R R R R EE R R E RS R R AR E R R SR E R R A S SRS SRR EREREEEEEERLEESSESESESES

Variable Identification List

fN rONONONNONONNNOOONNNON

B A EEESEEEEEESEEEREEEEEEREERRESE R R EREEEERERERERERSEEIEEE S ESEISE I NSNS

C

C AD -- dimensionless distance to discontinuity boundary linear ana
C spherical geometries

C AMOB-- mobility ratio (ki*mu2)/(k2*muj)

C CD -- dimensionless wellbore storage constant

C DIF -- diffusivity ratio (ki*phi*ce*mul)/(k2* phi*ce*mug)

C EPSE~- elliptic distance to outer boundary for elliptical geometry
C EPSO-- elliptic distance to discontinuity boundary for elliptical
C geometry

C IBC -- code for inner boundary condition

C ICODE-- code for reservoir geometry

C IOBC~- code for outer boundary condition

C RD -- dim. distance to discontinuity boundary for radial geometry
C RDE -- dim. distance to outer boundary for spherical geometxy

C RED -~ dim. distance to outer boundary for radial geometry

C SKIN-- skin factor

C STO ~-- storativity ratio (phi*cgl /( phi*ce2)

C XDE -- dim. distance to outer boundary for linear geometry

C

IMPLICIT REAL*8(A-H,0-2Z)
DIMENSION TD(20)
CHARACTER*12 CDATA
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COMMON M, AMOE DIF 20 TR TCOND ICRT D Skvar e o
+RED, RDE, EPSO, EPSE, XDE
**Accept sT)een input**
WRITE(6,*) 'Enter code for reservoir geometry desired:’
WR.E(6,*)'1l = Radial, 2 = Elliptical,"’
WRL1TE(6,*)'3 = Linear, 4 = Spherical.'
> L]

WRITE(6,*)'(1,2,3, or 4)
READ (5, *) ICODE

WRITE(6,*) 'Enter name of external data file:>'
READ(5,11)CDATA
OPEN (UNIT=7,FILE=CDATA)

Reading input data from file, depending on the geometry code

IF (ICODE.EQ.1l) THEN
CALL RADDATA(AMOB,RD,CD, SKIN, IBC, IOBC, NC,NTERI,
+STO, TD1, RED)
ELSEIF (ICODE.EQ.Z) THEN
CALL ELLDATA (AMOB,CD, SKIN, EPSE,EPSO, IE".,K IOBC,NC,NTERM,
+STO, TD1)
ELSEIF (ICODE.EQ.3) THEN
CALL LINDATA (AMOB,CD, SKIN,AD, IBC, IOBC, NC,NTERM,
+STO, TD1, XDE)
ELSE
CALL SIHDATA (AMOB, CD, SKIN,AD, IBC, IOBC,NC, NTERM,
+STO, TD1, RDE)
ENDIF

WRITE(6,*) 'Enter name of output file:>'
READ({5,11) CDATA
OPEN (UNIT=8, FILE=CDATA)

** End of screen input **

M=777
PI=2.0*ASIN(1l.)

Compute diffusivity ratio
DIF=AMCE/STO
Generate the first set of tp vector

TD(1)=TD1
TD(2)=1.5*TD1
TD(3)=2.*TD1
TD(4)=2.5*TD1
TD(5)=3*TD1
TD(6)=3.1*TD1
TD(7)=4.*TD1
TD(8)=4.5*TD1
TD(9)=5.*TD1l
TD(10)=6.*TD1
TD(11)=6.*TD1
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DO 1 I=%1,NC

Do 2 J=1,132
SpPC=TD(J)

IF (IBC.EQ.1l) THEN

CALL INVERT(SPC,NTERM, PWD, PDP)

PDPTD=PL.>*SPC

VRITE(8,7)SEC, PWID, PDP, PDPTD

ELSE

CALL IIWVERT(SPC,NTERM, ODR, QDC)

VRITE (2, 9)SPC, QDR, QDC

ENDIF
TD(J)=10.*TD(J)
CONTINUE

FORMAT('',T5,E10.4,T20,E10.4,T35,E10.4,T50,E10.4)
FORIMART('',T5,E10.4,T20,E10.4,T35,E10.4)

STOP
END

nd print the transient pressure or rate response

LES S SERERBEEEEEEEEEEEEEEESEREREEEREEERERERESEREESSESESEEEESEEZRZSKEH:.]

This sub' "utine reads data from the input file for

Jzometry

the radial flow

SUBROUTINE RADDATA (AMOB,RD,CD, SKIN, IBC, IOBC,NC, NTERH,

+8TO, TD1, RED)
IMPLICIT REAL*8(A-H,0-2)

READ(7, *)
READ(7,*)
READ(7, ™)
READ(7,*)
READ (7, *)IBC
READ(7, *)
READ(7,*)
READ(7, *)IOBC
READ(7,*)
READ(7, *)CD, SKIN
READ(7, *)
READ(7, *)AMOB
READ(7,*)
READ(7, *)STO
READ(7, ™)
READ(7, *)RD
READ(7,*)
READ(7, *)RED
READ(7, *)
READ(7, *)NC
READ(7,™)
READ(7,*)TD1
READ(7,*)
READ(7, *)NTERM
RETURN
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END
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This subroutine reads data from the input file for the
flow geometry

SUBROUTINE ELLDATA(AMOB,CD,SKIN,EPSE,EPSO,IBC,IOEC,NC,
+NTERM, STO, TD1)

IMPLICIT REAL*F{A-b

bia

, Q-2

FEAD(7,*)
READ(7, *)
READ(7, *)
READ(7,™*)
READ(7, *)IBC
READ(7,*)
READ(7, *)
READ(7, *)IQRC
READ(7, ™)
READ(7, *)CD, SKIN
READ(7,*)
READ(7, *)AMOB
READ(7, *)
READ(7,*)STO
READ(7, *)
READ(7, *)EPSO
READ(7,™*)
READ(7, *)EPSE
READ(7, *)
READ(7, *)NC
READ(7, ™)
READ (7, *)TD1
READ(7, *)
FEAD(7, *)NTERM

RETURR

END

ellin

******'*******************tt*******ﬁ*kh***ﬁlﬁiwﬂ*hh!-bﬁal‘

This suk—-- ‘me reads data from the input file for the
geometz

SUBROUTINE LINDATZ (AMOB,CD,SKIN,AD, IEBC, IGBC, IIC, HTERM,
+STO, TD1,XDE)
IMPLICIT REZL*8(A-H,0-2)

READ(7, *)
READ(7, ™)
READ(7, ™)
REARD(7, ™)
READ(7, *)IBC
READ(7, ™)
READ(7, ™)
REZD(7, *) IOBC
REED(7, ™)
PEARD(7, *)CD, SKIN
REZD(7, ™)
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C
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REELD(7, ")
READ(7,*)3T0
READ(7,7*)
READ(7,*)AD
READ(7,*)
READ(7, *)¥XDE
READ(7,*)
FPEAD(7, *)NC
kehD(7,*)
READ(7, *)TD1
READ(7,™*)
READ(7, * ) NTERM

- va e

PR PO

RETURN
END

PRSI R EEREEERERESERES SR EIENENEREERESEERESESESESSE SRS ES IS LS EESEL

This

zubroutine reads

flow geometry

data

rem the input

file

£
“

C

-

the

SUBROUTINE SPHDATA (AMOB,CD, SFIN,AD,IBC, IOBC,NC,NTERM,

+STO, TD1,RDE)

IMPLICIT REAL*E(A-H,0-2)

READ(7, *)
READ(7,*)
READ(7,*)
READ(7,*)
READ(7,*) IBC
READ(7,™*)
READ(7,*)
READ(7, *)1I0BC
READ(7,™*)
READ(7, *)CD, SKIN
READ(7,*)
READ(7, * ) AMOB
READ(7,*)
READ(7, *) STO
READ(7, *)
READ(7, *)AD
READ(7, *)
READ(7, * )RDE
READ(7, *)
READ(7, *)NC
RUAL Y, *)
AEAT T, *)TD1
READ(7, *)
NREAD(7, *)NTERM

RETURN
END

SUBROUTINE LAPRAD(S, PWDL, PDPL)
IMPLICIT REAL*8(&A~H,0-2)
EXTERNAL DBSIOE,DBSI1E,DBESK(CE,DBSKLE
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2
i

ca

9



COMMON M, ANOB DIF AD IBRC. TCODE. TORC.CD, SKTN, 870 =N
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Radial composite reservoir solution in Laplaco space

We begin by computing the arguments of bessel functions

nNnonNnnaon

ARG1=DSQRT (S)

ARG2=RD*ARG1

ARG3=DSQRT(DIF) *ARG2

IF(IOBC.NE.1) ARG4=DSQRT(S*DIF)*RED

nNnnon

Compute needed bessel functions (exponentially scaled)

Al=DBSIOE (ARG1"
A2=DBSIOE (ARG2:

B1=DBSI1E(ARG!)
B2=DBSI1E(ARGZ

D1=DBSKOE (ARG1)
D2=DBSKOE (ARG2)
D3=DBSKOE (ARG3)

E1=DBSK1E (ARG1)
E2=DBSK1E (ARG2)
E3=DBSK1E (ARG3)

IF(IOBC.EQ.2)THEN
Cll1=-DRBRSK1E(ARG4)
C22=DB5SI1E(ARG4)

ENDIF

IF(IOBC.EQ.3)THEN
Cl1=DBSKOE (ARG4)
C22=DBSI1E(ARG4)

ENDIF

IF{(IOBC.NE.1)THEN
A3=DBSIOE (ARG3)
E2=DBSI1E(ARG3)

EMDIF

C Calculation of multiplying factors

F1=DEXP (ARG1
F2=DEXP (ARG2)
F3=DEXP(ARG3)
IF(IOBC.NE.1)THEN
IF(ARG4 .LT.87.)THEN
F4=DEXP (ARG4)
ELSE
F4=DEXP(87.0D+00)
ENDIF
ENDIF
C Computation of coefficients of egns. For al,c2 and o7,
C For finite reservoirs, we have c4 alseo.
EL11=-ARG1*B1*F1l
AL12=ARG1l"EL/F1
LZ1i=

A R27F2
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ALZI=AMOB*™ ARCI*B“*"“
AL3Z=-AMOB*ARG1l*EZ2/
ALZ3=DSQRT(S~ DIF)*EJ F3
IF(IOBC.NE.1)THEN
2LC4=-23%F2
AL34=-DSQRT(S*DIF)*B3"F3
ALa3=C311,F4
AL44=C22*F4
ENDIF

Calculation of cl, c¢c2, and c3
cd is also calculated for finite reservoirs

I AL33-AL23*AL31
AL33-AL32*AL23

~

=ALZ

to

0 in
[ E
K\) )“

F(IOBC.EQ.1)THEN

C2=81 /(S (LLI2*S1-AT11+821)
Cl—(l.-S*’Ll2'C2)/S/AL11
3=- (AL31*C1+AL32*C2) /AL33

ENDIF

IF(IOBC.ME.1)THEN
S3=AL43/AL44
S4=AL24*AL31-AL21*AL34
S5=51+S3*S4
S6=AL22*AL34-AL24*AL32
S7=-AL11*S2+AL12*S1+S3* (AL12*54+AL11*56)
C2=85/8/87

I=(1.-3*AL1Z2*C2)/S/ALLL
C4=S3* (AL31*C1+AL32*C2)/(AL35-AL34*53)
C3=-C4/S3
ENDIF

Calculation of transformed solution {constant rate)

PY/IDL = Laplace transform of pwp
PDPL = Laplace transform of wellbore pressure darivative Cdpw, /vy

PWDL=C1*Al1*F1 + CZ*D1l/F1
PDPL=PVIDL*S

2Adding wellbore storage and skin effects to the congrant-rate
solution

IF (CD.GT.C.OR.SKIN.GT.0) THEN
PWDL=(S*PWDL + SKIIN)/(S*(1 + CD*Z*(Z*PVDL + DTF¥IM) ) )
PDPL=PVIDL*S

ENDIF

Constant pressure inner boundary condition (Duhamel's principle)
PWDL = Laplace transform of flow rate (QDR)
PDPL = Laplace transform of cumulative rate (QDC)

IF (IBC.EQ.Z2) THEN
PViDL= 1./(S**2”PUWDL)
PDPL=PVIDL/S

ENDIF
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SUEROUTINE LAPELL(S, PVWDL, PDPL)

IMPLICIT RERL*C(AE-E,0-Z)

EXTERNAL DBSIOE,DBSI1E,DBSK.. ,DESKI1E

EXTEFIAL CGNST,DMATEE, UMACH,DCBJINS, DLZAEG

couMMOon M, AMOB, DIF,AD, IBC, ICODE, IOBC,CD, SKIN, STO,FRD
+RED, RDE, EPEO, EPSE, XDE

DIMENSICN AF(50),AA(50),CE(50),P(50;

DIMENSIOI' CCE(50),CCEP(ESL),FEK(50) ,FEKP(E50}

MN=2
EPSVI=0.0D+00
PI=2.0*ASIN(1.)
ET=PI/2
SLM1=S/4
SLM2=DIF*SLM1
ISYM=0

IPER=0
SUML=0.0D+00
TINY=1.0D-25

DO

1 W

N=1, NN
LMl
p

[ad 34
S

Q

i

H

Computing constants and coefficients needed for Mathieu
functions

CALL DMATEE (Q,NN, ISYM, IPER,AF)
CALL COEFF(Q,N,AF,II,ARQ,AA)
CALL P2N(N,AAO,AA,II.V)

Computing needed Mathieu functions

CALL FNCCE(Z,II,N,AAO,AA,CCE,CCEP)
CALL FNFEK(Q,Z,I1II,N,P,AAO0,AA,FEK,FEKP)

GZN=-CCEP(N)
H2N=-FEKP (N)
HI2N=(~1)**(N-1)*AAO/ (2*SLM1)

Z=EPSO
CALL FNCCE(Z,II,N,AAO,AA,CCE,CCEP)
CALL FNFEK(Q,Z,II,N,P,AAO0,AA,FEK,FEKP)

A2N=CCE (N)
B2N=FEK (N)
D2N=CCEP(N)
E2N=FEKP (N)

Q=SLM2
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CALL DMATEZ(Q,NN, ISYM, IPER,6 AF)
CALL COEFF(Q.N,AF,II,AA0, AR)
CALL P2R({N,AAQ,AA,II, P

CALL FNCCEZ({Z,II.N,AA0,AA,CCE,CCEPR)
CALL FNFER(Q,Z,II.N,P,AAQ,A, FEK,FERDM

CZN=FEK (N}
F2N=FEKP(N) ; AMOB
R2N=CCE(N)
TZN=CCEP (N} /AMOUB

Additional coefficients for cleosed and constant piessu
outer boundary conditions
2 {(IOBC.NE.1) THEX

Z=EPSE

CALL FNCCE(Z.II.N,AAO,AA,CCE,CCEP)

CALL FNFEK(Q,Z,II,N,P,AAO,A7, FEK, FEKP)

IF (IOBC.EQ.2) THEN
X2N=FEKP (N)
Y2N=CCEP (N)

ERDIF

Conszant pressure outer boundary

IF (IOBC.EQ.3) THEN
X2N=FEK (N)
Y2N=CCE (N}

ENDIF

Cl=X2N/Y2N

YI2N=C2N - C1*R2H

Z2N=F2N - C1*T2N
ENDIF

Constants for infinite cuter boundary
IF (IOBC.EQ.1) THEN
DENO=G2N* (C2N*EZN - B2N*F2N) + HZII* (AZIIF2Il ~ C2H"D2
CC2N=HIZ2N* (C2N*EZN - EZ2N*F2IM) /DENO
FF2N=HI2N* (A2N*F2N - C2N*D2N)/DENO
ELSE

Constants for closed and constant-pressure ocuter bhoundary
conditions
DENO=GIN* (VI2ZN*E2L - B2N*Z2ZN) + HzZN* (RZ11*2211 - ViZli*LZll)
CC2N=HIZ2N* (W2N*EZN - B2ZN*ZZN)/DENO
FF2N=BI2N~> (A2N*22N - VWzN*DZzl) /DENC
ENDIF

Q=SLM1

CALL DMATEE(Q,NN, ISYM, IPEFR, AF)
CALL COEFF(Q,N,AF,II,LAC,AER)
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CALL P2Z2N(IN, 2RO, 4&FE,II,P)

C
Z=Er3V]
CALILL FNCCE(Z,I1I,N,RAQO,RL,CCE,CCEP)
CELL FNFE¥.(Q,2Z2,II.M,P,RA0,EAR,FEK,FEL P}
Z=ET
CELL FNCE{Z,II,1,AREC,AAR,CE)
SUMADD=CE (L) " (CC2H*CCE (i) + FF2N*FEX(1I;)
SUML=SUML + SUMADD
IF (SUMADD.LT.TINY)GC TO 9%
3 CONTINUE
C
C Calculation of transformed solution (constant rate)
C e e e e o et . o = ————r —— ———— o — ——— —— — ———— — _——— - —— - _— - — —
(o PVIDL = Laplace transform of pwp
C PDPI. = Laplace transform of wellbore pressure derivative (dpwp/dtn)
C
@9 PVWDL=SUML
PDPL=PWDL*S
C
C Adding wellbore storage and skin effects to the constant-rate
C solution
C
IF (CD.GT.0.0OR.SKIN.GT.0) THEN
PYDL=(S*PWDL + SKIN)/(S*{(1 + CD*S*(S*PWDL + SKIN)}}])
PDPL=PWDL*S
ENDIF
C
C Constant pressure inner boundary condition (Duhamel's principle)
C PWDL = Laplace transform of flow rate (qdr)
C PDPL = Laplace transform of cumvlative rate (gdc)
C
IF (IBC.EQ.Z2) THEN
PWDL= 1./ (S**2*PWDL)
PDPL=FVIDL/S
ENDIF
RETURN
END
(o
C

*ki*****'ﬁ*************************************************i**********

C
SUBROUTINE LAPLIN(S, PWDL, PDPL)
IMPLICIT REAL*8(A-H,0-2)
COMMON M, AMOB,DIF,AD, IBC, ICODE, IOBC,CD, SKIN, STO,RD
+RED, RDE, EPSO, EPSE, XDE
C
C Linear composite reservoir solution in Laplace space

ARG1=AD*DSQRT (S*DIF)
ARG2=AD*DSQRT (S)
ARG3=2.*XDE*DSQRT (S*DIF)
A=DEXP(-ARG1)

B=DEXP (ARG1)

D=DEXP (-ARG2)

E=DEXP (ARG2)

F=DEXP (-ARG3)
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C
C

G=DSQRT (DIF; 'AMORB

Outexr boundary condition

Infinite outer buundary

IF {(IORC.EQ.1l) THEN
TOP=D* (G-1)
BOT=S*DSQRT(S)Y* ((D~-E) - G*{(D+g))
ENDIF
Closed outer boundary

IF (IOBC.EQ.2) THEN
TOP=-D* ( (A*F~B) + G*{(A*F-B))

BOT=S*DSQRT(&)* (G* (A*F-B) *(D+E) + (A*F+B)* {D-F))

ENDIF
Constant pressure outer boundary

IF {(IOBC.EQ.3) THEN
TOP=D* ( (B-A*F) - G*(B+A*F))

BOT=S*DSQRT(S) * (G* (B+A*F) * (D+E) - (B-A*F)* (D-

ENDIF

C1l=TOP/BOT

Calculation of transformed solution (constant rate)

E))

]
z
g
=
1

Laplace transform of pwp

g
v}
W
[
|

PWDL=2*Cl + 1/(S*DSQRT(S))
PDPL=PVWDL*S

= Laplace transform of wellbore pressure derivative

(dpwp/dtp)

Adding wellbore storage and skin effects to the constant-rate

solution

IF (CD.GT.0.OR.3KIN.GT.0O) THEN

PYDL=(S*PVYDL + SKIN)/(S* (1 + CD*S* (S*PwDL

PDPL=PWDL*S
ENDIF

Constant pressure inner boundary condition
PYWDL = Laplace transform of flow rate (gdr)
PDPL = Laplace transform of cumulative rate

IF (IBC.EQ.2) THEN
PWDL= 1./ (S**2*PWDL)
PDPL=PVIDL/S

ENDIF

RETURN
END

{Duhearmel

.o
o

SFTHY ) )

principle)
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(o

SUEROUTINE LAPSPH(S, PVIDL, PDPL)
IMPLICIT REAL*8(A-H,0-2Z)
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COMMON M, kMMOB, DIF,AD, IBC, ICODE, IOEC,CD, SKI
+RED, FEDE, EPS0,EPSE, ZDE

Spherical composite reservoir sclution in

Laplace
ARG1=D3QRT (S}
APGZ=ERD*DSQRT (S}
ARG3=AD*DSQRT (DIF*S)
AFG4=RDE*DSQRT(DIF*S)
AL11=S*DCOSH(ARG1l) - ARG1*DSINH(ARGl)
AL12=5*DSINH(ARGl) - ARG1*DCOSH(ZRGL;
AL21=DSINH (ARG2)
AL22=DCOSE (ARG2)
AL23=~DSINH (ARG3) /DSQRT (DIF)
AL24=-DCOSH (ARG3) /DSQRT (DIF)
AL21=DCOSH(2ARG2) - DSINH(ARG2)/ARGZ
AL22=DSINH(ARG2) - DCOSH(ARG2) /ARG2
AL33=-(DCOSH(ARG3) - DSINH(ARG3) /ARG3) /AMOB
AL34=-(DSINH(ARG3) - DCOSHI!ARG3) /ARG3) /AMOB

Outer boundary condition

Infinite outer boundary

IF (IOBC.EQ.1l) THEN
A=AL23 -~ AL24
B=AL33 - AL34

ENDIF

Closed outer boundary

IF (IOBC.EQ.Z2) THEN
AL43=DCOSH(ARG4) - DSINH(ARG4) /ARG4
AL44=DSINH(ARG4) - DCOSH (ARG4) /ARG4
G=AL43/AL44
A=AL23 - AL24*G
B=AL33 -~ AL34*G

ENDIF

Constant pressure outer boundary

IF (IOBC.EQ.3) THEN
AL43=DSINH(ARG4) /ARG4
AL44=DCOSH (ARG4) /ARG4
G=AL43/AL44
A=ALZ3 - AL24*G
B=AL33 - AL34*G

ENDIF

D=AL21*B - AL31*A
E=AL22*B - AL32*A
F=AL12*D - ALl1l*E

Cl=E/F
C2=-D/F
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Calculation of transformed solution (constamn:

Laplace transforwm of pwn
= Laplace transform of wellbore pressure derivative

9]
.
-~

g 'y
O o
e
[
[

(dpwpy dep)

PWDL=C1+*DSINH(ARCG1l) /ARGl + CZ*DCOSH(ARG1l) /ARGl
PDPL=PWDL™*S

Adding wellbore storage and skin effects to the constant-vate
solution

IF (CD.GT.O0.OR.SKIN.GT.(0) THEN
PWDL=(S*PWDL + SKIN)/(S*(1 + CD*S*(S*PWDL + SKIN)))
PDPL=PWDL*S

ENDIF

Constant pressure inner poundary condition (Duhamel's principle:)
PWDL = Laplace transform of flow rate (qdr)
PDPL = Laplace transform of cumulative rate (qgdc)

IF (IBC.EQ.2) THEN
PWDL= 1./(S**2*PWDL)
PDPL=PWDL/S
ENDIF
RETURN
END

FEREEE ENENREIERIEEEREESREE EEERESENEEEEES BN ES IS NSRS S

The Stehfest Algorithm

SUBROUTINE INVERT (TD, NL, PWD, PDP)

IMPLICIT REAL*8 (A-H,0-Z)

COMMON VM, AMOB,DIF, 2D, IBC,ICODE, IOBC,CD, SKIN, STO, RD
+RED, RDE, EPSO, EPSE, XDE

DIMENSION G(50},V(50),H(25)

Now if the array v(i) was calculated previously, the
program goes directly to the end of the subroutine to
calculate f£(s).

IF (ML.EQ.M) GO TO 47

M=NL

DLOGTV=0.6931471805599D+00

NH=NL/2

The factorials of 1 to NL are calculated into g.
G(l)=1
DO 31 I=2,NL

G(I)=G(I-1;"2
CONTINUE

Terms with ¥ only are calculated into array H
H(1)=2.0/G(NH-1)
DO 36 I=2,NH

FIi=I
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42
41

43

44
40

no 000
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(I-NH) 34,35,36

H(1)=FI**HH*G(2*"1)/(GINH-1)°G(I)*G(I-%},
GO TO 26
H{I)=FI**NH*G(2*I1)/(GI1)*G(I-1))
CONTINIIE

The

The array VI(I)

Do 27

The terms

(-1)**NH+1 are calculated.

First the term for I=1
SN=2* (NH-NH/2*2) -1

rest of the SN's are calculated in the main routine

I=1,NL

FIRST SET V{(I)=0

VI(I)=0

.0

is calrulated.

The limits of K are established.
The lower limit for K1=INTEG((I+1/2))

kl=(i+

1)/72

The upper limit is K2=MIN(I,NL/2)

K2=1I
IF (K2
K2=IH

~NH) 38,38,39

The summation term in V(I) is calculated
DO 40 K=K1,K2

Ix
Ir

(2*K-I) 42,43,42
(I-K) 41,44,41

V(I)=V(I)+H(K)/(G(I-K)*G(2*K-I))
GO TO 40
V(I)=V(I)+H(K)/G(I-K)
GO TO 40
V(I)=V(I)+H(K)/G(2*K-I)

CONTIN

UE

The V(I) array is finally calculated by weighting

a
V{I)=sS

ccording to SN
N*V(I)

The term SN changes its sign each iteration.

SN=-SN

CONTINUE

The numerical approximation is calculated.

PWD=0.
PDP=0.

0D+00
0D+00

A=DLOGTW/TD

DO 52

I=1,NL

ARG=A*TI

Depending
elliptical

on geometry code,
, linear or spher

IF (ICODE.EC.1l) THEN
CALL LAPRAD (ARG, PWDL, PDPL)

ELSEIF

(ICODE.EQ.2) THEN

INVERT calls the solution for radial,
ical reservoir in Laplace space

177



CALL LAPELL (ARG, PWDL, FDFL)
ELSEIF (ICODE.EQ.3) THEHEN

CALL LAPLIN (ARG, PWDL, PDPL)
ELSE

CALL LAPSPH (ARG, PWDL, PDPL)}
ENDIF

PWD=PWD + WV (I)*PWDL
PDP=PDP + V(I)*PDPL
52 CONTINUE
PWD=PWD*A
PDP=PDP*A
48 RETURN
END
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Coefficient needed in evaluating Mathieu functicns

naonnn

SUBROUTINE COEFF(Q,N,AF,IT,AAOQ,AA)
IMPLICIT REAL*8 (A-H,0-2)
DIMENSION VV(50),FA(50),AF(50),AA(50)
IF (Q.LT.1.5D-7% THEN

IF (N.EQ.1) THEN
ARO=SQRT(2.0'/2.0
DO 501 I=1,1G
IFAC=I
CALL FALUTORIAL (IFAC, FAC)
e UL
IFRLT 41
CaLlL FRCTORIAL (IFAC,PC?
R1F=FAC
TQ=0Q/4
AFAC=2*TQ**I/RF**2
BFAC=2*I*(3*I+4)*TQ**(I+2)/R1F**2
AA(2*I)=(-1)**I* (AFAC-BFAC) *AAO
501 CONTINUE
ENDIF
GO TO 502
ENDIF
II=5C
VV(1)=AF{(N)/Q
VVI(2)=-(4.0/Q)* (1.0=-(AF{I) /4.0)+Q**2/(2.0"AF (1))
DO 2 I=3,1I1
VV(I)=(1.0/Q)*(AF(M)-4.0*(T-1)**2)-(1.0/VV{I-1)]
IF (DABS(VV(I)).GT.DABS(VV(I-1))) GO TO 99Y
2 CONTINUE
999 ITI=I-1
FA{(1)=VV (1)
DO 4 I=2,II
FA(I)=VV(I)*FA(I-1)

4 CONTINUE
SUM=2.0D+00
DO 6 I=1,II

SUM=SUM+FA(I)**2

6 CONTINUE
AAO=1.0D+00/DSQRT (SUM)

DO & I=1,3II
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AA(27I,=FA(I)*AARO
CONTINUE
“ FETUFRN

END

[SalER ]
[
N

"*iﬁ'h’f'ﬁf’*"**’************’********t**

Calculates a constant portion of the formula for Mathieu functions

noaocon

SUBROUTINE P2N(N,AAO,AA,II1,P)

IMPLICIT REAL*8 (A-H,0-2)

DIMEMSION AA(50),P(50)

Z1=0.0D+00

722=1.5707963270D+00

Cl=2AaA0

C2=AR0O

DO 10 I=1,IX
Cl=Cl + AA(2*I)*DCOS(2*I*Z1)
C2=C2 + AA(2*1)*DCOS(2*I*Z22)

10 CONTINUE

P{(N)=Cl*C2/AAR0**2

RETURN

END

PEE R EE XN ER EEREEE XERIEEEE S EESE RS SRS

This subroutine evaluates the real, even, periodic Mathieu
function of integer order.

nnnaonann

SUBROUTINE FNCE{Z,II,N,AAO,AA,CE)
IMPLICIT REAL*8 (A-H,0-2)
DIMENSION AA(50),CE(50)
SUM=AAO
DO 12 I=1,1II
SUM=SUM + AA(2*I) '‘DCOS(2*I*Z)*(-1}**I

12 CONTINUE

CE(N)=(-1)** (N-1) *SUM

RETURN

END
C
C R E R R R R R R R E R E A RS R A R EE EE R R R E R R RS R R & R R AR R & & 8]
C
C This subroutine evaluates the modified Mathieu function of first
C kind of integer order and its derivative
C
C

SUBROUTINE FNCCE(Z,II,N,AAO,AA,CCE,CCEP)

IMPLICIT REAL*8 (A-H,0-2)

DIMENSION AA(50),CCE(50),CCEP(50)

SUM=AAO

SUMP=0

DO 14 I=1,1T
SUM=SUM + AA(2*I)*DCOSH(2*I*Z)*(-1)**I
SUMP=SUMP+2*I*AA(2*I) *DSINH(2*I*Z)*(-1)**I

14 CONTINUE
CCE(N)=(-1)**(N-1)*SUM
CCEP(N)=(-1)**(N~-1)*SUMP
RETURN
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END

g LI RN SR I R I I S U B IR L B N 2R SR 2L T U N 2R TR R B N R
C
C This subroutine evaluates the modified Mathieu function of secornd
C kind of integer order and its derivative
C
SUBROUTINE FNFERK(Q.Z,II,N,P,AAQ,AA, FEK, FERKD)
IMPLICIT REAL*8 (A-H,0-2)
DIMENSION AA(50),BSI(5C),BK(50),P(5C), FERK(50),
+ FERKP(50),BSIP(50),.BKP(E0),BKE{50)
EXTERNAL DBSINS, DBSKS, DBSKES
V1=DSQRT (Q) *DEXP(-2)
V2=DSQRT(Q) *DEXP(Z)
K=II+2
ZNU=0
CALL: DBSINS(V1,K,BSI)
IF (V2.GT.1.778E+2) THEN
DO 320 I=1,K
BK(I)=0.0D+00
320 CONTINUE
ELSE
CALL DBSKS(2ZNU.V2,K, BK)
ENDIF

SUM=AAO*BSTI (1) *BK (1)

BSIP(1)=BSI(2)™*(-V1)

BKP(1)=-BK(2)*V2

SUMP=AAO* (BSIP(1)*BK (1) + BSI(1)*BKP(1l))

DO 16 1I=2,K-1
SUM=SUM+AA (2*I-2)*BSI(I)*BKI(I)
BSIP(I)=((I-1)*BSI(I)/V1 + BSI(I~+1l))*(-V1)
BKP(I)={((I-1}*BK(I)/V2 - BK(I+1l))*V2
SUMP=SUMP + AA(2*I-2)*(BSIP(I) BK(I) + BSI1(I)*BKP(T))

16 CONTINUE

FEK(N)=(-1)**(N-1)*P(N)*SUM/2.141592654

FEKP(N)=(-1)**(1-1)*P (1) *SUMP/3.14159244

RETURN

END

C PR E RS EEEREESEEESEERESEREESEEESESSES S SIS SIS IS N

SUBROUTINE FACTORIAL(IFAC,FAC)
IMPLICIT REAL*8(A-H,0-2)
FAC=1
DO 508 IF=1 IFAC
FLZC=FAC*IF
508 CONTINUE
RETURN
END

_———_—=== =====

* K

* %
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*+ Enter Code For Inner Boundary Condition (IEC)

g (Constant Rate = 1, Constant Pressure = 2)
1

s bt zx Lode For CGuter Boundary Condition (IOEC)

»e (Infinite = 1, Closed = 2, Constant Pressure = 3)
1

*#»  FEnter Dimensionless VWellbore Storage, Skin (CD, SKIN)
n.0,0.0

*+  Enter Mobility Ratio(Region l/Region z)} (AMOEB)
10,

*+ Enter Storativity Ratio(Region 1/ Region 2) (STO)
10.

[ Enter Dimencsionless Distance To Discontinuity (RD)
100.

**+ Epter Dim. Distance To Outer Boundary, If Not Infinite (RED)
100C00.

*+ Enter Number Of Cycles (NC)
8

*+  Enter First Dimensionless Time (TD1)
100.

e Enter Number Of Terms Needed In Laplace Inverter (NTERM)
8

** Enter Code For Inner Boundary Condition (IBC)

o (Constant Rate = 1, Constant Pressure = 2)
2

*+ Enter Code For Outer Boundary Condition (IOBC)

> (Infinite = 1, Closed = 2, Constant Pressure = 3)
1

*+  Enter Dimensionless Wellbore Storage, Skin (CD, SKIN)
0.06,0.0

** fnter Mobility Ratio(Region 1/Region 2) (AMOB)
10.

**  Enter Storativity Ratio(Region 1/ Region 2) (STO)
10.

** Enter Elliptic Distance To Discontinuity (EPSO)
2.

** Enter Elliptic Distance To Outer Boundary, If Not Infinite (EPSE)
7.9077552794+00
**  Enter llumber Of Cycles (NC)

7

** Enter First Dimensiorless Time (TD1l)
0.1

**  Enter Number Of Terms Needed In .aplace Inverter (NTERM)
8

**  Enter Code For Inner Boundary Condition (IBC)

bl (Constant Rate = 1, Constant Pressure = 2)
2 .
*~ Enter Code For Outer Boundary Condition (IOBC)
*x (Infinite = 1, Closed = 2, Constant Pressure = 3)

>

**  Enter Dimensionless Wellbore Stofage, Skin (CD, SKIN)
0.0,0.0
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Enter Mobility Ratico(Region 1 /Region 2) (AMOB)

1.

Enter Storativity Ratio(Region 1/ Region 2) (8T

1.

Enter Dimensioniess Distance To Discontinuity (Al

1CC.

Enter Dim. Distance To OQuter Boundary, If Not Intin:te (NDE)
i¢eeo0.

Enter Number Of Cycles (NC)

11

Enter First Dimensionless Time (TD1)

10

Enter Number Of Terms Needed In Laplace Inverter (NTERM)
)

Input Data For Composite Reservoir In Sphericel Flow Geomet vy
Enter Inner Boundary Condition(IBC)

{Constant Rate = 1, Constant Pressure = 2)

1

Enter Outer EBEoundary Condition(IOEC)

(Infinite = 1, Closed = 2, Constant Pressure = 3)

1

Enter Dimensionless Wellbore Storage, Skin (CD, SKIN)
0.0,0.0

Enter Mobility PRatio(Region 1/Region 2) (AMOR)

1.

Enter Storativity Ratio(Reg.un 1/ Regioun 2) (STO)

1.

Enter Dimensionless Distance To Discontinuity (AD)

100.

Enter Dim. Distance To Outer Boundary, If Not Infinite (RDE)
10000.

Enter Number Of Cycles (NC)

10

Enter First Dimensior.less Time (TD1)

100.

Enter Number Of Terms Needed In Laplace Inverter (NTERM)
12



Appendix B

Derivation of Diffusivity Equation and Its Solution for the Intermediate

Region with Power Law Property Variation
The diffusivity equation for the intermediate region is given as:
10 ()/ ap.
sl ) (0679, (B-1)

Substituting dimensionless variables for pressure and radial distance in Eq. (B-1), onc gets:

i 0 ya a/),- ' - a/)n. 5
2B B )= v, & 2. .2
where :
27k, h

Pp>=———(p,— p,). and (B-3)
gBy,
7 v

'n = R (B-4)

The mobility. (A/u)>. and storativity, (¢c;)2, in the intermediate region are now allowed to
vary in a power law relationship with radial distance from the first discontinuity boundary.

Thesc conditions are represented as:

£ _(K’/},l/ -8

("‘I)‘ —TII) . and (B-5)
(0c, ). = "1;'-"1 " (B-6)

12
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where 6; and 6~ are the fractal exponents for the mobility and storativity variations,

respectively. in the intermediate region.

Using Egs. (B-5) and (B-6) in Eq. (B-2). one gets:

1 9 [ s6 (K70 3p,.\_ (0, AR o Op,,.

iz

The dimensionless time. 75, and ciffusivity ratio. wy>. are substituted into Eq. (B-7) to get:

1 0 ( 10 9P, —o. 0P,
—_— - A i — RS = _s
7 _a,-,,(’ r, )0 g, (B-8)

where:
£ )
-t
“/ P}
0);:=7+2. (B-10)

Expanding and rearranging Eq. (B-8) gives the diffusivity equation in the fractal

intermediate region as:

4 =, 7, =2, (B-11)
ar, 7w 0r, A,

Eq. {B-11), which applies for / < rp £ Rpa2. is a Bessel equation, whose solution is

readily available in Laplace space. Taking the Laplace transform of Eq. (B-11), onc geis:

(/2/702 1- 61 APy, =
dl‘,z) ’.1/ (/’./) - I‘Z" -e /)02. ‘B-l—"
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A solution to Eq. (B-12) is obtained by comparing it with the solution for the general
I"essel equation. The general Bessel equation in Laplace space is given by Carslaw and

Jaegar (1959) as :

ST ondv g
-ZF _.;_d_.l:-_;:;l = 0. (B'13)

A solution to Eq. (B-13) is:

i 1 1 b
_ -Zen-1) 2¢ —Stm—n+24 —=ln-1 2g —Zemen=Z)
R — =L xF . (B-14
r=A.a K55t )+ B L =53 Y, B-14)

where:

1—»n -
VEw—nrz (B-15)

Comparing Egs. (B-12) and (B-13) yields:

Pp> =T
rp, =X
1-6, =x
0,/ =4
1-6, =m

Upon examining Eq. (B-14), the equivalent solution to Eq. (B-12) is:

Pos= A rh K& rh)+ Briy (& r). (B-16)

which is the same as Eq. (6.28) in Chapter 6. The parameters ¥, B, v. and ¢ in Eq. (B-16)

are defined by Egs. (6.30) through (6.33), respectively.
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For the present problem, the parameters are M >, Mz, F>. F13.rp. Rp>.8; and 0>,
For thermal recovery operations, however, these parameters have to be chosen in such a
way that the mobility ratio, as well as the storativity ratio between the intermediate and

outer regions should be greater than or equal to 1.

The mobility ratic is defined as:

(k/7n)
Afzz=m atrp =Rp> (B-17)

Substituting Eq. (B-5) into Eq. (B-17) gives:

_ (kAW R

A/E-W’ (B-18)

which can be further simplified to yield:

M, =T R (B-19)

Thus, M;>. M;3. Rp2 and 8; must be chosen in such a manner that M3 2 }.

Similarly, for storativity ratio, the rclationship is:

— f;.f —9. Ny
Fz:— }‘12 RIJ; - ({B-20)
where:

Fp= ;ﬁ?i at rp=Rp; (B-21)

Here again, F2, F;3, Rp2 and 62 must be chosen in such a manner that F23 2 1.
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Appendix C

Computer Program for Analytical Model of a Three-Region, Composite
Reservoir With Power Law Property Variation in the Intermediate Region

This appendix gives the computer program for the analytical solution for a three-region
infinite, radial, composite reservoir, with a power law variation of mobility and storativity
in the intermediate region. The solution has been described in Chapter 6.

Source Code for Program: FRACTAL

non

nonnaonnnNnnNnonNnanNnanNnnNnnNNnNOonNNNNONNONONON

na

h kb hk R I Ak I TR T AT IR N T T h ARk dhk R kA hhddxhhdkkdedhkdodh >wdk ko ik ko dkd ko dkokorw

Program Fractal

THREE-REGION COMPOSITE RESERVOIR WITH POWER LAV
PROPERTY VARIATION IN THE INTERMEDIATE REGION

Purpose of the program is to generate the

pressure transient response for a well in

a three-region radial composite reservoir,

where the intermediate region is represented

as a fractal.

Wellbore storage and skin at the well are neglected.

Well produces at a constant rate.

The outer boundary is considered infinite.

IR R EEREEEAEREE RS EEEREEREE R R RRE R R R R R A X EEEE SR SRR XSS

VARIABLE IDENTIFICATION LIST

IR RS AR SR RS S SRR EREREESE RS EEE SRS SRS

AMOB12 -- MOBILITY RATIO (K1*MU2)/(K2*MU1l)

AMOB23 -- MOBILITY RATIO (K2*MU3)/(K3*MU2)

CDh -- DIMENSIONLESS WELLBORE STORAGE

DIF12 -- DIFFUSIVITY RATIO (K1*PHICTMUZ2)/K2*PHICTMUl)
DIF13 -~ DIFFUSIVITY RATIO (K1*PHICTMU3)/K3*PHICTMU1)
sSTO12 -- STORATIVITY RATIO (PHICT1/PHICT2)

STO13 -- STORATIVITY RATIO (PHICT1/PHICT3)

RWD -- DIMENSIONLESS WELLBORE RADIUS

RD2 ~— DIMENSIONLESS DISTANCE TO SECOND DISCONTINUITY
SK -- SKIN FACTOR

THETA1l -- SPECTRAL EXPONENT FOR MOBILITY VARIATION
THETA2 -- SPECTRAL EXPONENT FOR STORATIVITY VARIATION

IMPLICIT REAL*8(A-H,0-2)
DIMENSION TD(20)
COMMON M, CD, SK, AMOB12, AMOB23,DIF12,DIF13,RWD,RD2,

1 THETAl, THETAZ

OPEN(UNIT=7,FILE="'frac.d')
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nonn

non

17
13

EAD(7, )
READ(7,™)
READ(7,*)CD, SK
READ(7,™*)
READ(7, *)AMOB12,6 AMOB]13
READ(7,*)
READ(7,*)STO12,STO13
READ(7, *)
READ(7, *)RWD,RD2
READ(7, ™)
READ(7, *) THETAl, THETA2
READ(7, *}
READ(7, *)NC
READ(7, *)
READ(7, ) TD1
READ(7, ™)
READ(7, =) NTERM
CLOSE (7)

OPEN (UNIT=8, FILE='frac.o')

M=777

PI=2.0*ASIN(1.)

COMPUTE DIFFUSIVITY RATIO
AMOB23=(AMOB13/AMORBR12)*RD2** (-THETA1l)
DIF12=AMOB12/STO0O12

DIF13=AMCEl132/8TCl2
GENERATE THE FIRST SET OF TD VECTOR

TD(1)=TD1l
TD(2)=1.5*TD1
TD(3)=2.*TD1
TD(4)=2.5*TD1
TD(5)=3*TD1
TD(6)=3.5*TD1
TD(7)=4.*TD1
TD(8)=4.5*TD1
TD(9)=5.*TD1
TD{10)=6.*TD1l
TD(11)=7.*TD1
TD(12)=8.*TD1
TD(13)=9.*TD1

GENERATE AND PRINT THE TRANSIENT PRESSURE OR RATE RESPONSE

DO 1 I=1,NC

DO 2 J=1,13

TIME=TD(J)
CALL INVERT (TIME, NTERM, PWD, PDP)
PDPTD=PDP*TIME
WRITE(8,17)TIME, PWD, PDP, PDPTD

TD(J)=10.*TD(J)

CONTINUE

FORMAT('*',T5,E10.4,T20,E10.4,7325,E106.4,T50,E10.4)

FORMAT (2X,A)

STOP

END
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SUBROUTINE LAP(S, PWDL, PDPL)

IMPLICIT RPERL*8(A-H,0-2)

DIMENSION EBE(20),BK(20)

COMMOII M, CD, S¥,AMOB12,AMOE23,DIF12,DIF13,RWD,RDZ,
1 THETAl, THETAZ

THREE-PEGION RADIAL COMPOSITE SYSTEM SOLUTION IN
LAPLACE SPACE, WITH POWER LAW PROPERTY VARIATION

SOME PZRAMETERS OF POWER LAW RELATION

nannaon

GARIA=THETEL /2.
BET=(THETAL1-THETA2 + 2.)/2.
ZNU=THETAl/ (THETA1-THETA2 + 2.)
71 =DSQRT(S*DIF1lZ2)/BET

COMPUTE THE ARGUMENTS OF BESSEL FUNCTIONS

noo

ARG1=DSQRT(S)
ARG2=RWD*DSQRT (S}
ARG3=X3
ARG4=XI*RD2* *BET
ARGS5=RD2*DSQRT (S*DIF13)

FACTORS FOR CONVERTING EXPONENTIALLY-SCALED
BESSEL FUNCTIONS

nnoaon

IF (ARG1.LE.170.}) THEN
F1=DEXP (ARG1)
ELSE
F1=DEXP(170.0D00)
ENDIF
IF (ARG2.LE.170.) THEN
F2=DEXP (ARG2)
FLSE
F2=DEXP(170.0D00)
ENDIF
IF (ARG3.LE.170.) THEN
F3=DEXP (ARG3)
ELSE
F3=DEXP(170.0D00)
ENDIF
IF (ARG4.LE.170.) TEEN
F4=DEXP (ARG4)
ELSE
F4=DEXP(170,0D00)
ENDIF
IF (ARG5.LE.170.) THEXN
F5=DEXP (ARG5)
ELSE
F5=DEXP(170.0D00)
ENDIF
C

C COMPUTE NEEDED BESSEL FUNCTIONS OF INTEGER ORDER
C
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Al1=BESEICQ (ARGl)*F1
AZ=BESEIO (ARG2)*F2

B1=BESEIl (ARG1l)*F1
BZ=BESEI1l (ARGZ) *F2

DiI=BESEK(Q (ARG1l) /F1
D2=BESEKO (ARG2) /F2
D3=BESEKO (ARG5) /F5

E1=BESEK1 (ARG1) /F1
E2=BESEKI1 (ARG2) /F2
E3=BESEK1 (ARG5) /F5

COMPUTE NEEDED SESSEL FUNCTIONS OF FRACTIONAL ORDER

Nnoa

IF (XNU.GT.0.) THEN
ALPHA=XNU
CALL RIBESL{ARG3,ALPHA,NB, IZE, E,NCALC)
P1=B(1)*F3
P2=B(2)*F3

CALL RIBESL(ARG4,ALPHA,NB, IZE, B, NCALC)
P3=B(1)*F4
P4=B(2)*F4

CALL RKBESL(ARG3,ALPHA,NB, IZE, BK, NCALC)
Q1l=BK(1)/F3
Q2=BK(2) /F3

CALL RKBESL(ARG4,ALPHA,NB, IZE, BK,NCALC)
Q3=BK (1) /F4
Q4=BK(2) /F4
ELSE
P1=BESEIO{ARG3) *F3
P3=BESEIO(ARG4) *F4
Q1=BESEKO (ARG3) /F3
QO3 =BESEKO0 (ARG4) /F4
ENDIF
C
C COMPUTE DERIVATIVE OF BESSEL FUNCTIONS OF FRACTIONAL ORDEF
C
IF (XNU.GT.0.) THEN

P1lP= XNU*P1/ARG3 + P2
QiP= XNU*Q1/ARG3 - Q2
P3P= XNU*P3/ARG4 + P4
Q3P= XNU*Q3/ARG4 - Q4

ELSE
P1P=BESEI1l (ARG3)*F3
P3P=BESEIl (ARG4)*F4
Q1P=-BESEK1 (ARG3) /F3
Q3P=-BESEK1 (ARG4) /F4
ENDIF
Cc
C COMPUTATION OF COEFFICIENTS OF EQUATIONS. FOR C1 AND CZ
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AL11 = -ZRG2*BZ

AL1Z2 = ARG2’EZ2

ALZ1 = Al

AL22 = D1

AL23 = -P1

ALz4 = -Q1

AL31 = -AMOB12*ARGl*El

AL32 = AMOB12*ARG1l*El

AL32 = P1*GAM + PlP*BET*XI

AL34 = Q1*GAM + QlP*BET*XI

AL43 = P3*RD2**GAM

AL44 = Q3*RD2**GAM

AL46 = -D3
T1=P3*GAM*RD2** (GAM - 1.)
T2=P3P*BET*XI*RD2** (GAM + BET - 1.)

AL52 = -AMOB23*(T1 + T2)
T1=Q3*GAM*RD2** (GAM - 1.)
T2=Q3P*BET*XI*RD2** (GAM + BET - 1.)

AL54 = -AMOB23*(T1 + T2)

AL56 = -DSQRT(S*DIF13)*E3

CALCULATION OF Cl1 AND C2

S1=AL56*AL43-AL46*AL53
S2=AL56*AL44-AL46*AL54

S3=(S2*AL23 - S1*AL24)/S2

S4=(S2*AL33 - S1*AL34)/S2

S5=- (S4*AL22 - S3*AL32)/(S4*AL21 - S3*AL31)

C1
c2

S5/((85*AL11 + ALl12)*S)
1./7((S5*AL11 + AL12)*S)

CALCULATION OF TRANSTORMED SOLUTION
PWDL = LAPLACE TRANSFORM OF PWD

PWDL= C1*A2 + C2*D2
PDPL=PWDL*$

Adding wellbore storage and skin effects to the
constant-rate solution

IF (CD.GT.0.OR.SK.GT.0) THEN
PWDL=(S*PWDL + SK)/(S*(1 + CD*S*(S*PWDL + SK}})
PDPL=PWDL™*S

ENDIF

RETURN
END

Tk Ak Kkhkkhkhk A KR T AR ARk Ak kkhd Ak Tk hdk ok hhkoh ko hokhdhowikhkidkkkkdkdhkhkd

THE STEHFEST ALGORITHM

SUBROUTINE INVERT(TD,NL, PWD, PDP)
IMPLICIT REAL*8 (A-H,0-2)
COMMON M, CD, SK,AMOB12,AMCB23,DIF12,DIF13,RWD,RD2,
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41

43

44
40

1 THETAl, THETA2

DIMENSION G(50),V(50) ,H(25%}

NOW IF THE ARRAY V(I) WAS CALCULATED PREVIOUSLY, THE
PROGRAM GOES DIRECTLY TO THE END OF THE SUBROQUTINE TO
CALCULATE F(S).

IF (NL.EQ.M) GO TO 47

M=NL

DLOGTW=0.6931471805599D+00

NH=NL/2

THE FACTORIALS OF 1 TO NL ARE CALCULATED INTO G.
G(l)=1
Do 31 I=2,NL

G(I)=G(I-1)*I
CONTINUE

TERMS WITH K ONLY ARE CALCULATED INTO ARRAY H
H(1)=2.0/G(NH-1)
DO 36 I=2,NH
FI=I
IF (I-NH) 34,35,36
H(I)=FI**NH*G(2*I)/(G(NH-I)*G(I)*G(I-1})
GO TO 36
H(I)=FI**NH*G(2*I)/{(G(I)*G(I-1))
CONTINUE

THE TERMS (-1)**NH+1 ARE CALCULATED.
FIRST THE TERM FOR I=1
SN=2* (NH-NH/2*2) -1

THE REST OF THE SN'S ARE CALCULATED IN THE MAIN ROUTIL1NE
THE ARRAY V(I) IS CALCULATED.
DO 37 I=1,NL

FIRST SET V(I)=0
V(I)=0.0

THE LIMITS OF K ARE ESTABLISHED.
THE LOWER LIMIT FOR K1=INTEG((I+1/2))

Kl=(I+1)/2
THE UPPER LIMIT IS K2=MIN(I,NL/2)
K2=I
IF (K2-NH) 38,38,39
K2=NH

THE SUMMATION TERM IN V(I) IS CALCULATED

DO 40 K=K1,K2

IF (2*K-I) 42,43,42

IF (I-K) 41,44,41

V(I)=V(I)+H(K)/(G(I-K)*G(2*K-I})

GO TO 40

V(I)=V(I)+H(K)/G(I-K)

GO TO 40

V(I)=V(I)+H(K)/G(2*K-I)
CONTINUE
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48

THE V(1) ARRAY IS FINALLY CALCULATED BY WEIGHTING
ACCOFDING TO SN
J(I)=8N*V(I)

THE TERIM SN CHANGES ITS SIGN EACH ITERATION.
SN=-8N
CONTINUE

THE NU!MERICAL APPROXIMATION IS CALCULATED.

PWD=0.0D+00
PDP=0 0D+00
A=DLOGTW/TD
DO 52 I=1,NL
ARG=A"I
CALL LAP (ARG, PWDL, PDPL)
PWD=PWD + V(I)*PWDL
PDP=PDP + V(I)*PDPL
CONTINUE
PWD=PWD*A
PDP=PDP*2A
RETURN
END

—

Sample Data File for the Three-Region, Radial. Composite Reservoir Program

L 2R 4

* W

* K

*

DATA FILE FOR A THREE-REGION FRACTAL COMPOSITE RESERVOIR
ENTER DIMENSIONLESS WELLBORE STORAGE AND SKIN (CD and SK)
0. 0.

ENTEDR MOBILITY RATIOS (1 by 2 and 1 by 3)

10. 1000.

ENTER STORATIVITY RATIOS (1 by 2 and 1 by 3)

10. 1600.

ENTER WELLBORE DISTANCE AND SECON™ DISC. DIST. ( RWD and RD2)
.01 5.

ENTER SPECTRAL EXPONENT FOR MOBILITY AND STORATIVITY (Theta)
é&TER NéMBER OF CYCLES

é;TER FIRST DIMENSIONLESS TIME

ég;ER NUMBER OF TERMS NEEDED IN LAPLACE INVERTER

8
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