[LL]]

University of Alberta

N

<7
5%
£, N
7] Qut

&

éw

o)

Multimedia Extensions To Database Query
Languages

by

John Z. Li, M. Tamer (3zsu, Duane Szafron
Laboratory for Database Systems Research
Department of Computing Science
University of Alberta
Edmonton, Alberta
Canada T6G 2H1

{zhong,ozsu,duane}@cs.ualberta.ca

Technical Report TR 97-01
January 1997

DEPARTMENT OF COMPUTING SCIENCE
The University of Alberta
Edmonton, Alberta, Canada

Multimedia Extensions To Database

Query Languages *

Abstract

Declarative query languages are an important feature of database manage-
ment systems and have played an important role in their success. As database
management technology enters the multimedia information system domain, the
availability of query languages for multimedia applications will be equally im-
portant. However, one common problem with currently existing multimedia
query languages is their lack of generality. They are designed either for a
certain medium (e.g. images) or special applications (e.g., medical, geograph-
ical information systems). We describe general multimedia queries based on
the ODMG’s Object Query Language (OQL) and TIGUKAT Query Language
(TQL). In order to capture the temporal and spatial relationships in multime-
dia data, both OQL and TQL are extended by a set of multimedia primitives.
These extended OQL and TQL also include functions for query presentation.

We illustrate the extended language features by query examples.

Keywords: multimedia, OQL, TQL, MOQL, MTQL, Object-oriented, database,

query, language

*This research 1s supported by a grant from the Canadian Institute for Telecommunications
Research (CITR) under the Network of Centres of Excellence (NCE) program of the Government of

Canada.

Contents

1 Introduction 5
2 Related Work 8
3 Query Languages and The Extensions 10
3.1 Object Query Language 10
3.2 TIGUKAT Query Language 13
4 Spatial Primitives 15
4.1 Spatial Predicates oo 16
4.2 Spatial Functions oo 19
5 Temporal Primitives 20
5.1 Temporal Functions o o 21
5.2 Continuous Media Functions 22
5.3 Presentation Functions 0o 0oL 25
6 Implementation of The Languages 29
7 Conclusion 30
A Appendix: MOQL Specification 35
Al Axiom . .. 35
A2 Basico 35
A3 Simple Expressiono 35
A4 Comparison L 35
A5 Boolean Expression o0 oo 35
A6 Constructor L 35
AT Accessor 36
A8 Collection Expression o o 36
A9 BSelect Expression o0 36
A10Set Expression Lo 36
A1l Conversiono oo 37
A.12 Spatial Expressiono o000 37

A.13 Temporall Expression o o 38

A.14 Boolean Expression o 38
A.15 Presentation Layout 00 38
Appendix: MTQL Specification 40
B.1 Basic Statementso oo 40
B.2 MTQL Terms 40
B.3 Spatial Expression o000 41
B.4 Temporall Expression 41
B.5 Boolean Expression o oo 42
B.6 Presentation Layout oL 42

List of Figures

1 Definitions of Topological Relations

2 Query Processing and Query Tree

List of Tables

1 Spatial Predicates
2 Spatial Functions

3 Continuous Media Functions

1 Introduction

Multimedia query languages are important, since query languages are an integral
feature of database management systems (DBMS). One of the basic functionalities
of a DBMS is to be able to efficiently process declarative user queries. The pen-
etration of DBMS technology into multimedia information systems necessitates the
development of query languages appropriate for this domain. The complex spatial and
temporal relationships inherent in the wide range of multimedia data types make a
multimedia query language quite different from its counterpart in traditional DBMSs.
For example, the query languages of traditional DBMSs only deal with exact-match
queries on conventional data types. Although this might be sufficient to deal with
queries posed against metadata or annotations of multimedia data, content-based
information retrieval requires non-exact-match (fuzzy) queries which go beyond the
traditional approaches.

A powerful query language significantly helps users to manipulate a multimedia
database. It also helps to maintain the desired independence between the database
and the application. Effective query languages must be user friendly for both naive
and expert users. Furthermore, query presentation, which refers to the way query re-
sults are presented, is more complex in multimedia systems than traditional DBMSs.
This is because multimedia presentations have to take into account the synchroniza-
tion of various media. In recent years, there have been many multimedia query
language proposals [BRG91, OMS8, RFS88, AB91, DG92, CIT*93, Ege94, Giit94,
CIT94, HK95, KC96, ATS96, MS96, GR96, MHM96]. These proposals can be classi-

fied into three categories:

e Those that are proposed as a new language: [CIT193, HK95, KC96, ATS96,
GR96].

o Languages that are based on a logic or a functional programming approach:

[DG92, MS96].

e Languages that are extensions of SQL: [BRG91, OMS88, RFS88, AB91, OT93,
Fge9d, Giit94, CTT94, MHM96].

One problem with a brand new multimedia query language is the lack of acceptance

by users. In general, it is difficult to convince users to learn and use a new language

5

for each application. Another problem with the current proposals is the lack of
theoretical results about the soundness and expressive power of new languages. In
fact, none of the proposed new languages has ever addressed this problem.

Specifying queries using logic and functional programming approaches is relatively
difficult. Therefore, this method is not very attractive, despite the expressive power
of these languages. They may be suitable as lower level multimedia query languages,
but not as user languages.

The majority of existing approaches to designing multimedia query languages
are based on extensions of SQL. This is generally due to the popularity of SQL for
traditional database applications. A common problem with all the existing SQL-based
multimedia query languages is that they are designed either for a particular medium
or for a specific application domain, not for general use. For example, VideoSQL
[OT93] is used only for video databases, SEQL [CIT94] is designed mainly for medical
sequence image databases, ESQL [AB91] is good only for image databases, and PSQL
[RFS88] and SpatialSQL [Ege94] are suitable only for spatial databases.

Are there any general query languages for multimedia databases? How can they be
formally defined so that they are independent of particular media and specific applica-
tions? These are the question that this paper addresses. It is well-known that object-
oriented technology is a promising one for dealing with multimedia data. As a result,
almost all multimedia DBMSs are directly or indirectly (by extending relational mod-
els into object-oriented models) based on object-oriented technology. Object Query
Language (OQL) [Cat94] has been proposed by Object Database Management Group
(ODMG) which is a consortium of object database management system (ODBMS)
vendors and interested parties working on standards to allow portability of customer
software across ODBMS products. Syntactically, OQL is very similar to SQL. It is
currently supported by most major ODBMS vendors and its popularity should in-
crease as the ODBMS market grows. To the best of our knowledge, no multimedia
extensions to OQL exist.

We also consider another general object database query language, TIGUKAT
[PLOS93]. TIGUKAT has an extensible, uniform, behavioral query model and query
language. The TIGUKAT model is purely behavioral in nature, supports full en-
capsulation of objects, defines a clear separation between primitive components such

as types, classes, collections, behaviors, functions, etc., and incorporates a uniform

semantics over objects. Queries are modeled as type and behavior extensions to the
base object model, thus incorporating queries as an extensible part of the model it-
self. TIGUKAT Query Language (TQL) is an SQL-like ad hoc query language for
database users.

In this report, we propose multimedia extensions to OQL and TQL to develop
a general-purpose query language for multimedia DBMSs. The extended languages
are called Multimedia Object Query Language (MOQL) and Multimedia TIGUKAT
Query Language (MTQL) respectively. These include extensions of spatial properties,
temporal properties, and presentation properties to OQL and TQL. These extensions
are introduced through predicates and functions. The major contribution of this work

are:

e a complete multimedia query language which supports general media and ap-

plications;

e definition of spatial and temporal operators which support content-based queries;

and

o a multimedia OQL preprocessor which parses MOQL queries and generates

algebraic trees for subsequent optimization.

All the multimedia query examples in this report will be illustrated by both MOQL
and MTQL.

The major differences between TQL and OQL are characterized as follows:
e Functions are allowed in OQL, but not in TQL.

o OQL supports aggregate functions such average, sum, group by, etc. while
TQL does not.

e OQL allows object references (pointers in C4+ context) which are not addressed

in TQL.
o An OQL query can be in any form while a TQL query has to use select clause.

In general, OQL is more expressive than TQL.
Visual query languages have also received attention as interfaces to multimedia

databases. Visual query systems are especially good for novice or casual users. A user

can manipulate the database easily, with only limited knowledge of the underlying
system. For experienced users, visual queries can still be beneficial in those cases
where queries are difficult to express syntactically. Even though we do not specif-
ically address visual query languages in this report, MOQL and MTQL establish
the basis for these interfaces. Such an interface based on MOQL is currently under
development.

The rest of the report is organized as follows. Section 2 reviews the related work
in multimedia query languages. Section 3 introduces ODMG’s OQL and TIGUKAT’s
TQL, as well as our basic extensions. Section 4 introduces our extensions to spatial
primitives which describe relationships between spatial objects. We define a set of
spatial functions and predicates to support complex spatial operations. Section 5
introduces our extensions to temporal primitives, as well as the query presentation
functions. We focus on video data in this section by discussing the video functions in
some depth. Section 6 briefly discusses the current status of implementing MOQL as
part of a full fledged multimedia DBMS. Section 7 summarizes our work and discusses

possible future work.

2 Related Work

PSQL (Pictorial SQL) [RFS88] is designed for pictorial databases which require ef-
ficient and direct spatial search, based on the geometric form of spatial objects and
relationships. It allows a user to directly manipulate spatial objects. An important
feature of PSQL is the introduction of many spatial operators, such as nearest and
furthest for point objects, intersect and not-intersect for segment objects, and cover,
and overlap for region objects. Syntactically, there is not much difference from the
standard SQL.

EVA [DG92] is, an object-oriented language, based on functional language features
with roots in conventional set theory. It is formally defined using the mathematical
framework of a many sorted algebra. Although EVA has defined a set of spatio-
temporal operators to support query presentation, it lacks some useful presentation
features, such as changing display speeds and time constraints (e.g., presenting some
object for 20 minutes). Furthermore, EVA does not support spatial queries or video
data.

A knowledge-based object-oriented query language, called PICQUERY ™, is pro-
posed in [CIT*93]. PICQUERY™ is a high-level domain-independent query language
designed for image and alphanumeric database management. It allows users to spec-
ify conventional arithmetic queries as well as evolutionary and temporal queries. The
main PICQUERY™ operations include panning, rotating, zooming, superimposing,
color transforming, edge detecting, similarity retrieving, segmenting, and geometric
operations. A template technique has been used in PICQUERY™ to facilitate user
queries. Such query templates are used in PICQUERY™ to specify predicates to con-
strain the database view.

SEQL (Spatial Evolutionary Query Language) [CIT94], a direct extension of SQL,
is proposed to operate on the spatial evolutionary domains of medical images. In
addition to alphanumeric predicates, SEQL contains constructs to specify spatial,
temporal, and evolutionary conditions. A when clause is added to the language,
which selects the appropriate snapshot of the data of interest at a particular point
in time. It supports temporal functions which manipulate time points (such as start
time, end time etc.), temporal ordering of an object history (such as first, last, next,
etc.), and temporal interval (such as before, after, during, etc.). Another extension is
the addition of a which clause which describes various evolutionary processes on a
set of evolving objects. Unfortunately, SEQL supports only image databases.

Marcus and Subrahmanian [MS96] have proposed a formal theoretical framework
for characterizing multimedia information systems. The framework includes a logical
query language that integrates diverse media. This is a first attempt at mathemati-
cally characterizing multimedia database systems. The model is independent of any
specific application domain and provides the possibility of uniformly incorporating
both query languages and access methods, based on multimedia index structures.
This model defines a special data structure, called a frame, which is used for data
access. The query language is based on logic programming and it makes extensive
use of predicates and functions. Such a query language is suitable as an intermedi-
ate query language between a higher level language (such as OQL) and a lower level
language (such as an object algebra).

Two new query languages, MMQL (Multimedia Query Language) and CVQL
(Content-based Video Query Language), for video databases are described in [KC96]
and [ATS96] respectively. A major problem with MMQL is that it does not support

spatial queries which is fundamental to a multimedia query language in our opinion.
CVQL is defined based on vide frame-sequences. Therefore, to query a video database
using CVQL, a user must have good knowledge about the video (or frame sequence)
on which he/she intends to query. ESQL [AB91] is an image domain query language
for the relational model. The query language in [BRG91] is designed for multimedia
office documents. Some research [HK95, PS95] has also been done in supporting
multimedia content specification and retrieval in the design of a multimedia query

language.

3 Query Languages and The Extensions

3.1 Object Query Language

OQL defines an orthogonal expression language, in the sense that all operators can
be composed with each other as long as the types of the operands are correct. It deals
with complex objects without changing the set construct and the select-from-where
clause. It is close to SQL 92 with object-oriented extensions such as complex ob-
jects, object identity, path expressions, polymorphism, operation invocation, and late
binding. It includes high-level primitives to deal with bulk objects like structures,
lists, and arrays. As a stand-alone language, OQL allows users to query objects by
using their names as entry points into a database. As an embedded language, OQL
allows applications to query objects that are supported by the native programming
language, using expressions that yield atoms, structures, collections, and literals. An
OQL query is a function which returns an object whose type may be inferred from
the operators contributing to the query expression. OQL has one basic statement for
retrieving information:

select [distinct | projection_attributes

from query H as | identifier | {, query [[as] identifier | }
where query

group by partition_attributes]

having query |

order by sort_criterion {, sort_criterion }]

where projection_attributes is a list of attribute names whose values are to be re-

Lquery is not a proper name here and a better name might be predicate-expression. However,

since this the standard OQL term we do not change it.

10

trieved by the query. In the from clause, a variable has to be bound to a set of
objects, an extent, or a query. In the where clause, the query is a conditional
search expression that identifies the objects to be retrieved by the query. The con-
ditional search expression can be any OQL query. In OQL, query is very general as
described in Appendix A. The clauses group by, order by, and having have the
same semantics as their counterparts in SQL.

Query examples will be introduced to describe different features of OQL and
MOQL. In the interest of saving space, we do not define the schema of the database
against which these queries are specified. The queries should be self-explanatory. We
discuss those aspects of the queries which require explanation. We follow ODMG’s
conventions: a class name has its first character capitalized, a class extent is repre-
sented by the class name with its plural form (E.g. Employee is the name of class
Employee and Employees is its extent), and an object is identified by a special font
(E.g. object x is denoted by). We now illustrate the basic statements by using some

example queries.

Query 1 Retrieve the birth date of the employee whose name is John:

select e.birthDate
from Employees e
where e.name="“John”

This query involves only one extent, Employees, listed in the from clause. The
query selects all the employees from class Employee that satisfy the condition of the
where clause, then projects the result on the birthDate attribute. The result is a
set of birth dates.

Query 2 Return a set of structures consisting of the ages and salaries of employees,

whose names are “John” and whose seniorities are greater than 20:
select struct(a:e.age, s:e.salary)

from]gselect
rom Employees f
where fseniority > 20)
as e

where ename = “John”

This query shows that the from clause does not have to be a class extent; it may
contain queries too. The result of this query is a literal of the type set<struct>,

namely, set<struct(a: int, s: float)>.

11

Query 3 Retrieve the street addresses of the spouses of employees who live in Paris:

select e.spouse.address.street

from Employees e

where elives_in(“Paris”)
The select clause includes a path expression and a method invocation. A method
can return a complex object or a collection that can be embedded in a complex
path expression. If spouse is a method defined on the class E'mployee which returns
an object of class Person, the result of the above query is the set of their spouses’
street names for those employees who lives in Paris. Although spouse is a method we
traverse it as if it were a relationship. Moreover, the where clause contains a method,
lives_in, which has one parameter.

Most of the extensions that we introduce to OQL are in the where clause. These
extensions are in the form of three new predicate expressions: spatial_expression,
temporal_expression, and contain_predicate. A full specification of these extensions is
given in Appendix A. The spatial_expression is the spatial extension which includes
spatial objects (such as points, lines, circles etc.), spatial functions (such as length,
area, intersection, etc.), and spatial predicates (such as cover, disjoint, left etc.). A
detailed discussion of spatial extensions is given in Section 4. The temporal_expression
deals with temporal objects, temporal functions, and temporal predicates; these are
discussed in Section 5. The contain_predicate has the basic form:

contain_predicate ::= mediaobject contains salientObject
where, media_object represents an instance of a particular medium type, e.g., an image
object or a video object, while salientObject is a salient object which is defined as
an interesting physical object in a media object. Each media object has many salient
objects, e.g. persons, houses, cars, etc. The contains predicate checks whether a

salient object is in a particular media object or not.

Query 4 Find images in which a person appears.

select m

from Images m, Persons p

where m contains p
This simple query uses the contains predicate which checks whether a person p is in
image m. The full set of multimedia extensions to OQL that we propose is specified in

Appendix A. In the following sections, we discuss these extensions and give intuitive

examples to demonstrate them.

12

3.2 TIGUKAT Query Language

The important characteristics of the TIGUKAT model are its behaviorality and and
its uniformity [OPST95]. The model is behavioral in the sense that all access and
manipulation of objects is based on the application of behaviors to objects. The model
is uniform in that every component of information, including its semantics, is modeled
as a first-class object with well-defined behavior. The typical object-oriented features,
such as strong object identity, abstract types, strong typing, complex objects, full
encapsulation, multiple inheritance, and parametric types are also supported.
TIGUKAT Query Language (TQL) is an SQL-like ad hoc query language for
database users to retrieve objects. TQL extends the SQL structure by accepting
path expression. Thus, path expressions can be used in the select clause to navigate
through the schema, in the from clause if the result of the application of behaviors is a
finite collection, and in the where clause as predicates. The basic query statement of
the TQL is the select statement. It operates on a set of input collections and it always
returns a new collection as the result. The general syntax of the select statement is:

select object_variable_list

[into [persistent [all]] collection reference
from range_variableList

where boolean_formula

where the select clause in this statement identifies objects which are to be returned
in a new collection. There can be one or more object variables in this clause. They
can be in form of simple variables, path expressions, index variables, or constants.
The into clause declares a reference to a new collection returned as a result of a
query. It is useful when the TQL is embedded in some other programming languages.
In addition, the result collection can be made persistent by specifying it in the into
clause. The persistent subclause makes only the container object persistent. The
from clause declares ranges of object variables in the select and where clauses. Every
object variable can range over either an existing collection, or a collection returned
as a result of of a subquery, while a subquery can be either given explicitly, or as a
reference to a query object. The TQL where clause is similar to the SQL where
clause and the formal definitions of TQL can be found in Appendix B. Note the TQL
does not support aggregate functions, such as group by, order by, or having.
Query examples will be introduced to describe different features of TQL and
MTQL. Following TIGUKAT’s convention, a reference prefixed by “T_” refers to

13

a type, “C_7 to a class, “B_.” to a behavior, and “T_X< T_.Y >” to the type TX
parameterized by the type T_Y. For example, T_person refers to a type, C_person to
its class, B_age to one of its behaviors and T_collection< T_person > to the type
of collections of persons. A reference such as David, without a prefix, denotes some
other application specific reference. Note that the model separates the definition of
object characteristics (a type) from the mechanism for maintaining instances of a

particular type (a class).

Query 5 Retrieve the birth date of the employee whose name is John:

select e.B_birthDate
from e in C_employee
where e.B_name.B_equal(“John”)

This query is almost identical to Query 1.

Query 6 Return a set of ages and salaries of all employees whose names are “John”

and seniorities are greater than 20:

select e.B_age, e.B_salary
from e in (select f

from fin C_employee

where [B_seniority.B_greaterthan(20))
where e.B_name.B_equal(“John”)

This query is similar to Query 2.

Query 7 Retrieve the street addresses of the spouses of employees who live in Paris:

select e.B_spouse.B_address. B_street
from e in C_employee
where e B_lives_in(“Paris”)

The select clause includes a path expression and a method invocation.

Similar to OQL, most of the extensions that we introduce to TQL are in the
where clause in the form of three new predicate expressions: spatial_expression, tem-
poral_expression, and boolean_expression. A full specification of these extensions is
given in Appendix B. The boolean_expression has the basic form:

boolean_expression ::= contain_predicate | boolean_function
where contain_predicate and boolean_function are described in the previous sub-

section.

14

Query 8 Find images in which a person appears.

select m
from m in C_image, p in C_person
where m contains p

This simple query uses the contains predicate which checks whether a person p is in

image m.

4 Spatial Primitives

Many applications depend on spatial relationships among data. Spatial data pertains
to the space occupied by objects and includes points, lines, squares, regions, volumes,
etc. The special requirements of multimedia query languages in supporting spatial
relationships have been investigated. From a user’s point of view, the following re-
quirements are necessary for supporting spatial queries in a multimedia information

system:

e Support should be provided for object domains which consist of complex (struc-
tured) spatial objects in addition to simple (unstructured) points and alphanu-
meric domains. These spatial objects must be accessible by pointing to them or

describing the space they occupy, and not just by referencing their encodings.

e Support should exist for direct spatial searches, which locate the spatial objects
in given areas of images. This can resolve queries of the form “Find all the faces

in the upper half of an image or a video frame”.

e It should be possible to perform hybrid spatial searches, which selects objects
based on some attributes and some associations between attributes and spatial
objects. This can resolve queries of the form “Display the person’s name, age,

and an image in which the person is riding on a horse”.

e Support should exist for complex spatial searches, which locate spatial objects
across the database by using set-theoretic operations over spatial attributes.
This can resolve queries of the form “Find all the roads which pass through city
X” where one may need to get the location coordinates of city X and then check

road maps to see which ones contain the coordinates.

15

e Support should be provided to perform direct spatial computations, which com-
pute specialized simple and aggregate functions from the images. This can
resolve queries of the form “Tell me the combined areas of all lakes in this

image”.

e Finally, support should exist for spatio-temporal queries which involve not only
spatial relations, but temporal relations as well. This can resolve queries of the
form “Find a clip in which a person is at the left of another person and later

on the two exchange their positions”.

4.1 Spatial Predicates

A spatial predicate compares the spatial properties of spatial objects and returns
a boolean value as the result. We define picture as any digital visual data which
include images, maps, and computer generated graphics. We identify a set of general
pictorial predicates. Note that since there are big differences between different types
of pictures (such as a GIF image and a computer-generated polygon), more precise
definitions are possible, but they would have to consider different types of pictures
and different formats of the same type of pictures. This is beyond the focus of this
paper. Instead, we define an image in an abstract format so we can provide generic
functions on images.

An image is defined by a quadruple
< SalientSet, SpatialSet, ColorSet, Textual Set >

where
o SalientSet: the set of salient objects in the image;

o SpatialSet: the spatial properties of salient objects, such as shapes, locations

etc.;
o ColorSet: the color properties of salient objects and image background;
o TextualSet: the textual values of salient objects and image background.

The set of pictorial predicates is:

16

identical: check if two pictures are identical; two pictures are identical if their

sets SalientSet, SpatialSet, ColorSet, and Textual Set are equal respectively;
coincident: check if two pictures have identical SpatialSets;

subpicture: check if one picture is contained inside another picture, which re-
quires the picture’s SalientSet, SpatialSet, ColorSet, and TextualSet be the

subsets of another picture’s respectively;

similar: check if two pictures are similar with respect to some metrics; such met-
rics can be salient objects, spatial relationships, colors, textures or combination
of these;

contains: check if a picture contains a particular salient object; i.e. check if a

salient object is an element of SalientSet.

We define only three spatial primitives: point, line, and region. Although other

constructors, such as circle, rectangle etc., are provided, they are all special cases

of reg

ion. A region may be represented by a set of points, a set of lines, a set of

polygons, or other forms (e.g. a point and a radius) in some universe. In the case

of continuous two-dimensional space, the universe is the whole plane. In the case

of continuous three-dimensional space, the universe is the whole three-dimensional

space. Regions in these cases correspond to areas and volumes respectively. Table 1

shows

basic spatial predicates defined in MOQL.

point line region

point || nearest, farthest | within, midpoint | centroid, inside

line Cross intersect inside, cross

region || cover cover, Cross topological _predicate,

directional _predicate

Table 1: Spatial Predicates

The operands of the spatial predicates must be the same or compatible object

types.

For example, predicates nearest and farthest can apply only to two point

17

objects, predicates within and midpoint can apply only to a point and a line, and
predicate cover may apply to a region and a point or to a region and a line. We
do not give exact definitions of spatial predicates (or for the temporal predicate in
the next subsection) since they are self-explanatory. The directional relations include
left, right, above, below, front, back, south, north, west, east, northwest, northeast,
southwest, southwest, as well as the combinations of front and back with other di-
rectional relations. For example we can have front_left, front_northwest, etc. Precise
definitions of directional relations can be found in [LOS96]. The topological predi-
cates include inside, covers, touch, overlap, disjoint, equal, coveredBy, and contains
which are specified in [EF91] as eight fundamental topological relations. However,
two pairs of predicates are inverses: cover vs coveredBy and inside vs contains. Fig-
ure 1 shows the basic six topological relations. Queries 5 and 6 illustrate how the

spatial predicates can be used.

I B
EE N | A | a 2] A B

A equal B

A digoint B A touch B A inside B A cover B

A overlap B

Figure 1: Definitions of Topological Relations

Query 9 Select all the cities, from a map of Canada, which are within 500km range

of the longitude 60 and latitude 105 with populations in excess of 50000:
select ¢

from Maps m, m.cities ¢
where m.name=“Canada” and c.location inside circle(point(60,105), 500)
c.population>50000

For each map, the method cities retrieves all the cities in this map. Then, a city’s
location is checked to see if it is within the required range. point is a constructor
which accepts two values or three values to create a 2D point or 3D point respectively.
Here, point(60, 105) represents a 2D point. circle is a circle object constructor which
accepts a spatial point acting as the center of the circle and a radius. inside is a

spatial predicate defined in Table 1. In MTQL, the same query can be specified as

18

and

select ¢

from m in C_map, ¢ in m.B_cities

where m.B_name.B_equal(“Canada”) and c¢.B_location inside
circle(point(60,105), 500) and
c.B_population. B_greaterthan(50000)

Query 10 Find all the names of the objects within a given region a in all images.

MOQL:

select o.name

from SalientObjects o, Images m

where m contains o and (o inside « or « cover o)
MTQL:

select 0.B_name

from o in C_salientObject, m in C_image

where m contains o and (o inside « or « cover o)

The spatial predicates inside and cover both express the meaning of within (see

Figure 1). The only difference is that cover shares boundaries of its arguments.

4.2 Spatial Functions

A spatial function computes attributes of an element or a set of elements of spatial
objects. The spatial functions are shown in Table 2. The return type refers to the
type of the object returned by a spatial function. Column value specifies the scale
value. Function mbr stands for minimum bounding rectangle. In addition to these,
there is a universal function distance, which returns a scale value when applied to any
two spatial objects. Function region for both point and line objects allows a point or
line to be converted to a region. Hence, all the predicates and functions for regions are
applicable to points and lines. For example, directly checking a directional relation
between a line and a region is not allowed. However, after the conversion of a line to

a region, such a check can be made. Similarly we specify a set of pictorial functions:
o pan: view different portions of an image
o resize: change the size of an image
o superimpose: synthesize two images into one

Query 11 illustrates the use of the spatial functions while the use of the pictorial

functions is illustrated in Query 15.

19

Return Type | point line region value

point nearest, farthest region

line intersect intersect | region length, slope
region centroid interior, exterior, mbr | area, perimeter

Table 2: Spatial Functions

Query 11 Find the forests and their areas from the maritime regions where the

forests are covered by provincial boundaries.

MOQL:

select
from
where

MTQL:
select

from
where

forest, area(forest)
Forests forest
forest.region coveredBy

forest, area(forest)
forest in C_forest
forest.B_region coveredBy

select p.region
from Provinces p
where

select p.B_region
from p in C_province
where

p.region coveredBy maritimeRegion

p.B_region coveredBy maritimeRegion

The above query illustrates the binding of two nested mappings combined with the

spatial function area and spatial predicate coveredBy. The provincial region is

passed from the interior level and used to direct the search in the exterior, one to

produce those forests in the maritime provinces which are completely covered by

provinces.

5 Temporal Primitives

The inclusion of temporal data in a multimedia query language is an essential re-

quirement. Research in temporal queries has focused more on historical (discrete)

databases rather than on databases of temporal media (e.g., [Sn095]). Thus, the fo-

cus has been on the reflections of changes of the representation of real world objects in

20

a database (e.g., President Clinton gave a speech at 2:00pm on July 4, 1996), rather
than changes in continuous and dynamic media action. A complicated temporal SQL
(TSQL2) [Se94] has been proposed as a possible standard for historical databases.
Our interest is in temporal relationships among salient objects in multimedia data,
not the real world historical relationships which are the major concern of TSQL2. A
typical temporal multimedia query is “Find the last clip in which person A appears”.
The specification of the temporal relationship last needs special support from query
languages to process this query.

A time interval is identified as the basic anchored specification of time. Allen
[A1183] introduces a set of 13 temporal interval relations which have been widely
accepted. The 13 relations are equal, before, after, meet, metBy, overlap, overlaped By,
during, include, start, startedBy, finish, finishedBy.

5.1 Temporal Functions

Our choice of functional abstractions for temporal objects is influenced by the work of
[GLOS96]. Interval unary functions which return the lower bound, upper bound and
length of the time interval are defined, while binary functions contain set-theoretic
operations viz union, intersection and difference’*. A time interval can be expanded
or shrunk by a specified time duration.

A time instant is a specific anchored moment in time. A time instant is modeled as
a special case of a (closed) time interval which has the same lower and upper bound,
e.g., Jan 24,1996 = [Jan 24,1996,
Jan 24,1996]. A wide range of operations can be performed on time instants. A time
instant can be compared with another time instant with the transitive comparison
operators < and >. A time span can be added to or subtracted from a time instant
to return another time instant. A time instant can be compared with a time interval
to check if it falls before, within or after the time interval.

A time span is an unanchored relative duration of time. A time span is basically
an atomic cardinal quantity, independent of any time instant or time interval. A

time span can be compared with another time span using the transitive comparison

ZNote that the union of two disjoint intervals is not an interval. Similarly, for the difference

operation, if the second interval is contained in the first, the result is not an interval.

21

operators < and >. A time span can be subtracted from or added to another time
span to return a third time span. We consider the following temporal granularity:

year, month, day, hour, minute, second, ms (millisecond).

5.2 Continuous Media Functions

For continuous media, we consider only video data while audio will be considered
in the future. We model a video as a sequence of clips and a ¢lip as a sequence of
frames. A frame, the smallest unit of a video object, can be treated as an image.
Each frame is associated with a timestamp or time instant while a clip or a video is
associated with a time interval. This implies that frames, clips, and videos can be
ordered. Therefore, we can ask for the previous frame to a given frame or the last
frame of a clip or a video. The continuous media functions are shown in Table 3. A

universal function timeStamp applies to frames, clips, and videos and returns a time

instant.
Return Type | frame clip video
frame prior, next clip
clip firstFrame, lastFrame, nth | prior, next video
video firstClip, lastClip, nth

Table 3: Continuous Media Functions

Since video data consists of sequences of images, they share all the attributes of
image data such as color, shape, objects, and texture. Unlike images, videos have tem-
poral relations. Such temporal relations introduce dynamicity, (e.g. motion) which
does not exist in image data. The implied motion in video data can be attributed to
a camera (global) motion and an object (local) motion [ABL95]. In MOQL, an object
motion is modeled by the multimedia database and then queried by using temporal
predicates or functions. The definition of the abstract camera actions are based on
[HK95]. A camera has six degrees of freedom representing translation along each axis
(x: track, y: boom, z: dolly) and rotation about each axis (x: tilt, y: pan, z: rotate).

In addition, a change in the camera’s focal length produces scaling or magnification

22

of the image plane (zoom in and zoom out). To extract these features, each video
stream should be first segmented into different logical units by locating cuts (camera
breaks). Cuts can be classified into different categories, such as fade, wipe, dissolve,
etc. We define the following camera motion boolean functions: zoomlin, zoomQut,
panlLeft, panRight, tiltUp, tiltDown, cut, fade, wipe, and dissolve.

In this section we assume that each continuous media object has a time interval
associated with it that can be accessed through a method, timestamp. Furthermore,
we assume that each salient object has a set of timestamped physical representations.
The timestamped physical representation of a salient object indicates the physical
characteristics of the salient object at different times. Typical physical characteristics
of a salient object include geometric region, color, region approximation, etc. The
set of physical representations of a salient object is accessible through method prSet.
The following queries illustrate the temporal features of MOQL and MTQL.

Query 12 Find the last clip in which person p appears in the video myVideo:

select lastClip(d)

from d in (select ¢ from myVideo.clips ¢
where ¢ contains p
order by c.timestamp)

or
select ¢
from myVideo.clips ¢
where ¢ contains p and and (upperBound(c.timestamp) >= all
select upperBound(d.timestamp)
from myVideo.clips d
where d contains p)

The first solution uses the features of the video function lastClip and the OQL’s
order by clause. It is simpler than the second one. We assume that each video
object has a method c¢lips which returns a sequence of clips and each clip has a
method timestamp which returns the time interval associated with this clip. Since
two clips’ intervals may overlap, we cannot simply rely on temporal predicates after
or meet to perform the query. However, if we are sure that the upper bound of an
interval is greater than or equal to all others, then its associated clip must be the last
clip in a video. Therefore, we used a nested MOQL statement to express Query 12.

In MTQL, the query can be expressed as

23

select ¢

from ¢ in myVideo.B_clips

where ¢ contains p and and (upperBound(c.B_timestamp) >= all
select upperBound(d.B_timestamp)
from myVideo.B_clips d
where d contains p)

Since TQL does not currently support the order by clause, we can only use the

second solution for this query.

Query 13 List all the clip-pairs in which object p simultaneously appears.
MOQL:

select c1, Co

from Clips ¢1, Clips ¢g, p.prSet pr

where ¢; contains p and ¢; contains p and

pr.timestamp during intersection(c;.timestamp, ¢y.timestamp)

MTQL:

select c1, €2

from ¢ in Cclip, ¢y in B_clip, pr in p.prSet

where ¢; contains p and ¢; contains p and

pr.B_timestamp during
intersection(c;. B_timestamp, ¢;.B_timestamp)

Note that because of video editing techniques such as fade and dissolve, clips can
overlap in time. The tricky part of this query is in finding the overlap part of two
neighboring clips. The temporal function intersection accomplishes this. Of course,
object p must be within such an overlap and this constraint is achieved by using the

temporal predicate during.

Query 14 List clips where person p; is at left of person py and later the two exchange

their positions:

select ¢
from Clips ¢, p1.prSet prii, pr1.prSet priz, pa.pret prar, pa.prset prag
where ¢ contalns p; and ¢ contains p, and pry; left pry; and
prig right pryy and
intersection(pry;.timestamp, pro;.timestamp) during
prip.timestamp an
intersection(pris.timestamp, prog.timestamp) during
priz.timestamp and
(pri1.timestamp before pris.timestamp or
prii.timestamp meet pris.timestamp)

Suppose clip ¢ is the one we are looking for, then it contains both p; and py. In

this case, both p; and p; must have at least two different physical representations

24

respectively: one is p; at left of py and another one is p; at right of po. We use prig
and prip to represent the two states of py, and pry; and prys to represent the two
states of py. The spatial constraints bind p; to the left of py and p; to the right of
p2 while the temporal constraints bind the intersection of pri; and pro; (as well as
prig and praz) to be not empty. Such temporal constraints guarantee that p; and py
appear together sometime in this clip. Certainly, the timestamp of the relation pq;

at left of pro; must be previous to the timestamp of the relation pry; at right of pro,.

In MTQL

select ¢

from cin C_clip, pri; in py.prSet, priy in py.prSet, prog in py.prSet,
Prag 1IN po.priet

where ¢ contains p; and ¢ contains p, and pry; left pry; and
Priz I'ight Praz and
intersection(pryy.B_timestamp, pro1.B_timestamp) during
pri1.B_timestamp an
intersection(pri,. B_timestamp, prqs.B_timestamp) during
priz.B_timestamp and
(pri1.B-timestamp before pri,. B_timestamp or
pri1.B_timestamp meet pris.B_timestamp)

5.3 Presentation Functions

The query language has to deal with the integration of all retrieved objects of different
media types in a synchronized way. For example, consider displaying a sequence
of video frames in which someone is speaking, and playing a sequence of speech
samples in a news-on-demand video system. The final presentation makes sense only
if the speaking person’s lip movement is synchronized with the starting time and the
playing speed of audio data. Because of the importance of delivering the output of
query results, supporting query presentation has become one of the most important
functions in a multimedia query system. Both spatial and temporal information must
be used to present query results for multimedia data. The spatial information will tell
a query system what the layout of the presentation is on the physical output devices,
and the temporal information will tell a query system the sequence of the presentation
along a time line (either absolute time or relative time). We add a present clause as
a direct extension to OQL as:

select [distinct | projection_attributes
from query [[as| identifier | {, query [[as] identifier]}
[where query

25

[present layout { and layout }]
and to TQL as:

select object_variable_list

[into [persistent [all]] collection reference
from range_variableList

where boolean_formula

[present layout { and layout }]

where, layout consists of three components:

e spatial layout which specifies the spatial relationships of the presentation, such

as how many displaying windows, sizes and locations of the windows, etc.

e temporal layout which specifies the temporal relationships of the presentation,
such as which media objects should start first, how long the presentation should

last, etc.

e scenario layout which allows a user to specify both spatial and temporal layout

using other presentation models or languages.

In order to support the spatio-temporal requirements of query presentations, we

define the following presentation functions:

atWindow(identifier, point, point): setting a spatial layout within a win-
dow defined by two points;

identifier: an identifier of any media object;

point: a spatial point object, e.g. (10, 20).
at Time(absoluteTime): setting a real world time for supporting synchro-
nization;

absoluteTime: e.g. 1996/11/8/13:40:00
display(identifier, start_offset, duration): present a non-continuous media
object;

identifier: a graphical, image, or text object;

start_offset: time the display starts;

duration: display duration (default forever);
play(identifier, start_offset, duration, speed): present a continuous media
object;

identifier: a frame, clip, video, or audio object;

26

start_offset: time the display starts;
duration: display duration (default: length of the identifier);
speed: playing speed factor (1.0: normal, 0.5: half normal speed,
2.0: double speed);
thumbnail(identifier): present the results as thumbnail objects;
identifier: any allowable media type;
resize(identifier, width, height): resetting the size of a media object;
identifier: an identifier of a media object;
width: the width of the result media object;
height: the height of the result media object.
parStart: two presentation events start simultaneously.
parknd: as soon as one event ends, another event ends too.

after: an event starts right after another event finishes.

Note that most presentation functions are applied only to the first element of the
result collection. Our experience tells us that no sophisticated query presentation is
possible in OQL-based (or SQL-based) query languages. One major reason is that
the return result is a collection of objects and a user cannot select a particular object
since there is no handle to reference it. Another major reason is that OQL-based
query languages cannot support interactive multimedia presentations. However, pro-
viding some basic functions for query presentation is very useful because in many
cases, sophisticated presentation is not necessary. A typical example is searching
for information using the World Wide Web on the Internet. For more sophisticated
cases, presentation and synchronization requirements need to be specified outside of
the query specification. However, MOQL and MTQL provide a mechanism to allow
the invocation of such types of specifications. The following query examples show

some features of the presentation functions.

Query 15 Find images, in which p appears, and display the result for 10 seconds
with size (100, 100).

MOQL:
select m
from Images m

where m contains p
present resize(m, 100, 100) and display(m, 0, 10)

27

MTQL:

select m

from m in C_image

where m contains p

present resize(m, 100, 100) and display(m, 0, 10)
Function resize will change the size of the image to 100 pixels by 100 pixels. The
offset of the display event is zero which means it will start immediately when the
result is delivered. We may change the present clause into thumbnail(m) which

will display thumbnail images as references to the real images.

Query 16 Find all the images and videos pairs such that the video contains all the
cars in the image. Show the image in a window at ((0, 0), (300, 400)) and the video
in a window at ((301, 401), (500, 700)). Start the video 10 seconds after displaying

the image and display the images for 20 seconds, but play the video for 30 minutes.

MOQL:
select m, v
from Images m, Videos v

where for all ¢ in (select r from Cars r where m contains r)
v contains c

present atWindow(m, (0, 0), (300, 400)) and
atWindow (v, (301, 401), (500, 700)) and
play(v, 10, normal, 30%60) parStart display(m, 0, 20)

MTQL:
select m, v
from m in C_iamge, v in C_video

where forAll ¢ in (select r from rin C_car where m contains r)
v contains c

present atWindow(m, (0, 0), (300, 400)) and
atWindow (v, (301, 401), (500, 700)) and
play(v, 10, normal, 30%60) parStart display(m, 0, 20)
Operator parStart starts both video and image media objects simultaneously. There-
fore, the image object will be displayed immediately. However, since the start offset
time for the video is 10 seconds, the video object will start 10 seconds after the im-
age object starts. We use a default value (normal) for video playing. This can be

changed for faster or slower playing by choosing a number either bigger than one or

less than one respectively.

Query 17 Find all clips in which both zoom-in and zoom-out exist and show their

first frames in a thumbnail format.

28

MOQL:

select firstFrame(c)

from Clips ¢

where zoomln(c) and zoomOut(c)
present thumbnail(firstFrame(c))

MTQL:
select firstFrame(c)
from cin C_clip

where zoomln(c) and zoomOut(c)
present thumbnail(firstFrame(c))

Video special effects can be queried through the predicate contains. This results in

a set of thumbnail images which are generated from the first frame of each clip.

6 Implementation of The Languages

TQL has been implemented as an extension of the first version of the TIGUKAT
object model [OPS+95]. There is a current effort to implement a revised version of
the TIGUKAT object model and TQL will be reimplemented within that extent. We
have, therefore, deferred implementing multimedia extensions into TQL and decided
to focus on OQL. We briefly discuss the current MOQL implementation. Figure 2
shows the overall architecture of MOQL query processing. Finished work is rep-
resented by the shaded boxes. MOQL queries are first examined syntactically by
an MOQL parser which is written in LEX/YACC [LMB92]. A semantic checking
procedure is conducted following the syntactic checking. The major work of this pro-
cedure is to validate types, classes, and class extents which are used in the MOQL
query. It uses the underlying database system catalogs (or metadata) to enforce the
correctness of data members, method invocations, or path expressions. Some query
rewriting techniques should be performed to do query optimization at the MOQL
level, such as renaming variables or eliminating nested queries [Kim82]. Then, an
MOQL query is transformed into an object query algebra and an initial query tree,
called canonical query tree, is generated. Many object query optimization techniques
[OBY5] can be applied to this canonical tree. Figure 2 (b) shows such a canonical
query tree generated from Query 6. The algebraic operators (PROJECT, SELECT,
and CROSS_PRODUCT) in Figure 2 (b) are standard relational algebraic operators;

a multimedia object algebra is used in this step. The goal of query optimization is

29

find a query evaluation plan that minimizes the most relevant performance measure.
After query optimization, an “optimized” query evaluation plan is produced. Using a
simple tree traversal algorithm, this plan is compiled into a representation (executable
code) ready for execution by the database system. Query optimization is the subject

of our future research.

7 Conclusion

A powerful query language significantly helps users to manipulate a multimedia
DBMS. It also helps to maintain the desired independence between the database
and the application. Such a powerful query language should be as general as possi-
ble. However, most existing multimedia database systems are designed for specific
applications. Therefore, the query languages are inherently restricted to a particular
domain. This is not acceptable in a dynamically changing research area as new tech-
niques emerge. The complex spatial and temporal relationships inherited in the wide
range of multimedia data types make a multimedia query language quite different
from its counterparts in traditional database systems. Surprisingly, spatial queries
and temporal queries are not supported by most multimedia query systems. Further-
more, query presentation is much more complex than in traditional databases due to
the synchronization of different media.

Our approach to designing a general-purpose multimedia query language is to ex-
tend the current standard query language OQL, which has been widely accepted by
the ODBMS research and industrial communities, as well as research object query
language TQL. The extended languages MOQL and MTQL can then be easily incor-
porated into existing ODBMSs. Users who are already familiar with OQL or TQL
do not have to learn a new language. The extensions are accomplished by including
spatial properties, temporal properties, and presentation properties. In particular,
content-based spatial and temporal queries and query presentation are supported.
An MOQL interpreter which parses MOQL queries and generates an algebraic tree is
implemented.

There are two activities that we are currently carrying out. One is the development
of a visual query interface built on top of MOQL. Even though MOQL provides

powerful predicates, some multimedia queries are easier to specify visually. In an

30

ideal environment, MOQL will establish the basis of a visual query interface and serve
as the embedded query language for application development. The second activity
is to implement MOQL on top of an existing ODBMS. We are using ObjectStore
[LLOWOL1] for this purpose. Further work needs to done in investigating the support
for audio media, which is not addressed yet in MOQL. Once we identify the important
primitives for audio data, the extension is straightforward. Another issue we will
study is the optimization of executing MOQL queries.

Our future work on multimedia extensions to query languages will focus on struc-
tured multimedia documents which includes some international standards, such as
SGML (Standard General Mark-up Language) and HyTime (Hypermedia/Time-Based
Structural Language). Structured documents are important in any multimedia infor-
mation systems, particularly for any system allowing the Internet access. One of
interesting research problems in this area is how to enable users to query multimedia
documents without complete document structural knowledge.

Multimedia DBMSs should use regular file systems (for efficiently handling tra-
ditional data) and multimedia servers (for efficiently handling multimedia data) as
underlying storage systems and provide additional functions [CC95]. A high level
query language is one such additional function and its support is essential in powerful
multimedia DBMSs. We view the MOQL and the MTQL are a very important step

in this direction.

Acknowledgment

We thank Dr. Vincent Oria for useful discussion in the process of preparing this

report.

References

[AB91] R. Ahad and A. Basu. ESQL: A query lanugage for the relational model
supporting image domains. In Proceedings of the 7th International Con-
ference on Data Engineering, pages 550—559, Kobe, Japan, 1991.

[ABL95] G. Ahanger, D. Benson, and T. D. C. Little. Video query formulation. In
Proceedings of Storage and Retrieval for Images and Video Databases 11,

31

[A1I83]

[ATS96]

[BRGO1]

[Cat94]

[CC95]

[CIT+93]

[C1T94]

[DGY2]

[EF91]

[Egedq]

ISET/SPIE Symposium on FElectronic Imaging Science and Technology,
pages 280—291, San Jose, CA, February 1995.

J. F. Allen. Maintaining knowledge about temporal intervals. Communi-

cations of ACM, 26(11):832—843, 1983.

H. Arisawa, T. Tomii, and K. Salev. Design of multimedia database and a
query language for video image data. In Proceedings of IEEE International
Conference on Multimedia Computing and Systems, pages 462—467, Hi-
roshima, Japan, June 1996.

E. Bertino, F. Rabitti, and S. Gibbs. Query processing in a multimedia
document system. ACM Transactions on Office Information Systems,

6(1):1—41, January 1991.

R. Cattell, editor. The Object Database Standard: ODMG-93. Morgan
Kaufmann, San Francisco, CA, 1994.

S. T. Campbell and S. M. Chung. The role of database systems in the
management of multimedia information. In Proceedings of International

Workshop on Multimedia Database Management Systems, pages 31—39,
Blue Mountain Lake, New York, August 1995.

A. F. Cardenas, I. T. leong, R. K. Taira, R. Barker, and C. M. Bre-
ant. The knowledge-based object-oriented PICQUERY ™' language. IFEE
Transactions on Knowledge and Data Engineering, 5(4):644—657, August
1993.

W. W. Chu, . T. Teong, and R. K. Taira. A semantic modeling approach
for image retrieval by content. The VLDB Journal, 3:445—A477, 1994.

N. Dimitrova and F. Golshani. EVA: A query language for multimedia
information systems. In Proceedings of Multimedia Information Systems,
Tempe, Arizona, February 1992.

M. Egenhofer and R. Franzosa. Point-set topological spatial relations.
International Journal of Geographical Information Systems, 5(2):161—
174, 1991.

M. Egenhofer. Spatial SQL: A query and presentation language. IEEF
Transactions on Knowledge and Data Engineering, 6(1):86—95, January
1994.

32

[GLOSY6]

[GRY6]

[Giit94]

[HK95]

[KC96]

[Kim82]
[LLOW1]
[LMB92]

[LOSY6]

[MHMO96]

[MS96]

I. A. Goralwalla, Y. Leontiev, M. T. Ozsu, and D. Szafron. Modeling time:
Back to basics. Technical Report TR-96-03, Department of Computing
Science, University of Alberta, February 1996.

E. J. Guglielmo and N. C. Rowe. Natural-language retrieval of images
based on descriptive captions. ACM Transactions on Information Sys-

tems, 14(3):237—267, July 1996.

R. H. Guting. GraphDB: Modeling and querying graphs in databases.
In Proceedings of the 20th International Conference on Very Large Data
Bases, pages 297—308, Santiago, Chile, 1994.

N. Hirzalla and A. Karmouch. A multimedia query specification language.
In Proceedings of International Workshop on Multimedia Database Man-
agement Systems, pages 73—S81, Blue Mountain Lake, New York, August
1995.

T. C. T. Kuo and A. L. P. Chen. A content-based query language for
video databases. In Proceedings of IEEE International Conference on
Multimedia Computing and Systems, pages 456—461, Hiroshima, Japan,
June 1996.

W. Kim. On optimizing an SQL-like nested query. ACM Transaction on
Database Systems, 7(3):443—469, September 1982.

C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The ObjectStore
database system. Communications of ACM, 34(10):19—20, 1991.

J. R. Levine, T. Mason, and D. Brown. Lezx & Yace. O’Reilly & Associates,
Inc., Sebastopol, CA, 1992.

J. 7. Li, M. T. Ozsu, and D. Szafron. Modeling of video spatial relation-
ships in an object database management system. In Proceedings of the
International Workshop on Multimedia Database Management Systems,
pages 124—133, Blue Mountain Lake, NY, August 1996.

Elina Megalou, Thanasis Hadzilacos, and Nikos Mamoulis. Conceptual
title abstractions: Modeling and querying very large interactive multi-
media repositories. In Proceedings of the International Conference on

Multimedia Modeling, pages 323—338, Toulouse, France, November 1996.

S. Marcus and V. S. Subrahmanian. Foundations of multimedia database

systems. Journal of ACM, 43(3):474—523, 1996.

33

[OB95]

[OMsS]

[OPS+95]

[0T93]

[PLOS93]

[PS95]

[RFSSS]

[Se94]

[S1n095]

M.T. Ozsu and J. Blakeley. Query optimization and processing in object-
oriented database systems. In W. Kim, editor, Modern Database Systems,
pages 146—174. Addison-Wesley, 1995.

J. A. Orenstein and F. A. Manola. PROBE spatial data modeling and
query processing in an image database application. IEEFE Transactions

on Software Engineering, 14(5):611—629, May 1988.

M. T. Ozsu, R. J. Peters, D. Szafron, B. Irani, A. Lipka, and A. Munoz.
TIGUKAT: A uniform behavioral objectbase management system. The
VLDB Journal, 4:100—147, 1995.

E. Oomoto and K. Tanaka. OVID: Design and implementation of a video-
object database system. I[EEE Transactions on Knowledge and Data En-
gineering, 5(4):629—643, August 1993.

R. J. Peters, A. Lipka, M. T. ()zsu, and D. Szafron. An extensible query
model and its languages for a uniform behavioral object management
system. In Proceedings of the Second International Conference on Infor-
mation and Knowledge Management, pages 403—412, Washington D.C.,

USA. November 1993.

P. Pazandak and J. Srivastawa. The language components of DAMSEL:
An embedable event-driven declarative multimedia specification language.

In Proceedings of SPIFE Photonics, pages 121—128, October 1995.

N. Roussopoulos, C. Faloutsos, and T. Sellis. An efficient pictorial
database system for PSQL. [EFEE Transactions on Software Engineer-
ing, 14(5):639—650, May 1988.

R. T. Snodgrass and et al. TSQL2 language specification. SIGMOD
Record, 23(1):65—86, March 1994.

R. T. Snodgrass. Temporal object-oriented databases: A critical com-
parison. In W. Kim, editor, Modern Database Systems, pages 386—408.
Addison-Wesley, 1995.

34

A Appendix: MOQL Specification

We follow the OQL grammar convention with only change: “|” and “|” are used to

as an optional symbol to avoid confusion with symbols “[” and “]”.

A.1 Axiom

query program ::= {define_query;} query

define_query ::= define identifier as query

A.2 Basic

query = nil | true | false | integerliteral | float_literal | character_ literal

| string_literal | entry_name | queryname | bind_argument
| from_variablename | (query)

A.3 Simple Expression

%

query = query -+ query | query - query | query query
| query / query | - query | query mod query
| abs (query) | query || query
A.4 Comparison
query = query comparison_operator query | query like stringliteral
comparison_operator = = | = | > | < | >= | <=
A.5 Boolean Expression
query == not query | query and query | query or query | spatial_expression

| temporal_expression | boolean_expression

A.6 Constructor

query = typemame (| query |)
| typemame (identifier : query <, identifier :} query })
| struct (identifier : query {, identifier : query })
| cet (Lquery {, query }])
| bag ([query {, query }]) | list ([query {, query }])
| (query , query {, query })| | list [(query .. query)
| array (| query | query })

35

A.7 Accessor

query = query * query
| dot attributename | query dot relationship name
| query dot operation_.name (query {, query })| query [query : query |
| query [query || first (query)| last (query)
| functionname (| query {, query }])

dot == .| —>

A.8 Collection Expression

query ::= for all identifier in query: query
| exists identifier in query: query
| exists (query) | unique (query)
| query comparison_operator quantifier query
| query in query | count (query)| count (*)
| sum (query)| min (query)
| max (query)| avg (query)
quantifier := some | any | all

A.9 Select Expression

query = select | distinct | projection_attributes

from variable_declaration {, variable_declaration }

| where query |

| group by partition_attributes |

| having query |

| order by sort_criterion {, sort_criterion }]

| present layout { and layout }|
projection_attributes ::= projection {, projection } | *
projection ::= query | identifier : query | query as identifier
variable_declaration ::= query || as | identifier |
partition_attributes ::= projection {, projection }
sort_criterion = query | ordering |
ordering = asc | desc

A.10 Set Expression

query = query intersect query | query union query
| query except query

36

A.11 Conversion

query = listtoset (query)| element (query)| distinct (query)
| flatten (query)| (class_.name) query

A.12 Spatial Expression

spatial_expression ::= spatial_function_expression comparison_operator
spatial function_expression

spatial_expression ::= spatial_object spatial_predicate spatial_object

spatial function_expression ::= spatial_term

[arithmetic_operator spatial_function_expression]
spatial_term ::= float_literal | integerliteral | spatial_object
| spatial_function (query)
spatial_function ::= nearest | farthest | length | slope | centroid
| area | mbr | distance | intersect
| interior | exterior | perimeter

spatial_predicate ::= generic_spatial_predicate | topological predicate
| directional predicate | picture_predicate
generic_spatial_predicate ::= nearest | farthest | intersect | inside | cross
| centroid | midpoint
topological _predicate ::= equal | touch | inside | contains | overlap
| disjoint | cover | coveredBy
directional predicate ::= positional_predicate | depth_predicate

| simple_directional _predicate
| complex_directional predicate

positional_predicate left | right | above | below

depth_predicate ::= back | front
simple_directional _predicate ::= north | south | west | east
| northwest | northeast | southwest | southeast
complex predicate ::= depth_predicate _ positional_predicate
| depth_predicate _ simple_directional _predicate
picture_predicate ::= equal | coincident | subpicture | similar
spatial_object ::= query | point (integerliteral , integer literal)

| line (point, point)| window (point, point)
| circle (point , radius)

37

A.13 Temporall Expression

temporal_expression ::= temporal_object temporal_predicate temporal_object
| temporal function_expression comparion_operator
temporal _function_expression

temporal function_expression ::= temporal term [arithmetic_operator
temporal function xpression |
temporal_term ::= integerliteral | float_literal | temporal object
| temporal function (query)
temporal function ::= union | intersection | difference | add | subtract

| upperBound | lowBound | length
| prior | next | nth | firstClip | lastClip | firstFrame
| lastFrame
temporal predicate ::= equal | before | after | meet | metBy | overlap
| overlapedBy | during | include | start | startedBy
| finish | finishedBy
temporal_object 1= query | instant (integer literal)| span (integer_literal)
| interval (integerliteral , integer literal)

A.14 Boolean Expression

boolean_expression ::= contain_predicate | boolean_function

contain_predicate ::= media_object contains identifier

media_object ::= identifier

boolean_function ::= boolean_function_name (media_object)

boolean_function name ::= cut | fade | wipe | dissolve | zoomlIn | zoomOut
| panLeft | panRight | tiltUp | tiltDown

A.15 Presentation Layout

layout ::= spatial_layout | temporal layout | scenario_layout
spatial_layout ::= atWindow (identifier , point , point)
| image function (identifier)

temporal layout ::= event present_operator event
event = display_event | play_event | thumbernail event

| event atTime (absoute_time)
display_event ::= display (identifier |, start_offset [, duration |])
play_event 1= play (identifier |, start_offset |, duration |, speed |]])
thumbnail event ::= thumbnail (identifier)
start_offset 1= integerliteral | temporal_granularity |

38

duration ::= integerliteral | temporal_granularity || forever

speed = float_literal | normal

present_operator ::= parStart | parEnd | after

temporal_granularity ::= year | month | day | hour | minute
| second | ms

arithmetic_operator == —+ | — | % | /

absolute_time ::= year / month / day / hour : minute : second

scenario_layout ::= user_presentation_specification

39

B Appendix: MTQL Specification

B.1 Basic Statements

MTQL_ statement ::= select_statement | union_statement | minus_statement |
intersect_statement
select statement ::= select object_variable list | into | persistent | all ||

collection reference |
from range_variableList
| where boolean_formula |
| present layout |

union_statement ::= collection_reference union collection_reference
minus_statement ::= collection_reference minus collection_reference
intersect_statement ::= collection_reference 1intersect collection_reference
collection reference 1= term | MTQL_statement

B.2 MTQL Terms

object_variablelist ::= object_variable |, object_variable list |
object_variable 1= |(cast_type)| term | indexVariable

term = variablereference | constant_reference | path_expression
index_variable ::= IDENTIFIER | behavior.namelist |

variable reference ::= IDENTIFIER

constant_reference ::= #IDENTIFIER

behavior name list ::= behavior.name | behavior_namelist , behavior_name
behavior name ::= IDENTIFIER

path_expression ::= term . function_expression

function_expression ::= behavior.name () | behavior_name (termist)
termlist = term |, termList]

varialbe list ::= wvariable | variable_list , variable

range_variable_list 1= range_variable |, range_variablelist |
range_variable 1= variablelist in collection_reference |+]
boolean_formula ::= atom | not boolean_formula

| boolean_formula and boolean_formula
| boolean_formula or boolean_formula
| (boolean_formula) | exists_predicate
| for_all_predicate | spatial_expression | temporal_expression
| boolean_expression
atom = term = term | termJdist in collection reference |+]
exists_predicate ::= exists collection_reference

40

for_all_predicate ::= forAll range_variable list boolean_formula

B.3 Spatial Expression

spatial_expression ::= spatial_function_expression comparison_operator
spatial function_expression
spatial_expression ::= spatial_object spatial_predicate spatial_object
spatial function_expression ::= spatial_term
[arithmetic_operator spatial_function_expression]
spatial_term ::= float_literal | integerliteral | spatial_object

| spatial_function (query)
spatial_function ::= nearest | farthest | length | slope | centroid
| area | mbr | distance | intersect
| interior | exterior | perimeter

spatial_predicate ::= generic_spatial_predicate | topological predicate
| directional predicate | picture_predicate
generic_spatial_predicate ::= nearest | farthest | intersect | inside | cross
| centroid | midpoint
topological _predicate ::= equal | touch | inside | contains | overlap
| disjoint | cover | coveredBy
directional predicate ::= positional_predicate | depth_predicate

| simple_directional _predicate
| complex_directional predicate

positional_predicate left | right | above | below

depth_predicate ::= back | front
simple_directional _predicate ::= north | south | west | east
| northwest | northeast | southwest | southeast
complex predicate ::= depth_predicate _ positional_predicate
| depth_predicate _ simple_directional _predicate
picture_predicate ::= equal | coincident | subpicture | similar
spatial_object ::= query | point (integerliteral , integer literal)

| line (point, point)| window (point, point)
| circle (point , radius)

B.4 Temporall Expression

temporal_expression ::= temporal_object temporal_predicate temporal_object
| temporal function_expression comparion_operator
temporal _function_expression

41

temporal function_expression ::= temporal term [arithmetic_operator
temporal function xpression |

temporal_term ::= integerliteral | float_literal | temporal object
| temporal function (query)
temporal function ::= union | intersection | difference | add | subtract

| upperBound | lowBound | length
| prior | next | nth | firstClip | lastClip | firstFrame
| lastFrame
temporal predicate ::= equal | before | after | meet | metBy | overlap
| overlapedBy | during | include | start | startedBy
| finish | finishedBy
temporal_object 1= query | instant (integer literal)| span (integer_literal)
| interval (integerliteral , integer literal)

B.5 Boolean Expression

boolean_expression ::= contain_predicate | boolean_function

contain_predicate ::= media_object contains identifier

media_object ::= identifier

boolean_function ::= boolean_function_name (media_object)

boolean_function name ::= cut | fade | wipe | dissolve | zoomlIn | zoomOut
| panLeft | panRight | tiltUp | tiltDown

B.6 Presentation Layout

layout ::= spatial_layout | temporal layout | scenario_layout
spatial_layout ::= atWindow (identifier , point , point)
| image function (identifier)

temporal layout ::= event present_operator event
event = display_event | play_event | thumbernail event

| event atTime (absoute_time)
display_event ::= display (identifier |, start_offset [, duration |])
play_event 1= play (identifier |, start_offset |, duration |, speed |]])
thumbnail event ::= thumbnail (identifier)
start_offset 1= integerliteral | temporal_granularity |
duration ::= integerliteral | temporal_granularity || forever
speed = float_literal | normal
present_operator ::= parStart | parEnd | after
temporal_granularity ::= year | month | day | hour | minute

| second | ms

42

arithmetic_operator == —+ | — | % | /
absolute_time ::= year / month / day / hour : minute : second
scenario_layout ::= user_presentation_specification

43

M OQL* Query

[Syntactic Checking]

[Semantic Checking]

[Query Rewriting]

[Query Tree Generation]

[Query Optimization]

[Plan Compilation]

[Executable Code]

(a) Query Processing
PROJECT (name)

SELECT(m contains o and (o.region inside a or a cover o.region))

CROSS_PRODUCT

SalientObjects

(b) The Canonical Query Tree of Query 10

Figure 2: Query Processing and Query Tree

44

