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Abstract

Let G be a locally compact group. It is well-known that GLUC , the spectrum

of the algebra of left uniformly continuous functions on G, the so-called LUC-

compactification of G, is a semigroup with product restricted from the Arens prod-

uct on LUC(G)∗. Now consider the algebra of weighted left uniformly continuous

functions on G, LUC(G,ω−1). The spectrum GLUCω is a compactification of G home-

omorphic to GLUC , but is not a semigroup unless the weight is a homomorphism (in

which case GLUCω = GLUC). We study the algebraic and topological properties of

GLUCω and the semigroup it generates in [0, 1]GLUCω , including characterizing when

it is dense, and use the results to attempt to extend some topological centre and

determination results for GLUC of Budak, Işık, and Pym [6] to GLUCω and present

some partial results. We also partially characterize the isometric isomorphisms of

Beurling (weighted group) algebras. Finally, we show that the topological centre of

the Fourier algebra of the Fell group is strongly Arens irregular.
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Chapter 1

Introduction

Let A be a Banach algebra. Then the bidual A∗∗ is also a Banach algebra with the

Arens product and the topological centre of A∗∗ is the set Zt(A) of elements of A∗∗

for which left multiplication is w∗-continuous. The topological centre contains A

and we call A strongly Arens irregular if it is equal to A and Arens regular if it is

the whole bidual. C∗-algebras are Arens regular [7] but the group algebra of any

locally compact group is strongly Arens irregular [30]. A set D ⊆ A∗∗ is called a

dtc set if the continuity of left multiplication by m ∈ A∗∗ at the points in D implies

that m ∈ Zt(A∗∗). These definitions generalize to right topological semigroups.

Abstract results for the topological centre(s) of Banach algebras are given in [10]

and [26]. A very useful factorization technique for demonstrating the minimality of

topological centres is given by Neufang in [40]. The first definition and examples of

sets which determine the topological centre appeared in the memoir of Dales, Lau,

and Strauss in 2010 in [11] (although their definition is slightly different), however

many older topological centre results actually yielded dtc sets without explicitly

stating them. Small dtc sets have also been found by Hu, Neufang, and Ruan [27],

Filali and Salmi [20], and Mazowita and Neufang [38], [39].

Consider LUC(G), the algebra of left uniformly continuous functions on G. The

dual space LUC(G)∗ is a right continuous semigroup (even a Banach algebra) for

1



a product which we also call the Arens product, and the spectrum of LUC(G),

denoted GLUC , is a subsemigroup. The topological centres of LUC(G)∗ and GLUC

are the measure algebra M(G) [29] and G [33], respectively, and GLUC has a 2-point

dtc set [11]. The topological centre of LUC(G)∗ for non-locally compact groups was

studied in [17].

Now let ω be a weight on G. There are weighted analogues of the group algebra,

the algebra of left uniformly continuous functions LUC(G), the measure algebra

M(G), and the semigroup compactification GLUC which we denote by L1(G,ω),

LUC(G,ω−1), M(G,ω), and GLUCω , respectively. The weighted group algebras

are called Beurling algebras. The LUC-compactification GLUC is homeomorphic

to its weighted analogue (so they are topologically identical), but the latter fails to

have the algebraic properties enjoyed by the former. Crucially, unless the weight

is a homomorphism, the weighted “compactification” GLUCω is not a semigroup and

does not even contain contain the group as a subsemigroup, so cannot be called a

semigroup compactification (Theorem 4.1.2) . Nevertheless, we call it the weighted

compactification and study it and the closed semigroup it generates. Moreso than

the weight itself, it is the extent to which the weight fails to be a homomorphism

(measured by the function Ω) that determines properties of GLUCω .

The weight can drastically alter the topological centre. For example, Varopoulos

showed in 1972 in [45] that there are weights ω on the integers such that the topo-

logical centre of L1(Z, ω)∗∗ = LUC(Z, ω−1)∗ is the whole space, that is, L1(Z, ω)

is Arens regular (more examples are given in [10]). Soon after, in 1974, Craw and

Young characterized the Arens regular Beurling algebras in [8] and showed that in

particular, the underlying group must be countable and discrete. In 1989 Baker and

Rejali extended the characterization to Beurling algebras on semigroups in [5]. A

systematic study of the Arens regularity of Beurling algebras was undertaken by

Dales and Lau in 2005 in [10] and Dales and Dedania studied Beurling algebras on

subsemigroups of R in 2009 in [9].
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If the weight satisfies a mild boundedness property, that of diagonal bounded-

ness (on a suitably large subset of G), then the Beurling algebra is strongly Arens

irregular, as in the unweighted case [42]. It is also calculated in [42] that for such

weights Zt(LUC(G,ω−1)∗) = M(G,ω). Filali and Salmi extend these results in [18],

building on other interesting work in [19] and [20].

This thesis is organized as follows. The next chapter gives the basic definitions

and preliminary results for the classical versions of the objects we are mainly in-

terested it. Chapter 3 introduces our primary focus, weights and weighted objects,

and in Chapter 4 we study the weighted compactification and calculate the prod-

uct of two elements of GLUCω (an element of LUC(G,ω−1)∗) and characterize when

it lies again in GLUCω and when GLUCω is a semigroup. We also relate the diagonal

boundedness property to algebraic and topological properties of GLUCω and study the

algebraic and topological properties of the semigroup generated by GLUCω (which is

contained in [0, 1]GLUCω ) and characterize when this containment is dense as well as

presenting some examples. We wish to leverage these results to extend some recent

results of Budak, Işık, and Pym [6] on the existence of small sets which determine the

topological centres to the weighted case and present some partial results in Chapter

5. Chapter 6 concerns the isomorphism problem for Beurling algebras and includes

an almost complete description of the isometric isomorphisms of Beurling algebras

in terms of a stronger notion of equivalence of weights.

Finally, Chapter 7 presents a novel, unrelated result on the topological centre of

the Fourier algebra of an interesting group, called the Fell group. We show that it

is strongly Arens irregular using a criterion of Hu [25].
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Chapter 2

Preliminaries

2.1 Topology and functional analysis

We do not provide an introduction to topology here, only the definitions we will use

frequently and which are not standard. See Kelley or Willard’s General Topology

for a thorough introduction.

Definition 2.1.1. Let Ξ be a topological space and S be a subset of Ξ.

i. A covering of S is a collection (Xα) of subsets of Ξ such that S ⊆
⋃
αXα.

ii. The compact covering number of S is the least cardinality κ(S) of a covering

of S by compact sets.

iii. A subset S ⊆ Ξ is called dispersed if κ(S) = κ(Ξ), that is, if S cannot be

covered by fewer compacta than all of Ξ.

The compact covering number of Ξ can only be 1 (iff Ξ is compact) or infinite.

If S is discrete then κ(S) =


1 if |S| <∞

|S| if |S| =∞
so S ⊆ Ξ is dispersed iff |S| = |Ξ|.

The space R is σ-compact i.e. has κ(R) = ℵ0 and a subset is dispersed iff it is

unbounded.
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A Banach space X is a complete normed vector space. A Banach algebra is a

Banach space A on which there is a associative bilinear product A× A→ A which

satisfies ‖ab‖ ≤ ‖a‖‖b‖ for every a, b ∈ A, guaranteeing that the product is jointly

continuous. See Palmer’s Algebras and Banach Algebras or Dales’ Banach Algebras

and Automatic Continuity for the basic theory.

2.2 Arens products and topological centres

Let A be a Banach algebra. We extend the product on A to the bidual A∗∗ via the

following definitions: for m,n ∈ A∗∗, f ∈ A∗, and a, b ∈ A,

〈mn, f〉 := 〈m,n · f〉

〈n · f, a〉 := 〈n, f · a〉

〈f · a, b〉 := 〈f, ab〉.

This is called the Arens product, after [1] and [2], and makes A∗∗ into a Banach

algebra. The topological centre of A∗∗ is

Zt(A∗∗) = Z1
t (A∗∗) := {m ∈ A∗∗ | A∗∗ 3 n 7→ mn is w∗ continuous}.

It easily seen that A ⊆ Zt(A∗∗), and if Zt(A∗∗) = A, the algebra is called (left)

strongly Arens irregular. One the other hand, if Zt(A∗∗) = A∗∗ then the algebra is

called Arens regular.

There is also a right Arens product, defined in a similarly formal way by moving

the variables on the outside of the duality bracket, and a right topological centre

defined in the obvious way. If either the the left or right topological centre of A∗∗

is all of A∗∗ then they both are, which is why we do not distinguish between left

and right Arens regularity. The same is not true of of strong Arens irregularity, see

[41] for an example. We will restrict ourselves to the left topological centre in this
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thesis.

Definition 2.2.1. Let A be a Banach algebra. A set D ⊆ A∗∗ is called a dtc

(determining for the topological centre) set if continuity of left multiplication by

m ∈ A∗∗ at the points of D implies m ∈ Zt(A∗∗).

Note that (unless A is strongly Arens irregular) our definition differs with that

of Dales, Lau, and Strauss in [11] since they would require that the conclusion be

that m ∈ A rather than m ∈ Zt(A∗∗).

Many results concerning such sets (e.g. [6], [38]) require even less than continuity

at a handful of points, asking only that multiplication is continuous against a single

net to the determining points. So we propose the following definition.

Definition 2.2.2. Let A be a Banach algebra. Convergent nets N = {(ηα)} in A∗∗

are called dtc (determining for the topological centre) nets if for m ∈ A∗∗

m lim
α
ηα = lim

α
mηα ∀(ηα) ∈ N ⇒ m ∈ Zt(A∗∗).

Then the collection of limits of the dtc nets is a dtc set. The conclusion that

m ∈ Zt(A∗∗) guarantees that multiplication is continuous against any nets to the

same limits anyway, but only having to check the individual nets is a much easier

criterion to verify.

More generally, if S is a right topological semigroup (i.e. right multiplication is

continuous), we can define the topological centre of S to be

Zt(S) := {r ∈ S | S 3 s 7→ rs is continuous}

and call D ⊆ S a dtc set if continuity of left multiplication by r ∈ S at the points of D

implies that r ∈ Zt(S). These definitions agree with the Banach algebra definitions

(with the w∗-topology). We again call S Arens regular if Zt(S) = S, but we may

have Zt(S) = ∅ (an example is given in the following section). However, there is
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often a subset of S which is “obviously” contained in the centre, and we still say

that S is strongly Arens irregular if the centre is minimal, that is, it consists only

of these elements. This is not a precise definition and depends on context, so it will

be made especially clear what is meant by strong Arens irregularity of semigroups

not arising from the second duals of Banach algebras with an Arens product.

The definitions of dtc sets and nets have obvious extensions to this more general

setting.

2.3 Abstract harmonic analysis

A topological group is a group and a topological space in which the inversion and

group operation are continuous. A topological group is locally compact if it is a

Hausdorff space and every point has a neighbourhood which is precompact. Com-

pact and discrete groups are locally compact. Locally compact groups are sometimes

thought of as being finite-dimensional, since the additive group of a normed vector

space is locally compact iff the space is finite-dimensional.

Abstract harmonic analysis is the study of locally compact groups since they are

exactly those which have a nice measure theory, as the following theorem demon-

strates.

Theorem 2.3.1. Let G be a locally compact group. Then there are unique (up to

scalar multiple) left and right Haar measures λ and ρ (respectively) on G. That is,

there are regular Borel measures λ and ρ on G which are (respectively) left- and

right-invariant, in the sense that

λ(xA) = λ(A) and ρ(Ax) = ρ(A) ∀x ∈ G,A ⊆ G

Moreover, the left and right Haar measures behave well under the opposite transla-

tions, as described by the modular function, a homomorphism ∆ : G→ (0,∞) with
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the property that

λ(Ax) = ∆(x)λ(A) and ρ(xA) = ∆(x)−1ρ(A) ∀x ∈ G,A ⊆ G

and the left and right Haar measures are related via dλ(x) = ∆(x−1)dρ(x).

Conversely, any topological group G with a Haar measure must be locally com-

pact.

By convention, if G discrete then both the left and right Haar measures are

taken to be the counting measure # defined by #(A) = |A| for A ⊆ G, and if G is

compact then we normalize the Haar measures so that λ(G) = ρ(G) = 1. Note that

these conventions are inconsistent if the group is finite (and hence both compact

and discrete).

The group G is called unimodular if the modular function is constantly 1.

Abelian, compact, and discrete groups are unimodular.

Then there is a (unique up to scalar multiple) left Haar measure d on G which

we use to integrate over G and we define

L1(G) :=

{
f = [f ] : G→ C

∣∣∣ ‖f‖1 :=

∫
G
|f(t)|dt <∞

}

where the elements are actually equivalence classes of functions which disagree only

on a set of measure zero, but it is standard to always (carefully) work with represen-

tatives and eschew discussing the values of the functions. Then L1(G) is a Banach

algebra, called the group algebra, with norm ‖ · ‖1 and convolution product given

by, for f, h ∈ L1(G),

f ∗ h(t) :=

∫
G
f(s)h(s−1t)ds (2.1)

This algebra is commutative if and only if the group is abelian. See [14] for a study

of operators defined via convolution.

The group algebra is (left and right) strongly Arens irregular for any locally
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compact group [30]. The dual space of the group algebra is the space

L∞(G) :=

{
f = [f ] : G→ C

∣∣∣ ‖f‖∞ := ess sup
t∈G
|f(t)| <∞

}

again consisting actually of equivalence classes of functions which agree almost ev-

erywhere. This space is actually a commutative C∗-algebra with norm ‖ · ‖∞, invo-

lution f 7→ f∗, f∗(x) := f(x), and pointwise product. We will also need the measure

algebra of G,

M(G) := {regular Borel measures µ on G | ‖µ‖ := |µ|(G) <∞}

with the convolution product ∗ defined implicitly via

∫
G
f(t)d(µ ∗ ν)(t) :=

∫
G

∫
G
f(st)dµ(s)dν(t) (µ, ν ∈M(G)).

The measure algebra contains the group algebra as absolutely continuous measures.

Very recently Losert, Neufang, Pachl, and Steprāns have shown that the measure

algebra is (left and right) strongly Arens irregular for any locally compact group

[36], answering a conjecture of Ghahramani and Lau [22].

Let Cb(G) be the bounded continuous functions on G. This algebra sits in L∞(G)

but continuity guarantees that the almost-everywhere-agreement equivalence classes

are all singletons, so for continuous functions we can actually discuss the values of

the functions and we have point evaluations. Also on Cb(G) the ‖ · ‖∞-norm is just

the supremum norm ‖f‖sup := supt∈G |f(t)|.

For g ∈ G let `g be the left translation given by `gf(x) = f(gx) for f ∈ Cb(G).

Also let

LUC(G) = {f ∈ Cb(G) : G 3 g 7→ `gf is ‖ · ‖∞-continuous}
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be the left uniformly continuous functions on G. Then we have

LUC(G) = L∞(G) · L1(G)

where · is the action of L∞(G) = L1(G)∗ on L1(G) from the definition of the Arens

product, and LUC(G) is a unital commutative C∗-algebra (with pointwise product),

so LUC(G) = C(GLUC) where GLUC is the (Gelfand) spectrum of LUC(G).

The dual space LUC(G)∗ acts on LUC(G) via the action

(m · f)(t) := 〈m, `tf〉 (f ∈ LUC(G),m ∈ LUC(G)∗)

that this m · f lies in LUC(G) is not obvious, but follows from the the fact that

LUC(G) enjoys the property of being an introverted subspace of L∞(G). Then the

product (which we denote by juxtaposition)

〈mn, f〉 := 〈m,n · f〉 (m,n ∈ LUC(G)∗, f ∈ LUC(G))

makes LUC(G)∗ a Banach algebra and a right topological semigroup (with the w∗

topology) such that Zt(LUC(G)∗) = M(G) [29].

With this product on LUC(G)∗, GLUC is actually a compact right topological

semigroup which densely contains G, so it is a semigroup compactification called

the LUC-compactification of G. In fact it is the largest such compactification in the

sense of the following universal property: any semigroup compactification of G which

is a right topological semigroup is a quotient of GLUC . We have Zt(GLUC) = G and

Zt(GLUC \G) = ∅ [33].

One of the most important properties a locally compact group can possess is the

following:

Definition 2.3.2. A locally compact group is amenable if there is a left-invariant

mean m on L∞(G), that is, a linear functional m ∈ L∞(G)∗ with ‖m‖ = 1 which is
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i. positive: if L∞(G) 3 f ≥ 0 then m(f) ≥ 0, and

ii. left-invariant: for any f ∈ L∞(G) and g ∈ G, m(`g−1f) = m(f)

The definition is equivalent to the existence of a left-invariant mean on LUC(G),

which can be a better definition to work with since LUC(G)∗ has point evaluations,

which we can use, for example, to rephrase the left-invariance condition.

Abelian and compact groups are amenable, but any group containing a closed

free subgroup is not. An excellent reference is [43], see e.g. [13] for further results.

There is also a notion of amenability for Banach algebras which we do not discuss

here, we only remark that the definition (a cohomology condition) is chosen so that

the group algebra L1(G) is amenable (as a Banach algebra) if and only if G is

amenable (as a locally compact group). See [28] and [44] for pioneering work and a

recent reference, respectively.
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Chapter 3

Weighted objects

3.1 Weights

The main objects of study in this thesis are generalizations of classical Banach

algebras on locally compact groups in which the group elements are weighted. We

must restrict our attention to weightings with a few properties to ensure that the

analogues are still Banach algebras and are not otherwise too wild.

Definition 3.1.1. A weight ω on a locally compact group G with identity e ∈ G is a

continuous function w : G→ (0,∞) with ω(e) = 1 and ω(gh) ≤ ω(g)ω(h) ∀g, h ∈ G.

We could of course define weights on non-locally compact groups (with the same

definition), but we are only interested in locally compact groups anyway.

Here are several examples:

i. If ω is constantly 1 then ω is a weight called the trivial weight.

ii. Any continuous homomorphism ω : G→ (0,∞) is a weight, these weights are

nearly trivial.

iii. For any α ≥ 0, ωα(k) := (1 + |k|)α is an important weight on Z.
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iv. If η : G→ R is a subadditive function with η(e) = 0 then ω := eη is a weight on

G. This construction yields several weights on the free group F2 with unusual

properties, see [10, Chapter 10].

v. If ω1 and ω2 are weights on G then so is the pointwise product ω1ω2.

vi. If ωG and ωH are weights on groups G and H respectively, then ωG ⊗ ωH

defined by (ωG ⊗ ωH)(g, h) = ωG(g)ωH(h) is a weight on G×H.

See [9] for several other interesting weights.

To extend results to classical unweighted objects to their weighted analogues,

some boundedness condition on the weights is usually required. Actual boundedness

is too strong an assumption, boundedness of kind of diagonal product is enough.

Definition 3.1.2. A weight on G is said to be diagonally bounded (by C) on S ⊆ G

if

sup
g∈S

ω(g)ω(g−1) = C <∞.

We say that the weight is diagonally bounded if it is diagonally bounded on G.

If ω is diagonally bounded on S ⊆ G and g ∈ S then for any h ∈ G

ω(g)ω(h) = ω(g)ω(g−1gh) ≤ ω(g)ω(g−1)ω(gh) ≤ Cω(gh)

and if we instead take g ∈ G and h ∈ S then we still have

ω(g)ω(h) = ω(ghh−1)ω(h) ≤ ω(gh)ω(h−1)ω(h) ≤ Cω(gh)

so diagonal boundedness by C on S ⊆ G is in fact equivalent to

ω(g)ω(h) ≤ Cω(gh) ∀g, h ∈ G with g or h ∈ S.

That we can have this inequality with only one of the two elements in S is vitally
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important.

Any bounded weight (such as the trivial weight ω ≡ 1 or any weight on a compact

group) is obviously diagonally bounded. The weight ω : R → (0,∞), x 7→ ex is

diagonally bounded but not bounded, as is any other unbounded homomorphism of

a group. See [10, Example 10.1] for a more interesting example of a weight on F2

which is diagonally bounded but not bounded.

For g, h ∈ G let

ωh(g) :=
ω(gh)

ω(h)
≤ ω(g)

and note that if ω is diagonally bounded by C on S ⊆ G then

ω(g) ≤ Cωh(g) ∀g, h ∈ G with g or h ∈ S.

Technical results for weighted objects usually only require that the weight is

diagonally bounded on a sufficiently large (e.g. dispersed, see Definition 2.1.1)

subset of the group. This can be a strictly weaker assumption, for example, if G is

an infinite discrete group and ω1 and ω2 are weights on G such that ω1 is diagonally

bounded but ω2 is not, then ω1 ⊗ ω2 on G × G cannot be diagonally bounded but

is on the dispersed subset {e} ×G.

However, sometimes full diagonal boundedness is required. For example (and

also to justify the importance of the definition), see Theorem 3.2.1 in the following

section.

We now introduce the most important function in this work. If ω is a weight on

a locally compact group G we define Ω : G×G→ (0, 1] by

Ω(g, h) =
ω(gh)

ω(g)ω(h)
.

When it is important to identify the underlying weight, we write Ωω. The function

Ω measures to what extent ω fails to be a homomorphism: 0 < Ω ≤ 1 and Ω ≡ 1
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exactly when ω is a homomorphism. Note that ω is diagonally bounded by C on

S ⊆ G if and only if Ω ≥ 1
C on (G× S)∪ (S ×G) . Also define, following [10, (8.7)]

for k ≥ 1, Ωk : Gk → (0, 1] by, for g1, . . . , gk ∈ G,

Ωk(g1, . . . , gk) =
ω(g1 · · · gk)

ω(g1) · · ·ω(gk)

and let Ω1 ≡ 1. Then Ω2 = Ω and ω is diagonally bounded by C if and only if

Ωk ≥ C1−k for any k > 1. The motivation for this definition will be seen in Section

4.2. We will see that it is often actually the function Ω, rather that the weight itself,

which determines the properties of weighted objects.

We end this section with a simple but important inequality. For any g, h ∈ G

we have

Ω(g, g−1) =
1

ω(g)ω(g−1)
=

ω(gh)

ω(g)ω(h)

ω(h)

ω(g−1)ω(gh)
= Ω(g, h)Ω(g−1, gh) ≤ Ω(g, h)

and thus for any g ∈ G

Ω(g, g−1) ≤ min{Ω(g, h), Ω(h, g) : h ∈ H}. (3.1)

We paraphrase this result by saying that the diagonal values Ω(g, g−1) are the

smallest values of Ω.
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3.2 Weighted algebras

Given a fixed weight ω on a locally compact group G, we have weighted L1, L∞,

and LUC algebras, given by

L1(G,ω) := {f : G→ C | ‖f‖1,ω :=

∫
G
|f(g)|ω(g) <∞}

L∞(G,ω−1) := {f : G→ C | ‖f‖∞,ω := ess sup
g∈G
|f(g)|ω(g)−1 <∞}

LUC(G,ω−1) := {f : G→ C | fω ∈ LUC(G)}

where the product on L1(G,ω) is convolution (the same as defined in 2.1), but the

product on L∞(G,ω−1) and, by restriction, LUC(G,ω−1), is denoted by ·ω and is

given by, for f, g ∈ L∞(G,ω−1) or LUC(G,ω−1),

f ·ω g :=
fg

ω
,

so L∞(G,ω−1) and LUC(G,ω−1) are unital with identity ω. The algebras L1(G,ω)

are called Beurling (or weighted convolution) algebras. Again we have

L1(G,ω)∗ = L∞(G,ω−1) and L∞(G,ω−1) · L1(G,ω) = LUC(G,ω−1).

These algebras are linearly isomorphic to to their classical, unweighted counter-

parts by simple maps which just multiply or divide by the weight, but they they

can be very different considered as algebras. In fact as Banach spaces, the Beurl-

ing algebra is just the L1 space of integrable functions against the measure whose

Radon-Nikodym derivative with respect to the Haar measure is the weight, but one

should not be lulled into a false sense that Beurling algebras are mild generalizations

of group algebras.

Often the diagonal boundedness condition is necessary to extend results from

the group algebra to Beurling algebras. For example, consider the following.
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Theorem 3.2.1 (Grønbæk [24]). Let G be a locally compact group and ω be a weight

on G. Then the Beurling algebra L1(G,ω) is amenable (as a Banach algebra) if and

only if G is amenable (as a locally compact group) and ω is diagonally bounded.

3.3 Topological centres of weighted objects

In the classical, unweighted case, the group algebra L1(G) of any locally compact

group G is strongly Arens irregular, but adding a weight can drastically affect the

topological centre. For example, consider the following result.

Theorem 3.3.1 (Craw and Young [8]). The Beurling algebra `1(Z, ωα) with

ωα(k) = (1 + |k|)α is Arens regular if and only if α > 0.

They also prove a much more powerful result, still the best general result in this

theory.

Theorem 3.3.2 (Theorem 2 in [8]). Let G be a locally compact group. There is a

weight on G such that the Beurling algebra is Arens regular if and only if the group

is discrete and countable.

Theorem 8.11 in [10] gives conditions for weights on discrete groups which are

equivalent to Arens regularity of the associated Beurling algebra. The situation

for non-discrete groups is not as well understood. The best general result is the

following.

Theorem 3.3.3 (Dales and Lau, 12.3 in [10]). Let ω be a weight on a locally compact

group G such that the compact covering number κ(G) is non-measurable. Then if ω

is diagonally bounded on a dispersed subset of G then the Beurling algebra L1(G,ω)

is strongly Arens irregular.

The nonexistence of measurable cardinals is consistent with ZFC and the exis-

tence of measurable cardinals cannot be proved consistent with ZFC. We resist the
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urge to expound on foundational and philosophical issues here, instead we remark

that this assumption on κ(G) is considered “mild” and direct the reader to [16] for

a discussion of these matters.

Recall that for discrete groups the condition that a subset is dispersed is equiv-

alent to having the same cardinality as the group (as long as the group is infinite).

We have a similar result for LUC(G,ω−1)∗ under the same assumptions.

Theorem 3.3.4 (Neufang, 1.2 in [42]). Let ω be a weight on a locally compact group

G which is diagonally bounded on a dispersed subset. Then the topological centre of

LUC(G,ω−1)∗ is M(G,ω), that is, LUC(G,ω−1)∗ is strongly Arens irregular.

However, nondiscrete Beurling algebras are not always strongly Arens irregular.

For example, consider the following result (note that the weight is similar to that in

Theorem 3.3.1).

Theorem 3.3.5 (Dales and Lau, Theorem 12.6 in [10]). Let wα be the weight on

R given by ωα(x) = (1 + |x|)α with α > 0. Then the Beurling algebra L1(R, ωα) is

neither Arens regular nor strongly Arens irregular.
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Chapter 4

The weighted compactification

4.1 Algebra in the compactification

Following Filali and Salmi, we denote by GLUCω the spectrum of LUC(G,ω−1), which

we call the weighted (LUC-)compactification of G. In the unweighted (ω ≡ 1) case,

GLUCω = GLUC is a semigroup which densely contains G. But if ω is a nontrivial

weight, then GLUCω does not even contain G as point evaluations, since ‖δg‖ = ω(g).

So we identify G with G̃ ⊂ GLUCω via

G 3 g 7→ g̃ = δgω(g)−1.

Then G̃ is dense in the compact space GLUCω , which is homeomorphic to GLUC via

the map Φ given by, for m ∈ GLUCω and f ∈ LUC(G,ω−1),

〈Φ(m), f〉 = 〈m, fω−1〉

but this embedding of G̃ in GLUCω does not respect products.

In this section we study GLUCω and products of its elements. By restricting the
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Arens product on LUC(G,ω−1)∗, we obtain a map

GLUCω ×GLUCω → LUC(G,ω−1)∗

which we denote simply by juxtaposition. However, unlike the unweighted case, the

product may not land back in GLUCω . Let g, h ∈ G. Then

g̃h̃ = ω(g)−1ω(h)−1δgδh = Ω(g, h)w(gh)−1δgh = Ω(g, h) g̃h (4.1)

which immediately gives the following.

Proposition 4.1.1. Let ω be a weight on a locally compact group G and g, h ∈ G.

Then the following are equivalent

i. ω(gh) = ω(g)ω(h)

ii. Ω(g, h) = 1

iii. g̃h̃ = g̃h

iv. g̃h̃ ∈ GLUCω .

The obvious extension of this result to all of GLUCω holds.

Theorem 4.1.2. Let ω be a weight on a locally compact group G. Then GLUCω is a

semigroup if and only if ω is a homomorphism.

Proof. If ω is not a homomorphism then there are g, h ∈ G with ω(gh) 6= ω(g)ω(h)

and then g̃h̃ 6∈ GLUCω by the preceding Proposition, which establishes necessity. For

sufficiency, suppose that ω is a homomorphism and let m,n ∈ GLUCω , g ∈ G, and
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x, y ∈ LUC(G,ω−1). Then

`g(x ·ω y) = `g(xyω
−1)

= (`gx)(`gy)(`gω
−1)

= (`gx)(`gy)ω(g)−1ω−1

= (`gx ·ω `gy)ω(g)−1

so

n · (x ·ω y)(g) = 〈n, `g(x ·ω y)〉

= 〈n, `gx ·ω `gy〉ω(g)−1

= 〈n, `gx〉〈n, `gy〉ω(g)−1

= n · x(g)n · y(g)ω(g)−1

hence

n · (x ·ω y) = (n · x)(n · y)ω−1 = (n · x) ·ω (n · y)

and then

〈mn, x ·ω y〉 = 〈m,n · (x ·ω y)〉

= 〈m, (n · x) ·ω (n · y)〉

= 〈m,n · x〉〈m,n · y〉

= 〈mn, x〉〈mn, y〉

thus mn is multiplicative. It remains to show that mn 6= 0. Note that

n · ω(g) = 〈n, `gω〉 = 〈n, ω(g)ω〉 = 〈n, ω〉ω(g) = ω(g)

so n · ω = ω, and then

〈mn,ω〉 = 〈m,n · w〉 = 〈m,ω〉 = 1

so mn 6= 0 and hence mn ∈ GLUCω .
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We wish to calculate the product of two elements of GLUCω . First we need

an extension of Ω to GLUCω and the following identity. Let m,n ∈ GLUCω and

x ∈ LUC(G,ω−1). Write m = limα g̃α and n = limβ h̃β with the gα, hβ in G̃. Then

〈mn, x〉 = 〈m,n · x〉

=

〈
lim
α
g̃α,

(
lim
β
h̃β

)
· x
〉

= lim
α

〈
g̃α,

(
lim
β
h̃β

)
· x
〉

= lim
α

(
lim
β
h̃β

)
· x (gα)ω(gα)−1

= lim
α

〈
lim
β
h̃β, `gαx

〉
ω(gα)−1

= lim
α

lim
β
〈h̃β, `gαx〉ω(gα)−1

= lim
α

lim
β
x(gαhβ)ω(gα)−1ω(hβ)−1.

(4.2)

which, in the special case x = ω, yields

〈mn,ω〉 = lim
α

lim
β

Ω(gα, hβ). (4.3)

We now extend Ω to GLUCω . Define Ω̃ : GLUCω ×GLUCω → [0, 1] by, for m,n ∈ GLUCω ,

Ω̃(m,n) = 〈mn,ω〉. (4.4)

Note that Ω̃ agrees with Ω on G (identified with G̃) and that if ω is diagonally

bounded by K, then Ω̃ ≥ 1
K . We will see that the function Ω̃ is intimately related

to the semigroup generated by GLUCω .

The definition of Ω̃ is anticipated by that of Ω� in [9, Equation 4.5]. Indeed

the definition there looks identical to the right side of Equation 4.3, but is actually

defined on the Stone-Čech compactifcation of G, which is homeomorphic to GLUCω

if an only if G is discrete, so the definitions agree in the discrete case.
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Following [9, Definition 5.3], we call a weight weakly diagonally bounded by

K > 0 if Ω̃(m,n) ≥ 1
K for every m,n ∈ GLUCω \G̃. This is equivalent to the condition

that for any ε > 0, there is a compact set C ⊂ G such that Ω(g, h) ≥ 1
K (1− ε) for

every g, h ∈ G \ C.

Clearly a diagonally bounded weight is weakly diagonally bounded by the same

bound, but the conditions are distinct. [10, Example 9.7] is an example (due to J.F.

Feinstein) of a weight on Z which is diagonally bounded by e2 but weakly diagonally

bounded by 1.

Let Φ : GLUCω → GLUC be the homeomorphism given by, for m ∈ GLUCω ,

〈Φ(m), x〉 = 〈m,xω〉 (x ∈ LUC(G)) (4.5)

and let π : GLUC × GLUC → GLUC be the product. Then consider the binary

operation

� : GLUCω ×GLUCω
Φ×Φ−→ GLUC ×GLUC π−→ GLUC

Φ−1

−→ GLUCω (4.6)

It is easily verified that for g, h ∈ G,

Φ(g̃) = g (4.7)

here identifying g with the point evaluation δg ∈ GLUC , and that

g̃ � h̃ = g̃h. (4.8)

Using this operation makes one feel dirty, since it simply ignores the algebraic

difficulties introduced by the weight (which it forgets entirely), but we need it to

calculate the product of two arbitrary elements of GLUCω , which we do now.

Proposition 4.1.3. Let ω be a weight on a locally compact group G and
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m,n ∈ GLUCω . Then

mn = Ω̃(m,n)m� n. (4.9)

and hence

‖mn‖ = Ω̃(m,n). (4.10)

Proof. Write m = limα g̃α and n = limβ h̃β with the g̃α, h̃β ∈ G̃. Then

m� n = Φ−1 ◦ π ◦ (Φ× Φ)(m,n)

= Φ−1(Φ(m)Φ(n))

= Φ−1

(
Φ
(

lim
α
g̃α

)
Φ

(
lim
β
h̃β

))
= lim

α
lim
β

Φ−1(Φ(g̃α)Φ(h̃β))

= lim
α

lim
β

Φ−1(gαhβ)

= lim
α

lim
β
g̃αhβ

Now let x ∈ LUC(G,ω−1). Then

〈Ω̃(m,n)m� n, x〉 =

〈
lim
α

lim
β
g̃αhβ, x

〉
Ω̃(m,n)

= lim
α

lim
β
〈g̃αhβ, x〉Ω̃(m,n)

= lim
α

lim
β
x(gαhβ)ω(gαhβ)−1Ω̃(m,n)

= lim
α

lim
β
x(gαhβ)ω(gαhβ)−1〈mn,ω〉

= lim
α

lim
β
x(gαhβ)ω(gαhβ)−1 lim

α
lim
β
ω(gαhβ)ω(gα)−1ω(hβ)−1

= lim
α

lim
β
x(gαyβ)ω(gα)−1ω(hβ)−1

= 〈mn, x〉.

Expanding Equation 4.9 with limits yields the following. Let m,n ∈ GLUCω and
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write m = limα g̃α and n = limβ h̃β with the g̃α, h̃β ∈ G̃. Then

mn = lim
α

lim
β

Ω(gα, hβ)g̃αhβ. (4.11)

The Proposition immediately gives us the following.

Corollary 4.1.4. The closed semigroup generated by GLUCω is contained in [0, 1]GLUCω ,

and hence is compact, being a closed subset of a continuous image of the compact

space [0, 1]×GLUC .

We denote the semigroups generated by G̃ and GLUCω by 〈G̃〉 and 〈GLUCω 〉 and

their closures by 〈G̃〉 and 〈GLUCω 〉, respectively. We study these semigroups in the

following section.

Another result which follows immediately from the Proposition is the following,

which is reminiscent of Proposition 4.1.1.

Corollary 4.1.5. Let m,n ∈ GLUCω . Then mn ∈ GLUCω if and only if

Ω̃(m,n) = ‖mn‖ = 1.

We end this section with some results for GLUCω related to diagonal boundedness.

Theorem 4.1.6. Let ω be a weight on a topological group G. Then we have the

following.

i. If 0 ∈ 〈GLUCω 〉 then 0 ∈ GLUCω GLUCω .

ii. If ω is diagonally bounded then 0 6∈ 〈GLUCω 〉.

iii. ω is diagonally bounded if and only if 0 6∈ G̃G̃.

Proof. i. Take the least k ∈ N such that 0 ∈ (GLUCω )n. If k > 2 then take

m1, . . . ,mk ∈ GLUCω with m1 · · ·mk = 0. But then

Ω̃(m1,m2)(m1 �m2)m3 · · ·mk = 0
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so Ω(m1,m2) = ‖m1m2‖ = 0 or (GLUC)k−1 3 (m1 �m2)m3 · · ·mk = 0, both

of which are impossible by minimality of k. So k = 2.

ii. Since ω is diagonally bounded there is a K > 0 such that Ω̃ ≥ 1
K . Then

for any m,n ∈ GLUCω we have ‖mn‖ = Ω̃(m,n) ≥ 1
K so mn 6= 0. Therefore

0 6∈ GLUCω GLUCω and hence 0 6∈ 〈GLUCω 〉 by part i.

iii. If ω is not diagonally bounded then there is a sequence (gn) in G with

ω(gn)ω(g−1
n )→∞ and thus Ω(gn, g

−1
n )→ 0. So

0 = lim
n

Ω(gn, g
−1
n )ẽ = lim

n
g̃ng̃
−1
n ∈ G̃G̃.

Now suppose that 0 ∈ G̃G̃. Then there are nets (gα) and (hα) (indexed by the

same set) in G such that limα Ω(gα, hα) = 0. Then

inf
α

Ω(gα, g
−1
α ) ≤ inf

α
Ω(gα, hα) = 0 (4.12)

so ω cannot be diagonally bounded.

Note that (carefully inspecting equation 4.12) it is moreover true that for any

S ⊆ G̃ if 0 ∈ G̃S ∪ SG̃ then ω is not diagonally bounded on S.

Our next result is that (except for the trivial case) we always have 0 ∈ 〈GLUCω 〉.

4.2 The semigroup generated by GLUC
ω

Here we study the semigroups (in LUC(G,ω−1)∗) generated G̃ and GLUCω . We begin

with 〈G̃〉, which can easily describe in terms of Ωk. First we make the promised

observation that we always have 0 ∈ 〈GLUCω 〉 unless GLUCω is already a semigroup.

Proposition 4.2.1. Let ω be a non-homomorphic weight on a locally compact group
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G (so that GLUCω is not a semigroup). Then

0 ∈ δ〈G̃〉 ⊂ 〈GLUCω 〉.

Proof. Since ω is not a homomorphism, ∃g, h ∈ G such that ω(gh) 6= ω(g)ω(h) and

hence Ω(g, h) < 1. Then

∥∥∥(g̃h̃)n
∥∥∥ =

∥∥∥(Ω(g, h)g̃h
)n∥∥∥ = Ω(g, h)n

∥∥∥g̃hn∥∥∥ ≤ Ω(g, h)n → 0

as n→∞, so 0 ∈ 〈G̃〉.

Proposition 4.2.2.

〈G̃〉 =
⋃
k∈N
{Ωk(g1, . . . , gk)g̃ : g = g1 · · · gk}.

Recall that if ω is diagonally bounded on a dispersed set, then the topological

centre of GLUCω is G̃ [42]. From this we immediately obtain the following.

Proposition 4.2.3. Let G be a locally compact group with a weight ω which is

diagonally bounded on a dispersed set. Then the topological centre of 〈GLUCω 〉 is

〈GLUCω 〉 ∩ [0, 1]G̃.

Note that G̃ is contained in the topological centre.

The condition that the weight be diagonally bounded is necessary: for α > 0

and ωalpha(k) = (1 + |k|)α on the integers has `1(Z, ωα) is Arens regular [8]. But

since Z is discrete we have

LUC(G,ω−1)∗ = `∞(G,ω−1)∗ = `1(G,ω)∗∗

Zt(LUC(G,ω−1)∗) = LUC(G,ω−1)∗

Zt(GLUCω ) = GLUCω

Zt(〈GLUCω 〉) = 〈GLUCω 〉
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In the unweighted case, it is known that GLUC determines the group in the sense

that for locally compact groups G and H, if GLUC is topologically isomorphic to

HLUC then G is topologically isomorphic to H. We can generalize this result to the

following.

Theorem 4.2.4. Let G and H be locally compact groups with weights ωG and ωH

respectively such that 〈GLUCωG
〉 and 〈HLUC

ωH
〉 are strongly Arens irregular (for ex-

ample, this is the case if the weights are diagonally bounded on dispersed subsets

of the groups). Let ϕ be a topological isomorphism between 〈GLUCωG
〉 and 〈HLUC

ωH
〉.

Then ϕ preserves the norm if and only if there is a topological (group) isomorphism

ϕ : G ∼= H such that

ΩG = ΩH ◦ (ϕ× ϕ).

Proof. Let ϕ be a topological isomorphism between 〈GLUCωG
〉 and 〈HLUC

ωH
〉. Then

ϕ restricts to a topological isomorphism 〈GLUCωG
〉 ∩ [0, 1]G̃ ∼= 〈HLUC

ωH
〉 ∩ [0, 1]H̃ by

Proposition 4.2.3, and since ϕ is multiplicative and preserves the norm, ϕ := ϕ|G
‖ϕ|G‖

is a topological isomorphism G→ H. Also note that for m,n ∈ GLUCωG
,

‖mn‖ = ‖Ω(m,n)m� n‖ = Ω(m,n),

so

Ω̃G(m,n) = ‖mn‖ = ‖ϕ(mn)‖ = ‖ϕ(m)ϕ(n)‖ = Ω̃H(ϕ(m), ϕ(n)).

The converse is clear.

Since the topological centre condition is only used to identify the groups, if we

have two weights on the same group then we do not need this assumption.

Theorem 4.2.5. Let ω1 and ω2 be two weights on a locally compact group G. Then

〈GLUCω1
〉 ∼= 〈GLUCω2

〉 preserving the norm if only if Ω1 = Ω2.

Note that since GLUCω depends only on Ω, it cannot recover the weight itself
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since it cannot (in particular) distinguish between homomorphic weights.

The assumption that the map preserves norms is necessary to guarantee that

the Ω functions agree. For example, consider Z2 with a weight given by ωα(0) = 1

and ωα(1) = α > 1. Then Ω(1, 1) = α−2 and

〈Z̃2〉 = {α−2n : n ≥ 0}Z2

so

〈Z̃2〉 = {α−2n : n ≥ 0}Z2 ∪ {0} ∼= (Z2 × N) ∪ {0}

with operation

(x,m)(y, n) = (x+ y,m+ n+ xy)

So if α 6= β then Ωα 6= Ωβ but 〈Z̃2〉α ∼= 〈Z̃2〉β. Note also that although this is the

simplest non-trivial example of a weighted compactification, already the algebra of

the semigroup is not straightforward.

The final result of this section is a characterization of when 〈G̃〉 is dense in

[0, 1]GLUCω . First we need the following basic Lemma on density in R.

Lemma 4.2.6. i. If 0 is an accumulation point of A ⊆ [0,∞) and A is closed

under (whole) multiples then A is dense in [0,∞).

ii. If 1 is an accumulation point of B ⊆ [0, 1] and B is closed under (positive)

powers then B is dense in [0, 1].

Proof. i. 0 ∈ A so let x ∈ (0,∞) and 0 < ε < x. Take y ∈ A such that y < x−ε.

Then some multiple of y is in A∩ (x− ε, x+ ε) and hence A is dense in[0,∞).

ii. This follows from (i) and the homeomorphism [0,∞)→ (0, 1], x 7→ log−x.

Theorem 4.2.7. Let ω be a weight on a locally compact group G. Then the following

are equivalent
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i. 1 is an accumulation point of {Ω(g, g−1) : g ∈ G}.

ii. 〈G̃〉 is ‖·‖-dense in [0, 1]G̃.

iii. 〈G̃〉 is w∗-dense in [0, 1]GLUCω .

Proof. (i) ⇒ (ii): Let

B = {γ ∈ [0, 1] : γẽ ∈ 〈G̃〉}.

Since g̃g̃−1 = Ω(g, g−1)ẽ, we have {Ω(g, g−1) : g ∈ G} ⊆ B, so 1 is an accumulation

point of B. Also B is clearly closed under multiplication, so by the Lemma, B is

dense in [0, 1]. So [0, 1]ẽ ⊂ 〈G̃〉, then by multiplying by elements of G̃, 〈G̃〉 is dense

in [0, 1]G̃.

(ii) ⇒ (iii) is trivial.

(iii) ⇒ (i): It suffices to show that for every n ∈ N ∃gn ∈ G such that

1− 1

n
< Ω(gn, g

−1
n ) < 1.

For every n ∈ N, (1− 1
2n)ẽ ∈ 〈G̃〉, so ∃ a net (mα) in 〈G̃〉 such that mα → (1− 1

2n)ẽ.

Write mα = γαg̃α with γα ∈ (0, 1] and gα ∈ G. Without loss of generality none of

the γα = 1. Then gα → e in G, so

γαΩ(gα, g
−1
α )ẽ = γαg̃αg̃

−1
α = mαg̃

−1
α →

(
1− 1

2n

)
ẽ2 =

(
1− 1

2n

)
ẽ

and hence

γα ≥ γαΩ(gα, g
−1
α )→ 1− 1

2n
.

So ∃β such that γβΩ(gβ, g
−1
β ) > 1− 1

n . Let γ := γβ. If Ω(gβ, g
−1
β ) < 1 then we have

1− 1

n
< γΩ(gβ, g

−1
β ) ≤ Ω(gβ, g

−1
β ) < 1
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so we may take gn = gβ and we are done. Otherwise Ω(gβ, g
−1
β ) = 1 and then

γΩ(gβ, g
−1
β )ẽ = γẽ ∈ 〈G̃〉 \ G̃

since γ < 1 so we can write γẽ =
∏k
i=1 g̃i for some k > 1 and g̃1, . . . , g̃k ∈ G̃. Then

by multiplying the expression g̃1 · · · g̃k by pairing adjacent factors in different order,

we obtain many different descriptions of γ as a product values of Ω. The Catalan

numbers Cn−1 count the number of (a priori) different ways that we can multiply

the g̃1, . . . , g̃n to decompose γ, but we are only interested in k − 1 decompositions.

We introduce now a shorthand notation: for 1 ≤ a ≤ b < c ≤ d ≤ k, we write

b
aΩ

d
c = Ω(ga · · · gb, gc · · · gd)

and omit the b or d if a = b or c = d, respectively.

Then the product of any row of the following table is equal to γ.

1Ωk
2 2Ωk

3 3Ωk
4 · · · k−2Ωk

k−1 k−1Ωk

1Ω2
2
1Ωk

3 3Ωk
4 · · · k−1Ωk

1Ω2
2
1Ω3

3
1Ωk

4 4Ωk
5 · · · k−1Ωk

. . .

1Ω2
2
1Ω3 · · · i

1Ωk
i+1 · · · k−1Ωk

. . .

1Ω2 · · · · · · k−3
1Ωk−2

k−2
1Ωk

k−1 k−1Ωk

1Ω2 · · · · · · · · · k−2
1Ωk−1

k−1
1Ωk

Note that the diagonal terms are of the form

i
1Ωk

i+1 = Ω(g1 · · · gi, gi+1 · · · gk) = Ω(g1 · · · gi, (g1 · · · gi)−1).

We claim that at least one of these terms is strictly less than 1. If not, then

by the inequality (3.1), for every 1 ≤ i ≤ k, both i−1
1Ωi = Ω(g1 · · · gi−1, gi) and
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i−1Ωk
i = Ω(gi−1, gi · · · gk) are greater than i−1

1 Ωk
i = Ω(g1 · · · gi−1, gi · · · gk) = 1. So

in the table, the diagonal entries are less than or equal the entries above and below

it. So if the diagonal entries are all 1, then so is every entry in the table, so γ = 1,

which is a contradiction.

So fix i such that Ω(g1 · · · gi, gi+1 · · · gk) < 1 and let gn = g1 · · · gi. Then

g−1 = gi+1 · · · gk and

1− 1

n
< γ ≤ Ω(g1 · · · gi, gi+1 · · · gk) = Ω(gn, g

−1
n ) < 1.

Now for every n ∈ N there is a gn ∈ G such that

1− 1

n
< Ω(gn, g

−1
n ) < 1

as desired.

For example, the weight ωα(x) = (1 + |x|)α, α > 0 on R from Theorem 3.3.5

satisfies the conditions of the theorem: as x, y ↘ 0, Ω(x, y)↗ 1.
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Chapter 5

Sets determining the topological

centre

5.1 The classical case

Budak, Işık, and Pym found small sets which determine the topological centres of

L1(G)∗∗, LUC(G)∗, and GLUC in [6].

Theorem 5.1.1. Let G be a locally compact, non-compact group. Then there exists

a convergent net νj → ν in GLUC such that

i. If µ ∈ GLUC and µνj → µν then µ ∈ G.

ii. If µ ∈ LUC(G)∗ and µνj → µν then µ ∈M(G).

iii. If µ ∈ L1(G)∗∗ and µνj → µν then µ ∈ L1(G).

If we prefer to have the nets lying in G, then two nets are necessary.

Theorem 5.1.2. Let G be a locally compact, non-compact group. Then there exist

in G two nets (yj) and (y′j) with limits γ and γ′ in GLUC , respectively such that

i. If µ ∈ GLUC and both µyj → µγ and µy′j → µγ′ then µ ∈ G.
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ii. If µ ∈ LUC(G)∗ and both µyj → µγ and µy′j → µγ′ then µ ∈M(G).

iii. If µ ∈ L1(G)∗∗ and both µyj → µγ and µy′j → µγ′ then µ ∈ L1(G).

Note that this does not yield dtc sets for L1(G) since the nets are in the wrong

space. However, they get around this using a Lemma that allows them to replace

the net in GLUC with one in L1(G) and obtain the following:

Theorem 5.1.3. Let G be a locally compact, non-compact group. Then there exist

two nets (hj) and (h′j) in L1(G) with limits H and H ′ in L1(G)∗∗, respectively such

that if µ ∈ L1(G)∗∗ and both µhj → µH and µh′j → µH ′ then µ ∈ L1(G).

Dales and Dedania tackled Beurling algebras on discrete groups in [9] and ob-

tained the the following.

Theorem 5.1.4. Let G be a countable discrete group, ω be a weight on G which is

diagonally bounded by C on an infinite (and hence dispersed) subset S of G, and n ∈

N with n > C (we could take n = dCe). Then there is a set D ⊂ βG\G ⊂ `1(G,ω)∗∗

with |D| = n such that if left multiplication by m ∈ `1(G,ω)∗∗ is continuous at the

points in D then m ∈ `1(G,ω), that is, D is an n-point set which determines the

topological centre of `1(G,ω)∗∗.

5.2 Determining sets for weighted objects

In this section we build towards nets which determine the topological centres of

GLUCω , LUC(G,ω−1)∗, and L1(G,ω)∗∗, drawing influences from [9], [10], and [42] as

well. We will spend most of time working in G and the unweighted world and only

move into G̃, GLUCω , and the weighted side at the last minute.

Of course we begin with a technical lemma. The following result is exactly the

same as [6, Proposition 4.2], except that we take our tK in a dispersed subset of

G. First first a compact symmetric neighbourhood V of e ∈ G and then an open

symmetric neighbourhood W of e with W 4 ⊆ V .
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Lemma 5.2.1. Let K be a family of compact subsets of the locally compact group G

with nonempty interior, which is closed under finite unions, and with |K| = κ(G).

Let S be a dispersed subset of G. Then there is a family (tK)K∈K of elements of

S such that tK 6∈ K and whenever H,K,H ′,K ′ ∈ K with H 6= K, H ′ 6= K ′, and

(H,K) 6= (H ′,K ′) we have

V KtKt
−1
H ∩ V K

′tK′t
−1
H′ = ∅.

In particular, all of the V KtK are disjoint.

Proof. The construction is a straightforward application of transfinite induction.

Write K = {Kα : α < κ(G)} and order by inclusion. Let tK0 be any element of S

and then having chosen tβ := tKβ for β < α take

tKα ∈ S \

Kα ∪

 ⋃
β,γ,δ<α

K−1
α V 2Kβtβt

−1
γ tδ

 ∪
 ⋃
β,γ,δ<α

t−1
δ K−1

δ V 2Kβtβt
−1
γ


which is possible since the union is of strictly fewer than κ(G) compact sets and so

does not cover S since it is dispersed.

We now employ a trick due to Neufang and called “Neufang’s Family Breed-

ing Technique” by [6], to produce several simultaneously disjoint families satisfying

the hypotheses of Lemma 5.2.1. First fix a family of compact subsets of G with

|K| = κ(G). Instead of applying the Lemma to K, for every H ∈ K, we can let

KH = {HK : K ∈ K}. Then the KH are all families of compact subsets of G

with |KH | = κ(G)κ(G) = κ(G) so we may apply the Lemma to each KH , yielding

nets (tH,K)K∈K in S for each H satisfying that the V HKtH,KtH′,K′ are distinct for

distinct quadruplets (H,K,H ′,K ′).

Let K be a family of compact subsets of G as in the Lemma. Take n > C and

let H1, . . . ,Hn ∈ K be distinct. For 1 ≤ i ≤ n, construct the nets (tHi,K)K∈K using

the trick after Lemma 5.2.1. Let (yi,K) = (tHi,K) and now regard these nets in G̃.
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Since GLUCω = G̃ is compact, we may assume (by replacing them with convergent

subnets) that the (yi,K) converge to cluster points γi ∈ GLUCω . These nets should

determine the topological centre.

Since ω is diagonally bounded on the yi,K , which converge to γi

|〈µγi, ω〉| = Ω̃(µ, γi) = ‖µγi‖ ≥
1

C
>

1

n

it remains to show the opposite inequality for at least one j in 1, . . . , n, which should

follow from the carefully constructed disjointness property in Lemma 5.2.1.

Recently Filali and Salmi [20] have found sets which determine the topological

centre of LUC(G,ω−1) with the bCc+ 1 many points as we expect using their tech-

nique of slowly oscillating functions developed. They also construct determining

sets for L1(G,ω)∗∗ when G is σ-compact and SIN (has small invariant neighbour-

hoods) with one more point as well as for some other weighted objects. A deter-

mination result using our techniques would be an improvement over their result

for LUC(G,ω−1)∗ since we only require continuity against a single net which is

explicitly constructed.
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Chapter 6

Isomorphisms of Beurling

algebras

6.1 Equivalent of weights

Two weights on a locally group G are said to be equivalent if the corresponding

Beurling algebras are isomorphic. Weights ω1 and ω2 are equivalent if ∃c, C > 0

such that cω1 ≤ ω2 ≤ Cω1 pointwise, but this condition cannot be necessary since

if ω is a weight on R then so is x 7→ exω(x). More generally, multiplying any weight

by any homomorphism yields an equivalent weight. Unfortunately, there is no nice

characterization of equivalent weights in terms of values of the weights or of the

associated Ω functions.

Asking only that the Beurling algebras are isomorphic cannot determine all the

important features, since for example the group algebras on any two countable

groups are isomorphic. So we propose that we insist that the Beurling algebras are

moreover isometrically isomorphic, which is the ultimate measure of identity for

Banach algebras and offer the following definition.

Definition 6.1.1. Let ω1 and ω2 be weights on a locally compact group G with

corresponding functions Ω1 := Ωω1 and Ω2 := Ωω2. We call ω1 and ω2 strongly
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equivalent if Ω1 = Ω2. By cross multiplication, this is equivalent to the quotient ω1
ω2

being a homomorphism.

It is clear that this notion of equivalence is in fact an equivalence relation.

6.2 Isometric isomorphisms of Beurling algebras

We intend the following Theorem to justify our preceding definition.

Theorem 6.2.1. Let G and H be locally compact groups with weights ω1 and ω2

respectively.

i. If ϕ : G ∼= H is an isomorphism of the groups G and H and ωG ◦ ϕ and ωH

are strongly equivalent, then the Beurling algebras L1(G,ωG) and L1(H,ωH)

are isometrically isomorphic.

ii. If ω1 and ω2 are two weights on a locally compact group G, then the Beurling

algebras L1(G,ω1) and L1(G,ω2) are isometrically isomorphic if and only if

ω1 and ω2 are strongly equivalent.

Proof. i. If G ∼= H we might as well assume that G = H so that ω1 and ω2 are

strongly equivalent weights on G. Then ω2
ω1

is a homomorphism so the map

L1(G,ω1)→ L1(G,ω2), f 7→ f
ω1

ω2

is an isometric isomorphism.

ii. Suppose that L1(G,ω1) and L1(G,ω2) are isometrically isomorphic (as alge-

bras). Then so are L∞(G,ω−1
1 ) = L1(G,ω1)∗ and L∞(G,ω−1

2 ) = L1(G,ω2)∗,

LUC(G,ω−1
1 ) = L∞(G,ω−1

1 ) · L1(G,ω1) and LUC(G,ω−1) = L∞(G,ω−1
2 ) ·

L1(G,ω2), and LUC(G,ω−1
1 )∗ and LUC(G,ω−1

2 )∗. Thus the semigroups 〈GLUCω1
〉

and 〈GLUCω2
〉 generated by the spectra GLUCω1

= ∆(LUC(G,ω−1
1 ) and GLUCω2

=
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∆(LUC(G,ω−1
2 )) respectively are norm-preservingly isomorphic (as semigroups).

Then Ω1 = Ω2 by Theorem 4.2.4 so w1 and ω2 are strongly equivalent.

An examination of the proof of ii yields that if we can conclude that two groups

are isomorphic if the semigroups generated by their weighted compactifications are,

then we do not need to assume that the groups are the same. By Theorem 4.2.4,

this is the case if the weighted compactifications are strongly Arens irregular. So

we have proved the following.

Theorem 6.2.2. If ωG and ωH are weights on locally compact groups G and H

respectively such that the GLUCwG
and HLUC

wH
are strongly Arens irregular (which is

the case e.g. the weights are diagonally bounded on dispersed sets), then the Beurling

algebras L1(G,ωG) and L1(H,ωH) are isometrically isomorphic if and only if G and

H are isomorphic and ωG and ωH are strongly equivalent, up to composing one with

the group isomorphism.

Note the similarity between the relationship between the previous two results

and Theorems 4.2.4 and 4.2.5.

The following conjecture is sufficient to remove the assumption that we can

extract the groups from the weighted compactification.

Conjecture 6.2.3. Let G be a locally compact group with weight ω. Then the

topological centre of GLUCω is

Zt(GLUCω ) = G̃ ∪ {m ∈ GLUCω \ G̃ : m(GLUCω \ G̃) = {0}}

We say that a function f : X × Y → C defined on topological spaces X and Y

0-clusters if

lim
α

lim
β
f(xα, yβ) = lim

β
lim
α
f(xα, yβ) = 0

whenever (xα) and (yβ) are nets of distinct elements in X and Y respectively such

that both repeated limits exist.
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If this conjecture is true, then we have the following.

Corollary 6.2.4. GLUCω is Arens regular iff Ω 0-clusters on G×G.

Which would generalize [10, Theorem 8.11], and then we also have the the fol-

lowing, as desired.

Conjecture 6.2.5. The Beurling algebras L1(G,ω1) and L1(H,ω2) are isometri-

cally isomorphic (as algebras) if and only if there is a topological isomorphism (of

groups) ϕ : G ∼= H and ω1 and ω2 ◦ ϕ are strongly equivalent.
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Chapter 7

The Fourier algebra of the Fell

group

7.1 The Fourier algebra

In 1964, Eymard [15] introduced the Fourier algebra A(G) of a locally compact

group G. First we need the following definitions.

Definition 7.1.1. Let G be a locally compact group.

i. C∗(G), the group C∗-algebra of G, is the completion of L1(G) with respect to

the norm

‖f‖c := sup
π
‖π(f)‖

where the supremum is taken over all non-degenerate ∗-representations π of

L1(G) on a Hilbert space.

ii. C∗ρ(G), the reduced group C∗-algebra of G, is the closure of ρ(L1(G)) in

B(L2(G)) where ρ is the extension of the left regular representation of G on

L2(G), that is, for f ∈ L1(G) and h ∈ L2(G),

ρ(f)h = f ∗ h.
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iii. A continuous complex-valued function f on G is called positive definite if for

any x1, . . . , xn ∈ G and α1, . . . , αn ∈ C

n∑
i,j=1

αiαjf(x−1
i xj) ≥ 0

The collection of positive definite functions on G is denoted P (G).

iv. B(G), the Fourier-Stieltjes algebra of G, is the linear span of P (G) with the

norm induced by the duality B(G) = C∗(G)∗.

v. Bρ(G), the reduced Fourier-Stieltjes algebra of G, is the weak∗-closure of the

collection of functions in B(G) having compact support. It is a closed ideal in

B(G) and as the notation suggests, we have Bρ(G) = C∗ρ(G)∗.

vi. V N(G), the group von Neumann algebra of G, is the WOT-closed subalgebra

of B(L2(G)) generated by ρ(G), or equivalently, the bicommutant ρ(G)′′ in

B(L2(G)).

We now define the Fourier algebra.

Definition 7.1.2. Let G be a locally compact group. The Fourier algebra of G can

defined by any of the following equivalent conditions:

i. A(G) := {h ∗ k̃ : h, k ∈ L2(G)} where k̃(x) := k(x−1).

ii. A(G) is the space of coefficients of the left regular representation of G, that is

A(G) = {functions G 3 g 7→ 〈ρ(g)ξ, η〉 : ξ, η ∈ L2(G)}

iii. A(G) is the closed ideal in B(G) generated by the functions in B(G) with

compact support.

A(G) can be identified with the predual of the von Neumann algebra V N(G),

from which it inherits a norm, but for any u ∈ A(G) we can find ξ, η ∈ L2(G) such
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that u(g) = 〈ρ(g)ξ, η〉 and ‖u‖ = ‖ξ‖2‖η‖2. With this norm, A(G) is a commutative

Banach algebra with the pointwise product.

If G is abelian, then A(G) ∼= L1(Ĝ) via the Fourier transform, where Ĝ is the

dual group of G.

We will see that understanding of a related algebra will be essential towards the

study of the centre of A(G)∗∗.

A(G) acts on V N(G) via for u, v ∈ A(G) and T ∈ V N(G),

〈u · T, v〉 := 〈T, uv〉.

For T ∈ V N(G), let

suppT := {g ∈ G : u · T = 0 ⇒ u(g) = 0 ∀u ∈ A(G)}

and let

UCB(Ĝ) = {T ∈ V N(G) : suppT is compact}.

UCB(Ĝ) is a C∗-subalgebra of V N(G) equal to the closure of A(G) · V N(G).

UCB(Ĝ) is furthermore an involutive subalgebra of V N(G) i.e. for n ∈ UCB(Ĝ)∗

and T ∈ UCB(Ĝ), the element n · T ∈ V N(G) defined by for u ∈ A(G)

〈n · T, u〉 := 〈n, u · T 〉

lies in UCB(Ĝ). Then UCB(Ĝ)∗ is itself a Banach algebra under the product

〈m · n, T 〉 := 〈m,n · T 〉

where m,n ∈ UCB(Ĝ)∗ and T ∈ UCB(Ĝ), which will appear often in the study of

the centre of A(G)∗∗.

There is an extensive theory for the Fourier algebra which we do not have space
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to include here. The best place to start is still [15], see e.g. [12] for additional

results.

7.2 The topological centre of the Fourier algebra

Recall that “AR” stands for “Arens regular” and “SAI” stands for “strongly Arens

irregular”.

Unlike group algebras, the topological centre of the Fourier algebra is not well

understood. Of course, if G is abelian then A(G) ∼= L1(Ĝ) so A(G) is SAI, but there

are only partial results in the nonabelian case.

Theorem 7.2.1 (6.5 in [31]). If G is discrete and amenable then A(G) is SAI.

Theorem 7.2.2 (3.2 in [21]). If G is a locally compact group such that A(G) is AR,

then G is discrete.

Combining these results we obtain an earlier result [34, Proposition 5.3].

Corollary 7.2.3. If G is an amenable locally compact group, then A(G) is AR iff

G is finite.

It is tempting to conjecture that A(G) is SAI if G is amenable. However, Losert

has shown that the Fourier algebra of the compact group SU(3) is not SAI. Little

else is known about the compact case. Surprisingly, Losert has also shown that if G

is a locally compact group containing a free subgroup, then G is not SAI [35], but

even if such G is discrete, it can still not be AR by [21, Corollary 3.8].

Beyond this, it is necessary to consider UCB(Ĝ)∗. We define the topological

centre of UCB(Ĝ)∗ to be

Zt(UCB(Ĝ)∗) := {m ∈ UCB(Ĝ)∗| the map UCB(Ĝ)∗ 3 n 7→ m·n is w∗-w∗-continuous}.

Bρ(G) embeds into UCB(Ĝ)∗ (see [31, §4]) and Bρ(G) ⊆ Zt(UCB(Ĝ)∗) [31,

Proposition 4.5]. It is often easier to deal with UCB(Ĝ)∗ than A(G)∗∗, and knowl-
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edge of the centre of UCB(Ĝ)∗ can be translated to A(G)∗∗. For example, we have

the following.

Theorem 7.2.4 (6.4 in [31]). Let G be an amenable locally compact group. If we

have Zt(UCB(Ĝ)∗) = Bρ(G), then Zt(A(G)) = A(G) (i.e. A(G) is SAI).

Then we have the following two results from Hu [25].

Theorem 7.2.5. Let G be a metrizable locally compact group such that [G,G] is

not open in G. Then

i. Zt(UCB(Ĝ)∗) = Bρ(G)

ii. Zt(A(G)∗∗) = A(G) if G is amenable.

Theorem 7.2.6. Let G = G0×
∏∞
i=1Gi, where each Gi, i ≥ 0 is a metrizable locally

compact group and Gi is compact and nontrivial for i ≥ 1. Then

i. Zt(UCB(Ĝ)∗) = Bρ(G)

ii. Zt(A(G)) = A(G) if G0 is amenable.

These results extend results of Lau and Losert in [31] and [32], where they assume

the group to be second countable rather than metrizable.

7.3 The Fourier algebra of the Fell group

Let G be a group with a subgroup H ≤ G and a normal subgroup N E G. Given

a homomorphism ϕ : H → Aut(N), the group of automorphisms of N , for h ∈ H

write ϕ(h) = ϕh ∈ Aut(N). Then N ×H is a group under the operation

(n1, h1) ∗ (n2, h2) = (n1ϕh1(n2), h1h2)

called the semidirect product of N and H and denoted N oH.
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Now let p be a prime number and N denote the field of p-adic numbers. Also

let K be the set of p-adic numbers of valuation p0 = 1. Then K is a compact group

under multiplication which acts on N by multiplication.

The p-adic numbers are a different (from R) completion of Q (in fact, the only

other one) with respect to a metric defined via prime factorizations.

Although it is very interesting, we do not develop their theory here, since we

will not need to get our hands dirty with them anyway. A gentle reference is [23].

Definition 7.3.1 (Baggett [4]). The Fell group is the semidirect product NoK.

The Fell group is totally disconnected (i.e. the only connected components are

singletons), amenable, and unimodular [3]. Furthermore, the dual object Ĝ of G

(the set of equivalence classes of irreducible unitary representations of G), which

fails to a be a group since G is nonabelian) is countable [4, Theorem 4.5]. Mauceri

computed the dual object.

Lemma 7.3.2 (Mauceri [37]). Let G be the Fell group. Then Ĝ = Ĝ1 ∪ Ĝ2 where

Ĝ1 = {πj : j ∈ Z} where the πj represent G on L2(K) via

πj(m, l)f(k) = exp(2πipjkm)f(kl)

and Ĝ2 = {πθ : θ ∈ K̂} where the πθ are the characters of K,

πθ(m, l) = θ(l).

So the characters of G are the {πθ : θ ∈ K̂}.

We may now describe the topological centre of A(G).

Theorem 7.3.3. The Fourier algebra of the Fell group is strongly Arens irregular.

Proof. G/N ∼= K which is abelian, so [G,G] ⊆ N and hence [G,G] ⊆ N . Since

[G,G] coincides with the intersection of the kernels of the characters of G, which do
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not depend on N , N ⊆ [G,G]. Hence [G,G] = N is not open in G. Then since G is

metrizable and amenable, A(G) is strongly Arens irregular by a Theorem 7.2.5.

This is the first non-discrete non-abelian totally disconnected example.
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Chapter 8

Remarks and further problems

We present here some open problems concerning the theory we have developed here.

1. Minimality of dtc sets. Are the dtc sets obtained in Chapter 5 minimal?

While it is expected that the size of dtc sets for weighted objects should depend

on the diagonal bound on the weight, we have no results along these lines. There

are essentially no minimality results for dtc sets in general, except that dtc sets for

commutative Banach algebras must have at least two elements (there are one-point

dtc sets for non-commutative algebras). If the weighted is not diagonally bounded,

can we still find (possibly infinite) dtc sets?

2. Topological centres of weighted objects. What exactly are the topolog-

ical centres of GLUCω , L1(G,ω)1(G,ω), LUC(G,ω−1)∗, etc. when the weight is not

diagonally bounded (on a dispersed subset of the group)?

5. Determining sets in the weighted case. We must complete the extension

of Budak, Işık, and Pym’s results to the weighted case, begun in section 5.2.

4. Can we prove the conjecture in section 6.2?

5. Isomorphisms of the weighted compactification. What can be said

about homomorphisms of the semigroups 〈GLUCω 〉? Can they be classified via trans-

formations of the group and relations on the weights (or at least the Ω)? It is not

even clear in what category the semigroup generated by these semigroups should be
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considered. They inherit some linear and norm structure from LUC(G,ω−1)∗, but

it is difficult to refer to these structures when considering the semigroups abstractly.

6. See the ends of [9] and [10] for many more problems, most of which are still

open.
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