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Abstract

Does coherent behaviour require an ezplicit mechanism of cooperation? In this dissertation.
the relationship between local perception and global action in a system of multiple mobile
robots was examined for a collective box-pushing task. The problem investigated was how
local sensing could be used to coordinate the individual motor responses of a system of robots
in a coherent manner, using only implicit communication through the task. The task was to
move a large box from an initially unknown position to a specified goal location. The central
thesis put forward, is that for the box-pushing task a coherent behaviour is possible, without
an explicit mechanism of cooperation, by using the mass effect of a system of redundant
robots.

Preliminary work in collective robotics appeared to lend weight to the hypothesis that
collective tasks, by multi-robot systems, are possible without centralized control or explicit
inter-robot communications, two common control mechanisms used for cooperation. The
goal was to propose and verify a framework for modelling a multi-robot task, such that
the system displayed both coherent and coordinated behaviour without centralized control.
The result is a coordinated global action by the system similar to group transport behaviour
by ants. The result is achieved using the mass effect of a system of redundant robots. The
approach to connecting perception and action is through a task description, specified as
changes in the environment, and a task decomposition, which describes how a system will
achieve those changes.

Demonstrated is a framework using a multi-robot box-pushing task and its extension to
a directed box-transport task. Steps in the task are modelled as states, and implemented
as subtask controllers, with state transitions determined by binary sensing predicates called
perceptual cues. A perceptual cue (Q), whose computation is independent from the opera-
tion of the controller, is used by a finite state controller, called a Q-machine, to produce an
action. Results are presented for a redundant system of physical robots capable of moving

a heavy object collectively to arbitrarily specified goal positions.
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Chapter 1

Introduction

Does coherent behaviour require an ezplicit mechanism of cooperation? In this dissertation,
the relationship between local perception and global action in a system of multiple mobile
robots is examined for a collective box-pushing task. The problem investigated was how
local sensing could be used to coordinate the individual motor responses of a system of
robots in a coherent manner, using only implicit communication through the task. The task
was to move a large box from an initially unknown position to a specified goal location.
Preliminary work in collective robotics appeared to lend weight to the hypothesis that
collective tasks by multi-robot systems are possible without centralized control or explicit
inter-robot communication, two common cooperation mechanisms used for control [31].
The goal was to propose and verify a framework for modelling a multi-robot task, such that
the system displayed both coherent and coordinated behaviour without centralized control.
The problem was explored along the dimensions of perception and action. The result is
a coordinated global action by the system without resorting to explicit mechanisms of
cooperation such as directed communication between robots or robot differentiation. The
approach to connecting perception and action is through a task description, specified as
changes in the environment, and a task decomposition, which describes how a system will
achieve those changes. Demonstrated is a framework using a coordinated multi-robot box-
pushing task and its extension to a directed box-transport task. The conjecture is that this

approach may also be extended to other multi-step construction tasks.



1.1 Connecting Perception to Action

It has been said that the era of the industrial robot—characterized by its use in the manu-
facturing industry—is about to make way for the next generation “service robot,” a device
with a high reliance on mobility to achieve its task specific purpose [8, 21]. Along with mo-
bility comes a need for more autonomous operation than their progenitors whose lives were
spent locked in cycles of precise movement in Cartesian space. Autonomy and mobility in
robotics usually leads to the problem of dealing with increasingly uncertain environments,
and advances in autonomous robots are accomplished through a better understanding of
the role sensors play in controlling actuators.

In robotics, the problem of connecting perception to action is usually tackled by taking
a reductionist’s approach. The problem is decomposed into subproblems, which are often
studied in isolation with the underlying assumption that, once they are solved, someone will
fit all the pieces back together into a working autonomous robot ready to fetch and deliver
our next cup of coffee. However, as is often the case, this merging of solved subproblems
ends up as a research problem in itself, and results in a solution brittleness that quickly
rears its head as soon as the next unforeseen event or circumstance occurs. One approach
to dealing with uncertainty is to circumscribe the environment in which the robot performs
its designed function thereby limiting the size of the possible set of sensor stimuli. Another,
is to constantly calibrate and recalibrate the sensor and actuator systems, but this does
little to help solve the larger issue of system integration brought about by the original
problem decomposition. An alternate view held by many is holistic in its approach to
creating systems that link perception to action in a given environment, the so called animat

approach [79].
1.1.1 The Animat Approach to Al

The animat approach models whole but simple animal-like systems and their sensory envi-
ronments. In this bottom up approach to intelligence the basic hypothesis is that human
level systems can eventually be built by studying complete, albeit simple, animal-like sen-
sory/motor response systems in simulated environments. This argument aside, the holistic
approach to studying the connection between perception and action has merit when applied
to the difficult task of designing and constructing physical mobile robots.

By grounding the animat’s internal symbols in the physical stimuli of a given real en-

vironment, a study can be made of the connection between perception and action. The



animat approach of determining the minimal machinery needed for a given animat with
needs, an environment, and a sensory/motor system used to achieve those needs is also ap-
plicable to the reactive behaviour-based approach to building mobile robots. Task difficulty
is increased by either increasing the complexity of the environment or the complexity of the

animat’s needs to some criterion [79].

1.1.2 Niche Solutions and Collective Robotics

An alternative approach to dealing with uncertainty and the brittle reliability of single robot
systems, is the multi-robot system which attempts to increase system reliability through
the redundancy of mass effect. Although individual robots within the system still suffer
from the same spatial constraints as found in the single robot system. the mass effect of
many parallel sensing and actuation operations increases the probability the system can
complete a given task. An analogy is often made with the task-achieving syvstems of social
insects capable of complex tasks with well defined global results and all without the aid
of centralized control. The effects of such systems are coordinated, but not necessarily
cooperative since antagonistic forces are present.

Sudd [68] provides us the example of a two-meter-high mushroom-shaped termite’s nest.
Like the great pyramids of Giza, whose existence results from the effort of many thousand
workers over several lifetimes, the end result is a predictable shape, as if planned by some
master architect who then directs its step by step completion. In the case of the termite’s
nest. where is the master architect who orchestrates this collective effort? And what is the
nature of the intelligence controlling this collective system in such a coordinated manner?
Closer examination of the activity in nest construction reveals many antagonistic actions.
As termites pile pellets into columns other termites undo the work by removing the same
pellets. Despite these antagonistic agents system reliability, measured in terms of task

completion, remains high. How then, is such coherent behaviour achieved?

1.2 Collective Behaviour

Robotics research in general is task driven. Three typical tasks used to study and evaluate
theories in multi-robot control have emerged in the field: foraging, box-pushing, and for-
mation marching. Foraging involves the search and retrieval, by a multi-robot system, of
target items distributed in an environment. Targets are usually small enough to be handled
by a single robot, and task completion is therefore possible by one robot given enough time.

Box-pushing requires at least two robots to move an object in 2 common direction: this



needs more coordination than foraging since the task is not possible with a single robot.
Formation marching needs a minimum of two robots moving in a given geometric pattern
along a desired trajectory. Most multi-robot research studies measure system utility in
reference to one of the above tasks.

In a recent review of the field, Cao et al. [16] defined multi-robot systems in which “there
is an increase in the total utility of the system” as exhibiting cooperative behaviour provided
it is “due to some underlying mechanism of cooperation.” Thus it is often assumed, either
explicitly or implicitly, that cooperation involves direct communication and the ability to
distinguish robots from objects as the mechanism which increases total system utility.

In Distributed Artificial Intelligence (DAI) the distinction of cooperation as a separate
concept is not made. Rather, cooperation is seen “as a special case of coordination among
nonantagonistic actors” [12]. Since the simulated domains of interest to DAI do not contain
the same level of uncertainty as is found in the physical domains of robotics, DAI has
had a limited influence on collective robotics [16]. However, many of the problems in
collective robotics are analogous to those found in DAI. Of particular relevance is the area
of multiagent systems in which problems are solved by coordinating intelligent behaviour
among a collection of autonomous agents. Here coherence and coordination are analytical
concepts in wide use [12]. In DAI the term coherence refers to system behaviour in terms
of an evaluation criterion, while coordination describes interaction among agents.

Coordination implies a predictable system level result with minimum interference. The
more inter-robot interference the less coordinated the system behaves. According to Bond
and Gasser, coherence and coordination are somewhat related since greater coordination can
lead to more efficient coherence by minimizing the degree of interference [12]. In collective
robotics, like DAI, the problem is achieving coherence and coordination without centralized
control or a global viewpoint.

In this dissertation, focus is on the relationship between local perception and global

action. The central thesis is that:

Coherent collective behaviour, in some tasks, does not require an ezplicit mech-

anism of cooperation.

The support for this proposition is based on the many examples of collective behaviour
among social insects. To demonstrate coherent behaviour without centralized control or
explicit inter-robot communication, a directed box-pushing task was studied in which a box

was moved from an initially unknown position to an arbitrary goal location. Complimenting



hypotheses on perception and action state both can be computed separately from the deci-
sion process linking them together. Next, the perception to action connection is examined

by considering how local perception and global action can result in coherent behaviour.

1.2.1 Taxis-based Discrete Action

Can predefined actions be an appropriate perceptual response? Could you and a friend,
each applying a unit-force, pick up an arbitrary table? Probably not, since the amount of
force needed to pick up the table would depend on its weight which you would gauge using
perception. But what if a group of your unit-force friends came to help and, since in typical
cases a table’s weight is a function of its circumference, enough friends joined in until the
table was lifted. The force needed to lift tables would then be a function of group size.
Using this algorithm, your group could lift several different size tables without varving the
amount of effort each applied. A hypothesis regarding action within a group might then be

stated as:

A motor response or action can be computed separately from its stimulus without

regard to either its modality or magnitude.

The advantage this modularization holds for designing a robot’s control system., lies in the
ability to change parts of the perception architecture without affecting the corresponding
motor actions. Nature provides several examples in support of this approach.

Vowles determined that ants were able to substitute the perceptual stimuli used in ori-
entation motor responses [72]. Using an artificial light as stimulus ants maintain a constant
orientation angle with respect to the stimulus while traversing a horizontal surface. The
light source was then removed and the surface tilted vertically. The ants changed their
direction and maintained the same angle with respect to the stimulus, but switched input
stimulus to reference gravity instead of light. Taxis mechanisms are reflex translational or
orientational movements by a freely motile agent in relation to a source of stimulation, and
in ants form a connection between sensory and locomotory mechanisms. Vowles hypothe-
sized that both sensory and locomotory mechanisms functioned independently of the taxis
mechanism.

A fixed sequence of actions used to accomplish a specific task is also found to occur
in animals. Referred to as fized-action patterns these sequences of behaviours have been
observed in the greylag goose while executing an egg retrieval behaviour [44]. When an egg

rolls from its nest, the goose will complete a sequence of movements starting with extending



its head to reach the egg, then pulling back until its head is between its legs. This sequence
is repeated even if contact with the egg is lost; however, small side to side adjustments are
made to keep the egg in place during the pulling phase of the behaviour. Thus, predefined
actions in the form of stored behavioural programs could be independent from the stimulus
which triggers them.

These stored behavioural programs can be invoked by researchers using appropriate
stimuli. In ants, corpse removal is a collective behaviour invoked by chemical odour. Work-
ers dispose of dead ants by carrying them from the nest to a refuse pile. Wilson et al.
[77] were able to invoke the same behaviour in ants by treating bits of paper with acetone
extracts of ant corpses. In fact, by daubing small amounts of acetone extract on live ants,

they too were carried away by nestmates and dumped on the refuse pile.

Operations to Demonstrate Motor Action Modularity

Reactive control is an approach that connects perception to action without creating an
internal model of the world on which to formulate a plan of action [5]. In order to show the
use of discrete motor action in a reactive controller, a set of motion primitives was designed
for the box-pushing robots from which all motor actions would be composed. The underlying
motor behaviour of a robot would then be a mapping from perceptual cues, as outlined in
the sequel, to individual motion primitives or sequences. The hypothesis implied in such
an approach is that continuous motion of a mobile robot can be approximated from a finite
set of small discrete motions using perception as the element selector. Global action occurs
when many redundant robots provide a mass effect while working towards a solution to a

shared problem. Next, we consider the opposite end of the perception to action mapping.

1.2.2 Local Perception

Can a complex decision making process be reduced to simple sensor preprocessing? The

hypothesis implicit in this question is that:

The perceptual process used to trigger a response in reactive control can be com-
puted using selective perception from the environment for the action which con-

trols the robot.

Here control refers to the decision process involved in mapping perception to action. Wehner
argues that an animal’s solution to perceptual tasks “is often restricted to a narrow range of

stimuli and situations” found in its environment [73]. Insects are cited as a prime example



of this “matched filter” approach to perception, in which sensing receptors are spatially ar-
ranged to match some environmentally specific stimulus. This, Wehner conjectures, relieves
the insect from any heavy computational task by solving the decision making process at
the sensory level. Further, he speculates that although this makes the system less general
in its ability to handle a variety of sensing input, the information processing is easier and
suitable for the “narrow ecological niches” insects occupy.

Two examples Wehner cites, in support of this hypothesis, are the visual streaks found
in the eyes of both desert ants {74] and crabs [80]. Visual streaks refer to the close spacing
of photoreceptors near the center of the eye, the area in which most retinal images are
formed because of the horizon dominated world which the animals inhabit. In crabs this
spatial arrangement allows a constant number of receptors to be stimulated by objects of
the same size regardless of the distance of the object to the eye. Wehner speculates that
this mechanism is a simple solution to the animal’s problem of determining the size of the
object, when the retinal images appear in a predictable way due to the predominantly fiat
visual environment [75]. It is also speculated that such a mechanism may be used in part
as a visual cue and subsequent response to predators [80].

Another example of behaviour triggering by stimulus cues is found in social insects.
Both bees and ants use dawn and dusk to start and stop their foraging behaviour. In fact,
bees have a special sensor system consisting of three ocelli used to detect light level intensity
and manipulating these sensors affects when the foraging behaviour begins and ends. The
light-level threshold at which foraging is triggered can be varied by blinding one. two or
three of the ocelli [60].

Behavioural sequences may be invoked by one or more stimulus cues. A single stimulus
which triggers corpse removal behaviour in ants was found and tested by daubing bits of
paper with the acetone extracts from ant corpses, causing them to be removed from the
nest and dumped on the same refuse pile as dead ants [77]. Downing and Jeanne found that
multiple cues are used to trigger nonlinear building behaviour in nest construction by paper
wasps [20]. McFarland and Basser cite the work of Baerends and Kruijt [9] on egg retrieval
behaviour found in herring gulls, in which several cues are used to recognize an egg rolled
from its nest, and note that this mechanism of adding cues is an application of the law of
heterogeneous summation—in which diverse and independent stimuli have an additive effect

on behaviour [44]—proposed by Seitz [62].
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Perception in Robotics

These examples found in natural systems are also supported by recent changes in approach
to control within the field of robotics. Control systems for mobile robots typically follow
one of two approaches. Traditionally the connection between sensors and actuators was
made through a linear model of perception, representation, reasoning and action. These
systems tended to be somewhat brittle due to the way information was processed sequen-
tially. Creating behaviour in machines from sets of stimulus-response pairs, as advocated by
Braitenberg as an interesting way to study mind [13], is similar to an alternative approach
to robot control proposed by Brooks [14] which made use of a more direct coupling of sen-
sors to actuators mediated by behaviour. These stimulus-response behaviours are used in a
parallel decomposition of a task into a set of behaviours, effectively precompiling both the
representation and reasoning into task-achieving modules.

Fundamental to the reactive, or behaviour-based, control technique in robotics is this
tight coupling between stimulus and response, called action-oriented perception [5]. Rather
than creating an internal representation of the environment, to be used by a planning
system as is found in traditional AI, the needs of a motor-action are specified in terms of
its perceptual requirements.

Pragmatically, several issues concerning sensors must be considered before a study of
their relationship to actuation can be made. Sensors provide a robot with a window into
its environment that usually carves the world into a number of discrete perceptual spaces.
The size of these spaces is dependent on a sensor’s modality, resolution, features in the form
of perceptual cues, how information is fused, and how many sensors are used. These are
the issues of perception, which in a robot amount to sensing through a selection of sensors
with widely varying parameters. Choosing the size of this window varies the amount of

information, available to the robot, on which to make decisions.

Sensor modality Selecting which type of sensor to use should depend on the perceptual
tasks to be accomplished by the robot. For example, in order to successfully navigate,
mobile robots require obstacle sensors. Several different types of sensors exist to detect
obstacles depending on the range, accuracy, repeatability and reliability required. Each
modality has different processing requirements that vary from a single bit contact switch,
to over 500,000 bits in a digital camera. Each sensor has limitations which may be overcome

by combining multiple sensors of the same or different type.



Sensor resolution In perceptual tasks, how well a specific quantity can be determined
or two quantities differentiated, depends on the sensor’s resolution. The finer a sensor’s
resolution, the greater the amount of data it may produce and potentially the greater the
processing requirement. The resolution requirement is also task specific. If a task requires
the robot to detect one-millimeter-wide cracks in concrete surfaces, then the sensor chosen

must be able to resolve distances of less than a millimeter.

Sensor cues Sensor cues, often referred to as perceptual cues or triggers, are features in
the robot’s perceptual space deemed important by the system’s designer. Cues signify an
event has occurred and can be used to mark a transition in a control process. Cues may
be binary in nature like the illumination of a light indicating the start of a process, or as
subtle as a change in shading indicating the movement of a light source. A cue may be
defined as a feature in a specific sensor’s output space or as a combination of one or more
different sensor features. The question of how much information (sensor output) is needed

to define a sensor cue is an important one.

Sensor fusion The issue of deciding how information about one stimulus from multiple
sensors is to be used is called sensor fusion. Sensor fusion must consider the amount of
information from a given sensor as well as its accuracy, modality, and resolution. When
the information about a source from different sensors is conflicting, a method to resolve
inconsistencies must be included in the fusion algorithm. Choosing which sensors to include
in a fusion process is as difficult as deciding what information from those sensors will be

used.

Sensor quantity Deciding on the number of sensors to be used for a given perceptual
task is usually a pragmatic choice. Cost is often the limiting factor. Sensors of a fixed
spatial range can provide more information by using larger quantities. For example, ten
contact switches, each capable of detecting contact with a one centimeter squared area,
can be used to detect contact with a ten centimeter squared area. Redundant sensors are
often used to reduce uncertainty by making use of multiple readings. Often the sensor
quantity can not be determined if a method for using the data is not known. Stereo vision
employs two cameras and knowledge of their geometric arrangement in order to compute
depth information from stereo images of a scene, but how could ten cameras be used and

what additional information would they provide?



Operations to Demonstrate Perceptual Modularity

In order to demonstrate that perception can be computed separately from the control deci-
sion process, the perceptual cues used in the box-pushing task were specified by measuring
sensor output for a given set of stimulus conditions within the task’s environment. This
data provided a two dimensional view of stimuli for a given sensor and environment. The
hypothesis was that the stimulus data sufficiently encodes the correct control decision for
an appropriate motor-response action, in a manner similar to the evolved ‘matched filter’
response found in nature. Next. we consider how perception and action processes are linked

together in a cohesive and coordinated manner.

1.2.3 Coherent Behaviour

Does coherent behaviour require direct communication or robot differentiation? Previous
studies of coordinated multi-robot box-pushing have often employed direct communication
as the explicit mechanism of cooperation [59, 18, 43]. Coordination is achieved by imple-
menting pushing protocols which require the robots to have spatial knowledge and unique
functional roles in the pushing task. For example, in [18] a pushing protocol (Protocol
I} was developed for a pair of mobile robots uniquely identified as Left and Right. Force
information was communicated between the two robots which allowed each to calculate the
net torque about a point halfway between the robots. In [59] a similar left/right knowl-
edged strategy was used by two dissimilar robots which used broadcast communication to
indicate “pushed-at-left”™ or “pushed-at-right” actions by each robot. A token passing “my-
turn” communication protocol was used in [43] to achieve “careful coordination between
the robots” in a cooperative box-pushing task. Although in these examples only two robots
were used in the task, each with a unique left/right functional role, it is not clear how these
approaches would scale to larger systems, as communication costs escalate as a function of
the number of robots.

However, communication as a mechanism of cooperation can improve the performance
of some tasks. Balch and Arkin performed simulation studies of three tasks with varying
degrees of communication complexity [10]. The tasks studied were forage, consume, and
graze all of which involved, to varying degrees, the spatial coverage of the environment by
a multi-robot system. In tasks such as these, performance improvements were made using
broadcast communication when alternate communication channels, such as the environment,
were unavailable. Furthermore, chemical communication among members of an ant colony

is 2 well understood mechanism for releasing behaviour and thus can help direct a collective
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response in many tasks. Thus we acknowledge the benefit direct communication can have in
certain tasks, but question whether it is a required component in multi-robot cooperation.
Robot differentiation, the ability to distinguish robots from other objects in the envi-
ronment, has been postulated by some to be a necessary condition for coherent behaviour in
multi-robot systems [59, 42]. Also referred to as “robot awareness” or “kin recognition” the
ability to discern other robots presupposes that the behaviour of a robot in a group should
be different from its singular behaviour. Although this may be true for specific robot archi-
tectures, it is not axiomatic in the more general case of decentralized control. Social insects
such as ants are a good example of decentralized control that exhibit coherent behaviour
in accomplishing several well defined collective tasks, yet no evidence has been found to
support the claim that the behaviour of a single ant engaged in an activity is any different
when found within its own colony [78]. Thus, it is not clear whether explicit mechanisms
like directed communication or robot differentiation are required in cooperative control.
To further our understanding of coherent collective behaviour the following primary

hypothesis was investigated:

Coherent collective behaviour, in some tasks, does not require an ezplicit mech-

anism of cooperation.

The motivation stems from the many well documented cases of coherent behaviour found
in social insects which result without use of explicit mechanisms of cooperation.

Social insects exhibit some of their most coherent behaviour during nest building and
group transport activities. The activity may be described as a well defined series of steps
or behavioural acts, with transitions between steps specified as unique stimulus cues. Nest
construction by paper wasps begins by first building a stem, which holds the nest to the
bottom of a horizontal surface, to which walls are added, thus forming the first cell. Downing
and Jeanne identified the stimulus cues used to cause transition between building acts, and
determined that cues may be composed of more than one stimulus [19]. For example, the
transition between the stem and roof construction step is specified by stem length, while
to determine stem perpendicularity wasps measure both sides of the stem as well as using
its reference to gravity [20]. In nest construction, coherent behaviour would seem to have
resulted from an evolutionary derived building program whose execution is governed by a
common set of perceptual cues.

Group transport behaviour is the cooperative movement of an object by two or more

ants. The behaviour is an efficient way for a small workforce to retrieve food items to
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the nest [48]. Detailed study of the movement patterns during transport indicated that
coordinated movement usually resulted, after a period of antagonistic actions. in response
to transport difficulty (67]. Transport items are carried at standard retrieval speeds and
a constant relationship exists between the dry weight of the group and the weight of the
transported item. Transport is initially started by one ant with others joining in until the
standard retrieval speed is reached, after which the group size remains constant. These
observations have implied that individuals within the group can assess their performance
[24]. Thus, a coherent transport behaviour is a result of simple rules of interaction governing
the formation of groups used for food retrieval. With these examples in mind, if explicit
mechanisms of cooperation in multi-robot systems are not used, how then is coherence and

coordination accomplished?

Task Description and Decomposition

Problems inherent to the design and implementation of multi-robot systems are task de-
scription and decomposition, also found in DAI. Of relevance, are some dimensions used for
problem description and decomposition [12].

In a problem description, we are interested in capturing both information about the
environment and the task to be accomplished, as well potential solution paths that a given
multi-robot system can take. The description must also identify potential pitfalls the system
may encounter and allow the designer to take these into account during task decomposition.
An approach proposed by Wilson [79] to modelling simulated environments describes them
as Sensory State Machines. Inputs for these machines take the form of actions by a robot
with the resulting output as changes in stimulus observable with sensors in the environment.
This approach will be modified to create state graphs which describe tasks as stimulus
changes to be accomplished while also indicating potential deadlock situations. Arcs in
these state graphs will represent possible collective actions taken by the system and its
finite set of motion primitives. These problem descriptions will affect the way in which the
task is decomposed making description and decomposition iterative tasks [12].

Bond and Gasser [12] have suggested several dimensions along which a problem may
be decomposed, a subset of which we translate to the collective robotics domain. In the
transport task four dimensions were used for problem decomposition: abstraction levels,
control and temporal dependencies, and redundancy.

Abstraction Levels. A task may be viewed from three levels of abstraction. The task-

level, which describes what is to be accomplished. The behaviour-level, which describes
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how the task is to be accomplished. The action-level, which are the primitive actions the
system performs for a given task. The task-level description is specified as changes in the
environment observable by an external agent with a global perspective. At the behaviour-
level, a task is described as a series of steps or subtasks that the system must take in order
to accomplish the task. Transitions between these steps are specified as cues from a robot’s
sensors, which represent local perceptual changes. At the action-level, the above subtasks
are further subdivided into task-achieving reactive actions, which accomplish the specified
function of the controller using stimulus-response motion primitives.

Control Dependencies. A task may be decomposed by reducing robot control depen-
dencies. This will impact such design decisions as the amount of resources available for
a given system size; reducing robot interaction through the use of noninterference proto-
cols; restricting inter-robot communication; and limiting autonomous action based on local
perception.

Temporal Dependencies. Task decomposition is also considered in the temporal dimen-
sion by encoding time constraints in the environment/task state diagrams. Tasks which
require a repetitive sequence of actions with only spatial changes in their parameters are
encoded temporally. For example, a wall of bricks is built with a repetitive sequence of
actions by changing one spatial parameter, the location of the next brick.

Redundancy. If uncertainty is high in the perception and actions of individual robots,
then tasks are decomposed by creating redundancy in the multi-robot system. Thus. sys-
tems must be homogeneous in a robot’s ability to carry out all steps of a task. or if hetero-
geneous in composition, then each subtask must still have redundant homogeneous robots.

These guiding principles must next be reduced to research operations that will allow us

to gather data in support of our hypothesis on coherent behaviour.

Operations to Demonstrate Coherent Behaviour

In order to demonstrate a coherent group behaviour without using direct communication
or robot differentiation, a multi-robot box-pushing system was created under the following

assumptions:

e The transport task of pushing a box from an unknown initial position to a known goal

position will require the net force of at least two robots pushing in the same direction.

e The robots are autonomous, and control is therefore decentralized, with local percep-

tion from onboard sensors as the only means of observing the environment.
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e No direct communication between robots is possible.

e Robots do not distinguish between objects to be avoided and other robots. The world,
from the robot’s viewpoint, consists of boxes to be pushed, obstacles to be avoided,

and goal destinations.

Coherence, which describes how well the system behaves as a unit, will be measured in terms
of the percentage of times the system successfully performs the transport task in a given
timeframe. Coordination, which describes how well the system synchronizes its collective
actions, will be measured by comparing the time it takes for different numbers of robots
to complete the transport task. In performing the task we will vary the number of robots
that comprise the system, the size and shape of the object being transported and the goals

towards which the system must transport the object.

1.3 Thesis Outline

In Chapter 2, some of the issues that have motivated the field of collective robotics are
discussed, concentrating on the typical tasks that have recently emerged and on which our
synthetic systems are tested. The conjecture is made that the key to understanding coherent
collective behaviour lies in the many well researched examples of decentralized control found
in the field of social insects.

In Chapter 3, a taxis-based model of action is introduced. A model is presented for
discrete actions composed from three classes of stimulus response behaviours. Primitive
actuation is derived from either the class of goal, avoidance or kinesthetically driven be-
haviours. Examples of action sequences are then used to demonstrate use of the model.

In Chapter 4, a model of perception is presented, called the perceptual cue framework,
and its approach to compiling control decision information into binary sensing predicates.
The model is demonstrated by creating perceptual cues for the box-pushing task used
throughout our research to study the connection between local perception and global action.

In Chapter 5, the connection between local perception and global action is made explicit
through the use of task description and decomposition. @Q-machines are introduced to model
the process as a three level hierarchy of finite state automata whose execution is controlled
by the previously defined perceptual cues. The steps of the transport task, the running
example of a collective task, are modelled as Q-machines and the results of testing the

individual step-controllers are presented.

14



In Chapter 6, the resuits from a number of experiments, both in simulation and on
our system of physical mobile robots are presented, which integrate the subtask controllers
presented in the previous chapter.

In Chapter 7, the results are discussed for the main question under investigation, namely
does coherent behaviour of multiple robots require an explicit mechanism of cooperation?

The research contribution is summarized and areas for further study are discussed.



Chapter 2

Motivation

In this dissertation, accomplishing tasks collectively with a set of mobile robots is the area
of interest. The specific problem investigated is how to coordinate the actions of several
autonomous mobile robots engaged in a directed box-pushing task without using direct
communication between robots. As in any new field, this style of experimental robotics
is staking out its territory. Often a study will concentrate on one aspect of the problem,
leaving the results to be implemented by those conducting research farther on down the line.
Some projects. like the one here, take a holistic approach and attempt to incorporate the
multidisciplinary results into their systems. This is a breadth-first rather than depth-first
approach to the problem.

In this chapter, an overview of work related to the approach taken in collective robotics is
presented. A brief survey of multi-robot systems and the collective tasks used in their study
is discussed. Described are both physical and simulated systems. Descriptions are brief and
concentrate on the functional (task) aspect of the system, while referring to some of the
attributes that characterize the approach taken along the dimensions discussed previously.
Since task modelling and perception are so closely related in this style of work, they are
discussed together in Section 2.3. Finally, in Section 2.4 we consider some of nature's

solutions to our problems of interest.

2.1 Introduction

Research in micromachine technology—robots too small to see with the unaided eye—is

driven by applications for multi-robot systems from a diverse number of areas including
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aerospace, environmental, industrial, marine, and medicine to name a few. In aerospace
technology it is envisioned that teams of flying robots may effect satellite repair, and air-
craft engine maintenance could be performed by thousands of robots built into the engine
eliminating the need for costly disassembly for routine preventative maintenance. Envi-
ronmental robots are to be used in pipe inspection and pest eradication. While industrial
applications include waste disposal and micro cleaners. Ship maintenance and ocean clean-
ing could be performed by hundreds of underwater robots designed to remove debris from
hulls and ocean floors. Fantastic as it may seem, some researchers envision microsurgical
robots that could be injected into the body by the hundreds designed to perform specific
manipulation tasks without the need for conventional surgical techniques [47]. In order to
realize this diverse array of applications, techniques in synergistic control for collective tasks

will be required.

2.2 Collective Tasks for Multi-Robots

Recently, three typical tasks used to study multi-robot control have emerged. Tasks include
foraging, which involves searching and retrieving a target from a given area, box-pushing,
which moves an object between two locations, and formation marching. where robots move
while maintaining a fixed pattern. These collective tasks have been studied using both
physical robots and simulation. The questions under investigation often ask, should the
composition be from a homogeneous or heterogeneous set of robots? What is the size of the
system and how many robots are needed to accomplish the task? Does communication help
improve task execution speed? What is the most effective control structure for a multi-robot

system? And it is through the above three tasks that these questions are often explored.

2.2.1 Collective Foraging

In a collective foraging task robots search and retrieve a target item distributed in their
environment. Mataric¢ used a homogeneous system of seven mobile robots used to find and
collect randomly distributed pucks [42]. The system makes no use of explicit communication
between robots to accomplish the task. The primary objective in use of the foraging task
was to investigate the design of collective behavior from a set of basic behaviours based
on simple local rules of interaction. Examples of these basic behaviours include obstacle
avoidance dispersion, aggregation, following, homing, and flocking [41].

In order to investigate whether communication could improve task execution time, Al-

tenburg used a similar task of collecting targets in an enclosed area using six homogeneous

17



robots. Task performance, measured in the time taken to complete the task. improved
when a simple broadcast type recruitment signal was used. Once a robot located a target
it broadcast a signal causing nearby robots to move towards the location. Control was
achieved using prioritized rules [2]. Balch and Arkin conducted a simulation study of the
foraging task using a homogeneous group of one to five robots, with varying amounts of
inter-robot communication. They found that an average improvement of 19 percent, over a
noncommunicating system, was to be had when the goal location was broadcast. Control
of their system was achieved using motor-schemas and finite state acceptors (explained in
the sequel) [10]. Another modified foraging task was studied by Parker using either two or
three robots in a communicating heterogeneous team. The task involved locating a cluster
of pucks and moving them to a second location. The issue under investigation was fault

tolerance in a cooperating heterogeneous team [59].

2.2.2 Multi-Robot Box-Pushing

The above examples of foraging are noncooperative collective tasks, in that they could be
performed by one robot given enough time. On the other hand, cooperative tasks such as
box-pushing and formation marching, require at least two robots to complete the task. In
box-pushing, both traditional Al and reactive approaches have been emploved. Box-pushing
requires a cooperative effort from at least two robots to move a box along some trajectory.

Traditional approaches decompose the box-pushing task into subtasks to be allocated
to individual robots for execution. Caloud, Choi, Latombe, Le Pape and Yim make use
of a centralized task planner to communicate with three robots executing a box-pushing
task. To coordinate planning and scheduling activities a blackboard system is used [15].
Noreils describes work on a three level decentralized architecture with functional, control
and planning levels designed to decompose and allocate the task to a group of robots. An
experiment in box-pushing using two robots, one to push and one to supervise, is presented
by [53]. Donald, Jennings and Rus describe a box-pushing protocol (Protocol I) for a pair
of identical robots identified as Left and Right with explicit communication between the
pair to coordinate their actions [18]. In a similar approach by Matarié et al. a token passing
protocol was used between two robots to coordinate box-pushing actions. In each of these
approaches planning is performed either globally with plans communicated to single robots
or some combination of global and local planning with conflict resolution being handled
centrally.

An alternate approach makes use of a reactive system in which planning has been pre-
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compiled into the task description itself. Kube and Zhang report on a undirected box-
pushing experiment using a decentralized noncommunicating homogeneous system of five
mobile robots. Their system uses reactive control and noninterference as a simple form of
cooperation [33]. Parker also describes a box-pushing experiment using a heterogeneous
pair of robots in which state information is communicated between the robots as a means
of coordinating their actions [58]. Thus, by designing the system for a well specified task
and compiling this knowledge into its control system, the more generalized planning stage
is avoided.

An interesting approach for a material transport system has been proposed by Stilwell
and Bay, in which decentralized control of a group of homogeneous mobile robots equipped
with force sensors collectively move a single pallet [65]. Without using communication a
leader robot moves the pallet towards a destination with the direction sensed by the other
robots using a single force sensor in contact with the load. The distributed control law is

tested using computer simulation.

2.2.3 Formation Marching

Formation marching is another common task being investigated. In formation marching a
group of robots are to move while maintaining a desired formation. Both Noreils [54] and
the ACTRESS project [56] have reported on experiments using two mobile robots moving in
tandem. Other formation marching studies using simulation have examined motion based
on nearest neighbour tracking [73], local path planning [63], virtual impedance [55], and
combinations of local and global information [57].

From the above we may see that most tasks in collective robotics, that have physical
implementations, employ fewer than eight robots. Tasks that involve manipulation use ei-
ther a noncooperative search and retrieval type behaviours (eg. foraging), or cooperative
behaviours (eg. box-pushing, formation marching). Both homogeneous and heterogeneous
systems have been used. Explicit communication has been shown to improve task perfor-
mance in tasks where implicit communication through the environment is not possible (eg.
foraging); however, no improvement was shown for tasks where implicit communication
through the task was possible [10]. The approaches to coordination in box-pushing have
primarily relied on direct communication between a pair of robots often uniquely identified

in the role they play in task execution.
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2.3 Collective Task Modelling and Perception

Few studies have explicitly considered the problem of modelling the task for a collective
robotic system. The approach taken can be roughly divided into systems that perform
the task collectively as a group with each robot executing the same control program, or
systems that perform the task individually using task planning and allocation, with a single
robot assigned to each subtask. In most cases, where reactive behaviour is employed in
the control system, a set of task-achieving behaviours are designed for the task (i.e. the
planning is part of the system design). Input to these systems takes the form of signals
and cues. Signals are usually received through the use of explicit communication between
robots. Cues are received by implicit communication using local perception through the
robot’s onboard sensors. Reactive systems may also make use of memory allowing for state,
versus those systems which rely solely on their inputs. Traditional approaches that use task
planning and allocation typically use a centralized planning and allocation system which
sends messages or protocols to individual robots for execution. This approach requires the
use of an explicit communication system to send and receive messages between the global
planner and robots.

Matari¢ has modelled a foraging task using a set of basic behaviours and a modified
type of finite state machine [42]. The perceptual system makes use of both signals and cues
for transitions between states. Sensors are used as cues to detect the location of targets to
be picked up, causing a transition to an acquisition behaviour. Inter-robot communication
is used as a signal causing behavioural transition. This type of broadcast communication
is similar to alarm communication used in ants [76].

Altenburg has used a set of prioritized rules to describe a foraging task [2]. Both signals
and cues are used in the perceptual system. Cues are implemented using sensors to detect
obstacles and targets, and can be combined to form transitions between rules. Rules are
also triggered by timeouts and signals can be broadcast which cause rules to trigger in
other robots. Goal location is determined by light intensity with rules describing necessary
preconditions for triggering.

Kube and Zhang have modelled a box-pushing task using a reactive controller and fixed
priority behaviours [33]. Perception makes use of cues only with implicit communication
by passive sensing. Behaviours are triggered by directly connected sensors with the control
system implemented in combinational logic.

Parker has extended the behaviour-based architecture [14] to allow for selection among
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task-achieving behaviours [58]. Both signals and cues are employed in behaviour selec-
tion. A task in this architecture is composed of loosely coupled independent subtasks which
may not be ordered. Subtasks are implemented using behaviour sets whose activation is
controlled by a motivational behaviour. Only one behaviour set may be active at a time,
and suppression of other behaviour sets is performed by the active behaviour set. Motiva-
tional behaviours decide which behaviour set is active based on received input from sensors,
inter-robot communication, inhibit lines from other behaviour sets, and two internal state
variables, impatience and acquiescence. When a preset threshold is reached the motiva-
tional behaviour activates its associated behaviour set. This method of selecting the active
behaviour set can not be used if the task requires an ordered sequence of behaviours.

An alternate approach to modelling tasks that does not suffer from ordered behaviour
sequencing has been recently proposed by Arkin and MacKenzie for perceptual processes [6].
Their approach controls sequences of perceptual algorithms using a finite state model with
transitions between states triggered by either elapsed time, algorithm completion, algorithm
failure, or termination of a motor activity. A priority based mechanism is used to handle
the simultaneous triggering of several perceptual processes. This state based approach has
been applied to the control of a single robot in a docking task and allows for a systematic
way of temporally sequencing behaviours as the task proceeds.

The more traditional individual-based task allocation systems are represented by the
work of Noreils [53], and of Asama (ACTRESS) [7]. Noreils describes a box-pushing task
modelled as coordinated protocols implemented as predicate/transition nets in a three level
architecture. At the highest level is a global planner responsible for coordination between
local plans and collaboration used for task decomposition and allocation. Protocols which
describe the task are composed of requests to the lower functional level and monitors which
handle cues from sensors. Tasks are accomplished individually rather than using a collection,
by allocating subtasks to individual robots. The ACTRESS architecture is characterized
in a similar manner with both centralized and decentralized task planning and allocation.
A global model is kept of the environment and message protocols are used to instruct

individual robots in subtask execution.

2.4 Collective Biology

Examples abound in nature supporting the conjecture that locally sensed stimulus and
reflexive behaviour can produce a predictable global effect. An example is the well defined

mushroom shaped termite nest that often stands more than two meters high and one meter
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in diameter at its base [68]. Its construction, through a linear series of building steps.
is hypothesized to be the result of a building program and stimulus cues used to switch
between construction steps, and forms the basis of Grassé’s Stigmergy Theory [26]. Can
the many examples of perceptual cues, used to trigger behaviour sequences in biological
systems, be used to design a similar mechanism for multi-robot control? And can these
same cues also be used to govern transitions between task steps in robotic systems the same
way they regulate building acts in nest construction? In this section we examine a number

of examples with the above two questions in mind.

2.4.1 Nest Construction by Wasps

Nest construction by social insects is a collective task involving a well defined sequence of
construction steps. Construction by paper wasps takes place in two stages. In the first
stage, a linear series of building acts, or behaviours, are used to construct a petiole, or
stem, which holds the nest to the bottom of a horizontal surface, to which walls are added
forming the first nest cell. In the second stage, a nonlinear series of building behaviours
follow in which either the stem is reinforced. the first cell lengthened, or an additional cell
is built [19].

The linear sequence of building acts are:
1. Substrate preparation;

2. Stem construction:

3. Flat sheet construction;

4. First cell construction.

Downing and Jeanne identified the stimulus cues that influenced the transitions between
steps and noted that the cues remained consistent within an individual but varied between
individuals. For example, they cite the transition between stem and flat sheet construction
to be the length of the stem, and that although this length varied from wasp to wasp, an
individual wasp would consistently build stems of the same length.

The decisions in the second nonlinear phase of nest construction are more complex since
they involve a choice between any one of several building behaviours. Cues used in this
phase were composed of more than one sensing stimulus. For example, when constructing
the stem of the nest which holds it to a horizontal surface, the wasp measures both sides of

the stem to determine its perpendicularity as well as using its reference to gravity [20].
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2.4.2 Group Transport by Ants

Nature has graciously provided us, by way of the social insects, an example multi-agent
system whose decentralized control is based solely on locally sensed information. Moreover.
ants exhibit a group transport behaviour, used in both food and prey retrieval tasks, in
which stagnation problems arise and are solved using simple recovery strategies.

Group transport is the cooperative movement of a load by two or more ants. Very
few studies have examined this behaviour found almost exclusively in ants, but those that
have shown group transport to be an efficient way of moving a load with a small workforce
(48, 24, 66, 67]. Food is generally consumed within the nest and must be first torn apart
before consumption. Ants must either transport the food item as a whole from its location
or dismantle it into small enough pieces to be carried back to the nest by an individual. The
efficiency of group transport is evident in Moffett’s experiment using a large piece of cereal
carried by 14 ants, a food item which would have required 498 ants had individual pieces
been carried solitarily {48]. Franks has also determined the efficiency of group transport
with ants capable of moving items which are more than the sum of pieces carried by the
individual ants in a group [24]. Since items are always carried at a standard retrieval speed,
Franks hypothesizes that this superefficiency is obtained by a group’s ability to overcome
the rotational forces necessary to balance a food item.

A detailed study of the movement patterns involved in group transport was carried out
by Sudd in which it was concluded that although the behaviour of ants in a group transport
was similar to that of single ants, group transport showed cooperative features [66, 67).
When an ant attempts to move a food item it first tries to carry it. If the item is restrained
in any way the ant will next attempt to drag it. Sudd suggests that the resistance to
transport determines whether to carry or drag the item. After some seconds are spent on
resistance testing. the ant will try to realign the orientation of its body without releasing
the item [67]. This has the effect of altering the direction of applied force and may be
sufficient to move the food item. If the item still cannot be moved the ant will release its
grasp and reposition itself by grasping at another spot. If this final attempt does not result
in movement the ant will recruit other ants to the food site. The lighter the load the longer
an ant will attempt to move it. Sudd cites an ant will spend up to four minutes before
recruitment takes place for items less than 100mg, and up to one minute for items greater
than 300mg.

The strategies of realigning, and repositioning are used by ants in the group if during
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transport the item gets stuck, and therefore movement stagnates. Once movement begins.
the rate of transport increases as time passes due to the increase in frequency of spatial
rearrangement, which Sudd suggests results from the ants’ response to the reactive forces
communicated through the item being transported [67]. Although no numerical data was
gathered, Sudd suggests that realignment occurred more frequently than repositioning,
which suggests a priority might exist between the two behaviours although sensitivity to

increased frictional forces would also explain this observation [66].

2.5 Summary

From the above it can be seen that the study of insect behaviour has much to offer in
motivating control mechanisms for multi-robot control. It would seem that nature has
evolved a successful approach to the stimulus plethora on which task specific behaviours
make their control decisions. How then do the examples presented relate to the design of
multi-robot systems?

The problem of a decision process based on locally sensed stimuli can be seen as one
of sensor aliasing. In other words, how do you control the perceptual problem of unique
stimuli equating to the correct decision? It would seem, from the above examples. that

nature has evolved at least four guiding principles useful in limiting sensor aliasing:

¢ Environment specific. By understanding or controlling the stimulus present in the
environment. unique behaviour-specific sensors can be designed for the multi-robot
system. This means that the environment characterized by its stimulus output is part

of the overall solution, which results in an environment-specific robot system.

e Task decomposition. Stimuli need only be unique within a subtask, resulting in
context dependent meaning. An example found in nest construction is the meaning
of light intensity. While the ant is building enclosed walls, light represents a hole to
be patched, while the ant is foraging, it governs the starting and stopping of activity.
For multi-robot systems this means sensor cues only need to be mutually exclusive to

each subtask controller.

® Orthogonal stimulus. Combining nonconflicting stimuli into decisions that govern
the transition between behavioural acts reduces sensor aliasing. Multiple cues such
as the use of both gravity and stem perpendicularity in wasp nest construction make

the cue unique.
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e Mass effect. Since individual behavioural acts are often found to be antagonistic
towards progression of a task in nature’s reactive systems, successful task completion
must rely on mass effect to accomplish its goal. In homogeneous multi-robot systems

this means using redundancy to increase the probability of successful task execution.

It remains to be seen, however, whether these perceptual cues can in fact be used to

control transitions between task-achieving behaviours in our artificial systems of robots.



Chapter 3

Taxis-based Action

Jander defines insect orientation as “the capacity and activity of controlling location and
attitude in space and time with the help of external and internal references i.e. stimuli.”
[30]. In insects the behavioural act of orientation is controlled either externally, and results
in a directional orientation using a taxis mechanism, or internally under kinesthetic control.
In this chapter, a model of action is developed based on the taxis mechanisms used in insect
orientation. Taxis is defined by Webster’s as a reflex translational or orientational movement
by a freely motile organism in relation to a source of stimulation [45]. In the model presented,
robot actions are based primarily on taxis orientation or kinesthetic orientation as fixed
motion patterns. The resulting action model is used to create motor behaviours to be
used in a reactive controller. In the model presented, the only required knowledge about
the perception side of the robot is that it corresponds to the left and right division of the
mobility system used to produce actions. In other words, the input to the action model
is the result of the perception of a stimulus, but does not depend on either the stimuli’s
modality or magnitude. Instead, a boolean decision is made by the perceptual system,

presented in the next chapter, which detects the presence of a given stimulus.!

3.1 Introduction

In the presented model for action, motion is restricted to translation and rotation in two

dimensions. Within the box-pushing environment all robot motor actions, therefore, result

'Portions of this chapter have been published. C. Ronald Kube and Hong Zhang 1993. Adaptive Behavior,
2(2):189-219 [34].
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in changes in position and orientation with respect to a given coordinate frame. To facilitate
a quick response to changes in sensor data, a reactive control system is used for motor
actions.

A robot mobility base was designed and built that used differential steering as its means
for achieving changes in translation and rotation. Discrete motion primitives were developed
to be used as the underlying mechanism for all actions taken by the system. Perceptual
processes presented in Chapter 4 are designed independently, but rely on the taxis model
and its differential steering method for mobility.

Using the motion primitives, motor behaviours, called primitive actuation behaviours,
are developed and form the basis of the task-achieving behaviours presented in Chapter 3.
Primitive actuation behaviours are classified into three groups: positive taxis or goal driven,
which provide a change in orientation or translation towards a stimulus; negative taxis or
avoidance driven, which effect a change in orientation or translation away from a stimulus:
and kinesthetically driven, which execute a fixed action sequence in response to stagnating

or deadlock conditions.

3.2 Reactive Control: Insects and Robots

A fast response by a robot to changes in its environment is a necessary criterion when de-
signing any robot that appears to exhibit intelligent behaviour. Controlling robots using a
tighter coupling between perception and action was formalized by Brooks in 1986 [14] and
since has been referred to as behaviour-based or reactive control. Real-time responsiveness
was the prime motivation for the new robot control architecture. Previous mobile robot
builders created systems which tried to model the robot’s environment internally. Uncer-
tainty in perception and action was dealt with by either engineering it away. the approach
taken in SHAKEY at Stanford in the late 60’s [52], or by a constant recalibration of the
perceptual and actuation systems, the approach taken in the Stanford CART [49]. These
robots were slow to respond to changes in sensory conditions. For example, the Stanford
CART built by Moravec in the late 70’s moved in its environment at four meters an hour. To
achieve a fast real-time response to a changing environment, the model that links perception
to action should be simple to compute. Nature offers a fast and simple perception to action
model in insects.

The title of “fastest recorded movements” in the animal kingdom belongs to the trap-jaw
ant. The trap-jaw worker ant opens his mandibles 180 degrees and two sensitive trigger

hairs project forward so that when they come in contact with an ob ject the mandibles close
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in under one millisecond. The spiked tip at the end of the 1.8 millimeter long mandible
moves at a velocity of 8.5 meters a second [28]. Holldobler and Wilson provide the following

analogy:

If the ant were human, its response would be the equivalent of swinging the fist

at about 3 kilometers a second—faster than a rifle bullet.

Insect behavioural acts are also triggered by odour sensing. Concern for the detrimental
effects of pest control through the use of pesticides motivated the investigation of insect
behaviour control by natural products. As the body of knowledge grew on how single
behavioural acts in insects could be elicited by a simple pheromone—a chemical substance
produced by an animal which serves as a stimulus to behavioural response—many scientists
conjectured that insect behaviour could be controlled by pheromonal manipulation [25].

Of the two types of pheromones, releaser pheromones invoke an immediate behavioural
response [51]. Many programmed behavioural acts can be triggered, with the most un-
derstood compounds invoking behaviours of mating, alarm, trail following, attraction and
repulsion. Moser demonstrated that the same alarm pheromone serves to attract when
found in low concentrations and repel in high concentrations [50]. Behaviours which control
direction are referred to as orientation or taxis behaviours. This same dual response to the
magnitude of a stimulus is also present in the phototazis orientation behaviours. Photo-
taxis can either manifest itself as an increase or decrease in turning tendency as the optical
stimulus increases in intensity [30].

In insects a taxis mechanism is defined as an externally controlled directional orientation
which causes turning movements or changes in position [30]. The taxis mechanisms are
classified by sensory modalities. The ability of ants to detect and follow odour gradients is
called osmotropotazis. Odour gradients are sensed, possibly exclusively, by the sense organs
located on the antennae on the left and right side of an ant’s head [76]. This taxis mechanism
was proved by Martin to cause orientation in bees towards an attractive ordourant and is
achieved by estimating the differential stimulation of the two antennae on either side of the
head ([40] cited by Wilson in [76]).

This simple reflex action in which perception is reduced to a taxis was explored in
synthetic robots by Braitenberg in his creation of hypothetical vehicles [13]. Attractive
behaviours were created in the vehicles by cross connecting left and right side sensors to
the opposite right and left side wheel motors respectively. A stimulus presented on the left

side would cause the right wheel motor to turn, propelling the vehicle forward and to the
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left in a manner similar to the taxis behaviours found in insects. Repulsive behaviours were
created in a like manner by connecting same side sensors and wheel motors, thereby causing
the robot to move away from the stimulating source. Braitenberg conjectured that more
complex behaviours could thus be fabricated by various combinations of stimulus specific
sensors and motor connections. The primitive actuation behaviours presented in the sequel

are fashioned on these simple taxis mechanisms.

3.3 Achieving Mobility: Getting Around

To achieve changes in position and orientation in an indoor mobile robot a common config-
uration is differential steering. In differential steering two wheel motors on either side of the
robot are driven either forward or reverse with casters placed in the front and rear for sta-
bility on smooth surfaces. Other configurations include ackerman steering, synchro-drive,
tricycle drive and omni-directional drive [22].

Once the physical drive system and platform configuration is chosen a set of motion
primitives is designed and used to cause changes in position and orientation. These discrete
actions form the basis for designing the required perceptual processes in an action-oriented

model of perception.

3.3.1 Platform Configuration

By configuring two wheel motors, as shown in Figure 3.1, rotation about a point is possible
by driving the motors in opposite directions. Both orientation and position. in an z,y
coordinate system, can be controlled separately or simultaneously. The same differential
steering model used in the physical robot design is also used in the simulation model to

calculate changes in position and orientation.

3.3.2 Discrete Actions

A wheel motor is controlled using two parameters: speed and direction of rotation. Speed
is proportional to the applied input voltage and a fixed speed setting is used in all motion
commands except while applying a pushing force. Continuous motion is accomplished by
issuing a series of discrete motion commands, each of which moves the robot a small incre-
mental amount. The commands have the general form: begin(action), wait At, end(action).
The motion commands are: stop, forward, backward, left-turn, right-turn, left-rotate, right-
rotate, back-left and back-right as shown in Figure 3.2 and null which produces no motor

action. Using a fixed speed the motion commands may be specified as a direction of rotation
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Figure 3.1: A top view of the mobility base with left and right wheel motors used in a
differential steering configuration.
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Figure 3.2: The discrete motions possible by issuing several motion commands. Initial
positions are shown as dotted lines.

command Left Motor | Right Motor
stop 0 0
forward +1 +1
backward -1 -1
left-turn 0 +1
right-turn +1 0
left-rotate -1 +1
right-rotate +1 -1
back-left -1 0
back-right 0 -1

Table 3.1: Using a fixed speed discrete motions are specified as a direction of rotation for
the left and right wheel motors.

for the left and right wheel motors using +1 for forward rotation, —1 for backward rotation
and 0 for no rotation as listed in Table 3.1. The size or resolution of the discrete action is
task-dependent and in the box-pushing task discrete actions are limited to translations of

approximately one centimeter and rotations of two degrees.

3.4 Primitive Actuation Behaviours

Reactive behaviours which control a specific set of actuators, are referred to here as primitive
actuation (PA) behaviours. In box-pushing the only action a robot is capable of is movement
in a plane. As a result, PA behaviours control direction and speed. These motor behaviours
are based on a taxis model of orientation in which motor actions are under either external

or internal (kinesthetic) control.
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Under external control a stimulus can either attract or repel the robot resulting in a
positive orientation towards the stimulus, or a negative orientation away from the stimulus.
PA behaviours simply map their inputs to one of the robot’s motion commands. Behaviours
that cause a positive orientation towards the stimulus are said to be goal driven, whereas
those causing a negative orientation are said to be avoidance driven.

Under internal control, also referred to as kinesthetic orientation [30], both position
and orientation are the result of a fixed sequence of motion primitives. Jander provides
several examples in which an insect is capable of returning to the nest “by remembering
and kinesthetically controlling its movements” [30]. In the sequel a detailed example of
this type of orientation that occurs in ant prey transport will be discussed. Behaviours
that execute a fixed sequence of actions are used to recover from stagnating or deadlock
conditions and are said to be kinesthetically driven.

Since each motion primitive controls a left and right wheel motor, PA behaviours that
change direction use left and right stimulus pairs. In short, for motions used in box-pushing
PA behaviours can be divided into three classes corresponding to the type of orientation

employed:
Positive Taxis Goal driven behaviours used to attract the robot towards a given stimulus.
Negative Taxis Avoidance driven behaviours which repel the robot from a given stimulus.

Kinesthetic Orientation Behaviours used to recover from stagnating conditions by exe-

cuting fixed patterns of motion primitives.

In the sections that follow, motor behaviours are developed for the box-pushing task (and
later extended to the transport task) based on the taxis model of orientation found in
insects. Goal and avoidance driven behaviours receive external input from sensors and
correspond to the positive and negative orientation taxis mechanisms previously mentioned.
Kinesthetically driven behaviours do not have external input, but rather are internally

controlled using kinesthetic orientation.

3.4.1 Positive and Negative Taxis Orientation

A positive taxis or goal driven behaviour moves the robot towards a given external stimulus.
Input to the behaviour takes the form of a left and right divided stimulus pair which may
correspond to left and right sensors on the robot. The input variables to the behaviour

are boolean and indicate the presence or absence of the stimulus within a given range
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: SEEK-BOX ( left_flag, right_flag --- )
IF !left_flag AND !right_flag THEN NULL-MOTION
IF !left_flag AND right_flag THEN RIGHT-TURN
IF  left_flag AND !right_flag THEN LEFT-TURN
IF  left_flag AND right_flag THEN FORWARD

Figure 3.3: Shown is the pseudo-code for the SEEK-BOX motor behaviour. Input is from
left and right stimulus pairs used to determine the direction of the stimulus. The behaviour
turns the robot towards the stimulus.

: PUSH-BOX ( flag --- )
IF flag THEN
HIGH-SPEED FORWARD

Figure 3.4: Shown is the pseudo-code for the PUSH-BOX motor behaviour. The behaviour
once triggered increases the wheel motor speed and moves the robot forward.

and field-of-view. Output from the behaviour is a motion command selected from a set of
four commands representing the possible number of input combinations. In the case of a
behaviour with a single input variable, 0 is mapped to the null motion command and 1 is
mapped to the forward command. For the box-pushing task two goal driven behaviours

shown in Figure 3.3 and Figure 3.4 are specified:
® SEEK-BOX - moves the robot towards a box.
e PUSH-BOX - pushes the box by increasing motor voltage.

In the same manner negative taxis or avoidance driven behaviour repels a robot from
a given stimulus. Inputs of two binary values correspond to a left and right stimulus pair,
whereas single value inputs are mapped to the null motion for an input of binary 0 and
a backward motion command for an input of binary 1. For the box-pushing task the two

avoidance driven behaviours shown in Figure 3.5 and Figure 3.6 are specified:
® AVOID - turns the robot away from obstacles.
¢ CONTACT - rotates the robot away from obstacles.

The motor behaviours which cause changes in orientation are summarized in Table 3.2.
In Chapter 5 the PA behaviours listed here will form the basis of task driven controllers.

As an example, a simple box-pushing controller for use in an environment in which box
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: AVOID
IF
IF
IF
IF

( left_flag, right_flag ~-- )
!left_flag AND !right_flag
!left_flag AND right_flag
left_flag AND !right_flag
left_flag AND right_flag

THEN
THEN
THEN
THEN

NULL-MOTION
LEFT-TURN
RIGHT-TURN
RIGHT-TURN

Figure 3.5: Shown is the pseudo-code for the avoID motor behaviour. Input is from left
and right stimulus pairs used to determine the direction of the stimulus. The behaviour
turns the robot away from the stimulus.

: CONTACT ( left_flag,

IF
IF
IF
IF

right_flag --- )

'left_flag AND !right_flag

'left_flag AND
left_flag AND
left_flag AND

right_flag
iright_flag
right_flag

THEN
THEN
THEN
THEN

NULL-MOTION
LEFT-ROTATE
RIGHT~-ROTATE
RIGHT-ROTATE

Figure 3.6: Shown is the pseudo-code for the CONTACT motor behaviour. Input is from left
and right stimulus pairs used to determine the direction of the stimulus. The behaviour
rotates the robot away from the stimulus.

Positive and Negative Taxis Mappings
Stimulus Negative Taxis Positive Taxis
L R AVOID CONTACT SEEK-BOX

0 0 null null null

0 1 left-turn | left-rotate right-turn
1 0 || right-turn | right-rotate left-turn
1 1 || right-turn | right-rotate forward

Table 3.2: The positive and negative taxis behaviour mappings. Behaviours that cause
directional changes based on external stimuli expect a stimulus from the left and right sides
of the robot similar to stimulus sensing found in insects. The “null” output means the
behaviour doesn’t produce a motion command.
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sensing is not limited in range or direction consists of the SEEK-BOX and AvoOID behaviours.
This controller produces collision free navigation in the simulated environment shown in
Figure 3.7.

A problem occurs when the robots surround the box applying an equal pushing force.
In cases where an insufficient net force is applied to move the box, a deadlock or stagnating
condition arises with no means of resolution possible using the given controller. The problem
is common to reactive controllers and is analogous to finding a local maximum when using a
hill climbing strategy in Al search problems. One possible solution to this type of stagnating
condition involves kinesthetically driven behaviours. The stagnating condition is detected

and a fixed sequence of action is performed. The approach is presented next.

3.4.2 Kinesthetic Orientation

Kinesthetic orientation serves two purposes here: motion in the absence of external stimuli
and stagnation recovery movements. In the case of both positive and negative taxis. orien-
tation of the robot is under control of external stimuli.?2 At any time the motor behaviour
relies on an external stimulus to decide the correct response in orientation. However, many
behavioural acts in both insects and robots lack the external stimulus needed to guide the
orientation mechanism. Rather a correct behavioural response might simply be a fixed
pattern of motor activity stored in memory and released under suitable conditions. For
example, a spider can return to a given location by “remembering and kinesthetically con-
trolling its movements,” a skill also found in bees and ants [30].

In the absence of stimuli, a fixed pattern of motor activity can serve as a strategy while
foraging for food or searching for a goal. For instance, when an ant leaves its nest to search
for food it leaves in a straight line until it encounters either food or an odour trail which it
then follows using a positive odour-taxis mechanism [78]. In box-pushing, a search strategy
called RANDOM-WALK is used which keeps the robot moving in a forward direction by issuing
a sequence of motion primitives (see Figure 3.8). Continuous motion by the robot in the
absence of any external stimulus is thus accomplished.

Recovery from deadlock or stagnation is the second use of kinesthetic orientation. During
the execution of a task by robots using reactive control strategies, the absence of a plan can
result in a condition in which the execution of the task gets stuck or is said to stagnate. For

example, a dead end is reached by a robot trying to navigate to a given goal as in Arkin’s

?Portions of this section have been published. C. Ronald Kube and Hong Zhang 1994. IEEE IROS,
3:1883-1890 [35].
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Figure 3.7: Shown are the initial and final configuration of 10 simulated robots (circles)
under the control of two motor behaviours, SEEK-BOX and AvoiD. The output from the
AvoID behaviour has priority over SEEK-BOX if obstacles are detected. With this initial
configuration the system reaches stagnation without the box changing position.
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: RANDOM-WALK ( ---)
IF turn_counter < max_turns THEN
IF turn_flag THEN
LEFT-ROTATE
ELSE
RIGHT-ROTATE
ELSE
FORWARD
INCREMENT turn_counter

Figure 3.8: The pseudo-code for the RANDOM-WALK motor behaviour. The behaviour causes
the robot to swagger while constantly moving forward.

box canyon problem [17]. The problem is similar to finding a local maximum, encountered
by hill-climbing algorithms, when the goal is to find the global maximum.

The problem of stagnation also occurs in nondirected box-pushing where the goal is
to push the box in an unspecified direction. For example, in a box-pushing task the net
force applied by the robots may equal zero if the robots are evenly distributed around
the perimeter of the box as shown in Figure 3.7. In such a case. a robot might attempt
indefinitely to push the box unsuccessfully. An equivalent problem can be found in nature
among ants displaying a group transport behaviour [48]. How do ants equipped with simple
sensory-response behaviours deal with the stagnation that results when the item they are

transporting becomes stuck?

Group Transport by Ants

As was discussed in Chapter 2, group transport is the cooperative movement of a load by two
or more ants. The strategies of realigning, and repositioning are used by ants in the group if
during transport the item gets stuck, and therefore movement stagnates. Similar stagnation
recovery strategies are designed here for box-pushing and illustrated in Figures 3.9, 3.11
and Figure 3.10.

The strategies employed by ants to handle task stagnation—a condition that occurs
when an item being carried gets stuck during a group transport task—can be viewed as
stored behaviours designed to overcome difficulty. Activated as a response to increased
frictional forces, the behaviours are used by ants both in group transport and during indi-
vidual transport of food items. These behaviours appear to be ordered in their application.

For example, Sudd notes realignment seemed to occur more frequently than repositioning
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: BACK-OFF ( === )
FOR i=1 to i=8 DO
BACKWARD
FOR i=1 to i=6 DO
RIGHT-ROTATE

Figure 3.9: The pseudo-code for the BACK-OFF motor behaviour. Once triggered it causes
the robot to backup and rotate towards the right.

: REALIGNMENT ( =---)
IF ramnd > 0.5 THEN
RIGHT-ROTATE
ELSE
LEFT-ROTATE

Figure 3.10: The pseudo-code for the REALIGNMENT motor behavior. The behaviour causes
a robot to change its pushing angle by a small random amount.

with the former being applied as the first response to the increase in frictional forces [66].
Simulation was used to compare the strategies of realignment and repositioning using our
simulation environment{34] and nondirected box-pushing [35] with the results presented in
Chapter 5.

The recovery behaviours increase the task success rate by providing a strategy for dealing
with deadlock situations. These results motivated the use of the kinesthetically driven re-
covery behaviours used in directed box-pushing. For box-pushing the kinesthetically driven

behaviours are:

® RANDOM-WALK -~ causes the robot to move forward in an “S™ pattern.
® BACK-OFF - causes the robot to back away from objects contacted by its touch sensor.
e REPOSITION - moves the robot in a backward arc.

® REALIGNMENT - changes the pushing angle when in contact with the box.

3.5 Summary

In insects, translation and orientation is accomplished by way of a taxis mechanism and is

a fast and simple response to external and internal stimuli. In robots, that need to have
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: REPOSITION ( ---)
FOR i=1 to i=6 DO
BACKWARD
FOR i=1 to i=3 DO
RIGHT-TURN
FOR i=1 to i=4 DO
FORWARD

Figure 3.11: The pseudo-code for the REPOSITION motor behavior. The behaviour causes a
robot to move a fixed distance counterclockwise.

a real-time response to changing environmental stimuli, a reactive model for action based
on taxis is simple to compute. And by defining the input stimulus to both positive and
negative taxes as binary values, the robot’s action is decoupled from both the modality and
magnitude of the stimulus, resulting in a clean abstraction suitable for component change
or replacement.

The three forms of orientation: positive and negative taxes, under external control of
stimuli, and kinesthetic orientation, under the internal control of fixed action sequences.
form the basis of reactive motor behaviours referred to here as primitive actuation be-
haviours. Along with the material on perception developed in Chapter 4, PA behaviours
form the building blocks of finite state machines, called Q-machines, discussed in Chapter 5.

However, taxis by itself suffers the same problems of stagnation (local minima/maxima)
as do other reactive control methods. Kinesthetic orientation, in the form of fixed action
sequences and triggered by either the presence or absence of a controlling stimulus, is one
solution suitable to the stagnating conditions in the box-pushing task.

Processing the input stimuli to the PA behaviours is the role of perception and the
subject of the next chapter, in which a model for local perception is developed called
perceptual cues. Can perception be reduced to the yes/no type of binary inputs required
by the motor behaviours developed in this chapter? And can the process of perception
be computed for a reactive controller independent of the action primitive it is used with?
Perceptual cues provide such a model and are based largely on further examples motivated

by the social insects.
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Chapter 4

Local Perception

Given a robot with predefined motor actions, the role of perception is to determine what
actions take place and when. In this style of action-oriented perception, the action defines
the form of the perception in terms of what information is needed for the action to make
its control decision. In this Chapter, an assumption is made that local sensing can be
used to decode information present in the environment that signifies the appropriate motor
action. This presupposes that the environment and its stimuli are part of the system
design process. and can be characterized through a given set of physical sensors. In the
next chapter, perceptual cues are combined with primitive actuation behaviours to produce
subtask controllers that implement the control system for a single robot. At the task-level.
the subtask controller represents task state information with perceptual cues used to control

transitions between states.!

4.1 Introduction

Perception is used to help decide what action the robot should take and when it should be
performed. In the perceptual cue framework, the task environment encodes information in
its stimulus output on what actions the robot should take and when to take them. In this
manner, perceptual cues simply decode this information. Since errors occur in decoding
this information locally, the mass effect of distributed sensing increases the probability of at

least some of the robots correctly decoding the stimulus. Two feature extraction techniques,

'Portions of this chapter have been submitted for publication. C. Ronald Kube and Hong Zhang 1995.
Robotica - special issue on Interacting Robots. 9 pages [36]
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presented in the sequel, simplify the decoding process. The approach is demonstrated by
designing the perceptual cues for a multi-robot box-pushing task. Therefore, deciding when
a robot should act in a given task involves designing a system with both the environment
and the robot as part of the solution.

For an environment to encode information, Wilson suggests it be considered as a type
of machine with inputs and outputs [79]. On the input side are the actions performed by
the robots on the environment, which responds with changes in stimuli as its output. The
model for the robots considers stimulus changes on its input side with motor actions as
output. As a task progresses in execution, changes in stimulus from the environment serve
to guide the robot’s action selection process. How the environment can be modelled to
encode information about task execution is covered in more detail in Chapter 5. For now
let us assume that it is, and the question is how the information is decoded and used in
action selection. Action selection is what a robot does when a motor behaviour is activated.
When that action is performed depends on the current state in task execution.

Perceptual cues are used to decode the information in an environment and decide which
motor behaviour is activated. Behaviour activation decides what action is performed. but
depends on the state of the robot’s task controller. The relationship between local sensing.
behavioural state and the output actions of the robot will be fully explained in the next
chapter. State changes of a task controller are also controlled by perceptual cues that
uniquely extract features from sensor data. However, since perception is local to a robot,
global action by the system depends on mass effect.

The connection between local perception and global action is through the mass effect
of a redundant system of mobile robots. For any one robot, its locally derived perception
may not decode the environment completely, due to limitations imposed by the robot’s
position within the environment (a spatial constraint). Nevertheless, since sensing in such
a spatially distributed system increases the probability that some of the robots correctly
respond to the environment, then the actions performed on the environment by those robots
may allow others to sense stimulus changes. For example, a robot unable to sense an object
that is outside the range of its sensors, may sense the object as it is pushed into its sensor
range by other robots. How local perception decodes stimuli depends on two approaches to
integrating sensor data.

The first approach to sensor integration involves two orthogonal sensing strategies: spa-
tially and modally orthogonal sensors. Spatially orthogonal refers to a geometric arrange-

ment of like sensors which carves the robot’s perceptual field-of-view into discrete non-
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overlapping regions. Modally orthogonal is the integration of sensor data from dissimilar
sensor types. By combining sensor data using these approaches, features from the environ-
ment’s stimulus output are extracted and used by the robot’s motor decision process.

The second method of integrating sensor data uses previously defined perceptual cues
additively by concatenating binary decisions (cue outputs) into vectors that can be used
to control state transitions in the robot’s task model. Box-pushing is the task used to
demonstrate the feasibility of the perceptual cue framework, by defining the cues used in
the task independently from the actions performed by the robots. In this manner, what
the system of robots is to do is defined by a robot’s task controller, but how the robots
accomplish the task is not explicitly defined. The end result is a predictable task completion,
but the solution path taken and performed by the intermediate steps is not unique.

The remainder of this chapter presents the details of the model by describing both the
definition and function of perceptual cues. An example task is then presented in detail
which outlines the steps involved in specifying the cues for a given environment. Finally, a

brief summary of the framework and how it fits into the remaining chapters follows.

4.2 Perceptual Cue Framework

Defining and specifving perceptual cues involves three techniques for cue creation: feature
extraction using threshold logic; orthogonal sensing as a means for integrating physical sen-
sors; and additive cue construction specified as clauses in predicate calculus. The result is
cues that answer yes/no type questions about what can be sensed in the robot’s immediate
vicinity. Functionally, perceptual cues are used for either activating motor behaviours or for
causing state transitions among the robot’s subtask controllers. Consequently, the frame-
work can be summarized as a way of determining the “what and when™ of robot action

sequences.

4.2.1 Perceptual Cue Definition

A perceptual cue is a boolean value which indicates either the presence or absence of a pat-
tern of stimuli. Perceptual cues (PCs) are context dependent features in sensor data which
indicate a perceived event. Context is determined by the current state in task execution
space. States in task execution space are specified as steps in the task and implemented as
subtask controllers explained fully in the next chapter. At the level of task description, PCs
are used to determine which step of the task is being executed. Each subtask controller

consists of a finite number of states, where each state is associated with a certain motor
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action and implemented as a primitive actuation behaviour. Within the PA behaviours.
sensor features detected by a perceptual cue map directly to motor actions. Features are
obtained by processing sensor data to produce a binary output. Sensor data is acquired
from single or multiple sensors and is processed using simple threshold logic. Cues can be
created by using data from different sensor types combined using boolean operators. Cues
are context dependent in that they are specified for a specific task and a given environ-
ment. Sensor features which are not unique can be combined orthogonally or additively, as
explained in the sequel, to produce a unique feature. Perceptual cues are binary vectors
created by combining features extracted from sensor data using three techniques: threshold

logic, orthogonal sensing and additive cue construction.

Feature Extraction Using Threshold Logic

A crude form of feature extraction is a threshold function provided that a monotonic re-
lationship exists between the sensor’s analog output and the parameter of interest. For
example, the output of a light sensor is a function of the intensity of the light source. If the
radiant energy from a light source falls normal to the surface of the sensor, then a corre-
lation can be made between the magnitude of the signal from the sensor and the distance
to the light source. If a cue is to be created which detects when the robot is within a
certain distance of the light source, then a threshold is specified which corresponds to the
magnitude of the signal at the desired distance. Exceeding this threshold triggers the cue
and produces a “1” as its output bit. The assumption, for such a mechanism to work, is
that the robot is working in a known environment. Thus, when using threshold logic for
feature extraction, both the environment and the sensor’s response to it are considered by
the system designer as part of the solution.

When a nonmonotonic relationship between sensor output and a parameter exists the
data is partitioned into linear segments.? Cues are then created using threshold logic as
before on each linear segment with the results combined using the boolean operators AND,
OR, and NOT. For example, a signal peak-detection cue, described in Section 4.3.4, is
created by combining a cue that detects a rise in signal magnitude greater than a threshold
followed by a cue that detects a fall in signal magnitude within a fixed period of time. The
two cues are combined using the AND operator. The signal peak-detection cue is true if
a fall is detected after a rise in signal magnitude which is greater than a given threshold.

When perceptual cues are created from two or more sensors the resulting binary features

*This does not preclude the use of other statistical functions for feature extraction.
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Figure 4.1: Sensing can be made spatially orthogonal by either arranging the same type of
sensors geometrically with nonoverlapping fields-of-view or by partitioning the field-of-view
with thresholds.

are combined using orthogonal sensing strategies.

Orthogonal Sensing

In order to simplify sensor processing, binary cues created using threshold logic can be
integrated by employing either spatially or modally orthogonal sensing strategies. The
result integrates multiple sensors of the same type geometrically, by spatially partitioning
the robot’s perceptual field-of-view. Sensors of different type are combined to create cues in
which all bit positions in the output vector are from dissimilar stimulus modalities. Their
combination makes the extracted sensor feature temporally unique.

Sensors of the same type can be made spatially orthogonal either by geometric arrange-
ment, with nonoverlapping fields of view, or by partitioning the sensor’s range discretely
using different threshold values as shown in Figure 4.1. As an example of a spatially or-
thogonal sensor, consider a ring of eight sensors, each with a 45 degree field-of-view and
equally spaced on a circle.®> The perceptual space is divided into eight discrete zones in
which stimuli may be detected. If obstacle sensors were used. then each bit of an &-bit vec-
tor could represent the presence of an obstacle within the assigned zone. Thus, 256 possible
combinations are available for mapping to motor actions used in obstacle avoidance.

A perceptual cue that is modally orthogonal is specified by taking the binary outputs

of sensors with incompatible outputs like temperature and contact sensing, or range and

3A common configuration found in commercial mobile platforms.
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odometry data. The outputs are combined using boolean operators resulting in a unique
feature in the sensor’s output space from sensors of different modalities. For example, to
detect the side of a brightly lit box both touch and light intensity are used since their

combination is unique in the box-pushing environment.

Additive Cue Construction

Perceptual cues can also be defined by combining cues additively as a Horn clause. In

predicate calculus a Horn clause is any disjunction of the form:
-AV-BvV--.v-CVD

Each Horn clause has at most one positive literal, and can be rewritten as an equivalent

implicational formula:
AABA---AC—-D

The above formula is a notational variant of Horn clauses used in Logic Programming.
The newly defined cue is the consequent (variable D) of previously defined cues (variables

A, B,...,C) which are the antecedents of the general form:
antecedent I, ---, antecedent n. — consequent.

Cues defined in this manner define the state in the task model. Cues are also used for

behaviour activation as explained next.

4.2.2 Perceptual Cue Function

A perceptual cue is a control decision used to trigger a motor behaviour and to control the
transition among states in a task model. Motor behaviours remain active for a fixed period
of time, at the end of which the cue’s truth value is reevaluated. Either the same cue is
applicable or the stimulus conditions have changed, thereby activating another cue. In exe-
cuting a robot task, defined as a multistep procedure, stimulus conditions may also change
sufficiently to indicate a state transition, or change in activity, where “state” represents a
separate motion controller designed to accomplish one step in a task description. Using
cues to trigger a behavioural response is a common mechanism for action in social insects
[51] and for governing different phases of activity in tasks such as nest building [19].

The advantage of reducing motor behaviour control decisions to binary values is in

the cue’s functional abstraction. In this manner, activation of a motor behaviour is not
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Figure 4.2: To maintain a normal orientation with respect to a surface, left and right contact
information is used. The information can be provided by either touch sensors as illustrated
or another sensor modality such as in phototaxis.

dependent on a specific perceptual cue, but rather on the decision that results from sensor
processing. For example, a motor behaviour created to keep a robot in perpendicular contact
with the surface of an object, relies on sensor information from either side of the point of
contact. If touch sensors are used then perpendicularity about the point of contact could be
specified when both touch sensors are in contact with the surface as illustrated in Figure 4.2,
and return a binary ‘11’ value. Contact with the left side only would be represented as binary
‘10" and contact with the right as a ‘01’ value, with the no contact condition specified as
a ‘00’ value. The same contact information using light sensors and phototaxis could be
specified by determining the sensor’s threshold value when in contact with a surface and
creating cues that return ‘11’ when the robot is in perpendicular contact with the surface
in a similar manner. The advantage is that the design of the motor behaviour does not
change when different sensor types or alternate feature extraction techniques are used since
the information needed by the motor behaviour is the same binary vector in both cases.
In short, the function of perceptual cues is to control behaviour activation and state
transitions in a manner that allows for changes in perception design and implementation

without affecting the control architecture’s connection to motor action.

Controlling Behaviour Activation

Behaviour activation refers to the process of deciding which behaviour is to become active
in the current context (i.e. in the currently executing controller). The decision as to
which action the robot performs is made by the primitive actuation behaviours described
previously in Chapter 3. Each behaviour has an associated perceptual cue that activates
the behaviour to produce a motion command as output. More than one behaviour may
become active during the control loop. A priority scheme among the behaviours within the

current executing controller determines which action is executed by the robot. Thus. in a
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known environment a robot’s action is based on a perceptual process that uses local sensing

to look for specific features in sensor data.

Controlling Task State Transitions

Perceptual cues used to control state transitions in task execution are specified as predicates
with perceptual preconditions that must be satisfied. Each task is decomposed into subtasks
and a controller is designed for each subtask. Control system processing is handled in
discrete steps, with control either remaining within the current subtask controller or passing
on to the next one, as specified in the task model digraph using a forward (FL) or repeat
(RL) edge. The cue used for transition in each subtask controller, or step i, is related to its

predecessor by:

FL;=FL;_1Ac; (4.1)

fori=1,2,...,n where n = the number of subtasks and ¢; is 2 new perceptual cue for step
i. How each perceptual cue, ¢;. is computed for the box-pushing task is explained in the
next section.

RL; = FLi_y A ~¢; (4.2)

Specified in this manner the forward edge, illustrated in Figure 4.3, is the cue signalling
step transition and signifies that a locally detectable event has occurred indicating step
completion. The repeat edge indicates the current action is to be repeated since the specified
change in stimulus (the detectable event) has not occurred.

When a task is modelled as a multistep procedure, with each step represented as a state
in a task digraph, explained in chapter 5, then the current state (ST) is specified as a logical

AND of the perceptual cues, for i = 1,2,...,n where n = the number of subtasks:

STI ~ "¢
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Figure 4.3: Each step in the task is modelled as a state in a finite state machine with
perceptual cues used for state transition. The perceptual cue causing a forward transition
(FL) is simply a concatenation of another boolean variable to the previous step’s forward
perceptual cue.

In Chapter 5 task modelling will be presented with examples of the above cues used
for state transition. Next is presented an implementation of the perceptual cue model in a

multi-robot box-pushing task.

4.3 Perceptual Cues for Box-Pushing

Transporting a box from an unknown initial position towards a final goal destination was
modelled using three types of perceptual cues. Obstacle avoidance cues were used to detect
an obstacle and trigger avoidance behaviours. Box detection cues were used to locate and
track a moving box, as well as, to control state transitions among the task step controllers.
And a goal detection cue was used to indicate proper robot orientation, with respect to the
goal, for a pushing behaviour. The cues are designed with a given set of motor actions in

mind. The design and implementation of each perceptual cue involve the following steps:

1. Sensor Placement Given a sensor type, determine the position, orientation and

number of sensors to be used in the sensor system.

2. Data Collection For a given environment, collect data from the sensor that repre-

sents the condition under which the task is performed.

3. Data Analysis Determine what features of the data may be used to meet the per-

ceptual cue’s specification.

4. Algorithm Design Design an algorithm to extract the desired feature.
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5. Algorithm Verification Specify the tests to verify that the cue performs as designed.

In the next chapter, these perceptual cues will be used to control the states of a robot as it

executes the transport task.

4.3.1 Physical Sensors for Transporting a Box

In choosing a minimal set of sensors for the transport task, the robot’s activities of avoiding
obstacles, locating the box to be moved, and pushing it to a goal location, are considered.
In Chapter 3 the actions that each behaviour could take were enumerated, with inputs to
the behaviours specified as binary input variables. This establishes the minimal number of
binary variables that each behaviour uses in mapping perception to actions. For example,
the possible actions of the AvoiD behaviour are idle, left-turn, right-turn therefore requiring
two binary input variables allowing for a maximum of four actions. In a similar manner,
the box locating behaviours use two input variables and the pushing behaviours use one.
Although several types of sensors are available for mobile robots,* optical sensors were
used in each of three activities mentioned above. To implement obstacle avoidance infrared
emitter/detectors, whose output is dependent on the magnitude of the reflected energy,
along with contact sensors were used. Box tracking behaviours made use of photocells,
which vary in resistance as a function of light intensity, and contact sensors. Goal direction
behaviours used phototransistors whose output current is a function of light intensity. The
fact that the sensors are commonly available, inexpensive, and easy to use guided our

decision. What follows is a brief discussion of their characteristics.

Infrared Photo Emitters and Detectors®

Infrared radiation is electromagnetic energy with a wavelength longer than visible red (i.e.
in the range from 770 to 1500 nanometers). Two optoelectronic devices that make use of
this energy are the Infrared-Emitting Diode (IRED), and the Infrared Phototransistor. Two
types of IRED radiant-energy sources are Gallium Arsenide (GaAs) and Gallium Aluminum
Arsenide (GaAlAs), which emit in the 940 nm and 820 nm portion of the near-infrared spec-
trum respectively. Infrared phototransistors are simply transistors designed to be responsive
to this radiant energy. Figure 4.4 shows the relative spectral characteristics of the human
eye, a Silicon Phototransistor, two types of Infrared Light Emitting Diodes, and a Tungsten

light source.

“See H. R. Everett’s book [22] for a recent survey.
*Portions of this section have been published. C. Ronald Kube 1996. The Robotics Practitioner, 2(2):15-
20, (32].
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Figure 4.4: The relative spectral characteristics of the human eye, a tungsten light source
and a silicon phototransitor (adapted from [69]).

Infrared emitters and detectors can be configured as retroreflective sensors by placing
the emitter alongside the detector. In this configuration the output of the phototransistor
detector is a function of the reflected infrared energy. For a given object surface the reflected
energy can be calibrated as a function of distance to the object as shown in Figure 4.5.
Different phototransistor detectors can vary in their response to reflected infrared energy

shown in Figure 4.6.

Cadmium-Sulfide Photocells

Cadmium-sulfide photocells are sensitive only to visible light and have a number of appli-
cations in detecting changes in lighting conditions. These sensors whose output resistance
varies as a function of light intensity respond slower than the phototransistors. Response
times vary up to one second before the change in resistance stabilizes. Although slow, these
sensors are very sensitive to changes in light intensity. Since these devices do not respond to
infrared radiation they may be used in parallel with the infrared emitters, discussed in the
previous section, without concern for optical interference. The output of a cadmium-sulfide

photocell is measured as a function of distance to a 100 watt light bulb shown in Figure 4.7.
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to a white paper target.
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sistor as a function of distance to a white target.
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Figure 4.7: To locate the brightly lit box, left and right photocells, pointing forward at 20
degrees off center, whose output varies as a function of light intensity are used. Shown are
the output voltages of the left and right photocell as a function of the distance to the box.



Silicon Phototransistors

Silicon phototransistors are fast devices sensitive to changes in light intensity with response
times of a few microseconds. Typically used in electronic flash units their fast response time
makes the phototransistor ideal when used in a moving sensor system. The output current
of a phototransistor varies as a function of light intensity incident on the semiconductor
surface.

The above sensors will be used individually and in combination to form the basis of the
robot’s perception system. In implementing perceptual cues from these sensors the problem
of perception has been simplified to recognizing features in the sensor data for a specific
task environment. The sensor features are reduced to boolean vectors and used as input
to the primitive actuation behaviours which map them to corresponding motion primitives.
How sensor data is used to create these boolean vectors is described next and the complete

perception to action mapping is explained in the following chapter.

4.3.2 Obstacle Detection Cues

The purpose of the obstacle detection cues are to provide obstacle distance information
to the robot. Three discrete thresholds are used corresponding to the distances of: less
than 25 cm, less than 12.5 cm. and in physical contact with the robot. Active infrared
emitter/detector pairs are used to provide non-contact obstacle information for the left and
right front of the robot. Contact obstacle detection is determined using a single bit contact

switch. The obstacle detection cues are defined as:®

?70BSTACLE Return right and left true flags indicating the corresponding obstacle sensor

has exceeded the input threshold.
?ToucH Return a true flag if the front contact switch is pressed.

Sensor Placement

Obstacle proximity detection is accomplished by configuring the infrared emitter/detector
pair as a retroreflective sensor. The object to be detected reflects the radiant energy from
the emitter back to an adjacent detector. Two retroreflective sensors are placed facing
outward on both left and right sides of the robot’s centerline. Each infrared detector has a
50 degree field-of-view, also termed acceptance angle, and is paired with an infrared emitter

with a 16 degree beam angle, the total angle between the half intensity points. The sensors

®Perceptual cues will be identified by their leading question mark.
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Figure 4.8: Infrared emitter/detector pairs are placed on the circumference pointing outward
at 30 degrees both left and right of center.

are placed on the robot’s circumference, at 30 degrees both left and right of the centerline

as shown in Figure 4.8.

Sensor Data Collection

To determine the sensor’s output response as a function of distance to an obstacle, a white
paper target was moved toward the sensor with output the voltage and distance recorded.
To measure the sensor’s response as a function of obstacle angle, a small 2.5 centimeter
square white target was moved in an arc in front of the sensor with readings taken every

10 degrees as shown in Figure 4.9.

Sensor Data Analysis

The energy reflected back to the detector will depend on the magnitude of the energy radi-
ated, the surface properties of the object upon which the energy is incident, the distance to
the object and the angle of reflection [22]. In the approach presented here, the environment
and its objects are known quantities. The measured reflected infrared energy is a function
of the distance to the object as shown in Figure 4.10.

As an object passes in front of a retroreflective sensor it enters and then leaves the

field-of-view, or acceptance angle of the detector. The typical output of such a sensor



Figure 4.9: Data from the sensor was collected by taking voltage readings as a function of
angle to a small 2.5 cm square target at the sensor’s height. The target was moved in 10
degree increments on a 12.7 cm semicircle.
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Figure 4.10: Data from the infrared emitter/detector obstacle sensor. A white target is
moved towards the sensor and output voltage readings are taken as a function of target
distance. Readings are repeated with the room lights ON for comparison.

as a function of target angle is shown in Figure 4.11. If we design a minimal obstacle
detection system using a pair of retroreflective sensors, positioned on the left and right side
of the robot, then the range of the sensors can be partitioned spatially, as explained in
the previous section, by using a threshold function that corresponds to a desired detection
distance. Thus, the type of sensing information returned is of the form “there is an obstacle
less than 15 cm on your right,” or “there is an obstacle less than 22 cm directly in front”

etc.

Obstacle Detection Algorithm

The function of the obstacle detection cue is to provide left, right, and center obstacle
detection for a fixed distance. The distance is determined as an input parameter called
threshold, with two output parameters indicating obstacles detected by the left or right
sensor. For the box-pushing task two thresholds corresponding to obstacles detected within
the range of 12.5 cm and 25 cm are used. Pseudo-code for the obstacle detection cue is
shown in Figure 4.12. The obstacle detection cue can be used to create cues specific to the
range (specified as a threshold) as shown in Figure 4.14. For detecting obstacles in physical

contact with the front of the robot the algorithm shown in Figure 4.13 is used to read the
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Figure 4.11: The output voltage of a Siemens BP103B-4 phototransistor as a function of
angle to a small 2.5 by 2.5 cm white target. Shown are two room lighting conditions:
Sunlight (which contains lots of IR noise) and a dimly lit room with low ambient IR noise.

: TOBSTACLE ( threshold --- left_flag, right_flag )
FOR the right and left obstacle sensor DO
take a reading with the obstacle sensor_ON
take a reading with the obstacle sensor_OFF
IF sensor_ON - sensor_OFF > threshold THEN
SET the flag = TRUE
ELSE
SET the flag = FALSE
RETURN { left_flag, right_flag }

Figure 4.12: Shown is the pseudo-code obstacle detection algorithm with input and output
parameters on the left and right of the --~ symbol respectively. Obstacles are detected when
the reflected infrared energy is greater than a given threshold value. To detect reflected
energy, ambient infrared readings are subtracted before comparison with the threshold value.



: ?TQUCH ( --- touch_flag )
take a reading of the front contact switch
IF sensor_ON THEN
SET touch_flag = TRUE
ELSE
SET touch_flag = FALSE
RETURN { touch_flag }

Figure 4.13: The pseudo-code for the touch obstacle detection cue returns a true flag if the
forward contact switch is depressed.

binary value of the front contact switch.

Obstacle Detection Verification

To test the obstacle detection cues a simple motion controller is created using the RANDOM-
WALK, AVOID and CONTACT behaviours defined in Chapter 3. The controller consists of
a processing loop which calls each behaviour in order. The output of a left and right
obstacle sensor is mapped by the AvoID and CONTACT behaviours to left and right motion
commands. The possible outputs of AvoID are { idle, left-turn, right-turn } while cONTACT
maps sensor output to { idle, left-rotate, right-rotate }. Ambient infrared light is accounted
for by taking a detector reading while the emitter is off. Currently both behaviours make
use of the same infrared obstacle sensors, but with different threshold functions on the
outputs shown in Figure 4.5. The robot wanders in a room with other static robots and
the sensor positions are adjusted until collision free movement is achieved. Although in
this example both behaviours are using the same sensor output this separation in sensor

processing allows for sensor replacement.”
4.3.3 Box Detection Cues
Three perceptual cues are used for box detection:

?BOX-DIRECTION Return right and left true flags indicating the corresponding box sensor

has exceeded the input threshold.

?BOX-DETECT Return a true flag if either left or right box sensors exceed a given input
threshold.

TCONTACT's sensors could be replaced with left and right tactile switches.




: ?AVOID-DETECT ( threshold-1 --- avoid_flag )
?0BSTACLE( threshold-1, right_flag, left_flag )
IF the right_flag OR the left_flag THEN
SET avoid_flag = TRUE
ELSE
SET avoid_flag = FALSE
RETURN { avoid_flag }

?CONTACT-DETECT ( threshold-2 --- contact_flag )
?0BSTACLE( threshold-2, right_flag, left_flag )
IF the right_flag OR the left_flag THEN

SET contact_flag = TRUE
ELSE

SET contact_flag = FALSE
RETURN { contact_flag }

Figure 4.14: The avoid and contact detection algorithm sets a flag true if either right or
left sensor thresholds are exceeded.

?BOX-CONTACT Return a true flag if ?TOUCH is true AND either right or left box sensors

exceed a given input threshold.

Box detection is simplified by using a bright light placed at the center of the box. The box
detection cue asks the question: Can the robot see the box-light? The answer depends on
the robot’s distance from the box and the orientation of its two forward pointing sensors
with respect to the box. An adjustable threshold varies the range at which the box-light
is detectable and is dynamically determined as a function of ambient light. Recognizing
physical contact with the box is a combination of two different types of sensing, touch and
light intensity. This combination of stimulus is unique in the task’s environment simplifying

box recognition. The perceptual cues are designed using the following five step procedure.

Sensor Placement

Two forward pointing sensors whose output is a function of light intensity are placed on
the robot pointing 20 degrees off center. The sensor’s field-of-view is restricted to a narrow
band in the horizontal plane at the same height as the box-light as depicted in Figure 4.15.
This minimizes interference from other light sources in the environment placed at different
heights. The field of view of the box light sensors is fixed at 80 degrees. Individually each

sensor’s field-of-view is approximately 40 degrees.
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Figure 4.15: Shown is the placement of the box-light sensors on the robot with respect to
the height of the box. The two sensors see in a narrow forward pointing cone of roughly
80 degrees. By restricting both the sensor’s field-of-view and the box-light stimulus to a
narrow horizontal band, box recognition is simplified.

Sensor Data Collection

Sensor data was collected for the box direction and contact cues. Box direction sensor
data was collected using the setup illustrated in Figure 4.16. A robot is positioned facing
forward with center being 90 degrees and right and left sides corresponding to 0 and 180
degrees. A brightly lit box is moved on a 1.8 meter arc from 50 to 130 degrees with sensor
readings recorded for each 10 degree increment. Data for the box contact cue was recorded

by measuring the box sensor’s output voltage while a robot was in contact with a box.

Sensor Data Analysis

Figure 4.17 shows the output voltage of the left and right photocell box sensor as a function
of direction angle with respect to the robot. Lower voltages correspond to brighter light
intensities. As the box enters the sensor’s field-of-view the voltage decreases with a minimum
value at a box angle normal to the sensor and then rises as the box angle increases. Note
the minimum should occur at 110 degrees for the left photocell and 70 degrees for the right
photocell since each sensor is pointing 20 degrees off center. Since the minimum reading of
the right sensor is at 80 degrees, the sensor’s direction is adjusted. The left and right sensor
plots cross when the box is directly in front of the robot, approximately at the 90 degree
position. This information provides a rough estimate of box direction with respect to the

robot.
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Figure 4.16: To gather box tracking data from the forward facing photocells the robot was
positioned pointing at the 90 degree mark while the lit box was moved along a 1.8 meter
80 degree arc from 50 to 130 degrees in 10 degree increments.
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Figure 4.17: To locate the lit box two forward pointing photocells measure light intensity
in a horizontal plane. Shown are the left and right box-sensor outputs as the box is moved
along a 1.8 meter arc from 50 to 130 degrees with the robot facing 90 degrees.
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: ?BOX-DIRECTION ( threshold --- right_flag, left_flag )
FOR the right and left box sensor DO
take a reading from the box sensor
IF sensor reading > threshold THEN
SET the flag = TRUE
ELSE
SET the flag = FALSE
RETURN { right_flag, left_flag }

Figure 4.18: The box direction algorithm takes readings from two forward pointing left
and right photocells and sets their respective flags if the readings are greater than a given
threshold.
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Figure 4.19: The 7BOX-DETECT cue is true if either the left or right sensor thresholds are
exceeded. The threshold value correspond to an approximate distance of 1.5 meters between
the robot and the box.

Box Detection Algorithms

The function of the box direction cue is to provide an approximate direction towards the
box based on the intersection of the left and right box sensors’ field-of-views. If the box is
directly ahead both left and right sensor thresholds are activated. The value of the threshold
determines the range at which the box is detected. Pseudo code for box direction is shown
in Figure 4.18.

The box detection and contact cues are used to control state transitions between the
step controllers explained in the next chapter. Figure 4.19 and Figure 4.20 summarize the
algorithms presented next.

The box detection cue, shown in Figure 4.21, is based on the box direction cue and

returns a true flag if either left or right box sensor thresholds are exceeded.
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Figure 4.20: The ?BOX-CONTACT cue is true if either the left or right sensor threshold is
exceeded AND the contact switch is closed. The threshold used corresponds to the box-light
intensity found at the side of the box. Contact with the box is therefore determined by a
combination of bright light and touch.

: ?BOX-DETECT ( threshold-1 --- box_flag )
?BOX-DIRECTION( threshold-1, right_flag, left_flag )
IF the right_flag OR the left_flag THEN
SET box_flag = TRUE
ELSE
SET box_flag = FALSE
RETURN { box_flag }

Figure 4.21: The box detection algorithm sets the box flag true if either right or left box
sensor thresholds are exceeded.
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: ?BOX-CONTACT ( threshold-2 --- box-contact_flag )
?BOX-DETECT( threshold-2, box_flag )
?TOUCH( touch_flag )
IF box_flag AND touch_flag THEN
SET box-contact_flag = TRUE
ELSE
SET box-contact_flag = FALSE
RETURN { box-contact_flag }

Figure 4.22: The box contact algorithm sets the box-contact flag true if the robot is touching
the side of a box.

The box contact cue, shown in Figure 4.22, also uses the box detection cue. but a
different value for the threshold, corresponding to the higher light intensity found at a
boxside, is used. The box contact cue combines the box detection cue and the touch cue

and returns a true flag if both are true.

Box Detection Verification

The three box detection cues are tested using a static robot tethered to a workstation to
display output. The threshold used to detect the box-light is set to be twice the ambient
room light and is determined dynamically on power up. The effect of bright ambient light
readings is to reduce the distance at which the box-light is detected. The box direction cue
is tested using the same procedure as for data collection. The outputs from both cues are
displayed on the workstation as the box is moved from 0 to 180 degrees. The box contact
cue is tested by putting the robot in contact with a side of the lit box. Although these
tests are preliminary, the cues are retested when integrated with the primitive actuation

behaviours.

4.3.4 Goal Detection Cue

The goal direction cue asks the question: Can the robot see the goal? The answer is a
function of the robot’s orientation with respect to the goal indicator, which in this instance

is a spotlight placed near the ceiling. The goal detection cue is defined as:

?SEE-GOAL Return a true flag if a signal peak greater than the input threshold is detected

within the user defined field-of-view.
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Figure 4.23: The first design for the goal direction sensor consisted of four photocells
mounted on a square and pointed upward at 30 degrees elevation. The fixed sensor positions
proved inflexible and the second version mounted a single sensor on a rotating motor.

The first design of this sensor system was not successful and will be discussed in the sequel.
The final design consists of a narrow field of view sensor which is swept by a motor in an
upward pointing arc. If a signal peak occurs, caused by the spotlight, within an adjustable
window the goal is detected. The box detection sensors which face horizontally are shielded
from light sources above the robot, while the goal detection sensors face upward and there-
fore the goal-light does not interfere with the box-light. The design of the goal detection
cue involves five steps: sensor placement, data collection, data analysis, algorithm design

and verification.

Sensor Placement

A preliminary design tried to use the same photocells used in box tracking as shown in
Figure 4.23. If two sensors could be used to track a brightly lit box in the horizontal plane,
then the same approach should work in an elevated plane. The sensors were arranged on four
sides forming a pyramid pointing upward at an elevation of 30 degrees. An omni-directional
view is available by considering any two pairs of sensors.

Figure 4.24 shows the output from the two forward facing sensors as a function of the
goal-light angle. The readings were taken by moving the goal-light in a 180 degree 4.6 meter
arc in front of a robot. Figure 4.24 shows the sensor readings are not symmetric about the
90 degree position, because the fixed position of each photocell makes the sensor difficult
to align and the wide field-of-view results in the asymmetric sensor output. The fixed
photocell position does not allow the field-of-view to be changed. Although the method was
abandoned it provided the motivation for a design using a rotating sensor.

The alternate design allowed the sensor to be swept in an arc using a small positional
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Figure 4.24: The output from a preliminary goal direction sensor design. The reading were
taken with the sensor mounted in a fixed position and orientation. Shown are the outputs
of two photocells whose voltage vary as a function of light intensity. A lower output voltage
indicates a brighter stimulus. The goal indicator, a downward pointing spotlight, was moved
along a 4.6 meter circular arc in front of the robot at 10 degree increments. As can be seen,
the data from the two photocells that comprise the sensor are not symetric about the 90
degree position. The sensor design was abandoned for one based on rotating the sensor to
gather readings.
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Figure 4.25: The omni-directional goal sensor design consists of a forward and rear facing
phototransistor which is swept in a 180 degree arc from left to right using a servo motor.
Readings are taken every five degrees once the robot has made contact with the box.

servo motor. In this manner the sensor system'’s field-of-view could be made variable from
the sensor’s fixed field-of-view of 10 degree to a maximum of 180 degrees determined by
the length of the arc swept by the motor. An omni-directional view was obtained by using
two opposing sensors. The sensor’s elevation angle was calculated for the lab environment
used. which had a maximum distance of 4.2 meters from a goal indicator placed at height
of 2.4 meters. The elevation angle 6 is equal to arctan(y/z) where y is the height of the
goal indicator, and z is the maximum distance at which the goal is to be visible. The final

design of the sensor system is shown in Figure 4.25.

Sensor Data Collection

The next step is to collect data from the sensor system in the intended environment and
under similar dynamic conditions as the transport task. The goal-direction sensor was
mounted on top of a robot which was then placed pointing towards the goal-light. Sensor
readings were taken for positions between 1.75 and 4.75 meters from the goal-light as shown
in Figure 4.26. Data from these positions were to represent the conditions while the box

was moving toward the goal.

Sensor Data Analysis

The purpose in the data analysis step is for the designer of the system to get a feel for the
sensor system’s output as the task executes. Shown in Figure 4.27 is the sensor’s output as a

function of sweep angle. The goal-light is positioned directly in front of the robot and forms
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Goal Stimulus

Figure 4.26: The laboratory setup used to gather goal direction sensor data. The robot is
positioned facing the goal stimulus, an overhead spotlight, with the box between the robot
and goal. Sensor readings were taken as the sensor is swept from 0 to 180 degrees. The
distance between the goal and robot is then reduced and the measurements repeated. In
this way a spatial stimulus map is produced for each perceptual cue.

a signal peak at 90 degrees. A simple threshold function will not detect the goal location
since light reflecting off adjacent walls causes a higher than baseline reading as evident at
the 0 and 180 degree positions. Since the width of the signal peak increases as the distance
to the goal decreases, signal width can not be used as the cue for goal detection. However,
as Figure 4.27 shows, the sharp rise and fall of the signal can be used to detect the goal

direction with respect to sensor orientation.

Goal Detection Algorithm

The function of the goal detection cue is to determine if a robot is on the right side of a box
to push. The “right” side of a box is any side on which a robot pushes that causes the box
to move towards the goal. The wrong side is any side on which a robot pushes that moves
the box away from the goal. The number of correct sides on which to push can be controlled
by specifying the range of orientation angles in which the signal peak is detected. These
angles can be specified by defining a window in the sensor system’s field-of-view in which
the signal peak must fall. Both the position and size of the window may be determined by

specifying its right and left field-of-views. Also required in goal detection is the magnitude of
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Figure 4.27: Shown is the output of the goal direction sensor as a function of angular
position. The goal stimulus is located at 90 degrees. The sensor is swept from 0 to 180
degrees in front of the robot. Four plots show how the signal varies as a function of distance
from the robot to the goal stimulus (1.75 - 4.75 meters).
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: RISE? ( current_reading, previous_reading --- rise_flag )
IF current_reading > previous_reading THEN
SET rise_flag = TRUE
ELSE
SET rise_flag = FALSE
: FALL? ( current_reading, previous_reading --- fall_flag )
IF current_reading < previous_reading THEN
SET fall_flag = TRUE
ELSE
SET fall_flag = FALSE
: ?SEE-GOAL ( threshold, right_FOV, left_FOV ~-- goal_flag )
SET previous_reading = initial_reading
SET goal_flag and rise_flag = FALSE
FOR move the sensor from left_FOV to right_FOV DO
take a reading from the goal semsor
IF | current_reading - previous_reading | > threshold THEN
IF RISE? THEN SET rise_flag = TRUE
IF FALL? AND rise_flag THEN
SET goal_flag = TRUE
ELSE
SET goal_flag = FALSE
RETURN { goal_flag }

Figure 4.28: The goal detection cue determines if the goal indicator is within the robot’s
allowable orientation angles. The output is true if a signal peak falls within the range of
angles. The cue is used to trigger a pushing behaviour.

signal peaks, which may be specified as the minimum difference between successive sensor
readings. Thus, the goal detection algorithm has three input parameters describing the
magnitude of signal peaks, and the size and position of the orientation window. The result
is a perceptual cue which detects whether the robot is properly oriented to push a box
with respect to a goal direction indicator. The pseudo-code for the goal detection cue,

?SEE-GOAL, is shown in Figure 4.28.

Goal Detection Verification

Verification of the algorithm is performed for static positions only. The box is oriented on
45 degree line to the goal indicator as shown in Figure 4.29. The robot is tethered to a
workstation so that the results of the test may be displayed. A subset of possible orientation

positions are used to test the cue. The input parameters are specified for signal peaks of
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Figure 4.29: The goal detection cue is verified for a subset of possible orientations. A
robot is tethered to a workstation and then placed in the indicated positions. The output
of the ?SEE-GOAL algorithm is tested with min difference = 20, right FOV = 150 and
left FOV = 30 input parameters. In all the above positions the cue returns TRUE.

20 (0-255), and a window of 120 degrees centered at 90 degrees. For each of the positions

shown in Figure 4.29 the cue returns a TRUE output value.

4.4 Summary

If the environment is considered when designing a task specific system then it can be used
to encode information about the execution order of a task. The problem of what a robot
should do and when, is transformed to decoding that information. Perceptual cues used for
behaviour activation decode what action the robot takes, and cues used for state transitions
decode when the action is performed.

Techniques to simplify the decoding process include spatially and modally orthogonal
sensing and additive cue construction. These methods were used to reduce the perception
problem to answering yes/no questions about conditions in a robot’s task environment.

To elucidate the cue design process, the multi-robot task of box-pushing was used. The

approach to cue construction involves a careful characterization of the environment, in
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which the task is performed, using the chosen sensors. The result is sensor data that varies
spatially and whose analysis leads to algorithms that extract features used in behaviour
activation and state transitions in the task model.

Binary vectors are the interface to the primitive motor behaviours. This allows the
perceptual cues to be computed independently from the implementation details of motor
action. This adds weight to the hypothesis that perception serves to motivate motor be-
haviours, but does not have to be functionally dependent on the output signal those motor
behaviours produce. The advantage of such a supposition is architectural, in that pieces of
the perception to action control system can be replaced without causing a redesign.

In the next Chapter, the connection between local perception and global action is made
explicit in the design of subtask controllers, or Q-machines, which produce the coherent

system behaviour needed in multi-robot box-pushing.



Chapter 5

Coherent Behaviour

Do multi-robot systems requiring close coordination, as found in manipulation tasks, require
an explicit “mechanism of cooperation?” Or can a system of robots display a coherent
behaviour by carefully decomposing the problem into subtasks and coordinate the mass
action based on local perception alone? In this chapter, it is demonstrated that certain
cooperative tasks are possible without explicit communrication or cooperation mechanisms.
The approach relies on subtask decomposition and sensor preprocessing. A framework is
described for modelling multi-robot tasks which are described as a series of steps with each
step possibly consisting of substeps. Finite state automata theory is used to model steps
with state transitions determined by values of binary sensing predicates called perceptual
cues. A perceptual cue (Q), whose computation is independent from the operation of the
automata, is processed by a finite state machine called a Q-machine. The model is based
on entomological evidence that suggests local stimulus cues are used to regulate a linear
series of building acts in nest construction. The approach is designed for a redundant set of
homogeneous mobile robots. Both a model and its implementation are described. Results
are presented, in the next chapter, for a system of physical robots capable of collectively

moving a heavy object to an arbitrarily specified goal position.!

!Portions of this chapter have been published. C. Ronald Kube and Hong Zhang 1994, 1997. IEEE IROS
(3):1883-1890, Autonomous Robots 4(1):53-72 [35, 38].
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Figure 5.1: A solution to a given task is considered to consist of two parts: the environment
with actions on its input and changes in stimulus as its output, and the robot system with
stimulus as input and actions on the environment as output.

5.1 Introduction

A collective system that acts as a unit in a well coordinated manner is displaying a coherent
system behaviour. Such a system, be it composed of people, insects or robots is thought to
be more effective at achieving some goals than individuals acting alone. In robot tasks. like
collective manipulation, is such a cooperative system possible without inter-robot commu-
nication or robot identification?

Coherent behaviour is accomplished by viewing the system that solves the problem as
two equally important parts consisting of the environment and the robot system as shown
in Figure 5.1. The environment has actions performed in it on its input side, which result
in changes that may be perceived on its output side. The robot system has perception on
its input and produces actions in the environment as its output.

In such a system the task to be accomplished is the desired change in the environment
in response to input actions performed by the robots. The robot system is the procedural
mechanism used to achieve those changes. In this synergistic system coherent behaviour
becomes possible as the common task and its environment become the central coordinating
mechanism.

Presented here is a model which connects local perception to global action by describing

tasks as a sequence of changes in position for a given stimulus-object.? The task to be

2Stimulus-object refers to a manipulation object that has been “tagged” for easy identification.



accomplished is specified using a directed graph whose traversal describes the temporal
order in which the task is completed.

Using the predefined actions described in Chapter 3 and the perceptual cues described
in Chapter 4 machines are defined that accomplish the desired task in an ordered stepwise
manner. The machines described as FSM controllers for each step in the task with tran-
sitions between steps specified as locally sensed perceptual cues. This type of control is
analogous to phase-based control used in dextrous manipulation tasks [71].

Transporting a heavy box between two known locations by a system of many robots
is a manipulation task requiring coordination to be effective. What is demonstrated here
is a feasible solution which is obtained by coordinating behaviour among a collection of
autonomous robots without using either explicit direct communication between robots or

robot identification.

5.2 Coherent Insect Behaviour

The examples discussed in chapter 2 on nest construction [19] and prey transport [67]
by some social insects are prime examples of tasks performed by a repetitive sequence
of behaviours. Sensing plays a key role in triggering the transition between different task
construction or transport behaviour steps. It is reasonable, therefore, to speculate that such
a mechanism may also be used as a means of synchronizing several asvnchronous robots in
the execution of a common task.

A frequent question about social insects is how they collectively build sophisticated
nests without centralized planning. Coordinating their building activities often involves
simple rules applied without communicating directly with other workers as Franks et al.
concluded after modelling the two dimensional structures built by ants using a bulldozing-
building behaviour [23].

Nest building by ants that live in the flat crevices of rocks involves making perimeter
walls around their colonies without the need to construct either a roof or fioor. This type
of two dimensional structure is highly conducive to laboratory observation and data collec-
tion, as nests could be built between two microscope glass slides separated with cardboard
columns. The first stage of wall construction described involves an individual ant carrving
a granule into the nest towards the cluster of nest mates. Once the ant is close it reverses its
direction 180 degrees and begins to push the granule into other existing granules. This bull-
dozing behaviour was tested as a computer-simulation model producing a similar pattern of

granules that formed perimeter walls. Thus, bulldozing behaviour is an example of how a
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simple rule for building can be used to produce a predictable result without direct commu-
nication between builders. Rather, indirect communications through the environment by
way of the building structure serves to coordinate collective activity [23]. In this way both
the environment and behavioural act used for task completion is part of the solution.

Attempts to model the states of both the environment and its cognizant occupants is
not novel. In animal behaviour McFarland and Bésser have defined a motivational state
as a combination of a physiological and perceptual state, with behaviour used to change
states in motivational space [44]. They extended this approach to modelling the system
behaviour by assigning state variables to environmental space, behaviour space and task
space. Environmental space defines the constraints imposed on the system with regards to
movement and topology. Behavioural space refers to the partition of the environment made
by the animal’s (or robot’s) sensory system. Tasks are defined by their initial and final
states using state variables that are relevant to the task.

Finite state automata (FSA) have been used to model perceptual tasks [6] and moti-
vational behaviour in animals [64, 46]. Arkin and McKenzie have used FSA to model the
space time relationship in a perceptual processing task on a mobile robot. This approach
allows for perceptual tasks to be sequenced in a reactive control system. In short, finite
state automata used to model the steps in a task as rules of interaction along with local
perception to control the application of that action is a plausible model for a collective

coherent behaviour.

5.3 Task Description and Decomposition

Task description and decomposition can be divided into task-related and tool-related knowl-
edge [44]. In other words, what is to be done and how to do it. Task-related knowledge can
be described in terms of externally observable desired changes in the environment, inde-
pendent of the procedural mechanism used to accomplish them. This is synonymous with
Wilson’s sensory state machines in which the environment is considered as a machine with
the effects of robot actions considered as input and changes in observable stimulus as output
[79].

Our model assumes that the task under consideration can be described as a sequence
of steps. A finite state machine (FSM) will then be designed to accomplish each step
with transitions between steps triggered by perceptual cues. Each step may, of course,
be composed of substeps or subtasks to also be performed sequentially. In this manner

a task may be described in as fine a detail as required by its decompositional analysis.
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Figure 5.2: Tasks are described as a sequence of steps, with each step possibly composed of
additional subtasks (ST).

This results in a task description having the hierarchical structure illustrated in Figure 5.2.
In the presented model, task description is specified in a directed graph, called a task
description graph (TDG), with vertices representing a stimulus-object and its position to
be manipulated by the system, and edges in the graph representing possible actions that
effect those manipulations.

Tool-related knowledge is specific to the mechanism employed by the system and refers
to robot actions in the environment and therefore is procedural in nature. A task decompo-
sition into finite state controllers that accomplish the desired changes specified in the task’s
TDG is modelled using the primitive actions previously described in Chapter 3. Both the
execution of individual subtask controllers and the transitions between them are accom-
plished with perceptual cues. Perceptual cues and their finite state machine controllers
are called @Q-machines and together with a task description graph provide a model that

considers the environment and robots together in its solution to the specified task.

5.3.1 Task Description Graphs

In the class of manipulation tasks being modelled here objects to be manipulated are de-
scribed as stimulus-objects and states determined by position, time and a performance
metric. Since states are vectors there are an infinite number of states in the environment.
However, in the box-pushing task the states of interest are: initial, final, intermediate
and stagnating. Thus the states correspond to several actual positions of the object being
manipulated in an X,Y coordinate system. A task to be accomplished by the system is
described by defining the initial and goal positions of the object being manipulated. As
well, stagnating conditions are identified as positions in the graph requiring special actions
(i.e. stagnation recovery behaviours). In the box-pushing examples that follow, two actions

are used that manipulate the box: A; PusH-BOX and A, REPOSITION. Task description is



an external global point-of-view and describes changes in the environment without regard
to the mechanism that causes those same changes. The description of the task is captured

in a directed graph defined as:

Definition 5.1 A task description graph (TDG) is a directed graph G with n vertices and
m edges. The vertez set V(G) = {vy,...,v,} describes the state uniquely determined by
position, time and a performance metric, of an object (S) perceived as a stimulus to be ma-
nipulated, and the edge set A(G) = {ay,...,a,} describes the actions needed to manipulate
the object without speaking about the actor or actors. V(G) contains an initial state and a
goal state, each of which can be associated with a set of positions, times and performance

metrics according to the precision to which the values are known.

Two examples are now presented of nondirected and directed box-pushing.

Nondirected Box-Pushing

Nondirected box-pushing involves pushing a box from an initial position for a fixed distance
in any direction. The task is considered successful if the box S is pushed a fixed distance
R in under a given amount of time T. Distance R is the radius of a circle with center
at an initial position P, as illustrated in Figure 5.3. The goal position P is any position
that satisfies R > |P — P, | which is simply the distance between the goal and initial box
positions.

Each vertex in the TDG shown in Figure 5.4 specifies a unique condition as defined by
changes in radius from the initial position Ar = |P — P,_s| per time period § summarized
as:

[nitial box position, which may take any value in the 2D position space with Ar =0

v:(SL,P) | Ar=0,t=1¢y (5.1)

Intermediate box positions, which may take any value in the 2D position space with

Ar>20
v2:(S1,P) | Ar>0,t=ts+4 (5.2)

Goal box positions, which may be specified as any value in the 2D position space where

Ar>2Randt, -, <T
v3:(S1,P) | Ar>R, t=t, (5.3)
Stagnating box position, which describes a position that has not changed in time period

4 resulting in Ar =0
ve: (S, P) | Ar=0,t =t + k¢ (5.4)

78



e -~
”~ ~
P g ~
’ ~
7 ~
’ N
4 AN
4 \
4 \
4 \
[ \
{ 1
I R \
)

. >
' i
v I
\ I
\ 4
\ /

\ ’

\ s
N s
. 7’
~ Ve
S o ,'

\\N ””

—

Figure 5.3: Illustrated is the nondirected box-pushing task where the robots (small circles)
push the box in any directior for a fixed distance (dotted circle).

where k4 is the time period before stagnation is detected (i.e. a timeout).

The stagnating condition in equation 5.4 occurs when robots push the box in opposing
directions thereby producing a resultant net force insufficient to move the box. The problem
occurs due to the nondirected nature of the task. The solution is a recovery behaviour whose
output is a robot action that changes the orientation of the pushing force and is labelled as

A, in Figure 5.4.

Directed Box-pushing

The task description can be changed to directed box-pushing towards specific positions and
can include a temporal sequence of positions as indicated in Figure 5.5. In this example,

the box is first moved from an initial unknown position P; to a known position P4 and



Figure 5.4: The task description graph where vertices represent an object (box) and position,
and edges represent actions that effect changes in object’s position.

then moved to a second position Pg. In each step the path taken is unspecified and may

therefore be suboptimal. The corresponding TDG is illustrated in Figure 5.6.

5.3.2 Q-machine Controllers

In the model presented, tasks are decomposed along four dimensions: abstraction levels,
control and temporal dependencies, and redundancy. Using these guiding principles con-
trollers are then designed which accomplish each step in the task decomposition. After
a brief discussion of these four dimensions, detailed examples of two approaches taken to

nondirected and directed box-pushing are discussed.

Abstraction Levels

Three levels of abstraction are used to decompose any given task: the task-level which
describes what is to be performed by the system and is specified by a task description
graph; the behaviour-level in which a task is specified as subtasks; and the action-level in
which taxis-based actions are used to accomplish each subtask.

At the task-level objects to be manipulated and their positions are specified in temporal
sequences using a task description graph. In the specific example presented in the next
section this level of description corresponds to statements like “first move box number 1 to
goal position A; next wait one minute; then move box number 1 to goal position B.”

At the behaviour-level the task is further decomposed into a number of subtasks. An
example will be presented in which the task is decomposed into three subtasks, correspond-
ing to finding the box perceptually, moving towards it until contact is made, and finally

pushing the box towards position A.
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Figure 5.5: Illustrated is the directed box-pushing task where the robots (small circles)
push the box first to position P4 and then to position Pg
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Figure 5.6: The task description graph for directed box-pushing. The box is pushed from
an unknown initial position labelled as v; to the position described by vertex vz in time
period AT'1 and then to position described by vertex ve in time period AT2. Positions
v2,5 describe intermediate positions during execution, while position vg ; refer to stagnating
positions from which recovery actions are required.

At the action-level, each of the above subtasks are further decomposed into primitive
actuation behaviours described in Chapter 3. Taken together these PA behaviours compose
a subtask controller which accomplishes the subtask, for instance “finding the box percep-
tually.” This three-level hierarchy decomposes a given problem into subproblems each of
which may use an architecturally different approach to its solution. In the model presented

here reactive control is used at all three levels.

Control Dependencies

Task decomposition is performed on the basis of trying to reduce four robot control depen-

dencies:

o Resource conflicts. By ensuring that a sufficient supply of resources per robot are
available conflicts between robots are reduced. In the box-pushing task this translates
to having enough free space on a boxside available by either limiting the number of

robots used or increasing the size of the box being pushed.

® Robot interaction. Reducing the interaction between robots helps minimize the antag-
onistic forces present in trying to coordinate the actions or mass effect of a multi-robot
system. Obstacle avoidance is used as a means of implementing noninterference pro-

tocols.
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e Inter-robot communication. In the approach presented, robots do not explicitly com-
municate, thereby reducing the control dependency present in methods that use inter-

robot communications as a means of coordination.

e Global information. All actions taken by a robot are based on locally perceived in-
formation only, thus eliminating the need to obtain a global view of a problem before

making a decision.
Temporal Dependencies

Task decomposition is possible along the temporal dimension by specifying sequences of
actions to be performed using the task description graph. In the case of directed box-pushing
this amounts to sequencing the stimulus used to indicate each goal position. This allows
the box to be moved between two goal positions using the same set of subtask controllers by
controlling when and where the goal stimulus appears. This approach requires the control

of some of the environment’s stimulus to be part of the solution desi
p gn

Redundancy

Since the uncertainty is high in both the perception and action of individual robots, the task
is decomposed under the assumption that there will be many homogeneous and therefore
redundant robots. All robots carry identical programs for solving the task. Observing the
noninterference protocols mentioned above increases the probability that a specific action

will be performed.

5.4 Q-machine Controller Design

Two examples to help further elucidate the presented model are now presented. In the next
Chapter, the model for nondirected box-pushing will be explored in simulation and serve as

a precursor for the results obtained for directed box-pushing by a physical system of robots.

Nondirected Box-Pushing

In the computer-simulation of nondirected box-pushing the forces on the box are modeled as
the sum of a single robot applying a unit force at an angle to the box side. This will produce
a resultant force vector and a torque applied about the box’s center. If the resultant force
is greater than a user-defined threshold the box will translate in an XY plane. Likewise

a user-set torque threshold will cause rotation of the box (see Figure 5.9). If an equal
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distribution of robots push the box the resulting net force is insufficient to overcome the
weight of the box and the system stagnates.

A single controller is used for each robot. The controller is composed of the following
PA behaviours: AvVOID, REPOSITION, REALIGNMENT and SEEK-BOX, which have a fixed
priority with AVOID being the highest and SEEK-BOX the lowest. The stagnation recovery
behaviours each contain a counter that is reset each time the robot moves. Each counter
has a threshold that can be set, and if reached (i.e. a timeout) the behaviour is activated.
Using thresholds, behaviours can be ordered. For example, a REALIGNMENT behaviour with
a time threshold T} = k where k is some constant, and a REPOSITIONING behaviour with a
time threshold of T; = 4k will take four times as much time before being invoked. As long
as the robot is moving, the behaviour does not become active since its threshold counter is
constantly being reset to zero. Since the behaviours alter the robot’s orientation or position
by a small random amount, the robots behave asynchronously.

In the box-pushing task, stagnation refers to any configuration in which robots are
in contact with the box and the box is not moving. For example, consider a minimum
configuration with two robots on the same side pushing with a unit force at an orientation
of 45° and the weight of the box set at 1.50. The resulting force calculations using a unit
force and equations 5.5 and 5.6 are F; = 1.414 and F, = 0.0. Since F; < 1.50 stagnation

has occurred.

Fr = Z fiz (5.5)
=1

F,=3fq (56)
i=1

fiz = cos(Rr) (5.7)

fiy = sin(6R) (5.8)

Once the realignment timeout threshold is reached the behaviour changes the direction
of the applied force. Since the realignment is random this may increase or decrease the
resultant force. For cases where realignment is not sufficient to establish box movement
the repositioning behaviour becomes active. In this case the repositioning behaviour causes
the robot to assume a new position on the box. Figure 5.7 compares the success rates of
two controllers with and without recovery behaviours. Figure 5.8 compares two recovery
behaviours as a function of the number of robots. The simulation results of nondirected

box-pushing led to the model used in directed box-pushing described next.
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Nondirected Box-Pushing: Controller Comparison
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Figure 5.7: Shown is a comparison of a nondirected box-pushing controller with and without
a stagnation recovery behaviour. Success rate is plotted as a function of system size, where
success was defined as pushing the box 200 units from its initial position within 2000
simulation timesteps. Each data point represents 25 trials with the number of robots placed
at a random initial position. The recovery behaviour tested was REALIGNMENT which
randomly changes the angle of pushing force upon detecting no robot movement while
pushing within a fixed time period.
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Nondirected Box-Pushing: Controller Comparison
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Figure 5.8: A comparison of the REALIGNMENT and REPOSITION recovery behaviours. Since
REALIGNMENT does not change the position of the robot on the box, changes in force
magnitude are smaller than found in REPOSITIONING.
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Figure 5.9: The model used to calculate the box force vector.
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Directed Box-Pushing

The problem of transporting a heavy box from an unknown location, in a given environment.

to a known goal destination can be divided into three subtasks:

e Find the Box. Since physical sensors used for perception have a limited range
and field-of-view, the robot must search the environment for the box while avoiding

collisions with obstacles.

e Move to the Box. Once the box is located within a robot’s field-of-view, move
towards the box while avoiding obstacles and bring the robot into contact with any

side.

e Push the Box towards the Goal. If the box is between the robot and the goal
destination then push the box; otherwise reposition the robot to another spot on the

box.

The reactive controller designed for each subtask consists of a method for achieving
its task (goal-driven positive taxis PA behaviour), a method for dealing with impediments
(avoidance-driven negative taxis PA behaviour). and a method for recovering from stagna-
tion or deadlock conditions (recovery-driven kinesthetic PA behaviour). A minimally de-
signed controller must contain at least one PA behaviour from the goal or recovery classes.
Controllers used for navigation will also include behaviours from the avoidance class. A
subtask controller can be modeled as a FSM with each state represented by a single PA
behaviour. For the transport task the three subtask controllers are FIND-BOX, MOVE-TO-
BOX and PUSH-TO-GOAL.

[n order to integrate the subtask controllers into a single three state machine, with each
state represented by a single controller, a mechanism is required to control state transitions.
Perceptual cues are the computationally independent mechanism used. The cues can be
expressed as Horn clauses with each atom representing a stimulus needed to satisfy the
truth of the clause. The integrated controller is simply a machine that processes perceptual
cues (Q) to determine the state (or subtask controller) that controls the robot, hence we
call them @Q-machines. Since the number of states is few, execution is controlled by cycling
through the states using a perceptual cue to determine the correct state of the transport

task Q-machine shown in Figure 5.10. The perceptual cues used to determine state are:

e 7BOX-DETECT True when the forward box sensors detect a lit box.
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FIND-BOX PUSH-TO-GOAL

Transpert Q-meckine

Figure 5.10: The behaviour-level description of the controller for transporting a box by
pushing it from an initially unknown position to a final goal destination.

¢ 7BOX-CONTACT True when the robot is in contact with a lit box.

The state of the transport machine is specified by:

1. FIND-BOX <= ?BOX —DETECT

2. MOVE-TO-BOX <= 7BOX-DETECT A 7BOX —CONTACT
3. PUSH-TO-GOAL <= ?BOX-DETECT A ?BOX-CONTACT

Each subtask controller is a FSM with state represented by a single PA behaviour de-

scribed in Chapter 3. Described next are the subtask controllers and their implementation.

FIND-BOX Subtask Controller

A machine is designed that will find a brightly lit box in the robot’s environment while avoid-
ing obstacles. From the given list of PA behaviours a random search strategy (RANDOM-
WALK) is chosen. Two behaviours from the avoidance class (CONTACT, AvOID) along with an
additional recovery class behaviour(BACK-OFF) complete the controller whose pseudo-code
algorithm is shown in Figure 5.11. An alternate design might have used a more methodical
search and movement generator in place of RANDOM-WALK, or any one of the many strate-
gies for spatial searching. The perceptual cues used to determine the state of the Q-machine
are listed in Table 5.1.

Control is maintained within FIND-BOX until the?BOX-DETECT perceptual cue becomes
true, at which point control is passed to the MOVE-TO-BOX subtask controller. As indi-

cated in Table 5.1 a fixed priority is maintained between the PA behaviours as a means
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FIND-BOX Subtask Controller
Perceptual Cue (Input) Behaviour State (Output)
7TOUCH ?CONTACT-  7AVOID- PA Behaviour
0 0 0 RANDOM-WALK
0 0 1 AVOID
0 1 X CONTACT
1 X X BACK-OFF

Table 5.1: The FIND-BOX Q-machine is the subtask controller used to locate the box to be
manipulated. Input is from the listed perceptual cues which define the output behaviour
state specified as a primitive actuation (PA) behaviour. The “X” in the input table indicates
a don’t care term. The perceptual cues corresponding to the dashed labels are: ?coNTACT-
= 7CONTACT-DETECT; ?AVOID- = 7AVOID-DETECT described in Chapter 4.

: FIND-BOX ( ---)
NOT ?BOX-DETECT ( transition perceptual cue )
WHILE ( while you don’t see the box search for it )

IF ?TOUCH THEN BACK-OFF ( kinesthetic ) ELSE
IF ?CONTACT-DETECT THEN CONTACT ( negative taxis ) ELSE
IF 7AVOID-DETECT THEN AVOID ( negative taxis ) ELSE

RANDOM-WALK ( kinesthetic )

Figure 5.11: Shown is the pseudo-code for the FIND-BOX Q-machine. Each state in the
FSM is a primitive actuation behaviour described in Chapter 3. Comments are in lower
case and enclosed in parentheses.

of behaviour arbitration. Using a fixed priority in behaviour arbitration is simple if the
number of behaviours is few making control unambiguous. If the control choice is ambigu-
ous then an additional subdivision of the task into another subtask controller is advised.
An alternate means of behaviour arbitration among a larger number (> 35) of competing

behaviours was explored and the results presented in [39].

MOVE-TO-BOX Subtask Controller

Once the box stimulus has been detected control passes to the MOVE-TO-BOX subtask
controller responsible for guiding the robot towards the box. The controller is identical to
FIND-BOX with the movement generator (RANDOM-WALK) replaced with a goal driven be-
haviour (SEEK-BOX) based on a positive phototaxis. The pseudo-code algorithm illustrated
in Figure 5.12 brings the robot into contact with any side of the box so that the pushing

force is normal to the point of contact.
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MOVE-TO-BOX Subtask Controller
Perceptual Cue (Input) Behaviour State (Output)
I7TOUCH  ?CONTACT- 7AVOID- ?BOX- PA Behaviour
0 0 0 1 SEEK-BOX
0 0 1 X AVOID
0 1 X X CONTACT
1 X X X BACK-OFF

Table 5.2: The MOVE-TO-BOX Q-machine is the subtask controller that moves the robot
towards any side of the brightly lit box to be manipulated. Input is from the listed per-
ceptual cues which define the output behaviour state specified as a primitive actuation
(PA) behaviour. The “X” in the input table indicates a don’t care term. The perceptual
cues corresponding to the dashed labels are: 7CONTACT- = 7CONTACT-DETECT: 7AVOID-
= ?AVOID-DETECT; and ?BOX- = ?BOX-DETECT described in Chapter 4.

: MOVE-TO-BOX ( -—-)
?BOX-DETECT AND NOT ?BOX-CONTACT ( transition perceptual cue )
WHILE ( wvhile you see the box move towards it )

IF ?TOUCH THEN BACK-OFF ( kinesthetic ) ELSE
IF ?CONTACT-DETECT THEN CONTACT ( negative taxis ) ELSE
IF ?AVOID-DETECT THEN AVOID ( negative taxis ) ELSE

SEEK-BOX ( positive taxis )

Figure 5.12: Shown is the pseudo-code for the MOVE-TO-BOX Q-machine. States are
primitive actuation behaviour described in Chapter 3. Comments are in lower case and
enclosed in parentheses.

If during the course of navigating towards the box one of the avoidance driven behaviours
causes the robot to lose sight of the box control is passed back to the FIND-BOX subtask
controller. Control is maintained within the controlier until the 7BOX~-CONTACT cue is true,

at which point control passes to PUSH-TO-GOAL.

PUSH-TO-GOAL Subtask Controller

The strategy used to move a box towards a goal position is based on positioning the robot so
that the box to be pushed is between the robot and the goal position (see Figure 5.13). Once
in contact with a side of the box the ?SEE-GOAL cue determines if the robot is correctly
positioned. If the cue is true the robot begins to push and if the cue is false the robot
executes a repositioning behaviour. Continuous execution of the kinesthetic REPOSITION

behaviour causes the robot to move in a counterclockwise direction around the box. While
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L) PUSH-TO-GOAL Subtask Controller
erceptual Cue (Input) Behaviour State (Output)

7SEE-GOAL PA Behaviour
0 REPOSITION
1 PUSH-BOX

Table 5.3: The PUSH-TO-GOAL Q-machine is the subtask controller that either pushes the
box towards a goal destination or repositions the robot on another position of the box to be
manipulated. Input from the ?SEE-GOAL perceptual cue which determines pushing angles
can vary the acceptable pushing angles.

: PUSH-TO~GOAL ( =-~-)
?BOX~-DETECT AND ?BOX~CONTACT ( transition perceptual cue )
WHILE ( while in contact with the box )
IF 7?SEE-GOAL THEN PUSH-BOX ( kinesthetic ) ELSE
REPOSITION ( kinesthetic )

Figure 5.13: Shown is the pseudo-code for the PUSH-TO-GOAL Q-machine. Once posi-
tioned on a box side the robot determines if the goal stimulus is within a fixed field of view
needed for pushing. If not, a kinesthetic behaviour repositions the robot. Comments are in
lower case and enclosed in parentheses.

in contact with a boxside avoidance behaviour is not relevant and therefore not part of the
controller whose states are listed in Table 5.3.

Control is maintained within the PUSH-TO-GOAL controller as long as the robot re-
mains in contact with the box. However, should the robot lose sight of the goal stimulus
as determined by ?SEE-GOAL the REPOSITION behaviour forces the robot to break contact
with the box thereby passing control to either FIND-BOX or MOVE-TO-BOX depending
on the state determined by their respective perceptual cues.

Since the movement of the box towards a goal position is not specified as an explicit path
in two dimensional space, but rather as a rule of interaction between the box, the robot and
the goal position, a unique solution is never obtained. Instead, like declarative programming
in which what is specified rather than how, the rules of interaction (Q-machines) provide a

method for achieving the solution.
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: TRANSPORT ( ---)
BEGIN
FIND-BOX
MOVE-TO-BOX
PUSH-TO~GOAL
AGAIN

Figure 5.14: Shown is the Forth code for the TRANSPORT Q-machine. The three state
machine uses transition perceptual cues to determine which state is relevant based on local

sensing.

Transport Q-machine

The TRANSPORT machine is created by cycling through the three behaviour-level con-
trollers as shown in Figure 5.14. The correct state is determined by the ?BOX-DETECT and
?BOX-CONTACT cues. As indicated in the task description graph (shown in Figure 5.6) dif-
ferent goal positions towards which the box is pushed are specified by externally controlling
the time at which the goal stimulus is present. The system of robots simply pushes the box

towards the active goal stimulus which indicates where the box is to be transported.

5.5 Summary

Social insects offer one of nature’s most startling examples of coherent behaviour from a
collective system. The well coordinated effort found in nest building results in repeatable
structures that prove the activity is more than just random behavioural acts. As shown in
the bulldoze-building behaviour of ants, simple rules of behaviour governed by local sensing
results in a predictable global action without resorting to directly communicating building
intentions between ants. Rather, indirect communication through the task itself is sufficient
to produce a coherent behaviour.

In insects, evolution provided the programming skills necessary to produce behavioural
programs finely tuned to the environmental niche they inhabit. In robots, solutions that
encompass both robots and their environment as part of the model may achieve nature’s
intention in solving complex problems using decentralized mechanisms.

In the model presented, the problem—specified as observable changes in the environment—
becomes part of the solution by directing the robots’ behavioural acts to converge in a

desired way.
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Task description graphs capture both the spatial and temporal stimulus changes that
define the task to be accomplished. Together with Q-machines, which are based on finite
state automata, and their context dependent behavioural state, a unique approach is taken
to the control of a collective multi-robot system.

Verifying the feasibility of the model on a physical system of mobile robots presents a new
challenge in itself. Designing, prototyping, testing and then replicating 11 identical mobile
robots so that repeatable experiments could be performed is time consuming. However, the
results as discussed in the next chapter were rewarding in themselves, but not so much in
the positive confirmation of the proposed framework, rather in the questions raised, and

discussed in the sequel. These open new vistas for exploration.
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Chapter 6

Global Action: Results

Stigmergy, a term coined by French biologist P. Grassé, which means to incite work by the
effect of previous work [26] is a principle finding its way from the field of social insects to
collective robotics [11, 70]. With their limited repertoire of behavioural acts social insects
display an amazing competence in building nest structures. From the simple nests produced
by the blind bulldozing of ants [23] to the termite homes that stand over a meter tall [68]
all of which result from common task coordination that does not appear to depend on
interaction between the agents but rather on the object they act upon. In this chapter,
the results are presented for the integrated models of the previous three chapters. The
resulting Q-machine model takes local perception derived by the perceptual cues presented
in Chapter 4 and the context sensitive decision process of Chapter 5 to produce the taxis-
based actions of Chapter 3, which together form a coherent global action. This global action
is demonstrated in the collective transport task and represents another step in the pursuit

of knowledge already obtained by social insects.

6.1 Introduction

In the results presented, global action is the effect produced when a set of identical mobile
robots execute the common task of pushing an object towards an arbitrarily specified goal
position. Coordination is achieved without resort to direct inter-robot communication or
robot differentiation. Instead, context sensitive subtask controllers decompose the box
transport task into three phases. The phases describe what is to be achieved, in terms of
the externally observable events described by box position, without specifving how the task

is to be accomplished by way of a unique path.
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Described is the experimental system used to gather the data followed by the primary
results in support of the main hypothesis and the secondary results which make some

preliminary comparisons of execution times under various experimental conditions.

6.2 Experimental System

The experimental setup used to gather the data presented in the sequel consisted of a
robot environment, in which various boxes were placed along with two spotlights used to
indicate final goal positions, and a set of identical mobile robots complete with sensors and
Q-machine task controllers. In total over 100 box-pushing trials were run using from one to
11 robots, four different box types and in three different venues. The final set of experiments
were recorded on over four hours of video tape with an individual trial lasting between 30
seconds and five minutes. Described briefly is both the robot environment and hardware

used.

6.2.1 Robot Environment

The ideal test environment would be a large open space without walls leaving the robots
free to push the box along any desired path. Since this environment was not available
a smaller and more restrictive area defined by walls was used. A permanent space large
enough in which to conduct experiments was often difficult to find, resulting in the creation
of a portable testing environment consisting of: 11 robots, two spotlights on stands for goal
position indicators, the box to be manipulated, and a video camera to record the results.
However, the majority of the experiments were conducted in the area depicted in Figure 6.1

which became available towards the end of this study.

6.2.2 Robot Hardware

The mobility hardware designed is composed of a set of homogeneous two-wheeled robots,
each weighing 1.3 kilograms and measuring approximately 18 centimeters in height and
diameter as shown in Figure 6.2. A battery allows for 45 minutes of operation with a 10
minute recharge time. Control electronics are separate modules plugged into the robot,
allowing for quick maintenance in the event of failure.! Task specific sensors are added
to the generic base and can be attached onto a grid of evenly spaced holes. A Motorola
68HC11 microcontroller with 8K of RAM and programmed in Forth is used to map sensor

output to one of nine motion primitives. A minimum number of sensors (6) was sought in

!See Appendix A for a detailed description.
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Figure 6.1: A schematic of the lab environment used to test the integrated transport con-
troller. In each trial the box was placed at initial position three meters from the goal line
and the robots were placed at one of the indicated starting positions labelled P1 - P5.



Figure 6.2: Each of the robots are equipped with two forward pointing infrared obstacle
sensors, one touch sensor, two CdS box-tracking photocells, and a destination sensor, all
mounted on a differentially steered base.

implementing the perceptual cues. Additional sensors would allow a more omnidirectional
field-of-view in the case of obstacle and box sensing, and better pushing orientation in the
case of box contact sensing, but the objective was to determine what could be accomplished
with the minimal number of sensing bits. The hardware proved to be robust with few

breakdowns.

6.2.3 Controller Verification

Each subtask controller was tested individually on the physical robots and then combined to
form the final integrated controller used in the transport task. The three subtask controllers
are FIND-BOX, MOVE-TO-BOX and PUSH-TO-GOAL.

First, the FIND-BOX controller was tested for its ability to search the robot’s environ-
ment for a brightly lit box. FIND-BOX is a four-state machine consisting of RANDOM-WALK,

AVOID, CONTACT and BACK-OFF PA behaviours. To test the controller a felt-tipped pen is
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Figure 6.3: Shown are the dispersive effects of obstacle avoidance behaviours in both simu-
lated and physical robot experiments. Starting from a close initial configuration, the FIND-
BOX controller will disperse the robots until the obstacle sensors are inactive. Adjusting
the sensor’s threshold effects the inter-robot distances. Note that the obstacle sensors are
not omnidirectional and point in the forward direction only.

attached to the robot marking its traveled path. A single robot was placed in a 2.7 meter
square enclosed grid composed of 81 cells of which 90% were visited in three minutes. The
fixed motion pattern generates a pseudo-random motion when the obstacle sensors change
the path of the robot. The same controller tested with 11 robots in a five by six meter room
produces continuous stagnation-free motion for 10 minutes.

An example of how the avoidance behaviours, within the FIND-BOX controller, cause
robot dispersion is shown in Figure 6.3. If the robots are placed close to each other in
an initial configuration so that obstacle sensors are active, the robots will disperse using
avoidance behaviours until the obstacle sensors are inactive. The inter-robot distance is a
function of the obstacle avoidance thresholds [32].

Next, the MOVE-TO-BOX controller was tested for its ability to detect and direct the
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robot towards a box, resulting in contact with a sidle. MOVE-TO-BOX is a four-state
machine composed of SEEK-BOX, AVOID, CONTACT and BACK-OFF PA behaviours. The
controller was first tested using a single robot which followed a lit box as it was dragged
around the room. The FIND-BOX controller is added and 10 robots were placed at opposite
ends in a three by five meter room. All robots located the box while obstacle avoidance
created an even distribution around its circumference.

In order to test the transition perceptual cue between FIND-BOX and MOVE-TO-BOX
two experiments were run in two separate environments. In the first, 10 robots were placed
in one corner of a five by three meter room with the box located at the opposite end. The
initial and final configurations were then compared against the simulated version of the
same experiment. In both versions the initial configuration of robots expanded spatially
avoiding obstacles while executing the RANDOM-WALK PA behaviour. Once their forward
pointing light sensors detected the box they converged and attempted to occupy a spot on
a box side. Additional robots converged until obstacle sensors detected an object already
present on a boxside, forcing the additional robot to find a free spot. This resulted in a
distribution of robots around the box and marked the end of the second task step (see
Figure 6.4) [37].

The same results were obtained in a second environment in which six robots were placed
in a six by 5.5 meter room with the box located 5.8 meters from the robots. In each of
the three trials the robots located the box after an initial random search in under two
minutes.? Finally, floor level lights placed at opposite corners of the same room were used
to march nine robots back and forth across the floor in a simple homing experiment shown
in Figure 6.5. Interference between interacting robots is minimized by reducing the distance
at which obstacles are detected.

Finally, the PUSH-TO-GOAL controller is tested for its ability to provide directed box-
pushing or repositioning behaviours. PUSH-TO-GOAL is a two-state machine using the
PUSH-BOX and REPOSITION PA behaviours. The machine enters the PUSH-BOX state if
the perceptual cue ?SEE-GOAL is true. ?SEE-GOAL is true if the box is between the robot

and the destination goal as illustrated in Figure 6.6. The cue is created using an upward

?One item of interest not modelled in the simulation experiment is that once the box is surrounded by
robots it becomes undetectable to the remaining robots since the radiating box light is now blocked. This
automatically frees the remaining robots to search for other boxes, a result that bares analogy to ant prey
transport reported by Franks[24], who found that the number of ants that were involved in a group transport
task was related to the available perimeter space on the item being retrieved. Thus, the number of robots
directly participating in the task might be self regulating and a function of sensing rather than explicit
control.
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Figure 6.4: The results of both simulated and physical tests on locating a lit box. The
distribution around the box results when the avoidance behaviours, Avoib and coNTAcCT,
keep the robot away from other robots until a free spot against a boxside is found.

Figure 6.5: One test of the MOVE-TO-BOX controller involved marching nine robots back
and forth between two floor level lights turned on alternately and placed at opposite corners
of the room. A white shell is added to each robot so that a reflective surface is available for

the obstacle sensors.
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pointing rotating sensor which detects signal peaks within a specified field of view. To test
the controller two robots, needed to push the box, are positioned on a boxside and facing
the goal indicator. The robots successfully push the box towards the goal. Next the robots
are placed on a box side facing away from the goal causing the REPOSITION state to move
the robots to a new position and orientation. The final tests involve integrating the three
subtask controllers into a machine that can transport the box from any initial position

within the environment to an arbitrarily specified goal position.

6.3 Empirical Results: Directed Box-Pushing

The above three subtask controllers are combined to form a three state transport Q-machine.
The integrated controller was tested in experiments using one to six robots in which four
different types of boxes were transported from the same initial position to an arbitrary final
goal position in the environment depicted in Figure 6.1. Task complexity was increased
by changing the goal positions during transport execution, thereby requiring the robots
to dynamically reconfigure their pushing orientation towards the new goal position. The
results are presented in support of the primary hypothesis followed by secondary results

which require additional experiments for statistical conclusions.

6.3.1 Primary Results

The primary hypothesis that coherent behaviour from a multi-robot system, in some tasks,
does not require explicit cooperation mechanisms was examined by gathering experimental
evidence on a directed box-pushing task. Over 50 successful trials were recorded of a
physical system of robots in which a box, requiring at least two robots to move, was pushed
from an initial starting position towards a specified goal position. The control framework
tested did not make use of inter-robot communication or robot identification to coordinate
the system. Rather, decentralized control was used in which the autonomous robots made
use of local sensors as the only means of observing their environment. Experiments were
conducted which varied the number of robots, the box size and shape, and task difficulty
by requiring the robots to transport the box between a sequence of goal positions. From
the experimental data the following statements can be made in support of the primary

hypothesis:

e Insensitive to System Size. The number of robots used to transport the box to

different goal positions was varied from two to six with 58 successful trials recorded.
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Figure 6.6: The actions taken by the PUSH-TO-GOAL machine depend on the ?SEE-GOAL
perceptual cue. If the goal is within the sensor’s field-of-view the machine is controlled by
the PUSH-BOX PA behaviour; otherwise control is passed to REPOSITION which causes the
robot to locate another spot on the box.
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The success of the transport task was not sensitive to the number of robots used to

compose the system.

e Insensitive to Some Types of Convex Object Geometry. Six robots and four
different box types of varying size and shape, were transported with 39 successful
trials recorded. The transport task success was not sensitive to the four box types

used.

e Insensitive to Changes in Goal Position. Using between four and six robots
to transport a large round box between a sequence of goal positions, eight successful
trials were recorded. The transport task success was not sensitive to the increase in

task complexity.

In the sections that follow, successful trials will be discussed with regard to the above
three statements. The unsuccessful trials can be grouped into two: failure due to a robot
system fault, or failure due to an environment restriction. A system fault included problems
specific to the robots. For example, a tire or wheel fell off disabling the robot, a rundown
battery leaving little pushing force, or the door to the lab was left open and the robots left
the arena. Failures also occurred due to restrictions, previously mentioned, on the environ-
ment used to conduct the experiments. A failure occurred if the box was pushed against
a wall leaving no space for the counterclockwise repositioning needed to bring the robots
in correct alignment with the goal. Despite these restrictions the system was successful in

transporting the box in over 70% of the trials conducted.

Insensitivity to System Size

Increasing the number of robots from two to six did not affect the successful outcome of
the transport experiments. This is an analogous result to the simulation results (shown
in Figure 6.11) in which successful task completion remained high despite an increase in
the number of robots. However, no claim is being made that task completion time is not
affected, since completion times were found to vary as the number of robots increased and
were dependent on available resources as discussed in Chapter 7. In each of the 58 successful
trials recorded the box was pushed from an initial starting position, located approximately
in the center of a five by four meter area, towards the goal area indicated in Figure 6.1 and
ending in quadrant [ at a distance of at least 2.5 meters. The robots were started in each
trial from positions one to five in quadrants II-IV shown in Figure 6.1. Successful trials

would run between 32 and 214 seconds and were executed in three phases.
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The first phase began when the robots were powered on, the box-light was off and the
goal-light was on. System initialization consists of taking ambient light readings used to set
the box-detection threshold. The robots began executing FIND-BOX and quickly dispersed
themselves in the area. Shortly thereafter, the box-light was turned on and those robots
that were facing the box and sufficiently close would move towards and make contact with a
boxside using the MOVE-TO-BOX controller. Depending on an individual robot’s position,
with respect to the box when box-detection occurred, the distribution of robots around the
box would vary and mark the beginning of the second phase.

In the second phase, some of the robots incorrectly positioned for pushing, as deter-
mined by the PUSH-TO-GOAL controller, began moving counterclockwise around the box
perimeter searching for an open spot on a correct side. This behaviour is the result of several
cycles through the transport Q-machine consisting of in turn FIND-BOX, MOVE-TO-BOX
and PUSH-TO-GOAL subtask controllers and can be explained as follows. Once contact
is made with a boxside the ?SEE-GOAL perceptual cue determines that the robot is on the
wrong side for pushing. The PUSH-TO-GOAL controller then executes the REPOSITION
behaviour which moves the robot away from the box in a counterclockwise direction. If
the box is within view, determined by the ?BOX-DETECT cue, MOVE-TO-BOX brings the
robot into contact with a new position on the box providing it is unoccupied. The obstacle
avoidance behaviours keep a robot away from occupied positions on a boxside. If the box is
not within view then FIND-BOX executes and searches for the box. The PUSH-TO-GOAL
controller evaluates the new position and the cycle repeats.

The third and final phase is characterized by the box moving towards the goal position.
Once a net force sufficient to move the box occurs the box begins to translate and possibly
rotate. During the box movement phase a robot continuously determines if it remains on
the correct side for pushing using the ?SEE-GOAL cue. A robot located at the edge of the
pushing swarm may suddenly lose site of the goal and begin repositioning. The resulting
drop in pushing force may be sufficient to halt the box movement until another robot joins
the group effort. The dynamics of both the box and robots is such that the path taken by
the box towards the goal is seldom straight. Rather, box movement can be said to converge
towards the goal since its trajectory is the net result of several force vectors applied by
individual robots. A typical box path might begin at position P, proceed towards Ps and
then move to P: as illustrated in Figure 6.1.

Figure 6.7 is taken from a 45 second video segment in which six robots starting from

position P; moved the box a total of three meters ending on the goal line just behind
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Figure 6.7: Shown are six robots pushing an large box from its initial position three meters
towards a final goal. The mpeg video from which this sequence was taken is available at
http://www.cs.ualberta.ca/~kube/

position P;. On the whole, the time taken would depend on the size of the box and the
number of robots as explained in section 6.3.2, but the success of the approach was not

sensitive to the number of robots providing that the minimum of two robots were used.

Insensitivity to Some Types of Convex Object Geometry

To evaluate the controller’s sensitivity to object geometry, 38 successful trials were per-
formed using six robots and four different box types. The initial box, BOX A, tested was 42
centimeters square and large enough for two 18 centimeter robots on a side. A second 84
centimeter square box, BOX C, was built by extending the initial box with a second frame.
This increased the box dimensions, but used the same base on which the box slid along
the floor. A third 84 centimeter box, BOX B, was built on a new base which increased the
number of points in contact with the floor and therefore its sliding friction. The fourth box,
BOX D, was round with a diameter of 84 centimeters and the results of the 39 trials can be

summarized as follows:

e BOX A. A total of 10 trials were successful in pushing Box A from the initial position
to the goal positions in quadrant I (see Figure 6.10). The robots started from positions
Pi_s. In general as the number of robots increased the task took longer to complete
as the robot interference was high since the limited box side space created competition

among the robots.

e BOX B. A total of eight trials were successful in transporting Box B from its initial

position using 6 robots starting from position Py and ending at positions Ps_5.

e BOX C. A total of seven successful trials were recorded in which BOX ¢ was moved

to the goal area by six robots starting from positions P,_4. This box had the highest
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failure rate among the four boxes used and was due to a robot getting caught on the

frame.

e BOX D. A total of 14 trials using a round box, BoX D, and four to six robots were
successful in moving the box between two goal positions. The round box was the
last box built and experienced the most success of the four types tested. The lack of
corners provided the robots with a uniform contact surface to push against unlike the

square boxes which had sharp points at its corners.

Insensitivity to Changes in Goal Position

The initial success of the directed box-pushing task led to the following extension which
increased the task difficulty. Pictured in Figure 6.8 are two goal positions labelled P4 and
Pg. The robots begin from position Py and goal-light at position P4 is illuminated causing
the robots to push the box towards P4. Once reached the goal-light at P, is turned off
and the goal-light at Pp is switched on. The robots reposition around the box and begin
pushing towards the goal at Pg. Figure 6.9 is a sequence of three images taken from the a
video segment in which two goals were used. A total of eight successful trials using three

different goal positions were recorded using a single box.

6.3.2 Secondary Results

In the following discussion some interesting secondary results are presented which compare
execution times as a function of system size in the first experiment and as a function of object
geometry in the second experiment along with the following caveat. In experiments involving
physical mobile robots, holding the many system variables invariant is near impossible
making comparisons based on execution runtimes tenuous at best. In this experimentalist
approach to robotics “things change” is axiomatic. Coefficients of friction change because
the floor gets dusty, force is reduced because batteries run down, motors wear reducing
repeatability, wheels slip in response to changes in load, and the list goes on. However, in

general there still seems to be a trend in the data making it worth presenting.

System Size

The mean execution time for moving the smaller 42 centimeter square box from its initial
position to the goal positions were compared for two to six robots as shown in Figure 6.10.
Starting positions for the robots were varied and included P, 3_s with the final end position

of the box recorded for timing to be Ps ;. Indicated in each plot are the number of trials
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Figure 6.8: A schematic of the lab environment used to test the transport of a round box
between two goal positions. Shown are the initial positions of the five robots and the box.
The first step is to move the box from its initial position to the goal located at P4. The
second step moves the box from P4 to position Pg. The goal positions are indicated with
a bright spotlight positioned at a height of 2.5 meters. To sequence the task steps the
spotlight at position Pj4 is turned off and the light at Ppg is turn on when the box reaches

Py.

used to compute the mean. The large variance in runtimes was due to robot start positions
P, 5 which could result in long repositioning phases 3. In general, execution times increased
as a function of the number of robots due to the increase in robot interference competing

for the limited box space. A much larger number of trials is needed for any statistical

conclusions.

Convex Object Geometry

Our previous simulation study had shown that in a box-pushing task performance, as mea-
sured by completion time or success rate, * could be improved if stagnation recovery be-
haviours were added to the controller to avoid deadlock from occurring when the robots

applied an equal distribution of forces to the box [35]. What was also noted was the sudden

3Both the maximums indicated in the case of three and five robots occurred from Ps.
‘Success was defined to be the movement of the box by 200 units in under 2000 simulation timesteps.
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Figure 6.9: Shown are five robots pushing a round box from its initial position first to-
wards a goal-light in the right of the picture and then towards a goal-light on the left
of the picture. The mpeg video from which this sequence was taken is available at
http://www.cs.ualberta.ca/~kube/

drop in performance as the size of the system grew for controllers without stagnation recov-
ery. This was conjectured to be due to the number of robots able to fit on a box side. To
test this hypothesis, simulations were run for the same behaviour controller and the robot
diameter (RD) was tested for RD = 10 and compared with the results using RD = 20. The
results are shown in Figures 6.11 and 6.12. If the diameter of the robots were reduced, for
a fixed box side, the performance increases, which leads to the conjecture that for a given
task, performance is dependent on some yet to be determined task density function.

In Figure 6.13 the mean execution times were compared for the four box types and six
robots starting from the same initial position. In general, it appears that as the available
contact space increases more robots are able to participate in pushing at the same time
reducing the time taken to complete the task. However, due to the sparseness of the data

additional experiments would allow statistical conclusions.

6.4 Summary

After reviewing the videotaped experiments one is reminded of the antagonistic forces
present in ant group transport[48], yet the end result is invariably transport of the item
back to the nest. In our multi-robot box-pushing experiments the path taken to the goal
is neither optimal nor continuous, and it is not the same as one would get in a centralized
controller, but rather it is a feasible solution to the problem given the limited abilities of
the individual robots. There are even temporary setbacks as the box is moved incorrectly.
At times the robots can lose contact with the box, be blocked by other robots, or be forced
to relocate as the box rotates.

In the results presented, it can be said that in all cases the robots move the box towards
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Directed Box-Pushing of a 42 cm box by 18 cm robots
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Figure 6.10: The mean execution time of moving a 422 centimeter box 2.5 meters towards
a goal position (P5, P6, P7) as a function of the number of robots. For each plot the
number of trials as well as the minimum and maximum run times are indicated. A boxside
is approximately twice the robot’s diameter and increasing the number of robots increases

the robot interference as they compete for the limited space available.
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The Effect of Doubling Box Contact Space on Task Success Rate
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Figure 6.11: The effects of doubling box contact space on the task success rate. The results
from two simulation experiments in which the only parameter changed was the robot’s
diameter, with the size of the box side fixed at 90 units. Robot diameters of 20 and 10 were
compared for a task in which a box was moved 200 units from its initial position. Each data
point is the average of 25 simulation runs each with a different random initial configuration.
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The Effect of Doubling Box Contact Space on Execution Time
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Figure 6.12: The effects of doubling box contact space on execution time. The resuits from
two simulation experiments showing execution time versus system size. The only parameter
varied was the size of the robot; the size of the box side was held constant at 90 units.
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Directed Box-Pushing by 6 Robots and 4 Box Types
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Figure 6.13: The mean execution time of moving a box towards the goal as a function of
box type. Box A is a 42 centimeter square box, Box B and C are 84 centimeter square boxes
with B having a higher sliding friction than Box C, Box D is an 84 centimeter diameter
round box. All box types are approximately the same weight and can be pushed by at
least two robots. For each plot the number of trials as well as the minimum and maximum
run times are indicated. All trials used six robots. Robot interference is minimized by
increasing the available contact space around the box.

the goal; however, there is ample room for improved performance once the robot parameters
are fine tuned. For the box-pushing transport task the decentralized approach to control is
insensitive to system size, some types of convex object geometry and changes in the goal

positions. Statistical conclusions can be better supported with more experiments.
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Chapter 7

Discussion: From Social Insects to
Collective Robots

Visualize a room in which a group of robots sit in one corner and a large box sits
approximately center with a spotlight placed in another corner. The robots begin moving
and soon disperse into the room. Soon after the box-light comes on the robots begin moving
towards it and eventually come into contact with a side. Then imagine some of the robots
beginning to reposition themselves by moving around the box in a counterclockwise fashion,
while others which are correctly positioned begin to push the box towards the spotlight. The
box begins to move in the direction of the lit corner of the room, but the path is not quite
straight and veers to the right and the box movement stops. Again some of the robots begin
their counterclockwise repositioning and assume a new position more correctly oriented for
pushing. Finally, the box begins to move in a new direction towards the goal-light.

Once the box reaches the goal position the spotlight turns off and a second goal light
on the opposite corner of the room is illuminated. Now all the robots begin repositioning,
eventually making it to the opposite side and begin to once again push the box towards the
new goal destination. Robots leave the task, seemingly at random, and wander off only to
return and join the group effort in transporting the box towards its goal. The experiments
are repeated, this time with boxes of different shapes and sizes and the number of robots
in a group are varied. Our video recordings shows, and those that have seen them agree,
that the robots make a coordinated effort in pushing the box in a direction that converges

towards the indicated goal position.
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7.1 Coherent Behaviour without Explicit Cooperation

The results show in the many successful trials of directed box-pushing that a coordinated
group effort is possible without use of direct communication or robot differentiation. Rather
a form of indirect communication takes place through the environment by way of the ob-
ject being manipulated. For directed box-pushing, the control strategy was shown to be
insensitive to system size, some convex object geometries and changing goal positions. The
results of experiments with physical robots presented here, adds support to Arkin’s sim-
ulation studies which showed that cooperation in some tasks are possible without direct
commurication [4].

In Arkin’s study, the task of retrieving objects in the environment was decomposed
into three subtasks analogous to the transport task presented here. Although in Arkin’s
study robot differentiation was used, the results presented here are complimentary in their
support of the hypothesis that cooperation in some tasks is possible without communication.
The present study expands on the previous simulation work by indirectly considering the
dynamics involved in box manipulation.

The data presented in this study also agrees in certain aspects with other studies in
which stigmergy is used as the task coordinating mechanism. Stigmergv as proposed by
Grassé is a model used to explain the regulation of building behaviour in termites [26]. Stig-
mergy theory holds that transitions between a sequence of construction steps is regulated
by the effect of previous steps. In more general terms, the theory has been used to explain
and describe the process by which task activity can be regulated using only local perception
and indirect communication through the environment as applied to algorithms for coordi-
nating distributed building behaviour [70] and foraging tasks by multi-robot systems [11].
In the box-pushing task the results support the use of indirect communication through the
environment as proposed by stigmergy theory. However, Downing and Jeanne found that
stigmergy theory does not explain the use of additional cues, not dependent on previous
steps, in regulating task execution in nest construction by paper wasps [19]. For collec-
tive robotics this means that perceptual cues can also be formed from stimuli other than
that which are immediately available from the task itself. For example, in directed box-
pushing the box-detection cues are adaptive to the ambient light level of the environment
by specifying box-detection as a multiple of the ambient light level.

Stigmergy theory also does not account for the multiple cues proposed in this study

for creating transition cues based on the use of orthogonal sensing and described in Chap-



ter 4. The use of multiple cues for controlling transitions between the subtask controllers
is supported by studies on wasp nest construction in which a processing hierarchy reduces
the number of cues that need to be evaluated at the same time [20]. In a similar manner
perceptual cues, used to specify transitions between subtask controllers is a hierarchical
method of evaluating an action control decision. Hence, stigmergy theory would have to be
expanded to include both additional and multiple cues which may adapt to the environment
as proposed in [19].

Coherent behaviour from a collective system of robots must also account for task resource
management. Coordination improves by minimizing antagonistic actions that can result
from conflicts over limited resources. In box-pushing antagonistic forces are mitigated by
increasing the available boxside space while enforcing a noninterference behaviour. The
data on transporting small boxes versus large boxes by the same number of robots confirms
the observations made during task execution. For box-pushing, this result implies that
group size is important for a fixed resource size in a given task and agrees with the result
obtained by Beckers et al. [11] for a foraging task in which one to five robots were used
to gather 81 objects randomly distributed in their environment then placing them into one
large pile. Their study showed that group size was a critical factor in determining task
efficiency and that increasing the number of robots used without increasing the available
task resources increased task execution time due to the increase in inter-robot interference.
In general, increasing task resources minimizes inter-robot interference. Thus, reducing
robot interference increases group coordination and consequently leads to a more efficient
coherence as demonstrated by the decreasing execution times.

The coherent behaviour displayed for the transport task can also be attributed to the
common goal shared by the individual robots along with an identical set of interaction rules.
This is the same effect noted by Seeley while considering the collective decision making in
honey bees [61]. As an explanation for how a swarm of honey bees could reach the same
decision on the profitability of several food sources, Seeley hypothesized that each bee’s
nervous system was calibrated in a similar manner. Since all members of the colony share
the same rules for adjusting response thresholds, the bees can operate independently yet
generate a collective response to various nectar sources. Thus common goals and common
rules of interaction allow a decentralized decision making process to produce a coherent

global response.
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7.2 Research Contribution

The central thesis in this research was that coherent behaviour in some tasks, namely
collective box-pushing, does not require explicit mechanisms of cooperation. Rather, a
decentralized system of asynchronous machines could perform a multi-step task in a coordi-
nated fashion, given a common set of operational rules (Q-machines) and a decision process
(perceptual cues) that depends on local information only. This synergistic approach was
demonstrated by way of a system of multiple mobile robots and a common collective task.
The contribution is the evidence in support of the hypothesis that some coherent behaviour
does not require explicit mechanisms of cooperation. During the course of investigation a
simple task-programming architecture, called @Q-machines, was developed which included a
novel framework, called perceptual cues, that offers a new approach to environment-specific
task modelling in collective robotics.

The methodology of modelling tasks as Q-machines, is similar to the well established
theory of sequential machines, and in multi-robot systems allows for tasks to be described
as a sequence of steps and control behaviours designed to accomplish each step. Given
that the environment in which the system functions can be controlled, the methodology
results in a deterministic system behaviour. The modelling of the task to be accomplished
as a hierarchy of state machines allows for alternate control mechanisms to be employed
at each level. This modularity allows for nonreactive control techniques to be used along
with reactive ones. Most existing systems integrate task-level knowledge with tool-level
knowledge in a way that does not permit this separation during implementation.

The design approach advocated here is analogous in some ways with task specific solu-
tions by social insects. In both the robot and insect cases, a solution must consist of two
parts: the environment and the agent with its environmentally tuned sensing systems. The
solution is therefore environment-specific as well as being task-specific. This is congruent
with the idea that task-specific robotics will prevail over the more general multiple task do-
everything-for-you robotics typically presented by the media and held by some roboticists.

The second contribution lies in the use of the kinesthetically-driven stagnation recovery
behaviours. Task progression depends on the ability of the system to automatically solve
problems relating to system deadlock or stagnation. In Q-machines, stagnation recovery
behaviours make use of kinesthetic orientation to solve the local minimum problem of dead-
lock in reactive control. The method specifies the stagnating condition in terms of a locally

sensed stimulus. The resulting action used to break the deadlock condition makes use of
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either fixed action or random motion patterns like those found by Sudd and used by ants
during prey transport [66, 67).

This dissertation also complements the existing research studies by examining another
of the three typical multi-robot tasks. Foraging, a task in which objects are retrieved, can be
accomplished using a single robot. Multi-robot studies have shown that this task can also be
accomplished without centralized control or explicit communication, but that some limited
forms of direct communication can improve execution times [42, 3]. Formation marching, a
task in which robots move in a fixed pattern, has only been studied in simulation except for
very simple two robot cases. Box-pushing, the task studied here, has previously only been
considered in the two robot case with robots assuming unique left/right functional roles
in task execution. Both direct communication [58, 43] and indirect communication [18]
using two robots has been studied. Simulation studies for the transport task which utilized
decentralized control have also been presented in the literature [65]. For the box-pushing
task presented here, data has been collected for over 100 trials with a physical system of
robots making this study the largest exploration to date of this task domain.

A novel framework is used to specify transitions in sequential subtask controllers. Tran-
sitions are specified using locally sensed information. By using both state information and
perceptual cues, tasks that require sequential execution are possible. The use of action-
oriented perception, also referred to as selective perception, further demonstrates how a
specific stimulus in the environment can be used in the action selection process as also ar-
gued by Horswill in [29]. The approach presented in this dissertation for transition control is
closely analogous to “trigger events” used in the temporal coordination of perceptual algo-
rithms, called finite state acceptors, proposed by Arkin and MacKenzie [6]. The difference
lies in how the transition cues are specified. In the proposed framework, cues are specified
using orthogonal local sensing only, whereas in finite state acceptors transitions occur from
a variety of conditions including elapsed time, algorithm completion, algorithm failure, or
termination of a motor activity. The taxis-based model used for action is somewhat analo-
gous with Agah and Bekey’s Tropism System Cognitive Architecture in which robot actions
are based on likes and dislikes [1). Their system allows simulated colonies of robots to learn
relationships between task performance and perception, success and failure.

Finally, also gathered was empirical evidence that supports the notion of a task density
function which relates the number of robots to the available task resources. Like group
transport behaviour where ants can carry prey in excess of the sum of individual pieces by

distributing their efforts, the mass effect of many robots on the box-pushing task coupled
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with simple obstacle avoidance rules allow resources to be distributed. The resulting distri-
bution of robots along the box perimeter coordinates the individual pushing actions towards
the common goal position. The results obtained in this investigation will contribute to the

body of knowledge in the relatively young field of collective robotics.

7.3 Further Study

Three areas for further exploration are: system reliability, learning and perceptual expan-
sion. First, the approach to controller design although procedural is not automatic and of
interest for further study is a technique for comparing different control designs for the same
task. Reliability theory is one possible tool for such a comparison. Second, in order for
systems to be truly autonomous they must learn to adapt. Two possible avenues for explo-
ration are the adaptation of the perceptual cues and the primitive actuation behaviours.
Finally, the current system made use of the minimal number of sensors thought needed for
the task; however, still to be explored is the relationship between system performance and

the amount of information provided by the perception system.

7.3.1 System Reliability

The experimental objectives are not to demonstrate optimal, but rather feasible solutions to
collective tasks. In doing so, the aim is to provide a means of making relative comparisons
among competing solutions highlighting the variables that effect system reliability. When a
task is decomposed into an aggregation of behavioural actions performed by many redundant
simple robots, how can comparisons between alternative decompositions in terms of their
reliability be made? Herbers [27] has shown, using reliability theory, how a large system
of redundant behaviour sequences in ant colonies can increase system reliability in the
foraging task. Five foraging strategies used by ants to find food were compared by modelling
each strategy’s system structure as the probability that an individual behavioural act is
performed correctly. Thus the probability of food being returned to the ant’s nest can be
calculated and compared for each strategy. In doing so, Herbers was able to show that
the foraging strategy of group hunting was more likely to be successful in retrieving food
when compared to the strategy of foraging alone. This was due, in spite of the fact that
the probability of performing an individual behavioural act correctly was low, to the highly
redundant series-parallel foraging strategy employed in group hunting. In a similar manner,
can this approach be mapped to a redundant set of robots and used to compare alternate

box-pushing task decompositions?
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7.3.2 Learning to Adapt

Also of interest, for future study, is the manner in which a perceptual cue or primitive
motion can change over time or be adaptive to changes in the environment and task re-
quirements. Entomological studies of nonlinear sequences of behaviours suggest that cues
used to regulate the latter stages of nest construction vary in response to a changing envi-
ronment [20]. In a manner similar to the way the box detection cue was varied to adapt
to the ambient light found in the robot’s environment, the thresholds used in a perceptual
cue could be adjusted based on a reinforcement signal, as could the currently fixed motion
primitives. For example, both obstacle avoidance cues and pushing behaviours could be

adapted over time as follows:

e Learning to See. Currently two fixed threshold values are used in obstacle avoidance.
If a robot could vary the threshold based on the number of collisions over a given time,
then the avoidance behaviour would learn to adjust the threshold to an optimal value
for a given environment. And if the environment changed over time then the threshold
values would adjust. To test this idea, the robot would need an array of contact sensors
to provide the negative feedback for each motor action. An initial threshold value for
obstacle avoidance would allow the robots to detect obstacles within a fixed distance
of the robot. If 2 movement resulted in a collision, as detected by the contact sensors,
then the threshold would be adjust downward. This would have the effect of varying

the detection field around the robot until an optimal collision free value is found.

o Learning to Act. Pushing behaviour currently makes use of a fixed motion primitive
the result of which is a simple decision on whether to push or not to push. However,
a feedback stimulus is available which would allow a robot to assess the effect of each
discrete pushing action. That stimulus is the intensity of the goal indicator light. A
successful push from the robot’s point of view, is one that brings the box closer to the
goal as indicated by an increase in signal intensity from the goal direction sensor. If
the angle of pushing (currently perpendicular to the box) was adjustable and made a
function of the position of the signal peak within the field of view of ?SEE-GOAL, then

it might be possible to learn optimal pushing angles.

7.3.3 Perceptual Expansion

While viewing the video taped experiments, one immediately notices that robots often leave

the box and seemingly wander off. Since box detection is limited to two forward pointing
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light sensors, repositioning behaviour often moves the robot so that its view of the box is lost.
If the number of sensors were increased so that box detection became omnidirectional then
one would assume that the robots would spend less time searching for the box. Consequently,
the time taken to transport the box to the goal should decrease thereby increasing the system
performance. This argument could also be made for the obstacle avoidance sensors, which
currently are also two forward pointing sensors. Although Shannon’s information theory
states that ambiguity decreases as the amount of information increases it is not clear how
an increase in the amount of sensing information would translate to an increase in system

performance resulting in “better” control decisions.

7.4 Epilogue

By way of the social insects, nature is showing us how to build decentralized and distributed
systems that are autonomous and capable of accomplishing tasks through the interaction of
many simple and highly redundant agents. From their local perception to the mass effect
that results in a global action these biological systems serve to elucidate the mechanisms
thought to be at the heart of self-organizing behaviour. With their rich source of inspiring
examples, social insects serve as nature’s proof that solutions to complex tasks in collective

robotics may in fact be found underfoot.
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Appendix A

Collective Robotics Hardware

A unique modular system for building mobile robots was developed during the course of the
described research. The system was also used to support an undergraduate course in Mobile
Robotics taught within the Department of Computing Science and has been successfully
licensed by the University of Alberta to a commercial partner. Shown in Figure A.l is the

system block diagram of a box-pushing robot.

Electronic Control Modules

In order to simplify the robot’s electronics, control functions have been packaged into mod-
ules and fabricated on printed circuit boards. Each robot control system is built from an

assortment of modules from the following list:

e 68HC11 Microcontroller. This single board computer from New Micros Inc. is
based on the popular Motorola 68HC11 with the addition of an embedded Forth oper-
ating system/language/compiler. The board is complete with RS232 communications,
expandable RAM and the UA-ROM BIOS/Utilities/Tools extension.

e DC Power Regulator. Converts battery voltage to regulated +5 VDC and provides

several +5 VDC connections to other modules.

e DC Power Interconnect. A DC power expansion module with power indicator
LED, 11 45 VDC and 3 +Battery connections, and expansion connector. The module

provides a convenient source of regulated voltage.

e Motor Control. Provides a digital interface to 2 DC motors (50V, 3A max). Each
motor has a direction and enable control line allowing for Pulse Width Modulation

(PWM) speed control. Each motor has forward/reverse direction indicator LEDs.
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Figure A.l: A system block diagram of a box-pushing robot illustrating the use of the
electronic modules.

¢ Infrared Control. Provides on/off control of 4 infrared emitter/detector pairs used

in obstacle detection.

e Sensor Pull-Up Resistors. A 47K-Ohm pullup resistor module allows for 8, 2-wire,
sensor connections.
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DC Power Regulator

Functional Description

The DC Power Regulator converts input battery voltage (+/-B) to regulated
+5 VDC output. The battery voltage must be > 7.5 VDC, with a one ampere

output current available.

—{ +B +5/gnd p—fiea
——] -B
*——+5 DCPowerReg y5pmdi-n o

S/gnd }—R—e
+5‘p

1]

Electrical Description
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DC Power Interconnect

Functional Description
A DC power expansion module with power indicator LED, 11 +5 VDC and 3
+Battery connections, and expansion connector. The module provides a conve-

nient source of regulated voltage.

S

+-BAT  +BAT
-BAT
+5

W

@3] BAT/GND/S
+S/gnd -~ +S/gnd

R

(11 outputs)
Electrical Description
LED BAT A~ A "\ "\ LED+5
R1 :,RZ
+ +$
PIa P2 P9 PIO l—ﬂ 7B
ala
O
. )

BAT [O%
GND
K &8
P11 [41]
P19 P21
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Motor Control

Functional Description

Provides a digital interface to 2 DC motors (50V, 3A max). Each motor has a
direction and enable control line allowing for Pulse Width Modulation (PWM)

speed control. Each motor has forward/reverse direction indicator LEDs.

ammee  BATKNDSS
—ani EN1 -
—{PHL  Moter !
— ﬁ Centrel
o PH2 M2 -

Electrical Description
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IR Control

Functional Description

Provides on/off control of 4 infrared emitter/detector pairs used in obstacle

detection.

(4 pairs)
E 57

IR Coutrol
——&{ enable 0,4 4>

Electrical Description

IR Control
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Sensor Pullup Resistors

Functional Description

A 47K-Ohm pullup resistor module allows for 8, 2-wire, sensor connections.

SN,
.
.
rs .
p——

Electrical Description

+5
1
47‘1?)1(9 y — o
B 7 9
s1
8 10

) | -
1 2 3 4 5 6

=20 00 0 00 J 0

Ol 02 03 04 O0O5 06 07 08
Pull-Up Resistor 47K Module
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