
A Human-in-the-loop Approach to Generate
Annotation Usage Rules

by

Mansur Gulami

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Mansur Gulami, 2022

Abstract

Frameworks and libraries provide functionality through Application Program-

ming Interfaces (APIs). Developers might misuse these APIs, because the

library’s usage rules are often implicit, undocumented, or not readily available

in the form of checkable rules. At the same time, manually writing usage

rules for each API is time consuming. Therefore, researchers have proposed

various techniques to automatically mine API usage rules. However, mined

rules are not always accurate, resulting in false positives when used for misuse

detection.

To overcome these trade-offs, in this thesis, we combine rule mining and

manual rule authoring approaches by creating a human-in-the-loop API us-

age rule generation pipeline. Based on our industrial collaborator’s needs, our

work focuses on generating annotation-based API usage rules for MicroPro-

file, a framework designed for building microservices using Enterprise Java.

We use an existing frequent itemset-based pattern-mining technique to mine

MicroProfile annotation usage rules. We contribute a GUI-based rule valida-

tion tool (RVT) that represents rules in an easy-to-read English-like syntax

and allows experts to browse through the mined rules to validate (accept, edit,

discard) them. Our pipeline then automatically generates checkable API usage

rules from the confirmed rules, which can then be used to detect misuses or

to enhance documentation.

We verify the correctness of the automatically generated static analysis

checks by evaluating our misuse detector against 517 projects. Our results

ii

show that our misuse detector can find misuses with 100% recall and 84%

precision.

To assess the usefulness of having mined rules as a starting point for rule

authoring and to assess the usability of RVT in validating rules, we perform a

user study with four MicroProfile API experts where they validate 18 mined

rules. The results show that the API experts find having starting points useful

when it comes to rule authoring. Additionally, the experts unanimously agree

on the usefulness of having a dedicated tool for authoring rules.

iii

Preface

Chapters 3-9 of this thesis were published at the proceedings of the

CASCONxEVOKE 2022 conference.

Paper: Mansur Gulami, Ajay Kumar Jha, Sarah Nadi, Karim Ali and Yee-

Kang Chang, Emily Jiang. A Human-in-the-loop Approach to Gener-

ate Annotation Usage Rules: A Case Study with MicroProfile. In

Proceedings of Proceedings of the 32nd Annual International Conference on

Computer Science and Software Engineering (CASCON’22).

This research was partially funded by IBM CAS Canada.

iv

Acknowledgements

First, I have to thank my supervisor, Dr. Sarah Nadi, for her guidance and

support throughout my graduate studies. Her impeccable attention to detail

in her feedback and mentorship skills have helped me to reach new heights. I

would also like to thank our close collaborator Dr. Karim Ali for his valuable

feedback.

This thesis would not be possible without our collaborators Emily Jiang,

Yee-Kang Chang and Vijay Sundaresan from IBM. Finally, I would like to

thank my colleague and collaborator, Ajay Kumar Jha, for offering tons of con-

structive feedback and overall, always being ready to help whenever I needed.

v

Contents

1 Introduction 1
1.1 Thesis Contributions . 4
1.2 Thesis Organization . 5

2 Background 6
2.1 Microservices . 6
2.2 MicroProfile . 8
2.3 Annotation Usage Rules . 9
2.4 Pattern mining . 10

2.4.1 Frequent itemset mining 11
2.4.2 Candidate annotation usage rule mining 12

3 Related Work 20
3.1 Mining API Usage Rules . 20
3.2 Formats for Encoding API Usage Rules 23

4 Rule Validation Tool 28
4.1 RVT DSL . 28

4.1.1 Rule Encoding . 28
4.1.2 Our RulePad Extensions 30

4.2 User Interaction with RVT . 32
4.2.1 RVT GUI . 32
4.2.2 Rule Validation Process 33

4.3 RVT: Implementation Details 34

5 Misuse Detection 35
5.1 Misuse Detector Tool . 35
5.2 Misuse Detector Evaluation 37

5.2.1 Evaluation Setup . 38
5.2.2 Results . 38
5.2.3 Summary . 42

6 User study 44
6.1 Experiment Setup . 45

6.1.1 Tutorial and setup. 45
6.1.2 Live experiment. 45
6.1.3 Exit survey. 46
6.1.4 Interviewer involvement 48

6.2 Participant Recruitment . 49
6.3 Results . 50

6.3.1 RQ1: Expressiveness of the extended RulePad DSL in
RVT . 50

vi

6.3.2 RQ2: Usefulness of RVT in modifying and validating
candidate rules . 53

6.3.3 RQ3: Effectiveness of the mined rules in alleviating the
difficulties of writing usage rules 55

7 Threats to Validity 57
7.1 Internal validity . 57
7.2 Construct validity . 58
7.3 External validity . 58

8 Discussion and Implications 59
8.1 Generating API usage rules 59
8.2 Facilitating rule validation . 60

8.2.1 Current state of RVT 62
8.3 Detecting misuses . 63

9 Conclusion 66

References 68

vii

List of Tables

5.1 The 12 rules that we use in the evaluation of the misuse detector.
Note: “o.e.m” is the abbreviation of “org.eclipse.microprofile” 40

5.2 A complete breakdown of the misuses found after our evaluation
process. Table 5.1 shows the definitions for each rule. TP - true
positive, FP - false positive . 41

6.1 The candidate rules mined by Nuryyev et al. [62] , encoded
in the extended RulePad format (explained in Section 4.1.1).
We remove fully-qualified names for better readability. Note
1: Each rule given in this table is the RulePad encoding of a
rule with the same id number given in the Listing 2.1. Note 2:
The five rules that were not used during our user study due to
expert unavailability are greyed out 47

6.2 Number of candidate rules mined for each MicroProfile specifi-
cation [62]. One rule belongs to both GraphQL and OpenAPI
specifications, hence the total is 23, not 24. 49

6.3 Information about the participants (P1-P4) of our study. Please
note that “Experience” column specifies the years of experience
in their current team . 50

6.4 The rules that the participants have confirmed during our User
study. We remove fully-qualified names for better readability.
Note: Each confirmed rule given in this table is the confirmed
version of a candidate rule with the same id number given in
the Table 6.1 . 51

viii

List of Figures

1.1 An example illustrating the usage of the MicroProfile @Live-
ness annotation. 2

1.2 An overview of our human-in-the-loop rule generation approach. 4

2.1 A comparison of monolithic and microservices architectures . . 7
2.2 MicroProfile specifications as of version 5.0 [52] 8
2.3 An example illustrating the usage of the MicroProfile @Counted

annotation [17]. 9
2.4 An example illustrating the usage of the MicroProfile @Simply-

Timed annotation [75]. 9
2.5 The definition of the @Override annotation [64]. 10
2.6 An example demonstrating what transactions are extracted from

source code. As we can see from the greyed out parts, itemsets
related to the class are present in both transactions 13

2.7 A candidate rule mined by Nuryyev et al. [62] 15

3.1 The original GUI of RulePad. Note: we removed blank sections
from the screenshot for better visibility [48] 25

3.2 A comparison of a rule written in both RulePad and Datalog . 27

4.1 An example illustrating the RulePad rule for the mined candi-
date rule shown in Figure 2.7. 30

4.2 The main GUI elements of our Rule Validation Tool (RVT).
Features 1–6 are detailed in Section 4.1. 32

5.1 An overview of our Misuse Detector 37
5.2 A sample report generated by our misuse detector. 37

6.1 Understandability of candidate rules 53
6.2 RB1 results regarding having a starting point for rule authoring.

RB2 results regarding usefulness of having a dedicated rule val-
idation tool. RB3 results for levels of difficulty of editing rules
using RVT. 54

8.1 Autocompletion suggestions for the keyword “Inject” suggested
by RVT . 62

8.2 The “best practice” label in RVT 62
8.3 Code examples for demonstrating the limitations of the misuse

detector . 65

ix

Chapter 1

Introduction

Java annotations provide meta-information about the program elements that

they annotate. For example, the @Deprecated annotation indicates that the

annotated program element is no longer supported [20]. Annotations are

widely used in various types of Java applications including enterprise Java ap-

plications [34, 92]. Major Java enterprise frameworks, such as Spring [78] and

MicroProfile [51], facilitate the development of enterprise applications mainly

through annotations.

MicroProfile is a collection of specifications that provides Application Pro-

gramming Interfaces (APIs) for client developers to create applications with

a microservice architecture (“small, autonomous services that work together”)

[51, 59]. For example, the MicroProfile Health specification provides mech-

anisms to check whether a service is started, ready to accept requests, or

live [53]. MicroProfile provides these functionalities mainly through annotation-

based APIs. For example, in Figure 1.1, the @Liveness annotation is used

to check whether the authorization service is live [55]. There are different

runtimes that support MicroProfile specifications such as Open Liberty [63],

Helidon [26], and Payara [65].

Similar to how library API calls have usage rules that determine correct

behaviour (e.g., hasNext() must return true before invoking next() on an

Iterator object to avoid throwing a NoSuchElementException [82]), anno-

tations also have usage rules. For example, as shown in Figure 1.1, the target

class of the @Liveness annotation must implement the HealthCheck interface

1

1 @Liveness

2 public class AuthServiceHealthCheck implements HealthCheck {

3 @Override

4 public HealthCheckResponse call() { /*omitted*/ }

5 }

Figure 1.1: An example illustrating the usage of the MicroProfile @Liveness

annotation.

to register for a liveness check [55]. Container management systems such as

Kubernetes use liveness checks to see if a particular container needs to be

restarted [16]. Violation of this usage rule will cause the liveness check to not

function properly, without showing any explicit error message. We refer to

such violations of annotation usage rules as API misuses, or misuses for short.

To prevent annotation misuses, we would ideally have access to checkable

usage rules and tools that allow automated checking of client code against

these rules. There are existing tools that enable writing annotation usage

rules and scanning a target codebase for misuses [18, 48, 95]. However, such

tools assume that the usage rules are already known and readily available

to encode, which is typically not the case [73, 85]. Additionally, manually

creating API usage rules from scratch requires human effort, which can be

difficult and time-consuming [45, 81].

To address the issues of writing API usage rules from scratch, researchers

have utilized pattern mining techniques [23, 47, 60, 82, 88]. Pattern mining

discovers usage rules in an automated fashion. The general idea is that if the

frequency of an API usage is more than a user-specified threshold, we consider

this usage as a pattern, and patterns are considered as usage rules [71]. Ac-

cordingly, deviations from a pattern are treated as misuses. Researchers have

mined different types of code artifacts, such as source code [60, 82, 88], API

change history [47], and execution traces [23], to extract rules automatically.

However, misuse detectors that directly use mined rules to detect misuses

suffer from low precision, with the state-of-the-art detector having only 33%

precision [82], which limits practical use. Reasons for the low precision include

the fact that mined patterns may represent common usages (i.e., idioms) in-

2

stead of rules. Mined patterns may also represent rules that are not entirely

correct (i.e., partially correct rule). A partially correct rule might have some

missing or extra elements.

Overall, manually writing API usage rules from scratch is time-consuming

but leads to more accurate rules; on the other hand, automatically mining

patterns relieves the manual burden but can lead to inaccurate rules. In this

thesis, our goal is to generate annotation usage rules by combining the ad-

vantages of these two approaches, while mitigating their disadvantages. Our

main idea is to introduce a human into the loop, but without the full burden

of authoring rules from scratch. We use mined, unverified annotation usage

rules (i.e., candidate rules) as starting points for human experts to create us-

age rules so that the process of creating rules will be less difficult and tedious.

At the end of this process, we have human-validated annotation usage rules

that can be directly used for detecting misuses or enriching documentation.

In this thesis, we describe our industrial collaboration with IBM to create

a human-in-the-loop approach for generating MicroProfile annotation usage

rules. Figure 1.2 shows an overview of our approach. We first mine candidate

rules from MicroProfile client projects (Step 1). We then present the mined

candidate rules to human experts for validation (Step 2). Finally, we automat-

ically generate static analysis checks from the confirmed rules; these checks are

used by our misuse detector to find annotation misuses in MicroProfile client

projects (Step 3). The previous work from our research group explores mining

candidate MicroProfile annotation rules using frequent itemset mining [62].

This thesis thus focuses on Steps 2 and 3 of the process, which are essen-

tial to combine the two worlds of automated pattern mining and manual rule

authoring.

Specifically, we focus on validating mined candidate rules and developing

a misuse detector encoded with the validated rules. To validate mined can-

didate rules, we develop a web-based tool, Rule Validation Tool (RVT). RVT

automatically encodes mined candidate rules in a domain-specific language

(DSL) and presents them to experts for validation. RVT allows experts to

not only validate the presented candidate rules, but also modify the ones that

3

Rule
Miner

Rule
 Validation

Tool

API Expert

Misuse
Detector

!

MicroProfile
Projects

Candidate
Rules

Confirmed
Rules Misuses

Step 1 Step 2 Step 3
(Section 2.4.2) (Chapter 4) (Chapter 5)

Figure 1.2: An overview of our human-in-the-loop rule generation approach.

are partially correct. After experts validate or modify the candidate rules,

RVT generates a final set of static analysis checks for the validated rules. We

also develop a misuse detector in the form of a Maven plugin that uses the

generated static analysis checks to detect annotation misuse in client projects.

We evaluate our misuse detector on 517 MicroProfile client projects and find

106 misuses, 6 of which are previously unknown misuses. Finally, we perform

a user study with four MicroProfile API experts from our industry partner

to assess the usability of RVT for validating and modifying mined candidate

rules. Our results show that API experts find that having a starting point for

rule authoring is useful, and also find our rule format to be easily understand-

able. Our participants also provide us with additional feedback on how to

improve RVT and its DSL for authoring rules, which we discuss in this thesis.

We publicly share the GitHub repository of our project [49] which includes the

source code of the tools and the user study artifacts.

1.1 Thesis Contributions

The following are the contributions we make in this thesis:

� A human-in-the-loop approach that combines pattern mining and specifi-

cation writing approaches to generate MicroProfile annotation usage rules.

� A web-based tool, RVT, that automatically encodes the mined candidate

rules and presents them to human experts for modification and validation.

� A Maven plugin for misuse detection of the validated rules.

4

� An experiment for verifying the correctness of the misuse detector.

� A user study involving four MicroProfile API experts to evaluate the use-

fulness of RVT.

1.2 Thesis Organization

We organize the thesis as follows. Chapter 2 introduces the necessary back-

ground information. In Chapter 3, we provide the literature review. We intro-

duce our human-in-the-loop approach in Chapter 4. Chapter 5 introduces our

misuse detector and its evaluation. Chapter 6 discusses the user study of RVT.

Chapter 7 and 8 present the threats to validity of our experiments and the

discussion of the implications of our results, respectively. Finally, Chapter 9

concludes the thesis.

5

Chapter 2

Background

This chapter introduces topics that are essential to understand the problem

that we discuss in this thesis. We start by briefly introducing microservices

and what MicroProfile is and how it facilitates writing microservices in Java.

We then introduce Java annotations and how MicroProfile makes use of them.

Finally, we discuss the existing pattern mining approach that we use in Step

1 of our pipeline (see Figure 1.2) to discover MicroProfile annotation usage

rules [62].

2.1 Microservices

Using a monolithic architecture is the traditional way of building applications

where components responsible for different functionalities (such as authentica-

tion, processing payments, and data input/output) are packaged into a single

executable [19]. A monolithic architecture has certain benefits such as easier

log tracing, since all the processing takes place in the same process. Deploy-

ment is also easy with monolithic applications since it requires only a single

executable to be deployed. However, there are certain disadvantages of devel-

oping applications in a monolithic style. Any minor change in the application

requires the re-deployment of the whole application. Scalability is another key

issue. Scaling individual components of the application becomes impossible

since everything is included in a single executable (e.g, a JAR or a WAR file

for Java applications). The application also becomes vulnerable to a single

point of failure; if any module has an error, the availability of the entire sys-

6

Figure 2.1: A comparison of monolithic and microservices architectures

tem is at risk. With very large monoliths, the development process can also

be challenging since all developers have to work with the same codebase.

A microservices architecture, on the other hand, is a way of building appli-

cations that consists of multiple smaller and independent services [59]. Each

service can have its own separate technology stack (i.e. the collection of tools,

frameworks, and databases an application uses) and can be deployed indepen-

dently of one another. The idea behind microservices is to split the monolithic

applications into smaller, manageable applications that can be handled indi-

vidually. Figure 2.1 illustrates the difference between monolithic and microser-

vices architectures. As we can see, in the monolithic style, all the components

are inside of a single application, while in microservices, the components rep-

resent independent services. Since the services are independent entities, mi-

croservices address the re-deployment, scalability, and a single point of failure

issues of the monolithic architecture.

There are several tools and frameworks that facilitate building microser-

vices in all major programming languages. For example, Spring Boot [78],

Micronaut [50], and MicroProfile [51] are popular Java frameworks that facil-

itate building microservices.

7

Figure 2.2: MicroProfile specifications as of version 5.0 [52]

2.2 MicroProfile

MicroProfile is a collection of specifications that provide client developers

with all the necessary APIs to facilitate the development of microservices in

Java [51]. MicroProfile extends Jakarta EE (formerly known as Java EE)

which is another collection of specifications for building monolith enterprise

applications in Java [27]. Jakarta EE provides specifications that enable client

developers to accomplish tasks such as building web services (JAX-RS) [32],

injecting dependencies (CDI) [8], binding XML documents or JSON input into

Java objects (JAXB and JSON-B) [33, 37], and persistence (JPA) [35]. While

Jakarta EE has specifications to provide all the functionalities above, it is not

an implementation. To build real applications, developers need to use a server

runtime that supports Jakarta EE specifications such as Open Liberty [63],

GlassFish [24], WildFly [89], or TomEE [6]. As powerful as Jakarta EE is,

modern enterprise applications require features such as distributed tracing,

resiliency, and monitoring, which Jakarta EE does not provide. MicroProfile

extends Jakarta EE to provide such specifications that are necessary for the

development of microservices applications.

Figure 2.2 shows MicroProfile specifications, including specifications from

8

1 @Counted(name="rate")

2 public int getCurrentRate() { return rate; }

Figure 2.3: An example illustrating the usage of the MicroProfile @Counted

annotation [17].

1 @SimplyTimed

2 public void run() { /* some processing */ }

Figure 2.4: An example illustrating the usage of the MicroProfile @Simply-

Timed annotation [75].

Jakarta EE. Each MicroProfile specification targets a specific functionality

such as Configuration, Health, and Metrics. MicroProfile provides these func-

tionalities mainly through annotations. Java annotations provide meta-information

about program elements such as classes, fields, and methods they annotate [3].

For example, developers use the @Override annotation on a method to indi-

cate that a class is overriding the annotated method from a parent class [64].

MicroProfile specifications contain annotations that client developers can use

to perform various tasks. For example, the MicroProfile Health specification

provides the @Liveness annotation to allow client developers to create and

expose custom health checks [53]. Another example is the MicroProfile Met-

rics specification that provides annotations such as @Counted and @Simply-

Timed [56]. The @Counted annotation tracks the number of invocations of the

annotated methods or constructors (see Figure 2.3), whereas the @Simply-

Timed annotation provides how long it takes for the invocations to complete

(see Figure 2.4).

2.3 Annotation Usage Rules

Frameworks or libraries provide annotations for different purposes such as de-

pendency injection, data binding, and code generation [92]. There are certain

usage rules that client developers must follow when using annotations. We di-

vide these rules into two categories: explicit and implicit usage rules. Explicit

usage rules are those explicitly defined by the framework or library developers

9

1 @Target(ElementType.METHOD)

2 public @interface Override { }

Figure 2.5: The definition of the @Override annotation [64].

when they declare an annotation. A compiler can automatically check explicit

usage rules. For example, framework developers can restrict the types of pro-

gram elements an annotation can be used on (e.g., fields or methods) using

the @Target annotation [84]. Figure 2.5 shows the definition of the @Override

annotation. We can see that the @Override annotation can only be used to

annotate methods. The compiler would complain if client developers use the

annotation on a different program element, such as a field.

On the other hand, implicit usage rules are associated with the way an

annotation is expected to be used in combination with other program elements

including other annotations. Such implicit usage rules are not checked by the

compiler. For example, to create a liveness check using MicroProfile Health, a

client developer needs to (1) create a class and annotate it with @Liveness,

and (2) the same class must implement the HealthCheck interface as shown in

Figure 1.1. If client developers do not implement HealthCheck, it will cause

the @Liveness annotation to be ignored, without showing any explicit error

message. In this thesis, we are interested in generating implicit usage rules for

MicroProfile annotations to prevent their misuse.

2.4 Pattern mining

Pattern mining seeks to automatically extract usage patterns or rules [71].

In our case, a pattern refers to a way an annotation is used in combination

with other program elements, including other annotations. The main premise

behind pattern mining is that a frequent usage represents a usage rule. We refer

to mined rules that are not validated by experts as candidate rules. Most of

the available pattern mining techniques to extract usage rules focus on control

and data-flow relationships between different method calls and the order in

which methods are invoked on objects [60, 83, 87, 88]. In contrast, annotation

10

usage rules do not require the annotations to be placed in a certain order.

To the best of our knowledge, the previous work from our research group

is the only pattern mining technique available for mining annotation usage

rules [62], which we use in this thesis to mine candidate annotation usage

rules for MicroProfile. We first provide background about frequent itemset

mining, which is the mining technique Nuryyev et al. use. We then explain

the details of their mining technique and the output it produces.

2.4.1 Frequent itemset mining

Frequent itemset mining is a data mining technique that is mainly used for

association rule learning to discover interesting relationships between items in

large databases [67]. Let I = {i1, i2, ..., in} be a set of n items, T ⊆ I be a

non-empty subset of I called a transaction, and D = {T1, T2, ..., Tm} be a set

of all transactions called a database. An itemset X refers to any subset of

transaction T . Each itemset has a support value supp(X), which shows how

often an itemset appears in the database, and is calculated with the following

formula:

supp(X) =
number of transactions containing X

total number of transactions

An itemset is considered a frequent itemset if the frequency of the itemset

in a database is at least the same as a user-specified support value referred

to as minimum support threshold (suppmin). For example, given I ={milk,

bread, butter} items in a store, we may have observed the following purchases

(a.k.a transactions) from five different customers: D ={{bread}, {milk, bread},

{milk, bread}, {milk, bread, butter}, {bread, butter}}. In this example, if we

consider a purchase that occurs at least three times (suppmin = 3) as a frequent

purchase, we have {bread} and {milk, bread} as frequent purchases or frequent

itemsets with supp({bread}) = 5 and supp({milk, bread}) = 3. These frequent

itemsets can be then used to generate association rules.

Association rules are relational rules of the form “If X, then Y ”, or more

precisely X =⇒ Y where X, Y ⊆ F and F is a frequent itemset. The “if” part

is called antecedent, and the “then” part is called consequent. Each association

11

rule comes with a confidence value. The confidence of the association X =⇒ Y

indicates the likelihood of Y being true given X is true. The confidence is

calculated with the following formula:

conf(X =⇒ Y) =
supp(X ∪ Y)

supp(X)

Minimum confidence threshold (confmin) refers to a user-specified confidence

value. The confidence value of an association rule needs to be at least the same

as the minimum confidence threshold to be considered as a candidate rule.

For the above frequent itemset {milk, bread}, we have conf(milk =⇒ bread) =

100% and conf(bread =⇒ milk) = 60%. If we consider confmin = 80%, we

will have only milk =⇒ bread as a candidate rule.

2.4.2 Candidate annotation usage rule mining

In this section, we explain the frequent itemset-based pattern mining approach

proposed by Nuryyev et al. [62] to mine candidate annotation usage rules for

MicroProfile. This work is the precedent to our work in this thesis and focuses

on mining candidate rules, but does not automate the rule validation and

misuse detection processes. The approach has three key steps: (1) extract

transactions from client projects, (2) mine frequent itemsets, and (3) generate

candidate rules. We now explain each step in detail.

Extract transactions from client projects. Since the semantics of using

annotations differ from using method calls, Nuryyev et al. [62] first investigate

what information or code facts should be tracked to mine annotation usage

rules. They first manually search for MicroProfile annotation usage rules in

the official documentation and various online forums and then extract code

facts from these rules. They identify eight different code facts or relationships

from their manual investigation:

� annotatedWith represents what annotation a program element has been an-

notated with. A program element can be a class, field, method, constructor,

and method and constructor parameters.

� hasType represents the data type of a field.

12

Figure 2.6: An example demonstrating what transactions are extracted from
source code. As we can see from the greyed out parts, itemsets related to the
class are present in both transactions

� hasParam represents a parameter of a method, constructor, or annotation.

� hasReturnType represents the return type of a method.

� extends represents a class extension.

� implements represents an interface implementation.

� definedIn represents an annotation parameter value that has been defined

in microprofile-config.properties.

� declaredInBeans refers to the bean declaration of a class in the beans.xml

file.

Once they establish the relationships that need to be tracked, they use

JavaParser [30] to extract transactions containing such relationships or items

from client projects. The granularity of a transaction is the existence of an

annotation on a program element. The approach generates a separate transac-

tion for each program element within a class (i.e. fields, methods and construc-

tors). For example, given the source code example shown in Figure 2.6, the

approach produces two transactions, one for the field and one for the method.

Note that the class information is copied into all the transactions generated

for all the program elements of the class to enable discovering relationships

between classes and their members.

13

It is possible that a client project uses a certain API extensively while other

client projects use the same API rarely. This can result in a skewed distri-

bution of API usage. Therefore, to normalize the API usage distribution, the

approach uses two different heuristics. First, the approach only takes a set

of unique transactions from each client project. For example, if a project has

three transactions [T1, T2, T3] where T1 and T2 have the same items, the

approach only selects T1 and T3 transactions. Second, the approach groups

transactions based on the annotations present in them. This results in smaller,

separate lists of transactions for each annotation. If a transaction contains

more than one annotation, the transaction will appear in more than one list.

For example, for the transactions {A, B, C}, {A}, {B, C}, and {A, C} con-

taining annotations A, B, and C, the approach would group transactions into

three separate lists as follows:

A: [{A, B, C}, {A}, {A, C}]

B: [{A, B, C}, {B, C}]

C: [{A, B, C}, {B, C}, {A, C}]

After the approach groups the transactions by annotations, the approach

mines frequent itemsets from each list separately.

Mine frequent itemsets. Nuryyev et al. [62] use the FP-Growth algo-

rithm [94] to mine frequent itemsets. They found that the FP-Growth al-

gorithm produces frequent itemsets in large quantities and most of these item-

sets are either not useful or very similar to each other. Thus, to eliminate

the redundant and not useful frequent itemsets, they perform three types of

optimizations.

� Remove redundant itemsets. They identify and keep all the frequent item-

sets without a proper superset (i.e., maximal itemsets) while filtering out

the other frequent itemsets. For example, given two frequent itemsets

A = {a, b} and B = {a, b, c}, the approach filters out A because B al-

ready contains all the items of A. They only keep the maximal frequent

itemsets to not lose any extracted information while reducing the number

14

1 {

2 "antecedent": [

3 "Class annotatedWith @ApplicationScoped",

4 "Class annotatedWith @Readiness"

5],

6 "consequent": [

7 "Class implements HealthCheck"

8]

9 }

Figure 2.7: A candidate rule mined by Nuryyev et al. [62]

of redundant frequent itemsets.

� Remove itemsets with no target API usage. Client projects generally use

APIs from various frameworks and libraries. Since the authors were inter-

ested in mining usage rules only for the target framework that is MicroPro-

file, they remove all the frequent itemsets that do not contain at least one

MicroProfile API.

� Remove semantically incorrect itemsets. The generated frequent itemsets

can contain any combination of the identified relationships. However, a

combination of the relationships that form a semantically incorrect frequent

itemset will generate meaningless usage rules. Therefore, the authors iden-

tify and remove semantically incorrect itemsets. The authors identify two

cases where a combination of relationships would form a semantically incor-

rect itemset. The first one is having a ‘‘@A hasParam B’’ without having

a ‘‘...annotatedWith @A’’. Annotation parameters require the presence

of the annotation, having the parameter without the annotation is syntac-

tically impossible. The second one is having a ‘‘Param value definedIn

Configuration’’ without having ‘‘...hasParam Param value’’. An an-

notation parameter’s value cannot be referenced in the configuration file if

the parameter itself is not present.

Generate candidate rules. From the remaining frequent itemsets, the au-

thors generate association rules, which they refer as candidate rules because

they have not been validated yet. These rules consist of an antecedent and

15

a consequent (also known as “if-then” rules). Figure 2.7 shows an example

candidate rule that this approach discovers [62]. Overall, the authors mine

23 candidate rules from 533 MicroProfile projects. Listing 2.1 shows all the

mined candidate rules. Chapter 4 discusses how we use these candidate rules

in our work.

Listing 2.1: The candidate rules mined by Nuryyev et al. [62] in the original
JSON format. We remove fully-qualified names for better readability

[{

"id": 1,

"antecedent": [

"@APIResponse hasParam Param_responseCode:String",

"Method annotatedWith @APIResponse",

"Class annotatedWith @Path",

"@APIResponse hasParam Param_description:String",

"Method annotatedWith @Operation"

],

"consequent": ["@Path hasParam Param_value:String"],

},{

"id": 2,

"antecedent": [

"Method annotatedWith @SimplyTimed",

"Method hasParam Param_String"

],

"consequent": ["@SimplyTimed hasParam Param_name:String"]

},{

"id": 3,

"antecedent": [

"Class annotatedWith @Entity",

"Class annotatedWith @Type",

"@Schema hasParam Param_name:String",

"@Schema hasParam Param_title:String",

"Class annotatedWith @Schema"

],

"consequent": ["@Entity hasParam Param_name:String"]

},{

"id": 4,

"antecedent": [

"Class annotatedWith @ApplicationPath",

"@LoginConfig hasParam Param_authMethod:String",

"@Path hasParam Param_value:String",

"Class annotatedWith @Path",

"@ApplicationPath hasParam Param_value:String",

"@LoginConfig hasParam Param_realmName:String",

"Class annotatedWith @LoginConfig",

"Class annotatedWith @RequestScoped"

16

],

"consequent": ["Class extends Class_Application"]

},{

"id": 5,

"antecedent": [

"@Path hasParam Param_value:String",

"Method annotatedWith @APIResponses",

"Method annotatedWith @Operation"

],

"consequent": ["Class annotatedWith @Path"]

},{

"id": 6,

"antecedent": ["Method annotatedWith @Outgoing"],

"consequent": ["Class annotatedWith @ApplicationScoped"]

},{

"id": 7,

"antecedent": ["Method annotatedWith @Mutation"],

"consequent": ["Class annotatedWith @GraphQLApi"]

},{

"id": 8,

"antecedent": [

"@Gauge hasParam Param_unit:String",

"Method annotatedWith @Gauge"

],

"consequent": ["@Gauge hasParam Param_name:String"]

},{

"id": 9,

"antecedent": [

"Field annotatedWith @RegistryType",

"@RegistryType hasParam Param_type:Type",

"Field annotatedWith @Inject"

],

"consequent": ["Field hasType MetricRegistry"]

},{

"id": 10,

"antecedent": [

"Class annotatedWith @ApplicationScoped",

"Class annotatedWith @Health"

],

"consequent": ["Class implements Interface_HealthCheck"]

},{

"id": 11,

"antecedent": [

"Field annotatedWith @ConfigProperty",

"Field annotatedWith @Inject"

],

"consequent": ["@ConfigProperty hasParam Param_name:String"]

17

},{

"id": 12,

"antecedent": ["Method annotatedWith @Query"],

"consequent": ["Class annotatedWith @GraphQLApi"]

},{

"id": 13,

"antecedent": [

"@APIResponse hasParam Param_responseCode:String",

"Method annotatedWith @APIResponse",

"@Path hasParam Param_value:String",

"Class annotatedWith @Path",

"Method annotatedWith @Operation"

],

"consequent": ["Method hasReturnType Response"]

},{

"id": 14,

"antecedent": [

"Class annotatedWith @RegisterRestClient",

"@Path hasParam Param_value:String",

"Method annotatedWith @Path"

],

"consequent": ["Class annotatedWith @RegisterClientHeaders"]

},{

"id": 15,

"antecedent": [

"Class annotatedWith @ApplicationScoped",

"Class annotatedWith @Readiness"

],

"consequent": ["Class implements Interface_HealthCheck"]

},{

"id": 16,

"antecedent": [

"Class annotatedWith @Path",

"Class annotatedWith @OpenAPIDefinition",

"@OpenAPIDefinition hasParam Param_info:"

],

"consequent": ["@Path hasParam Param_value:String"]

},{

"id": 17,

"antecedent": ["Class annotatedWith @Liveness"],

"consequent": ["Class implements Interface_HealthCheck"]

},{

"id": 18,

"antecedent": [

"Class annotatedWith @Tag",

"Class annotatedWith @Path",

"@Tag hasParam Param_name:String"

18

],

"consequent": ["@Path hasParam Param_value:String"]

},{

"id": 19,

"antecedent": ["Method annotatedWith @Incoming"],

"consequent": ["Class annotatedWith @ApplicationScoped"]

},{

"id": 20,

"antecedent": ["Field annotatedWith @Inject"],

"consequent": ["Field annotatedWith @RestClient"]

},{

"id": 21,

"antecedent": [

"Class annotatedWith @RegisterRestClient",

"Class annotatedWith @RegisterProvider"

],

"consequent": ["@RegisterProvider hasParam Param_value:Class"

]

},{

"id": 22,

"antecedent": ["Field annotatedWith @Inject"],

"consequent": ["Field annotatedWith @Metric"]

},{

"id": 23,

"antecedent": [

"Field annotatedWith @Inject",

"Field annotatedWith @Claim"

],

"consequent": ["Class annotatedWith @Path"]

}]

19

Chapter 3

Related Work

In this thesis, we propose a complete pipeline for generating API usage rules

that notably includes a human in the loop. Our approach combines two previ-

ously known techniques, namely, pattern mining and manual rule authoring.

In this chapter, we perform a literature review categorized by these two tech-

niques.

3.1 Mining API Usage Rules

Researchers have proposed various pattern mining techniques to automati-

cally extract API usage rules [40, 60, 71, 83, 87, 88, 96]. JADET uses frequent

itemset mining to produce two-letter patterns in the form of a ≺ b, meaning

that method a precedes method b [88]. Tikanga [87] mines temporal patterns

on method parameters in the form of Computation Tree Logic (CTL) formu-

las [13]. These formulas describe what conditions a particular object should

satisfy before being passed to a method.

There are graph-based solutions to mine API usage patterns such as GrouMiner

and MuDetect [60, 83]. MuDetect builds upon the GrouMiner and introduces

a graph representation called API Usage Graph that can capture more de-

tails about the method body (such as exceptions and synchronizations) [83].

MuDetect uses an apriori-based frequent subgraph mining algorithm to mine

frequent patterns. A pattern is a subgraph that occurs more than a pre-

defined minimum threshold. Any deviation from a pattern is considered a

misuse. However, Amann et al. [2] mention that such an assumption is naive

20

and results in many false positives, which is the reason why we employ human

expert validation to validate the mined rules before they are used for mis-

use detection. Kang and Lo [39] introduce Actively Learned Patterns (ALP)

that incorporates active learning to identify discriminative subgraphs. ALP

presents human annotators with some code examples for an API, and asks

them to label them either as “correct” or “misuse”. A discriminative sub-

graph is a subgraph that appears more frequently in one label than the other.

Once the discriminative subgraphs are obtained, a machine learning classifier

is trained to determine if a certain API usage is a misuse. While this method

outperforms MuDetect in the MuBench benchmark [1], it would be impossible

to produce rules based on the received output. It is impossible because ALP

takes the source code as input and checks whether it contains a misuse with-

out explaining the reason behind why a particular misuse, if any, is found. In

other words, there are no explicit/separate rules mined in the process.

The aforementioned approaches, whether implicitly or explicitly, mine API

usage rules from client code. There are solutions that combine both client code

and the library source code to produce more accurate usage rules [72, 93]. Zeng

et al. [93] propose an approach where they mine constraints from both client

and library code. These constraints are represented as AUGs. The authors

use MuDetect for extracting constraints from the client code. Their library

constraint extraction algorithm can find constraints such as what parameters

cannot be null, what conditions trigger exceptions, or in what order methods

are invoked. The concept of combining constraints from both source and client

code certainly adds more context to the mined rules involving library method

calls. However, when it comes to mining annotation usage rules, it would be

ineffective since annotation definitions do not contain any business logic. Most

of the existing constraints such as the target program elements, data types of

annotation parameters are checked by the compiler.

Most of the pattern mining solutions focus on analyzing method bodies

and the order of the function calls on a specific type [60, 83, 87, 88] with no

focus on annotation usage. In general, annotation usage rules are simplistic

compared to other types of API usage rules, since an annotation is either

21

applied to a program element or not.

To the best of our knowledge, with the exception of the work done by

Nuryyev et al. [62] , which we directly use to mine candidate rules in this

thesis, there is no existing work on mining annotation usage rules. However,

Liu et al. [46] build a deep learning solution, DeepAnna, that can recommend

annotations and detect annotation misuses. The authors approach the annota-

tion recommendation and misuse detection as a multi-label classification task.

To train the classifier, the authors first extract code snippets and their anno-

tations from open-source Java projects. A code snippet in this context refers

to a class or a method declaration. DeepAnna then extracts the structural and

textual contexts from the code snippets. For the structural context, DeepAnna

extracts the abstract syntax tree (AST) of a code snippet and removes all the

annotations from the AST. For the textual context, DeepAnna extracts iden-

tifiers in the AST and produces a token sequence. DeepAnna then uses the

structural and textual contexts to predict and recommend annotation usage.

In the context of annotation usage rule extraction, one main disadvantage

of DeepAnna is that it cannot specify reasons behind its recommendations.

For example, DeepAnna might suggest to use the @Liveness annotation on

a class (consequent), but it cannot specify the reason behind that suggestion

(antecedent). We need to have both an antecedent and a consequent to create

an annotation usage rule that is informative during misuse detection. More-

over, DeepAnna recommends only class and method-level annotations, while

annotations can also be used on other program elements such as fields and

parameters.

While pattern mining reduces the human effort for finding API usage rules,

it can produce rules that are insecure, overly simplistic, or missing context [43].

Pattern mining techniques may also mine usage rules for deprecated APIs,

which are not useful. Thus, it is critical to validate or correct the mined rules

to transform them into valid API usage rules.

22

3.2 Formats for Encoding API Usage Rules

In the previous section, we discussed various pattern mining approaches and

the approach we will be employing for finding annotation usage rules. The

mining approach we use (described in Section 2.4.2) produces candidate rules

in the IF/THEN form. In this section, we discuss various API usage rule

encoding formats that would allow us to encode the mined candidate rules for

a human expert to validate. Our goal is to present these rules in a format (1)

that is intuitive and easy-to-learn, and (2) that can support most of the mined

relationships.

There is an abundance of rule authoring tools to write API usage rules [18,

43, 48, 95]. They typically use an internal or external domain-specific lan-

guage (DSL) [22]. As opposed to general-purpose languages, domain-specific

languages focus on a particular domain. An internal DSL is written in a

general-purpose language (such as Java), while an external DSL is a separate

language. Often, these rule authoring tools target specific libraries or domains.

For example, CrySL is designed for writing usage rules of Java cryptography

APIs [43]. It focuses on control and data-flow relationships between different

method calls. CrySL rules are processed by CogniCrypt [43] (a static analysis

tool that detects crypto misuses). However, CrySL does not support annota-

tions.

There are also tools that support writing usage rules for annotations.

AnnaBot [18] and RSL [95] come equipped with external DSLs and misuse

checkers that utilize the rules written in those DSLs. In AnnaBot, users can

write rules (or claims) in an IF/THEN format, similar to the rules produced

by our mining process. In RSL, users write rules in a declarative way using for

and where statements to only keep the target program elements, and assert

statement to apply constraints. These tools support logical and aggregate

operations such as “AND”, “OR”, “NOT” and “at most one”. Additionally,

RSL provides code inspection methods such as callExists, pathExists, and

getAttr. However, they do not support most of the relationships that our min-

ing process produces. For example, AnnaBot does not support writing rules

23

that specify a relationship between an annotation and a method return type.

RSL, on the other hand, only allows writing rules that check the existence of

an annotation on a program element.

Similar to previous tools, RulePad [48] allows software developers to create

design rules and checks for misuses of these rules. An example for a design

rule can be the following: if method name starts with “set”, it must return

“void”. To create such design rules, RulePad offers two rule authoring modes:

snippet-based and using its semi-natural DSL. Figure 3.1 shows the graphical

user interface (GUI) of RulePad. For snippet-based authoring, RulePad pro-

vides a GUI where users only need to fill in the appropriate fields to author a

rule 1O. This step generates a rule written in RulePad’s semi-natural DSL 2O.

The idea is that users can create rules using the GUI and modify the pro-

duced rule using the semi-natural DSL if needed. Users can also write rules

completely in the semi-natural DSL without using the GUI. Unlike previous

tools we have mentioned so far, RulePad focuses on creating checkable and

up-to-date documentation. Since the documentation is meant to be read by

developers, to make the design rules easy to understand, RulePad provides an

English-like DSL to encode rules in. For example, the above design rule can

be expressed in RulePad’s DSL as follows: function with name "set..."

must have type "void". RulePad’s DSL has an IF/THEN structure which

coincides with our mined rules. It also supports most of the mined relation-

ships. Therefore, we use RulePad’s DSL in this work with some customization

to validate annotation usage rules.

Unlike focusing on the usage of APIs from specific libraries or domains,

there are tools, such as PMD [68], SpotBugs [77] and CheckStyle [11], that

focus on general-purpose static analysis. These tools can be utilized to encode

annotation usage rules. For writing custom rules in these tools, developers

need to use either a general-purpose language such as Java or a querying lan-

guage such as XPath (in the case of PMD)[91]. When using Java, usually

developers have to create custom visitors by extending visitor classes provided

by the tool. In the implemented visitor methods, certain types of nodes of

the abstract syntax tree (AST) can be searched. The main drawback of this

24

Figure 3.1: The original GUI of RulePad. Note: we removed blank sections
from the screenshot for better visibility [48]

25

approach is that rather than declaring the rule they want to impose (declara-

tive), developers now have to implement what kind of bugs they are trying to

catch (imperative). The imperative nature of visitors may cause API experts

to spend too much time trying to understand the rule, rather than validat-

ing it. Compared to implementing visitors, PMD’s XPath queries provide a

declarative way of creating usage rules in PMD. However, for sufficiently large

rules, writing and reading XPath becomes cumbersome. Prior work shows that

DSLs are easier to learn, read, and write than general-purpose languages [42].

Since we want to make rule validation as intuitive as possible, we did not

choose a general-purpose static analysis tool for rule encoding.

The previous tools all provide external DSLs to encode the rules. There

has also been meta-annotation solutions that encode rules in the source code

directly [41, 61, 76]. These solutions provide a set of meta-annotations (i.e.

an annotation that can be applied to other annotations) to embed the usage

rules in annotation source code. Smart Annotations by Kellens et al. [41]

supports two types of constraints using the @Necessary and @Sufficient

meta-annotations. @Necessary is used to specify that if a program element

is annotated with an annotation, then it must obey the rules defined for the

annotation. @Sufficient is used to specify that if a program element obeys

all the rules defined for an annotation, then it needs to be annotated with the

annotation. Similarly, Noguera and Duchien [61] provide annotations such as

@Association and @Associations to specify relationships between different

annotations. EsfingeMETADATA by Siqueira et al. [76] also provides a set of

meta-annotations that can be used to encode annotation usage rules. While

these techniques are powerful, they require source code changes which would

force us to modify the library/framework source code every time a new rule is

required, thus these solutions are not useful for our use case.

Apart from DSLs, there are logic programming languages that can be used

to encode the mined rules [10, 14, 90]. One such programming language is

Datalog [10]. A Datalog program is a set of facts and rules. A fact is some-

thing that is always true. Given a Java class Foo, a fact could be that the

class is being annotated with @X or that the class extends another class Z. In

26

1 class with annotation "X" must have

2 annotation "Y" or extension of "Z"

Listing 3.1: RulePad version

1 antecedent(Class) :- has_annotation(Class, "X").

2 consequent(Class) :- has_annotation(Class, "Y").

3 consequent(Class) :- class_extends(Class, "Z").

4 rule(Class) :- antecedent(Class), consequent(Class).

Listing 3.2: Datalog version

Figure 3.2: A comparison of a rule written in both RulePad and Datalog

Datalog, we could represent these facts as follows: has annotation("Foo",

"X"), class extends("Foo", "Z"). Datalog rules define how new facts can

be derived from existing facts. A rule in Datalog is written in the form of

consequent(...) :- antecedent(...), which means that the consequent

is true if the antecedent holds. This IF/THEN structure of Datalog rules fits

nicely with our candidate rules. However, compared to RulePad’s English-like

syntax, we find Datalog to be less-intuitive. For example, Figure 3.2 shows

the same rule written using Datalog and RulePad. For a very simple rule, we

can see that RulePad version is much shorter and concise.

All the above tools assume that the rules are readily available. However,

someone needs to find the rules and encode them from scratch. For example,

Krüger et al. [43] went through all the Java Cryptography API documenta-

tion, and manually authored all the found rules in CrySL. There are two issues

with this approach: (1) it is time-consuming, and (2) authors will miss undoc-

umented rules. Our hybrid approach leverages pattern mining to reduce the

time spent on authoring rules from scratch. It can also discover undocumented

patterns.

27

Chapter 4

Rule Validation Tool

In this chapter, we describe our approach to generate annotation usage rules

for MicroProfile APIs. Figure 1.2 illustrates the overview of our approach.

We first use the existing pattern-mining approach that we described in Sec-

tion 2.4) to mine candidate usage rules from MicroProfile client projects. We

then present the mined candidate rules to experts for validation. To facilitate

rule validation, we develop a web-based Rule Validation Tool (RVT). Rule val-

idation is a twofold process. Given mined candidate rules, RVT automatically

encodes them in the RulePad format [48]. RVT then presents the encoded

rules to experts for validation who can confirm a rule as is, confirm a rule

after modifications, or reject a rule as invalid. Finally, we develop a misuse

detector that uses the validated rules to find misuses (Chapter 5). In this

section, we describe the rule validation process and RVT.

4.1 RVT DSL

4.1.1 Rule Encoding

The mined candidate annotation usage rules are in a JSON [36] format, as

shown in Figure 2.7 and in Listing 2.1. Since experts will read, modify, and

validate the candidate rules, we need to present them in a format that is easy

to comprehend. Overall, we do not want experts to spend too much time

trying to learn and understand the rule format, because it defeats the purpose

of reducing human effort in generating rules.

To present the mined candidate rules in a specific format, we considered

28

multiple existing domain-specific languages (DSLs) developed for encoding

various types of API usage rules. Specifically, we considered AnnaBot [18],

RSL [95], CrySL [43], RulePad [48], ModelAn [61], and Smart Annotations [41].

We also considered the original JSON format of the mined candidate rules. We

discuss these options with our industry partner, IBM, to understand how they

perceive their pros and cons.

Among the DSLs, we exclude ModelAn [61] and Smart Annotations [41],

because they require modifications to the MicroProfile source code. CrySL [43],

on the other hand, is designed for the specification of correct cryptography

API uses in Java, and it heavily focuses on control and data-flow relationships,

whereas annotation usage does not require control and data-flow relationships.

Therefore, we also exclude CrySL from potential formats for presenting can-

didate rules. AnnaBot [18] and RSL [95] are specifically designed for writing

annotation usage rules in a declarative way. However, they only support an-

notation usage rules between two annotations. For example, if @X, then @Y.

They do not support usage rules between annotation and other program el-

ements (e.g., field and method). For example, if @X, then a method must

return Z. However, most of our mined candidate rules specify relationships be-

tween annotation and other program elements [62]. Therefore, we also exclude

AnnaBot and RSL from potential formats for presenting candidate rules. In

the end, we narrow down our potential formats to the following three options:

(1) use the original JSON format, (2) create a DSL from scratch specifically

designed for our needs, and (3) use an existing DSL that we have not ruled

out yet.

The original JSON format (option 1) is concise and simple to understand.

However, the structure of the mined candidate rules, specifically items in both

the antecedent and consequent, is ad-hoc at best. More importantly, the JSON

rule format does not have a grammar, which means any post-processing of can-

didate rules will involve lots of string manipulations and regular expressions.

Creating a DSL from scratch (option 2) gives us the advantage of customiz-

ing it according to our requirements. However, creating a DSL from scratch is

time-consuming, when compared to using an existing DSL such as RulePad.

29

1 class with annotation "ApplicationScoped" and

2 annotation "Readiness"

3 must have

4 implementation of "HealthCheck"

Figure 4.1: An example illustrating the RulePad rule for the mined candidate
rule shown in Figure 2.7.

RulePad [48] is a tool that allows users to write code design rules (e.g., func-

tion with name "set..." must have type "void") and check the source

code for any violations of those rules. Developers can create rules using a

semi-natural DSL created by the RulePad authors. For example, Figure 4.1

shows how the mined rule from Figure 2.7 can be expressed in RulePad’s DSL.

Based on the feedback we received from our industry collaborators, we decide

to use RulePad (option 3), because: (1) it has an intuitive English-like syntax,

(2) rules have IF/THEN format that fits nicely with the mined rules, and (3) it

has a grammar, making later extensions easier to implement. However, there

were some RulePad shortcomings that we needed to address. We next discuss

the extensions and changes we have made to the original RulePad DSL.

4.1.2 Our RulePad Extensions

In the original RulePad, there are three shortcomings we need to address.

First, RulePad does not support writing rules for the following relationships

that appear in MicroProfile candidate rules: (1) method/constructor param-

eters having annotations, (2) annotations having parameters, and (3) con-

figuration files. Therefore, we extend RulePad’s grammar to support those

relationships. For specifying configuration files, we design the syntax to be

suitable for properties files, specifically. A properties file is a plain text

file where configuration properties are stored as key-value pairs, separated

by an equal sign (“=”). The following is an example configuration prop-

erty: ‘‘password=some-value’’. In the extended RulePad, the same prop-

erty can be expressed as configuration file with property with name

"password".

30

Second, some RulePad keywords, specifically declaration statement,

function, and type (to represent the return type of a method) do not re-

flect Java language terminology. This might affect the readability or compre-

hensibility of rules. Therefore, we change the keywords to make them better

align with Java language terminology. We change declaration statement

to field, function to method, and type to return type. Please note that,

there are other RulePad constructs (such as field and parameter) that re-

fer to the type keyword, as well. We only make the mentioned change for

representing the return type of a method.

Third, our industry collaborators perceived some of RulePad’s syntax as

too verbose. To address this, we introduce shortcuts into the DSL. We create

a shortcut to express method, constructor or annotation parameters, and con-

figuration properties. For example, a String parameter with the name foo is

expressed as parameter with type "String" and name "foo" in RulePad’s

original DSL. We shorten it to parameter "String foo", mirroring Java-style

parameter declaration. In extended RulePad DSL, it is also possible to provide

a single string token for a parameter such as parameter "foo". This expres-

sion is interpreted differently for annotation parameters, and method parame-

ters. In the case of annotation parameters, the extended RulePad rule parser

treats the expression as a parameter with the name “foo”, while for method

parameters it treats the expression as a parameter with the type “foo”. The

reason behind this distinction is that for annotation parameters, a rule can

impose which parameter should be used by referring to the parameter’s name.

On the other hand, for methods, a rule cannot impose a certain name for a pa-

rameter since a developer is allowed to choose any name. Additionally, we add

the capability of specifying constant values for annotation parameters (e.g.,

parameter "foo" with value "bar"). All the shortcuts introduced for an-

notation parameters in extended RulePad are also available for configuration

properties (e.g., property "enabled" with value "true").

We also create a shortcut that allows grouping of annotations from the same

package. For example, to require one of JAX-RS HTTP method annotations

(GET, POST, PUT, DELETE) [31], the corresponding RulePad expression is

31

Figure 4.2: The main GUI elements of our Rule Validation Tool (RVT). Fea-
tures 1–6 are detailed in Section 4.1.

annotation "javax.ws.rs.GET" or annotation "javax.ws.rs.POST" or an-

notation "javax.ws.rs.PUT" or annotation "javax.ws.rs.DELETE". We

condense that expression into annotation "javax.ws.rs.[GET|POST|PUT|DELETE]".

RVT takes the mined candidate rules in JSON format and converts them

into RulePad rules, which we present to experts for validation through a

Graphical User Interface (GUI) described next.

4.2 User Interaction with RVT

The main purpose of RVT is to make the rule validation process intuitive and

straightforward for API experts. In this section, we describe the rule validation

workflow, and how we have structured the RVT GUI to facilitate this process.

4.2.1 RVT GUI

RVT provides a GUI for experts to go through and validate the presented

candidate rules. Figure 4.2 shows the main elements of RVT’s GUI. The Rule

Authoring Editor 1O presents the candidate rule, encoded in RulePad format,

that needs to be validated. To improve the readability of the presented rules,

we equip the editor with syntax highlighting and formatting features. The

32

Code Preview 2O provides a minimal Java code example to show what the

presented candidate rule corresponds to in actual Java code. That preview

also highlights the code representing the antecedent (orange) and the conse-

quent (green), enabling visual separation between the two parts of a candidate

rule. The goal of the Code Preview is helping experts further understand the

candidate rule presented in the Rule Authoring Editor. The progress indicator

3O shows the total number of candidate rules that need to be validated, the

position of the currently presented rule among all the candidate rules, and

the number of candidate rules left to validate. RVT has two labeling buttons

4O (“Confirm rule” and “Not a rule”) to label the presented candidate rule

as a correct or incorrect rule. RVT also has two rule navigator buttons 5O

to navigate through candidate rules. Finally, the question mark 6O indicates

help and opens a tutorial page on using RVT. The tutorial page contains in-

formation about the RulePad grammar and all possible actions that experts

can perform using RVT. Overall, RVT’s GUI not only presents the encoded

rules but also provides the necessary features to help experts understand the

presented rules.

4.2.2 Rule Validation Process

Once RVT presents a candidate rule, experts can take one of the following

three actions to validate and label the rule:

� Confirm the rule as is : If the presented candidate rule is correct, experts

can label the rule as correct by clicking “Confirm rule”.

� Confirm the rule with changes : If the presented candidate rule is a partially

correct rule, e.g., the rule has some missing or extra items, experts can edit

the presented rule by adding, removing, or modifying items of the rule using

the Rule Authoring Editor. After finishing their editing, they can confirm

the edited rule by clicking “Confirm rule”.

� Label the rule as incorrect : If the presented candidate rule does not rep-

resent any annotation usage rule, experts can discard this rule by clicking

“Not a rule”.

33

For each presented candidate rule, RVT stores the validated form of the

rule and the label in a database. Once experts validate all candidate rules, we

use only confirmed rules for misuse detection.

4.3 RVT: Implementation Details

RVT is a web-based application. We choose the web platform because it does

not require users to install additional tools/libraries to get started, as opposed

to other platforms such as desktop. RVT consists of two main components:

a frontend (or GUI) and a backend. For the frontend, we build a React [70]

application that communicates with the backend to retrieve validation related

data (such as candidate rules). Figure 4.2 shows the main components of the

frontend. The frontend provides the code highlighting, formatting and code

preview generation. For the Rule Authoring Editor, we use the highly exten-

sible Monaco code editor [57]. We use ANTLR4 [4] to process the RulePad

grammar for providing rule formatting and visualization (code preview gener-

ation). For the visualization, we parse the RulePad rule and create an object

that represents the Java class which the rule describes. We then generate the

corresponding Java code from that object. For the formatting, we again parse

the RulePad rule, however, we generate a string that is the same as the original

rule, but with the added tab and newline characters to make it more readable.

RVT backend is a FastAPI [21] application written in Python. The backend

is responsible for transforming the candidate rules into the extended RulePad

format, persisting the changes that API experts make to the database, and

exporting the confirmed rules. We use MySQL [58] as our database vendor.

RVT provides a way to upload mined candidate rules for validation through

the frontend. These rules are in JSON format (shown in Figure 2.7). After

uploading the target JSON file that contains the mined rules, the backend

converts each mined rule into an extended RulePad rule. Once this process is

done, the API experts can start validating the mined candidate rules.

34

Chapter 5

Misuse Detection

Since our industry partner is interested in ensuring the correct usage of Micro-

Profile annotations by client developers, we next focus on developing a misuse

detector that uses the correct rules from the previous step to detect annotation

misuses.

5.1 Misuse Detector Tool

We first consider using RulePad for misuse detection as it comes with a misuse

detector out of the box. However, we find that RulePad’s misuse detector is not

suitable for our needs. First, RulePad’s misuse detector works in a browser;

however, we are interested in using the detector as a standalone tool. RulePad

has an IDE plugin that sends client code to the web UI for misuse detection.

To use RulePad’s misuse detector, both the web UI and the IDE plugin need

to run simultaneously. Instead, we reimplement RulePad’s grammar parsing

and misuse detection logic as Python scripts to enable running the misuse

detector independently of a browser and the IDE. Second, RulePad’s misuse

detector uses srcML [79] to transform Java code into XML representations.

However, the generated XML output does not contain resolved types. We

could not use srcType [80], a srcML-based type resolution system, to resolve

types as it does not support Java. To address this issue, we create a prepro-

cessor using JavaParser [30] that resolves all the types used in MicroProfile

APIs before generating XML files. Third, the XML representation does not

represent some of the Java code constructs such as the data type of annotation

35

parameters. We could have continued resolving issues with the XML repre-

sentation by adding more preprocessing layers. However, the preprocessing

step and misuse detection involved the generation of lots of intermediate text

files and performing text manipulations which would affect the performance

negatively. Considering all these issues, we decided to build our own misuse

detector as follows.

A misuse detector may be implemented as a build tool (Maven [5] or Gra-

dle [25]) plugin or an IDE plugin. Client developers can use a build plugin as

a part of their continuous integration (CI) pipeline. However, locally, client

developers have to explicitly run a build plugin to detect misuses. Unlike build

plugins, an IDE plugin would detect misuses instantly as developers are work-

ing on their code. However, an IDE plugin cannot be used in the CI pipeline.

After a discussion with our industry collaborator, we decided to build our mis-

use detector as a Maven plugin to enable CI integration. Even though we build

the detector as a Maven plugin, we separate the misuse detection logic into

its separate module. The Maven plugin simply provides the files and the rules

to check for misuses, and reports the found misuses. This way, in the future,

creating detectors for IDEs or other build plugins will be relatively easy.

Figure 5.1 shows a high-level overview of our misuse detection process.

Our misuse detector uses the confirmed rules to generate static analysis checks.

The grammar of RulePad’s DSL is in ANTLR4 [4] format which allows us to

easily generate parsers and visitors for converting the rules from text format

into static analysis checks (which are simply Plain Old Java Objects). We use

JavaParser [30] to parse the Java files of the target project and to resolve types.

The detector scans for the misuses of all available rules in the parsed and type-

resolved file. Depending on the checked rule, an analyzer is selected and the

processing is delegated to that analyzer. Since the mining process produces

rules concerning classes, fields and methods, we create an analyzer for each

element. In each analyzer, we automatically extract the antecedent part of

a RulePad rule and search for occurrences of it in the Abstract Syntax Tree

(AST) of a given parsed Java file. If we find an occurrence of the antecedent,

we then check if the consequent holds. If not, then we have detected a misuse.

36

A target
Java file

A parsed and
type-resolved
compilation

unit

Misuse
Detector

Class analyzer

Method analyzer

Field analyzer

RulePad rules

Rule
Parser Static Analysis

Checks

File Parser
and
Type

Resolver
!

Static Analysis Checks Generation

Misuse Detection

Violations

Figure 5.1: An overview of our Misuse Detector

1 $ mvn violation-detector:scan

2 [WARN] For rule: QueryGraphQLApiRule

3 [WARN] class with function with annotation "Query" \

4 [WARN] must have annotation "GraphQLApi"

5 [WARN] ---

6 [WARN] In: .../membership/graphql/MembershipGraphQLApi.java

7 [WARN] 1. at: (22, 1) =>

8 [WARN] Class MembershipGraphQLApi is missing @GraphQLApi

Figure 5.2: A sample report generated by our misuse detector.

The detector scans one Java file from the target project at a time for any

misuse of the available rules. Once the detector scans all the Java files of

the target project, the Maven plugin collects the found misuses, and prints

a detailed report for each misuse. The report contains the misused rule, the

misuse location, and the missing element. Figure 5.2 shows an example of a

report generated by our Maven plugin. The English-like structure of RulePad’s

DSL allows us to use the rules themselves as error descriptions.

5.2 Misuse Detector Evaluation

Since we automatically create the static analysis checks, we want to make sure

that our generation process is accurate and the generated checks correctly

37

detect misuses. In Nuryyev et al.’s work [62] on mining annotation usage rules

(and the work we use in this thesis), they mined 23 candidate rules from 533

MicroProfile projects. They manually validated these 23 rules, producing 12

confirmed rules. To measure the usefulness of those rules, they carried out an

experiment where they manually create checkers for 12 confirmed rules and

searched for misuses of those rules in the same 533 projects. As a result, they

found 100 misuses of five different rules. To verify that our generation of static

analysis checks that our misuse detector uses works as expected, we evaluate

it against the same set of projects, given the same 12 rules. The goal is to see

whether the static analysis checks generated by our misuse detector find the

same misuses as the manually-defined misuse checkers.

5.2.1 Evaluation Setup

First, we collect all the target repositories (both open-source and IBM propri-

etary) from Nuryyev et al.’s experiment which totals to 533 projects. However,

since our detector is a Maven plugin, we remove all the non-Maven projects

and end up with 517 MicroProfile projects. It is worth noting that Nuryyev

et al. did not find any misuses from the projects we exclude.

Next, we encode the aforementioned 12 rules in the extended RulePad

format (see Table 5.1). However, unlike Nuryyev et al.’s work, the encoding

process involves no manual work. We simply import the mined rules (which

are in the JSON format) into RVT, confirm all the rules as “correct” and

export the final list of RulePad rules from RVT. We then import this list into

our misuse detector.

5.2.2 Results

For each project, we scan the entire commit history to find misuses, which

results in the scanning of 52,369 individual commits. We now present our

findings.

In total, our detector finds 215 unique misuses of eight unique rules across

all 517 projects (see Table 5.2 for the complete breakdown). After cross-

checking our results with the results from Nuryyev et al.’s work, we find out

38

that our detector finds all 100 misuses that the Nuryyev et al. found. As

stated earlier, the main difference between the two approaches is that our tool

generates static analysis checks automatically while in the previous study, the

authors encoded these checks manually. From these results, we can conclude

that the recall of our detector is 100%, since it finds all known misuses.

To measure the precision of the detector, we analyze the rest of the found

misuses. We find that the remaining 115 of the 215 misuses are previously

unknown misuses. Interestingly, we notice that 89/115 are false positives.

However, this phenomenon is not because of a flaw in our detector, but

in the rules that we are using for finding misuses. There are three rules

out of eight (ConfigPropertyInject, RegisterRestClientPath, RestClientInject

from Table 5.1) that involve the annotations @javax.inject.Inject and

@javax.ws.rs.Path. When observing the misuse location flagged by the de-

tector, we notice that the required annotations are present in the code, but

from a different package, namely jakarta.inject and jakarta.ws.rs. This

difference happens because after Java EE 8, the specification was renamed

as Jakarta EE, and with the version 9, the top-level package name javax

was changed to jakarta [28]. However, there is no real difference between

javax.inject.Inject or jakarta.inject.Inject, thus using the latter is

not a misuse. This update means that all those 89 misuses are false positives.

Given the complete rules (with Jakarta EE annotations added), theoretically

the detector should not report the previously reported “false positives”. There-

fore, we add all the necessary Jakarta EE annotations to the 12 rules, and rerun

the misuse detection on projects where the 89 misuses happen. With the com-

plete rules, our detector indeed reports zero misuses, thus leaving us with the

total of 126 misuses instead of 215. We find that 26 of these 126 misuses are

previously unknown misuses. The distribution of these 26 misuses is as follows:

ConfigPropertyInject - 20, RegisterRestClientPath - 4, QueryGraphQLApi - 1

and MutationGraphQLApi - 1. We analyze these misuses to understand why

developers make such mistakes or if they are even actual misuses. We now

discuss our findings.

MicroProfile specifications specify what functionalities are provided, but

39

Table 5.1: The 12 rules that we use in the evaluation of the misuse detector.
Note: “o.e.m” is the abbreviation of “org.eclipse.microprofile”

Rule name Rule definition
ClaimInject field with annotation “o.e.m.jwt.Claim” must

have annotation “javax.inject.Inject”
ConfigPropertyInject field with annotation

“o.e.m.config.inject.ConfigProperty” must have
annotation “javax.inject.Inject”

HealthHealthCheck class with annotation “o.e.m.health.Health”
must have implementation of
“o.e.m.health.HealthCheck”

IncomingBean class with method with annotation
“o.e.m.reactive.messaging.Incoming”
must have annotation
“javax.enterprise.context.ApplicationScoped”

LivenessHealthCheck class with annotation “o.e.m.health.Liveness”
must have implementation of
“o.e.m.health.HealthCheck”

MetricRegistryInject field with (annotation
“o.e.m.metrics.annotation.RegistryType” with
parameter “o.e.m.metrics.MetricRegistry.Type
type” and annotation “javax.inject.Inject”) must
have type “o.e.m.metrics.MetricRegistry”

MutationGraphQLApi class with method with annotation
“o.e.m.graphql.Mutation” must have anno-
tation “o.e.m.graphql.GraphQLApi”

OutgoingBean class with method with annotation
“o.e.m.reactive.messaging.Outgoing”
must have annotation
“javax.enterprise.context.ApplicationScoped”

QueryGraphQLApi class with method with annotation
“o.e.m.graphql.Query” must have annota-
tion “o.e.m.graphql.GraphQLApi”

ReadinessHealthCheck class with annotation “o.e.m.health.Readiness”
must have implementation of
“o.e.m.health.HealthCheck”

RegisterRestClientPath class with annotation
“o.e.m.rest.client.inject.RegisterRestClient” must
have (method with annotation “javax.ws.rs.Path”
) and annotation “javax.ws.rs.Path”

RestClientInject field with annotation
“o.e.m.rest.client.inject.RestClient” must have
annotation “javax.inject.Inject”

40

Table 5.2: A complete breakdown of the misuses found after our evaluation
process. Table 5.1 shows the definitions for each rule. TP - true positive, FP
- false positive

Rule Previously known [62] New TP FP Total

ConfigPropertyInject 87 85 91 81 172
RegisterRestClientPath 0 16 0 16 16
RestClientInject 0 12 0 12 12
ClaimInject 6 0 6 0 6
QueryGraphQLApi 2 1 3 0 3
OutgoingBean 3 0 3 0 3
IncomingBean 2 0 2 0 2
MutationGraphQLApi 0 1 1 0 1

Total 100 115 106 209 215

a runtime (such as Open Liberty [63] or Quarkus [15]) that provides the im-

plementation of a specification can be lenient towards some requirements to

improve the developer experience. One such case happens with the Config-

PropertyInject rule (see Table 5.1). If we inspect the MicroProfile Config

specification, we notice that @Inject is always used with @ConfigProperty,

and the specification clearly states that “MicroProfile Config also provides

ways to inject configured values into your beans using the @Inject and the

@ConfigProperty qualifier” [74]. However, Quarkus, a MicroProfile runtime,

makes the @Inject annotation optional when the injection is made to a class

field. Out of these 26 misuses, 20 misuses happen because of the absence of the

@Inject annotation. Upon checking what runtime the projects are using, we

find that the projects where 16/20 misuses happen are, in fact, using Quarkus.

For the remaining four misuses of the ConfigPropertyInject rule, we find that

three of them are using Open Liberty, while one is using Payara [65]. To

verify the legitimacy of these misuses, we check the documentation provided

by these vendors [7, 66]. Unlike the Quarkus documentation, the guides pro-

vided by Open Liberty and Payara do not explicitly mention the optionality

of @Inject annotation. To empirically verify the requirement of the @Inject

annotation, we create projects using both Open Liberty and Payara runtimes

41

where we try to inject a configuration property into a field annotated with the

@ConfigProperty annotation without using the @Inject annotation. In both

servers, using @ConfigProperty without @Inject results in the field having

a null value. This shows that the remaining four issues are true positives.

Therefore, we conclude that out of 20 misuses of the ConfigPropertyInject

rule, only four are actual true positives.

The next four misuses we examine violate the RegisterRestClientPath rule.

In all these four misuses, the @Path annotation is missing. After examining

the Java documentation for RegisterRestClient and the MicroProfile Rest

Client specification, we learn that there is a way to set a base path by using

either baseUri or configKey parameters. When using baseUri, client de-

velopers can set the base endpoint directly in the Java code. configKey on

the other hand requires the specified key to be present in the microprofile-

config.properties file. If none of them are present, the MicroProfile run-

time uses a default configKey value, and requires the presence of that key in

the microprofile-config.properties file. @Path annotation specifies which

URI path a particular method handles. A common thing among these four

misuses is that all the interfaces contain a single method with no @Path anno-

tation to represent an endpoint. It is possible that a client developer simply

wants to create a method that handles requests to the base path. It is also

possible that the URI path is already included in the base path, removing the

need for using @Path annotation. In all four misuses for the RegisterRest-

ClientPath rule, we observe these cases. Thus, we can conclude that none of

the misuses for the RegisterRestClientPath rule are true positives.

We can summarize that out of 26 misuses, only six are true positives, while

the remaining 20 are false positives, which makes the precision of the detector

84% (106/126).

5.2.3 Summary

Our results show that given any confirmed extended RulePad rule, our misuse

detector successfully finds the deviations from that rule if there are any. How-

ever, after analyzing the misuses detected during our evaluation, we identify

42

three factors that need to be considered while scanning for misuses in Java

files. First, confirmed rules need to provide information about which API ver-

sions they are valid for. As we discovered, the version change from Java EE

to Jakarta EE affected the validity of 89 reported misuses. Second, confirmed

rules need to provide information about which MicroProfile runtime they are

valid for. Our detector reported 16 false positives due to runtime related is-

sues. Third, the detector should scan the configuration sources. We discuss

these limitations in more detail in Section 8.3.

While the misuse detector has limitations, these limitations do not af-

fect the premise of our work to proceed with a user study since the goal of

the detector evaluation in Section 5.2 is only to verify the correctness of the

automatically-generated static analysis checks. However, the user study we

discuss in the next chapter evaluates the usefulness of having mined rules as

starting points as well as the usefulness of the human-in-the-loop concept.

43

Chapter 6

User study

To evaluate the usefulness of RVT in modifying and validating the mined

candidate rules, as well as the usefulness of the whole idea of using mined rules

as starting points, we conduct a user study with MicroProfile API experts. Our

goal is to answer the following three research questions:

RQ1. Is the rule specification DSL in RVT expressive enough for specifying

rules? We adopt RulePad with some extensions as our DSL of choice for

encoding rules. There is a possibility that an API expert might want to specify

a constraint that cannot be expressed using RulePad. Thus, we want to know

how expressive our extended RulePad DSL is for authoring annotation-based

API usage rules.

RQ2. Is RVT useful for the modification and validation of mined rules?

The key concept in our proposed pipeline is having a human in the loop. Thus,

we want to know if RVT makes it easy for experts to author and validate the

mined rules.

RQ3. Are candidate rules effective in alleviating the difficulties of writing

API usage rules from scratch? We want to understand if the mined candi-

date rules provide good starting points for API experts when authoring rules.

Overall, we want to determine if the idea of having mined rules as a starting

point is useful to API experts.

44

6.1 Experiment Setup

The experiment is an online, 90-minute Zoom session where experts use RVT

to validate the presented candidate rules. We audio and video record the

session, with participants’ consent and after our university’s ethics clearance,

for post-analysis purposes. For video recording purposes, the experts have to

share their computer screen. The experiment is divided into three parts that

we describe below.

6.1.1 Tutorial and setup.

At the beginning of the experiment (up to 30 minutes), experts go through a

tutorial that we prepared to get familiar with RVT and the DSL that we use

to present rules (i.e., the extended RulePad).

6.1.2 Live experiment.

After participants get familiar with RVT, we proceed to the main experiment

task, where API experts validate candidate rules encoded in the RulePad DSL.

For each candidate rule, we first ask the participants to rate it in terms of un-

derstandability of the presented rule on a scale of 1 to 3 (1-hard to understand,

2-neither hard nor easy to understand, 3-easy to understand). This task en-

ables us to quantify how easy it is for API experts to understand a given rule

and contributes to the evaluation of RQ1. After getting familiar with the

presented rule, participants proceed to validate it. Participants are allowed

to use online resources such as documentation and online discussion forums,

if needed. To validate a rule, participants can (1) confirm the rule as is, (2)

confirm the rule with changes, or (3) reject the rule. During this validation

process, we employ the think-aloud protocol [86] where we ask participants

to verbally share the reasoning behind their decisions. For example, when a

participant rejects a candidate rule, we ask them to share the reasons that led

them to this decision. This feedback can help us improve the mining process.

45

6.1.3 Exit survey.

At the end of the session, we ask participants three rating-based (RB) and

three open-ended (OE) questions. For the rating-based questions, participants

can also provide verbal explanations for their ratings. We ask the following

questions:

RB1: For rule authoring, having an existing candidate rule as a starting point

is easier than writing a rule from scratch (strongly disagree, disagree, nei-

ther agree nor disagree, agree, strongly agree). This question addresses

RQ3.

RB2: Having a dedicated tool for rule validation makes it easy to validate rules

(from strongly disagree to strongly agree). This question addresses RQ2.

RB3: How do you rate the difficulty level of editing rules using RVT? (very

hard to edit, hard to edit, neutral, easy to edit, very easy to edit). This

question addresses RQ2.

OE1: Are there additional code constructs you think need to be a part of

RulePad? This addresses RQ1.

OE2: What types of additional information could have assisted you in validat-

ing the rules? This indirectly addresses RQ2 and enables us to know

what other information experts would find helpful.

OE3: Are there any additional rules you can think of that were not presented?

This question does not address a specific RQ but enables us to under-

stand what rules the mining process cannot discover and what other code

relationships need to be tracked (which may require further RulePad ex-

tensions).

Our open-ended questions allow participants to share valuable feedback

with us, which helps us further improve our approach.

46

Table 6.1: The candidate rules mined by Nuryyev et al. [62] , encoded in
the extended RulePad format (explained in Section 4.1.1). We remove fully-
qualified names for better readability. Note 1: Each rule given in this table
is the RulePad encoding of a rule with the same id number given in the List-
ing 2.1. Note 2: The five rules that were not used during our user study due
to expert unavailability are greyed out

Id Rule definition
1 class with (method with (annotation “APIResponse” with parame-

ter “String responseCode” and parameter “String description” and
annotation “Operation”))and annotation “Path” must have anno-
tation “Path” with parameter “String value”

2 method with annotation “SimplyTimed” and parameter “String”
must have annotation “SimplyTimed” with parameter “String
name”

3 class with (annotation “Entity” and annotation “Type” and anno-
tation “media.Schema” with parameter “String name” and param-
eter “String title”) must have annotation “Entity” with parameter
“String name”

4 class with (annotation “ApplicationPath” with parameter “String
value” and annotation “Path” with parameter “String value”
and annotation “LoginConfig” with parameter “String auth-
Method” and parameter “String realmName” and annotation “Re-
questScoped”) must have extension of “Application”

5 class with method with (annotation “APIResponses” and annota-
tion “Operation”) must have annotation “Path”

6 class with method with annotation “Outgoing” must have annota-
tion “ApplicationScoped”

7 class with method with annotation “Mutation” must have annota-
tion “GraphQLApi”

8 method with annotation “Gauge” with parameter “String unit”
must have annotation “Gauge” with parameter “String name”

9 field with (annotation “RegistryType” with parameter “MetricReg-
istry.Type type” and annotation “Inject”) must have type “Metri-
cRegistry”

10 class with (annotation “ApplicationScoped” and annotation
“Health”) must have implementation of “HealthCheck”

11 field with (annotation “ConfigProperty” and annotation “Inject”
) must have annotation “ConfigProperty” with parameter “String
name”

12 class with method with annotation “Query” must have annotation
“GraphQLApi”

47

13 class with (method with (annotation “APIResponse” with parame-
ter “String responseCode” and annotation “Operation”)) and an-
notation “Path” with parameter “String value” must have method
with return type “Response”

14 class with (method with annotation “Path” with parameter “String
value”) and annotation “RegisterRestClient” must have annotation
“RegisterClientHeaders”

15 class with (annotation “ApplicationScoped” and annotation
“Readiness”) must have implementation of “HealthCheck”

16 class with (annotation “Path” and annotation “OpenAPIDefini-
tion” with parameter “info”) must have annotation “Path” with
parameter “String value”

17 class with annotation “Liveness” must have implementation of
“HealthCheck”

18 class with (annotation “Tag” with parameter “String name” and
annotation “Path”) must have annotation “Path” with parameter
“String value”

19 class with method with annotation “Incoming” must have annota-
tion “ApplicationScoped”

20 field with annotation “Inject” must have annotation “RestClient”
21 class with (annotation “RegisterRestClient” and annotation “Reg-

isterProvider”) must have annotation “RegisterProvider” with pa-
rameter “Class value”

22 field with annotation “Inject” must have annotation “Metric”
23 class with field with (annotation “Inject” and annotation “Claim”

) must have annotation “Path”

6.1.4 Interviewer involvement

The author of this thesis is the only person conducting the interviews. During

the experiments, we provide varying amount of guidance to the participants

in each segment of the interview. We provide the most guidance during the

tutorial segment, where we explain what the tool and the DSL are, what the

objective of the user study is, and how the validation process works. During the

live experiment, our guidance is minimal, unless the participant asks questions.

During the exit survey, we explain each presented question to make sure the

participant does not misinterpret the question. Additionally, based on the

answers a participant provides, we may ask follow-up questions. It is also

worth noting that the participants have complete control over the RVT and

48

Table 6.2: Number of candidate rules mined for each MicroProfile specifica-
tion [62]. One rule belongs to both GraphQL and OpenAPI specifications,
hence the total is 23, not 24.

MicroProfile Specification # mined rules # confirmed rules

Config 1 0
GraphQL 3 N/A
Health 3 3
JWT-Auth 2 1
Metrics 4 3
OpenAPI 6 2
REST Client 3 N/A
Reactive Messaging 2 2

Total 23 11

they perform the tasks with the tool themselves. At the beginning of the

session, we share the web link to RVT with the participants.

6.2 Participant Recruitment

MicroProfile API experts (i.e., direct contributors to various MicroProfile spec-

ifications) are the target population of our study. We drafted a recruitment

email that our industry collaborator sent to six IBM MicroProfile API de-

velopers. Our goal was to recruit at least one expert for each MicroProfile

specification that we have candidate rules for. We consider validating all 23

rules from Listing 2.1. In Table 6.1, we also share these 23 rules encoded

in the extended RulePad format, which is the format that the participants

validate the candidate rules in. Table 6.2 groups those rules based on Micro-

Profile specifications. Four API experts (P1-P4) agreed to participate in the

user study. Before the experiment, for each participant, we collected back-

ground information on which MicroProfile components they are familiar with

and created a set of candidate rules that contain APIs from these components.

Table 6.3 shows the summary of the details we collect about the participants

of our study.

49

Table 6.3: Information about the participants (P1-P4) of our study. Please
note that “Experience” column specifies the years of experience in their current
team

Participant Spec(s) responsible *Experience # of rules
validated

P1 Config, Reactive Messaging,
OpenAPI

4 years 9

P2 Health 6 years 3
P3 Metrics 5 years 4
P4 JWT-Auth 2 years 2

6.3 Results

While we wanted to validate all 23 rules, given expert availability, we could only

validate 18 rules. We share all the confirmed rules in Table 6.4. There were

no common rules shared between participants due to their different expertise.

P1, P2, P3, and P4 confirm 4/9 rules, 3/3 rules, 3/4 rules and 1/2 rules,

respectively. Overall, the four participants label 11/23 rules as correct, with

all except one rule (from MicroProfile Metrics) requiring modifications. All

presented rules for MicroProfile Health and Reactive Messaging are validated

as partially correct. For MicroProfile Metrics, P3 considers the only rejected

rule as “best practice” and not necessarily incorrect.

We now present the main results of our user study, where we focus on the

whole pipeline rather than the accuracy of the mining process, which Nuryyev

et al. evaluated already [62].

6.3.1 RQ1: Expressiveness of the extended RulePad
DSL in RVT

Figure 6.1 shows how participants perceive the presented candidate rules in

terms of their understandability. The graph shows that the majority of the

presented candidate rules are easy to understand for participants. P2 men-

tions that the English-like syntax of RulePad makes it easy to learn in a short

period of time. Recall that we introduced two constructs to RulePad to reduce

50

Table 6.4: The rules that the participants have confirmed during our User
study. We remove fully-qualified names for better readability. Note: Each
confirmed rule given in this table is the confirmed version of a candidate rule
with the same id number given in the Table 6.1

E
xp

er
t

R
ul

e
id

Rule definition
P1 5 method with annotation “APIResponses” or an-

notation “Operation” must have annotation
“[GET|POST|HEAD|OPTIONS|DELETE|PATCH|PUT]”

P1 6 class with method with annotation “Outgoing” must have bean
declaration

P1 16 class with annotation “OpenAPIDefinition” must have extension of
“Application”

P1 19 class with method with annotation “Incoming” must have bean
declaration

P2 10 class with (annotation “javax.enterprise.context.ApplicationScoped”
or annotation “jakarta.enterprise.context.ApplicationScoped”) and
annotation “[Startup|Liveness|Readiness]”) must have implemen-
tation of “HealthCheck”

P2 15 class with (annotation “javax.enterprise.context.ApplicationScoped”
or annotation “jakarta.enterprise.context.ApplicationScoped”)
and annotation “Readiness” must have implementation of
“HealthCheck”

P2 17 class with (annotation “javax.enterprise.context.ApplicationScoped”
or annotation “jakarta.enterprise.context.ApplicationScoped”) and
annotation “Liveness” must have implementation of “HealthCheck”

P3 8 class with method with annotation “Gauge” must have annotation
“ApplicationScoped” and method with annotation “Gauge” with
parameter “String unit”

P3 9 field with annotation “RegistryType” with parameter “MetricReg-
istry.Type type” and annotation “Inject” must have type “Metri-
cRegistry”

P3 22 field with annotation “Metric” must have annotation “Inject”
P4 4 class with annotation “ApplicationPath” and annotation “Login-

Config” with parameter “String authMethod” must have extension
of “Application”

51

the verbosity of the DSL (Section 4.1.1). We observe that P1 and P2 use the

shortcut that allows grouping of annotations from the same package, showing

the usefulness of the shortcut. We find that while the extended RulePad is

expressive enough to specify most of the code constructs needed to encode an-

notation usage rules, there is still room for improvement. Participants suggest

that the extended RulePad can be further improved by including the following

code constructs:

1. Specify mutual exclusivity. A rule might require usage of only one an-

notation from a set of annotations. Currently, the extended RulePad

supports disjunctions (i.e., or) which does not guarantee mutual exclu-

sivity (i.e., xor).

2. Invert a predicate. Our extension to RulePad does not support nega-

tions. For example, our extension cannot encode the following hypothet-

ical rule: a field with annotation A and not with annotation B requires

annotation C.

3. Require overriding a specific method. Method overriding is useful in two

cases. First, it enables rule completeness. Currently, we can specify that

a class needs to implement an interface, but a complete rule must indicate

which method needs to be overridden/implemented from that interface.

Second, given a predicate, an expert might want to require overriding

specific methods (e.g., if class is annotated with X and extends Y, then

it must override method Z).

4. Shortcuts for frequently used MicroProfile constructs such as CDI beans,

JAX-RS resource methods (i.e. a method that is annotated with request

method designators such as @GET or @POST) or classes (i.e., a class that

either is annotated with @Path or contains at least one resource method).

For example, instead of saying method with annotation "Operation"

must have annotation "[GET|POST|PUT|DELETE|..]", an expert can

simplify the rule to method with annotation "Operation" must be

a JAXRS resource.

52

Figure 6.1: Understandability of candidate rules

All the potential RulePad extensions above represent common cases that

happen in more than one instance. However, during the interview with P4, we

encounter a specific constraint involving the annotation @Claim that RulePad

is not capable of expressing [12]. @Claim annotation has two parameters

to specify a claim name for injection, String value and Claims standard.

The constraint is that a client developer should use either one of parame-

ters, however, if both of them are present, then their values must align (e.g.,

@Claim(value="exp", standard=Claims.exp)), otherwise a DeploymentEx-

ception is thrown (e.g., when @Claim(value="exp", standard=Claims.iat)).

Currently, RulePad is not capable of specifying this requirement, and adding

the capability of expressing such requirements might affect the overall read-

ability of a rule.

RQ1: The extended RulePad DSL is capable enough to express most of the
code constructs required for validating the candidate rules. The participants
mention that the resemblance to the English language makes RulePad easy
to learn in a short period of time. Additionally, they suggest four potential
improvements to further improve the DSL.

6.3.2 RQ2: Usefulness of RVT in modifying and vali-
dating candidate rules

Figure 6.2-RB2 shows that participants unanimously agree that RVT is use-

ful. Therefore, we conclude that having a dedicated tool for rule validation is

useful for API experts. That said, Figure 6.2-RB3 shows that our participants

have varying opinions on the level of difficulty of editing rules using RVT. P1

53

Figure 6.2: RB1 results regarding having a starting point for rule authoring.
RB2 results regarding usefulness of having a dedicated rule validation tool.
RB3 results for levels of difficulty of editing rules using RVT.

who rated “Neither hard nor easy” states that in some cases the rules written

in the extended RulePad format are not how they would be written as a spec-

ification. For example, consider the following rule: “a field with the @Config-

Property annotation should have the @Inject annotation unless the class has

the @ConfigProperties annotation”. In the extended RulePad, we encode

the rule as “class with field with annotation "ConfigProperty" must

have annotation "ConfigProperties" or field with annotation "Inject"”.

While this rule is correct, P1 argues that it is not natural to write the rule in

that format. Instead, P1 mentions that an API expert would write the rule as

“field with annotation "ConfigProperty" must have annotation "In-

ject" unless enclosing class has annotation "ConfigProperties"”. This

aligns with the previous suggestion of supporting predicate negation in RulePad.

We now discuss what other information participants think can help them

in the rule validation process. From the existing assisting components of RVT,

participants find the code preview section particularly helpful for visualizing

how a rule might potentially look. P3 states that the rules being presented pre-

formatted makes rules easier to understand. Participants share the following

ideas for potential enhancements:

� Easier access to Java documentation. Finding the correct documentation

page may take time, and providing quick access to it can be useful.

54

� Auto-completing fully qualified names (FQNs). When generating static

analysis checks, we expect the validated rules to have FQNs. While candi-

date rules have FQNs, it might be hard for experts to know the FQN for

every annotation/class they need to add or modify. Providing such assis-

tance can reduce the time spent on looking for the correct package name.

� Syntax checking for the DSL. Participants believe that having a syntax

error checker can assist them in writing rules properly.

RQ2: Our results show that having a dedicated tool for rule validation is
indeed useful and the participants’ experience with RVT is mostly positive.
Participants find the preformatted rules and the generated code preview
feature useful. Additionally, they suggest three potential features we can
add to further enhance RVT.

6.3.3 RQ3: Effectiveness of the mined rules in alleviat-
ing the difficulties of writing usage rules

Figure 6.2-RB1 illustrates what participants think about having starting points

for authoring rules. Our results show that having starting points is helpful.

According to P1, given a rule, it is generally easier to point out the problems

with the rule. In a similar fashion, P3 states that as with anything in tech, it

becomes easier once you have something to work with. In response to OE3,

P1 states that there are probably additional rules to encode; however, to find

them, one needs to go through the documentation. Note that this statement

strengthens our argument that having starting points reduces the effort of

manually going through documentation to find rules, especially that not all

API usage rules are documented.

API usage rule mining solutions are capable of finding patterns that are

frequently used in client code. However, they can also miss usage patterns

that are less frequent, or intricate. This is the reason why we ask OE3 in our

exit questionnaire to understand what rules the our pattern mining approach

has missed. In response to OE3, P4 shared two rules:

� a field with type JsonWebToken must be injected using @Inject annota-

tion [38].

55

� @Claim can only be injected into a field with one of the following types:

� “java.lang.String”

� “java.lang.Long” and “long”

� “java.lang.Boolean” and “boolean”

� “java.util.Set<java.lang.String>”

� “jakarta.json.JsonValue.TRUE/FALSE”

� “jakarta.json.JsonString”

� “jakarta.json.JsonNumber”

� “jakarta.json.JsonArray”

� “jakarta.json.JsonObject”

� “java.util.Optional” wrapper of the above types

� “org.eclipse.microprofile.jwt.ClaimValue” wrapper of the above types

One of the potential issues with finding API usage rules through pattern

mining is that a mined pattern can contain deprecated APIs. There was one

such rule that P2 had to validate. While converting the candidate rule into the

correct rule, P2 explains that the candidate rule uses the @Health annotation

which has been deprecated since MicroProfile Health version 2.0 and is no

longer part of the API [54]. This case shows that having human validation is

critical when it comes to mining rules.

RQ3: Our results show that the concept of using mined rules as start-
ing points is useful. Having starting points reduces the difficulty of manu-
ally searching for rules in the documentation. Expert validation also elimi-
nates the chance of using mined patterns that are incorrect/partially correct
(e.g., patterns using deprecated annotations). Overall, we conclude that our
human-in-the-loop concept is feasible and useful.

56

Chapter 7

Threats to Validity

7.1 Internal validity

It might be possible that we convert the mined rules into the extended RulePad

format incorrectly. However, for all 23 rules we use in our user study, we

manually compared each converted RulePad rule with its original JSON format

to make sure that the conversion process does not misrepresent the mined rule.

There might be a flaw in the implementation of our extended RulePad

parser, resulting in the generation of incorrect static analysis checks. In addi-

tion to conducting an experiment to validate the correctness of the generated

checks, we write 73 unit tests, each checking different use cases. There may

be some misuses that we could not catch due to our detector not scanning the

class hierarchy and annotation definitions. In future, we intend to address this

problem by scanning the entire project instead of each file in isolation. We

discuss the limitations of our detector in detail in Section 8.3. However, it is

worth noting that our misuse detector still found new misuses in addition to

all the misuses found by Nuryyev et al. [62] .

During our user study, it is possible that we misrepresent what API experts

mention, which might affect the results presented in RQ1 and RQ2 related

to the open-ended questions. For this reason, we audio and video record

each interview, and post-analyze them. It is also possible that there was

an inconsistency in the treatment each participant received. The author of

this thesis conducted each interview. While it is impossible to provide the

exact same treatment to each participant, the interviewer followed a specific

57

procedure, and adhered to it unless a participant specifically asked for help.

7.2 Construct validity

To mine candidate rules, our pipeline uses a previously developed and eval-

uated pattern mining technique [62]. The quality of the mining process can

affect the overall experience of participants in our user study. However, the

user study does not focus on measuring the correctness of the rules but rather

focuses on the editing and validation process.

Similar to the user study, our misuse detector evaluation process used the

existing set of rules from Nuryyev et al. [62] . The goal was to see if our

misuse detector, which generates static analysis checks automatically, could

find all the previously known misuses detected by manually-written checkers.

There is a likelihood that some of those rules might be incorrect. While we do

not check for the validity of the rules used in the previous study, there were

three rules that were incomplete due to version changes in the specification.

We made necessary additions and rerun the experiment with complete rules

to verify that our detector works as expected.

7.3 External validity

Our goal was to validate all the mined rules by at least one API expert.

We reached out to six of the relevant MicroProfile API experts working for

our industry partner, and four agreed to participate. These four participants

validated 18 out of 23 mined rules (78%) from six different MicroProfile spec-

ifications. Although we could not validate all the mined rules, the validated

rules cover most of the annotation relationships in our rules. Our work fo-

cuses on validating MicroProfile annotation usage rules. While, in principle,

our approach can be applied to other annotation-based libraries, we present

only a case study of MicroProfile and our findings may not generalize beyond

that. Future work can reuse our pipeline to investigate its applicability to

other libraries and frameworks.

58

Chapter 8

Discussion and Implications

In this thesis, we proposed a human-in-the-loop approach to generate anno-

tation usage rules for MicroProfile. We developed a web-based tool, RVT, to

facilitate rule validation and generation. To evaluate the usefulness of RVT

and our approach, we performed a user study with MicroProfile API experts.

We also created a misuse detector, and verified its correctness. We now discuss

the implications of our findings.

8.1 Generating API usage rules

Our main objective in this thesis is to generate accurate annotation usage rules

while reducing the burden of writing them from scratch. Therefore, we use a

pattern mining technique to automatically mine candidate rules that provide

starting points to experts for generating accurate rules. The results of our

user study (RQ3) show that all the API experts agree or strongly agree that

having starting points in the form of mined candidate rules reduces not only

the difficulty but also the effort of writing rules. They state that it is easier and

takes less effort to work with candidate rules and find problems in the rules

rather than discovering a rule manually. Our participants also confirm 11 of

the 18 presented candidate rules and modify 10 of these 11 confirmed rules,

which indicates that most of the presented candidate rules are partially correct

or incorrect rules. Thus, using the mined candidate rules directly for misuse

detection could have produced a lot of false positives. Therefore, our approach

that introduces experts for validating the mined rules is critical for generating

59

accurate rules. The results also show that experts go to extra lengths to

produce accurate rules. For example, P2 checked whether the generated rules

use any deprecated APIs.

Our results show that 10/11 confirmed rules are present in the documenta-

tion. This shows that our approach is effective in reducing the time spent on

finding the rules in the documentation. While these rules are present in the

documentation, they are not automatically checked for, and client developers

might violate them. Additionally, some of these usage rules that are available

in the documentation are more implicit than others, requiring some amount of

domain knowledge. For instance, one of the confirmed rules (see the rule with

id 5 in Table 6.4) requires the method to have one of the following annotations:

@GET, @POST, @PUT, @DELETE, @HEAD, @OPTIONS, @PATCH. The same rule that

is available in the documentation refers to the same property as a “JAX-RS

method”. As opposed to the original documentation version, our confirmed

rule is more explicit, indicating exactly what program element is required.

8.2 Facilitating rule validation

To facilitate rule validation, our approach uses an extended version of the

RulePad DSL. Not only can experts use RVT to validate the presented rules,

but they can also modify them. Therefore, it is critical that the DSL is able

to express or construct annotation usage rules. While our results (RQ1 and

RQ2) show that the DSL does not lack any grammar to express the con-

firmed rules, participants would like the ability to express API usage rules in

a more natural form and with finer granularity. For example, P1 states that

RulePad’s DSL might not be the most natural way to express a rule in some

cases. However, expressing a rule in a natural form can be challenging, because

it might be hard to find a consistent DSL format or syntax that allows natu-

ral expression. Addressing this limitation requires another user study where

the focus is on the way experts naturally author rules without adhering to a

specific format. We can then analyze the produced rules and see if there are

common patterns in the rules that can be incorporated into RulePad gram-

60

mar. Additionally, introducing more logical operators, such as XOR, NOR,

and NOT, would allow experts to express rules with finer granularity. The

extended RulePad also does not support referencing to the class from a field

or method statement. In some cases, this limitation can cause a rule lose its

focus. For example, consider the following rule: if a method parameter is an-

notated with “PathParam” then either that method or the class should have

the annotation “Path”. In the extended RulePad, we can specify the rule

as follows: class with method with parameter "PathParam" must have

annotation "Path" or method with annotation "Path". Let us now ex-

press the same rule while referring to the enclosing class: method with param-

eter with annotation "PathParam" must have annotation "Path" or en-

closing class with annotation "Path". While those two rules are equiva-

lent, the latter immediately shows that the focus is on the method, the former

references the class first, which is not the main element of this rule. Addressing

these limitations simply require adding elements to the grammar of the DSL.

Another avenue for improvement is the assisting features in RVT. Cur-

rently, the feature that has been brought up the most is the auto-completion

of fully qualified names. This feature will allow experts to easily specify fully

qualified names without consulting documentation, which will improve the

overall user experience. We can implement the auto-completion feature by

extracting fully qualified names of MicroProfile APIs from the documentation

and storing them in a database integrated with our Rule Authoring Editor.

We can also provide easy access to Java documentation for all the program el-

ements used in the rule. This feature can be a part of the Code Preview where

clicking on a program element will open the corresponding Javadoc page. Fi-

nally, we can provide another labeling button to allow experts to label a rule

as a “best practice”. When used for misuse detection, the best practice rules

can produce warnings instead of errors. API experts also suggest including a

mechanism to check for syntax errors in the DSL.

61

Figure 8.1: Autocompletion suggestions for the keyword “Inject” suggested by
RVT

Figure 8.2: The “best practice” label in RVT

8.2.1 Current state of RVT

In this section, we discuss the current state of RVT, which includes the ex-

tensions we have made based on the feedback we received during the user

study.

For the assisting features, in the improved RVT, we include the class name

autocompletion and easy documentation access features. For the former, it

suffices to provide a partial string, and the Rule Authoring Editor provides

all possible completion options (see Figure 8.1). For the latter, in the Code

Preview section, pressing on a particular program element (e.g., annotation

@ConfigProperty) opens the latest documentation available for that element.

We implement these features in a way that enables easy extension in future. We

also add the possibility of labeling the rule as a “best practice” (see Figure 8.2).

We also improve the extended RulePad DSL, by incorporating the following

capabilities into the DSL:

� We add more logical operators:

62

� “one of” for specifying mutual exclusivity. For example, “...must

have one of (annotation "Foo" or annotation "Bar")”

� “no” for negating a predicate. For example, “...must have no anno-

tation "Foo"”

� “none of” for negating multiple predicates. For example, “...must

have none of (annotation "Foo" or annotation "Bar")”

� We allow specifying method overriding using “overridden method” key-

word. For example, “class with annotation "Foo" and extension of

"Bar" must have overridden method "foobar(String)"”

� Fields and methods can refer to the enclosing class using “enclosing class”

keyword. For example, “method with parameter with annotation "Path-

Param" must have annotation "Path" or enclosing class with anno-

tation "Path"”

We leave features such as creating shortcuts for frequently used MicroPro-

file constructs and syntax checking as future work. We publicly share the

GitHub repository of our project [49].

8.3 Detecting misuses

To verify the correctness of our misuse detector, we conducted an experiment.

We now discuss the implications of our findings and limitations of our misuse

detector. We identify four aspects that should be improved to reduce the

number of false positives.

API versioning. APIs change over time [44]. These changes include adding

new features, deprecating existing features, or changing namespaces. These

changes might alter the previously valid API usage rules. During our experi-

ment, we noticed one such case in usage rules concerning Java EE/Jakarta EE

APIs. A single namespace change resulted in our detector reporting 89 false

positives. While we fixed this issue by making necessary additions to those

rules, it is important to mention that our mining approach does not consider

different versions of APIs. However, taking API versions into account during

63

the mining process might result in fewer rules being mined. The API version-

ing can be a part of rule validation process where API experts can set what

versions a particular rule is valid for.

MicroProfile runtimes. MicroProfile is a collection of specifications, and

on its own it does not provide functionality. There are vendors that implement

these specifications. However, these vendors are also capable of being lenient

at some cases to provide a better developer experience. One such case happens

with Quarkus [69] where it makes the usage of @Inject annotation optional

when used with @ConfigProperty on class fields. In turn, this resulted in 16

false positives during our misuse detector evaluation. Similarly to API version-

ing, rules could be supplied with runtime related information. The main issue

related to providing runtime-related information is that we must recruit API

experts that have expertise in different MicroProfile implementations, which

is infeasible. Additionally, statically extracting which MicroProfile runtime

a project uses can be challenging. One possible solution might be to create

checkers for each known MicroProfile runtime. A checker can check whether a

project uses dependencies, configuration files or configuration properties that

are specific to a particular runtime. However, this approach is ad-hoc at best,

and is not guaranteed to produce accurate results. It is also worth noting

that it is possible to configure the MicroProfile runtime outside of the project,

which renders obtaining the runtime information impossible.

Configuration sources. Currently, our misuse detector only scans Java files

and does not take into account configuration sources. MicroProfile supports

multiple configuration sources such as properties files or XML files. Ana-

lyzing configuration sources is hard to achieve with static analysis, because

of the different ways a client developer can provide a configuration source.

In MicroProfile, apart from well-known configuration sources (such as the

microprofile-config.properties file), there are ways to create custom con-

figuration sources that can pull the configuration data from sources such as

the database, which cannot be accessed till runtime.

64

1 class Parent extends Bar {

2

3 }

4

5 @Foo

6 class Child extends Parent {

7 }

(a)

1 @NormalScope

2 // omitted the rest for brevity

3 @interface ApplicationScoped {}

4

5 @Foo

6 @ApplicationScoped

7 class Child {}

(b)

Figure 8.3: Code examples for demonstrating the limitations of the misuse
detector

Improving the detection process. Currently, the detector scans one Java

file at a time, in isolation. We do not scan the class hierarchy (parent classes,

interfaces) or the annotation definitions. While we did not find any issues dur-

ing the evaluation process caused by these limitations, we believe considering

these two aspects can potentially reduce false positives. Scanning the class hi-

erarchy is important because child classes might inherit annotations or other

classes/interfaces through their parents. For example, consider the follow-

ing rule: class with annotation "Foo" must have extension of "Bar".

For the code example given in Figure 8.3 (a), our detector would report a

misuse since class Child does not extend Bar. Scanning annotation defini-

tions is also important because some annotations can be annotated with other

annotations that the misuse detector is searching for. Consider the annota-

tions @NormalScope and @ApplicationScoped from Jakarta EE [29]. The

@ApplicationScoped annotation has been annotated with @NormalScope in

its definition [9]. Now, consider the following rule: class with annotation

"Foo" must have annotation "NormalScope". Without scanning the an-

notation definition, for the code example given in Figure 8.3 (b), the misuse

detector will report a misuse since @NormalScope does not exist on the Child

class. Scanning the annotation definition would enable the misuse detector to

treat this instance as a correct usage.

65

Chapter 9

Conclusion

Similar to library API calls, Java annotations also have usage constraints as-

sociated with them. Violation of such constraints can lead to various issues

ranging from silent faulty behavior to runtime exceptions. Violation of a con-

straint is formally called as an API misuse, or simply a misuse. To detect

misuses, the ideal path is asking library authors to write accurate checkable

usage rules, and then verifying the client developer’s code against these check-

able usage rules. However, writing rules from scratch is cumbersome. Because

of the time-consuming nature of manual rule authoring, researchers have pro-

posed pattern mining techniques to discover those usage rules automatically.

The main premise behind pattern mining is that a frequent usage pattern is a

rule. However, in practice, the mined rules are not always accurate, and they

produce false positives during misuse detection.

In this thesis, we combine both techniques and introduce a human-in-the-

loop approach for producing accurate annotation usage rules of MicroProfile

APIs. We leverage pattern mining to produce starting points for writing API

usage rules. We build a specialized tool, RVT, to facilitate the rule validation

process, and a misuse detector to automatically generate static analysis checks

from correct rules. To make rules easily understandable, RVT extends an

English-like DSL called RulePad for encoding mined rules. We evaluate our

approach in a user study with MicroProfile subject matter experts. The user

study results show that having starting points makes writing rules easier and

that our proposed pipeline can be used to automatically produce accurate

66

MicroProfile API usage rules. These usage rules can be integrated into static

analysis tools to help MicroProfile client developers write less buggy code, or

they can improve the documentation.

Additionally, we verify the correctness of our misuse detector by running it

against the complete commit history of 517 projects. We discover 126 misuses

in total. 100/126 misuses are previously known misuses, showing that given

correct confirmed rules, our detector can accurately find the misuses. From

the remaining 26 misuses, only six are true positives while the rest are false

positives. We find that false positives are caused by reasons such API version

changes, differences between MicroProfile runtimes and configuration sources.

However, the confirmed rules do not contain any information related to the

version of the API or the supported MicroProfile runtime. It is worth noting

that the main premise of our evaluation was to check given a correct confirmed

rule whether our detector can successfully find a misuse of that rule, which

remains unaffected by the produced false positives.

Future work can explore developing a DSL that allows expressing rules in

a natural form. A good starting point can be starting from the rules present

in documentation/specifications. Additionally, conducting a user study and

focusing on the way API experts author rules if they did not have to adhere

to any format would also be useful. Another path for future work is adding

version-related and runtime-related information to the confirmed rules. This

can either be achieved during the mining process or during the rule validation.

67

References

[1] S. Amann, S. Nadi, H. A. Nguyen, T. N. Nguyen, and M. Mezini,
“MUBench: A benchmark for API-misuse detectors,” in Proceedings of
the 13th international conference on mining software repositories, 2016,
pp. 464–467.

[2] S. Amann, H. A. Nguyen, S. Nadi, T. N. Nguyen, and M. Mezini, “A
Systematic Evaluation of Static API-Misuse Detectors,” IEEE Transac-
tions on Software Engineering, vol. 45, no. 12, pp. 1170–1188, 2019. doi:
10.1109/TSE.2018.2827384.

[3] Annotations, https://docs.oracle.com/javase/8/docs/technotes/
guides/language/annotations.html, 2014.

[4] ANTLR, https://www.antlr.org/, 2022.

[5] Apache Maven, https://maven.apache.org, [Last accessed: May 31,
2022],

[6] Apache TomEE, https://tomee.apache.org/, 2022.

[7] J. Cass, MicroProfile Config 2.0, https://openliberty.io/blog/

2021/03/31/microprofile-config-2.0.html, 2021.

[8] CDI — Jakarta EE, https://jakarta.ee/specifications/dependency-
injection/, 2022.

[9] cdi/ApplicationScoped.java — GitHub, https://github.com/jakartaee/
cdi/blob/74827d2808a4db73d1402206a8e116b5702d031a/api/src/

main/java/jakarta/enterprise/context/ApplicationScoped.java,
2020.

[10] S. Ceri, G. Gottlob, L. Tanca, et al., “What you always wanted to know
about Datalog(and never dared to ask),” IEEE transactions on knowl-
edge and data engineering, vol. 1, no. 1, pp. 146–166, 1989.

[11] CheckStyle, https://checkstyle.org, 2022.

[12] Claim (MicroProfile JWT-Auth API), https://download.eclipse.
org/microprofile/microprofile- jwt- auth- 2.0/apidocs/org/

eclipse/microprofile/jwt/Claim.html, 2021.

[13] E. M. Clarke and E. A. Emerson, “Design and synthesis of synchroniza-
tion skeletons using branching time temporal logic,” in Workshop on
logic of programs, Springer, 1981, pp. 52–71.

68

https://doi.org/10.1109/TSE.2018.2827384
https://docs.oracle.com/javase/8/docs/technotes/guides/language/annotations.html
https://docs.oracle.com/javase/8/docs/technotes/guides/language/annotations.html
https://www.antlr.org/
https://maven.apache.org
https://tomee.apache.org/
https://openliberty.io/blog/2021/03/31/microprofile-config-2.0.html
https://openliberty.io/blog/2021/03/31/microprofile-config-2.0.html
https://jakarta.ee/specifications/dependency-injection/
https://jakarta.ee/specifications/dependency-injection/
https://github.com/jakartaee/cdi/blob/74827d2808a4db73d1402206a8e116b5702d031a/api/src/main/java/jakarta/enterprise/context/ApplicationScoped.java
https://github.com/jakartaee/cdi/blob/74827d2808a4db73d1402206a8e116b5702d031a/api/src/main/java/jakarta/enterprise/context/ApplicationScoped.java
https://github.com/jakartaee/cdi/blob/74827d2808a4db73d1402206a8e116b5702d031a/api/src/main/java/jakarta/enterprise/context/ApplicationScoped.java
https://checkstyle.org
https://download.eclipse.org/microprofile/microprofile-jwt-auth-2.0/apidocs/org/eclipse/microprofile/jwt/Claim.html
https://download.eclipse.org/microprofile/microprofile-jwt-auth-2.0/apidocs/org/eclipse/microprofile/jwt/Claim.html
https://download.eclipse.org/microprofile/microprofile-jwt-auth-2.0/apidocs/org/eclipse/microprofile/jwt/Claim.html

[14] A. Colmerauer, “An introduction to Prolog III,” in Computational Logic,
Springer, 1990, pp. 37–79.

[15] Configuration Reference Guide — Quarkus, https : / / quarkus . io /

guides/config-reference#inject, 2021.

[16] Configure Liveness, Readiness and Startup Probes, https://kubernetes.
io/docs/tasks/configure-pod-container/configure-liveness-

readiness-startup-probes, [Last accessed: May 9, 2022], Apr. 2022.

[17] Counted (MicroProfile 4.0), https://download.eclipse.org/microprofile/
microprofile-metrics-4.0/apidocs/org/eclipse/microprofile/

metrics/annotation/Counted.html, 2018.

[18] I. Darwin, “Annabot: A static verifier for java annotation usage,” Ad-
vances in Software Engineering, vol. 2010, 2009.

[19] L. De Lauretis, “From monolithic architecture to microservices architec-
ture,” in 2019 IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW), IEEE, 2019, pp. 93–96.

[20] Deprecated (Java SE 17 & JDK 17), https://docs.oracle.com/en/
java/javase/17/docs/api/java.base/java/lang/Deprecated.

html, 2021.

[21] FastAPI, https://fastapi.tiangolo.com/, 2022.

[22] M. Fowler, Domain Specific Languages, https://martinfowler.com/
books/dsl.html, 2010.

[23] M. Gabel and Z. Su, “Javert: fully automatic mining of general temporal
properties from dynamic traces,” in Proceedings of the 16th ACM SIG-
SOFT International Symposium on Foundations of software engineering,
2008, pp. 339–349.

[24] GlassFish, https://javaee.github.io/glassfish/, 2022.

[25] Gradle Build Tool, https://gradle.org, 2022.

[26] Helidon Project, https://helidon.io, 2021.

[27] Jakarta EE, https://jakarta.ee/, 2022.

[28] Jakarta EE, https://jakarta.ee/about/faq/, 2022.

[29] Jakarta Enterprise Context — Jakarta EE, https : / / jakarta . ee /

specifications/platform/9/apidocs/jakarta/enterprise/context/

package-summary.html, 2022.

[30] Java Parser, https://javaparser.org, 2019.

[31] JAX-RS - javax.ws.rs package, https://javadoc.io/doc/javax.ws.
rs/javax.ws.rs-api/2.1.1/javax/ws/rs/package-summary.html,
2018.

[32] JAX-RS — Jakarta EE, https : / / jakarta . ee / specifications /

restful-ws/, 2022.

69

https://quarkus.io/guides/config-reference#inject
https://quarkus.io/guides/config-reference#inject
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes
https://download.eclipse.org/microprofile/microprofile-metrics-4.0/apidocs/org/eclipse/microprofile/metrics/annotation/Counted.html
https://download.eclipse.org/microprofile/microprofile-metrics-4.0/apidocs/org/eclipse/microprofile/metrics/annotation/Counted.html
https://download.eclipse.org/microprofile/microprofile-metrics-4.0/apidocs/org/eclipse/microprofile/metrics/annotation/Counted.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Deprecated.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Deprecated.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Deprecated.html
https://fastapi.tiangolo.com/
https://martinfowler.com/books/dsl.html
https://martinfowler.com/books/dsl.html
https://javaee.github.io/glassfish/
https://gradle.org
https://helidon.io
https://jakarta.ee/
https://jakarta.ee/about/faq/
https://jakarta.ee/specifications/platform/9/apidocs/jakarta/enterprise/context/package-summary.html
https://jakarta.ee/specifications/platform/9/apidocs/jakarta/enterprise/context/package-summary.html
https://jakarta.ee/specifications/platform/9/apidocs/jakarta/enterprise/context/package-summary.html
https://javaparser.org
https://javadoc.io/doc/javax.ws.rs/javax.ws.rs-api/2.1.1/javax/ws/rs/package-summary.html
https://javadoc.io/doc/javax.ws.rs/javax.ws.rs-api/2.1.1/javax/ws/rs/package-summary.html
https://jakarta.ee/specifications/restful-ws/
https://jakarta.ee/specifications/restful-ws/

[33] JAXB — Jakarta EE, https://jakarta.ee/specifications/xml-
binding/, 2022.

[34] A. K. Jha and S. Nadi, “Annotation practices in Android apps,” in 2020
IEEE 20th International Working Conference on Source Code Analysis
and Manipulation (SCAM), IEEE, 2020, pp. 132–142.

[35] JPA — Jakarta EE, https://jakarta.ee/specifications/persistence/,
2022.

[36] JSON, https://www.json.org, [Last accessed: May 31, 2022],

[37] JSON-B — Jakarta EE, https : / / jakarta . ee / specifications /

jsonb/, 2022.

[38] JsonWebToken (MicroProfile JWT-Auth API), https : / / download .

eclipse.org/microprofile/microprofile-jwt-auth-2.0/apidocs/

org/eclipse/microprofile/jwt/JsonWebToken.html, 2021.

[39] H. J. Kang and D. Lo, “Active Learning of Discriminative Subgraph
Patterns for API Misuse Detection,” IEEE Transactions on Software
Engineering, pp. 1–1, 2021. doi: 10.1109/TSE.2021.3069978.

[40] H. J. Kang and D. Lo, “Active learning of discriminative subgraph pat-
terns for API misuse detection,” IEEE Transactions on Software Engi-
neering, 2021.

[41] A. Kellens, C. Noguera, K. De Schutter, C. De Roover, and T. D’Hondt,
“Co-evolving annotations and source code through smart annotations,”
in 2010 14th European Conference on Software Maintenance and Reengi-
neering, IEEE, 2010, pp. 117–126.

[42] T. Kosar et al., “Comparing general-purpose and domain-specific lan-
guages: An empirical study,” Computer Science and Information Sys-
tems, vol. 7, no. 2, pp. 247–264, 2010.

[43] S. Krüger, J. Späth, K. Ali, E. Bodden, and M. Mezini, “Crysl: An ex-
tensible approach to validating the correct usage of cryptographic apis,”
IEEE Transactions on Software Engineering, vol. 47, no. 11, pp. 2382–
2400, 2019.

[44] M. Lamothe, Y.-G. Guéhéneuc, and W. Shang, “A systematic review of
API evolution literature,” ACM Computing Surveys (CSUR), vol. 54,
no. 8, pp. 1–36, 2021.

[45] T.-D. B. Le, L. Bao, and D. Lo, “DSM: a specification mining tool us-
ing recurrent neural network based language model,” in Proceedings of
the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineer-
ing, 2018, pp. 896–899.

70

https://jakarta.ee/specifications/xml-binding/
https://jakarta.ee/specifications/xml-binding/
https://jakarta.ee/specifications/persistence/
https://www.json.org
https://jakarta.ee/specifications/jsonb/
https://jakarta.ee/specifications/jsonb/
https://download.eclipse.org/microprofile/microprofile-jwt-auth-2.0/apidocs/org/eclipse/microprofile/jwt/JsonWebToken.html
https://download.eclipse.org/microprofile/microprofile-jwt-auth-2.0/apidocs/org/eclipse/microprofile/jwt/JsonWebToken.html
https://download.eclipse.org/microprofile/microprofile-jwt-auth-2.0/apidocs/org/eclipse/microprofile/jwt/JsonWebToken.html
https://doi.org/10.1109/TSE.2021.3069978

[46] Y. Liu, Y. Yan, C. Sha, X. Peng, B. Chen, and C. Wang, “DeepAnna:
Deep Learning based Java Annotation Recommendation and Misuse
Detection,” 29th IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER), 2022.

[47] B. Livshits and T. Zimmermann, “Dynamine: finding common error pat-
terns by mining software revision histories,” ACM SIGSOFT Software
Engineering Notes, vol. 30, no. 5, pp. 296–305, 2005.

[48] S. Mehrpour, T. D. LaToza, and H. Sarvari, “RulePad: interactive au-
thoring of checkable design rules,” in Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2020, pp. 386–397.

[49] mensurowary, generating-annotation-usage-rules — GitHub, https://
github.com/ualberta-smr/generating-annotation-usage-rules,
2022.

[50] Micronaut, https://micronaut.io, 2022.

[51] MicroProfile, https://microprofile.io, 2022.

[52] MicroProfile 5.0, https : / / docs . google . com / presentation / d /

1PfXEOJzy8v2kGRudvknPox5elRasewv3MBeV0P4Rk6M/edit#slide=id.

p, 2021.

[53] MicroProfile Health, https://download.eclipse.org/microprofile/
microprofile-health-4.0/microprofile-health-spec-4.0.html,
Nov. 2021.

[54] MicroProfile Health Check 2.0 final, https://github.com/eclipse/
microprofile-health/releases/tag/2.0, 2019.

[55] MicroProfile Health#Liveness check, https://download.eclipse.org/
microprofile/microprofile-health-4.0/microprofile-health-

spec-4.0.html#_liveness_check, Nov. 2021.

[56] MicroProfile Metrics, https://download.eclipse.org/microprofile/
microprofile- metrics- 4.0/microprofile- metrics- spec- 4.0.

html, Oct. 2021.

[57] Monaco Editor, https://microsoft.github.io/monaco- editor/,
2022.

[58] MySQL, https://www.mysql.com/, 2022.

[59] S. Newman, Building microservices. ” O’Reilly Media, Inc.”, 2021.

[60] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T. N.
Nguyen, “Graph-based mining of multiple object usage patterns,” in
Proceedings of the 7th joint meeting of the European Software Engineer-
ing Conference and the ACM SIGSOFT symposium on the Foundations
of Software Engineering, 2009, pp. 383–392.

71

https://github.com/ualberta-smr/generating-annotation-usage-rules
https://github.com/ualberta-smr/generating-annotation-usage-rules
https://micronaut.io
https://microprofile.io
https://docs.google.com/presentation/d/1PfXEOJzy8v2kGRudvknPox5elRasewv3MBeV0P4Rk6M/edit#slide=id.p
https://docs.google.com/presentation/d/1PfXEOJzy8v2kGRudvknPox5elRasewv3MBeV0P4Rk6M/edit#slide=id.p
https://docs.google.com/presentation/d/1PfXEOJzy8v2kGRudvknPox5elRasewv3MBeV0P4Rk6M/edit#slide=id.p
https://download.eclipse.org/microprofile/microprofile-health-4.0/microprofile-health-spec-4.0.html
https://download.eclipse.org/microprofile/microprofile-health-4.0/microprofile-health-spec-4.0.html
https://github.com/eclipse/microprofile-health/releases/tag/2.0
https://github.com/eclipse/microprofile-health/releases/tag/2.0
https://download.eclipse.org/microprofile/microprofile-health-4.0/microprofile-health-spec-4.0.html#_liveness_check
https://download.eclipse.org/microprofile/microprofile-health-4.0/microprofile-health-spec-4.0.html#_liveness_check
https://download.eclipse.org/microprofile/microprofile-health-4.0/microprofile-health-spec-4.0.html#_liveness_check
https://download.eclipse.org/microprofile/microprofile-metrics-4.0/microprofile-metrics-spec-4.0.html
https://download.eclipse.org/microprofile/microprofile-metrics-4.0/microprofile-metrics-spec-4.0.html
https://download.eclipse.org/microprofile/microprofile-metrics-4.0/microprofile-metrics-spec-4.0.html
https://microsoft.github.io/monaco-editor/
https://www.mysql.com/

[61] C. Noguera and L. Duchien, “Annotation framework validation using
domain models,” in European Conference on Model Driven Architecture-
Foundations and Applications, Springer, 2008, pp. 48–62.

[62] B. Nuryyev, A. K. Jha, S. Nadi, Y.-K. Chang, E. Jiang, and V. Sun-
daresan, “Mining Annotation Usage Rules: A Case Study with Micro-
Profile,” in 2022 38th International Conference on Software Maintenance
and Evolution, IEEE, 2022.

[63] Open Liberty, https://openliberty.io, 2021.

[64] Override (Java SE 17 & JDK 17), https://docs.oracle.com/en/
java/javase/17/docs/api/java.base/java/lang/Override.html,
2021.

[65] Payara, https://www.payara.fish, 2022.

[66] Payara, MicroProfile Config Guide, https : / / info . payara . fish /

hubfs/MicroProfile%20Guides/MicroProfile%20Config%20Guide.

pdf, 2021.

[67] G. Piatetsky-Shapiro, “Discovery, analysis, and presentation of strong
rules,” Knowledge discovery in databases, pp. 229–238, 1991.

[68] PMD, pmd.github.io, 2022.

[69] Quarkus, https://quarkus.io, 2021.

[70] React, https://reactjs.org/, 2022.

[71] M. P. Robillard, E. Bodden, D. Kawrykow, M. Mezini, and T. Ratchford,
“Automated API property inference techniques,” IEEE Transactions on
Software Engineering, vol. 39, no. 5, pp. 613–637, 2012.

[72] M. A. Saied and H. Sahraoui, “A cooperative approach for combining
client-based and library-based API usage pattern mining,” in 2016 IEEE
24th International Conference on Program Comprehension (ICPC), IEEE,
2016, pp. 1–10.

[73] M. A. Saied, H. Sahraoui, and B. Dufour, “An observational study on api
usage constraints and their documentation,” in 2015 IEEE 22nd Inter-
national Conference on Software Analysis, Evolution, and Reengineering
(SANER), IEEE, 2015, pp. 33–42.

[74] Simple Dependency Injection Example — Configuration for MicroPro-
file, https://download.eclipse.org/microprofile/microprofile-
config-3.0.1/microprofile-config-spec-3.0.1.html#_simple_

dependency_injection_example, 2021.

[75] SimplyTimed (MicroProfile 4.0), https://download.eclipse.org/

microprofile/microprofile-metrics-4.0/apidocs/org/eclipse/

microprofile/metrics/annotation/SimplyTimed.html, 2018.

72

https://openliberty.io
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Override.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Override.html
https://www.payara.fish
https://info.payara.fish/hubfs/MicroProfile%20Guides/MicroProfile%20Config%20Guide.pdf
https://info.payara.fish/hubfs/MicroProfile%20Guides/MicroProfile%20Config%20Guide.pdf
https://info.payara.fish/hubfs/MicroProfile%20Guides/MicroProfile%20Config%20Guide.pdf
pmd.github.io
https://quarkus.io
https://reactjs.org/
https://download.eclipse.org/microprofile/microprofile-config-3.0.1/microprofile-config-spec-3.0.1.html#_simple_dependency_injection_example
https://download.eclipse.org/microprofile/microprofile-config-3.0.1/microprofile-config-spec-3.0.1.html#_simple_dependency_injection_example
https://download.eclipse.org/microprofile/microprofile-config-3.0.1/microprofile-config-spec-3.0.1.html#_simple_dependency_injection_example
https://download.eclipse.org/microprofile/microprofile-metrics-4.0/apidocs/org/eclipse/microprofile/metrics/annotation/SimplyTimed.html
https://download.eclipse.org/microprofile/microprofile-metrics-4.0/apidocs/org/eclipse/microprofile/metrics/annotation/SimplyTimed.html
https://download.eclipse.org/microprofile/microprofile-metrics-4.0/apidocs/org/eclipse/microprofile/metrics/annotation/SimplyTimed.html

[76] J. L. d. Siqueira, F. F. Silveira, and E. M. Guerra, “An approach for
code annotation validation with metadata location transparency,” in In-
ternational Conference on Computational Science and Its Applications,
Springer, 2016, pp. 422–438.

[77] SpotBugs, https://spotbugs.github.io, 2021.

[78] Spring, https://spring.io, 2022.

[79] srcML, https://www.srcml.org/, 2022.

[80] srcType, https://github.com/srcML/srcType, 2022.

[81] C.-A. Staicu, M. T. Torp, M. Schäfer, A. Møller, and M. Pradel, “Ex-
tracting taint specifications for javascript libraries,” in Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineer-
ing, 2020, pp. 198–209.

[82] A. Sven, H. A. Nguyen, S. Nadi, T. N. Nguyen, and M. Mezini, “Investi-
gating Next Steps in Static API-Misuse Detection,” in 2019 IEEE/ACM
16th International Conference on Mining Software Repositories (MSR),
2019, pp. 265–275. doi: 10.1109/MSR.2019.00053.

[83] A. Sven, H. A. Nguyen, S. Nadi, T. N. Nguyen, and M. Mezini, “Investi-
gating Next Steps in Static API-Misuse Detection,” in 2019 IEEE/ACM
16th International Conference on Mining Software Repositories (MSR),
2019, pp. 265–275. doi: 10.1109/MSR.2019.00053.

[84] Target (Java SE 17 & JDK 17), https://docs.oracle.com/en/java/
javase/17/docs/api/java.base/java/lang/annotation/Target.

html, 2021.

[85] G. Uddin, F. Khomh, and C. K. Roy, “Towards crowd-sourced API docu-
mentation,” in 2019 IEEE/ACM 41st International Conference on Soft-
ware Engineering: Companion Proceedings (ICSE-Companion), IEEE,
2019, pp. 310–311.

[86] M. Van Someren, Y. F. Barnard, and J. Sandberg, “The think aloud
method: a practical approach to modelling cognitive,” 1994.

[87] A. Wasylkowski and A. Zeller, “Mining temporal specifications from ob-
ject usage,” Automated Software Engineering, vol. 18, no. 3, pp. 263–292,
2011.

[88] A. Wasylkowski, A. Zeller, and C. Lindig, “Detecting object usage anoma-
lies,” in Proceedings of the the 6th joint meeting of the European soft-
ware engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering, 2007, pp. 35–44.

[89] WildFly, https://www.wildfly.org/, 2022.

[90] R. Wuyts et al., “A logic meta-programming approach to support the
co-evolution of object-oriented design and implementation,” Ph.D. dis-
sertation, Citeseer, 2001.

73

https://spotbugs.github.io
https://spring.io
https://www.srcml.org/
https://github.com/srcML/srcType
https://doi.org/10.1109/MSR.2019.00053
https://doi.org/10.1109/MSR.2019.00053
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/annotation/Target.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/annotation/Target.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/annotation/Target.html
https://www.wildfly.org/

[91] XPath, https://developer.mozilla.org/en-US/docs/Web/XPath,
Mar. 2022.

[92] Z. Yu, C. Bai, L. Seinturier, and M. Monperrus, “Characterizing the
Usage and Impact of Java Annotations Over 1000+ Projects,” arXiv
preprint arXiv:1805.01965, 2018.

[93] H. Zeng, J. Chen, B. Shen, and H. Zhong, “Mining API Constraints from
Library and Client to Detect API Misuses,” in 2021 28th Asia-Pacific
Software Engineering Conference (APSEC), IEEE, 2021, pp. 161–170.

[94] W. Zhang, H. Liao, and N. Zhao, “Research on the FP growth algo-
rithm about association rule mining,” in 2008 international seminar on
business and information management, IEEE, vol. 1, 2008, pp. 315–318.

[95] Y. Zhang, “Checking metadata usage for enterprise applications,” Ph.D.
dissertation, Virginia Tech, 2021.

[96] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei, “MAPO: Mining and
recommending API usage patterns,” in European Conference on Object-
Oriented Programming, Springer, 2009, pp. 318–343.

74

https://developer.mozilla.org/en-US/docs/Web/XPath

	Introduction
	Thesis Contributions
	Thesis Organization

	Background
	Microservices
	MicroProfile
	Annotation Usage Rules
	Pattern mining
	Frequent itemset mining
	Candidate annotation usage rule mining

	Related Work
	Mining API Usage Rules
	Formats for Encoding API Usage Rules

	rvt
	rvt DSL
	Rule Encoding
	Our RulePad Extensions

	User Interaction with rvt
	rvt GUI
	Rule Validation Process

	rvt: Implementation Details

	Misuse Detection
	Misuse Detector Tool
	Misuse Detector Evaluation
	Evaluation Setup
	Results
	Summary

	User study
	Experiment Setup
	Tutorial and setup.
	Live experiment.
	Exit survey.
	Interviewer involvement

	Participant Recruitment
	Results
	RQ1: Expressiveness of the extended RulePad DSL in RVT
	RQ2: Usefulness of RVT in modifying and validating candidate rules
	RQ3: Effectiveness of the mined rules in alleviating the difficulties of writing usage rules

	Threats to Validity
	Internal validity
	Construct validity
	External validity

	Discussion and Implications
	Generating API usage rules
	Facilitating rule validation
	Current state of RVT

	Detecting misuses

	Conclusion
	References

