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Abstract

This dissertation proposes an improved facies modelling methodology that involves

a new geological spatial characterization tool, a geological based spatial distance

calculation, and a theoretically sound conditional probability calculation. The full

set of bivariate probabilities are proposed as a spatial characterization tool that in-

tegrates facies stacking information into the final facies model construction. After

inference in the vertical direction from well data, they can be transformed to any

spatial distance vector based on a heterogeneity prototype and the calculation ap-

proach proposed in this research. The data information carried by the bivariate

probabilities will be integrated together into a multivariate probability based on the

minimum Kullback–Leibler distance. From this estimated multivariate probability,

the conditional probability for each unsampled location is calculated directly. The

research developed in this dissertation adds a new geostatistical facies modelling

approach to currently available tools. It provides a new approach to integrate more

geological understanding in the final model. It could be used in practice and as a

seed for further development.
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Chapter 1

Introduction

In this chapter, some basic concepts are introduced. Also, the motivation of this

thesis is highlighted after stating two major challenges in numerical reservoir mod-

elling.

1.1 Reservoir Simulation

Reservoir flow simulation refers to the dynamic simulation of fluids through a reser-

voir model over time (Fanchi, 2001; Ezekwe, 2010). It is used extensively by oil

and gas companies in the development of new fields as well as in developed fields

where production forecasts are needed to help make new investment decisions.

The numerical reservoir model for flow simulation usually refers to the 3D mod-

els of gross thickness, net to gross, porosity, and permeability and, where appropri-

ate, descriptions of faults, fractures and aquifers. The field under study will be

described by a grid system defined by cells or grid-blocks. Each cell must be as-

signed reservoir properties to describe the reservoir as sketched in Figure 1.1.

A flow simulator applied to the numerical model will help understanding well

production performance and different recovery mechanisms. If possible, the simu-

lator is calibrated using historic pressure and production data. When the simulation

results closely match the historical reservoir performance, a higher degree of con-

fidence is placed in its ability to predict the future fluid behaviour under a series of

potential scenarios such as drilling new wells and injecting various fluids.
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Figure 1.1: A schematic illustration of a numerical model of a reservoir

Reservoir formations show some internal variation in rock properties such as

reservoir thickness, porosity and permeability. In flow simulation, the fluid flow is

mostly controlled by the connectivity of extreme permeability. For example, the

high permeability facies will create preferential flow paths and low permeability

facies will create barriers. Building a 3D numerical model that is close to the true

geological reality to reflect those reservoir property variation is the main goal of

reservoir modelling.

1.2 Reservoir Modelling

Reservoir modelling represents an important step in the work flow of a typical reser-

voir study (Weber and Geuns, 1990). A reservoir static model from the reservoir

modelling will provide a sound geological description of the reservoir, both in ge-

ometry and petrophysical properties and it is one of the main input to reservoir flow

simulation to correctly evaluate the reservoir production (Haldorsen and Damsleth,

1990).

The reservoir static model includes the structural model, stratigraphic model,

facies and petrophysical model from several integrated modelling steps as shown in

Figure 1.2. Those models will be built using different data and different techniques,

but they all should be integrated and consistent to each other and to the data and

information available.

The structural model defines the structural top map and the fault pattern in the

2



Stucture model

Facies model
Petrophysical model

Upscaling model

Reservoir simulation

Data

Stratigraphy model

Figure 1.2: Reservoir modelling workflow (modified from ROXAR, 2009)

reservoir. Traditionally, it is the research domain of geophysics and based mostly

on seismic survey data.

Stratigraphic modelling mainly refers to the geological analysis such as se-

quence stratigraphic study, well correlation and division into stratigraphic layers.

The stratigraphic model provides the main reservoir flow units. Usually, the data

and information for this step will be from seismic data, sedimentology, well logs,

minerology, and field/outcrop studies.

The structural and stratigraphic models of a reservoir provide a reference ge-

ometric framework for the next stage: facies modelling. By building the facies

model, the reservoir structural framework will be filled with a facies distribution to

depict the spatial variability of the reservoir rock.

Based on the facies model, the porosity and permeability model characterizes

porous network of the reservoir. These models will determine the volume of hy-

drocarbons, their spatial variability and how easily the fluids will flow towards the

producing wells.
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The number of cells for a typical geostatistical model is on the order of 107 −
108. By contrast, the number of cells in a typical reservoir simulator is on the order

of 105 − 106. Thus, fine scale geostatistical models are usually upscaled for later

reservoir flow simulation as shown in the workflow in Figure 1.2.

1.3 Facies Modelling

The facies are considered to be the foundation of the petrophysical model. The

spatial distribution of facies is of major concern due to their influence on fluid flow,

and thereby the production of oil and gas (Hatløy, 1995). A detailed facies model

will guide the petrophysical distribution modelling since they are highly related

together. The steps in facies modelling include: a classification/definition of facies

from geological analysis, and a spatial distribution modelling using deterministic

or probabilistic/stochastic simulation methods.

1.3.1 Facies identification and classification

A facies is a distinctive rock unit that forms under certain conditions of sedimen-

tation, reflecting a particular process or environment, such as river channels, delta

systems, submarine fans, reefs and so on (Reading, 1996). Facies analysis helps

geologists reconstruct the paleogeography when the facies were deposited in geo-

logical history.

The geologist may define many high resolution facies types from cores, well

logs and/or outcrop studies (Glaister and Nelson, 1974; Coudert et al., 1994). Ge-

omodellers will group these facies into a reduced number that would be referred to

as lithotypes. The advantage of this is that it provides a simpler description of the

reservoir and is more easily handled in stochastic modelling. For example, in a very

simple study, the facies could be grouped into pay and non-pay based on a reservoir

quality threshold (Deutsch, 2002).
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Figure 1.3: A schematic illustration of core data for facies modelling

1.3.2 Data for facies modelling

There are several sources of facies data. Among them, core, well log, seismic and

outcrops are the most widely used.

The core is obtained mechanically in the drill hole or along the side of the well at

certain depth intervals see Figure 1.3. The porosity, permeability, water saturation,

volume of clay, and many other properties can be measured in the lab and are called

core data. Core data provide a direct measurement of reservoir properties that may

be used to calibrate well logs to improve the well log analysis. As the coring is

expensive and slow, there are few data for a modelling project.

Well log data are obtained by lowering logging instruments into the drill hole

with wire-lines to measure the rock and fluid properties of the formation from the

side walls. Measurements of gamma ray, neutron density, and spontaneous potential

of the rock are taken. These logging measurements usually have a vertical resolu-

tions from centimetres to about a meter with a similar lateral penetration around

the boreholes. From these logs, a petrophsicist will calculate the permeability and

porosity for reservoir formation evaluation. The well log data is a primary data

source and usually called hard data for later on reservoir modelling.
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Figure 1.4: One example of well log analysis results

The well log curve shape also helps the basis for geological facies interpretation

and other sequence stratigraphy analysis as shown in Figure 1.4. The geologist will

recognize different facies through the well log curve stacking pattern study (Ellis

and Singer, 2008).

Seismic properties of the subsurface geobodies are measured in terms of acous-

tic impedance, amplitude and sonic velocity (Veeken, 2007). The scale and resolu-

tion of seismic data is usually extensive over the reservoir. The primary limitation

of seismic data is its vertical resolution (about 10 meters) and multi-response to the

facies variations (Roksandic, 1978). It is usually classified as soft data and is used
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as large scale information to aid in the inference of facies after calibrating to the

hard data from well logs.

Another data resource is outcrops (Willis and White, 2000; Enge et al., 2007).

Usually, the outcrops that will be used in reservoir modelling should have a sim-

ilar geological background with the reservoir under study. In practice, not every

reservoir will have an analogue outcrop for more detailed study.

1.3.3 Facies spatial interpolation

After the facies are defined and the relevant data are collected, the numerical models

required for flow simulation can be built. As already discussed, the numerical simu-

lation is done on a model where each cell should have a petrophsical value. While in

practice, there are relatively few locations that are sampled as shown in Figure 1.5a.

One possible solution comes from geologists. Based on a geological under-

standing, geologists can draw a facies map from several sampled locations. As

shown in Figure 1.5b, the facies distribution in the whole area can be sketched out

based on the well data and the geology background of the study area. Then, this

facies map can be digitized as shown in Figure 1.5c and used as an input for petro-

physical modelling.

Because of heterogeneity and sparse data, our knowledge of the spatial distri-

bution of the physical properties of geologic formations is uncertain. Geostatistics

was developed originally to predict probability distributions of ore grades for min-

ing operations (Journel and Huijbregts, 1978). It has become an important tool for

estimating reservoir properties at points where data are not available, as well as

quantifying the corresponding uncertainty (Deutsch and Journel, 1998).

There are many geostatistics algorithms to do spatial interpolation for all the

grid cells based on some sampled locations. Very often, they are grouped as cell-

based and object-based approaches (Koltermann and Gorelick, 1996). The cell-

based approach assign a facies type to the grid cells according to a facies occurrence

probability, which is defined as a conditional probability calculated for each cell

7



(a) Sparse distributed well data

(b) Determined model from geologist

(c) Rasterized determined model

Figure 1.5: The deterministic facies model from the geologists based on well data
and the geological understanding
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from the known data in the model by using different algorithms. In object-based

approaches, the cells are grouped into objects that are simulated together in the

domain (Holden et al., 1998). Although the object-based approach can produce

clear geometric patterns, it requires a detailed understanding of object properties

such as size, orientation, and erosion or intersection relationships that are difficult

to obtain for the subsurface geobodies due to the complex sedimentary history. For

the cell-based approach, the local hard data are reproduced in the final model and

the observed statistical character is reproduced.

1.4 Motivation

This thesis is mainly concerned with methods for facies model construction. The

ultimate aim is the facies realization will have a more geologically realistic hetero-

geneity characters. To reach that aim, the focus is on two major aspects of facies

modelling: inference of spatial variability statistic and the calculation of conditional

probabilities used to infer facies at unsampled locations.

1.4.1 Facies spatial variability statistics

There are some properties of the data used for facies modelling. The data used for

facies modelling are mostly indirect measurements. Although, core data are direct

measurements, they are seldom available. The most widely used are well logs that

are usually obtained along the vertical direction.

Data for facies modelling are based on small support volume. Usually, a core

sample would only be several metres long from a well if they are sampled during

the drilling. The diameter of a core is only about 10 centimeters. The facies data

from this entire core would provide valuable information for this well, but not every

well will have such core data. A well log usually available along the entire well,

but the lateral detected diameter of a well log is also limited to several meters from

the bore hole. The seismic data is extensive along lateral direction but has limited

vertical resolution. The different volume sizes of the available data is shown in

9
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Figure 1.6: Different data resolution along vertical and horizontal direction

Figure 1.6.

Another characteristic of facies data is the different scales along different spa-

tial directions. The hard data from well logs and core are usually only have a high

sample rate along the vertical direction while in a vary sparse style horizontally. On

one side, it is relative easy to obtain the spatial statistic along the vertical direction

where enough data are sampled. On the other side, it is usually difficult to obtain

reliable statistics along the lateral direction where data are spaced several hundred

meters or even a kilometer or more as shown in Figure 1.7. Furthermore, the spa-

tial statistics such as variogram inferred from spares data sample may not be very

reliable.

Interpreting the lateral heterogeneity is always a challenge in geostatistics. In

this thesis, a new method to infer more representative spatial statistics from limited

data is proposed. Instead of the indicator variogram, the bivariate probability matrix

is used as a spatial characterization tool. There are some information such as the

facies stacking patterns that is not captured by the traditional variogram. Using the
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Figure 1.7: One common situation of the difficulty of inferring horizontal statis-
tics from limited sampled wells. Horizontally, the distance between
the wells are usually more than 0.5 Km; Vertically, the well may only
penetrate no more than 50 meters of the target formation.

bivariate probability matrix, the facies stacking pattern information will be char-

acterized and used for more reliable horizontal statistic inference based on limited

data. Thus, it will integrate more geological constraints into the final facies model

and provide a more realistic facies model.

1.4.2 Conditional probability calculation

In the cell-based modelling approach, the facies is assigned to each grid according

to a calculated conditional probability that can be written as:

P(faices at current location | information from nearby locations)

There are many mathematical algorithms to estimate such posterior probabili-

ties including: Indicator Kriging (IK) and multi-point statistics (MPS). IK is one of

the most popular techniques used in cell-based facies modelling; however, there are

limitations such as the linear nature of the kriging predictor and the occurrence of

probabilities outside of the [0,1] interval. Also, for MPS, there are some constraints

such as the heavy reliance on a training image. There is a need to find a better

approach to combine the information from the data locations. In this thesis, a the-

oretically correct approach is proposed and implemented in facies modelling. The

11



conditional probability in this approach is calculated directly from the estimated

multivariate probability.

1.5 Dissertation Outline

Some preliminary concepts and literature review related to this research are de-

scribed in Chapter 2. The main concepts and also the related previous research on

discrete multivariate probability estimation is reviewed in this Chapter.

Chapter 3 will address the first challenge in facies modelling, that is, how to in-

tegrate more geological constraints into the spatial characterization. The traditional

variogram is replaced with a new bivariate probability matrix diagram. The char-

acteristics and merits of this new approach and its implementation are discussed in

this Chapter.

Another concepts in Chapter 3 is the “heterogeneity prototype” that is used in

the spatial distance vector transformation. The geological basis of this concept is

presented. Based on this prototype, a new spatial distance calculation approach

is proposed instead of using the traditional geometric approach. This approach

permits a geological understanding about how the spatial variations will extend

along horizontal direction integrated into the final model.

After inferring a bivariate probability model, its use in spatial multivariate prob-

ability inference is illustrated in Chapter 4. In this chapter, a new multivariate prob-

ability estimation technique, named as Direct Multivariate Probability Estimation

(DMPE), is proposed. This technique is based on the Maximum Entropy principle.

The theory and numerical implementation of the new proposed approach are given

in detail in this fourth Chapter.

The implementation of the new spatial characterization tools and the discrete

multivariate probability estimation method in the facies model is given in Chapter

5. A comparison with other approaches is illustrated with the simulation results

and other quantitative measurements. Also, the program implementation details

regarding the new methodology are presented in this Chapter.

12



Chapter 6 shows a case study with a real data set. In this case study, it is shown

that heterogeneity prototype can be recognized from the data set through geologi-

cal well correlation. The estimation and simulation results are presented using the

proposed spatial distance calculation and DMPE approach.

Final thoughts and future work are given in Chapter 7.
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Chapter 2

Preliminary Concepts and Literature
Review

Considering a random variable and probability model for the outcome at each un-

sampled location, a discrete multivariate random variable is defined. Multivari-

ate probability distribution concepts are reviewed. The multivariate probability

marginalization is reviewed after introducing the multivariate data event index cal-

culation. Inferring probability distributions from the sample data is an important

research topic in geostatistics. For discrete random variables, the Indicator Kriging

and the training image scanning approach are common and are reviewed.

2.1 Spatial Random Variable

Geology is governed by the laws of physics. The facies structure in reservoirs are

formed and modified by physical sedimentary processes. One approach to facies

modelling is simulating the sedimentary processes in a forward style. These tech-

niques are called process-based methods. Some process-based examples are the

SEDSIM project (Tetzlaff and Harbaugh, 1989; Wendebourg and Dominik Ulmer,

1992; Hutton and Syvitski, 2008) and the work of Mackey and Bridge (Mackey and

Bridge, 1995; Karssenberg et al., 2001). In the process-based model, the diffusion

equation is used to describe the process of sediment transport. With properly chosen

initial values and boundaries conditions (Tsynkov and Vatsa, 1998), the numerical
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solution of the diffusion equation can produce realistic geological models (Tetzlaff

and Harbaugh, 1989; Marr et al., 2000).

Advantages of process-based models are that they can help provide genetic in-

terpretations of deposits and can obtain realistic sedimentary architecture. How-

ever, it is difficult or impossible to make the simulated deposits from process-based

model fit the observed data in sufficient detail in three dimensions (Tetzlaff, 1990).

Therefore, process-based models have had limited application in quantitative sim-

ulation of the facies architecture of hydrocarbon reservoirs (Koltermann and Gore-

lick, 1996).

One could focus on the sedimentary facies architecture without considering

their actual depositional processes. Geostatistics facies modelling approach be-

longs to this category (Journel, 1986; Philip and Watson, 1987). This approach

considers the facies as outcomes of a spatial stochastic process with a certain prob-

ability distribution. A spatial random variable is used to express the uncertainty in

the outcomes at each location.

2.1.1 Discrete univariate random variable

Let all the possible outcomes for one observation in the research area be denoted

by a set E : {ek,k = 1,2, · · · ,K}. The main characteristic of this set are:

(a) it has limited items (usually K is between 2 and 7);

(b) it is not a numerical set.

In this research, the main observation for each spatial location will be the facies

type. As an example, the possible outcome for one location could be one type from

the set {channel, levee, f loodplain} in a fluvial depositional environment (Miall,

1996). When dealing with such observations, a discrete random variable is used.

The outcome at any spatial location u, which could be defined by its Cartesian

coordinates (x,y,z), will be considered as a spatial random variable Z(u). Mathe-
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Figure 2.1: A univariate discrete probability distribution example

matically, a spatial discrete random variable Z(u) is defined in words as:

Z(u) = the facies at current location u

Common notation will be used in this research such as: upper case letters like Z

or Y denote a random variable and lower case letters like z or y denote the outcomes

of a random variable. The set E is called the domain of this discrete random variable

and all the elements are mutually exclusive and exhaustive in the sense that only

one facies type can be found at one specific location u. One possible observation or

outcome at a location is written as z(u) = ek or simplified as u = ek and it will be

named as a univariate data event.

After a random variable Z(u) is defined, a probability mass function P(u) is

also defined with it. The function that gives the probability that a random variable

is exactly equal to some value is called a probability mass function. The probability

mass function P(u) for Z(u) is defined as:

P(u) = Pr(z(u) = ek;ek ∈ E) = Pr(u = ek;ek ∈ E) (2.1)

It is a function that satisfies the properties: P(u)≥ 0 and ∑P(u) = 1.

The outcomes of the random variable Z(u) will obey its probability distribution

P(u). A set of probability values {p1, · · · , pK} for each facies ek ∈ E to be found at

location u will be given from the probability mass function as shown in Figure 2.1.

From the probability mass function of the random variable Z(u), one can under-

stand how likely each facies is at the location. As an example, assuming the proba-
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bility mass function of finding one facies from the set {channel, levee, f loodplain}
at one location is {0.8,0.15,0.05}, this means there is a higher probability to find

channel at this location than the other two facies.

2.1.2 Discrete multivariate random variable

The discrete univariate random variable is a useful tool to characterize the uncer-

tainty at one location. Usually we are more interested in observing several spatial

locations together. If a group of locations are measured together, they define a

multivariate data event denoted:

ω : {z(u1) = ek1 , · · · ,z(un) = ekn} (2.2)

or simplify denoted as: {u1 = ek1 , · · · ,un = ekn}.

A multivariate data event of size n is constituted by:

• a location geometry defined by the n locations {u1, . . . ,un}

• the n outcomes from all locations {ek1 , · · · ,ekn}

The multivariate data event changes with spatial geometry changing or specific out-

comes changing at these n locations.

The set of all possible data events for the defined grouped locations will define

the data event event space: Ω : {ek1 ∈ E, · · · ,ekn ∈ E}. Each multivariate data event

will be in this space:

ω� ∈ Ω, �= 1, · · · ,N

where N = Kn is the space dimension.

One example of all the possible data events composed by three locations and

three possible facies outcomes for each location is plotted in Figure 2.2.

Each data event ω� will have a probability p(ω�) to happen according to a mul-

tivariate probability mass function P(u1, . . . ,un) defined as:

P(u1, . . . ,un) = Pr(ω� ∈ Ω), �= 1, · · · ,N (2.3)
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Figure 2.2: One example of all the possible data events composed by three spatial
locations and three possible facies

This discrete multivariate probability mass function P(u1, . . . ,un) will charac-

terize the probability of the joint outcome for the locations (u1, . . . ,un). It will

satisfy:

∑P(u1, . . . ,un) = 1

and

P(u1, . . . ,un)≥ 0

Specifically, if only one location {u} is considered at a time, it will become

a univariate random variable Z(u) which will have a univariate probability distri-

bution P(u). If two locations are measured together, it will be a bivariate ran-

dom variable Z(uα,uβ) and will be understood by a bivariate probability distribu-

tion distribution P(uα,uβ). The same for an m-variate multivariate random vari-

able Z(u1, . . . ,um), it will be described by an m-variate probability distribution

P(u1, . . . ,um).

The term“probability” will be reserved for a specific probability value which

will state for a specified data event such as univariate data event u = ek or multi-

variate data event ω. The probability mass function P(·)will be called a “probability
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Table 2.1: Data event space dimension examples for discrete multivariate random
variable

Total data locations Two facies Three facies Four facies Five facies
3 8 27 64 125
4 16 81 256 625
5 32 243 1,024 3,125
6 64 729 4,096 15,625
7 128 2,187 16,384 78,125
8 256 6,561 65,536 390,625
9 512 19,683 262,144 1,953,125
10 1,024 59,049 1,048,576 9,765,625

distribution”.

2.1.3 Index function for multivariate data event

For an n-variate multivariate random variable, one feature is its exponentially large

event space dimension. For example, assuming there is a model defined by 100 cells

and 3 categories, then the total data event space dimension would be 3100 ≈ 5×
1047 which is an almost impossibly large number to deal with computationally.

As shown in Table 2.1, the multivariate data events number increases very fast as

the sampled data locations increase. Thus, indexing and tracking the multivariate

probability for each of the multivariate data events is a challenge in handling the

multivariate probability distribution.

The solution to the indexing challenge is to order the multivariate data events

{ω�, � = 1, · · · ,N} into a one dimensional array and calculate its index from the

outcomes (Deutsch, 1992). The first step is ordering and coding all the categories in

the set {e1,e2, · · · ,eK} into an integer set {1,2, · · · ,K}. The order of the categories

is arbitrary. Second, calculate the index from the multivariate outcome. The index

� for multivariate each data event ω is calculated as:

�= f (u1 = ek1, · · · ,un = ekn)

= 1+
n

∑
α=1

(kα −1)×Kα−1, kα = 1, · · · ,K (2.4)
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Table 2.2: Multivariate probability event index calculation example

z1 z2 z3 1+∑n
i=1(zi−1)×Ki−1 α

1 1 1 1+(1−1)×31−1+(1−1)×32−1+(1−1)×33−1 1
2 1 1 1+(2−1)×31−1+(1−1)×32−1+(1−1)×33−1 2
3 1 1 1+(3−1)×31−1+(1−1)×32−1+(1−1)×33−1 3
1 2 1 1+(1−1)×31−1+(2−1)×32−1+(1−1)×33−1 4
...

...
...

...
...

2 3 3 1+(2−1)×31−1+(3−1)×32−1+(3−1)×33−1 26
3 3 3 1+(3−1)×31−1+(3−1)×32−1+(3−1)×33−1 27

where the outcome kα for each location comes from the integer set {1,2, ...,K}.

As an example, assuming the spatial problem defined by three locations and

three facies {channel, levee, f loodplain}, the total multivariate events number will

be Kn = 33 = 27 in this simple case. In order to index them numerically, those three

location will be ordered as u1,u2,u3 and those three categories will be coded as set

{1,2,3}. Then using the proposed equation, each multivariate data event index can

be calculated from its outcomes using Equation (2.4). Some indices of multivariate

data events are listed in Table 2.2. The index of each multivariate event can also be

found in Figure 2.2. Each of the data event will have a probability. There will be a

total of 27 probabilities.

2.1.4 Multivariate probability distribution marginalization

Different orders of lower order marginal probability distributions could be calcu-

lated from a multivariate probability distribution based on the total probability the-

orem (Johnson and Wichern, 1982).

Univariate marginalization: The univariate probability distribution P(uα) char-

acterizes the distribution of a random variable Z(uα) and can be calculated

from the multivariate probability distribution P(u1, . . . ,un) as:

P(uα) =
eK

∑
u1=e1

· · ·∑
uα

· · ·
eK

∑
un=e1

P(u1, . . . ,un) α = 1, · · · ,n (2.5)
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The univariate marginal probability distribution P(uα)will satisfy 0≤P(uα)≤
1 and ∑P(uα) = 1. This univariate probability distribution will give the prob-

ability p(uα = ek) for each facies ek to prevail at location uα that is:

P(uα) = Pr{uα = ek;ek ∈ E} (2.6)

If this univariate probability distribution is the same for all locations, say

P(uα) = pk,α = 1, · · · ,n;k = 1, · · · ,K, it is called the global proportion.

Bivariate marginalization: A second order marginal probability distribution

P(uα,uβ),α �= β α,β = 1, · · · ,n

is calculated from a multivariate probability distribution as:

P(uα,uβ) =
eK

∑
u1=e1

· · ·∑
uα

· · ·∑
uβ

· · ·
eK

∑
un=e1

P(u1, . . . ,un) (2.7)

The bivariate marginal probability will satisfy

0 ≤ P(uα,uβ)≤ 1

and

∑
Ω2

p(uα,uβ) = 1

The bivariate probability distribution has a probability to each bivariate data

event (uα = ek;uβ = ek′) that is:

P(uα,uβ) = Pr{uα = ek,uβ = ek′ ;ek,ek′ ∈ E} (2.8)

m-variate marginalization: Following the same logic and notation, any m-order

(m ≤ n) marginal probability mass function from the n-variate multivariate

probability mass function can be calculated as:

P(u1, · · · ,um) = ∑
u1

· · ·∑
um

eK

∑
um+1=e1

, · · · ,
eK

∑
un=e1

P(u1, . . . ,un) (2.9)
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In expression (2.9), the m random variable (u1, · · · ,um) is any arbitrary sub-

group from the n random variables (u1, . . . ,un). Similarly, all the m-variate

marginal probability will satisfy the requirements of

0 ≤ P(u1, · · · ,um)≤ 1

and

∑
Ωm

P(u1, · · · ,um) = 1

Strictly speaking, the word “marginal” in describing probability distribution

is unnecessary. The same probability distribution can be either “multivariate” or

“marginal” depending on the context. Each is the probability distribution of a set

of random variables. When two different sets are under discussion and one is a

subset of the other, the “multivariate” will indicate the superset and “marginal” will

indicate the subset.

The probability of each marginal data event will sum some probabilities of the

multivariate data events in the marginalization computation. Using the data event

sets in Figure 2.2 as an example, the univariate marginalization p(u1 = 1) can be

calculated from the multivariate probability as:

p(u1 = 1) =
3

∑
k2=1

3

∑
k3=1

p(k1 = 1,k2,k3)

Using the index function of Equation (2.4), the indices of the multivariate probabil-

ity states that contribute to the univariate probability p(u1 = 1) are: 1, 4, 7, 10, 16,

19, 22 and 25. There are 9 univariate marginal probabilities (b1, · · · ,b9). All the

univariate probability calculations are shown in Figure 2.3 where (p1, · · · , p27) are

multivariate probabilities.
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The bivariate probabilities for each bivariate data event will also be a sum from a

subset of the multivariate probabilities of the multivariate data events. For example,

the bivariate probability of data event (u1 = 1,u2 = 1) will be calculated from three

multivariate probabilities as:

p(u1 = 1,u2 = 1) =
3

∑
k3=1

p(k1 = 1,k2 = 1,k3)

The indices for those three multivariate data events are: 3, 6 and 9 calculated using

Equation (2.4). The same could e applied to other bivariate probability data events.

For this small example, the bivariate probabilities (b1, · · · ,b27) calculated from the

multivariate probabilities (p1, · · · , p27) are shown in Figure 2.4.
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The above marginalization procedure is also illustrated in Figure 2.5. In this

figure, all the multivariate probability are expressed as round filled circles that are

arranged in a cube. The univariate probability, the square shape, will be the sum

of nine trivariate probabilities which are shaded together in one slice of this cube.

In the image, only one univariate probability is plotted. The bivariate probabilities,

plotted with diamond symbols, will be the sum of three of the trivariate proba-

bilities. In this image, only the bivariate probabilities between two variables are

plotted.

Illustrating a trivariate probability distribution marginalization using a cube is

just for visualization. For a higher order multivariate probability space, it will be a

hypercube (Pickover, 1999). Intuitively plotting them in a picture as Figure 2.5 is a

challenge.

2.1.5 Prior and posterior probability

Assuming that u0 is the location to be predicted, the outcome for location u0 will

be characterized by its probability distribution P(u0) which must be inferred from

all available data.

One case is that we have no knowledge about how this location relates to mea-

sured data locations. In this situation, one possible probability distributions for

P(u0) is the uniform probability distribution:

P(u0) =
1
K

(2.10)

It will be shown that this uniform probability distribution is the maximum entropy

estimation.

Another situation is that only the global proportions {pk,k = 1, · · · ,K} of all the

categories are known. Based on the maximum entropy principle, it will also shown

that the best estimation for the event that u0 = ek will be this global proportion

written as:

P(u0) = Pr{u0 = ek;ek ∈ E}= pk (2.11)
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Bivariate marginal probability
Univariate marginal probabilityMultivariate probability

Figure 2.5: Univariate and bivariate marginalization from a trivariate probability
space
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Figure 2.6: One situation of multivariate probability needed in spatial probability
mapping

If there are some sample data and they are related to the unsampled location,

as illustrated in Figure 2.6, the probability distribution for the unsampled location

would be something else.

The information obtained from the neighbouring locations is denoted as (u1 =

ek1 , · · · ,un = ekn) or simply as (n). The prior probability distribution P(u0) will

be updated to a posterior probability distribution P(u0|u1, . . . ,un) which is a condi-

tional probability distribution and will assign a probability p(u0;ek|(n)) to the data

event (u0 = ek) given that (u1 = ek1 , · · · ,un = ekn) is observed.

That is, given the outcomes at the surrounding locations and the outcome at the

unsampled location are dependent on the outcomes of the nearby sampled location,

the uncertainty of the outcome of the unsampled location will be characterized by

a conditional probability distribution that is written:

P(u0|u1, . . . ,un) = Pr{u0 = ek0 |u1 = ek1 , · · · ,un = ekn} (2.12)

Updating the prior probability distribution as in Equation (2.10) or (2.11) to a pos-

terior probability distribution model as in Equation (2.12) is the central problem in

geostatistics (Deutsch and Journel, 1998).

In probability theory (Papoulis, 1984), a conditional probability as expressed in

Equation (2.12) is calculated as:

P(u0|u1, . . . ,un) =
P(u0,u1, . . . ,un)

P(u1, . . . ,un)
(2.13)
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If the n+1 multivariate probability distribution P(u0,u1, . . . ,un) in the numerator

is known, the n multivariate probability in the denominator can be calculated from

marginalization of the n+ 1 multivariate probability P(u0,u1, . . . ,un) using Equa-

tion (2.9). The conditional probability P(u0|u1, . . . ,un) will be calculated directly

as:

P(u0|u1, . . . ,un) =
P(u0,u1, . . . ,un)

P(u1, . . . ,un)

=
P(u0,u1, . . . ,un)

∑u1
· · · ,∑un ∑eK

u0=e1
P(u0,u1, . . . ,un)

(2.14)

So, calculating the posterior probability P(u0|u1, . . . ,un) through inferring the

multivariate probability P(u0,u1, . . . ,un) is the theoretically correct approach. This

n+ 1 multivariate probability distribution may not be easy to infer. One possible

simplifying assumption is to consider that the dependence between the n+ 1 ran-

dom functions can be modeled by a multivariate Gaussian probability distribution,

with parameters (essentially the covariance matrix) inferred from the data. With the

multivariate Gaussian assumption, the conditional probability will also be a Gaus-

sian probability and is obtained through estimating its mean and variance (Verly,

1983; Gomez-Hernandez and Wen, 1998; Goovaerts, 2001).

The multi-Gaussian approach assumes all the random variables are Gaussian

distribution which is inappropriate for discrete random variables. Secondly, the

categorical data are usually nominal data. There are no simple numerical class

boundaries for such data. For discrete multivariate probability inference, some spe-

cific approaches are proposed in geostatistics. In the following sections, two main

geostatistics techniques, Indicator Kriging (IK) and the training image scanning

approach, will be reviewed.

2.2 Posterior Probability Estimation-IK

The IK approach was first proposed by Journel for continuous variable which is

difficult to transform into Gaussian variables (Journel, 1983; Journel and Isaaks,
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1984). Later, it was also used to estimate the posterior probability for categorical

variables (Bierkens and Burrough, 1993). With the proposed and publicly available

program for indicator kriging based simulation programs such as ISIM3D (Gomez-

Hernandez and Srivastava, 1990) or SISIM (Deutsch and Journel, 1998), it is widely

used for categorical variable simulation in petroleum and other areas (Marinoni,

2003; Bastante et al., 2005).

2.2.1 Indicator transformation

In order to handle categorical variables numerically, the first step in the IK approach

is to consider an indicator transformation of the original discrete random variable.

An indicator random variable I(u,ek) is computed from a traditional discrete ran-

dom variable Z(u) as:

I(uα;ek) =

{
1 If ek exists at location uα α = 1, · · · ,n
0 Otherwise

(2.15)

It is done for each facies separately, as noted by the facies type ek.

After the indicator transformation of the random variable, a probability distri-

bution is defined for each sampled location where the rock type is obtained. That

is, for each facies ek, the probability distribution of the indicator random function

is given as:

P(uα;ek) =

{
1 i(uα;ek) = 1 α = 1, · · · ,n
0 i(uα;ek) = 0

(2.16)

Comparing Equation (2.15) and Equation (2.16), it is seen that the indicator

variable can be considered as the probability of facies ek to be found at the location

uα. When the location is sampled there is no uncertainty and the probability for the

facies that prevails at current location is 1, and 0 for others.

The outcome for this indicator random variable will be denoted as i(u,ek) and its

domain will be {0,1} which is a numerical value and can be treated with traditional

statistics. Thus, the mean of the random variable I(u;ek) in the research area can
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be calculated as:

E[I(u;ek)] = 1· p(i(u;ek) = 1)+0 · p(i(u;ek) = 0) (2.17)

= p(i(u;ek) = 1)

= Pr(u = ek) = pk

Practically, the estimated mean of a indicator random variable I(u,ek) can be

estimated from its n outcomes i(uα;ek) as:

pk =
1
n

n

∑
α=1

i(uα;ek) (2.18)

where pk is the global mean which will reflect the average frequency of facies ek

that can be found in the study area. A further practical refinement of the global

proportion inference will be to consider declustering weights applied to each of the

n data (Pyrcz et al., 2006).

Also, the indicator covariance from two locations u,u+h will be calculated as:

Cov(u,u+h;ek,e
′
k) = E[I(u;ek)I(u+h;e′k)]−E[I(u;ek)]E[I(u+h;e′k)] (2.19)

Under the stationary assumption, the above equation can be written as:

Cov(h;ek,e
′
k) = E[I(u;ek)I(u+h;e′k)]−E[I(u;ek)]E[I(u+h;e′k)] (2.20)

= P(h,ek,e
′
k)− pk · pk′

In Equation (2.19) and (2.20), if the facies from the two locations are the same, it

will be called a direct covariance. If not, it is called a cross covariance.

2.2.2 Linear combination model

In the IK approach, the conditional probability distribution P(u0|u1, . . . ,un) is es-

timated directly by estimating the mean of the corresponding conditional indicator

variable E[I(u0;ek|u1, . . . ,un)] as shown in Equation (2.21):

E[I(u0;ek|u1, . . . ,un)] = 1 ·P(u0 = ek|u1, . . . ,un)+0 ·P(u0 �= ek|u1, . . . ,un)

= P(u0|u1, . . . ,un) (2.21)
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The final estimated for p(u0;ek|u1, . . . ,un) is obtained by a linear combination

of the hard data at each location as

p∗(u0;ek|u1, . . . ,un)− pk =
n

∑
α=1

λα,ek · [p(uα;ek)− pk] (2.22)

In Equation (2.22), the hard data at each location is expressed as probability

interpretation as expressed in Equation (2.16). The weights λα,ek are calculated

from the simple kriging system or the system of normal equations as:

n

∑
α=1

λα,ekCov(hα,β;ek) =Cov(hα,0;ek),β = 1, · · · ,n (2.23)

where Cov(hα,β;ek) is the covariance model obtained from the indicator random

variables, hα,β is the distance matrix between all the conditioning data, hα,0 is

the distance matrix between the unsampled location and conditioning data loca-

tion (Cressie, 1990).

Although the indicator transformation is a nonlinear transform, the estimation

results for each facies at an unsampled locations are linear interpolations of prob-

ability values from the hard data. The results of such probability interpolation for

each facies separately has no guarantee that the result will be inside [0,1]. The

sum of the probability distribution for each location will not necessarily be one

∑K
k=1 p(u,ek) �= 1 which is called order relationship problem in indicator kriging

approach (Journel and Posa, 1990).

Practically, the recommended solution is resetting non admissible probability

values to the closest bound 0 or 1, followed by standardization so that they will

sum up to one, but the potential consequences of these order relation problems are

poorly understood.

A more efficient way of posterior probability updating would be to work di-

rectly on all the categories together. Theoretically, from the conditional probability

definition, it can be calculated provided that the multivariate probability distribu-

tion P(u0,u1, . . . ,un) is obtained. This will require an estimate of the multivariate

probability directly. Training image scanning is such an approach.
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2.3 Posterior Probability Estimation-Training Image
Scanning

In the traditional IK approach, the (n+1) multivariate probability values are esti-

mated by interpolation from data. Inferring the conditional probabilities from scan-

ning a training image suggested by Guardiano and Srivastava in 1993 is a kind of

direct approach (Guardiano and Srivastava, 1993). The required (n+1) multivari-

ate probabilities in Equation (2.14) is constructed by scanning the frequency of data

event from a training image. The algorithm of Guardiano and Srivastava was fur-

ther developed by Wang named growing algorithm trying to capture the structural

patterns (Wang, 1996). Strebelle proposed an algorithm to estimate the conditional

probability by using the search tree to store the training data events prior to the

image simulation (Strebelle, 2002).

2.3.1 Training image

The training image is an important tool used in this multivariate probability estima-

tion method. The needed multivariate probabilities will be obtained from scanning

a training image. The training image should represent the heterogeneities charac-

teristics of study area. Although the training image itself is not the underlying phe-

nomenon, it should bear the same spatial structures of the geological sedimentary

structure as the reservoir. For example, for a fluvial sand environment, a training

image of facies distribution could be like the map shown in Figure 2.7

The training image can come from an unconditional realization generated using

the object-based algorithm (Holden et al., 1998; Maharaja, 2008). The geologists

hand-drawn map can be digitalized and used as training image. For example the

map in Figure 1.5b could be used as a training image. It also can come from the

realization of processed-based modelling approach (Cojan et al., 2005).
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Figure 2.7: One training image for facies modelling

2.3.2 Training image scanning

From the chosen training image, the posterior probability P(u0|u1, . . . ,un) will be

retrieved by scanning the data configuration over the training image and counting

the relative frequency of events occurred in the training image as:

P(u0|u1, . . . ,un) =
P(u0,u1, . . . ,un)

P(u1, . . . ,un)
(2.24)

	 Count(u0 = ek0 ,u1 = ek1 , · · · ,un = ekn)

Count(u1 = ek1 , · · · ,un = ekn)

In Equation (2.24),the denominator Count(u1 = ek1, · · · ,un = ekn) is the num-

ber of the conditioning multivariate data event in the training image.While the nu-

merator Count(u0 = ek0 ,u1 = ek1 , · · · ,un = ekn) is the number of the conditioning

locations plus the unsampled location.

The training image approach has several advantages to the conditional probabil-

ity estimation. First, it brings the information from more than just two point statis-

tics. Thus, it has the ability to reproduce some curvilinear geological shape (Stre-

belle, 2002). Second, the conditional probability calculated from Equation (2.24)

does not suffer any order deviations as may happen in the kriging approach.

One major limitation of the training image approach is that the multivariate

data event cannot include too many grid nodes. It depends on the repetition of
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the data event from the training image and there should be enough for a reliable

probability inference in Equation (2.24). If too many nodes are included in the data

event, the training image would have be very large. For example, given a data event

composed by three categories and 15 locations, the number of configurations would

be 315. If each of them require 10 repetitions, the dimension of the training image

would be 10×315 = 143,489,070. Handing this high dimension training image is

a challenge.

2.4 Remarks

The traditional indicator kriging approach simplifies the random variable to a binary

variable. Resulted from linear interpolation to the probabilities, the order relation

deviation problem is a concern with this approach.

The posterior probability estimated from the training image is constrained by

the size of the data event. The scanned multivariate probability depends on the

repetition of each data event and requires a large training image. The training image

must be representative of the subsurface heterogeneity.
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Chapter 3

Characterizing Spatial Heterogeneity

Characterization of spatial relationships is the first step in probability estimation at

unsampled locations. Using the bivariate probability diagram instead of the vari-

ogram will make it possible to integrate more geological constraints into the model.

Practically, there is a need to estimate the bivariate probability in all directions

to reflect the spatial anisotropy. Traditionally, anisotropy is assumed geometric,

which is not appropriate for some geological situations. Based on the proposed

sedimentary prototype, a new spatial distance scaling approach is proposed. The

bivariate probability for any spatial distance vector will be obtained by transform-

ing this distance vector to an effective vertical distance. The bivariate probability

is then obtained from the estimated vertical direction.

3.1 Multiple-Point Statistics

The main challenge to reproduce geological structures in geostatistical models is

describing the spatial variability. The natural way would be to describe the entire

features at several locations to delineate the full 3D spatial extension. For a ge-

ologist, the information from several wells or from different kinds of information

are grouped together to build the final facies model which will fit the facies contact

pattern of a conceptual model and the current specific situation.

This kind of pattern reproduction is mimicked in geostatistics with multiple-

point statistics that will reproduce the spatial relationship from more than two point
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Figure 3.1: One multivariate probability from using one data configure after scan-
ning the training image. In this case, there are totally 5 locations and 3
facies, the multivariate data event total number is 256.

informations (Strebelle, 2002; Arpat and Caers, 2007). Such inference will account

for correlations between three or more locations at a time.

The multivariate probability distribution P(u1, . . . ,un)will characterize the prob-

ability of each multivariate data event (u1 = ek1 , · · · ,un = ekn). The information

from more than one location are carried with this statistics. Although inference

from limited data source is difficult, it can reproduce more features from a prop-

erly chosen training image (Mirowski et al., 2009). Also, in facies simulation, the

challenge of quickly inferring the conditional probability for one multivariate data

event from the whole data event space is relieved by using a search tree to save the

frequency of the multivariate data events in the training image. This is the snesim

algorithm (Strebelle, 2000).

In visualizing multivariate probabilities, one can plot them as the traditional his-

togram as shown in Figure 3.1. The probability or frequency of each data event is

plotted together with its index. Practically, however, without looking at the under-

lying training image that was used for the multivariate probability inference, it is

impossible to know the features from the histogram as plotted in Figure 3.1.

As mentioned, the inference of multiple point statistics requires a vast amount

of data on a regular grid which is never available in the subsurface. If we reduce the
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focus to two locations, reliable inference can be obtained from well data in many

situations.

3.2 Traditional Two-point Spatial statistics

One common observation is that the closer together two locations, the more similar

they are. This kind of spatial distance dependent correlation is characterized by the

variogram function. The variogram accounts for bivariate statistics and is easier to

infer from limited sampled data.

For a discrete spatial random variable, the indicator covariance/variogram usu-

ally is used in facies modelling (Lark and Beckett, 1998; Deutsch and Journel,

1998). A variant of the indicator covariance is Markov transition probability ma-

trix (Carle and Fogg, 1996, 1997). These statistics have been used in one, two and

three dimensional spatial heterogeneity characterization (Weissmann et al., 1999;

Carle et al., 2006). These two will be reviewed first before introducing the bivariate

probability matrix model that will be used later in this thesis.

3.2.1 Indicator covariance/variogram

Theoretically, the variogram γ(h) is a function that describes the spatial dependence

degree of a spatial random variable Z(u). It is the variance of the increment of two

random variables at locations u and u+ h and with the assumption that γ(h) is

dependent upon the value of h, and independent of location u, the variogram is

defined as:

2γ(h) =Var[Z(u+h)−Z(u)] (3.1)

For categorical spatial random variable, the spatial relationship is characterized

by the indicator variogram function γk(h) which is calculated from the indicator

random variable as:

2γk(h) =Var[I(u;ek)− I(u+h;ek)] (3.2)
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where I(u;ek) is a binary variable that is obtained with the indicator transformation

to the categorical variable see Equation (2.15).

The indicator covariance is needed to solve the kriging equations. The rela-

tionship between the indicator variogram and indicator covariance can be written

as:

γk(h) =Cov(0;ek)−Cov(h;ek) (3.3)

with Cov(0;ek) = Var[I(u;ek)] being the stationary variance and Cov(h;ek) being

the stationary covariance defined in Equation (2.20).

From Equation (3.2), it can be seen that the indicator variogram will only count

those transition probabilities that satisfy I(u;ek)−I(u+h;ek) �= 0. Thus, only those

data pairs that transition from the current facies ek to another facies will contribute

to this indicator variogram. For example, there is no difference for the transition

of e1 → e2 and e1 → e3, as both of them are calculated as 1 → 0 when calculating

the indicator variogram for facies e1. From the view of bivariate probabilities, the

indicator variogram can be expressed as :

2γk(h) =
K

∑
k′=1
k′ �=k

p(u1 = ek,u1+h = ek′)+
K

∑
k′=1
k′ �=k

p(u1 = ek,u1 −h = ek′) (3.4)

If bivariate probabilities could be used directly in the estimation model, more facies

transition information would be integrated.

In practice, the experimental indicator variogram is calculated from the sample

data as:

2γ̂k(h) =
1

N(h)

N(h)

∑
j=1

[i(u j;ek)− i(u j +h;ek)]
2 (3.5)

Where N(h) is the total number of pairs falling in the same lag.

The experimental variogram is not used directly in geostatistical analysis. One

reason is that the experimental variogram is only calculated at specific directions

and lag distances h such as the direction in vertical and horizontal. In most of geo-

statistics modelling algorithms, the variogram value for all lag vectors is needed;
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even, along directions with too few data. The experimental variogram may not sat-

isfy the mathematic requirement of positive definiteness (Wackernagel, 2003). In

applied geostatistics, the experimental variograms are modelled by certain mathe-

matical functions to ensure their validity (Cressie and Hawkins, 1980; Chiles and

Delfiner, 1999).

3.2.2 Markov transition probability matrix

In many situations, a sequence in either time or space is observed as a succession

of states that are taken from a limited set of alternatives. If the natural processes ex-

hibit an effect of previous events, but do not rigidly control subsequent events, these

processes are named “Markov chains” after the work of the Russian mathematician

Markov (Anderson and Goodman, 1957; Meyn and Tweedie, 2008). Markov prop-

erties have been recognized in many geological phenomena, including the strati-

graphic sequence of lithologic units, sedimentary processes, succession of mineral

occurrencesin igneous rocks, and so on (Miall, 1973; Hattori, 1976; Hiscott, 1981;

Carr, 1982; Doveton, 1995; Oliver et al., 1997; Xu and Maccarthy, 1998).

When a Markov chain has a very short memory that only extends for a single

step at a time and ceases for larger distances. Such a chain is termed as a first-

order Markov chain. The relationship between adjacent events will be summarized

by the transition probability denoted as tkk′(h) = p(u+h = ek|u = ek′). All the K2

transition probabilities will compose a Markov transition probability matrix T (h) =

{tkk′};k,k′ = 1, · · · ,K in which each entry is the probability of the transition from

a particular event (pertaining to the particular row in the matrix) to the next state

(pertaining to the particular column). For example, a Markov transition matrix T (h)

with three events may be written as:

T (h) =

[ t11 t12 t13

t21 t22 t23

t31 t32 t33

]
(3.6)

From its definition, each entry in the transition probability matrix will be a con-

ditional probability tkk′(h) = p(u+h = ek|u = ek′) and it relates to a bivariate prob-
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Table 3.1: One step Markov transition probability matrix example

Facies 1 Facies 2 Facies 3
Facies 1 0.2632 0.3158 0.4210
Facies 2 0.2419 0.2258 0.5323
Facies 3 0.1606 0.5000 0.3194

ability as:

tkk′(h) = p(u+h = ek|u = ek′) =
p(u+h = ek,u = ek′)

p(u = ek′)
(3.7)

This is only a one-step transition probability, because the current state is only

dependent upon the immediately preceding state. Thus, the stochastic process is

defined as a single dependence chain because only a single preceding state is in-

volved to decide the current state. When a single dependence chain is shown to

have a one-step Markov property, then one transition probability matrix is enough

to character it (Haggstrom, 2002) .

Generally, any multiple steps of the dependence chain can also be defined as

T (nh),n = 1,2 · · · ,L which means that the current state will depend on the state

that is located at the nh distance. In this case, the process will have a long distance

memory and is named a multiple step dependence chain.

Theoretically, if the stochastic process is a stationary one-step single depen-

dence process, this multiple step transition probability matrix T (nh) can be calcu-

lated from the product of one-step transition probability matrices (Harbaugh and

Bonham-Carter, 1970). That is, the transition probability at any lag distance (nh)

can be calculated as:

T (nh) = T (h = 1)n (3.8)

where T (h = 1) is the one step transition probability matrix.

As an example, assume a one step transition probability matrix as listed in Table

(3.1), using the relationship in Equation (3.8) all the transition probability can be

calculated and plotted as shown in Figure 3.2.

Markov chain analysis was popular with sedimentologists as a statistical tech-

nique to explain and understand the geological cyclicity. The transition probabil-
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Figure 3.2: One calculated multiple steps transition probability matrix diagram that
is calculated using one step Markov transition probability matrix listed
in Table (3.1) using Equation (3.8)
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ity matrix provides a framework for exploring the underlying physical, chemical,

and biological control on sedimentary processes and deposits with superimposed

random fluctuations (Allen, 1965; Krumbein and Dacey, 1969; Dacey and Krum-

bein, 1970; Driese and Dott, 1984). It is also used as an alternative approach to

describe the spatial structure, such as in the transition probability-based indicator

approach (Carle and Fogg, 1996, 1997; Carle et al., 2006).

3.2.3 Three dimensional anisotropy modelling

Although both indicator variograms and Markov transition probability matrices are

used for 3D spatial heterogeneity characterization, little research is available on 3D

anisotropy modelling. In this section, the current 3D anisotropy variogram mod-

elling is briefly reviewed.

In the variogram function γ(h), the lag distance h represents a vector with mod-

ulus of |h| in a particular direction. The variogram will in general increase with the

modulus |h|. The spatial variability is characterized by the variogram function in

different directions.

Sedimentary systems are anisotropic. There are good reasons to expect the fa-

cies distribution to be different in different directions. The data distribution makes

it impossible to find the variograms for all the directions. Instead, a valid 3D vari-

ogram function will be used (Chiles and Delfiner, 1999). A spatial distance vector

h will be converted to a dimensionless scalar variogram distance. The spatial vari-

ability is commonly grouped into geometric and zonal anisotropy by studying the

variability of the range with the direction (Gringarten and Deutsch, 2001; Wacker-

nagel, 2003).

The spatial lag vector h is decomposed into three components hx,hy,hz. A var-

iogram γ(h) or a covariance Cov(h) has geometric anisotropy if the anisotropy can

be reduced to isotropy by a linear transformation of the coordinates as:

γ(hx,hy,hz) = γ′(
√

(h′x)2+(h′y)2+(h′z)2 ) (3.9)
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with

h′x = a11hx +a12hy +a13hz

h′y = a21hx +a22hy +a23hz

h′z = a31hx +a32hy +a33hz

where ai j represents the transformation matrix of the coordinates. Correction of

geometric anisotropy is done through such linear transformation of an ellipsoid into

a sphere and thus physical anisotropy is expressed as isotropy in the variogram.

This anisotropy modelling procedure is a required step in geostatistical studies.

The variogram quantifies the direction-dependent spatial variability of the variable

under consideration.

3.3 Bivariate Probability Matrix Model

Although two point statistics do not completely characterize complex shapes, they

are easy to infer and implement in modern geostatistics. The indicator variogram

γk(h) quantifies part of the bivariate information from facies transitions. The bivari-

ate probability matrix denoted as P(h;k,k′) will be used directly as it contains all

of the bivariate information.

3.3.1 Experimental bivariate probability matrix

A bivariate probability for two locations separated by a lag distance h is defined as

p(h;k,k′) = Pr(u = ek,u+h = ek′) (3.10)

where k and k′ are the integer transformation of the original set {e1,e2, · · · ,eK} as

done in the multivariate probability index calculation in Equation (2.4). A bivariate

probability matrix P(h;K,K) with K ×K entries all possible facies transitions. For

example, for a spatial domain with three categories, the bivariate probability matrix
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could be written as:

P(h;K,K) =

[ p(h;1,1) p(h;1,2) p(h;1,3)
p(h;2,1) p(h;2,2) p(h;2,3)
p(h;3,1) p(h;3,2) p(h;3,3)

]
(3.11)

Typically, data are abundant along the vertical direction from well log data anal-

ysis. Thus, multiple bivariate probability matrices are usually constructed from the

vertical profile for different lag vectors.

The lag h may be an exact distance measure or an offset of spatial steps (pixels

or grid cells). Under the assumption that the bivariate probability matrix P(h;K,K)

is only dependent on the lag h and not on any specific location u, the bivariate

probability P(h;K,K) could be estimated from data pairs in a similar way as the

traditional variogram calculation (Cressie, 1991).

The first step is to construct a facies transition tally matrix by observing the

facies outcomes at different equally spaced intervals. For example, a tally matrix

calculated from a vertical profile consisting of three facies types is illustrated in

Figure 3.3. In this tally matrix, the number of facies C succeeds A is 16 which

means that founding facies C and A at these two locations at the same is 16 times

totally.

One property of the tally matrix is that the ith row total is equal to the ith column

total. For example, the row sum (or column sum) of the calculated tally matrix is:

[38 62 72 ]

The second step is to divide the tally matrix by the total sum of the tally ma-

trix. The results would be a bivariate probability matrix P(h = 1;3,3) as shown

in Figure 3.3c. Division of the tally matrix by each of the row totals leads to the

traditional transition probability matrix T (h = 1;3,3) as shown in Table 3.1. While

dividing the row or column vector by the total sum of the tally matrix will result in

the univariate probability vector. In this small example it is:

[0.2209 0.3605 0.4186 ]
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Facies C

Facies B

Facies A

(b) Tally matrix

(c) Bivariate probability matrix
(a) Facies vertical profile

Figure 3.3: Example of vertical facies profile and the calculated tally matrix and
bivariate probability matrix

Using the same procedure, a bivariate probability matrix can be obtained from

a facies profile given a lag separation.

3.3.2 Properties of bivariate probability matrix diagram

As discussed above, different bivariate probability matrices would be obtained given

different lag distances. If the lag distance h increases from zero to a further distance,

the bivariate probability matrices P(h;K,K) will form a diagram. As an example,

a bivariate probability diagram calculated from a training image along North-to-

South direction is shown in Figure 3.4.

Some basic properties of an experimental bivariate probability matrix diagram

are:

1. There are direct bivariate probability p(h;k,k) and cross bivariate probability

p(h;k,k′). Direct bivariate probability represent auto-correlations of individ-

ual categories, and cross-bivariate probability represents cross-relationship

between different categories. Under stationarity, the bivariate probability will

only be related to the lag distance between two locations without considering
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Figure 3.4: One bivariate probability diagram calculated from the training image
along north-to-south
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the specific location.

2. Although it is called a bivariate probability, it is different with the traditional

bivariate probability in pure statistics. In statistics, a bivariate probability

for two random variable X and Y would be a symmetric statistics that is

p(X ,Y ) = p(Y,X). While here, the bivariate probabilities may be asym-

metric, that is, p(h,k,k′) �= p(−h;k,k′). Thus, the head and tail categories

should be defined for each spatial bivariate probability. For bivariate proba-

bility p(h;k,k′), k is called the head category, k′ is called the tail category.

3. They are non-negative and the bivariate probability with the same head and

tail category will sum to the univariate probability of the category:

K

∑
k′=1

p(h;k,k′) = pk k = 1, · · · ,K (3.12)

4. The initial value of a direct bivariate probability (when h = 0) should be the

univariate probability pk. Where the initial value of cross bivariate (when

h = 0) should be zero. As the lag distance increases to ∞ and there is no

spatial dependence, the bivariate probability should satisfy:

p(h;k,k′) = pk · pk′ h →+∞; k,k′ = 1, · · · ,K (3.13)

Which is defined as the sill of the bivariate probability diagram. The univari-

ate proportions pk, pk′ are used to calculate the sill. Similar to the variogram,

the distance at which the bivariate probability reaches its sill could also be

called the range. This is the distance when there is no dependence between

the two facies types.

The bivariate probability matrix diagram will be used as the spatial statistic tool

in this research. The bivariate probability matrix provides some advantages when

quantifying the spatial variability. As list above, the bivariate probability matrix

allows a consistent relationship between the model sill and proportions of different
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(a) Typical direct bivariate probability diagram
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(b) Typical cross bivariate probability diagram

Figure 3.5: Typical features of idealized bivariate probability diagram

facies. For they are always expressed together as a matrix, the global proportion of

each facies is embedded in the bivariate probability matrix at each step.

Another important characteristic of the bivariate probability matrix diagram is

that the facies dependence relation can be revealed from cross bivariate probability

diagrams. Theoretically, a direct bivariate probability diagram p(h;k,k) will de-

crease from its global mean pk to sill value pk · pk as shown in Figure 3.5a. An

idealized cross bivariate probability diagram p(h;k,k′) starts from the original zero

and gradually increases to a stable value–the sill pk · pk′ as shown in Figure 3.5b.

In real data, there could be different shapes. The stacking pattern between dif-

ferent facies is reflected from the shape of the calculated bivariate probability di-
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agram (Li, 2006). Before the cross bivariate probability stably approaches its sill,

depending on the spatial distribution of the two involved facies (whether they are

frequent neighbours or not) the cross bivariate probability shape may be different.

If facies k frequently occurs adjacent to facies k′, the bivariate probability diagram

p(h;k,k′) will have a peak first and then approach its sill as shown in Figure 3.6a. If

they are not in contact with each other, the bivariate probability would have a lower

value at the beginning and then approach its sill later as shown in Figure 3.6b.

Also, the juxtaposition between different facies can revealed from their chang-

ing speed. As shown in Figure 3.6c, during the decrease of facies one to one,

the bivariate probability of facies one to two will increase faster than the bivariate

probability of facies one to three. Thus, facies one will have a high probability of

transition to two and less transitions to facies three.

3.3.3 Bivariate probability matrix interpolating

The experimental bivariate probability diagram will only be available for some spe-

cific lag distances. In the final construction of a 3D geostatistical model, the bivari-

ate probability could be required for any distance between two neighbour counting

lag distance.

The first solution would be to fit the experimental bivariate probability diagrams

with some continuous functions. However, there is no procedure to fit all of them

with a valid probability model. In this research, a simple interpolation approach is

used to estimate all required bivariate probability diagrams.

In numerical analysis, polynomial interpolation is a well established interpola-

tion method. Given some points x, it will find a polynomial which goes exactly

through these points. Usually the form would be:

f (x) = anxn +an−1xn−1 + · · ·+a2x2 +a1x+a0 (3.14)

When constructing interpolating polynomials, there is a tradeoff between hav-

ing a better fit and having a smooth well-behaved fitting function. The more data
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Figure 3.6: The juxtaposition information reflected in the bivariate probability di-
agram shape
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points that are used in the interpolation, the higher the degree of the resulting poly-

nomial, and therefore the greater oscillation it will exhibit between the data points.

Therefore, a high-degree interpolation may be a poor predictor of the function be-

tween points, although the data points would be exactly matched.

In this research, four nearby bivariate probabilities are used to construct the

function listed in Equation (3.14). During the interpolation, the cross bivariate

probability diagram will be interpolated first. Then, the univariate proportion will

be used to calculate the direct bivariate probability. Thus, the univariate probabil-

ity is enforced during the interpolation. Figure 3.7 shows one bivariate probability

diagram interpolation result.

3.4 3D Spatial Heterogeneity Model

As discussed above, there is always a challenge to infer the horizontal spatial vari-

ability. In this section, the proposed methodology to infer the horizontal hetero-

geneity statistics is based on the sedimentary facies model and the theory of se-

quence stratigraphy. Geologists have a conceptual model of the subsurface. In any

geostatistics algorithm, this conceptual model should be exploited and reproduced

as much as possible. In the proposed method, this information is integrated through

a heterogeneity prototype construction.

3.4.1 Walther’s law

The earth’s surface can be classified into different sedimentary realms or environ-

ments that are physically, chemically and biologically distinct from adjacent areas

such as mountain ranges, sand deserts and deltas.

Each environment shows both abrupt and gradational lateral and vertical transi-

tions. Sediments from those transitions will repeat vertically through a sedimentary

sequence but may vary in character as a result of environmental and/or evolution-

ary changes through time. The relationship between depositional environments in

space, and the resulting stratigraphic sequences developed through time was sum-
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Figure 3.7: One example of bivariate probability interpolation

53



Figure 3.8: The facies stacking pattern in fluvial dominated delta sedimentary sys-
tem

marized by Walther’s Law which states that sedimentary environments that started

out side-by-side will end up above one another over time due to transgressions and

regressions (Middleton, 1973; Soreghan, 1997). In other words, a vertical sequence

of facies is similar to the original lateral distribution of sedimentary environments.

This is a fundamental principle of stratigraphy which allows geologists to pre-

dict the facies lateral changes from the vertical changes observed in outcrops, core

or well logs. For example, in a fluvial dominated delta building sedimentary pro-

cess, the sediments will have an upward-coarsing pattern along the vertical direc-

tion which is from prodelta, delta front to delta plain. This is the same as the lateral

chronostratigraphical boundary, from the proximal to distal direction, the same con-

tacting pattern can be found both from the lateral and vertical direction as shown in

Figure 3.8.
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Figure 3.9: One example of braided river facies model shown in three-dimensional
block diagrams

3.4.2 Sedimentary facies model

In general, between 2 to 7 facies types are defined and their spatial relations are

described according to a conceptual geologic model. This is usually done by using

local criteria or by reference to an existing universal facies model that characterizes

the facies spatial assemblage (Plint, 1995).

Facies models will show a pattern of environments that prograde side ways to

deposit a series of facies arranged in a predictable vertical sequence. Facies models

summarize the essential aspects of facies sequences and relate them to the inferred

depositional environments.

Facies models have been proposed for most major depositional environments,

and there is a large measure of consensus about their general aspects, particularly

for fluvial, aeolian, deltaic, and other shallow-water settings (Reading, 1996). They

are usually most effectively conveyed graphically as three-dimensional block dia-

grams that relate the environment and its behaviour to the facies pattern as shown in

Figure 3.9. The paleogeographic sketches, and vertical profile logs are also typical

components of a published facies model as shown in Figure 3.10.
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Figure 3.10: Example of facies model diagram in paleogeographic sketches
and vertical profile logs (http://fosi.iagi.or.id/mahakam/mah-facies-
des.htm)

The universal facies model presented in classical sedimentary textbooks pro-

vides valuable facies stacking pattern information for geostatistical facies mod-

elling.

3.4.3 Sequence stratigraphy

The theory of sequence stratigraphy is a relatively recent paradigm in the field of

sedimentary geology. It is the study of genetically related facies within a frame-

work of chronostratigraphically significant surfaces. The sequence stratigraphic

approach has led to improved understanding of how stratigraphic units, facies tracts,

and depositional elements relate to each other in time and space within sedimentary

basins (McLaughlin, 2005; Catuneanu, 2006). It was first utilized by the petroleum

industry to interpret depositional surfaces on seismic sections (Payton, 1977; Wag-

oner and Tenney, 1991). Now sequence stratigraphy is used extensively by geolo-

gists to explain vertical and lateral changes in sediment rock distribution (Cross and

Baker, 1992; Aitken and Flint, 1995; Catuneanu, 2002; Catuneanu et al., 2009).
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Figure 3.11: Transgression and regressions model in sequence stratigraphy theory
(Modified from Catuneanu, 2006)

In sequence stratigraphy theory, the change in accommodation in conjunction

with the rates of sedimentation represent a key control on depositional trends which

is reflected by specific shoreline shifts. Two major depositional trends are usu-

ally recognized from the deposits: transgression and regression. A transgression is

defined as the landward migration of the shoreline. This migration triggers a corre-

sponding landward shift of facies. Transgression results in retragradational staking

patterns. A regression is defined as the seaward migration of the shoreline. This

migration triggers a corresponding seaward shift of facies. Regressions result in

progradational staking patterns, for example, nonmarine facies shifting toward and

overlying marine facies as shown in Figure 3.11.

3.4.4 Spatial heterogeneity prototype

In facies modelling, the facies will be identified from wells, cores and perhaps from

the analogue outcrops. The geologist will select a specific facies model and provide

the sequence stratigraphic analysis for the reservoir from correlating a group of

wells. The facies model and sequence stratigraphy analysis results show the facies

associations and how each of them will be interpreted in context with others.
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Figure 3.12: Sketch showing the heterogeneity prototype

Although each reservoir is unique, different reservoirs will share some basic

characters. Based on the previous discussion, one conceptual heterogeneity proto-

type is proposed as plotted in Figure 3.12 to integrate the geological facies model

and the sequence stratigraphy information in the geostatistical algorithms. In this

prototype, three major heterogeneity axes are defined as: sedimentary dip, sedimen-

tary strike and the vertical direction.

The vertical direction is the direction that the main sediments are observed and

documented. The vertical profiles are the main form of data obtained from drilling.

They are usually documented from logs. Their analysis is the starting point for

Walther’s law and sequence stratigraphy to interpret depositional processes and sed-

imentary environments.

The dip axis is associated with the direction of the major facies transitions hor-

izontally. Usually, in channelized sedimentary environments, it will be parallel to

the direction from sedimentary source to sedimentary deposition. For example, it

will be from proximal to distal in a coastal sedimentary environment. Along the dip

and vertical direction, the facies stacking pattern is expected to be similar. For a

fluvial dominated delta building sedimentary process, the sedimentary deposits will

have an upward-coarsing pattern along the vertical direction as well as a similar
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pattern from the flood plain to the delta front direction as shown in Figure 3.8.

The strike axis will extend perpendicular to the the major sedimentary source

direction. In most sedimentary environments, the shifting of sedimentary source

is common. This sediments source switching phenomenon can be observed in the

current Mississippi delta shown in Figure 3.13a. The Mississippi delta area is the

modern area of land (the river delta) built up by alluvium deposited by the Missis-

sippi River as it slows down and enters the Gulf of Mexico. The switching of the

Mississippi River delta during the last 4,000 years is well documented (Roberts,

1997; Coleman et al., 1998). This kind of switching phenomenon is characterized

by the strike direction in the conceptual model also shown in Figure 3.13b.

3.4.5 Properties of prototype

The dip and strike axis can be predicted from the data if the pathway of deposition

is directional such as in a delta environment, or in gravity sedimentary environ-

ments (Ghibaudo, 1992; Drake and Calantoni, 2001). The dip direction will be

toward the source direction and the strike will be perpendicular to the dip direction.

The vertical axis will be the main sedimentary stacking direction.

The sedimentary trends or stacking patterns are asymmetric along different di-

rections. Along the vertical axis, the fining upward facies transition pattern would

become a coarsening upward pattern in the reverse direction. The dip axis will have

the same asymmetric property. Thus, it is necessary to define a positive direction

along those two axes for computational implementation.

The direction from the earlier deposits to the later deposits will define a positive

direction and usually it will be from bottom to top. For the dip axis, the positive

direction will be from the depositional source to the margin, that is, from proximal

to distal. The positive direction definition along dip and in the vertical axis should

have the same staking trend, that is, their positive direction should be consistent

with each other. For example, in a delta building depositional process, the positive

axes will be different from delta sediments in a transgressing process as shown in
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Salé-Cypremort   4600 years BP
 
Cocodrie 4600-3500 years BP
 
Teche 3500-2800 years BP
 
St. Bernard 2800-1000 years BP
 
Lafourche 1000-300 years BP
 
Plaquemine 750-500 years BP
 
Balize 550 years

(a) Switching of Mississippi delta (Coleman et al., 1998)

Dip

Strike

Vertical

(b) Delta switching in prototype representation

Figure 3.13: The lateral switching phenomenon in Mississippi delta sedimentary
environment and its prototype representation
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Dip axis Vertical axis

Vertical axis Dip axis

Figure 3.14: The different positive definition for dip direction in case of transgres-
sion (top) and regression of the sea (bottom)

Figure 3.14.

The strike direction will have no positive or negative direction. The sediments

along this axis will be characterized by a stochastic function defined below.

One more characteristic of these three axes is the anisotropy ratio along the

strike and dip axes. With high-resolution chronostratigraphic correlation analysis,

the sedimentologists could estimate how much of the heterogeneity stacking pattern

from the vertical well profile will be valid along the lateral direction, especially

along the sedimentary dip direction. In this research, this geological understanding

is quantified by heterogeneity ratio along dip axis. This ratio is denoted as ax which

is equal to:

ax =
Hx

Hz
(3.15)

where the Hx and Hz would be the full pattern thickness along the dip and vertical

direction.

While along the strike direction, the relative shifting area will also estimated

from the sequence stratigraphy and facies analysis. Along the strike direction, the

anisotropy ratio ay will control the prototype model. It will calculated as:

ay =
Hy

Hz
(3.16)
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Figure 3.15: Decomposition along three major anisotropy axes

where Hy is the distance that the geologists believe the switching will happen for

the particular reservoir.

3.5 3D Spatial Distance Transformation

After setting up the anisotropy axes in the reservoir, during the modelling, any

arbitrary spatial distance vector h will be decomposed along those three axes as

shown in Figure 3.15. Three distance vectors components hvert , hdip and hstrike will

describe the spatial distance between two locations (u,u+h).

The orientation of the anisotropy is controlled by the geological features of

the reservoir and the orientation of the coordinate system. The anisotropy axes

may not coincide with the axes of the model coordinate system. In this case, the

components hx,hy,hz of the distance vector h in the data coordinate system will

have different values when referenced in the coordinate system of the anisotropy

axes. Thus, it is necessary to transform the vector from the data coordinate system

to the coordinate system of the anisotropy axes. In the following discussions it is

assuming that the x, y and z direction of the model coincide with the dip, strike and

vertical axes of the prototype model. The decomposed distance vector along the

three axes hvert ,hdip,hstrike will correspond to the hz,hx,hy distance vectors.

Any spatial distance vector h will be transformed to an effective distance vector
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Figure 3.16: Two steps in three dimensional distance combination

he f f along the vertical direction. It is done in two steps shown in Figure 3.16. In the

first step, the dip distance vector component hx is modified to a vector Dx reflecting

the sedimentary shifting along the strike direction controlled by strike component

vector hy. Then, the modified distance vector Dx from the first step is combined

with the vertical component vector hz to obtain a final effective vertical vector he f f

based on the sedimentary environment.

3.5.1 Integration of dip and strike direction

The anisotropy along the sedimentary dip and strike direction will be combined

together first. The basic idea is that the shifting process along the strike direction

follows some random process. The lag distance hx along the dip direction will be

modified by a factor from the strike directions which will mimic sediment source

shifting. It will be the main effect on the final effective distance calculation Dx from

the strike direction vector hy.

As the sediments source shifting along the strike direction, the distance increase

along strike direction will not always increase the probability of transition to an-

other facies as it does along dip direction. This geological variability along the

strike axis direction is quantified by Fy. For example, it could be modelled as sine
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Dip

Strike

Figure 3.17: Sketch showing the random factor from the switching function along
the strike direction

wave function Fy = f (hy) = A ·sin(B ·hy+C). For the sine function, the value from

valley to peak will be the maximum deviation to the dip distance caused by strike.

The period of this sine wave would depends on the research domain

2π
B

= Hy = nper ·ny · ysiz

where Hy is the full switching distance; and the parameter nper will control how

many full sine periods will be found along the strike direction. The larger nper ,

the higher frequency of randomness modifications to the distance along the dip di-

rection. In the simulation, each realization would use a different random parameter
C
B = rand(·) for the sine wave as shown in Figure 3.17.

The variety caused by the distance vector along strike direction hy is denoted as

ΔFy and will cause a modification to the distance vector hx along the dip distance.

The effective distance along dip direction Dx is combined from the factor ΔFy and
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the actual distance along dip direction hx as:

Dx = hx −ΔFy (3.17)

There are different cases for the combination of strike and sedimentary dip to-

gether. Some possible cases are shown in Figure 3.18.

Case A : hx = ΔFy. Although there is a dip distance difference (hx �= 0), the effect

from the strike will cancel that dip difference. Thus, for those two locations,

there will be no increment along the dip direction.

Case B : ΔFy < 0 the increment along the dip direction will be increased from the

sedimentary effect according Equation (3.17). Thus, the combined distance

will be larger than the original increment hx.

Case C : ΔFy = 0 the increment along the dip direction will be kept as the same. The

variability will only depend on the dip vector hx.

Case D : ΔFy > 0 , the increment along the dip direction will be decreased consider-

ing the effect from the strike direction;

Case E : hx = 0 and ΔFy < 0, although there is no dip distance difference. But from

the strike effect, there would be an increment along the dip direction as Dx > 0

from Equation (3.17).

By this approach, the distance along strike and dip will be combined together. As

shown in the combination example listed above, the geological meaning is inte-

grated into the “ effective” sign-dependent distance calculation.

A small example that can be calculated manually will be used to show the com-

bination of dip from strike direction. There are four locations in Cartesian co-

ordinates shown in Figure 3.19a. The distance vectors between all the locations

will follow the Euclidean geometry property. In Figure 3.19b, the coordinate sys-

tem is the geological based as along strike direction and there is a sine wave of
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D
ip
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Figure 3.18: Illustration of random modification of the dip vector from the strike
vector based on the random switching function

Table 3.2: Distance matrix from coming dip and strike direction

o a b c
o 0 5.4797 14.4046 -0.5441
a -5.4797 0 8.9249 -6.0238
b -14.4046 -8.9249 0 -14.9487
c 0.5441 6.0238 14.9487 0

(2 · sin(π/10 · hy)) attached to. The X component of each distance vector is mod-

ified by the factor which is calculated from the random function along the strike

direction using the Y component of the distance vector as a variable. As can be

seen from this example, after accounting the fluctuation caused by Y components,

the X component along the dip direction is embedded into a new space. Although

this transformation is not Euclidean, the transformed distances along the dip direc-

tion satisfy the triangle qualities.

After taking the positive direction into consideration, the distance matrix be-

tween the four locations is shown in Table (3.2). In this matrix, the negative sign

will affect the facies stacking pattern. The row index is the head of a distance vector.

The column index will be the tail of a distance vector.

3.5.2 Integration of dip and vertical direction

Combining the hz and Dx into an effective distance he f f based on the anisotropy ra-

tio ax along the dip direction is the next step for a final effective distance calculation.
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12.9904-2.5

5.4797 14.4046-0.5441
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(a)

_

Dip direction

Figure 3.19: One example of the combination between dip and strike direction. In
(a), all the distances are in their original space and will be decom-
posed along dip, and strike direction; in (b), the green locations are
the relative dip locations for those four points; After modification by
the factor from strike vector, the relative dip locations are shown in
(c)
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The final combined distance vector is calculated as:

he f f = hz +
Dx

ax
(3.18)

The positive direction will be different for a regression and transgresion stacking

pattern. There will be four combination results for an arbitrary distance vector as

shown in Figure 3.20.
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Case (a) in Figure 3.20 is the situation where hz > 0 and Dx > 0. The vector

of hz > 0 means that along the vertical direction, the facies will have a transition

tendency from four to one. While the vector of Dx > 0 means that along the dip

direction, the facies will have a same trend as the vertical trend. Thus, the effective

vector he f f combined from Equation (3.18) will also keep the transition trend that

the facies will have a high tendency from four to one. The distance interval |he f f |
will be larger than any single one |hz| or |Dx

ax
|.

In Case (b), the vector of Dx is still positive, while the vector hz is negative

which means that along the vertical direction and the lateral direction the facies

transition trends are different. The direction of the final combination result vector

he f f from those two vectors will depend on the stronger one. If |Dx
ax
| > |hz|, then

the direction of vector he f f will be positive. Otherwise, it will be negative. In both

situations, the distance interval |he f f | will be shorter than |hz| or |Dx
ax
|.

In case (c), both the transition trend from vertical and dip direction show that

the facies has a higher probability from four to one. They are consistent. From

the combination, the value |Dx
ax
| is added to the vertical distance interval |hz|. The

direction vector will have a negative value to indicate the geological meaning.

In case (d), the trend from vertical and lateral contradict each other again. In

this situation, if the |Dx
ax
|> |hz|, the direction of vector he f f will follow the direction

of vector Dx. Otherwise, if |Dx
ax
| < |hz|, the direction of vector Dx will follow the

vector hz, which is positive. The distance from the combination will be shorter than

each one.

A small manually calculated example is given in Figure 3.21. This time, the

data configuration is the same as the example given in Figure 3.19, but the coordi-

nate axes changed to dip and vertical axes. To the left, all the distance vectors are

decomposed along the two axes. To the right, all the distance vectors are combined

from vertical component hz and effective dip vector component Dx using Equation

(3.18). Note that the geometrical relations are still valid in this new coordinate

system.
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Figure 3.21: One example of vertical and dip combination results. The green rel-
ative locations for those four point in (a) indicate their relationship
before combination; in (b) is the relative location along the vertical
direction. The distance interval between them will be the final effec-
tive distance.

3.6 Remarks

How the facies contact each other and what kind of anisotropy variability is ex-

pected in the model along different directions are expressed through the facies geo-

logical model. Such quantitative information should be integrated in the final geo-

statistical facies model.

The bivariate probability diagram proposed in this research can integrate the fa-

cies stacking patterns information from the facies geological model which provides

a way to reproduce them from the final geostatistical model.

The 3D spatial distance transformation scheme proposed in this chapter will

integrate geological anisotropy understandings on how the heterogeneity extends

spatially. Those will make the final geostatistical models closer to our geological

understanding.
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Chapter 4

Discrete Multivariate Probability
Estimation

In this chapter, a novel method of multivariate probability estimation in information

theory research is implemented in spatial multivariate probability estimation. It is

estimated from the known bivariate marginal probability of the desired multivari-

ate probabilities and based on the minimum Kullback-Leibler divergence principle

which is an extension of the Maximum Entropy principle.

4.1 Entropy of Probability Distributions

Predicting facies outcomes for spatial locations will always come with uncertainty

because of lack of perfect knowledge of the study area. The well known probability

theory and the related statistics are the most traditional tools to handle uncertain-

ties (Bardossy and Fodor, 2001). For example, the uncertainty of the outcomes for a

group of locations is modelled with a discrete probability distribution P(u1, . . . ,un)

in this research. The probability distribution allows one to assign a numerical as-

sessment to each of the possible events.

4.1.1 Entropy

The term entropy was first defined in thermodynamics as a measure of the change

in randomness or disorder in a closed chemical system such as the result of a reac-
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tion (Gibbs, 1873; Tribus, 1961). It was originally devised by Claude Shannon in

1948 to study the amount of information in a transmitted message and is expressed

in terms of a discrete set of probabilities (Shannon, 1948). Since then, entropy has

been widely accepted as a criteria to measure the uncertainty with a probability

distribution (Gokhale, 1973; Kullback, 1968; Cover and Thomas, 2006).

Quantitatively, the measured entropy carried by the probability distribution p :

{p�, �= 1, · · · ,N} is defined as:

H(p) =−
N

∑
�=1

p� log p� (4.1)

Note: in the case of p� = 0, it is defined that H(p�) = 0. This measurement will

indicate the information/uncertainty that goes with this probability distribution.

4.1.2 Measurement of uncertainty

Although the concept of entropy was first proposed for uncertainty evaluation of a

discrete probability distribution, it is also used for continuous variables:

H(X) =−
∫ b

a
log( f (x)) f (x)dx (4.2)

Where random variable X with a range (a,b) and a probability density function

f (x) (Cover and Thomas, 2006).

It can also be shown that the entropy is related to the variance for a normal dis-

tribution. For a random variable X with a normal distribution N(µ,σ2), the entropy

will be:

H(X) =− 1

σ
√

2π

∫ ∞

−∞
exp(−1

2
[
x−µ

σ
]2) log

{
1

σ
√

2π
exp(−1

2
[
x−µ

σ
]2)

}
dx (4.3)

= log(σ
√

2π)+
loge√

π

∫ ∞

−∞
e−y2

y2dy

= log(σ
√

2π)+
log(e)√

π
1
2

√
π

= log(σ
√

2eπ)
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where the substitution y = x−µ√
2σ

is used. It is interesting to observe that the entropy

for a normal distribution is a function of σ but not of µ. This is showing that the

entropy and variance both are a measure of uncertainty for continuous variable.

A probability distribution with higher entropy will correspond to less informa-

tion (more uncertainty or more of a lack of information). After obtaining some

informations from the sampled locations, the uncertainty at an unsampled location

will likely decrease and it will be characterized by the estimated probability distri-

bution for this location.

For a discrete random variable Z(u), the entropy reaches its maximum value

when discrete probability distribution is uniformly distributed as 1/K. The entropy

of this uniform probability distribution would be calculated as:

H(P) =−∑ 1
K

log(1/K) =
log(K)

K
(4.4)

The entropy will reach the minimum value when there is no uncertainty about

the outcomes, that is, when the probability distribution is P(u) = 1 or P(u) = 0.

The uncertainty will be zero. Knowing P(u) = 1 of one facies means that we are

sure that this facies will be found.

In an example of three location with three categories, three possible multivariate

probability distribution would be assigned to this situation as shown in Figure 4.1.

The entropy calculated from them are 1.4313, 1.2855 and 0.6699 respectively. Case

(a) is the totally random distribution. The probability distribution in (a) has no infor-

mation. The uncertainty is the highest. While for case (b), the outcomes probability

for some data events are larger than others. In probability distribution (c), data

events 13 and 14 have a higher probability. There would be less uncertainty about

the outcomes based on this probability distribution. It has smallest entropy value of

these three probability distributions.
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(a) Uniform distribution case

(b) The probability after getting more informa-
tion

(c) The probability distribution with less uncer-
tainty

Figure 4.1: One example of three possible probability distributions for a multivari-
ate data events space
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4.2 Maximum Entropy Principle

When there is no reason to do otherwise, all outcomes will have equal probability.

As in the example in Figure 4.1, the probability distribution of case (a) would be the

choice when no information is given. This is called the principle of insufficient rea-

son, or principle of indifference (Jaynes, 1957). It corresponds to a decision to use a

uniform probability distribution. The challenge is to select a probability distribution

to use if some constraints are known from data. The maximum entropy principle is

a theory that defines how to construct an appropriate probability distribution.

4.2.1 Constraints in probability estimation

There could be many different constraints on the probability distribution. Denoting

the probability distribution as p : {p�, � = 1, · · · ,N}, the first constraints would be

the closure constraint:
N

∑
�=1

p� = 1 (4.5)

There are lower order marginal constraints on the desired multivariate proba-

bility. As shown in Chapter 2, all the lower order marginal probability distribution

such as univariate and bivariate marginal probability distributions are linear combi-

nations of the multivariate probability distributions. They should be reproduced in

the final estimated multivariate probability distribution.

The different order of marginal probabilities can be expressed as linear opera-

tions of the multivariate probability distribution:
N

∑
�=1

am�p� = bm;m = 1,2, · · · ,M (4.6)

where am� is called the marginal construction matrix, bm are the marginal probabil-

ities.

If all the lower order marginal constraints are fully integrated there will be a

large number of constraints. For example, if the multivariate function is composed

of 20 binary random variables, then 220−1 = 524,288 joint lower order of probabil-

ity constraints are needed to fully specify all the multivariate probabilities.
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In practice, many of these constraints are difficult to obtain. In spatial statistics,

only the univariate and bivariate constraints are easily and reliably inferred. Thus,

without using the full set of lower order marginal probability as constraints for the

desired multivariate probability estimation, the inference will be under-constrained.

When a system is under-constrained, the desired probability distribution usually has

a range of possible outcomes. The estimation results from the maximum entropy

principle principle introduced next will be a “best” in the sense of entropy (Cheese-

man, 1983).

4.2.2 Maximum entropy principle

For probability estimation under constraints, the most extensively used technique is

the Maximum Entropy (ME) principle which is stated as:

It is based on the premise that when estimating the probability distribu-

tion, the best estimation results will keep the largest remaining uncer-

tainty (the maximum entropy) consistent with all the known constraints.

In that way, no more additional assumptions or biases are introduced

in the estimation (Jaynes, 1978).

Formally, assuming any desired multivariate probability is p : {p�, � = 1, · · · ,N},

the objective function will be:

Maximum: H(p) =−
N

∑
�=1

p�Log(p�) (4.7)

and the constraints will be:

N

∑
�=1

p� = 1 (4.8)

N

∑
�=1

am�p� = bm;m = 1,2, · · · ,M (4.9)

Where the first constraint in Equation (4.8) will make sure the probability distri-

bution will sum to one to satisfy the normal or closure constraint. The constraints

77



bm;m = 1,2, · · · ,M in Equation (4.9) are of any order of marginal for the desired

discrete multivariate probability.

The maximization of H(p) subject to the above constraints results in a opti-

mization problem. The well-known solution to the problem of optimizing a func-

tion subject to constraints is the method of Lagrange multipliers (Bertsekas, 1999).

The Lagrange multipliers procedure can be illustrated in the situation that only the

normal constraint is enforced. The first step is to form a new objective function

L(p�,λ) as:

L(p�,λ) =−∑
�

p� log(p�)+λ
(
∑
�

p�−1
)

(4.10)

The second step is equating the derivative of (4.10) to zero with respect to each

of the variables p�, �= 1, · · · ,N and λ. This results in an equation set:

∂L
∂p�

= −1− log(p�)+λ = 0 (4.11)

∂L
∂λ

= ∑
�

(p�)−1 = 0 (4.12)

From Equation (4.11), p� = exp(λ− 1). This is independent of �. Thus, all

the probabilities p� should be equal and sum to 1. Then, the uniform distribution

p� = 1/N is the ME estimation.

The Lagrange multiplier principle can be extended to any order of marginal

probabilities. In the following illustration, the full constraints from Equation (4.8)

and (4.9) are enforced in the objective function. The new objective function L(p,λ,λm)

will be defined as:

L(p�,λ,λm) =−∑
�

p� log(p�)+λ
(
1−∑

�

p�
)
+λm

(
bm −∑

�

am�p�
)

(4.13)
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Then, the derivatives of Equation (4.13) are set to zero with respect to each of

the variables p�, �= 1, · · · ,N and λ,λm;m = 1, · · · ,M, that is:

∂L
∂p�

=− log(p�)−1−λ−
M

∑
m=1

λmam� = 0 (4.14)

∂L
∂λ

= 1−∑
�

p� = 0 (4.15)

∂L
∂λm

= bm −∑
�

am�p� = 0 (4.16)

From Equation (4.14):

p� = exp
(
−λ0 −

M

∑
m=1

λmam�

)
(λ0 = λ+1) (4.17)

Replacing Equation (4.17) back into Equation (4.15) and (4.16), results in a set of

simultaneous equations that can be written as:

1−∑
�

exp(−λ0 −
M

∑
m=1

λmam�) = 0 (4.18)

bm−∑
�

am�

[
exp(−λ0 −

M

∑
m=1

λmam�)
]

= 0 (4.19)

In principle, it is shown that solving the Equation set (4.18) and (4.19) to get the

λm;m = 0,1, · · · ,M and substituting back into Equation (4.17), will get the maxi-

mum entropy solution from the constraints. Practically, the solution of the m+1 set

of coupled implicit nonlinear equations cannot be found analytically. Even finding

the numerical solution is not an easy task in practice (Newman, 1979; Mead and

Papanicolaou, 1984; Ulrych et al., 1990).

4.3 Minimum KL Divergence Principle

The entropy of a probability distribution is a measure of the uncertainty of the ran-

dom variable. Based on the entropy concept, the Kullback-Leibler divergence (KL

divergence or KL distance) is used as a measurement of the distance between two

probability distribution in probability theory and information theory.
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4.3.1 KL divergence

The KL divergence is an asymmetric measure of the difference between two proba-

bility distributions (Kullback and Khairat, 1966; Ireland and Kullback, 1968). For

ease of presentation, consider two discrete probability distribution p : (p1, · · · , pN)

and q = (q1, · · · ,qN). The KL divergence between them is a measure of the differ-

ence of the information contained in them and is defined as:

J[p ‖ q] =
N

∑
�=1

p� log
p�
q�

(4.20)

One property of KL divergence is that the asymmetric property as J[p ‖ q] �=
J[q ‖ p]. Thus, it is not a true distance metric. Some other properties are:

J[p ‖ q]≥ 0 (4.21)

J[p ‖ q] = 0 if and only if p = q (4.22)

4.3.2 Minimum KL divergence principle

Based on the concept of KL divergence, Kullback proposed the principle of Mini-

mum KL divergence: given new facts, a new distribution p should be chosen that is

as hard to discriminate from the original distribution q as possible; so that the new

data produces as small an information gain J(p||q) as possible, thus no more bias

except satisfying the constraints are introduced (Kullback, 1968). It is written as:

Minimize: J(p ‖ q) =
N

∑
�=1

p� log
p�
q�

(4.23)

subject to:

N

∑
�=1

p� = 1 (4.24)

N

∑
�=1

am�p� = bm;m = 1,2, · · · ,M (4.25)

The minimum KL divergence principle can be seen as an extension of the prin-

ciple of ME. As given q= 1/N, the minimum KL divergence results will be exactly
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the ME results which is:

J(p ‖ q) =
N

∑
�=1

p� log(p�N) (4.26)

=
n

∑
�=1

p� log p�+N logN

= −H(p)+(constant)

As shown in Equation (4.26), minimizing J(p ‖ q) will be the same as maximiz-

ing entropy H(p). Therefore, both J(p ‖ q) and H(p) are measures of the deviation

of p from a discrete uniform distribution. From this view, it is seen that the ME

solution is a special case of the minimum KL divergence. Moreover, the minimum

KL divergence formulation is more general and offers greater flexibility, because

with the minimum KL divergence formulation the null-hypothesis function q can

represent any probability function (Ireland and Kullback, 1968).

4.3.3 Iterative scaling

From section 4.2.2, it was shown that the ME solution will be a coupled nonlinear

equation set. It could be solved but it will always be a challenge. In this section, one

multivariate probability estimation approach based on the minimum KL divergence

principle is introduced based on some previous works (Good, 1963; Kullback and

Khairat, 1966; Darroch and Ratcliff, 1972).

It is said that given the constraints in the form of Equation (4.24) and (4.25),

there exists an unique probability distribution p̂ : {p̂1, · · · , p̂N} that satisfies them

and is of product form as:

p̂� = q� ·µ
M

∏
m=1

µam�
m (4.27)

where q� is the known probabilities; am� = 0,or,1 are given constant; µ,{µm} are

determined from the constraints in Equation (4.24) and (4.25). Specifically, this

unique probability distribution p̂ is the limit of the iterative sequence {p(δ);δ =
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0,1,2, · · ·} defined by:

p̂(0)� = q�

p̂(δ+1)
� = p̂(δ)�

M

∏
m=1

[
bm

b̂(δ)m

]am�

δ = 0,1,2, · · · (4.28)

where b̂(δ)m = ∑am� p̂
(δ)
�

From the minimum KL divergence principle, the probability distribution p in

the form (4.27) satisfying (4.28) will be unique. One proof to this point is given

below (Darroch and Ratcliff, 1972).

Assuming π as another probability distribution that is also satisfy the constraints

in Equation (4.25) and in the form of (4.27), then the KL divergence between π and

q would be:

J(π ‖ q) =
N

∑
�=1

π� log
π�

q�

=
N

∑
�=1

π�

[
log

q� ·µ∏M
m=1 µam�

m

q�

]
Equation (4.27) into here

=
N

∑
�=1

π�

[
logµ+

M

∑
m=1

am� logµm

]

= logµ
[ N

∑
�=1

π�

]
+

M

∑
m=1

logµm

[ N

∑
�=1

am�π�

]
(4.29)

The same for probability of p and q, the KL divergence can be expressed as:

J(p ‖ q) =
N

∑
�=1

p� log
p�
q�

= logµ
[ N

∑
�

p�
]
+

M

∑
m=1

logµm

[ N

∑
�=1

am�p�
]

(4.30)

From Equation (4.29) and (4.30):

J(π ‖ q)− J(p ‖ q) = J(p ‖ π)

where J(p ‖ π) is nonnegative and equal to zero if and only if p = π.
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Furthermore, the sequence {p(δ);δ = 0,1,2, · · ·} will be a convergence process

to the solution in the form of Equation (4.27) (Darroch and Ratcliff, 1972). Provid-

ing the result from δ’s iteration is:

p̂(δ)� = p̂(δ−1)
�

M

∏
m=1

[
bm

b̂(δ−1)
m

]am�

(4.31)

From the convexity of the logarithmic function:

M

∏
m=1

[
bm

b̂(δ−1)
m

]am�

≤
M

∑
m=1

am�

[
bm

b̂(δ−1)
m

]
(4.32)

hence:

p̂(δ)� ≤
M

∑
m=1

am� p̂
δ−1
�

[
bm

b̂(δ−1)
m

]

exists and it minimize J(p ‖ q) subject to constraints in Equation (4.25).

More generally, consider R sets of constraints each of them in the form of (4.25),

let the rth set constraint be written as:

N

∑
�=1

ar
m�p� = br

m, r = 1,2, · · · ,R; m = 1, · · · ,M (4.33)

where ∑M
m=1 br

m = 1. In the spatial multivariate probability estimation, this rth set

constraints could be any order lower marginal probability.

Provided that the constraints in Equation (4.33) are consistent with each other,

there exists a unique positive probability distribution p that satisfies them and is of

the form:

p� = q�µ
R

∏
r=1

M

∏
m=1

(µr
m)

ar
m� (4.34)

which means that p can be obtained as the limit of an iterative scaling process (Bishop,

1969; Ku and Kullback, 1974).

The starting probability of the iteration q can take the uniform distribution which

is the simplest and most natural choice (Darroch and Ratcliff, 1972). A more rea-

sonable and practical choice of q assumes that all variables are independent, that is,

the initial estimation will be:

q =
n

∏
α=1

K

∏
k=1

P(uα;ek)

83



Thus, the estimated multivariate probability represents a generalized indepen-

dent distribution subject to the linear constraints coming from lower-marginal dis-

tributions. This method is named as Iterative Scaling (IS) which has been studied

extensively in mathematics and statistics researches (Bishop, 1969; Ku and Kull-

back, 1969; Darroch and Ratcliff, 1972; Gokhale, 1972; Ku and Kullback, 1974).

The above proposed IS approach written in pseudo-code is:

Begin

Input the given lower order marginal probability bm,m = 1, · · · ,M which is used as

the constraints of estimation;

Initialize: Generate an initial multivariate probability p0
� , �= 1, · · · ,N ;

Repeat:

1. Calculate a current marginal probability b̂(δ)m = ∑M
m=1 am� p̂

(δ)
� with the current

estimated multivariate probability P̂δ ;

2. Calculate a modification factor from the target marginal probability and the

estimated marginal probability as: fm = bm

b̂δ
m

;

3. Update multivariate probability with the modify factor: P̂δ+1 = (F× P̂δ),

where F = { fm,m = 1, · · · ,M} ;

4. Set P̂δ+1 to P̂δ for next iteration;

Until: the multivariate probability satisfies: Δ =‖ P̂δ+1− P̂δ ‖≈ 0;

Output: the final iteration result;

End

Originally, the iterative scaling approach is used to infer a matrix with non-

negative entries when the row and column sums are known. It was first proposed by

Deming and Stephan (Deming and Stephan, 1940) to infer a two dimensional distri-

bution with known marginal using the empirical distribution of the observed sample

“contingency table” as prior guess. Later on, Chow and Liu pointed out that this

approach is suitable for binary random variables estimation based on the second-

order distribution with the first-order tree dependency (Chow and Liu, 1968). They
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Category 2Category 1

event 1

event 2

event 3

event 4

event 5

event 6

event 7

event 8

Figure 4.2: One simple multivariate data events space which is composed by three
locations and two categories

pointed out the difficulty to expend to higher order of discrete multivariate random

variables.

The Bayesian Maximum Entropy (BME) approach has proved its ability to pre-

dict categorical variables efficiently and in a flexible way (D’Or et al., 2001; Bo-

gaert, 2002). In the BME approach, still the Lagrangian formulation is used (D’Or

and Bogaert, 2003; Wibrin et al., 2006). The final solution to the probabilities esti-

mation is fitting of a non-saturated log-linear model (D’Or and Bogaert, 2004). And

the iterative scaling approach discussed in this section is recommended. Although

the inference procedure is different with the minimizing of KL divergence used in

this chapter, the same solution is used to obtain the final solution.

4.4 Implementation Examples

As already discussed in section 4.2.2, getting the solution of the m+1 set of cou-

pled linear equations is a challenge with the Lagrange multiplier approach. In this

section, a small example is used to illustrate this point.

4.4.1 Example of Lagrange multiplier challenge

In this case, the number of categories is 2, the random variable number N is 3 and

the multivariate data event space will be 23 = 8. All the possible data events are

shown in Figure 4.2.
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The probability of each data event is denoted as p : {p1, p2, · · · , p8}, which must

be estimated. The bivariate probability constraints from the three random spatial

variables (u1,u2,u3) are b : {b1,b2, · · · ,b12}.

The entropy of probability distribution p would be expressed as:

H(p) =−
8

∑
�=1

p� log p� (4.35)

constraints are: p1 + p5 = b1

p3 + p7 = b2

p2 + p6 = b3

p4 + p8 = b4

p1 + p3 = b5

p5 + p7 = b6

p2 + p4 = b7

p6 + p8 = b8

p1 + p2 = b9

p5 + p6 = b10

p3 + p4 = b11

p7 + p8 = b12

and also should satisfy:
8

∑
i=1

pi = 1 (4.36)

Using the Lagrange multiplier λ1,λ2, · · · ,λ12 for all the constraints of bivariate

probability {b1, · · · ,b12} and λ0 for constraints from (4.36).

Now, using the Lagrange multiplier formalism, the new objective function will
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be:

L(p,λ0,λ1, · · · ,λ12) =−
8

∑
�=1

p� log p�+ (4.37)

λ1(p1+ p5 −b1)+

· · ·+
λ12(p7+ p8 −b12)+

λ0(
8

∑
�=1

p�−1)

From this new objective function, the 21 derivatives are taken and set equal to zero:

∂L
∂p1

=−(1+ log p1)+λ1+λ5 +λ9 = 0 (4.38)

...
∂L
∂p8

=−(1+ log p8)+λ4+λ8+λ12 = 0 (4.39)

∂L
∂λ1

= p1 + p5 −π1 = 0 (4.40)

...
∂L

∂λ12
= p7+ p8 −π12 = 0 (4.41)

∂L
∂λ0

=
8

∑
i=1

pi −1 = 0 (4.42)

From Equation (4.38) to (4.39):

p� = exp(−
12

∑
m=1

am�λm); �= 1, · · · ,8 (4.43)

Substituting into Equation (4.40),(4.41) and (4.42) leads to:

8

∑
�=1

exp(−
12

∑
m=1

am�λm)−1 = 0 (4.44)

8

∑
�=1

am�exp(−
12

∑
m=1

am�λm)−bm = 0 (4.45)

To calculate the probability distribution p�, one needs to solve this 13 coupled, im-

plicit nonlinear equations to get the Lagrange parameters λ0,λ1, · · · ,λ12. Although
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in principle, the techniques to solve this problem are known, in practice it is not so

simple. An efficient algorithm for solving the set of nonlinear equations in (4.44)

and (4.45) would be required.

4.4.2 Example of iterative scaling

Instead of looking for the solution of m+1 nonlinear equation, the iterative scaling

approach greatly simplifies the estimation process. It will be used in later spatial

multivariate probability P(u0,u1, . . . ,un) estimation.

Following is an example using a simple discrete probability P= {p1, p2, p3, p4, p5}
to illustrate the iterative scaling process.

Let the linear constraints be written:

5

∑
�=1

am�p� = bm, m = 1,2,3,4; �= 1,2,3,4,5 (4.46)

Given a marginal construction matrix am�, the linear constraints in Equation (4.46)

could be written in traditional matrix form:

⎡
⎢⎢⎣

1 1 0 0 1
0 1 1 0 1
1 0 0 1 1
1 1 0 1 0

⎤
⎥⎥⎦×

⎡
⎢⎢⎢⎢⎣

p1

p2

p3

p4

p5

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎣

b1

b2

b3

b4

⎤
⎥⎥⎦ (4.47)

Assuming the initial probability distribution is {p(0)
1 , p(0)2 , p(0)3 , p(0)4 , p(0)5 }, the first
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iterative scaling process will be proceed as:

p(1)1 = p(0)1 (
b1

b(0)1

)1(
b2

b(0)2

)0(
b3

b(0)3

)0(
b4

b(0)4

)1 = p(0)1

4

∏
r=1

(
br

b(0)r

)ar1

p(1)2 = p(0)2 (
b1

b(0)1

)1(
b2

b(0)2

)1(
b3

b(0)3

)0(
b4

b(0)4

)1 = p(0)2

4

∏
r=1

(
br

b(0)r

)ar2

p(1)3 = p(0)3 (
b1

b(0)1

)0(
b2

b(0)2

)1(
b3

b(0)3

)0(
b4

b(0)4

)0 = p(0)3

4

∏
r=1

(
br

b(0)r

)ar3

p(1)4 = p(0)4 (
b1

b(0)1

)0(
b2

b(0)2

)0(
b3

b(0)3

)1(
b4

b(0)4

)1 = p(0)4

4

∏
r=1

(
br

b(0)r

)ar4

p(1)5 = p(0)5 (
b1

b(0)1

)1(
b2

b(0)2

)1(
b3

b(0)3

)1(
b4

b(0)4

)0 = p(0)5

4

∏
r=1

(
br

b(0)r

)ar5

so after the first iteration the probability will be:

p(1)� = p(0)� µ
4

∏
r=1

[
br

b(0)r

]ar� �= 1, · · · ,5 (4.48)

where µ is used for normalization to make the results a probability. Using the

same iterative scaling process, the iterated sequence {p(δ);δ = 0,1,2, · · ·} can be

obtained. The limit of this sequence would be the solution satisfying the linear

constraints.

4.5 Practical implementation

Although the iterative scaling approach has a sound mathematic background, it is

not widely used due mainly to computational pressure coming from the marginal-

ization and iterative process. The marginalization from the huge multivariate prob-

ability space requires tracing a large number of multivariate probabilities. For each

bivariate marginal probability calculation from a multivariate probability with n

variables and K discrete categories, the number of multivariate probabilities that

need to be traced is Kn/K2 = Kn−2. For example, when the random variable num-

ber n increases to 20 and the number of categories equal to 3, the number of the
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multivariate probabilities that needs to be traced are 318 = 387,420,489. This op-

eration will be very CPU intensive for large n. Thus, few practical applications

have been done with this IS approach in multivariate probability distribution esti-

mation. In order to implement this technique in facies modelling, some numerical

developments are proposed below.

4.5.1 Marginalization construction matrix

When the multivariate probability space increases, one intensive computing process

is the marginalization operation. In the iteration process, each updating step in IS

procedure can be written as:

p̂(δ+1)
� = p̂(δ)�

M

∏
m=1

[
bm

b̂(δ)m

]am�

(4.49)

p̂(δ+1)
�

p̂(δ)�

=
M

∏
m=1

[
bm

b̂(δ)m

]am�

log
p̂(δ+1)
�

p̂(δ)�

=
M

∑
m=1

am� log
bm

b̂(δ)m

log p̂(δ+1)
� − log p̂(δ)� =

M

∑
m=1

am� log
bm

b̂(δ)m

where b̂(δ)m = ∑M
m=1 am� p̂

(δ)
� .

As it is shown, the marginal construction matrix am�,m = 1, · · · ,M;�= 1, · · · ,N
is used not only in the marginalization operation but also in the multivariate proba-

bility updating step. As the data event space increases, so does the marginalization

matrix dimension. Generally, the dimension will be defined from the marginal order

m, the total location number n and the facies number K as:

Km ·
(

n
m

)
× Kn (4.50)

For example, if there are 20 random variables and 3 categories, the dimension of the

marginal construction matrix will be 1710×3,484,784,401. Some of the marginal

construction matrix are as listed in Table 4.1.
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Table 4.1: The dimension of marginal probability construction matrix

K n m am� dimension
3 3 2

(3
2

) ·32 ×33 = 27×27
3 5 2

(5
2

) ·32 ×35 = 90×243
3 10 3

(10
3

) ·33 ×310 = 3240×59049

Handling such a high dimension matrix efficiently is a challenge in the nu-

merical implementation of this method. Building and saving the marginalization

construction matrix am� efficiently in the iteration process will release some com-

putational burden. The naive data structure for a matrix is to use an array. Each

entry am� can be accessed by the two indices m and �. Huge memory is needed to

store all the entries to represent the matrix.

Although the dimension of am� increases dramatically as the number of random

variables increases, there are many zero values in the matrix and non-zero values are

always equal to one because in the marginalization only some of the multivariate

probability values will be summed up as illustrated in Figure 2.3 and Figure 2.4.

The marginalization computation can take advantage of this sparse matrix and can

proceed with a more efficient computation.

There are many ways to represent a sparse matrix (Stoer et al., 2002). The

approach used in this research is List of Lists (LIL). Other expressions could be

used. In the LIL approach, only the non-zero column indices are stored. In this

research, all the non-zero column indices are calculated from the multivariate event

index function as in Equation (2.4). The sparse matrix is saved by a one dimensional

array (only the nonzero elements column number) and two parameters: the number

of total rows and the number of non-zero elements in each row of the naive matrix

am�. Substantial memory reduction is obtained and yields huge savings in memory

when compared to a naive approach.

The marginalization computation can be done in a fast linear operation style

with relatively small storage requirement by taking advantage of the sparse matrix

operation. More importantly, the sparse matrix is constant according to the order
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of multivariate probabilities and can be built only once. It saves a lot of CPU time

when the marginalization is needed in every iteration.

4.5.2 Numerical examples

The die problem

The die problem serves as an excellent illustration of different solution efforts in-

cluding the iterative scaling and the Lagrange multiplier formalism. This problem

was originally proposed by Jaynes as an example to show the ME principle for un-

determined problem (Jaynes, 1978). In this case, there is no difference in the final

results from using Lagrange multiplier and the iterative scaling approach. However,

the IS procedure is more straightforward and easier to implement than the Lagrange

multiplier approach.

Consider a die of six faces that is tossed for T (T → +∞) times. One is told

that the average number of spots up was not 3.5 as we might expected from an

“honest” die but 4.5. Given this information, and nothing else, what probability

should one assign to i spots on the next toss?

From the ME approach, the solution could be proceed as following procedures.

The constraints to the entropy equation would be:

6

∑
i=1

i · pi = 4.5 (4.51)

6

∑
i=1

pi = 1 (4.52)

the new objective function with Lagrange multipliers would be:

L =−
6

∑
i=1

pi log pi +λ0(
6

∑
i=1

pi −1)+λ1(
6

∑
i=1

i · pi−4.5) (4.53)
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The probabilities would be:

pi = exp(λ0 + iλ1) (4.54)

Λ = exp(λ0) =
6

∑
i=1

exp(−iλ1) (4.55)

Λ = x(1− x)−1(1− x6) where: x = exp(−λ1) (4.56)

∂Λ
∂λ1

=−4.5 (4.57)

3x7−5x6 +9x−7 = 0 (4.58)

After obtaining the desired root for the Equation (4.58), the maximum entropy prob-

abilities are calculated to be:

{0.05435,0.07877,0.11416,0.16545,0.23977,0.34749} (4.59)

While for the iterative scaling process, the marginal construction function would

be: a1i = {1,2,3,4,5,6}. According to the iterative scaling process, the first esti-

mation to the desired probability would be: p0
i : {1/6,1/6,1/6,1/6,1/6}. The first

time of scaling would be:

p1
1 = µ p0

1 (
4.5
3.5

)1

p1
2 = µ p0

2 (
4.5
3.5

)2

p1
3 = µ p0

3 (
4.5
3.5

)3

p1
4 = µ p0

4 (
4.5
3.5

)4

p1
5 = µ p0

5 (
4.5
3.5

)5

p1
6 = µ p0

6 (
4.5
3.5

)6

All the ten times iteration results are listed in Table 4.2 The Lagrange result and

the final IS result are almost exactly the same. The IS process is more straightfor-

ward and easier to implement for large problems.

One multivariate probability estimation

The iterative scaling approach is illustrated numerically in this example with the
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Table 4.2: Ten times iteration results for the die problem

iteration time p1 p2 p3 p4 p5 p6

1 0.08123 0.10444 0.13428 0.17265 0.22198 0.28540
2 0.06503 0.08945 0.12306 0.16928 0.23286 0.32032
3 0.05914 0.08365 0.11832 0.16736 0.23672 0.33482
4 0.05660 0.08108 0.11615 0.16639 0.23835 0.34143
5 0.05543 0.07989 0.11512 0.16591 0.23909 0.34456
6 0.05488 0.07931 0.11463 0.16567 0.23944 0.34606
7 0.05461 0.07904 0.11439 0.16556 0.23961 0.34680
8 0.05448 0.07890 0.11427 0.16550 0.23970 0.34715
9 0.05441 0.07883 0.11421 0.16547 0.23974 0.34733
10 0.05438 0.07880 0.11419 0.16546 0.23976 0.34741

simple case n = 6,K = 3. The true multivariate probability is scanned from one

training image. It is shown that the multivariate probabilities are reproduced from

the bivariate marginals.

Given a training image and one data configuration, the multivariate probabil-

ity concerning the joint outcome for this grouped location will be scanned from the

training image as discussed in the traditional multiple point geostatistics such as the

work of Guardiano and Srivastava (Guardiano and Srivastava, 1993). Each bivariate

probability bm is calculated from the scanned multivariate probability using Equa-

tion (4.25). The estimated multivariate probability p̂ is obtained from the full set of

bivariate probabilities using the iterative scaling approach introduced above. Then,

the estimated multivariate probability distribution p̂ is compared with the original

scanned true one p as shown in Figure 4.3. The sequence calculated from differ-

ent iterations is plotted together in Figure 4.3. The process converges to a feasible

solution which is very close to the true multivariate probability.

Comparing the difference between the target bivariate probability b(ui,u j) and

the iterated bivariate probability b̂(ui,u j) shown in Figure 4.4, the difference be-

tween them is close to zero after 30 iterations.

94



Figure 4.3: The convergence of the iteration results to the true multivariate proba-
bility

Figure 4.4: The difference to the bivariate probability constraints
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4.6 Remarks

The direct multivariate probability estimation from the bivariate marginal probabil-

ity using the minimum KL divergence principle is theoretically correct. The nu-

merical implementation of the iterative scalling approach proposed in this chapter

makes the approach more practical in geostatistical research.

Although the computation of the IS approach is complex, it is not a barrier

for implementation in geostatistics research and would be a flexible and powerful

approach if the CPU considerations are not a major concern.
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Chapter 5

Facies Modelling Using DMPE

Updating the prior probability distribution to a posterior probability distribution

at each unsampled location using the new proposed spatial distance calculation in

spatial probability mapping is illustrated with examples. These examples show that

more geological information can be reproduced. The resulting probability maps

obtained from different interpolation algorithms are compared by measures of ac-

curacy and precision. The assessment of the cross validation results and the KL

measurements of the maps show that updating the prior probability to posterior

probability map using the new proposed DMPE will provide more accurate and

precise results than the traditional IK approach. Sequential simulation is imple-

mented to characterize the joint uncertainty over the whole research area. Some

programming details for the DMPE implementation, such as the Markov model at

the conditioning data choosing, are explained in this chapter.

5.1 Estimation

The main aim of geostatistics is to update the prior probability P(u0) to a posterior

probability P(u0|u1, . . . ,un) based on the information from the nearby sampled lo-

cations (u1, . . . ,un). In Chapter 3, the information from the sample locations are

expressed as bivariate probabilities between each pair of them. Any arbitrary spa-

tial distance will be scaled to an effective distance along the vertical direction and

the bivariate probabilities will be obtained from the well data. In Chapter 4, it is
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shown that all these bivariate probabilities can be used to construct a multivariate

probability distribution that is based on the minimum KL distance principle. The

estimated multivariate probability will be used directly to calculate the posterior

probability P(u0|u1, . . . ,un). All those steps are the basis of the proposed spatial

probability interpolation methodology called Direct Multivariate Probability Esti-

mation (DMPE).

5.1.1 Spatial probability interpolation

The true probability for each facies at the sample locations is known. Based on

the dependence relationship between the locations, the unsampled locations will be

assigned a probability value for each facies. These probability distributions will be

visually presented as a map for each facies. There will be K maps for a domain with

facies space ek,k = 1, · · · ,K. This process is called spatial probability interpolation

or “estimation” in geostatistics.

The global proportion pk will reflect the average frequency of facies ek that

can be found in the study area. The global proportion would be used when one

is interpolating probability at an unsampled locations with no further information

available. This will satisfy the maximum entropy/minimum KL distance principle

as explained above. As an example shown in Figure 5.1, the probability map for

each facies would be the global proportion. Of course, the probability would be 1

or 0 at data locations in this situation.
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In practice, the facies will always show some spatial correlation in different

directions. After more information is gained, the posterior probability maps will be

updated. For example, after doing some geological analysis, it may be believed that

the geological background of the reservoir is fluvial. It may also be clear that one

facies will be the paleochannel and is extended from east to west, a second facies

could be alluvial fan, and a third facies is flood plain. An updated probability map

for each facies can be obtained through manually sketch by geologists as shown in

Figure 5.1. Some other methods, such as IK, can be used if the correlation between

the sampled data can be obtained.

In this research, the correlation information between each location will be ex-

pressed as bivariate probability distributions between them and will be used as a

constraints to the posterior probability map drawing. The DMPE will be used to get

the posterior probability map. The updating process will be:

1. Set up the anisotropy model of the study area and set up the model coordi-

nates;

2. Build the vertical bivariate probability diagram;

3. Pick an unsampled location u0 and search for surrounding conditional data

(u1, . . . ,un);

4. If there are no conditioning data, use the global proportion;

5. If there is only one conditioning data, then use the input bivariate probability

and the global proportion to calculate the conditioning probability as:

P(u0|uα) =
P(u0,uα)

P(uα)

6. If the number of conditioning data is more than one then:

(a) Retrieve the bivariate probability distribution P(uα,uβ);α �= β from the

locations (u0,u1, . . . ,un) and use the new proposed anisotropy based
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distance calculation in order to integrate the geological understanding

into the final model;

(b) apply the proposed DMPE algorithm to estimate the n+1 multivariate

probability distribution P(u0,u1, . . . ,un);

(c) Calculate the conditional probability for the unsampled location u0 as:

P(u0|u1, . . . ,un) =
P(u0,u1, . . . ,un)

P(u1, . . . ,un)

7. Go to next unsampled location, until all the unsampled locations are visited.

Only one unsampled location is considered at a time. The above spatial proba-

bility interpolation is implemented in a Gslib style program named DMPEest. The

program details and the parameter file are given in the Appendix.

5.1.2 2D Spatial Estimation Example

A small example is used to illustrate the DMPE approach for facies spatial es-

timation. The main aim is to illustrate that the geological understanding can be

integrated into the geostatistical model through the proposed spatial distance calcu-

lation.

The calculation is done along the horizontal plane defined by strike and dip

direction. The hard data for this direction is shown in Figure 5.2. There is a sine

wave fluctuation along the strike direction (North-to-South). While along the dip

direction (West-to-East), the facies pattern would be like the one calculated from

a training image as shown in Figure 3.4. The estimation results from using the

anisotropy based spatial distance calculation approach are shown in Figure 5.3.

The estimation results from a traditional geometric distance calculation approach

are shown in Figure 5.4.

Comparing the results, there are clear geological constraints in the model with

the anisotropy based distance calculation. The probability map is not only condi-

tioned to the hard data constraints, but also on our geological understanding. The

random trend along strike could be modified with more geological analysis.
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Figure 5.2: The conditioning data along horizontal plane and the strike and dip
directions

5.2 Estimation results assessment

The probability distribution P(u0|u1, . . . ,un) at each unsampled location u0 must

be checked. For a probability distribution, the basic check is that the sum of proba-

bilities should equal to 1. This requirement is already satisfied from the DMPE al-

gorithm as the conditional probabilities are from a fully validate multivariate prob-

ability distribution. The assessment below is an evaluation of the accuracy and

precision information that the probability distribution can provide.

5.2.1 Cross validation assessment

Cross validation is a technique for assessing how accurately a predictive model will

perform in practice. It is usually done through comparison between the true value

and the estimated probability results and is mainly used in settings where the goal is

prediction (Picard and Cook, 1984). In geostatistical cross validation (Davis, 1987),

actual data values are dropped one at a time and re-estimated from the remaining

neighbouring data. Each datum is replaced in the data set once it has been validated.

From the indicator transformation, it is known that the indicator value of each

facies is its probability to exist at the current location. As shown in Figure 5.1, the

hard data for each facies spatial probability mapping is only 1 or 0. If it is 1, the

current facies is found at this location. If it is 0, the current location is not the facies

under consideration. While using any spatial probability interpolation algorithm or
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Figure 5.3: The estimation along dip and strike direction using the new proposed
spatial distance calculation approach
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Figure 5.5: The accuracy and precision criteria of cross validation results

estimation approach, the estimated posterior probability for facies ek,k = 1, · · · ,K
would always be between 0 and 1 except at the sampled locations.

One way to evaluate the cross validation results is to check the closeness to true

value and the dispersion of the estimated probabilities from this grouped locations.

It is done by grouping the estimated probabilities p(u;ek|(n)) for data event u = ek

at several locations together. The mean of these grouped estimated probabilities

µk = E{p[u;ek|(n)]} should be as close to one as possible. The closeness to the true

value will be calculated as {1−µk} and will be used as one criteria to the estimate

accuracy.

The dispersion of the grouped probability values will reflect the precision of the

estimation model. The dispersion is quantified using the standard deviation of the

grouped probabilities, which is calculated as: σk =
√

E{p[u;ek|(n)]−µk}2. These

two quantitative measurements are shown in Figure 5.5. These two checks will be

done for each facies separately.

A small comparison is done between the traditional IK approach and the pro-

posed DMPE approach. The training image shown in Figure 5.6 is used as a refer-

ence distribution. A total of 1000 locations are picked for checking the estimation

of each facies. At every cross validation location, eight surrounding data will be

randomly selected as conditioning data. The DMPE algorithm and the IK are used

to construct the conditional probability at each cross validation location. In DMPE,
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Figure 5.6: The training image used for doing cross validation from some ran-
domly picked locations

Table 5.1: The comparison between the clossness to the true probability from cross
validation

statistics Facies one Facies two Facies three

{1−µk} from DMPE 0.66 0.60 0.52
{1−µk} from IK 0.68 0.64 0.70

σk from DMPE 0.32 0.24 0.30
σk from IK 0.33 0.24 0.28

the bivariate probabilities for the conditioning data are taken from the bivariate

probability diagram along X and Y directions. In the IK approach, order relations

problems are corrected immediately following estimation.

As shown in Figure 5.7 and Table 5.1, the estimated results from DMPE are

closer to the “true probability distribution”. In other words, DMPE is more accurate

than IK which is an expected result since more geological information is being used.

In this comparison, only bivariate marginal probabilities are used as constraints in

the multivariate probability inference. Higher order marginal probability results

would help in the process.
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Figure 5.7: Histogram of the estimated probability at the hard data locations

5.2.2 KL distance assessment

The above assessment can be done facies by facies at each cross validation location.

The starting point is a prior probability distribution such as the global proportion

{pk,k = 1, · · · ,K}. A quantitative measurement is needed to evaluate how much

of the uncertainty is changed using the posterior probability instead of the global

proportions.

The previous introduced KL divergence will be used as a quantitative measure-

ment of information gain in moving from a prior distribution to a posterior distri-

bution. The amount of useful information gain at location u0 after upgrading the

estimation from the prior probability P(u0) to posterior probability P(u0|u1, . . . ,un)

will be:

J
(

P(u0|u1, . . . ,un) ‖ P(u0)
)
= ∑P(u0|u1, . . . ,un) log

[
P(u0|u1, . . . ,un)

P(u0)

]
(5.1)

For example, upgrading from the uniform probability distribution ( 1
K ) to a pos-
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terior probability, the KL divergence is:

J
(
P(u0|u1, . . . ,un) ‖ ( 1

K
)
)

(5.2)

=∑P(u0|u1, . . . ,un) log

[
P(u0|u1, . . . ,un)

1/K

]
=∑

[
P(u0|u1, . . . ,un) log(P(u0|u1, . . . ,un))−P(u0|u1, . . . ,un) log(1/K)

]
=∑P(u0|u1, . . . ,un) log(K)+∑

[
P(u0|u1, . . . ,un) logP(u0|u1, . . . ,un)

]
= log(K)+∑

[
P(u0|u1, . . . ,un) logP(u0|u1, . . . ,un)

]
=H(u0)−H(u0|u1, . . . ,un)

Because of 0 ≤ J ≤ 1, the new updated entropy H(u0|u1, . . . ,un) will always

be less than H(u0), that is, knowing more information can only reduce the uncer-

tainty (Cover and Thomas, 2006). The larger the distance the more informative the

estimation is, the greater our uncertainty is reduced at the unsampled location.

It is interesting to understand what the distance defined in Equation (5.1) for

binary category variable K = 2 will be. Let the logarithms have base 2, the distance

in Equation (5.1) will be:

J
(
P(u0|u1, . . . ,un) ‖ ( 1

K
)
)
= log2(2)−H(u0|u1, . . . ,un) (5.3)

= 1+ p(u0|u1, . . . ,un) log2 p(u0|u1, . . . ,un)

+ [1− p(u0|u1, . . . ,un)] log2[1− p(u0|u1, . . . ,un)]

The above distance decreases from 1 to 0 when the posterior probability p(u|u1, . . . ,un)

increases from 0 to 0.5 which is the uniform distribution for a binary variable. While

as the posterior probability continues to increase from 0.5 to 1, the distance in-

creases from 0 to 1, as shown in Figure 5.8.

The prior probability could also be the global proportion of each facies p(k),k=

1, · · · ,K. The KL distance would reach zero in the case of the posterior probability

equal to the global proportion. In this situation, the distance will be zero.

For the general case, the number of facies would be more than just two. At

each location, the KL distance could be calculated from the posterior probability
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Figure 5.8: The calculated KL distance for different posterior probability distribu-
tions for binary variable

P(u0|u1, . . . ,un) and its prior probability P(u0). The uncertainty reduction from

the prior probability will be characterized by this KL distance. It will give a global

assessment to the probability map.

Consider a small example to show the global uncertainty assessment from the

probability mapping. The hard data for this example is taken from one training

image in Figure 5.9.

The bivariate probability diagram is scanned from the training image along the

X direction. During the estimation, the bivariate probability for arbitrary location

pairs is used from this direction. The multivariate probability is estimated from the

conditioning data for each unsampled location. As a comparison, the IK estimation

is also calculated from those bivariate probability based on the relationship between

bivariate probability and indicator covariance in Equation (2.20).

The conditional probability maps from both methods are shown in Figure 5.10.

One reason of the noise in the maps is that the DMPE estimation is based on the

ME principle. The final probability map tends to have a maximum entropy charac-
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Figure 5.9: The training image (left) and hard data set (right) used in uncertainty
assessment with KL distance criteria
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Figure 5.10: Estimation results from DMPE and IK using the same hard data and
spatial bivariate probability matrix
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Figure 5.11: The KL distance calculated from two different probability maps

teristic. More conditioning data could be used for IK approach to obtain a smooth

map. But the main aim is a comparison between those two methods, thus, the same

conditioning situation is used in the estimation.

Using the KL distance defined in Equation (5.1), the information gain from

both methods will be plotted as one map shown in Figure 5.11. Comparing the

mean value of the KL divergence from those two estimations, the mean of the KL

distance is increased from 0.48 to 0.52 from the IK to DMPE method. The standard

deviation decreases from 0.48 in IK to 0.17 in DMPE. Globally, the estimation

result from DMPE gives a more precise estimation result under same information

resource.
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5.3 Sequential Simulation

The probability map shown in Figure 5.10 shows the probabilities to find each facies

at the unsampled locations. Usually, the final facies models are plotted as a map

where a specific facies,not a probability , is assigned at every grid cell. Bierkens and

Burrough proposed to use the category with the largest probability of occurrence

which is defined as the map purity (Bierkens and Burrough, 1993; Lark and Beckett,

1998). This approach is inadequate if one aims at reproducing the joint outcomes

from the entire area.

From a mathematics view, a facies map for N locations together will represent

one realization from the data event space defined from these N locations and K cate-

gories together which is KN . The multivariate probability distribution P(u1, · · · ,uN)

will characterize the outcomes of all the drawings. Each drawing is called as a re-

alization which will have a specified probability to exist. Multiple realizations are

possible from a multivariate probability distribution that meet criteria derived from

measurement data such as given global proportion and bivariate marginal probabil-

ities.

Generally, an extensive exploration of the data event space should be performed

to characterize uncertainty. As the data event space is so huge ,well-designed ran-

dom explorations scheme should be adopted to do the exploration. The sequen-

tial simulation is the one used mostly in geostatistical simulation to do this explo-

ration (Gomez-Hernandez and Journel, 1993; Lantuejoul, 2001; Soares, 2001).

5.3.1 Sequential simulation

Exploring the uncertainty described by the multivariate probability distribution in-

volves drawing realizations. The basic idea is that a large number of synthetic geo-

logical structures are generated based on a stochastic description of the system. The

simulated realizations have the same values at the sample locations as the measure-

ments, that is, the hard data are reproduced exactly. Simulation algorithms yield

multiple equally likely outcomes from the algorithm.
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In this method, one uses the property that a general multivariate probability

defined in n locations can always be decomposed as the product of a marginal prob-

ability for one location and a series of conditional probabilities for other locations:

p(u1, · · · ,un) = p(un|un−1, · · · ,u1)p(un−1, · · · ,u1) (5.4)

= p(un|un−1, · · · ,u1)p(un−1|un−2, · · · ,u1)p(un−2, · · · ,u1)

= · · · · · · · · ·
= p(un|un−1, · · · ,u1)p(un−1|un−2, · · · ,u1) · · · p(u3|u2,u1)p(u2|u1)p(u1)

In each step, Monte-Carlo simulation is used to draw a facies type from each

conditional probability distribution. Monte-Carlo method is a powerful tool in sim-

ulating spatial phenomena, while few assumptions are required (Mosegaard and

Tarantola, 1995). As shown in Figure 5.12, it goes as:

• Building a quantile function Q(t) from the estimated conditional probability

for example using the conditional probability P(u0|u1, . . . ,un). The probabil-

ity P(u0|u1, . . . ,un) may need be ordered according to k = 1, · · · ,K;

• Draw a random number t which follows a uniform distribution;

• Read quantile function Q(t) to find which k that is specified by the random

number;

• Assign the outcome k to the current location as a realization from the proba-

bility distribution P(u0|u1, . . . ,un);

In geostatistics, the principle illustrated in Equation (5.4) is used in the classical

sequential simulation for simulating a set of random variable jointly conditioned on

sampled locations. The implementation of sequential simulation consists of repro-

ducing the desired spatial properties through the sequence of conditional distribu-

tions. Each drawing from such a multivariate probability distribution P(u0, · · · ,un)

represents a simulated realization of the reservoir.

The simulated facies using the Monte-Carlo drawing from the estimated condi-

tional probability are plotted where a facies type is present at every grid cell. As an
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Figure 5.12: Monte-Carlo simulation with discrete probability distribution

example in Figure 5.13, four realizations are coming from the same conditioning

data and under the same bivariate probability constraints. Although they share the

same spatial structures, there are some differences at small scale.

5.3.2 Markov model in sequential simulation

The sequential simulation principle is theoretically valid with no approximation

or assumption. But in practice, as the number of conditioning data increase, the

dimension of the multivariate probability space will be difficult to manage. In im-

plementation, the Markov assumption is adopted to solve the size problem.

Markov models based on various data screening hypotheses are often used be-

cause they reduce the statistical inference burden. For example, an extensively sam-

pled secondary data are integrated into the geostatistical model in the practice of

cokriging with the introduction of the Markov coregionalization model (Shmaryan

and Journel, 1999; Journel, 1999). Based on the Markov model, it is assumed that

the current location will be dependent on the nearby locations in a certain area

which will screen all data that are further away.

With this Markov-type assumption, only some locations n from all the surround-
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Figure 5.14: Illustration of a Markov random function field model

ing locations will bring information to the current unsampled location. As shown

in Figure 5.14, the posterior probability will be a function of the bivariate statistics

between these locations (u1, . . . ,un), written as:

P(u0|u1, . . . ,un) = f (P(ui,u j), i, j = 0,1, · · · ,n) (5.5)

Normally around 40 conditioning data are used in traditional IK approach. For

DMPE, around 10 conditioning data are used for most of cases. If permitted, more

conditioning data should be used in DMPE approach as there are no theoretical

constraints.

5.3.3 Stochastic reservoir models assessment

Simulation aims at drawing realizations that reflect the statistics models from the

data. Thus, the first assessment to different realizations is how well the input statis-

tics are reproduced. As one example in Figure 5.15, the input bivariate probability

diagram is compared with the output from several realizations.

Given that limited conditioning data can be used in the DMPE program, it is

impossible to reproduce the input bivariate probability exactly. As shown in Fig-

ure 5.15, the bivariate probability diagrams are reasonably reproduced by all re-
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alizations. The calculated bivariate probability from the simulation output reflects

the stacking pattern along certain directions and fluctuates around the input bivari-

ate probability constraints. Theoretically, these fluctuations are the character of the

multivariate probability for those grid together.

5.4 DMPE Facies Stochastic Modelling

5.4.1 Work flow of the DMPE

The cell-based spatial stochastic simulation will proceed along a random path through

the grid cells in the model. At each grid cell, the DMPE is used to estimate the con-

ditional probability, then Monte-Carlo simulation is used to assign a facies codes

to the current location which will be used as conditioning data for the cells visited

later in the path.

The procedure will include the following major works:

1. Defining the facies: The facies constituting the reservoir have to be defined

from the available data: core samples, well logs and seismic data. They have

to be consistent with the available geological information. In general, the ge-

ologists define more facies than can reasonably be simulated. Considering the

probability space constraints, the facies types could be grouped into no more

than four categories in order to use the DMPE within a reasonable computing

time.

2. Geological analysis and bivariate probability modelling: A heterogene-

ity prototype will be obtained from the geological works such as sequence

stratigraphic and sedimentological analysis. The dip, strike direction and

the anisotropy ratios along these directions will be defined in this prototype.

Based on the well sampled direction, usually will be the vertical direction,

the bivariate probability diagram will be calculated.

3. Define the simulation grid: Generally, a regular orthogonal simulation grid
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is adopted. In this research, as the bivariate statistics constrained by the se-

quence stratigraphic surface, it is expected that the grid of x-y plane is aligned

to the interpreted equal time surface. The reference level for the simulation is

a specific geological layer that is used to restore the geometry of the reservoir

at the time of deposition.

4. Perform simulation at each unsampled location: The spatial relationships

are characterized by the effective distance calculated from the dip and strike

separation distance constrained from the geological conceptual model.

(a) Look for the n closest conditioning data (original well data or previously

simulated cell values) to the current unsampled location u0;

(b) Based on the distance between every pair of locations, retrieve the bi-

variate probabilities from the experimental bivariate probability along

the vertical direction;

(c) Use the DMPE algorithm to estimate the multivariate probability;

(d) Use the conditional probability definition to build the local cumulative

conditional probability at u0;

(e) Draw a simulated facies value using Monte-Carlo sampling, and assign

that value to the grid cell u0;

(f) Go to the next unsampled location until all the unsampled locations are

visited.

The main steps of using DMPE in facies modelling are shown in Figure 5.16.

There are some differences compared with other traditional approach such as IK.

First, the bivariate probability diagram is used as the spatial variability characteri-

zation tool. Inferring the bivariate probability diagram will require highly sampled

data in the vertical direction. Also, in the spatial distance scaling process, the se-

quence stratigraphy and the geological understanding is integrated into the model.
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Figure 5.16: Main workflow of estimation/simulation with DMPE

The proposed DMPE follows a maximum entropy solution of the constraints from

the surrounding hard data.

5.4.2 Program implementation

The proposed stochastic facies modelling methodology is implemented in a pro-

gram named as DMPEsim following the Gslib codes style. The parameter file for

the program is given in Appendix. Here are several programming implementation

notes.

Conditioning data

First is the number of conditioning data to be retained. As already discussed, no

more than 11 data is suggested for most cases because of the huge dimension of the

full multivariate probability distribution. If the number of facies is more than three,

the maximum number of conditioning data should be less than 11 which is already

hard coded in the program. The CPU time listed in Table 5.2 shows how long it

takes the program to run on some different size models.

The computer used here has a Xeon 3.19 GHz CPU and 3.00 GB of RAM. As

shown, the feasible situations, which are the gray cells in Table 5.2, will provide a
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Table 5.2: CPU time for different model size and number of conditioning
data (three categories for all cases)

Cell numbers in the model
50*50 100*100 200*200 300*300

Conditioning
data number

4 18.557(s) 73.335(s) 292.039(s) 444.229(s)
5 95.227(s) 387.967(s) 1522.292(s) 2288.040(s)
6 486.33(s) 1981.53(s) 8141.99(s) 11585.99(s)
7 2568.16(s) 10180.37(s) 38204.42(s) 56106.86(s)
8 23224.71(s) > 10(h) > 15(h) > 15(h)
9 > 10(h) > 15(h) > 15(h) > 15(h)
10 > 15(h) > 20(h) > 25(h) > 35(h)
11 > 20(h) > 25(h) > 25(h) > 35(h)
12 > 25(h) > 25(h) · · · · · ·
13 · · · · · · · · · · · ·

plausible combination for spatial estimation/simulation.

Conditioning data searching

As only a limited number of conditioning data can be used in the simulation, the

selection of them will make difference. In the traditional sequential simulation, a

local neighbourhood is defined by specifying a search ellipsoid that corresponds to

the principle ranges and directions of continuity based on the variogram. Data be-

yond these ranges will have a limited effect in calculating the posterior conditional

probability. Usually, the spiral searching technique is used to search the data on a

regular grid until the maximum number of data have been located or the search ra-

dius is reached (Deutsch and Journel, 1998). The same searching strategy is defined

in the implementation of the proposed DMPE algorithm. If the data shows some

degree of anisotropy, the search area will be elliptical to account for the different

ranges of continuity along different directions.

As the maximum number is 11, the basic requirement is that these 11 data

should represents the information from all surrounding directions. Thus, the oc-

tant searching is adopted as shown in Figure 5.17. The search will mainly pick the

needed conditioning data evenly from the eight octant in 2D and 3D.
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Figure 5.17: Octant searching in DMPE program implementation

Random path and multiple grid

In classical sequential simulation, a random path is followed in the program in

order to avoid possible artifacts. In this research, a pseudo-random path is built that

considers the original data configuration. During the simulation, all the unsampled

locations are ordered according to the number of nearby conditioning data. The one

mostly informed will be picked for simulation in each step. For those locations with

the same number of conditioning data, one will be picked randomly.

Also, as the simulation proceeds, more and more conditioning data will be ob-

tained within a very close distance. Only using the nearby conditioning data may

not reproduce the heterogeneity structure at longer distances. To correct this prob-

lem, the multiple grid approach is implemented in order to reproduce longer spatial

structures (Tran, 1994). That is, to simulate the N locations in two or more steps. To

start, a coarse grid is simulated to help capture the large-scale features in the model

by working with conditioning data over long distances. This grid is then reduced

in several steps until the final model grid size is reached. In each simulation grid, a

pseudo-random path is used.
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Iteration time in DMPE

As the iterative approach is used in the multivariate probability distribution estima-

tion for each unsampled location, the iterative number is also a key parameter to the

CPU time. As shown in Chapter 4, the estimated multivariate probability distribu-

tion is very close to the true distribution after 30 iterations. In practice, usually 20

to 25 iterations will permit convergence to the final solution and is enough for most

situations.

5.5 Remarks

The proposed DMPE will provide a more accurate and precise posterior probability

result than the IK approach under the same conditioning situation. But IK approach

can use more conditioning data. Each of them has it own advantages.

In the multivariate probability estimation process, the estimated probability dis-

tribution should obey the minimum KL distance based on all the information. When

it comes to the assessment to the final conditional probability distribution, which is

calculated from the multivariate probability, it should have larger KL distance from

its prior probability distribution. That is the main idea for the assessment of the

posterior probability distribution using the KL distance.

Stochastic simulation will draw realizations from the multivariate probability

distribution to characterize its randomness. The fluctuations of the bivariate proba-

bility constraints reproduction from the output realization and the differences of the

spatial heterogeneity structure between different realizations actually are expected

as an expression of our uncertainty in the geology reality.

Although there are some practical computational constraints, it is practical when

the grid size of the simulation domain is small and there are relatively few facies

types.
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Chapter 6

Case study

A case study is presented in this Chapter. Detecting the dip and strike directions

from real data is illustrated. It is shown that the geological backgound of the data

set will provide a conceptual heterogeneity model for the spatial anisotropy based

distance calculation. In estimation and simulation, the new proposed anisotropy

based spatial distance calculation and the direct multivariate probability estimation

is implemented.

6.1 Data Set

The data set in this case study is from the Production forecasting with Uncertainty

Quantification project (punq2). The well data have values of permeability, porosity

and shale proportion. A total of 23 wells are available, see Figure 6.1.

The wells represent the Brent group from the North Sea basin. The upper part

of the well data represents the Tarbert formation which is a prograding near shore

sedimentary environment. The bottom part represents the upper Ness formation

which has fluvial sediments. A short review of the Brent group is given below.

The Brent group comprises five lithostratigraphic units: the Broom, Rannoch,

Etive, Ness and Tarbert formations (Richards, 1992). It is generally interpreted to

record the progradation and subsequent transgression of a wavedominated delta (Brown,

1991; Helland-Hansen et al., 1992). The Rannoch and Etive formations record

progradation of the wave-dominated delta front and coeval coastal barrier, while
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Figure 6.1: All available wells location map and the well logs from the well P9
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Figure 6.2: Schematic sequence stacking pattern of the Brent group in the North
Sea basin (Richards, 1992)

the Ness formation comprises delta plain deposits. The Tarbert formation com-

prises transgressive shallow marine sandstones, see Figure 6.2.

The Brent group has formed a major exploration target in the North Sea since

the discovery of the giant Brent and Ninian fields in the early seventies. As such,

its stratigraphy and sedimentology have been the focus of continuous interest and

analysis by a large number of geoscientists (Livera and Caline, 1990; Morris et al.,

2003; Bullimore and Helland-Hansen, 2009).

6.2 Prototype Definition

In the proposed spatial anisotropy based distance calculation, building the geologi-

cal prototype is a crucial step to ensure that the final facies model is reasonable and

geologically realistic. It is built through geological exploration works based on the

available data. In this case study, it will include the conceptual sedimentary model

analysis, the facies definition and the modelling prototype coordinate definition.

6.2.1 Conceptual geological model

Based on the available data set, the Tarbert formation in the upper part of the Brent

group will be modelled in this case study. The Tarbert formation is recognized by
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the first appearance of shoreline sediments (delta front or shoreface foreshore) in the

upper part of the Brent group, above the continental deposits of the Ness formation.

Generally, the Tarbert formation has an average thickness of 30 to 50 meters

and comprises several upward-shallowing, weakly wave-influenced shoreface sand-

stone successions that are stacked vertically and contain evidence for tidal current

activity. The base of the formation therefore represents a sequence boundary that

has been transgressively reworked with little preservation of intervening lowstand

deposits. Moreover, the formation underlies, sometimes unconformably, the marine

shales which belongs to the Heather formation (Bullimore and Helland-Hansen,

2009).

Thus, the final geological model for the Tarbert formation is illustrated in Fig-

ure 6.3. In this conceptual model, each sand body of Tarbert formation would have

an upcoarsing trend in the transgressive process. The bottom could be the sand from

the Ness formation or the marine shale.

6.2.2 Facies definition

Before facies modelling, the facies types should be defined based on the geological

background, well log data and other available data sources. If the DMPE method

is used, the cell number in the model and the available CPU time should also be

taking into consideration. Usually, three facies type is enough (Deutsch, 2002).

In this data set, there are three properties for each well: porosity, permeability

and volume of shale. From the cross-plot between the volume of shale with the

porosity and permeability shown in Figure 6.4, it can be seen they have a very high

correlation coefficient. This is expected in such clastic reservoirs where the sand

with a small percent of shale will have a higher porosity and permeability.

The volume of shale characterizes the sediments. It could be modelled directly

as a continuous variable. While in this research, the facies will be constructed from

the volume of shale first and used to build the facies model. The final permeability

and porosity model will be constrained by the facies model.
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Figure 6.3: Conceptual geological model of Tarbert formation (Modified from
Richards, 1992)
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Generally, for a shoreface sedimentary environment, it is divided into upper

shoreface, lower shoreface (MacDonald and Aasen, 1995; Reading, 1996). Upper

Shoreface refers to the portion of the seafloor that is shallow enough to be agitated

by everyday wave action (wave base). The continuous agitation of the sea floor

in the upper shoreface environment filters the smallest grains leaving those grains

heavy enough that the water cannot keep them suspended.

Lower Shoreface refers to the portion of the seafloor or sedimentary deposi-

tional environment that lies below everyday wave base. In this portion of the coastal

environment, only the larger waves produced during storms have the power to ag-

itate the sea bottom. Between storms, finer grained sediments accumulate on the

seafloor.

Well logs such as spontaneous potential or gamma ray are usually used to de-

fine the facies. If core is available, it is important to understand the relationships

between core, log facies and the nature of the depositional environments. Based

on the above shoreface sedimentary characteristics, three facies types are defined

from shale volume log using two arbitrary thresholds. As the Tarbert formation is

a part of vertically stacked shoreface sandstone, the litho-facies type one which has

a small proportion of shale (15%) can be interpreted as upper shoreface. While the

one with volume of shale more than 45%, will be classified as shale. The value of

between these two threshold will be lower shoreface as shown in Figure 6.6. Those

two thresholds are used just for this study and are chosen based on the limited log

data. One example of the facies vertical profile from shale volume log is shown in

Figure 6.6.

6.2.3 Model grid definition

In the proposed spatial distance calculation approach, the dip and strike direction in

the simulation domain will have a large impact on the final facies distribution. Thus,

detecting and defining the dip and strike direction from the data set for subsequent

geological facies simulation is an important step. The best way to do this is to
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construct well correlations across the study area. In this research, a total of 6 well

correlation sections are built from the well log data as shown in Figure 6.7.

As can be seen from two well correlation lines along the North-to-South direc-

tion in Figure 6.8, and from bottom to top, the facies stacking is in a pattern of

Shale → Lower shoreface → Uppor shoreface. Although the proportion of each

facies changes, the upwarding stacking pattern doesn’t change. Based on the shore-

line sedimentary model and the conceptual geological model in Figure 6.3, the di-

rection along North-to-South will be the direction from proximal to distal axis in

heterogeneity prototype.
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Four vertical well correlation sections perpendicular to the dip direction are

shown in Figure 6.9. Although, the well stacking pattern along East-to-West di-

rection will not change much along each line, their stacking patterns are different.

Thus, the strike direction will be from East-to-West direction for this data set.
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Figure 6.10: The heterogeneity prototype definition for the case study

Based on these well correlations and the geological background of the Tarbert

formation shown in Figure 6.3, the dip and the strike directions of the prototype of

the model will be from North-to-South and East-to-West respectively, as shown in

Figure 6.10.

Another aspect of the conceptual model is the anisotropy ratio between the ver-

tical and dip direction. For the Brent formation, the vertical-to-horizontal ratio will

be close to 1:600 along dip direction and 1:5000 along the strike direction based

on some studies on the North Sea basin (Brown, 1991). For the final geologi-

cal model, the model dimensions are 1200× 2200× 35 meter. The fine scale cell

size is 20× 10× 1 meters. Thus, the number of cells in each direction will be:

60×220×35. The total number of cells for this model would be 462,000.

6.3 Facies Modelling

It has become a standard approach to split reservoir modelling into two steps:

First generate the geometry of the facies and second, populate each facies with

petrophysical properties such as porosity and permeability (Damsleth et al., 1992;

Deutsch, 2002).
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Figure 6.11: Vertical bivariate probability diagram in the case study

6.3.1 Vertical bivariate probability diagram inference

For the proposed DMPE approach, the spatial heterogeneity variability is charac-

terized by the bivariate probability diagram. Using the well log data from these

23 wells, the vertical bivariate probability diagram is calculated as shown in Fig-

ure 6.11.

These bivariate probability diagrams in Figure 6.11 reveal some geological in-

formation. For example, the mean lengths can be read from the direct bivariate

probability for each facies. Upper shoreface facies have a mean length of 20 me-

ters which is the longest length along vertical direction. While for shale, the mean
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length is around 16. The lower shoreface has the shortest length of 8 meters.

By looking at the cross bivariate probability diagram, it also can be found that

the upper shoreface to shale transitions are less frequent than the transition from

upper shoreface to lower shoreface. This facies transition pattern is also supported

from the well correlation sections as shown in Figure 6.8.

6.3.2 Spatial probability mapping

Although the results from the spatial probability mapping (estimation) will not be

used in the final reservoir modelling, it is usful to check the computing environment

for later stochastic simulation.

In this model, all 23 wells will be used as hard data for estimation. For each

unsampled location, 8 conditioning data will be used as conditioning data.

The Figure 6.12 shows one slice along the dip and vertical direction of the esti-

mation result. While along the strike and dip lateral direction, the estimation results

are shown in Figure 6.13. Instead of using the traditional geometric distance cal-

culation approach, the spatial distance is calculated from the proposed anisotropy

distance calculation approach introduced in Chapter 3. The random switching func-

tion along the strike direction is assumed follow a sine wave function that is clearly

reproduced in the estimation results as shown in Figure 6.13.

Of course, any other kind of strike switching function can be used. For example,

a simple changing to its amplitude and angular frequency of the sine function along

the strike direction will produce different estimation probability maps as shown in

Figure 6.14.

6.3.3 Stochastic simulation

The sequential simulation algorithm is used to address the joint uncertainty of facies

outcomes in the study area.

As shown in Figure 6.15, there are some small scale noise in the simulation

results. Part of the reason is the small number of conditioning data. Only 8 con-
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Figure 6.12: One slice along the vertical and dip direction of the estimation model
for three facies using DMPE

ditioning data are used. In this case, the actual conditioning data used may change

greatly for two very close locations.

As can be seen from some 2D slices along the XY direction in the model, shown

in Figure 6.16, the facies distribution shows a kind of wave along the strike direction

which is integrated into the model through the spatial distance calculation.

6.4 Remarks

The strike and dip directions can be discerned from real data sets. The stacking

pattern for the vertical direction is dependent on the geological analysis to the study

area. A detailed well correlation and the relative sequence stratigraphy research

will aid a correct direction detecting for the facies modelling work.

The geological understanding will be integrated into the model through the pro-

posed spatial distance calculation approach. Different geological understanding can
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Figure 6.14: One slice of the estimation model with different random setting along
strike direction
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Figure 6.15: One 3D simulation output using the DMPE

be imposed into the final model through modifying the random function along the

strike direction.
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Chapter 7

Final Remarks and Future Work

Valid reproduction of subsurface heterogeneity features is a fundamental require-

ment for quantitative geological models used in reservoir management. To meet

this requirement, this dissertation proposes a stochastic facies modelling method-

ology that involves: a new geological characterization tool, a geological based

spatial distance calculation approach, and a more theoretically correct conditional

probability calculation.

7.1 Contributions

There are several contributions of this thesis. One is the heterogeneity spatial vari-

ability characterization. The bivariate probability diagram proposed in this research

characterizes the facies spatial variations. Using the bivariate probability diagram

instead of the variogram will make it possible to integrate more geological con-

straints such as the facies stacking pattern into the model.

Practically, there is a need to estimate the bivariate probability along any spatial

directions to reflect the spatial anisotropy. Interpreting the lateral heterogeneity

is always a challenge in geostatistics. In this thesis, a heterogeneity prototype is

used to instruct the transformation of an effective spatial distance in the vertical

direction. It provides a new approach to infer the lateral spatial statistics from

available data. In this prototype, the vertical, strike and dip direction, are defined to

reflect the different character of variation. The vertical direction will be the main
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facies stacking direction and usually reflects the sediments deposit history. Along

the strike direction, the sediments will show a kind of source shifting which is

normal in clastic sediments environments. The dip direction will be the direction

from sediment source to the deposition locations. Recognizing these three axes is

possible in most sedimentary deposits as shown in the case study chapter of this

thesis.

When the spatial variation information is characterized by the bivariate prob-

ability, the maximum entropy principle is used to combine all of them together

to construct a multivariate probability distribution. In this approach, the bivariate

probability between each data pair is considered as a marginal probability of the tar-

get multivariate probability which will characterize the facies outcomes probability

at these locations taken all together.

After the multivariate probability is constructed, conditional probability can be

calculated directly from its definition. This approach is theoretically correct without

any other assumptions.

These form the bases of the proposed spatial probability interpolation method-

ology named Direct Multivariate Probability Estimation(DMPE). The whole proce-

dure of sequential simulation using the DMPE will include the following steps:

1. Defining the facies. The facies constituting the reservoir have to be defined

from the available data: core samples, well logs and seismic data. They have

to honour the geological information. Considering the multivariate data event

space constraints, there should be no more than four categories in order to use

the DMPE within reasonable computing time.

2. Geological analysis and bivariate probability modelling. From the vertical

log analysis, obtain a pattern for the sedimentary units that may be defined

by a sequence stratigraphic surface. Geological analysis of the data set will

correctly define the dip and strike direction of the heterogeneity prototype.

The anisotropy ratios for the prototype will also aid in geologically realistic
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modelling. The axes directions and anisotropy ratios will reflect the geologic

understanding about the study area.

3. Define the simulation grid. Generally, a regular orthogonal simulation grid is

adopted in most geological algorithm design. In this research, as the bivari-

ate statistics constrained by the sequence stratigraphic surface, it is expected

that the grid of x-y plane is aligned to the interpreted equal time surface. The

reference level for the simulation is a specific geological layer which is used

to restore the geometry of the reservoir at the time of deposition. The level

have been deposited horizontally during sedimentation and should, if possi-

ble, correspond to a time line.

4. Implement traditional sequential simulation for each unsampled location. For

each unsampled location, the spatial distance is expressed as an effective dis-

tance calculated from the dip and strike separation distance constrained from

the heterogeneity prototype. The bivariate probability of each data pair is

obtained from the bivariate probability calculated from the vertical direction.

The conditional probability is calculated using the DMPE. After each cell is

simulated, it will be used as a hard data for later cells simulation.

Finding the solution of the maximum entropy equation using the traditional

Lagrange multiplier approach is a challenge to this multivariate probability estima-

tion. Instead, an iterative scaling approach is used. It is based on the minimum

Kullback-Leibler distance principle which is a more general maximum entropy ap-

proach. Although there are already some research, the contribution of this thesis

is proposing an innovative sparse matrix construction approach for doing the lower

order marginalization from the multivariate probability. Thus, in the iterative pro-

cess, the marginalization proceeds quickly. The numerical implementation of the

iterative scalling approach proposed in this thesis makes the iterative scaling tech-

nique more practical for geostatistical application. The above proposed DMPE fa-

cies modelling approach can be used in the situation that the geological patterns are
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clear, such as the cyclicity along certain direction.

7.2 Future Work

The bivariate probability diagrams obtained at different lag distance are used di-

rectly in this research. The distance between them are interpolated with polynomi-

als. One future research topic could be fitting it with a theoretical function.

The spatial distance calculation approach proposed in this research does not

ensure that the covariance matrix is positive definite. Correcting the covariance

matrix and ensuring the final solution is valid would be another area of future work.

This kind of Non-Euclidean distance calculation approach could be used in some

more general situation to reflect the geological constraints.

For the heterogeneity prototype proposed in this dissertation, the random func-

tion along strike direction is assumed to follow a sine wave function. Another

research topic would be to use more geologically straight forward strike random

function into the heterogeneity strike axis, such as adding some trend along strike

direction.

The bivariate probabilities are used as constraints to the multivariate probability

construction. Another subject for future work would be to consider higher order

marginal probability constraints, such as the trivariate marginal probabilities in the

multivariate probability construction. Also, there exist an opportunity to integrate a

more informative prior probability for the starting point of iterative scaling.

The proposed stochastic simulation methodology is possible to be used with

other spatial categorical variables such as the sequence stratigraphic bodies. Con-

sidering the sedimentary facies tract as a categorical variable, the stacking pattern

can be characterized by the bivariate probability diagram. The multiple simulation

results would capture the uncertainty of sequence stratigraphy.

Another area for future work would be computational improvement of DMPE.

At present the conditioning data in the multivariate probability estimation is lim-

ited by CPU capacity. The main reason is the huge dimension of the multivariate
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data event space. Saving the probability of each data event and retrieving them for

marginalization brings high computation burdens. One possible future work is find-

ing a more efficient approach that would allow more conditioning locations to be

used in the multivariate probability estimation.
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Appendix A

Bivariate Probability Diagram

A.1 Bivariate Probability Matrix Calculation

A Gslib style program TPcalc is developed to calculate the bivariate probability

matrix and the related Markov transition probability matrix. The parameter file

is shown in Figure A.1. The program will calculate the bivariate probability or

Markov transition probability from a log profile or a chosen direction of a training

image.

In line 1 and 2 are the category number and category types that exist in the domain.

In line 3 is an indicator to define the bivariate probability or Markov transition prob-

ability calculation form well data or from training image.

In line 4 and 5 will be the file name and the specific column number (well ID, depth

and category) needed in the program if the calculation is from well data.

If the calculation is from a training image, in line 6 , 7 and 8 will be the training

dimension definition and its file name.

Line 9 will be the scan direction. It could be along x or along y or both of them.

The test shows that scan from X and Y directions would improve the reproduction

of training image pattern.

Line 10 is length and number of the count interval for well data and training image.

The left lines are different output files from the program. Line 11 is the output of

the bivariate probability p(uα,uβ) and transition probability p(uα|uβ) for DMPE
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parameter file for TPcalc
**************************

Line number START OF PARAMETERS:
1 3 -number of catgory
2 1 2 3 -category types
3 0 -0: from well data;1: from training image
4 wells.out -input markov chain data file
5 1 2 3 -well ID,depth, category codes column
6 50 50 1 -the dimension of training image you would scan
7 0.5 0.5 -the origin coordinated of training image
8 true_cat.dat -input training image you want to scan
9 0 -which direction do you want to scan? 0:x; 1:y.
10 0.1 40 -transition count interval and interval number
11 mde3.out -output bivariate for DMPE
12 biv3.out -output bivariate probability for diagram plotting
13 tp3.out -output transition probability for diagram plotting
14 dbg3.out -debug file

Figure A.1: The parameter file used in bivariate diagram calculation program

program.

Line 12 is the out put of bivariate probability p(uα,uβ) for plotting in program TP-

diagram.

Line 13 is the Markov transition probability p(uα|uβ) output for plotting. The out-

put for estimation/simulation from line 12 is in different format as those used for

plotting from line 13.

Line 14 is the debug information output file name.

A.2 Bivariate Probability Diagram Plotting

Using the DMPE in estimation and simulation, the experimental bivariate probabil-

ity or transition probability matrix would be used directly in the programs without

modelling. So the plotting and doing some visual checking is one important step.

The plotting for visual checking or geological pattern recognition can be done us-

ing the program TPdiagram. The plotting file is modified from the codes Vargplt.

The parameter file is shown as in Figure A.2.

The output of the Bivariate Probability and Transition Probability from program

TPcalc is ordered as the head category first then the tail category. For example it
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there are three categories 1,2,3. The bivariate probability/Markov transition proba-

bility would output in an order of 1→ 1,1→ 2,1→ 3,2→ 1,2→ 2, . . . ,3→ 2,3→
3. An output file of bivariate probabilities for plotting is shown in Figure A.3.

Parameters for TPdiagram
**************************

Line # START OF PARAMETERS:
1 bivariate.ps -file for PostScript output
2 1 -number of variograms to plot
3 0.0 -20.0 -distance limits (from data if max<min)
4 0.0 -1.2 -bivariate limits (from data if max<min)
5 0 1.0 -plot sill (0=no,1=yes), sill value)
6 bivariate probability -Title for bivariate probability
7 biv3.out -1 file with variogram data
8 1 1 1 1 1 -TP #, dash #, pts?, line?, color
9 biv3.out -2 file with variogram data
10 3 3 0 1 10 -TP #, dash #, pts?, line?, color

Figure A.2: The bivariate probability/transition probability diagram plotting pro-
gram
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Bivariate Probability for category 1 1
1 1.000 0.1236734693877551
........................

40 40.00 0.0747826086956522
Bivariate Probability for category 1 2

1 1.000 0.0681632653061224
........................

40 40.0 0.0943478260869565
Bivariate Probability for category 1 3

1 1.000 0.0028571428571429
........................

4 40.00 0.0221276595744681
Bivariate Probability for category 2 1

1 1.000 0.0612244897959184
........................

40 40.0 0.0943478260869565
Bivariate Probability for category 2 2

1 1.000 0.2151020408163265
........................

40 40.0 0.0943478260869565
Bivariate Probability for category 2 3

1 1.000 0.0906122448979592
........................

40 40.0 0.0943478260869565
Bivariate Probability for category 3 1

1 1.000 0.0053061224489796
........................

40 40.0 0.0943478260869565
Bivariate Probability for category 3 2

1 1.000 0.0816326530612245
........................

40 40.0 0.0943478260869565
Bivariate Probability for category 3 3

1 1.000 0.3514285714285714
........................

40 40.0 0.0943478260869565

Figure A.3: Example of the bivariate probability output file for plotting
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Appendix B

DMPE Programs

B.1 DMPE Estimation Program

After the bivariate probability/Markov transition probability is calculated, the out-

put file from TPcalc is ready for spatial estimation and simulation. DMPE is im-

plemented in two programs: DMPEest and DMPEsim.

The program DMPEest is used to do estimation or cross validation with the input

hard data. The parameter file of DMPEest is shown in Figure B.1. Here are some

explanations of the parameter files.

Line 1 is the estimation option. 0 is for doing estimation on grid, 1 is doing cross

validation for hard data locations.

Line 2 , 3 and 4 are the number of category type, and its proportion. One note here

is that the order of category in line 3 should be the same as the order of category in

line 2 of parameter file for program TPcalc shown in Figure A.1.

Line 5 and 6 are the information of hard data file.

Line 7 is the debug level and the debug information will output to the file name

listed in line 8.

Line 9 is the estimation/cross validate results file name.

Line 10, 11 and 12 are the grid definition.

Line 13 is the conditioning data number for DMPE. This number should be small

than 8 because of huge multivariate probability space.
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Parameters for DMPEest
***********************

Line # START OF PARAMETERS:
1 1 -option: 0=grid, 1=cross
2 3 -number thresholds/categories
3 1 2 3 -categories
4 0.21 0.29 0.50 -global pdf
5 cluster.out -file with data
6 1 2 3 4 5 -columns for DH,X,Y,Z and variable
7 0 -debugging level: 0,1,2,3
8 dmpe_est.dbg -file for debugging output
9 dmpe_est.out -file for DMPE output
10 10 0.5 1.0 -nx,xmn,xsiz
11 10 0.5 1.0 -ny,ymn,ysiz
12 1 0.0 1.0 -nz,zmn,zsiz
13 6 -maximum conditioning data for DMPE
14 10.0 10.0 2.0 -maximum search radii
15 0.0 0.0 0.0 -angles for search ellipsoid
16 0 -max per octant (0=not used)
17 truexy_mde3.out -the bivariate marginal file name for DMPE
18 40 1 -the total lag in TP calculation & interval length
19 3.0 3.0 1 -the anisotropy transform ratio
20 20.0 -minimum iteration time for DMPE

Figure B.1: The DMPEest program parameter file

Line 14 and 15 are the searching radius and searching angle.

Line 16 would be used when octant searching is used.

Line 17 is the bivariate probability matrix file name.

Line 18 is the lag interval number and its length used in transition probability cal-

culation.

Line 19 is the anisotropy ratio used to transform the spatial distance to the distance

used in transition probability calculation.

Line 20 is the minimum iteration time used to do the multivariate probability esti-

mation.

B.2 DMPE Simulation Program

Classical sequential simulation approach is used. During the simulation, previously

simulated nodes are used as hard data for later unsampled location conditional prob-

ability calculation and Monte-Carlo simulation. Because of the huge multivariate

probability space requirement, the number of conditioning data should be no more

than 10. Also, in the parameter file the category list in Line 3 as in Figure B.2
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Parameters for DMPEsim
***********************

Line # START OF PARAMETERS:
1 3 -simulation number
2 3 -number of categories
3 1 2 3 -category types
4 0.20 0.3 0.5 -global proportions of each category
5 sample_true.dat -file with local data
6 1 2 3 4 -columns for X,Y,Z, and category
7 truexy_mde3.out -the bivariate marginal file name for DMPE
8 40 1 -total lag number in TP calculation & its length
9 30.0 30.0 1 -the anisotropy transform ratio
10 3.0 -minimum iteration time for DMPE
11 0 -debugging level: 0,1,2,3,4
12 DMPE_rs.dbg -file for debugging output
13 rs0813-est-1.out -file for estimation/simulation output
14 50 0.5 1.0 -nx,xmn,xsiz
15 50 0.5 1.0 -ny,ymn,ysiz
16 1.0 1 1 -nz,zmn,zsiz
17 31199 -random number seed
18 5 -maximum conditioning nodes for DMPE
19 0 -maximum data number per octant (0=not used)
20 100.0 100.0 1.0 -maximum search radius
21 0.0 0.0 0. -angles for search ellipsoid
22 21 21 1 -size of searching table

Figure B.2: The DMPE simulation program program parameter file

should be in the same order as that listed in parameter file for bivariate probability

calculation program. In this program DMPEsim, the hard data are assigned to grid

nodes center in simulation. The parameter file is shown in Figure B.2.

Line 1 is given the simulation realization number.

Line 2 and 3 are the category number and its value of the discrete random variable.

Line 4 are the global proportion of the categories in the domain.

Line 5 and 6 are the input of hard data file name and the column number.

Line 7 is the bivariate probability file name and line 8 is the lag xlag in building the

bivariate probability matrix.

Line 9 is the anisotropy ratio for three directions which is used to relate the 3D

spatial distance to the length of TP calculation interval.

Line 10 is the iterative time used in iterative scaling approach when doing the full

multivariate probability estimation. Usually, it will converge to a stable solution

after 30 times iterations.

Line 11 and 12 are the debug level and output file for the program.
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Line 13 is the simulation output file of the DMPE.

Line 14, 15, and 16 is the simulation grid definition.

Line 17 is the random number seed for random path build when doing simulation.

Line 18 is the maximum conditioning nodes. As the constraint of huge probability

data event space, it should be no more than 10 given the category is less than three.

Line 19 is the set for octant searching setting.

Line 20 is the minimum search radius.

Line 21 is the search angles for search ellipsoid.

Line 22 is the searching table built for searching.
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Appendix C

Core Subroutines in DMPE
Implementation

In the implementation of DMPE for spatial estimation and simulation, there are

some subroutines that could be useful for other purposes. Here is a short introduc-

tion to some of them.

C.1 Single Multivariate Probability Subroutine

The first one is a single program to do a discrete multivariate probability estimation

from specified bivariate probability constraints. In the DMPEest and DMPEsim, the

multivariate probability is explicitly estimated and used to calculate the conditional

probability. It could be used outside the program.

In the program DMPEsingle, a single discrete multivariate probability is esti-

mated from the input bivariate probabilities. The pair-wise bivariate probabilities

are input for all the variables. The output is the estimated multivariate probability.

This program can be used to test the iterative scaling method in the multivariate

probability estimation. The parameter of program DMPEsingle is shown in Figure

C.1.
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Parameter file for DMPEsingle
*************************

Line # START OF PARAMETERS:
1 3 -number of catgory
2 6 -category types
3 bivprob.out -input known mv at here
4 mvprob.out -univariate probability marginal file
5 dmpe.dbg -output the debuging information

Figure C.1: One single multivariate probability estimation program parameter file

Parameter file for MVmarg
*************************

Line # START OF PARAMETERS:
1 3 -number of catgory
2 6 -category types
3 mvprob.out -input known mv
4 marg.dbg -output the debuging information
5 bivprob.out -bivariate probability marginal file
6 uivprob.out -univariate probability marginal file

Figure C.2: The parameter file of marginal program

C.2 Multivariate Probability Marginalization Subrou-
tine

The second one is to multivariate probability marginalization. The univariate prob-

abilities and bivariate probabilitis of an input multivariate probabilities will be cal-

culated from the program MVmarg. The parameter file is shown in Figure C.2. The

category number and the variable number are input in line 1 and line 2. In line 3

is the known multivariate probability file name. The univariate and bivariate prob-

ability will be written into the specified file given in line 5 and 6.
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