
Application-layer versus Network-layer Multicast:

Networking Load, Link Stress, and Distribution Delay

by

Seyedmahyar Hosseinimotlagh

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Communications

Department of Electrical and Computer Engineering

University of Alberta

c© Seyedmahyar Hosseinimotlagh, 2017

Abstract

Multicast is the task of disseminating a message from a source to a set of desti-

nations. If supported by the network and switches, multicast can be performed at the

network layer. The alternative solution is application-layer multicast (ALM) which

disseminates the message through a set of unicast communications. ALM is simple

to implement and does not require switches to support multicast. This, however,

comes at some price including higher networking load, and slower message dissem-

ination compared to network-layer multicast (NLM). This work analyzes some of

these costs/penalties. We show that when ALM is done carefully, its networking

load can be bounded to three times that of any NLM, irrespective of the network

topology, the number of destination nodes, and the message size. In addition, it can

be ensured that ALM does not put significant stress/pressure on any physical link in

any network topology. We also analyze how slower ALM is compared to NLM. We

implement an ALM algorithm in Amazon EC2 and show that the distribution delay

increases slightly as the number of destination nodes increases. Deciding on what

layer to use for multicasting depends on the trade-offs one is willing to make. The

results presented in this work helps in making such a decision.

ii

“If everything seems under control, you’re not going fast enough.”

- - Mario Andretti

iii

Acknowledgements

First of all, I would like to express my sincere gratitude to my supervisor Dr.

Majid Khabbazian, whose advice always steered me to the right direction, I also

want to thank him for his continuous support in my research, his patience, motiva-

tion, and immense knowledge.

Second, I would like to thank the rest of my thesis committee: Dr. Masoud Arda-

kani and Dr. Petr Musilek, for dedicating their time and energy regarding my thesis,

their insightful comments and ideas.

Then, every single lovely person who shared their passion with me and encour-

aged me to peruse my dreams. I am also grateful to the individuals who support

me through my research. I would also like to thank my fellow labmates and friends

for accepting nothing less than excellence from me. I appreciate their invaluable

feedback and support, and all the fun that we have had in the last two years. I must

express my very profound gratitude to my parents and to my brothers and sisters for

their unfailing support in every aspect of my life.

Last, but not the least, I would like to thank all the people and the teachers who

helped me to be the one who I am today. In this regards, I quote Thomas Carruthers

“A teacher is one who makes himself progressively unnecessary.”

iv

Contents

1 Introduction 1

1.1 Multicasting . 1

1.2 Thesis Motivations and Contributions 2

1.3 System Model and Definitions . 4

1.3.1 Graph Model . 4

1.4 Metrics . 5

1.5 Brief Description of the Problem 6

1.6 Thesis Outline . 7

2 Background & Related Work 8

2.1 Asymptotic Notations . 8

2.1.1 Big-O Notation . 9

2.2 Preliminaries . 10

2.2.1 Network Layer Multicast 10

2.2.2 Application Layer Multicast 11

2.2.3 Cloud Network Structure 11

2.2.4 Multicast in Cloud Networks 14

2.3 Related Work . 15

3 Analytical Results 18

3.1 Networking Load . 18

3.1.1 Minimizing Networking Load 19

v

3.2 Link Stress . 20

3.2.1 Bounded Link Stress . 20

3.3 Distribution Delay . 24

3.3.1 Single Packet Multicast . 24

4 Implementation and Performance Evaluation 29

4.1 A simple ALM Algorithm . 30

4.2 A Simple Analysis of the ALM Algorithm 30

4.3 Implementation Challenges . 32

4.4 Test-bed Specification . 35

4.5 Performance Evaluation . 35

5 Conclusion & Future work 37

6 Appendix 44

6.1 Proof of Proposition 2 . 44

6.2 Proof of Proposition 3 . 46

6.3 Proof of Lemma 1 . 46

6.4 Proof of Lemma 2 . 47

vi

List of Figures

1.1 An example of overlay multicast tree on top of an underlay network. 5

2.1 As shown in this figure, f(x) = O(g(x)) since for all x ≥ x0 = 4,

g(x) will be greater than f(x) (figure from [1]). 9

2.2 An example of a coarse structure of 4-ary fat-tree. 12

2.3 A fine structure corresponding to the coarse structure shown in Fig-

ure 2.2. 12

3.1 Illustrating the recursive algorithm proposed in Section 3.2.1. 20

3.2 An example tree to illustrate how the queueing-aware algorithm works. 25

4.1 The implemented tuned version of BitTorrent 31

4.2 Message distribution among 100 Amazon EC2 VMs with message

size of 85 MiB. 36

6.1 A smart ALM can perform message distribution inO(h log n/ log log n)

in a full binary tree. 45

6.2 r0 is neither a pivot nor a terminating switch 48

6.3 r2 is a terminating switch . 49

vii

List of Abbreviations
List of commonly used abbreviations

ALM Application Layer Multicast

NLM Network Layer Multicast

VM Virtual Machine

AWS Amazon Web Services

ARP Address Resolution Protocol

NTP Network Time Protocol

CLI Command Line Interface

CSSH Cluster SSH

MiB Mebibyte

GiB Gibibyte

viii

List of Symbols
List of Symbols

G Underlay network graph

V Underlay network vertices representing switches and hosts

E Underlay physical link

T Multicast tree

s the single source node

D Set of destination nodes

R Set of switches that shape the multicast tree

L Set of links that shapes the multicast tree

m Multicast group size (including source s)

n Number of the destination nodes

O Asymptotic notations

K Complete overlay graph

VT Set of hosts (including the source) in the underlay network

EK Set of overlay path constructing minimum spanning tree over K

wu,v Weight of the edge connecting every host u, v

A ALM algorithm in which destination nodes receive every packet only once

g Length of the longest shortest path between any pair of destination nodes

k Size of a message in terms of its number of packets

h Height of a multicast tree

tproc processing time of a node

t Distribution delay/time

ix

Chapter 1

Introduction

Data distribution is frequently used in scientific experiments, enterprise operations,

parallel computing tasks, or machine learning tasks in parallel computing clusters

[2]. Today’s ever increasing generated or collected massive amount of data from

clusters of tens of thousands machines (like in Google, Facebook, and Yahoo and

etc.) highlights the need for computing cluster frameworks (such as MapReduce

[3], Spark [4], Dryad [5], and CIRL [6]) to analyse data [7]. As claimed in [7],

the time of data transfer in computing clusters can have a significant impact in job

performance (sometimes, data transfer accounts for more than 50% of the total job

completion time). Therefore, even a slight reduction in data distribution time can

have a great impact on job performance.

1.1 Multicasting

In computer networks, multicasting refers to one-to-many group communication

where information is distributed among a specific set of destination hosts. In other

words, multicasting is the task of distributing a message from a source to a set of

destinations. Multicast has many applications in computer networks. For exam-

ple, in data center networks, multicast is used in publish-subscribe services for data

dissemination [8], system monitoring [9], and web cache updates [10].

1

Multicast can be implemented either in the network layer or the application layer.

In Network Layer Multicast (NLM), switches cooperate in packet dissemination by

placing a copy of each packet on all the output ports towards the destinations. This

support from switches can lead to efficient use of network resources since each phys-

ical link on the way from source to the destinations is used only once per same

packet.

1.2 Thesis Motivations and Contributions

Implementation of IP Multicast, the IP-specific version of NLM, was designed with-

out considering the commercial services in mind [11]. As stated in [11], this is per-

haps one of the reasons for the slow growth of NLM in commercial environments.

In addition, IP Multicast suffers from management and security issues regarding its

deployment [12], severe scalability issues in terms of the number of supported multi-

cast groups, and lack of robustness against network failures [13]. Moreover, several

concerns prevent network layer multicasting to be widely used in today’s networks.

These concerns include group management, router migration, distributed multicast

address allocation, security, and support for network management [11]. In addition,

IP Multicast services are widely disabled in current Internet routers [14, 15, 16].

In cloud networks, in particular, enabling multicast services introduces a lot of

complexities. In cloud networks, low-end switches which are not expected to carry

much intelligence are used [17, 18]. Also, due to problems with technology, modern

data centers are rarely enabled with IP Multicast [19].

For the reasons mentioned above, industries and researches have sought alterna-

tive solutions in the application level [12]. Application layer multicast (ALM), also

referred to as overlay multicast, builds an overlay network on top of the existing

physical (underlay) network. Each overlay link between two hosts in the overlay

network is a virtual link abstracting a path in the physical network between the two

hosts, and corresponds to a unicast session. Using the overlay links, hosts collab-

2

orate by forwarding the message to each other in order to deliver the message to

everyone. Overlay networks have gain attention in multicasting [20, 21, 22, 23, 24],

content distribution [25], and content sharing [26].

ALM overcomes some of the main shortcomings of NLM. This, however, comes

at some performance penalties in distribution delay and use of networking resources.

For example, in NLM, a physical link is used only once per the same packet, while

in ALM a physical link can be part of multiple overlay links, hence used multiple

times to transfer copies of the same packet. In experimental studies, such as the one

carried out in [27], a physical link has been reported to being used 7 times in an

overlay network with 100 hosts.

One of the main objectives of this work is to analyze and quantify some of these

penalties, and study how they can be minimized. We analyze the networking load

(i.e., the total number of times that physical links are used) of ALM and NLM.

Another metric we study is link stress, which is defined for a physical link as the

number of identical packets passed through the link. This is equivalent to the number

of times the physical link is used in the overlay network.

A summary of our main contributions are:

1. We analyze the minimum networking load of ALM, and compare it with that

of NLM. Computing the minimum networking load of NLM is NP-hard [28].

Nevertheless, we show that ALM can achieve a networking load of at most

three times the minimum networking load of NLM, irrespective of network

topology, the number of destination nodes, and the message size.

2. We present an ALM algorithm that, in every network topology, imposes a

maximum link stress of at most three, while in the algorithm nodes forward

packets to each other concurrently for fast delivery.

3. We propose an ALM algorithm with asymptotically optimal distribution delay.

In analyzing the distribution delay, unlike many existing works, we consider

the queueing delay at switches. Using the proposed optimal algorithm, we

3

show that the penalty in distribution delay when ALM is used instead of NLM

is a factor of θ(log n) in general networks, where n denotes the number of

destination nodes.

4. We implement an ALM algorithm in Amazon EC2, and show how the dis-

tribution delay of the algorithm grows relatively slowly with the number of

destination nodes.

1.3 System Model and Definitions

An underlay network, as depicted in Figure 1.1, consists of a set of physical ma-

chines (also referred to as nodes, or hosts) and switches that are connected via phys-

ical links. In contrast, an overlay network consists of virtual/physical machines,

virtual switches in hypervisors or physical switches and, virtual links. As shown

in Figure 1.1, any overlay network is built on top of an underlay network. The

projection of an overlay link (virtual link) is a path in the underlay network. Com-

munications over an overlay link is enabled by a unicast connection between the two

virtual/physical machines located at the two ends of the overlay link.

1.3.1 Graph Model

We model an underlay network by a graph G = (V,E), where V refers to vertices

representing switches and nodes, and E is the set of edges. Each η ∈ V is either a

switch or a node (i.e., a host), and each e ∈ E represents a physical link connecting

two neighbor nodes/switches in the underlying network.

Links and switches traversed by a packet in NLM form a Steiner tree ofG, called

an underlay multicast tree, in which leaves are the destination nodes and the source

while other vertices are switches. We represent this multicast tree T = (s,D, L,R),

where s is the source, D ⊂ V is a set of destination nodes (receiver nodes), R ⊂ V ,

and L ⊂ E are respectively the set of all switches and all links in T .

4

Source

Host

Overlay link

Underlay link
Router

Receiver

Figure 1.1: An example of overlay multicast tree on top of an underlay network.

To compare ALM with NLM, we constrain ALM to use only the links in T .

This ensures that the comparison is fair since this restricts ALM to the same set of

networking resources used in NLM. Note that, when the underlay network is a tree,

any overlay link has a unique projection, a path in the underlay network of form

p = (ns, r0.r1, ..., rk, nd), where ns ∈ {s} ∪D, nd ∈ D, ri ∈ R, 0 ≤ i ≤ k, k ≤ 2h

and h is the height of T .

1.4 Metrics

Application layer multicast protocols can be evaluated by metrics such as networking

load, link stress, distribution delay, scalability and robustness. The focus of this

work is mainly on the first three metrics.

The term networking load (total bandwidth usage) for a multicast algorithm is

defined as the total number of times that underlay links are used by the algorithm

to deliver a message to all destinations. In other words, transmitting a single packet

5

over a single link equals to one unit of network load. The second metric, link stress,

as defined in [29], is the number of times that identical packets are passed through

the underlay link. This is equivalent to the number of times the underlay link appears

in all overlay links.

The third metric is distribution delay which consists of three components: com-

munication delay, processing delay, and queueing delay. Communication delay is

the time needed for a packet to pass through a physical link. Processing delay refers

to the duration from the time a host fully receives a packet, to the time right before

the first bit of the packet is placed on an output port of the host. Queueing delay is

the time that a packet should wait in a port’s queue of a switch before its turn to be

forwarded. This happens, for example, when more than one incoming packets in a

switch need to be simultaneously forwarded to the same output port of the switch.

In this work, we assume that switches are non-blocking, so queueing can only occur

at the output ports. In general, queuing can also occur at input ports of switch if the

switch fabric is not fast enough.

1.5 Brief Description of the Problem

The objective of multicast is to disseminate a message from a source node to a set

of n destination nodes in a network. The multicast group refers to the set of size

m = n + 1 consisting of the destination nodes as well as the source node. At the

source, the message is divided into packets; then packets are forwarded. In ALM, a

destination node can also forward a received packet. Our goal is to compare ALM

and NLM performances with regard to networking load, link stress and distribution

delay.

6

1.6 Thesis Outline

The remainder of this thesis is organized as follows. In Chapter 2, we briefly de-

scribe the asymptotic notations and some preliminaries. We also summarize related

work in network layer multicasting and application layer multicasting in the Inter-

net and data centers. Our proposed algorithms and their analysis are presented in

Chapter 3. We describe the implementation details of a basic ALM algorithm, and

discuss our evaluation results in Chapter 4. Finally, we conclude in Chapter 5

7

Chapter 2

Background & Related Work

2.1 Asymptotic Notations

Asymptotic notations are used to evaluate the behaviour of a mathematical function

as its input size increases. In other words, it shows how fast a mathematical function

grows with its input size. Running time (processing time) of every algorithm can be

mapped to a mathematical function which is called time complexity of an algorithm.

Similarly, the efficiency of using storage locations by an algorithm is called space

complexity of an algorithm. In this thesis, we focus on time complexity of algo-

rithms. The growth of the running time is studied in terms of the input size which

is also known as an algorithm’s growth rate. Formally, we describe the limiting be-

haviour of any given mathematical functions f(n) and g(n) with a natural number

variable n as follows:

f(n) ∼ g(n) (as n→∞)⇐⇒ lim
n→∞

f(n)

g(n)
= 1.

In general, an algorithm can be described with an asymptotic notation by its best

case, worst case, or equivalent case performance. In this thesis, we only discuss the

worst case performance of an algorithm.

8

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

x0

M

R
a
ti
o

f(x)

g(x)

Figure 2.1: As shown in this figure, f(x) = O(g(x)) since for all x ≥ x0 = 4, g(x)
will be greater than f(x) (figure from [1]).

2.1.1 Big-O Notation

Performance of algorithms is often defined by its worst case performance. The main

notation commonly used is O(.) which shows the upper bound on the asymptotic

growth rate of a function. Different functions with the same growth rate can be

bounded with a similar upper-bound function. In other words, algorithms with the

same growth rate may be represented with the same O(.) notation.

Formally speaking, for given functions f(n) and g(n):

f(x) = O(g(x))⇐⇒ ∃ c and x0 : ∀x≥x0|f(x)| ≤ c× |g(x)| (2.1)

where c is a positive real number, x0 is a real number. The Equation 2.1 is

depicted in the Figure 2.1.

9

2.2 Preliminaries

In this section, we briefly explain application layer multicast and network layer

multicast approaches.

2.2.1 Network Layer Multicast

In one-to-many and many-to-many communications, a sender needs to send same

message to multiple destinations. In network layer multicast, a sender sends a packet

to a group of destinations only once. In other words, the sender hands out the packet

to the network layer and the network layer delivers the packet to all specified des-

tinations by replicating the packet at each switch’s port to the destinations. This

approach uses the network resources efficiently because it sends the message only

once on each link on its path from the source to the destinations. However, this ap-

proach requires the network layer multicast protocol to act in a smart way to decide

whether or not it is needed to replicate the packet on each output port of every switch

on the path from the source to the destinations.

Although multicasting can be done efficiently at the network layer, several is-

sues have prevented NLM from being widely used on a global Internet level. One

of these issues is that IP Multicast-capable switches are needed to be installed in

from the backbone level to the edge level of the network. This not only increases

the deployment costs but also results in having lower speed in backbone switches

compared with simple and unintelligent switches. Deployment of IP Multicast is

also suffering from management and security issues [12]. In addition, IP Multicast

protocols have severe scalability issues in terms of number of supported multicast

groups and their lack of robustness against network failures [13]. The scalability of

multicast is highly affected by the forwarding table capacity of a single switch. The

lack of multicast support at network layer has led researchers and industrial entities

to exploit the application layer capabilities. The difficulty of deployment and its

costs along with scalability, management and security issues has led cloud providers

10

to sought alternative ways of multicasting at the application layer.

2.2.2 Application Layer Multicast

Application layer multicasting is an application service implemented at the end sys-

tems that provides multicast functionality of the network layer. In application layer

multicast (ALM), the source and destination nodes collaborate, at the application

layer, to disseminate the message; any node that receives a packet can forward it

to another node. Clearly, this way, a physical link may be used multiple times for

transferring the same packet, as the physical link may be on the way between multi-

ple different pair of nodes. As mentioned earlier, in network-layer multicast, every

physical link is used at most once per packet. This is one advantage of implementing

the multicast at the network layer rather than the application layer A simple ALM

algorithm commonly used in practice is the one in which the source establishes con-

nections to all the destination nodes and sends/unicasts the message to every desti-

nation node either sequentially or simultaneously. Some of the advantages of ALM

over NLM are 1) easier and immediate ability of ALM to be deployed on a network,

2) easier maintainability of the algorithm and 3) providing the ability to write an

application specific algorithm [12].

2.2.3 Cloud Network Structure

Fat-trees

A common cloud network structure is fat-tree. Fat-trees were originally proposed

by Leiserson in [30], then Greenberg and Leiserson presented a fine structure of

fat-trees in [31], called butterfly fat-tree in Leiserson’s thesis [32].

Referring to [33], a fat-tree has two types of structure a coarse structure (Figure

2.2) and a fine structure (Figure 2.3), which are both explained next.

11

Channel

Leaf

Node

Figure 2.2: An example of a coarse structure of 4-ary fat-tree.

Link

Switch

Host
Pod 1 Pod 2 Pod 3 Pod 4

Figure 2.3: A fine structure corresponding to the coarse structure shown in Fig-
ure 2.2.

Fine Structure of Butterfly Fat-trees

As shown in Figure 2.2 and Figure 2.3 a butterfly fat-tree has a tree-like coarse

structure, but it contains cycles in its fine structure.

In the fine structure, each link in the tree connects two devices that are in suc-

cessive levels. The top switches are connected to exactly one switch of every pod.

Besides, no link connects any two devices from different pods. There is only a sin-

12

gle link between every parent and its child, and no link between any node at the

same level of the tree. In general, to construct a butterfly fat-tree, each switch can

have different number of parents and children [33]. However, it is unusual to have

a switch with more parents than children since children cannot fully utilize all links

to parents.

Every path between any two hosts first proceeds upwards in a fat tree, then goes

down to the destination host. On the way to the top, any switch can be chosen,

which results in having multiple path up in a fat-tree. However, there is only a

single unique path on the way down to a particular destination host. Having multiple

paths between every two hosts is one of the important features of fat-trees. This

characteristic enables fat-trees to not only perform load balancing among the fat-

tree links but also be more fault tolerant in the case of link failure.

Coarse Structure of Butterfly Fat-trees

Each leaf in the coarse structure is a processor, server, or other device in the fine

structure. Every internal node (i.e, switches) in the coarse structure maps to a set of

switches in the fine structure. Every channel in the coarse structure maps to a set of

links in the fine structure, that each of them connects a port of the parent switch to a

port of the child switch. The bandwidth allocated to each channel connecting a pair

of nodes (in the coarse structure) is sum of the bandwidth of the corresponding links

(in the fine structure) between the equivalent nodes. The number of switches in each

coarse node, the number of ports on each switch and, the away that the ports connect

to each other are all determined by the designer of the network. Two important but

conflicting design goals in multicasting are 1) minimizing the delay experienced by

a single destination 2) minimizing the total time needed to deliver the message to all

destinations. [12]”

13

2.2.4 Multicast in Cloud Networks

There are many applications in cloud environments that require broadcasting or mul-

ticasting messages. Some of these applications are:

• User applications drive their host virtual machine (VM) to send broadcast or

multicast messages into the cloud network. These packets can be generated

to satisfy the needs of distributed databases, file sharing services, audio/video

streaming, or audio/video conferencing.

• A VM sends out a broadcast or multicast message by flooding it through the

network to get information about how to map the destination’s logical IP ad-

dress to the corresponding physical IP address.

• A VM sends a broadcast or multicast message into the network to support

standard protocols, e.g. Address Resolution Protocol (ARP). For instance,

some data center virtualization standards such as VXLAN [34] and NVGRE

[35] convert broadcasting in the virtualized subnet into multicasting in the

physical network [13].

Currently, the common approach to multicast in cloud environment is the one-to-

all method, in which the source establishes connections to all the destination nodes

and sends/unicasts the message to them either one by one or simultaneously. This

approach does not use the upload capacity of the destination nodes to reduce the dis-

tribution delay. Also, the approach puts lots of pressure on some physical links such

as the one connected to the network interfacer of the source node (several copies of

the message have to go through that link). However, the above approach is attractive

because of its simplicity, as there is only one node (the source node) which sends

packets (destination nodes do not participate in sending/forwarding packets).

14

2.3 Related Work

Whether multicast related services should be implemented in the network layer or

the application layer was revisited by Chu. et al. in [27]. The authors compare the

performance of their ALM solution with that of IP Multicast using both simulations

and experiments on the Internet. Their results indicate that ALM can achieve low

link stress, in small to medium sized multicast groups. The maximum link stress in

their ALM algorithm called Narada was reported 5 for multicast group size of 16,

and 7 for the multicast group size of 100. Our results show that, when ALM is done

carefully, the maximum link stress can always be capped at three, no matter how

large the the multicast group is. This implies that ALM is scalable with regards to

link stress.

In this thesis, we focus on routing algorithm in ALM, which is about what node

should forward the message to what other node. In other words, routing algorithms

are about building an overlay network. Several ALM protocols are classified in [12]

based on their routing algorithms. For example, TAG [23] builds an overlay network

in a distributed manner by using a path overlap information among members.

Chuang and Sirbu [36] were among the first who consider networking load as a

metric to compare NLM with unicast services. They found that the ratio between the

networking load of NLM and the average length of unicast routing path has a power-

law of m0.8, where m is the size of multicast group. They validated their evaluation

on both real and generated network topologies. This ratio was argued to be closer to

m0.7 than m0.8 in a later work [37]. In our work, we compare the networking load of

NLM with the networking load of ALM instead of the average networking load of

unicast (i.e., the average length of unicast path). If we take the average networking

load of unicast in the whole network as an estimate to the average networking load of

unicast in the overlay tree used in ALM, we get that the ratio between the networking

load of ALM and that of NLM grows as (m − 1)/m0.7 ≈ m0.3 where m is the size

of multicat group. It is because the overlay tree corresponding to ALM has m − 1

15

overlay links, each corresponding to a unicast path. In this work, we show that,

when ALM is done carefully, the ratio between the networking loads of ALM and

NLM is at most three, irrespective of the multicast group size.

Radoslavov et al. [38] considered two metrics of link stress and, tree stretch1

in overlay multicast to that of network layer multicast in evaluating the impact of

different network topology on two heuristic overlay multicast method. Using both

Internet and simulation experiments, Chu et al. [27] claimed that ALM can achieve

low performance penalty in comparison with IP Multicast in terms of link stress and

tree stretch.

With regard to distribution delay, Mokhtarian and Jacobsen [39] prove that mini-

mizing average or maximum delays are both NP-hard problems, and, further, cannot

be approximated with any reasonable approximation ratio in polynomial time. In

[40], Brosh, Levi and Shavitt present approximation algorithms with approximation

factor of O(log n) to the problem of minimizing the maximum delay. Our work on

the distribution delay differs from [40] in two ways. i) unlike [40] and the majority

of related papers such [39, 41], we consider queueing delays in computing the dis-

tribution delay of multicast. When queueing delay is considered, the simple model

used in [40] in which fixed delay costs are assigned to overlay links is not applicable,

because a switch may be used in more than one overlay link. In other words, two

packets transmitted over two overlay links that share a switch may get queued at the

switch, causing extra delay on one of those overlay links. ii) We compare the distri-

bution delay of our proposed ALM algorithm with that of NLM, and show that they

are at most a factor of O(log n) away. Similar factor is proven in [40]. However,

the distribution delays of their algorithms are compared to the minimum distribution

delay of ALM, which is higher than that of NLM. Objective of authors in [41] is

finding minimum-delay multicast distribution tree while considering the nodal pro-

cessing delay. They also introduce a delay measure called reception-and-processing

1Tree stretch is defined as the ratio of the number of the links in the overlay multicast tree to that
of underlay multicast tree.

16

delay. Overlay multicast algorithm usually aim to minimize the link-by-link distance

among the receiver nodes [18, 27, 42, 43, 44], however, authors in [39] consider the

nodal processing delay as well.

Finally, there has been some recent works on implementing ALM in cloud in-

frastructure [17, 19]. As pointed out in [17], solving multicast problem in cloud

networks is easier than in the Internet due to the special architecture of cloud net-

works. For example, in a cloud network with fat-tree topology, the shortest path dis-

tance between two nodes can be computed using the IP addresses of the nodes [17].

For instance, the shortest distance between two nodes with the IPs 10.x1.y1.z1 and

10.x2.y2.z2 is six if x1 6= x2, and the shortest distance is four if x1 = x2 and y1 6= y2.

This property can be very useful in some multicast algorithms such as the ALM al-

gorithm with minimum networking load presented later in this work.

17

Chapter 3

Analytical Results

In this section, we compare the performance of ALM with NLM in terms of net-

working load, link stress and distribution delay. Majority of our analytical results

apply to general network topologies, while some others are tuned for data center

networks. In Chapter 4, we implement an algorithm in Amazon EC2 to evaluate

distribution delay of ALM.

3.1 Networking Load

At first glance, it may seem that ALM imposes significantly higher networking load

than NLM when the size of multicast group or the message is large. In this section,

we prove that this is not the case if ALM is performed wisely. In fact, we show that

the networking load of ALM can be as low as (up to a constant factor) NLM.

Following, we start by highlighting that, unlike NLM, finding an ALM algorithm

with minimum networking load is straightforward. Then, we answer two interesting

and challenging questions: i) how far is the minimum networking load of ALM from

that of NLM? ii) is there any ALM algorithm with maximum link stress of constant

with respect to the size of multicast group?

18

3.1.1 Minimizing Networking Load

Finding an NLM algorithm with minimum networking load is NP-hard since it is

equivalent to the minimum Steiner tree problem [28]. In contrasts, computing the

minimum networking load of ALM, and finding an ALM algorithm that achieves

it is relatively straightforward. What is challenging is how large that number is

compared to the minimum networking load of NLM.

Without loss of generality, we assume that the message is a single packet. Any

ALM algorithm can then be translated into a weighted overlay graph withm vertices,

each vertex representing a node in the multicast group, and an edge between two

vertices u, and v if and only if the packet is transferred between u and v in the ALM

algorithm.

The following two properties hold for any ALM algorithm with minimum net-

working load: 1) the overlay graph corresponding to the ALM algorithm must be a

tree. It is because, otherwise, a node will receive the packet more than once. In other

words, one of the overlay links can be safely removed. 2) The networking load of

the ALM algorithm is equal to the total weight of its corresponding overlay graph,

as each overlay link is used exactly once. Also, observe that any overlay spanning

tree can represent an ALM algorithm. By the above two observations, the overlay

graph corresponding to the optimal ALM algorithm must be a minimum spanning

tree of the complete overlay graph K = (VT , EK , w) where, VT = {s} ∪ D and

EK ⊆ P and the weight of each edge connecting every pair u, v ∈ VT is set to

wu,v = dist(u, v). Therefore, an ALM algorithm with minimum networking load,

and its networking load can be computed in polynomial time. In general, the link

stress of the above algorithm could grow with the size of the multicast group. For

example, suppose that the underlay network is a star topology with a switch at the

center, and every node in the multicast groups directly connected to the switch. An

ALM algorithm that achieves the minimum networking load is the one in which the

source unicasts the packet to every n destination nodes. This simple ALM algorithm,

however, puts the maximum possible stress of n on the physical link connecting the

19

source to the switch. So an interesting question is whether there is an ALM algo-

rithm with constant link stress. Another important question is how far the minimum

networking load of ALM is from that of NLM. We answer both those questions next.

Step 2

S
te

p
 3

S
te

p
 1

𝑟1

𝑟2
𝑟1,1

𝑟2,1

𝑟1,2

𝑟2,2

𝑟3

𝑟1,3
𝑟1,4

𝑟3,1
𝑟3,2

𝒔

𝒔𝟐,𝟏

𝒔𝟑,𝟏

𝒔𝟑,𝟐

Backbone lin
k

Step 4
L
a

st
 s

te
p

𝒔𝟑,𝟑

Figure 3.1: Illustrating the recursive algorithm proposed in Section 3.2.1.

3.2 Link Stress

3.2.1 Bounded Link Stress

The algorithm introduced in this section aims for limiting the number of times that

each underlay link is used in order to lower the pressure borne by every link. This

also somewhat balances the overall traffic load on all the available links in L.

Let us set an arbitrary switch r1 ∈ R as the root of the NLM tree T . Our ALM

algorithm is a recursive algorithm, and works as follows. Let us call the path between

20

the source and the root of a tree as the backbone of the tree. Let rm, rm−1, . . . , r1

denote the sequence of switches on the backbone of T from the source to the root r1.

As shown in Figure 3.1, each switch ri,j adjacent to a switch ri on the backbone of T

is a root of a subtree. All subtrees whose roots are adjacent to the same switch on the

backbone of T are called sibling subtrees. In the first iteration of the algorithm, the

source sends the message to an arbitrary node sm,1 in a sibling subtree (i.e, a subtree

connected to switch rm), which in turn forwards the message to another arbitrary

node in the next sibling subtree sm,2. This continues until one node in every sibling

subtree receives the message (Steps 1, 2, and 3 in Figure 3.1). The last node that

receives the message forwards the message to a node sm−1,1 in a subtree connected

to rm−1, the next switch on the backbone (Step 4 in Figure 3.1). This continues, until

a node in every subtree receives the message. The algorithm is then run recursively

on each subtree with the node si,j that has the message as the source and the switch

ri,j as the root.

Proposition 1. The proposed algorithm has the maximum link stress of three.

Proof. A link on the backbone of T is used exactly once. For example, the link

(r3, r2) on the backbone of the tree T in Figure 3.1 is used only once in Step 4 when

s3,3 sends the message to s2,1. A link on the backbone of a subtree is used three

times. For example, in Figure 3.1, consider a link on the backbone of the subtree

rooted at the switch r3,1, that is a link on the path from s3,1 to r3,1. The link is

used once when the source s sends the packet to s3,1. Next time it is used when s3,1

forwards the packet to s3,2, the source of the adjacent subtree. The link is used one

last time when the algorithm is recursively called on the subtree rooted at r3,1. It is

because the link is on the backbone of the subtree. Links that are not on the backbone

of any subtree are those that connect a subtree to the backbone of the higher level

subtree (e.g., link (r3,1, r3) in Figure 3.1). Those links are used at most two times;

once when the message is forwarded to the source of the subtree, and once when the

source of the subtree forwards the message to the node in the next subtree.

21

The following corollary follows directly from Proposition 1.

Corollary 1. The networking load of the proposed algorithm is at most three times

that of the NLM algorithm corresponding to the tree T.

Now by Corollary 2, we get that the minimum networking load of ALM must be

within a factor of three of that of NLM.

Corollary 2. The minimum networking load of ALM is at most three times of the

minimum networking load of NLM.

Proof. Finding an NLM algorithm with minimum networking load is NP-hard. Nev-

ertheless, by our recursive ALM algorithm, we know that for any NLM algorithm

(including one with minimum networking load), there is an ALM algorithm whose

networking load is at most three times higher than that of the NLM algorithm. The

optimal MST-based ALM algorithm presented earlier has the minimum networking

load among all ALM algorithms, hence its networking load must be within a factor

of three of the networking load of any NLM algorithm.

Remark 1. In defining networking load, we assumed that transmitting a single

packet over a single underlay (physical) link contributes one unit to the network-

ing load. In general, to each link we can assign a non-negative weight indicating

how much transmission of a single packet on that link will add to the networking

load. Our results still holds under this generalized assumption. In particular, the

MST-based ALM algorithm is still optimal (i.e., has minimum networking load), and

its networking load can be similarly shown to be at most three times that of any NLM

algorithm.

Remark 2. As stated in the proof of Proposition 1, non-backbone links have a stress

of at most two. Also, links on the backbone of the tree T have stress of one. There-

fore, the average stress in our recursive ALM algorithm is strictly less than three. As

a result, the networking load of the MST-based ALM algorithm is indeed strictly less

than three times that of any NLM algorithm. This number is at most 2.5 in multicast

22

trees where the number of backbone links in all subtrees is not more than the number

of non-backbone links. This holds if every switch on the backbone is connected to

at least one subtree, as in this case every backbone link can be corresponded to a

distinct non-backbone link. For example, in Figure 3.1, each link on the backbone

of T can be corresponded to a distinct non-backbone link. To get the factor of 2.5,

this must hold for all the subtrees too.

The ALM algorithms described so far require some knowledge about the under-

lay network topology. For example, the MST-based ALM algorithm needs to know

the length of the shortest path between any pair of nodes in the multicast group,

where the multicast group refers to the set of nodes consisting of the source and

the hosts that are supposed to receive the message. Even in the absence of any

information about the network topology, under certain conditions, the ratio of the

networking load of ALM to the networking load of NLM can be bounded as stated

in the next remark.

Remark 3. Let g, k and n respectively denote the length of the longest shortest path

between any pair of nodes in the multicast group, the size of message in packets,

and the number of destination nodes. Let A be an ALM algorithm that guarantees

every node receives every packet only once. Then, the networking load of A is at

most g times that of any NLM algorithm. This is because the networking load of any

NLM is at least k · n, as each of the n nodes in the multicast group must receive

every packet at least once (each of those packets imposes at least one unit of load at

the link connected to the receiving host). Also, the networking load of A is at most

g · k · n, as each node receives every packet exactly once, and each of those packets

impose at most g units of load on the network.

Remark 3 comes in handy for networks with small diameters. For example,

today’s commodity data center’s network architectures are trees (or tree-like) with

either two or three levels of switches [45], hence they have diameters of either four

or six. Therefore, by Remark 3, in such networks, we can assure that the networking

23

load of ALM is bounded by a constant number (irrespective of the size of message,

and the group size) if the ALM algorithm used does not send multiple copies of

the same packet to a node. This allows us to focus mainly on distribution delay in

Chapter 4 where we design a fast ALM algorithm which we implement in Amazon

EC2.

3.3 Distribution Delay

Here, we study two different scenarios based on the size of message. In the first sce-

nario, the size of message is small (a single packet), and in the second scenario which

is described in Section 4.1, the size of message in packets is larger than the size of

the multicast group. The second scenario applies in cases where a large file needs to

be distributed, while the former holds for multicasting, say, control packets. As our

theoretical results indicate, multicasting a single packet can be considerably slower

in application layer than in network layer. However, the distribution overheads of

ALM become negligible when the message is large. In fact, our implementation on

Amazaon EC2 shows that multicasting a large file to a large group can be done in a

reasonable amount of time in comparison with unicasting the file to a single node.

3.3.1 Single Packet Multicast

Let T be the multicast tree used in NLM, and h denote its height. Suppose a packet

transmission on every underlay link takes one unit of time. For now let us ignore

node’s processing time. Then, NLM requires at least h+1 units of time to complete,

as the distance of the farthest destination node to the source is at least h+ 1.

We argue that ALM can be done in h · O(log n) units of time, where n denotes

the number of destination nodes. A simple argument is that the number of nodes that

have the packet can be doubled in a time phase of length 2h units. This is because in

a phase, each node that has received the packet can forward it to any other node in

the multicast group. This argument neglects the possibility that packets forwarded in

24

𝒔

𝒓

𝑻𝟏

𝑻𝟐

Figure 3.2: An example tree to illustrate how the queueing-aware algorithm works.

a phase can be simultaneously placed on the same output port of a switch, hence get

queued. This potential queueing, however, can be avoided due to our next recursive

ALM algorithm, called the queueing-aware algorithm.

The queueing-aware algorithm starts with selecting a switch as the root of T . We

call a switch pivot if each subtree connected to the switch contains at most half of

the nodes in the multicast group. Suppose that the multicast tree T has a pivot r. In

this case, the queueing-aware algorithm selects r as the root of tree T . Figure 3.2

shows the switch r and the subtrees connected to r, each placed in a triangle. By

Lemma 1, we can divide the subtrees connected to r into two groups g1, and g2, such

that the number of nodes in each group is at most two third of the total number of

nodes in the multicast group.

Lemma 1. Let S = {a1, a2, . . . , al} be a set of l positive numbers. Suppose
∑l

i=1 ai =

A, and ai ≤ A
2

, for every 1 ≤ i ≤ l. Then, S can be partitioned into two non-empty

subsets S1, and S2 such that

∑
a∈S1

a ≤
∑
a∈S2

a ≤ 2A

3
.

25

Proof. See Appendix 6.3

Let T1 be the tree obtained by removing all the subtrees in g2 from T (see Fig-

ure 3.2). Similarly, let T2 be the part of T that includes the root r and all the subtrees

in g2 (i.e, T2 is the tree obtained from T by removing all the subtrees in g1). Without

loss of generality, suppose the source is located in T1. In the the queueing-aware

algorithm, the source sends the packet to an arbitrary node in T2 (node s2 in Fig-

ure 3.2). This takes at most 2h units of time. Then, the queueing-aware algorithm

is simultaneously called on both T1 and T2. Note that T1 and T2 share the switch r.

However, this does not causes the packets transmitted in the two runs of the algo-

rithm on T1 and T2 to block each other, as those packets are never forwarded to the

same output port of switch r. Therefore, assuming that a pivot can be found, we get

T (m) ≤ 2h+ T (2m/3), (3.1)

where T (m) denotes the time complexity of the queueing-aware algorithm, and m

denotes the number of nodes in the multicast group (i.e. m = n + 1, where n is the

number of destination nodes). If T does not have a pivot, then by Lemma 2 it must

have a switch r that directly connects to more than m/2 nodes.

Lemma 2. Let T be a multicast tree that does not contain any pivot. Then, T

contains a switch r with more than m/2 neighbouring nodes, where m denotes the

number of nodes (i.e., leaves) of the multicast tree.

Proof. See Appendix 6.4

Let T1 be the tree consisting the switch r and all the nodes directly connected to

it, and T2 be the tree obtained by removing nodes in T1 from T . In the queueing-

aware algorithm, if the source is located in T1, it forwards the packet to an arbitrary

node in tree T2; otherwise, it forwards the packet to an arbitrary node in T1. This

takes at most 2h units of time. The queueing-aware algorithm is then run simultane-

ously on T1, and T2. On tree T1, the algorithm simply doubles the number of nodes

26

that have the packet every two units of time. Therefore, on T1, the algorithm needs

at most 2dlogme units of time to finish. Hence, if a pivot is not found, we get

T (m) ≤ 2h+max{2dlogme+ T (m/2)}. (3.2)

Combining (3.1) and (3.2) yields

T (m) ≤ max{2h+ T (2m/3),

2h+max{2dlogme+ T (m/2)}}

= 2h+max{2dlogme+ T (2m/3)},

solving which we get T (m) ∈ O(h logm). Consequently, ALM is at mostO(log n)

times slower than NLM, and this is tight as it holds in star topologies.

The above bound of O(h logm) or equivalently O(h log n) applies to general

multicast trees. In some trees this bound can be improved. For example, as stated

in the next proposition, in balanced binary trees, the time complexity of ALM is

O(h log n/ log log n) instead of O(h log n).

Proposition 2. In a full binary tree with height h, ALM can be performed inO(h. log n/ log log n)

units of time.

Proof. See Appendix 6.1.

If we assume that the complete binary tree has oversubscription of 1:1, then ,

as stated in the next proposition, ALM can be done in O(h log log n) instead of

O(h log n). Referring to [45], oversubscription is “the ratio of the worst-case achiev-

able aggregate bandwidth among the end hosts to the total bisection bandwidth of a

particular communication topology”.

Proposition 3. Consider a balanced binary tree with oversubscription 1:1. Then

ALM can be done in time O(h log log n), where h denotes the height of the tree.

Proof. See Appendix 6.2.

27

Remark 4. Considering the nodes processing time, denoted by tproc, the distribution

delays of NLM will be at least h + 1 + tproc. The distribution delay of the proposed

queueing-aware ALM, in this case, is upper bounded by O(h log n) + (n + 1)tproc

instead of O(h log n).

As stated in [39], the processing time tpros is typically very small compared to other

delay components defined in the distribution delay.

28

Chapter 4

Implementation and Performance

Evaluation

This section describes the details of the implementation of a tuned version of BitTor-

rent (described in Section 4.1) in Amazon EC2, and the evaluation of its distribution

delay. In practice, distribution delay of an ALM algorithm can be affected by factors

that may not be easily captured in a theoretical model. Some of these factors are:

1. policies and routing algorithms set by the data center provides,

2. packet queuing caused by other applications running in the data center,

3. the presence of other virtual machines in the same physical machines that our

virtual machines are placed in (each virtual machine uses the share resources

in a different way that cause different nodal delays),

4. traffic congestion in physical links,

5. different hop distance of virtual machines from each other and etc.

29

4.1 A simple ALM Algorithm

As discussed earlier, single packet multicast can be a factor of O(log n) slower in

application layer than in network layer. Our implementation, however, shows that

ALM can be fairly fast when the message is large (e.g., when the message is a large

file). The short answer to why ALM is fast when the message is large is efficient

pipelining of packets. The algorithm we use for the implementation is a tuned ver-

sion of BitTorrent [46], in which the number of connections of each peer (node) is

set to the maximum (i.e., it is set to n in the source node, and n−1 in the destination

nodes), and the message is divided into n equal chunks. The algorithm starts by the

source connecting to all n destination nodes, and sending packets from a distinct

chunk to everyone in parallel. Upon receiving the first packet of the chunk from the

source, a destination node opens connections to all the remaining destination nodes,

and starts forwarding the packets received from the source to all those nodes. The

above algorithm does not require information about the network topology. However,

by Remark 3, the algorithm’s networking load is at most six times that of any NLM,

as the algorithm ensures that only one copy of a packet is sent to any destination

node.

4.2 A Simple Analysis of the ALM Algorithm

Let sizef denote the size of the file at the source node. Let us consider a simple

model in which sending the file from any node to any other node takes t seconds.

Also, suppose that transferring a file of size sizef/n from one node to any other

node can be done in t/n seconds. In a real environment, the above assumptions

may not be accurate as different links may have different capacities and different

congestions. The nodal delay can vary from one node to another node. Also, the

hop distance between a pair of nodes may be different than that of another pair.

By the above assumptions, sending a chunk of size sizef/n to each destination

node takes t/n seconds, as shown in Figure 4.1. Therefore, after t seconds, every

30

𝑹𝒆𝒄𝒆𝒊𝒗𝒆𝒓

𝑺𝒐𝒖𝒓𝒄𝒆

𝑭𝒊𝒍𝒆 𝑺𝒊𝒛𝒆

𝒏
,
𝒕

𝒏

𝑭𝒊𝒍𝒆 𝑺𝒊𝒛𝒆

𝒏
,
𝒕

𝒏

Figure 4.1: The implemented tuned version of BitTorrent

destination node has received all the packets of a distinct chunk of the file. A desti-

nation node starts forwarding packets from the source to all other destination nodes

as soon as it receives the first packet from the source. Every destination node needs

to forward a chunk of size sizef to n − 1 other nodes; this takes about t seconds.

Therefore, the whole process of disseminating the file would take about t seconds as

the source and destination nodes send packets simultaneously. In other words, by the

simplified model, the tuned-version of BitTorrent needs about t seconds to distribute

the file, which is about the time needed to send the file to a single destination node!

By the above argument, when the file size is fixed, one may expect the distri-

bution delay of the algorithm not to grow with the number of destination nodes. In

our implementation, however, we see that the distribution delay slightly increases

with the number of destination nodes (i.e., with the number of VMs in the Amazon

EC2). This is because, as stated earlier, the distribution delay is a function of many

parameters some of which may not be captures appropriately in a theoretical model.

31

4.3 Implementation Challenges

Although the BitTorrent-like algorithm described in Section 4.1 is very simple in the-

ory, its implementation and evaluation in a real data center imposes some challenges.

In fact, validating and implementing a multi-threaded version of the algorithm from

scratch for a distributed system took the majority of this research work.

One of the challenges we faced in evaluating the algorithm was to measure the

distribution delay with high accuracy. The distribution delay of the data dissemina-

tion procedure starts when the first packet is sent out from the source s and finishes

as soon as all of the nodes receives all of the packets. In other words, the dura-

tion of distribution time depends on the last node that receives the last packet of the

source file. The challenge in measuring the distribution delay is because the virtual

machines in data centers are not tightly synchronized. More specifically, the distri-

bution delay of the multicast algorithm may be comparable to the synchronization

error when the file size is not very large.

Our first attempt to overcome this issue was to use the Network Time Protocol

(NTP) to synchronize our virtual machines as much as possible. We set the Ama-

zon’s NTP servers as the reference server since using a reference server located out

of the data center leads to higher synchronization errors between our EC2 virtual

machine instances. After synchronizing VMs, we measured the distribution delay

by comparing the time the source sent the first packet to the time when the last

node received the whole file. This way, we achieved an error of about 0.1 second in

measuring the distribution delay.

The above approach works well when the distribution delay is considerably

higher than 0.1 second. To make the error in measuring the distribution delay even

lower, in our second approach, we had every destination node notify the completion

of file reception to the source node. The source node then estimated the distribution

delay by comparing the time it sent the first packet to the time it received the last

notification from the destination nodes.

32

We implemented the ALM algorithm using multi-threaded programming in Python.

The program is distributed as the same code is run on all the VMs. The single VM/n-

ode that has the source file takes the leader/source role and the other nodes take the

receiver role. The source begins with creating two main threads: Send thread and

Control thread. Receiver nodes, similarly, start with creating two main threads: Re-

ceive thread and Relay thread.

The receivers open a number of sockets to communicate with other nodes and as-

sign each socket to a new thread to mange forwarding and receiving of packets. The

source’s Send thread sends data to all receivers in the same manner. Each receiver

node has a stack (i.e., a last-in-first-out buffer), where incoming data received from

the source node is placed in. It is also used to send out the data to all other receiver

nodes. Each of the Receive threads puts the arriving packets into the stack. More-

over, every receiver starts forwarding packets received from the source as soon as

they are available. Note that only packets from the chunk received from the source

node are forwarded to other nodes. To do the forwarding, the Relay thread con-

stantly checks the stack and picks a packet received from the source and sends it to

all other receiver nodes. One approach to forward a packet from one node to other

nodes is to send the packet sequentially in a round robin fashion. To be more time

efficient, however, we used multiple threads to forward the packets in the stack to

all the other receiver/destination nodes. To avoid costs of creating and destroying

threads, the Relay thread uses a thread pool with threads each given one packet to

send to all other destination nodes. In addition, each receiver starts writing the in-

coming packets of its corresponding chunk of data on the node’s hard disk as soon

as the reception of the first packet in the receiver node.

Some other implementation challenges are:

1. Before sending or forwarding packets to a destination node, the sending node

must know that the code (the TCP server socket in particular) is up and running

at the destination node. In other words, the algorithm cannot start before the

TCP server socket at every node is up.

33

2. excluding the time required for creating sockets and threads from measuring

the distribution delay.

3. Setting up and managing a large number of virtual machines.

We approached the first two challenges in the above list as follows. We wake

up the source node before other nodes. The source’s Send thread loads the source

file into the memory and initializes the variables then sleeps and waits to be waken

up again by the Control thread. When a destination node is up and ready, it sends

a NodeIsOn signal to the source’s Control thread. When all the NodeIsOn signals

are received, the Control thread unicasts a Connect signal to every destination node,

informing them that everyone is up and ready for receiving packets. It also notifies

the Send thread to wake up and start establishing connections to all the destination

nodes. Every time the source node creates a socket to connect to a destination node,

it creates a new thread to manage the communications to/from the socket. When all

the sockets and their corresponding threads are created, the Send thread sleeps again

and waits to be notified by the Control thread for the right time to start the process

of data dissemination.

So far, we have excluded the time of establishing sockets at the source node from

the distribution delay. We also exclude the time of creating sockets at the destination

nodes. To that end, the Receive thread at each destination node starts establishing

connections to other destination nodes as soon as it receives the Connect signal from

the source. If a connection is refused by the other side, the Receive thread keeps try-

ing until it creates a connection. As in the source node, a thread is assigned to each

established socket at destination nodes. By assigning each socket to a single thread,

the receiver sends a RecvReady signal to the source. When all the connections are

established at a destination node the Relay thread sends a RelayReady signal to the

source. When the Control thread at the source receives all the RecvReady and Re-

layReady signals, it wakes up the Send thread to start sending packets.

To address the third challenge, i.e., to setup and monitor a large number of VMs

34

(up to 100 VMs in our case), we used Amazon Web Services’ (AWS) Command

Line Interface (CLI) [47] and Cluster SSH (CSSH) [48].

Using CLI, we can run VM instances by writing a script. Since different in-

stances take different amount of time to boot up, we first wait until all instances are

up. Then, using CLI we get all of the internal IPs and the public IPs. We copy the in-

ternal IPs in each instance since it is needed by the virtual machines to communicate

with each other in their own virtual private cloud network. Finally, all the public IPs

are given to CSSH, which opens a different terminal window for every single virtual

machines. The terminal windows allow us to monitor and manage each of the virtual

machines individually.

4.4 Test-bed Specification

The same program is run on each Amazon’s virtual machine (VM). We utilize Ama-

zon EC2 instances. The type of each instance is m4.xlarge. The m4.xlarge in-

stance has 4 vCPU, 2.4 GHz Intel Xeon E5-2676 v3 (Haswell) processors, 16 GiB

memory, EBS-only SSD Storage (GB) and, 750 dedicated EBS bandwidth (Mbps)

with high networking performance. We attached 8 GiB (gibibyte) of a general pur-

pose SSD (GP2) with baseline of 100 I/O operations per second (IOPS) per GiB

(burstable to 3000 IOPS). The Ubuntu server 14.04.4 LTS (GNU/Linux 3.13.0-91-

generic x86 64) (HVM) is running on every VM instances as the operating system.

The VMs are connected through a virtual private cloud (VPC) network in Amazon

data centers. We choose our VMs to run in Amazon’s data centers in US East (N.

Virginia) region.

4.5 Performance Evaluation

We tested our ALM algorithm with a message/file of size 85 MiB on up to 100

Amazon EC2 VMs. As shown in Figure 4.2, the average distribution delay ranges

35

Figure 4.2: Message distribution among 100 Amazon EC2 VMs with message size
of 85 MiB.

from 0.16 to 1.76 seconds when the number of destination nodes varies from 1 to 99

(Figure 4.2 shows the total number of nodes, that is the number of destination nodes

plus the source node). This increase corresponds to a growth rate of about 0.016

seconds per virtual machine. The ALM algorithm most commonly used in clouds is

the one in which the source sends the whole file to every other node one by one [17].

Since the source requires about 0.16 seconds to send the file to another node, the

growth rate of this common ALM algorithm will be about 0.16 seconds per virtual

machine, which is an order of magnitude higher than that of the ALM implemented

in this work.

36

Chapter 5

Conclusion & Future work

In this thesis, we proposed application layer algorithms to compare performances of

ALM and NLM with regards to networking load, link stress and distribution delay.

We showed that ALM can preform the same (up to a constant factor of at most three)

to NLM with respect to both networking load and link stress. We also proposed an

ALM algorithm with asymptotically minimum distribution delay. In general net-

works, we proved that the distribution delay of the proposed ALM algorithm is at

most a factor of O(log n) away from that of the optimal NLM, where n denotes the

number of destination nodes. We also implemented an ALM algorithm on Amazon

EC2 and evaluated its distribution delay. Our results show that the distribution delay

of the implemented ALM algorithm slowly increases with the number of destination

nodes. The focus of our work was on networking load, link stress and distribution

delay. There are other measures such as robustness against packet loss that can be

used to compare ALM and NLM. An interesting theoretical work is to investigate the

existence of ALM algorithms with simultaneous asymptotic optimality with regards

to link stress, networking load and distribution delay. Finally, we believe that better

(perhaps customized) models that reflect the complications in practice are needed to

better analyze distribution delay and to propose fast ALM algorithms.

37

Bibliography

[1] Afshin Arefi. On the optimal set of channels to sense in cognitive radio

networks. Master’s thesis, University of Alberta, 2015. https://era.

library.ualberta.ca/files/td96k5371.

[2] Yan Liu. Cooper: Expedite batch data dissemination in computer clusters

with coded permutation gossips. Master’s thesis, University of Alberta, 2015.

https://era.library.ualberta.ca/files/w66346008.

[3] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing

on large clusters. Communications of the ACM, 51(1):107–113, 2008.

[4] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and

Ion Stoica. Spark: cluster computing with working sets. HotCloud, 10:10–10,

2010.

[5] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly.

Dryad: distributed data-parallel programs from sequential building blocks. In

ACM SIGOPS Operating Systems Review, volume 41, pages 59–72. ACM,

2007.

[6] Derek G Murray, Malte Schwarzkopf, Christopher Smowton, Steven Smith,

Anil Madhavapeddy, and Steven Hand. Ciel: a universal execution engine for

distributed data-flow computing. In Proc. 8th ACM/USENIX Symposium on

Networked Systems Design and Implementation, pages 113–126, 2011.

38

[7] Mosharaf Chowdhury, Matei Zaharia, Justin Ma, Michael I Jordan, and Ion

Stoica. Managing data transfers in computer clusters with orchestra. In

ACM SIGCOMM Computer Communication Review, volume 41, pages 98–

109. ACM, 2011.

[8] Object Management Group. Data distribution service. http://portals.

omg.org/dds/.

[9] Matthew L Massie, Brent N Chun, and David E Culler. The ganglia distributed

monitoring system: design, implementation, and experience. Parallel Comput-

ing, 30(7):817–840, 2004.

[10] Oracle coherence. http://coherence.oracle.com/display/

COH35UG/Network+Protocols.

[11] Christophe Diot, Brian Neil Levine, Bryan Lyles, Hassan Kassem, and Doug

Balensiefen. Deployment issues for the ip multicast service and architecture.

Network, IEEE, 14(1):78–88, 2000.

[12] Mahmood Hosseini, Dewan T Ahmed, Shervin Shirmohammadi, and Nico-

las D Georganas. A survey of application-layer multicast protocols. Commu-

nications Surveys & Tutorials, IEEE, 9(3):58–74, 2007.

[13] Xiaozhou Li and Michael J Freedman. Scaling ip multicast on datacenter

topologies. In Proceedings of the ninth ACM conference on Emerging net-

working experiments and technologies, pages 61–72. ACM, 2013.

[14] Kai-Wei Ke and Chia-Hui Huang. Performance evaluation of multisource ap-

plication layer multicast (alm): Theoretical and simulative aspects. Computer

Networks, 57(6):1408–1424, 2013.

[15] Pekka Savola. Overview of the internet multicast routing architecture. http:

//www.ietf.org/rfc/rfc5110.txt, January 2008. RFC 5110.

39

[16] Bob Quinn and Kevin Almeroth. Ip multicast applications: Challenges

and solutions. http://www.ietf.org/rfc/rfc3170.txt, Septem-

ber 2001. RFC 3170.

[17] Jessie Hui Wang, Jeffrey Cai, Jerry Lu, Kevin Yin, and Jiahai Yang. Solving

multicast problem in cloud networks using overlay routing. Computer Com-

munications, 70:1–14, 2015.

[18] Dan Li, Mingwei Xu, Ying Liu, Xia Xie, Yong Cui, Jingyi Wang, and Gui-

hai Chen. Reliable multicast in data center networks. IEEE Transactions on

Computers, 63(8):2011–2024, 2014.

[19] Ymir Vigfusson, Hussam Abu-Libdeh, Mahesh Balakrishnan, Ken Birman,

Robert Burgess, Gregory Chockler, Haoyuan Li, and Yoav Tock. Dr. multi-

cast: Rx for data center communication scalability. In Proceedings of the 5th

European conference on Computer systems, pages 349–362. ACM, 2010.

[20] Yang Chu, Sanjay Rao, Srinivasan Seshan, and Hui Zhang. Enabling con-

ferencing applications on the internet using an overlay muilticast architecture.

ACM SIGCOMM computer communication review, 31(4):55–67, 2001.

[21] John Jannotti David K Gifford, Kirk L Johnson, M Frans Kaashoek, and

James W OToole Jr. Overcast: Reliable multicasting with an overlay network.

In Proc. Usenix Fourth Symp. Operating System Design and Implementation

(OSDI00), 2000.

[22] Suman Banerjee, Bobby Bhattacharjee, and Christopher Kommareddy. Scal-

able application layer multicast, volume 32. ACM, 2002.

[23] Minseok Kwon and Sonia Fahmy. Topology-aware overlay networks for group

communication. In Proceedings of the 12th international workshop on Net-

work and operating systems support for digital audio and video, pages 127–

136. ACM, 2002.

40

[24] Sherlia Y Shi, Jonathan S Turner, and Marcel Waldvogel. Dimensioning server

access bandwidth and multicast routing in overlay networks. In Proceedings

of the 11th international workshop on Network and operating systems support

for digital audio and video, pages 83–91. ACM, 2001.

[25] John Byers, Jeffrey Considine, Michael Mitzenmacher, and Stanislav Rost. In-

formed content delivery across adaptive overlay networks. ACM SIGCOMM

Computer Communication Review, 32(4):47–60, 2002.

[26] Ion Stoica, Robert Morris, David Liben-Nowell, David R Karger, M Frans

Kaashoek, Frank Dabek, and Hari Balakrishnan. Chord: a scalable peer-to-

peer lookup protocol for internet applications. IEEE/ACM Transactions on

Networking (TON), 11(1):17–32, 2003.

[27] Yang-hua Chu, Sanjay G Rao, Srinivasan Seshan, and Hui Zhang. A case for

end system multicast. IEEE Journal on selected areas in communications, 20

(8):1456–1471, 2002.

[28] Michael R Gary and David S Johnson. Computers and intractability: A guide

to the theory of np-completeness, 1979.

[29] Sonia Fahmy and Minseok Kwon. Characterizing overlay multicast networks

and their costs. IEEE/ACM Transactions on Networking (TON), 15(2):373–

386, 2007.

[30] Charles E Leiserson. Fat-trees: universal networks for hardware-efficient su-

percomputing. Computers, IEEE Transactions on, 100(10):892–901, 1985.

[31] Ronald Greenberg and Charles E Leiserson. Randomized routing on fat-trees.

1989.

[32] Ronald I Greenberg. Efficient interconnection schemes for vlsi and parallel

computation. Technical report, DTIC Document, 1989.

41

[33] Aditya Akella, Theophilus Benson, Bala Chandrasekaran, Cheng Huang,

Bruce Maggs, and David Maltz. A universal approach to data center network

design. In Proceedings of the 2015 International Conference on Distributed

Computing and Networking, page 41. ACM, 2015.

[34] Mallik Mahalingam, D Dutt, Kenneth Duda, Puneet Agarwal, Lawrence

Kreeger, T Sridhar, Mike Bursell, and Chris Wright. Virtual extensible local

area network (vxlan): A framework for overlaying virtualized layer 2 networks

over layer 3 networks. Technical report, 2014.

[35] Murari Sridharan, A Greenberg, N Venkataramiah, Y Wang, K Duda, I Ganga,

G Lin, M Pearson, P Thaler, and C Tumuluri. Nvgre: Network virtualization

using generic routing encapsulation. IETF draft, 2011.

[36] John C-I Chuang and Marvin A Sirbu. Pricing multicast communication: A

cost-based approach. Telecommunication Systems, 17(3):281–297, 2001.

[37] Robert C Chalmers and Kevin C Almeroth. Modeling the branching charac-

teristics and efficiency gains in global multicast trees. In INFOCOM 2001.

Twentieth Annual Joint Conference of the IEEE Computer and Communica-

tions Societies. Proceedings. IEEE, volume 1, pages 449–458. IEEE, 2001.

[38] Pavlin Radoslavov, Hongsuda Tangmunarunkit, Haobo Yu, Ramesh Govindan,

Scott Shenker, and Deborah Estrin. On characterizing network topologies and

analyzing their impact on protocol design. 2000.

[39] Kianoosh Mokhtarian and Hans-Arno Jacobsen. Minimum-delay multicast al-

gorithms for mesh overlays. IEEE/ACM Transactions on Networking (TON),

23(3):973–986, 2015.

[40] Eli Brosh, Asaf Levin, and Yuval Shavitt. Approximation and heuristic algo-

rithms for minimum-delay application-layer multicast trees. IEEE/ACM Trans-

actions on Networking, 15(2):473–484, 2007.

42

[41] Hwa-Chun Lin, Tsung-Ming Lin, and Cheng-Feng Wu. Constructing

application-layer multicast trees for minimum-delay message distribution. In-

formation Sciences, 279:433–445, 2014.

[42] David Andersen, Hari Balakrishnan, Frans Kaashoek, and Robert Morris. Re-

silient overlay networks, volume 35. ACM, 2001.

[43] Yair Amir, Claudiu Danilov, Stuart Goose, David Hedqvist, and Andreas

Terzis. An overlay architecture for high-quality voip streams. IEEE Trans-

actions on Multimedia, 8(6):1250–1262, 2006.

[44] Georgios Rodolakis, Anis Laouiti, Philippe Jacquet, and Amina Meraihi

Naimi. Multicast overlay spanning trees in ad hoc networks: Capacity bounds,

protocol design and performance evaluation. Computer Communications, 31

(7):1400–1412, 2008.

[45] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A scalable,

commodity data center network architecture. ACM SIGCOMM Computer

Communication Review, 38(4):63–74, 2008.

[46] Bram Cohen. Incentives build robustness in bittorrent. In Workshop on Eco-

nomics of Peer-to-Peer systems, volume 6, pages 68–72, 2003.

[47] Amazon web services command line interface. https://aws.amazon.

com/cli/.

[48] Cluster ssh. https://github.com/duncs/clusterssh.

43

Chapter 6

Appendix

6.1 Proof of Proposition 2

We prove the proposition by proposing a recursive ALM algorithm, and showing

that its time complexity is O(h · log n/ log log n). Let T be a binary tree of height

h, and TL and TR denote its left and right subtrees, each of height h − 1. Without

loss of generality, assume that the source is in TL. Let Tinit be a subtree of TL of

height h′ = b logn
2
c, containing the source. As illustrated in Figure 6.1, the subtree

TR is partitioned into 2h
′ subtrees each of height h − h′ − 1. These trees are called

partitioned-subtrees of TR.

In Step one, the recursive algorithm is run on Tinit. Step two starts as soon as

all the nodes in Tinit receive the packet. In this step, each node in Tinit, in order and

one by one (to avoid queueing), forwards its packet to a selected distinct node in

a partitioned-subtree of TR. As soon as the last node in Tinit sends its packet, step

three starts by calling the algorithm on TL. Last step, i.e., Step four, starts as soon

as all the selected nodes in the partitioned-subtrees of TR receives the forwarded

packets. In this step, the algorithm is simultaneously called/run on all partitioned

subtrees of TR.

Let T (h) denote the time complexity of the above recursive algorithm on a full

binary tree of height h. The time complexities of steps one and two are T (h′), and

44

2h
′ , respectively. The time complexity of Step three is T (h − 1), and that of Step

four is T (h− h′ − 1). Note that step four starts 2h− 1 units of time after step three

begins. By the above discussion, we get the following recursive equation

T (h) = T (h′) + 2h
′
+max{T (h− 1), 2h− 1 + T (h− h′ − 1)},

solving which we get T (h) = O(h log n/ log log n).

Step 2

𝑻𝑹 𝑻𝑳

𝑻𝒊𝒏𝒊𝒕

Step 2

𝒉′

𝒉 − 𝟏

𝒉
−
𝒉
′
−
𝟏

𝒔

Step1

Figure 6.1: A carefully designed ALM can perform message distribution in
O(h log n/ log log n) in a full binary tree.

45

6.2 Proof of Proposition 3

To prove the proposition, we first propose a multicast algorithm, and then show that

the time complexity of the algorithm isO(h log log n) in a complete binary graph of

height h with 2h leaves.

For simplicity, assume that h is an even number. The proposed multicast algo-

rithm first divides the tree into 2
h
2 subtrees. Then, the algorithm is recursively called

on the subtree that includes the source. When the algorithm finishes on that subtree,

every node of the subtree sends the packet to a distinct node at the other subtrees.

This step requires 2h rounds because of the oversubscription of 1:1. By the end of

this step, there will be one node in each subtree that has received the packet. In the

last step, the algorithm is run in parallel on all the subtrees.

Let T (h) denote the time complexity of the above recursive algorithm. We have

T (h) = 2T (h/2) + 2h,

solving which yields T (h) = O(h log h).

6.3 Proof of Lemma 1

For every set S, S ∈ S, let σ(S) =
∑

a∈S a, and

(S†1, S
†
2) ∈ argmin

S1∪S2=S
S1∩S2=∅

max(σ(S1), σ(S2)). (6.1)

Without loss of generality, assume σ(S†2) ≥ σ(S†1). Towards showing a contradic-

tion, assume σ(S†2) >
2A
3

. Suppose

∃a ∈ S†2 s.t. a ≥ A

3
.

46

Then, for the sets S1 = {a}, and S2 = S\S1, we get

max(σ(S1), σ(S2)) ≤
2A

3
,

which is a contradiction by (6.1), and the assumption that σ(S†2) >
2A
3

. Therefore,

we must have

∀a ∈ S†2 a <
A

3
. (6.2)

Let S2 = S†2\{a}, and S1 = S†1 ∪ {a}, where a > 0 is an arbitrary member of S†2.

By (6.2), and the fact that σ(S†2) >
2A
3

, we get

A

3
< σ(S2) < σ(S†2),

which implies

max(σ(S1), σ(S2)) < max(σ(S†1), σ(S
†
2)),

a contradiction to (6.1).

6.4 Proof of Lemma 2

We call a switch a terminating switch if it is directly connected to more than m/2

nodes. Note that a tree can have at most one terminating switch.

In the first step, we set an arbitrary switch r0 as the root of tree T . Since r0 is not

a pivot, it must have a subtree rooted at, say, r1 that has more than m/2 nodes (see

Figure 6.2). Therefore, the number of nodes in the other subtrees of r0 all together

cannot be more than m/2.

If r1 is a terminating switch, we are done. Otherwise, we set r1 as the root of

tree T . Again, since r1 is not a pivot, it must have a subtree rooted at switch, say, r2,

that contains more than half of the nodes. Note that r2 6= r0, because, as depicted in

Figure 6.3, the subtree of r1 which is rooted at r0 (i.e, the subtree in dashed triangle)

cannot contain more than half of the nodes. In each step of the above process, we

47

𝒓𝟏

𝒓𝟎

Figure 6.2: r0 is neither a pivot nor a terminating switch

find a new subtree with smaller height than the one found in the previous step, and

the new subtree contains more than half of the nodes. Thus, this process must end

with a terminating switch.

48

𝒓𝟏

𝒓𝟎

𝒓𝟐 Terminating switch

Figure 6.3: r2 is a terminating switch

49

