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ABSTRACT

We propose methods to plan capacity for two types of service systems: traditional

multiserver systems, where customers wait in a single queue to be served by the first

available service provider, in a single processing step (e.g., bank tellers); and case

manager systems, where customers wait in a single queue to be assigned to a case

manager who will handle all (multiple) processing steps required to complete service

to that customer (e.g, emergency departments physicians).

Many researchers have addressed the problem of determining staffing require-

ments for traditional multiserver service systems. These requirements are often

determined by segmenting time into periods and using a sequence of steady-state

queueing models. The resulting requirements are approximate because nonstation-

ary and transient effects are not considered. We propose using a non-stationary

infinite-server model to determine staffing requirements for a finite-server model

with the same arrival process. We prove that the resulting staffing requirements

are necessary in the sense that the number of servers in a period must be greater

than or equal to that period’s staffing requirement in order to achieve the desired

quality of service, regardless of how the system was staffed in previous periods. The

requirements are exact in the sense that no steady-state approximation is used. We

demonstrate the effectiveness of the requirements with numerical examples.

Comparatively few researchers have studied case manager systems, despite its

ubiquity in real-world service systems. We propose a baseline stochastic model for

this type of system, along with three stochastic models to aid in performance eval-

uation and capacity planning: a model that provides lower bounds on performance

measures and approximates stability conditions for the baseline system, a model



that provides upper bounds on performance measures for the baseline system, and

a model that approximates performance measures for the baseline system. We also

examine how waiting times in case manager systems are affected by the imposition

of an upper limit on the number of customers simultaneously handled by each case

manager, and propose heuristic methods for choosing such a limit effectively.
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CHAPTER 1

Introduction

This dissertation, written in partial fulfillment of the requirements for a Ph.D.

degree in Operations and Informations Systems at the University of Alberta School

of Business, studies the problem of matching supply to demand in a service system,

while balancing customers waiting and operational costs. We examine two different

service system settings: traditional multiserver queueing systems in which arriving

customers are randomly assigned to any available server (e.g., bank tellers, call

centers, and airport check-in); and case manager systems, where the service provided

to a customer is composed of a random number of processing steps, all of which are

handled by the same server (e.g, social workers, emergency departments physicians,

and instant chat agents).

A typical problem in traditional multiserver systems, which many researchers

have addressed (Green and Kolesar 1991, Green et al. 2001, 2007, Ingolfsson et al.

2010), is finding minimum staffing levels that guarantee a desired quality-of-service

(QoS), defined in terms of customer waiting times. Since there is typically not

only random, but also predictable variability in demand, most service systems are

nonstationary and difficult to analyze. Most past work has focused on finding ap-

proximations to the numbers of servers that are both necessary and sufficient to

ensure a particular QoS. Although approximate approaches provide good solutions

in many cases, there are situations where they are not reliable, making the QoS fall

below the desired level (Green et al. 2001), or providing expensive solutions. We ad-

dress staffing for nonstationary systems in Chapters 2 – 4. In contrast to most past
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work, our objective is obtaining lower bounds on staffing for the system that are ex-

act (rather than approximate) and represent necessary (rather than approximately

sufficient) conditions for ensuring the desired QoS.

In Chapter 2 we propose using a non-stationary infinite-server queueing model

to determine staffing requirements for an otherwise identical finite-server queueing

model, with the same arrival process, explicitly modeling the end-of-shift policy,

which specifies what happens to a customer when his server is scheduled to leave

but service is not yet completed. We prove that the staffing requirements proposed

are necessary in the sense that the number of servers in a period must be greater

than or equal to that period’s staffing requirement in order to achieve the desired

quality of service, regardless of how the system was staffed in previous periods.

These proofs involve stochastic comparisons of performance measures of queueing

systems with time-varying arrival rate and number of servers, general distributions

for the interarrival and service times, and under both preemptive and exhaustive

end-of-shift policies. We also prove a similar result for systems with abandonment.

In Chapter 3 we discuss in detail the computation of performance measures

for the infinite-server queueing systems examined in Chapter 2. We discuss both

numerical and simulation methods, outlining the necessary algorithms and their

computational complexity. We focus on the computation of the typical performance

measure, quality of service (QoS), which typically involves two steps: (1) Compute

the systems occupancy probabilities and (2) compute the probability of the waiting

time not exceeding an acceptable threshold τ , given the system occupancy. We

discuss these two steps separately, and we compare their computational complexity.

In Chapter 4 we provide examples to illustrate the effectiveness of the staffing

requirements proposed in Chapter 2 for different systems with a wide range of pa-

rameters. This chapter also includes real-world examples, where our lower bounds

are used to tighten scheduling formulations.

Many service systems use case managers, servers who are assigned multiple cus-

tomers and have frequent, repeated interactions with each customer until the cus-

tomer’s service is completed. Examples may be found in health care (emergency
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department physicians), contact centers (agents handling multiple on-line chats si-

multaneously) and social welfare agencies (social workers with multiple clients). Al-

though case managers are very common in service systems, they have received little

attention in academia in comparison to standard multiserver systems. In Chap-

ter 5 we propose a baseline stochastic model of a case manager system, formulate

models that provide performance bounds and stability conditions for the baseline

system, and formulate a birth-death process that approximates the baseline sys-

tem’s performance. Many systems place an upper limit on the number of customers

simultaneously handled by each case manager. We examine the impact of these

case-load limits on waiting time and describe effective, heuristic methods for setting

these limits.

This dissertation contains two independent parts: Chapters 2 – 4 and Chapter

5. The common bibliography and appendices for both parts are collected at the end.

3



CHAPTER 2

Exact Necessary Staffing Requirements based on

Stochastic Comparisons with Infinite-Server Models

2.1 Introduction

The issue of determining staffing levels is relevant to a variety of service systems,

such as call centers and health care facilities. A typical objective is finding minimum

staffing requirements that ensure a desired quality of service (QoS), taking into

account the randomness and the predictable variability in the demand for service.

Labor agreements typically limit how often staffing can be changed and therefore,

although the demand rate may vary continuously, staffing must remain constant over

periods that we refer to as planning periods. Although most service systems face

nonstationary demand, most methods to determine staffing requirements are based

on the idea of using a series of tractable stationary models to determine staffing

requirements for each planning period.

A typical approach is to use formulas for stationary finite-server systems to find

the minimum number of servers to ensure the desired QoS in each planning period

(where the QoS is usually defined as the proportion of customers experiencing delays

shorter than a given threshold). Two examples of this approach are the segmented

pointwise stationary approximation (Segmented PSA, Green and Kolesar 1991) and

the stationary independent period-by-period (SIPP) approach (Green et al. 2001).

In Segmented PSA, first, the number of servers required at each epoch within a

planning period is computed, as if the number of servers could be changed at any
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time. Second, the staffing requirement for the planning period is set to the max-

imum of the staffing requirements within that period. In the SIPP approach, the

average arrival rate for each planning period is used in stationary finite-server sys-

tem formulas to find the required staffing. Instead of exact formulas, one can use

approximate Square-Root-Staffing formulas (Gans et al. 2003), which decompose

the required staffing into the offered load plus “safety staffing,” proportional to the

square-root of the offered load, to protect against random fluctuations in demand.

One justification for this formula comes from approximating the number of cus-

tomers in the finite-server system by the number of busy servers in a stationary

infinite-server system with identical arrival process and service times, which can in

turn be approximated by a normal distribution with both the mean and variance

equal to the offered load (Jennings et al. 1996, Green et al. 2007). Another justi-

fication comes from an asymptotic approximation for the Erlang-C formula in the

Quality and Efficiency Driven regime (Halfin and Whitt 1981), for large systems.

Borst et al. (2004) showed how the optimal safety staffing can be computed given

the tradeoff between server costs and QoS.

It is important to keep in mind that methods where staffing requirements are de-

termined for each period independently are approximations of the real problem, be-

cause the queue that builds up creates a dependence between periods. Atlason et al.

(2004) and Ingolfsson et al. (2010) provide detailed examples illustrating this depen-

dence. The Segmented PSA and SIPP approaches typically perform well in cases

with short service times and short planning periods, but their performance are

likely to deteriorate as service times get longer (Green et al. 2001). In some cases

the performance can be improved with a refinement where a time lag is introduced

in the arrival rate function before the application of the Segmented PSA or SIPP

approaches (Green et al. 2001). This time lag, which shifts the arrival rate function

by the mean service time, accounts for the fact that when service times are longer

(and thus customers stay longer in the system) there is a time lag in the congestion.

Although there are many cases where the Segmented PSA or SIPP approaches (or

one of their refinements) provide good solutions for the staffing problem, there are
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other cases where these approximations are not reliable, making the QoS fall below

the desired threshold, as shown in Green et al. (2001).

Like the Square-Root-Staffing Formula, the modified-offered-load (MOL) ap-

proximation (Massey and Whitt 1994) and the simulation-based iterative staffing

algorithm (ISA, Feldman et al. 2008) use infinite-server models, with arrival and

service processes identical to those of the finite-server system of interest, as tools

to obtain staffing requirements. In the MOL approximation, which we discuss in

Section 4.1, the mean number of busy servers in a nonstationary infinite-server

system is used to construct an arrival rate function that is used as input for an

approach similar to Segmented PSA and SIPP. The ISA starts by simulating the

time-dependent distribution of the number of customers in an infinite-server sys-

tem. This distribution is used to obtain a staffing function that satisfies the QoS

target at all times. The system is then simulated again, using the staffing func-

tion constructed in the previous step, in order to obtain a new distribution for the

number of customers in the system. The algorithm iterates between generating

staffing functions and simulating the system until the staffing functions stabilizes.

Since the ISA is based on simulation, it can be used for systems with general arrival

and service processes and under different end-of-shift policies, which specify what

happens to customers when their servers are scheduled to leave but the service is

not yet completed. Feldman et al. (2008) prove the convergence of the algorithm

(using stochastic ordering) for the special case of a nonhomogeneous Poisson arrival

process and exponentially distributed service and abandonment times. The proof

does not explicitly consider the end-of-shift policy. The result we prove here, on

the other hand, is for a more general system, and we explicitly consider end-of-shift

policies. Zeltyn et al. (2010) also use the simulation of an infinite-server system,

keeping track of the number of busy servers, to estimate the offered load and later

recommend staffing levels for a network of resources in an emergency department.

Staffing requirements are often used as inputs for staff scheduling, which incor-

porates constraints on available shifts and tours, in addition to the QoS constraints.

Alternatively, the staffing and scheduling problems can be solved jointly—see for ex-
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ample the methods proposed by Ingolfsson et al. (2010) and Atlason et al. (2008),

both of which perform well when average service times are long and arrival rates

are highly variable. Both methods employ lower bounds on the number of servers

necessary to ensure the desired QoS, with tighter bounds being likely to increase

their speed. Our infinite-server staffing requirements provide such bounds, as we dis-

cuss further in Section 2.4. Other scheduling methods (for example, Atlason et al.

2004, Cezik and L’Ecuyer 2008) assume the QoS is concave in the staffing levels.

Since this is not true in general, these authors suggested adding lower limits on

the staffing levels to limit themselves to the “concave region”, but without proof

that the limits chosen were necessary to achieve the desired QoS. Bounds that are

provably necessary, such as the ones we provide, might improve the effectiveness of

these methods.

Bounding a finite-server system with an infinite-server system, as we do, is use-

ful because infinite-server systems are easier to analyze. For example, compare the

solution of an M(t)/M/s system with that of an otherwise identical M(t)/M/∞

system, by numerically solving the forward differential equations. The former re-

quires the solution of an infinite set of differential equations, so one must truncate

the state space, at some system capacity K, chosen so that the probability of reach-

ing state K is small. The infinite-server system requires less computational effort,

because it will have fewer customers, so that one can truncate at a smaller capacity

K. Furthermore, if the system starts empty, then the state probabilities for the

infinite-server system follow a Poisson distribution at all times, so it suffices to solve

a single differential equation, for the mean of the Poisson distribution (Eick et al.

1993b).

There is another reason that infinite-server bounds are useful. To compute or

estimate the virtual waiting time distribution for a nonstationary system, one can

often use the following approach: (1) compute the probability distribution for the

number in the system at all times (using simulation or numerical evaluation) and (2)

compute the waiting time distribution, conditional on the number in the system.

Step (1) typically requires much more computation than step (2). If one wishes
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to compare the virtual waiting time distributions (or functions thereof) for several

staffing functions for a finite-server system, then one needs to perform both steps for

every staffing function. But we will see that, depending on the end-of-shift policy,

in order to compute our bounds on the virtual waiting time distribution for several

staffing level functions, step (1) only needs to be performed once.

We make the following contributions in Chapters 2–4: (1) We prove that the

virtual waiting time process in a system with a general arrival process, independent

generally distributed service times, and time-varying number of servers with either

a preemptive or an exhaustive end-of-shift policy is stochastically larger than a

“pseudo virtual waiting time process” that we construct from an infinite-server but

otherwise identical system. (2) We use the infinite-server system to compute lower

bounds on staffing for the finite-server system in order to satisfy QoS constraints.

In contrast to most work on staffing requirements for queueing systems, these lower

bounds are exact (rather than approximate) and they represent necessary (rather

than approximately sufficient) conditions for satisfying the QoS constraints. (3) We

provide stochastic ordering results for queueing systems with a time-varying number

of servers, explicitly modelling the end-of-shift policy—an aspect that we believe has

not received sufficient attention. Most previous work allows the arrival rate and the

service rate to vary with time, but not the number of servers. Therefore, these

stochastic ordering results cannot be used to generate exact staffing requirements.

Feldman et al. (2008) presented stochastic ordering results for systems with a time-

varying number of servers, but they only considered Markovian systems and they

did not address the end-of-shift policy in their proofs. (4) We compare the lower

bounds to other methods to generate staffing requirements, in terms of computation

time and accuracy. (5) We demonstrate that the lower bounds can be used to speed

up previously-published shift scheduling algorithms.

In Section 2.2 we review stochastic ordering definitions and results. In Section

2.3 we define the pseudo virtual waiting time for infinite-server systems and obtain

stochastic ordering results comparing it to the virtual waiting time in related finite-

server systems. In Section 2.4 we use these results to obtain relationships between
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various performance measures for the finite- and infinite-server systems and to ob-

tain staffing requirements. In Chapter 3 we discuss how to evaluate the performance

of infinite-server systems. In Chapter 4 we show the results of computational ex-

periments comparing our lower bounds with the MOL approximation and the SIPP

approach. We also demonstrate that our lower bounds can be used to speed up the

method in Ingolfsson et al. (2010).

2.2 Stochastic Ordering and Notation

We start by defining the usual stochastic ordering between stochastic processes.

A random variable X is stochastically larger than random variable Y , denotedX ≥st

Y , if Pr {X > a} ≥ Pr {Y > a}, for all a (Ross 1996). This relation is generalized

to say that a stochastic process {X(t), t ≥ 0} is stochastically larger than a process

{Y (t), t ≥ 0} if X(t) ≥st Y (t) for all t (Muller and Stoyan 2002).

The basic idea behind most stochastic order relations between queueing sys-

tems is to show that, under specific circumstances, if the interarrival times de-

crease and the service times increase, the number of customers in the system in-

creases. Whitt (1981) reviews such results for a variety of systems, including ones

by Daley and Moran (1968), Jacobs and Schach (1972), Sonderman (1979a,b). An-

other example is Bhaskaran (1986). In general, it is harder to obtain stochastic

ordering results when the assumptions of Poisson or renewal arrival processes and

exponentially distributed service times are relaxed. This is especially true when

we want to obtain an ordering between the virtual waiting times for systems with

different number of servers, which is our goal in this project.

We use G/G/s to denote a queueing system with a general arrival process, gen-

erally distributed service times, s servers, and infinite waiting room capacity. We

add the argument (t) to indicate nonstationary processes. For systems with time-

varying number of servers, we use EXH to denote an exhaustive end-of-shift policy,

where servers that are scheduled to leave finish the jobs they had already started (if

any) before leaving, and PRE to denote a preemptive end-of-shift policy, where cus-
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tomers being served by servers that are scheduled to leave are sent back to the head

of the queue. We use +G to indicate systems with generally distributed abandon-

ment times. We replace G with GI when the arrivals follow a renewal process and

also when the service times or abandonment times are independent and generally

distributed. Similarly, we replace G with M when the arrival process is Poisson and

when the service times or abandonment times are independent and exponentially

distributed. So, for example, G(t)/M/s(t)///EXH + GI denotes a system with a

nonstationary general arrival process, independent exponentially distributed service

times, a time-varying number of servers following an exhaustive end-of-shift policy,

and independent identically distributed abandonment times.

We denote by Nj(t) the total number of customers and Wj(t) the virtual waiting

time in system j at time t. For system j, the interarrival time between customers

i−1 and i is Xi
j , customer i’s service time is Si

j, and customer i’s patience time is P i
j .

We use Aj(t), Dj(t), and Lj(t) for the cumulative number of arrivals, departures,

and abandonments up to time t in system j and Pj for the sequence of patience times
{

P 1
j , P

2
j , . . .

}

. Also, we use Am
j (t), Dm

j (t), and Lm
j (t) for the cumulative number of

arrivals, departures, and abandonments up to time t in a modified version of system

j with no arrivals after time m.

2.3 Comparing Finite and Infinite-Server Queues

Consider a G(t)/G/s and a G(t)/G/∞ queue with identical interarrival times

{X1,X2, . . . } and service times {S1, S2, . . . } for all customers. We index the two

systems with j = F for “finite” and j = I for “infinite” and we drop the system

subscript j on the cumulative number of arrivals A(t) because that process is iden-

tical for the two systems. The virtual waiting time for the finite-server system is

(see, for example, Mandelbaum et al. 2002):

WF (t) = min {r ≥ 0 : DF (t+ r) ≥ A(t)− (s− 1)} . (2.1)

Since the virtual waiting time for a finite-server system at time t is not affected
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by arrivals after t we can also (equivalently) define WF (t) in terms of a modified

version of this system with arrivals stopped at time t:

WF (t) = min
{

r ≥ 0 : Dt
F (t+ r) ≥ A(t)− (s− 1)

}

. (2.2)

Figure 2.1 illustrates this definition. It shows a customer graph (on the top) and

the virtual waiting time (on the bottom) for a two-server system. Each horizontal

bar on the customer graph represents one customer, with the vertical axis indicating

the order of arrival. The left edge of a customer’s bar marks her arrival time and the

right edge marks her departure time, with the black portion of the bar represent-

ing the time interval where the customer waits for service and the shaded portion

representing the interval where the customer is being served. So for example, the

third customer arrives to the system at t = 0.5 hours, waits until service begins at

t = 0.8 hours and leaves the system at t = 0.9 hours. More details about customer

graphs can be found in Ingolfsson and Grossman (2002).

The true virtual waiting time in the infinite-server system is zero, but we compare

the finite-server system virtual waiting time to what we call the pseudo virtual

waiting time WI(t) in the infinite-server system, which we define, by applying the

finite-server definition (2.1) to a modified version of the infinite-server system with

arrivals stopped at time t, as follows:

WI(t) = min
{

r ≥ 0 : Dt
I(t+ r) ≥ A(t)− (s− 1)

}

. (2.3)

Note that WI(t) is computed using the number of servers, s, in the finite-server

system.

Figure 2.2 shows the customer graph and the pseudo virtual waiting time, as

in (2.3), for the infinite-server system parallel to the two-server system in Figure

2.1. Note that the customer arrival times and service times in the infinite-server

system are the same as in the finite server-system, but there is no waiting in the

infinite-server system.

We show that the finite-server virtual waiting time is at least as large as the
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Figure 2.1: Customer graph and virtual waiting time for a G(t)/G/2 system.
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Figure 2.2: Customer graph and pseudo virtual waiting time for an infinite-server
system with the same arrival process and service times as the two-server
system in Figure 2.1.
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infinite-server pseudo virtual waiting time for all sample paths, first for a fixed

number of servers and later extending the basic result to a time-varying number of

servers with an exhaustive or a preemptive end-of-shift policy, as well as systems

with abandonment.

2.3.1 Queues with a Fixed Number of Servers

Theorem 2.1. For a G(t)/G/s system and a G(t)/G/∞ system with identical

interarrival and service times for all customers and NF (0) ≥ NI(0), it holds that:

Pr {WF (t) ≥ WI(t)} = 1. (2.4)

Proof. The arrival epochs and service times for every customer are the same in both

systems. Therefore, every customer’s departure epoch in the infinite-server system

is equal or earlier than in the finite-server system, which implies that Dt
I(t + r) ≥

Dt
F (t + r), for all t and all r ≥ 0, and min{r ≥ 0 : Dt

I(t + r) ≥ c} ≤ min{r ≥ 0 :

Dt
F (t+ r) ≥ c}, for any c. Using (2.2) and (2.3) it follows that WI(t) ≤ WF (t) for

all t.

Sample path ordering implies the usual stochastic ordering (Ross 1996), and

therefore:

Corollary 2.2. For the two systems defined in Theorem 2.1:

WF (t) ≥st WI(t) (2.5)

Note the simplicity of the proof of Theorem 2.1, compared to most stochastic

ordering proofs for queueing systems in the literature, which typically use coupling

and thinning arguments. The simplicity stems from our use of the same arrival

and service process in the two systems that we compare, as opposed to identically

distributed but separate processes for the two systems. Our use of identical arrival

and service processes does not limit the usefulness of our results, because we compare
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a real finite-server system to a parallel but fictional infinite-server system whose only

purpose is to aid in the analysis, as opposed to comparing two real systems.

2.3.2 Queues with a Time-Varying Number of Servers

When the number of servers s(t) varies with time, we extend the virtual waiting

time definitions to:

WF (t) = min
{

r ≥ 0 : Dt
F (t+ r) ≥ A(t)− (s(t+ r)− 1)

}

, (2.6)

WI(t) = min
{

r ≥ 0 : Dt
I(t+ r) ≥ A(t)− (s(t+ r)− 1)

}

, (2.7)

Let R = {t1, t2, ...} be the set of all epochs where s(t) changes, ∆ = {δ1, δ2, . . . }

be the number of servers scheduled to leave, and Γ = {γ1, γ2, . . . } be the number

of servers scheduled to arrive at each epoch in R. Note that both δi and γi can

be positive for the same epoch ti, if some servers are scheduled to leave and other

servers are scheduled to arrive at the same epoch. Let t− and t+ denote the instants

immediately before and after t, respectively.

In the interval 0 ≤ t ≤ t1, assuming NF (0) ≥ NI(0), Theorem 2.1 implies that:

Pr{WF (t) ≥ WI(t)} = 1 for 0 ≤ t ≤ t1.

Suppose that s(t−1 ) = s0. When the γ1 servers arrive, they begin serving the

customers waiting in line, if any. As a result, these customers will depart earlier

than if no new servers had arrived, but no earlier than in the infinite-server system,

so the logic in the proof of Theorem 2.1 continues to hold.

When a server is scheduled to leave the system, we need to specify what will

happen to the customer he is serving, if any. With a preemptive discipline, a cus-

tomer could enter service multiple times (if preempted), in which case the virtual

waiting time in (2.6) represents the time from arrival at t until service begins for the

first time. A preemptive discipline may not be realistic if the customers and servers

are human, in which case an exhaustive discipline could be more appropriate. We
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treat both the preemptive and the exhaustive discipline.

2.3.2.1 Preemptive Discipline

The central argument in the proof of Theorem 2.1 relies on the fact that every

customer leaves the infinite-server system no later than in the finite-server system.

As noted above, this remains true when new servers arrive. It also remains true

when servers depart in the case of a preemptive resume discipline, where service

is continued from the point it stopped when the customer was preempted, because

the return of a customer to the head of the line will add nonnegative waiting time

to the customer’s total time in the system and delay the departures even further.

This is also true for a preemptive repeat discipline without re-sampling, where the

customer’s service time does not change, but is re-started from the beginning each

time the customer enters service, thus adding not only waiting time, but also extra

service (rework) time to the customer’s total time in the system. Therefore, The-

orem 2.1 holds when the number of servers varies with time, under a preemptive

resume discipline and a preemptive repeat discipline without re-sampling.

2.3.2.2 Exhaustive Discipline

Under this discipline, although the physical number of customers waiting and

receiving service at t+1 remains the same as at t−1 , the number of customers affecting

the delay of future customers changes.

Let δNF be the number of servers who are scheduled to leave at t1, but stay in

the system to finish a service they started before t1. We define s1 = s0 + γ1 − δ1

as the number of scheduled servers for t ∈ (t1, t2], excluding servers who stayed

longer to finish service. We use s1—the number of servers available to start new

services—in the computation of the virtual waiting time in (t1, t2]. Also, we define

NF (t
+
1 ) as the number of customers who are either in the queue or being served by

servers scheduled to work in t ∈ (t1, t2], i.e., we exclude customers who are being

served by servers who were scheduled to leave the system but stayed to finish their

jobs.
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In other words, we model the server departures at time t1 by “ejecting” from the

system the δNF customers that the δ1 servers scheduled to leave were serving. In

reality, the customers are not ejected; they stay in the system until their service is

completed. But these customers do not impact the waiting times of future customers

and therefore it is not necessary to model what happens to them. When we consider

ejections, the number of customers in the finite-server system who impact the waiting

times of future customers might change at t1. If NF (t
−

1 ) ≥ s0, all servers will be

busy and therefore δ1 customers and servers will be ejected from the system. If

NF (t
−

1 ) < s0, the number of ejected customers will be between 0 and δ1. As shown in

Ingolfsson et al. (2007), if δ1 servers are scheduled to leave at time t1, with s0 servers

and NF (t
−

1 ) customers in the system at t−1 , the probability φ of δNF customers being

ejected follows a hypergeometric distribution:

φ(δNF ; δ1, s0, NF (t
−

1 )) =

(

NF (t
−

1 )

δNF

)(

s0 −NF (t
−

1 )

δ1 − δNF

)

(

s0
δ1

) , for NF (t
−

1 ) < s0 (2.8)

(Ingolfsson (2005) assumes a Markovian system but the formula above holds more

generally, since we assume the servers scheduled to leave will be randomly selected

from the servers currently on shift.) If we let πF (t) = (πF
0 (t), π

F
1 (t), ...), where

πF
i (t) = Pr{NF (t) = i}, be the system’s occupancy-probability vector at time t,

then we have:

πF (t+1 ) = πF (t−1 )BF (t1), (2.9)

where BF (t1) is a transition probability matrix with the following non-zero elements:

bnF ,nF−δ1 = 1, for nF = s0, s0 + 1, ...

bnF ,nF−δn = φ(δn; δ1, s0, nF ), for nF = 0, 1, ..., s0 − 1 and

nF − (s0 − δ1)
+ ≤ δn ≤ min(δ1, nF ).

(2.10)

Figure 2.3 illustrates the computation of the virtual waiting time in a system that

starts with 3 servers at time 0, and goes down to 2 servers at time t1 = 0.4, because
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Figure 2.3: Customer graph and virtual waiting time for a finite-server system with
time-varying number of servers.

δ1 = 1 server leaves and γ1 = 0 servers arrive. In this example, the server scheduled

to leave at time t1 served Customer 2. Although both the server scheduled to leave

and Customer 2 remain in the system until time t = 0.9, this service completion does

not impact the virtual waiting time after t1. In particular, note that the customer

arriving at time 0.5 has to wait for the service completion of Customer 1, at t = 0.7

to begin service.

Figure 2.4 illustrates how the computation of the pseudo virtual waiting time in

the infinite-server system parallel to the finite-server system in Figure 2.3 would be if,

instead of redefining NI(t) and Dt
I(t+ r) as we do to obtain the result in Theorem

2.3, we defined NI(t) to be the total number of customers in the infinite-server

system, with the cumulative number of departures Dt
I(t + r) remaining unchanged

right after servers leave the finite-server system. Note that in this case we would
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Figure 2.4: Customer graph and pseudo virtual waiting time for an infinite-server
system parallel to the finite-server system in Figure 2.3, with NI(t)
defined as the total number of customers in the infinite-server system,
so that Dt

I(t+ r) is unchanged right after server departures.

have WI(t) ≥ WF (t) for 0.4 ≤ t ≤ 0.9, so the desired ordering of the virtual waiting

time and pseudo virtual waiting time does not hold.

The cumulative number of departures in the finite-server system increases after

ejection, so in order to guarantee that the ordering Dm
F (t+1 ) ≤ Dm

I (t+1 ), m < t+1 ,

is maintained, we need to eject customers in the infinite-server system as well. We

discuss two possible ways of doing this. Let πI(t) = (πI
0(t), π

I
1(t), ...), where π

I
i (t) =

Pr{NI(t) = i}, be the infinite-server system’s occupancy-probability vector at epoch

t. First, suppose we eject δNI = min(NI(t
−

1 ), δ1) customers from the infinite-server

system, that is, we eject one customer for every server that is scheduled to leave, up
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to the total number of customers in the system. Thus we have:

πI(t+1 ) = πI(t−1 )H(t1), (2.11)

where H(t1) is a transition probability matrix with the following non-zero elements:

hnI ,0 = 1, for nI = 0, 1, . . . , δ1

hnI ,nI−δ1 = 1, for nI = δ1 + 1, δ1 + 2, ...
(2.12)

We now show that the ordering between NI and NF , and WI and WF , is main-

tained after the ejection. Recall that the customer arrival epochs and service times

are the same in the finite- and infinite-server systems. There are only two possibili-

ties for the number of ejections in the infinite-server system:

1. IfNI(t
−

1 ) ≤ δ1, all customers in the infinite-server system are ejected, NI(t
+
1 ) =

0, and therefore the relationship NF (t
+
1 ) ≥ NI(t

+
1 ) is maintained. Further-

more, since the infinite-server system is empty at t+1 , WF (t
+
1 ) ≥ WI(t

+
1 ).

2. If NI(t
−

1 ) > δ1, δNI = δ1. Since 0 ≤ δNF ≤ δ1, it follows that δNF ≤ δNI

and therefore NF (t
+
1 ) = NF (t

−

1 ) − δNF ≥ NI(t
−

1 ) − δNI = NI(t
+
1 ). In order

to guarantee that the relationship WF (t
+
1 ) ≥ WI(t

+
1 ) also holds it suffices to

construct the ejections in the finite-server system from the ejections in the

infinite-server system, such that the δNF customers ejected from the finite-

server system are a subset of the δNI customers ejected from the infinite-server

system.

This argument can be repeated to show that Pr{WI(t) ≤ WF (t)} = 1 for all t.

We summarize the comparison results for systems under preemptive and exhaus-

tive disciplines in the following theorem.

Theorem 2.3. Consider a finite-server system and an infinite-server system with

identical interarrival and service times for every customer, with NF (0) ≥ NI(0). It

follows that:

20



1. If the finite-server system is G(t)/G/s(t)///PRE without resampling and the

infinite-server system is G(t)/G/∞,

Pr {WF (t) ≥ WI(t)} = 1. (2.13)

2. If the finite-server system is G(t)/G/s(t)///EXH and the infinite-server sys-

tem is G(t)/G/∞ with customers ejected according to matrix H in (2.12),

Pr {WF (t) ≥ WI(t)} = 1. (2.14)

We also examine an alternative way of ejecting customers from the system, with

the occupancy-probabilities in the infinite-server system undergoing instantaneous

transitions according to the matrix BI , which has the following non-zero elements:

bnI ,nI−δ1 = 1, for nI = s0, s0 + 1, ...

bnI ,nI−δn = φ(δn; δ1, s0, nI), for nI = 0, 1, ..., s0 − 1 and

nI − (s0 − δ1)
+ ≤ δn ≤ min(δ1, nI).

(2.15)

For this case we prove the following theorem (proof in Appendix A.1). We further

discuss the difference between the two different types of ejection, using matrix H or

BI , in section 4.1.3.

Theorem 2.4. Consider a G(t)/G/s(t)///EXH finite-server system and a G(t)/G/∞

infinite-server system with identical interarrival and service times for every customer

and with customers ejected according to matrix BI in (2.15), with NF (0) ≥ NI(0).

It follows that:

NF (t) ≥st NI(t). (2.16)

If we further assume that the service times are independent and identically dis-

tributed, according to an exponential distribution, it follows that:

WF (t) ≥st WI(t). (2.17)
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Note that for both ordering results we have proven for systems under an exhaus-

tive discipline, the associated infinite-server system depends on the staffing function

s(t) through the instantaneous transition matrices

2.3.3 Queues With Abandonment

Now we fix the number of servers at s but assume that the customers are impa-

tient, with patience times P = {P1, P2, . . . }. Throughout this section, whenever we

say “earlier” we mean “at the same time or earlier”. Following Mandelbaum et al.

(2002), we obtain the virtual waiting time at time m for an infinitely patient cus-

tomer through a modified version of the original system with the arrival process

interrupted at time m. Then the virtual waiting time for the modified system is

given by:

Wm
F (t) = min {r ≥ 0 : Dm

F (t+ r) + Lm(t+ r) ≥ Am(t)− (s − 1)} . (2.18)

For the original system, we have WF (t) = W t
F (t), for t ≥ 0. We use the mod-

ified system with interrupted arrivals to define WF (t) to avoid situations where a

customer arriving after time t abandons and causes DF (t+ r) to increase for some

r ≥ 0, which could affect WF (t), even though the virtual waiting time at t should

not change.

We show that the virtual waiting time in a G(t)/G/s///+G system is bounded

by the pseudo virtual waiting time in an infinite-server system with service time

distribution equal to the minimum of the service time and patience time distributions

of the finite-server system.

Theorem 2.5. Consider a finite-server system G(t)/G/s///+G, with service time

sequence SF . Let an infinite-server system have the same arrival process as the

finite-server system and set the service time sequence for the infinite-server system

to the minimum of SF and the patience time sequence for the finite-server system
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(SI = min {SF , P}). Assume that NF (0) ≥ NI(0). It follows that:

Pr{WI(t) ≤ WF (t)} = 1

Proof. Let the arrival epochs and service times for each customer be identical in

the finite- and infinite-server systems. Given that SI = min {SF , P}, we know that

for every abandonment in the finite-server system there is an earlier departure due

to service completion in the infinite-server system. We also know that for every

departure due to service completion in the finite-server system there is an earlier

departure due to service completion in the infinite-server system. Therefore we have

DF (t) + L(t) ≤ DI(t) and also Dt
F (t) + Lt(t) ≤ DI(t) for all t. Using (2.18) and

(2.1) we have:

WI(t) = min{r ≥ 0 : Dt
I(t+ r) ≥ A(t)− (s − 1)} ≤

min{r ≥ 0 : Dt
F (t+ r) + Lt(t+ r) ≥ A(t)− (s− 1)} = W t

F (t).

From this construction, we conclude that Pr{WI(t) ≤ WF (t)} = 1, for all t.

The arguments in Sections 2.3.2.1 and 2.3.2.2 can be repeated to show that the

relationship Pr{WI(t) ≤ WF (t)} = 1 also holds for G(t)/G/s(t)///PRE + G and

G(t)/G/s(t)///EXH +G systems.

2.4 Comparing Performance Measures

In Section 2.3, we proved sample path ordering (Pr{WF (t) ≥ WI(t)} = 1) for

several types of queueing systems. We now show how this implies orderings for

various QoS measures and we point out one exception.

Perhaps the most common QoS measure is the proportion of customers expe-

riencing delays less than or equal to some threshold, i.e., SL(t) = P{WF (t) ≤ τ}.

Stochastic ordering implies that P{WF (t) ≤ τ} ≤ P{WI(t) ≤ τ}. Thus, the number

of servers required to ensure that P{WI(t) ≤ τ} ≥ α is less than or equal to that

required to ensure that P{WF (t) ≤ τ} ≥ α, which leads to a lower bound on the
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number of servers required to maintain a given QoS. The stochastic ordering also

implies E[WF (t)] ≥ E[WI(t)] (Ross 1996), and therefore the pseudo virtual waiting

time can be used to obtain lower bounds on staffing requirements if the expected

waiting time is used as a performance measure.

The instantaneous measure Pr{W (t) ≤ τ} cannot be measured in a real queue,

or in a simulation model. Instead, one typically uses averages over planning peri-

ods. Let S̄L
i
F and S̄L

i
I denote the time average QoS in planning period i in the

finite- and infinite-server system. Since these time averages are weighted averages

of instantaneous service levels, which are ordered at each instant, it follows that

S̄L
i
F ≤ S̄L

i
I .

Koole (2005) proposed an alternative QoS measure, called average excess (AE),

defined as the average excess waiting time beyond an acceptable waiting threshold,

given that the threshold is exceeded: AE = E[W (t)−τ |W (t) > τ ]. This measure has

the advantage of eliminating the incentive for managers to give priority of service

to customers who have not exceeded the waiting threshold yet (which would make

the customers who exceeded the waiting threshold wait even longer). We have that:

E[WF (t)− τ |WF (t) > τ ] =

∞
∫

0

P{WF (t) > τ + a}

P{WF (t) > τ}
da (2.19)

and similarly for E[WI(t)− τ |WI(t) > τ ]. In this case the sample path ordering of

WF and WI does not necessarily imply the stochastic ordering of the QoS measure.

In this case a (stronger) hazard rate order is required, where P{WF (t) > τ +

a|WF (t) > τ} ≥ P{WI(t) > τ + a|WI(t) > τ} (Muller and Stoyan 2002). As shown

in the example in Appendix A.2 it is possible for two variables to be ordered with

probability one even though their distributions are not ordered in the hazard rate

ordering.

For systems with abandonment, another commonly used QoS measure is the

probability of abandonment P ab(t) at time t. Given WF (t) ≥st WI(t) (Theorem

2.5) and the probability density function (pdf) of the customer patience times, fP ,
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(assumed to exist), we can write:

P ab
F (t) =

∞
∫

0

P{WF (t) > p}fP (p)dp ≥

∞
∫

0

P{WI(t) > p}fP (p)dp = P ab
I (t), (2.20)

and we can obtain a lower bound for systems with abandonment when this QoS

measure is used.

Our results in Section 2.3 also hold for systems operating for a finite time interval

[0, T ]. In these systems virtual waiting times are not relevant after the system shuts

down, as new customers will not be admitted, but the time interval from T until

all remaining customers have been served, CF , can be an important QoS measure.

Reducing this measure is typically in both the customers’ and system operator’s

interest (to reduce overtime payments). Let CF be:

CF = inf{r|DF (T + r) = A(T )}, (2.21)

and similarly for its infinite-server counterpart CI . Since DF (t) ≤st DI(t), then

CI(t) ≤st CF (t). That is, the time until all the work is finished and all servers leave

in the finite-server system is stochastically larger than in the infinite-server system.
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CHAPTER 3

Computing Performance Measures for Infinite-Server

Systems

To compute infinite-server based lower bounds, we need to evaluate the QoS

in infinite-server systems efficiently. This computation can be decomposed into

two steps: (1) Compute the system’s occupancy probabilities, πn(t), and (2) com-

pute the time-dependent QoS measure, conditional on the system occupancy n, for

n = 0, 1, .... We will discuss these two steps separately. We focus on the most

common QoS measure, that is, SL(t) = P{WF (t) ≤ τ}, the proportion of customers

experiencing delays less than or equal to a threshold τ . Note that we define perfor-

mance measures based on virtual waiting times as opposed to actual waiting times

experienced. Therefore, even when using simulation, we cannot simply compute the

probability that the waiting time exceeds the threshold in a single-step approach,

as in the case of actual waiting times.

Closed-form solutions exist for the occupancy probabilities of M(t)/G/∞ sys-

tems: if the system starts empty in the distant past, the number of customers in the

system follows a Poisson distribution (Eick et al. 1993a,b), with a time-dependent

mean m(t) obtained from the differential equation in (3.1) for M(t)/M/∞ systems

and from the integral equation in (3.2) for M(t)/G/∞ systems. We can evaluate

(3.1) numerically using the Runge-Kutta the method (Shampine and Reichelt 1997)
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and (3.2) using the Adaptive Simpson’s method (Kuncir 1962), for example.

m′(t) = λ(t)−
m(t)

E[S]
, where S is a service time. (3.1)

m(t) =

∞
∫

0

Ḡ(u)λ(t− u)du, where Ḡ(u) = 1−G(u). (3.2)

In cases where the system starts with a deterministic number (k) of customers at

time t = 0 (rather than empty), Eick et al. (1993b) remark that the distribution

of the number of customers in the system is the sum of two independent random

variables: a Poisson random variable with mean m(t) as in (3.2) and a binomial

random variable with parameters k and p = (1−G(t)). When the initial number of

customers is a random variable (rather than deterministic) with Poisson distribution,

the binomial distribution is replaced by a Poisson distribution (and the distribution

of the number of customers in the system is Poisson).

Unfortunately, if the system does not start empty or with a random (Poisson)

number of initial customers (for example, because of the type of instantaneous tran-

sition involved in our modeling of the exhaustive discipline) then the occupancy

distribution is no longer Poisson. However, Nelson and Taaffe (2004) show how to

obtain (exactly) the mean, variance and higher moments of the distribution of the

number of customers in a Ph(t)/Ph(t)/∞ system, where the interarrival and service

times have time-dependent phase type distributions. The moments could be used to

approximate the occupancy probability for any n, but this requires one to assume

an approximate “closure” distribution, as in Rothkopf and Oren (1979).

In M(t)/M/∞ systems, the occupancy probabilities can be computed directly

by solving an infinite set of ordinary differential equations (ODEs) (the Chapman-

Kolmogorov forward equations, see Kleinrock 1974b).

π′

0(t) = µπ1(t)− λ(t)π0(t) (3.3)

π′

j(t) = λ(t)πj−1(t) + (j + 1)µπj+1(t)− (λ(t) + jµ)πj(t), for j = 1, 2, . . . , (3.4)
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subject to initial conditions πj(0) = qj for j = 0, . . . ,∞ (if the system starts empty,

q0 = 1 and qj = 0 for all j > 0). This infinite set of equations can be approximated

by the finite number K +1 of equations (with K large enough to ensure that πK(t)

is small)

π′

0(t) = µπ1(t)− λ(t)π0(t) (3.5)

π′

j(t) = λ(t)πj−1(t) + (j + 1)µπj+1(t)− (λ(t) + jµ)πj(t), for j = 1, 2, . . . ,K − 1

(3.6)

π′

K(t) = λ(t)πK−1(t)−KµπK(t), (3.7)

which can be solved using a general ODE solver or using the randomization method

(Grassmann 1977).

When no analytical results are available, the occupancy probabilities can be

estimated using simulation, by simulating m sample paths for the time-dependent

number of customers in the system Ni(t), i ∈ {1, . . . ,m} and estimating the occu-

pancy probabilities using (1/m)
∑m

i=1 1 {Ni(t) = n}.

The second step is to compute the distribution of the pseudo-virtual waiting

time conditional on the system occupancy. Let W nI

I (t) denote the pseudo-virtual

waiting time for a customer that arrives at epoch t and finds nI customers in the

system. Then we can state the following theorem:

Theorem 3.1. If s does not change in [t, t+ τ ], then P (W nI

I (t) > τ) = P (D
′t
I (τ) ≤

nI−s), where D
′t
I (τ) = Dt

I(t+τ)−Dt
I(t) is the number of departures between epochs

t and t+ τ given nI customers in the system at epoch t, from a modified version of

the infinite-server system with arrivals stopped at t.
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Proof. Given the definition of pseudo virtual waiting time in (2.3) we can write

P (W nI

I (t) > τ)

= P (min
{

r ≥ 0 : Dt
I(t+ r) ≥ A(t)− (s− 1)

}

> τ |A(t)−Dt
I(t) = nI)

= P (min
{

r ≥ 0 : Dt
I(t+ r) ≥ Dt

I(t) + nI − (s − 1)
}

> τ |A(t) −Dt
I(t) = nI)

= P (min
{

r ≥ 0 : Dt
I(t+ r)−Dt

I(t) ≥ nI − (s − 1)
}

> τ |A(t) −Dt
I(t) = nI)

= P
(

min
{

r ≥ 0 : D
′t
I (r) ≥ nI − (s− 1)

}

> τ
)

.

(3.8)

Therefore P (W nI

I (t) > τ) is the probability that at time t + τ , the number of

departures from D
′t
I (r) is nI − s or less.

All nI customers that are in the infinite-server system at time t are in service. Let

Gt
i(u) denote the distribution of the remaining service time after t for the customer

with server i ∈ {1, . . . , nI} and Ḡt
i(u) = (1 − Gt

i(u)) denote the complementary

distribution. Also, let RnI ,i
l , l = 1, . . . ,

(nI

i

)

represent the
(nI

i

)

possible subsets of

size i of the nI busy servers. If the number of servers in the associated finite-server

system s(t) is constant in the interval [t, t+ τ ], then

P (W nI

I (t) > τ) =











∑nI−s(t)
i=0

∑(nI
i )

l=1

∏

j∈R
nI ,i

l

Gt
j(τ)

∏

j /∈R
nI ,i

l

Ḡt
j(τ), if nI ≥ s(t)

0, otherwise

(3.9)

Whitt (1999) points out that for systems with general i.i.d. service times S fol-

lowing a distribution G, the distribution of the remaining service time for a customer

who has been in service for an unknown amount of time can be approximated by

the stationary-excess distribution:

Ge(t) =
1

E[S]

t
∫

0

[1−G(u)]du, t ≥ 0. (3.10)

If there are nI customers in the infinite-server system at time t, all customers are

in service and the distribution of the remaining service time for each customer can

be approximated by Ge(t) in (3.10). We can then approximate P (W nI

I (t) > τ)
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for a case where the number of servers in the associated finite-server system s(t) is

constant in the interval [t, t+ τ ], by

P (W nI

I (t) > τ) =











∑nI−s(t)
i=0

(

nI

i

)

Ge(τ)
iḠe(τ)

nI−i, if nI ≥ s(t)

0, otherwise.
(3.11)

If the number of servers increases by δs at epoch t + ǫ < t + τ , then the pseudo

virtual waiting time will be greater than τ if there are no more than nI − s(t)− δs

departures from the system in the interval [t, t+ τ ] and

P (W nI

I (t) > τ) =











∑nI−s(t)−δs
i=0

(

nI

i

)

Ge(τ)
iḠe(τ)

nI−i, if nI ≥ s(t) + δs

0, otherwise.
(3.12)

If the number of servers decreases by δs at epoch t+ ǫ < t+ τ under an exhaustive

discipline and nI ≥ s(t), then δs customers are ejected from the system at epoch

t + ǫ. Then the pseudo virtual waiting time will be greater than τ if there are no

more than nI−δs−(s(t)−δs) = nI−s(t) departures from the system in the interval

[t, t+ τ ] and

P (W nI

I (t) > τ) =






















∑nI−s(t)
i=0

(nI

i

)

Ge(ǫ)
iḠe(ǫ)

nI−i×

∑nI−s(t)−i
j=0

(

nI−δs−i
j

)

Ge(τ − ǫ)jḠe(τ − ǫ)nI−δs−i−j , if nI ≥ s(t)

0, otherwise.

(3.13)

If the number of servers decreases by δs at epoch t+ ǫ < t+ τ under a preemptive

discipline and nI ≥ s(t), then δs customers are re-inserted in the queue at epoch

t + ǫ. Then the pseudo virtual waiting time will be greater than τ if there are no

more than nI−s(t) departures in the interval [t, t+ ǫ] and no more than nI−s(t)+δs
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departures in the interval [t, t+ τ ], and

P (W nI

I (t) > τ) =






















∑nI−s(t)
i=0

(

nI

i

)

Ge(ǫ)
iḠe(ǫ)

nI−i×

∑nI−s(t)+δs−i
j=0

(nI−i
j

)

Ge(τ − ǫ)jḠe(τ − ǫ)nI−i−j, if nI ≥ s(t)

0, otherwise

(3.14)

Notice that s(t) changing in [t, t+ τ ] would not be a concern for a wide variety of

systems, where τ is small in comparison to the staffing periods, such as call centers,

where τ might be 20 seconds but staffing periods are typically at least 15 minutes

long, or emergency departments, where τ might be on the order of 1 hour, but

staffing levels are constant for entire shifts of 8 hours or 12 hours.

Since in a G/M/∞ system where service times are exponentially distributed

with service rate µ, the remaining service time for a customer that was already

in service at time t is also (exactly) exponentially distributed with rate µ, (3.11)

becomes (3.15) and (3.12)–(3.14) are modified in the same way.

P (W nI

I (t) > τ) =











∑nI−s(t)
i=0

(nI

i

)

[1− e−µτ ]
i
[e−µτ ]

(nI−i)
, if nI ≥ s(t)

0, otherwise
(3.15)

Once we’ve computed P (W n
I (t) > τ) we can compute the distribution of the

pseudo virtual waiting time (a lower bound for the QoS in the parallel finite-server

system) as follows:

P (WI(t) ≤ τ) = 1− P (WI(t) > τ) = 1−

+∞
∑

nI=s(t)

P (W nI

I (t) > τ)πnI
(t). (3.16)

For systems under a preemptive discipline we can prove that P (WI(t) ≤ τ) is

increasing in τ . First note that P (W nI

I (t) > τ) in (3.9) is the cumulative distribution

function of a binomial process with sample size nI and probability of success Ge(τ),

evaluated at nI − s(t), which is decreasing in Ge(τ) (the higher the probability

of success in a binomial process, the smaller the probability that the number of
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successes in nI trials will stay below the threshold nI − s(t)). Therefore, provided

that πnI
(t) remains constant when τ changes, the summation term in (3.16) is

decreasing in τ , and hence P (WI(t) ≤ τ) is increasing in τ . Different choices of τ will

typically produce different staffing requirements in our lower bound computations.

For systems under a preemptive discipline the πnI
(t) do not depend on staffing

choices and thus remain constant when we vary τ . Therefore, in the preemptive

discipline case, P (WI(t) ≤ τ) is increasing in τ and our lower bounds for each period

are decreasing in τ . In systems under an exhaustive discipline, on the other hand,

different staffing choices can produce different instantaneous transition matrices BI

(or H) to model customer ejections in the computation of the πnI
(t). In the first

period, before any customer ejections occur, a smaller τ would yield a higher staffing

requirement for that period. But that could also increase the chances of customer

ejections at the beginning of the second period, which would reduce the number of

customers in the system. Therefore, in the exhaustive discipline case, it is not clear

how changing τ impacts staffing requirements.

In practice we need to truncate the infinite summation in (3.16) at some upper

limit M − 1, chosen so that he error term E(M) =
∑

∞

nI=M P (W nI

I (t) > τ)πnI
(t) is

very small. When πnI
(t) follows a Poisson distribution, as in M(t)/G/∞ systems,

we can choose M based on the Poisson distribution, in the same way as suggested

by Grassmann (1977) for the randomization method. If πnI
(t) follows a Poisson

distribution, and since P (W nI

I (t) > τ) ≤ 1 for all nI and t, E(M) is bounded by

the complementary cumulative Poisson distribution

E(M) ≤ 1−

M−1
∑

nI=0

πnI
(t). (3.17)

For small m(t) we can compute the Poisson probabilities for several M until the

desired threshold is reached. For large m(t) we can approximate the Poisson dis-

tribution with a normal distribution and set M = m(t) + a
√

m(t) + b. Grassmann

(1977) found that a = 4 and b = 5 guaranteed E(M) ≤ 10−4. For more general sys-

tems where state probabilities do not follow a Poisson distribution we could choose
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bigger values of a and b to be more conservative. Table 3.1 summarizes the methods

for computing state probabilities and service levels for various types of systems.

Table 3.1: Computational methods for evaluating service level.
System State Probabilities Service Level

M(t)/M/∞///PRE differential equation for m(t); (3.11),(3.12),(3.14)
state probabilities from Poisson with Ge(u) = (1− e−µu)
distribution with mean m(t)

M(t)/G/∞///PRE integral equation for m(t); (3.11),(3.12),(3.14)
state probabilities from Poisson
distribution with mean m(t)

M(t)/M/∞///EXH Randomization Method (3.11),(3.12),(3.13)
with Ge(u) = (1− e−µu)

Ph(t)/Ph(t)/∞///PRE Nelson and Taaffe (2004) (3.11),(3.12),(3.14)

G(t)/G/∞///PRE Simulation (3.11),(3.12),(3.14)

G(t)/G/∞///EXH Simulation (3.11),(3.12),(3.13)

To have a sense for the computational effort required to evaluate service level

in a infinite-server system we can examine, for example, an M(t)/M/∞///EXH

system, where state probabilities undergo instantaneous transitions following ma-

trix BI in (2.15). If we use the randomization method, with a truncation limit

M , to compute state probabilities at times T = {t1, t2, . . . , tn}, we need, for each

ti ∈ T , (M−1) vector-matrix multiplications, (M−1) vector-scalar multiplications,

(M − 1) vector additions, (M − 1) scalar multiplications, (M − 1) scalar divisions,

and one exponential function evaluation (see Grassmann (1977)). Additionally, for

each time in R = {ti ∈ T |number of servers changes}, we need one vector-matrix

multiplication. To compute the service level for each ti ∈ T conditional on the

number of customers in the system nI(ti), in (3.11) with Ge(τ) = (1− e−µτ ), start-

ing from i = 0 and computing the subsequent terms in the summation recursively,

we need 1 exponential evaluation, [nI(ti) − s(ti)] scalar additions, 2[nI(ti) − s(ti)]

scalar divisions, and nI + 2[nI(ti) − s(ti)] scalar multiplications where s(ti) is the

number of servers in the associated finite-server system at time ti. Since we need

to compute P (W nI

I (t) > τ) for nI = s(ti), . . . ,K, we need a total of 1 exponential

evaluation,
∑K−1

nI=s(ti)
[nI − s(ti)] = [K − s(ti)][s(ti) +K − 1]/2 − [K − s(ti)]s(ti) =
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[K − s(ti)][K − s(ti) − 1]/2 scalar additions, [M − s(ti)][K − s(ti) − 1] scalar divi-

sions, and
∑K−1

nI=s(ti)
[3nI −2s(ti)] = 3[K−s(ti)][s(ti)+K−1]/2−2[K−s(ti)]s(ti) =

[K − s(ti)][3K − s(ti) − 3]/2 scalar multiplications. To compute the unconditional

service level at time ti ∈ T , in (3.16), we need [K − s(ti)] scalar multiplications and

[K − s(ti) + 1] scalar additions. Table 3.2 details the number of operations needed

to evaluate the service level at two epochs (T = {t1, t2}) in an M(t)/M/∞///EXH

system with s(t) = 4 for t = [0, t1] and s(t) = 2 for t = (t1, t2], with capacity

truncated at K = 19, and with a truncation limit for the randomization method of

M = 100. If K = 19, the vectors in the randomization method are 1 × 20 and the

matrices are 20 × 20, but very sparse, with only the diagonal, upper diagonal, and

lower diagonal having non-zero elements. A vector-matrix multiplication requires

(3 × 20 − 2) = 58 scalar multiplications and (2 × 20 − 2) = 38 scalar additions, a

vector-scalar multiplication requires 20 scalar multiplications, and a vector addition

requires 20 scalar additions. Matrix BI is also 20 × 20 and very sparse, with only

26 non-zero elements. Note that even though we did not account for the opera-

tions required to build matrix BI in Table 3.2, the number of operations needed to

compute state probabilities is more than 15 times higher than the number needed

to compute conditional service levels, which is more than 24 times higher than the

number needed to compute unconditional service levels.
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Table 3.2: Number of operations to evaluate performance at T = {t1, t2} in an
M(t)/M/∞///EXH system with s(t) = 4 for t ∈ [0, t1] and s(t) = 2 for
t ∈ (t1, t2], and truncation limit M = 100.

Scalar Scalar Scalar Exponential
Additions Multiplications Divisions Evaluation

Randomization Method
2(M − 1) = 198 Vector-Matrix 7,524 11,484
Multiplications
2(M − 1) = 198 Vector-Scalar 3,960
Multiplications
2(M − 1) = 198 Vector Additions 3,960
Scalar Operations 198 198 2

Customer Ejections at t1
Vector-Matrix Multiplication 6 26

Total for State Probabilities 11,490 15,668 198 2

Conditional SL in (3.9)
At t1 (s(t1) = 4) 120 424 240
At t2 (s(t2) = 2) 153 495 306
Total 273 919 546 1

Unconditional SL in (3.16)
At t1 (s(t1) = 4) 17 16
At t2 (s(t2) = 2) 19 18
Total 36 34
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CHAPTER 4

Effectiveness of Staffing Requirements: Numerical

Examples

4.1 Computational Experiments

We performed computational experiments to investigate the following issues: (1)

how close to feasibility (that is, satisfying QoS targets at all times) are the lower

bounds we proposed in Chapter 2, (2) what is the impact of using an exhaustive

rather than preemptive end-of-shift policy, (3) can our lower bounds be “repaired” to

make them feasible, (4) the suitability of our lower bounds for a real-world emergency

department, and (5) can our lower bounds be used to enhance the efficiency of a

previously proposed staff scheduling algorithm.

We ran tests on a 3.16 GHz Windows 64-bit server with 32 Gb of RAM. We

wrote the code in Matlab and used the randomization method to compute transient

state probabilities. We solved the staff scheduling optimization problems using the

Tomlab optimization environment (Holmström 1999), with CPLEX 11 used to solve

linear and integer programs.

4.1.1 Comparison of Staffing Requirements: SIPP, MOL and Our Lower

Bounds

In this subsection we compare our lower bounds to SIPP and MOL staffing re-

quirements. We compare to the SIPP approach because it is commonly used in

practice and we compare to the MOL approach because it has been found to be
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consistently effective in situations with a high QoS standard (Jennings et al. 1996,

Green et al. 2007) and therefore the MOL approach is an appropriate benchmark.

We used the 27 test cases presented in Ingolfsson et al. (2010), which represent sit-

uations where the SIPP approach performs poorly (Green et al. 2003). A sinusoidal

arrival rate of the form λ(t) = λ{1 + γ sin(πt/4)} was used to define the nonho-

mogeneous Poisson arrival process. The 12-hour planning horizon was divided into

smaller calculation periods where the arrival rate was assumed to be constant. The

parameter γ was set to 1 and the test problems were generated by varying the service

rate (µ = 1, 2 and 4), the average offered load (r = λ̄/µ = 16, 32 and 64, where the

average arrival rate over a cycle is λ̄ = (1/12)
∫ 12
0 λ(t)dt = λ(1 + 2γ/(3π)), and the

length of the planning period (δ = 0.25, 0.5 and 1 hours). To facilitate comparison

with previous work by Green et al. (2001), we assume a waiting time threshold τ

equal to zero and a preemptive discipline. The target QoS requirement considered

was P{WF (t) = 0} ≥ 80%. We used Matlab to compute the average number of cus-

tomers (or number of busy servers) m(t) in the M(t)/M/∞ system (see Appendix

A.3 for details on the MOL requirements computations). We computed our lower

bound and the QoS for all test cases assuming a preemptive end-of-shift policy (See

Appendix A.4 for details on the computation of our lower bounds.). We obtained

SIPP requirements for each planning period by using the Queueing Toolpak, Version

4.0 (Ingolfsson and Gallop 2003) to compute the minimum number of servers need

to satisfy the desired service level in a stationary M/M/s system with arrival rate

equal to the average arrival rate in that period.

Figure 4.1 shows our lower bound and the SIPP and MOL staffing requirements

for a test case with µ = 2, r = 16, and δ = 0.25. We see that the MOL requirements

are at all times above and the SIPP requirements are often below our lower bound,

which means that the QoS for the SIPP approach is below the target in some of

the planning periods. This pattern was repeated in all 27 test cases. The MOL

requirements guaranteed the desired QoS in all test cases, with an average minimum

QoS of 83.1%, while our lower bound only guaranteed it in one case and the SIPP

requirements did not guarantee it in any of the test cases. The average minimum

37



Figure 4.1: MOL requirements, SIPP requirements, and our lower bounds for the
case with µ = 2, r = 16, and δ = 0.25.

QoS for the SIPP requirements was 2.0%, with the QoS being below 80% on average

52.2% of the time. For our lower bound, the average minimum QoS was 77.0%, with

the QoS being below 80% on average 17.5% of the time. Since our lower bound is not

intended to be sufficient, we would expect the QoS to dip below 80% in some periods.

What should be noted is that our lower bounds are very close to being sufficient,

despite using on average 2.9% fewer server-hours than the MOL requirements.

4.1.2 Repairing Our Lower Bounds

We used the method in Ingolfsson et al. (2010) (hereinafter referred to as the

ICWC method) to “repair” our lower bounds, that is, increase the staffing require-

ments until the QoS target is achieved at all times. The ICWC method alternates

between a schedule generator and a schedule evaluator to find low cost feasible solu-

tions to the staffing problem, starting with a lower bound on the number of servers

needed to ensure the minimum QoS in each period (see Appendix A.5 for more de-

tails). In the experiments in this section we used our lower bound as a starting point

for the ICWC method. Our goal was to obtain staffing requirements and therefore

we did not include any shift constraints. We assumed a preemptive end-of-shift

policy to permit comparison to the MOL staffing requirements. Since the set of

test problems used here was the same as in Ingolfsson et al. (2010), our parameter

settings for the ICWC method follow their recommendations.

Figure 4.2 shows the requirements obtained when our lower bound was used as
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Figure 4.2: MOL requirements and our lower bounds, repaired by the ICWC
method, for the case with µ = 2, r = 16, and δ = 0.25.

a starting point for the ICWC method (we refer to these requirements as “our lower

bound, repaired”) along with the MOL staffing requirements for the same test case

as in Figure 4.1 (µ = 2, r = 16, and δ = 0.25). Our lower bounds, repaired by the

ICWC method, were always less than or equal to the MOL requirements, while still

ensuring the target QoS of 80%.

Table 4.1 summarizes the results for the 27 test cases. We see that our repaired

lower bounds have lower costs than the MOL requirements in all test cases (average

of 1.8% decrease in cost). Also, both sets of requirements guaranteed the desired

QoS of 80% at all times. It is important to note that when we start the ICWC

method from our lower bound the feasible staffing requirements are found very

quickly (the total time for computing our lower bound and running the ICWC

method was on average 30 seconds per test case), making this method of finding

staffing requirements competitive with approximations such as MOL and SIPP.

4.1.3 Preemptive vs. Exhaustive Discipline

If the servers had followed an exhaustive (instead of a preemptive) end-of-shift

policy, we would expect our lower bounds to be lower or equal to the ones in the

previous section, because the servers would sometimes stay longer in the system to

finish their services. We compared our lower bounds for the 27 test cases under a

preemptive and an exhaustive discipline, both when customers are ejected from the

infinite-server system according to matrix H in (2.12) and according to matrix BI
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Table 4.1: Results of the ICWC using our lower bounds as starting point for the 27
test cases, under a preemptive discipline.

ICWC with Our Lower % Decrease
MOL Bound – Requirements in Cost with

Min Min Time No. ICWC + Our
µ ρ δ Cost SL(t) Cost SL(t) (min) Iter. Lower Bound

1 16 0.25 239.0 83.1% 234.8 80.2% 0.36 4 1.8%
1 16 0.5 248.0 83.7% 243.0 80.3% 0.07 2 2.0%
1 16 1 265.0 84.1% 261.0 80.6% 0.06 2 1.5%
1 32 0.25 439.0 82.8% 431.5 80.0% 0.85 9 1.7%
1 32 0.5 457.0 83.3% 448.5 80.1% 0.13 2 1.9%
1 32 1 491.0 83.7% 482.0 80.1% 0.10 2 1.8%
1 64 0.25 829.3 83.5% 814.5 80.1% 1.88 9 1.8%
1 64 0.5 865.0 84.4% 848.0 80.3% 0.37 5 2.0%
1 64 1 933.0 83.9% 914.0 80.1% 0.23 3 2.0%
2 16 0.25 252.3 83.0% 246.5 80.3% 0.26 2 2.3%
2 16 0.5 264.5 84.6% 256.5 80.2% 0.07 1 3.0%
2 16 1 285.0 84.8% 276.0 80.8% 0.06 0 3.2%
2 32 0.25 465.3 82.5% 457.8 80.3% 0.85 7 1.6%
2 32 0.5 486.0 82.9% 479.0 80.8% 0.22 5 1.4%
2 32 1 526.0 83.0% 517.0 80.2% 0.11 1 1.7%
2 64 0.25 880.8 83.0% 866.8 80.0% 1.93 10 1.6%
2 64 0.5 923.0 83.5% 905.5 80.2% 0.37 4 1.9%
2 64 1 998.0 83.6% 980.0 80.2% 0.27 3 1.8%
4 16 0.25 256.8 81.5% 254.3 80.2% 0.57 8 1.0%
4 16 0.5 268.5 82.4% 263.0 80.0% 0.15 4 2.0%
4 16 1 290.0 81.9% 286.0 80.7% 0.09 3 1.4%
4 32 0.25 477.8 82.4% 470.0 80.4% 0.82 6 1.6%
4 32 0.5 498.0 82.5% 489.5 80.4% 0.24 4 1.7%
4 32 1 540.0 83.5% 533.0 80.8% 0.16 3 1.3%
4 64 0.25 901.8 82.0% 891.0 80.2% 2.36 10 1.2%
4 64 0.5 945.0 82.1% 930.0 80.1% 0.54 6 1.6%
4 64 1 1026.0 82.4% 1012.0 80.6% 0.37 4 1.4%
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in (2.15). For the exhaustive discipline computations, if the scheduled number of

servers increased by δs at time t, we assumed that this occurred because δs servers

began work, and conversely, if the scheduled number of servers decreased by δs at

time t, we assumed that this was because δs servers were scheduled to end their

shift. In other words, we assumed that there were no epochs where some servers

were scheduled to begin and others were scheduled to end work. Figure 4.3 shows

our lower bound under preemptive and exhaustive disciplines for the same test case

as in Figure 4.1. We see that the exhaustive discipline lower bounds are never above

the preemptive discipline lower bounds. The exhaustive discipline lower bounds

are far below the preemptive discipline lower bounds during time intervals when

the number of servers is decreasing, which is when servers are more likely to stay

beyond their scheduled end time. As expected, the total costs of our lower bounds

under exhaustive discipline are always lower than under a preemptive discipline (on

average 12.4% lower when we use matrix H and 10.6% lower when we use matrix

BI). Moreover, in each period, the required number of servers under a preemptive

discipline is always at least as large as the number required under an exhaustive

discipline. The lower bounds that use the H matrix have lower costs (on average

476.8 versus 485.5), lower minimum service levels (on average 39.6% versus 69.4%)

and higher fractions of time below the target QoS (on average 48.3% versus 37.5%)

than the ones that use the BI matrix. This was expected, because when we use

matrix H the number of costumers ejected from the infinite-server system is greater

than or equal to the number ejected when we use matrix BI . We note that the

results change considerably for different end-of-shift policies, indicating that it is

important to explicitly model this aspect, which has received little attention in the

previous literature.

Table 4.2 shows the cost and minimum service level of the MOL requirements and

of the requirements from the ICWCmethod using our lower bound as a starting point

for the 27 test cases, under an exhaustive discipline. The MOL requirements in Table

4.2 are the same as in Table 4.1, since the MOL approach doesn’t take into account

specific end-of-shift policies. The service level, on the other hand, was computed
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Figure 4.3: Our lower bounds under preemptive and exhaustive disciplines for the
case with µ = 2, r = 16, and δ = 0.25.

under an exhaustive discipline and is higher in Table 4.2 than in Table 4.1 for every

test case, as expected. Our repaired lower bounds have costs on average 10.3% lower

than the MOL requirements (lower in every case). Also, both sets of requirements

guaranteed the desired QoS of 80% at all times. The total time for computing

our lower bound and running the ICWC method was on average 43.6 seconds per

test case, higher than the average of 30 seconds for the preemptive discipline, since

the computation of state probabilities under an exhaustive discipline requires extra

operations (customer ejections). Even with the increase in computational time, this

method of finding staffing requirements is still competitive with approximations such

as MOL and SIPP for systems under an exhaustive discipline, providing even bigger

cost savings than for systems under a preemptive discipline.

4.1.4 Real-World Example: Emergency Department

In this Section we compare our lower bound with MOL requirements for an

emergency department (ED) in the Inwood neighborhood of northern Manhattan,

studied by Green et al. (2006). Figure 4.4 shows the hourly arrival rates for week-

days we used to compute our lower bound, obtained through visual inspection of the

graph in Figure 1 of Green et al. (2006). Following Green et al. (2006) we assumed

an M(t)/M/s(t) model with arrival rate as in Figure 4.4 and average service time

of 30 minutes, and used a performance target that 80% of the ED patients were

seen within 1 hour. Note that modeling an ED as a traditional multiserver system
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Table 4.2: Results of the ICWC method using our lower bounds as starting point
for the 27 test cases, under an exhaustive discipline (matrix BI used in
the computations of lower bounds).

ICWC with Our Lower % Decrease
MOL Bound – Requirements in Cost with

Min Min Time No. ICWC + Our
µ ρ δ Cost SL(t) Cost SL(t) (min) Iter. Lower Bound

1 16 0.25 239.0 84.5% 202.0 80.2% 1.02 20 15.5%
1 16 0.5 248.0 84.8% 215.5 80.2% 0.13 2 13.1%
1 16 1 265.0 84.9% 227.0 80.5% 0.08 2 14.3%
1 32 0.25 439.0 83.9% 375.0 80.4% 1.01 7 14.6%
1 32 0.5 457.0 84.4% 386.5 80.0% 0.29 6 15.4%
1 32 1 491.0 83.7% 422.0 80.2% 0.14 1 14.1%
1 64 0.25 829.3 84.4% 710.8 80.1% 2.26 5 14.3%
1 64 0.5 865.0 85.3% 732.0 80.3% 0.48 2 15.4%
1 64 1 933.0 84.2% 802.0 80.0% 0.30 3 14.0%
2 16 0.25 252.3 83.3% 228.8 80.1% 1.00 17 9.3%
2 16 0.5 264.5 84.6% 237.5 80.3% 0.17 3 10.2%
2 16 1 285.0 84.8% 253.0 80.9% 0.09 1 11.2%
2 32 0.25 465.3 82.5% 427.3 80.4% 1.05 6 8.2%
2 32 0.5 486.0 82.9% 440.0 80.1% 0.35 7 9.5%
2 32 1 526.0 83.0% 470.0 80.2% 0.19 4 10.6%
2 64 0.25 880.8 83.0% 795.5 80.0% 2.51 7 9.7%
2 64 0.5 923.0 83.5% 836.0 80.5% 0.58 3 9.4%
2 64 1 998.0 83.6% 887.0 80.2% 0.33 2 11.1%
4 16 0.25 256.8 81.5% 243.0 80.1% 0.88 9 5.4%
4 16 0.5 268.5 82.4% 249.5 80.0% 0.22 4 7.1%
4 16 1 290.0 81.8% 269.0 80.3% 0.14 4 7.2%
4 32 0.25 477.8 82.9% 447.8 80.5% 1.18 6 6.3%
4 32 0.5 498.0 83.2% 479.0 80.2% 0.37 4 3.8%
4 32 1 540.0 83.5% 498.0 80.4% 0.23 4 7.8%
4 64 0.25 901.8 82.0% 845.8 80.1% 3.19 9 6.2%
4 64 0.5 945.0 83.6% 880.0 80.1% 0.86 6 6.9%
4 64 1 1026.0 82.4% 946.0 80.6% 0.56 4 7.8%
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Figure 4.4: Hourly patient arrivals rates in the ED.

Figure 4.5: Number of servers and QoS for the MOL requirements, our lower
bounds, and our lower bounds repaired to feasibility.

is a rough approximation. In Chapter 5 we propose more detailed models for this

setting, which incorporate repeated patient-physician interactions.

Figure 4.5 shows the MOL requirements, our lower bound, and our lower bound

repaired to feasibility, assuming a preemptive end-of-shift policy and an 1-hour

staffing period, along with the hourly average QoS associated with each set of re-

quirements.

We see that the MOL requirements meet the QoS target at all times while our

lower bound falls below the target (recall that our lower bounds are not intended

to be sufficient). But we can repair our lower bound (to obtain “our lower bound,

repaired”) using the following simple heuristic: Increase the number of servers in

Staffing period 1 until the QoS target is met in that period, and repeat this proce-

dure, in sequence, for the remaining 23 periods. Our lower bound, repaired, meets

the QoS at all times and has the same cost as the MOL requirements. When we

computed the requirements for 2-hour and 3-hour staffing periods, however, the cost

of our lower bound was a bit higher (6.9% and 4.8% for 2-hour and 3-hour staffing
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periods) than the cost of the MOL requirements.

4.1.5 Tightening Staff Scheduling Formulations with Our Lower Bounds

Another benefit of our lower bounds is decreased computation times for schedul-

ing methods that use a lower bound as the starting point, such as the ICWC method.

Note that finding tighter lower bounds for the staffing requirements as we do here

is similar to finding better valid inequalities in order to tighten LP relaxations for

an integer program.

We used both the original ICWC method and the ICWC method with our lower

bounds as a starting point to find solutions for the set of 27 test cases, including the

shift constraints in Appendix A of Ingolfsson et al. (2010). The solution costs are

on average 0.4% lower with our lower bounds. However, the larger impact is on the

computation times, which are reduced on average by 86.7% using our lower bounds.

Our lower bounds are not only faster to compute, but they also drastically reduce

the number of iterations required by the ICWC method from an average of 31.1 to

an average of 2.2 iterations. This makes the ICWC method computationally com-

petitive with the typical approach, which uses staffing requirements (for example,

ones generated with the SIPP approach or one of its variants) as right-hand-sides

in scheduling constraints in an integer program that is solved once.
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CHAPTER 5

Queueing Models of Case Managers1

5.1 Introduction

Many service systems employ case managers: customer service agents in a con-

tact center who manage multiple on-line chats at once; parole officers and social

workers who meet with clients in crisis; and emergency department (ED) physicians

who treat multiple patients simultaneously. Case manager systems are popular be-

cause they can provide highly customized service and can avoid errors and delays

due to handoffs.1

We define a case manager as a server who is assigned multiple customers and

repeatedly interacts with those customers. Interactions between an individual cus-

tomer and the case manager are usually interspersed by external delays that do

not require the manager’s attention, e.g., the delay while an on-line chat customer

composes a message, the time a parole officer’s client stays out of trouble, and the

wait for a test result to be returned to the ED physician. Many of these systems

place an upper limit on the number of customers assigned to each case manager at

one time, and this leads to the formation of a pre-assignment queue for customers

who have not yet been assigned to a case manager.

Despite the use of case managers in a wide variety of service systems, when

compared to the analysis of standard multi-server systems there has been relatively

little work on case manager systems in academia (we review the important existing

1This chapter is a joint work with Robert A. Shumsky (shumsky@dartmouth.edu), Tuck School
of Business, Dartmouth College, Hanover, New Hampshire 03755.
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literature in Section 5.3). In practice, the analysis and management of case manager

systems is often rudimentary. For example, one method for setting caseloads pro-

posed in the academic literature on social work is a simple deterministic calculation:

divide the number of hours a case manager is available per month by the average

time required per case per month (Yamatani et al. 2009). Professional organizations

such as the Child Welfare League of America (CWLA) publish caseload standards,

e.g., that child and family social workers handle “no more than 17 active families”

(CWLA 1999). The rationale behind these standards, however, is unclear and the

standards include the qualification that “every agency should conduct a workload

analysis to determine the appropriate workload standards.” (CWLA 1999). On their

web site, the CWLA adds that “Although the field could benefit from a standard-

ized caseload/workload model, currently there is no tested and universally accepted

formula ... Yet, the CWLA standards most requested are those that provide recom-

mended caseload and/or workload sizes.” (CWLA 2013) Our models are intended

to fill this need. In particular, existing standards and models do not capture the

variable and unpredictable nature of the work (Yamatani et al. 2009). Our models

incorporate this randomness and can be used to assess the impact of caseload limits

on throughput and pre-assignment delay.

In this chapter we make the following contributions: (1) We define a model of

a baseline case manager system (the ‘S’ system), discuss challenges with its exact

analysis, and discuss tractable special cases. (2) We define random routing (R) and

pooled (P ) systems that we numerically show provide lower and upper bounds on the

S system and we provide proofs for special cases. (3) We analyze the stability of the

S, R, and P systems. (4) We define a simple balanced system (B) approximation for

the waiting times in the S system. (5) We use numerical experiments to investigate

the impact of changing various system parameters on the performance of the four

systems, using a base case that corresponds to published data from an emergency

department. (6) We identify situations in which the S system approaches the R

system or the P system. (7) We investigate the tradeoff between pre-assignment

delay and internal delay when the caseload limit is varied and identify methods that
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may be used, in practice, to set reasonable caseloads.

5.2 Definitions and Models

In our system the service provided to a given customer, which we refer to as a

case, is composed of a random number of processing steps, all of which are handled

by the same case manager (server). When a processing step is finished either the

case is completed and leaves the system or the case waits for the completion of

an external delay that does not require the case manager’s attention before the

next processing step can begin. In an ED, for example, the processing steps are

encounters with the patient’s assigned physician, the external delays are diagnostic

tests or requests for other information, and a particular case is completed when the

patient is either discharged or admitted to the hospital.

Figure 5.1 shows our baseline model. Customers arrive according to a Poisson

process with rate Λ to a pre-assignment queue where they wait to be assigned to

one of N case managers who each have a maximum caseload M. When a case

manager completes a case, then another case, if available, is assigned from the pre-

assignment queue to that case manager. If the case manager is busy, the new case

joins a FCFS internal queue. Otherwise, the new case immediately begins the first

processing step with the case manager. The duration of each processing step is

exponentially distributed with mean 1/µ. The probability that a case is completed

after each processing step is γ. Otherwise, with probability 1 − γ, the case moves

to an exponentially distributed external delay with mean 1/λ.

If multiple case managers are below their case limits when a case arrives, then

that case is immediately sent to a manager with the smallest caseload. We refer to

this scheme as the join-the-smallest-caseload (JSC) routing policy. Note that the

JSC policy may not be the optimal policy, although Tezcan (2011) finds that the

JSC policy is asymptotically optimal for a similar system. We refer to the baseline

system as the S system because of this Smallest-caseload policy.

Figure 5.2 shows the state space and transition directions of a Markov model
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Figure 5.1: The baseline case manager S system.

Figure 5.2: Markov model for an individual case manager with maximum caseload
M = 3.

for an individual case manager, assuming a maximum caseload of M = 3. The

state of this Markov model is described by the caseload j and the number of cases

currently waiting or being worked on, i. The state space of a Markov model of the

entire organization with N individual managers can be represented by the caseload

jk ∈ {0, . . . ,M}, the number of cases ik ∈ {0, . . . , jk} currently waiting for or being

worked on by each manager k ∈ {0, . . . , N}, and the number of cases waiting for

assignment c ≥ 0. If we limit the size of the pre-assignment queue to C, then

c ∈ {0, . . . , C} and the state space size is

[

(M + 2)(M + 1)

2

]N

+ C(M + 1)N .
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The state space grows exponentially with the number of case managers, which

makes the Markov chain representation of organizations with a large number of

case managers computationally challenging, even if there is a limit on the size

of the pre-assignment queue (for example, the Children, Youth and Families De-

partment of Pittsburgh described in Yamatani et al. (2009) has N = 112 case

managers). Even for systems where γ = 1 (the case managers are parallel ex-

ponential servers) and N > 2, the computation of performance measures under

join-shortest-queue (JSQ) routing (equivalent to our JSC) requires various approx-

imations (Lin and Raghavendra 1996, Nelson and Philips 1989). In Section 5.8 we

use simulation to analyze the S system. We also formulate three systems that are

substantially easier to analyze and generate interesting insights into system perfor-

mance: two that seem to provide bounds on the S system (R = random and P =

pooled) and one that approximates the S system (B = balanced).

In the R system (Figure 5.3), new case arrivals are routed randomly to one of

the N case managers, so that new cases arrive to each case manager according to

a Poisson process with rate Λ/N . If the manager’s caseload equals M , then a new

arrival to that case manager waits in a pre-assignment queue associated with that

particular manager. The term “pre-assignment queue” is used here to match the

analogous queue in the S system.

In the P system (Figure 5.4), cases are not assigned to a particular server; they

may use any server for each processing step. If the total number of customers in

service, in the internal queue, and in external delay is greater than NM , then an

arriving customer waits in a pre-assignment queue. Otherwise, if all servers are busy

the customer waits in a first-come-first-served internal queue that is common to all

N case managers. As we will see in Section 5.3, the P system has frequently been

used to describe hospital ward operations.

In the B system (Figure 5.5), we assume that a case manager handling m cases

functions as an exponential server with service rate φ(m) equal to the steady state

service completion rate in a related single-server finite-source (M/M/1//m) queue-

ing model. We assume that arrivals are routed and cases are transferred between
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Figure 5.3: The R system.

Figure 5.4: The P system.
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Figure 5.5: The B system.

case managers so that managers always have caseloads that are within 1 case of each

other. This enables us to model the system as a simple birth-death process, as we

discuss in Section 5.6.

5.3 Literature Review

There is a rich and growing literature on health-care operations that is closely

related to our models. In particular, several researchers have proposed and ana-

lyzed models that are similar to our P system. Yom-Tov and Mandelbaum (2011)

propose solutions to ED nurse and physician staffing problems based on the ap-

plication of time-varying fluid and diffusion approximations to a pooled system

with unlimited caseload. To support capacity planning decisions in an oncology

ward, Yom-Tov (2010) uses a pooled model with a finite caseload, where patients

are blocked when the system reaches the caseload limit. de Véricourt and Jennings

(2011) examine the efficiency of nurse-to-patient ratio policies for nurse staffing

using a closed M/M/s//n queueing system (which is similar to our pooled sys-

tem, but with a fixed number of customers and no pre-assignment queue) to model

medical units. Yankovic and Green (2011) examine a finite-source queueing model

with two sets of servers: nurses and beds. The variable population size allows

them to include the potential change in the number of patients during a work shift.

de Véricourt and Zhou (2005) describe a general model of a call center in which a
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customer may revisit the system if the customer’s problem is not resolved on the

first call. As in our P system (and distinct from our S system), all of these models

assume that any customer can be treated by any server. On the other hand, in

Apte et al. (1999), case managers receive independent streams of jobs, as in the R

system.

Primary care physicians may also be seen as case managers: they have their

own patients (their ‘panel’) who repeatedly visit the physician for examination or

treatment. Green and Savin (2008) model a single physician using a single-server

queueing model, where the arrival rate to the physician is proportional to the panel

size. This is a reasonable model because panel sizes are large (in the thousands) and

the probability of arrival for any particular patient on any particular day is small.

Our model, however, is designed for systems where the servers have small caseloads

(1-30 customers rather than thousands) and customers may return relatively quickly

to the case manager. In addition, we model the process of assigning a customer

to one of multiple case managers when a customer first enters the system, while

Green and Savin (2008) focus on a single physician.

Models closest to our S system may be found in Saghafian et al. (2011),

Saghafian et al. (2012), Dobson et al. (2013), Tezcan (2011), and Luo and Zhang

(2013). Saghafian et al. (2011) model an ED as a case worker system, as we define

it, and disaggregate the analysis to “Phase 1” (similar to our pre-assignment queue)

and “Phase 2” (with repeated testing and interactions with a physician). They

model Phase 1 as a priority M/G/1 queue and focus on the triage decision, that

is, whether to prioritize patients with simple or complex conditions. They analyze

Phase 2 as a Markov Decision Process and focus on how a physician chooses the

next patient. In our S model, we integrate Phases 1 and 2, but assume that all

patients are homogeneous. Saghafian et al. (2012) use a model similar to that in

Saghafian et al. (2011) to examine how patients should be routed (or “streamed”)

through an ED, depending on whether the patient is likely to be discharged or

admitted to the hospital.

Dobson et al. (2013) (hereafter DTT) examine a case manager system that is
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also motivated by an ED. Their model allows for limited capacity to serve cus-

tomers in external delay, service interruptions from customers in external delay, and

distinct service time distributions for the initial vs. subsequent customer-case man-

ager encounters. Both DTT and this paper use simulation to analyze systems with

separate (non-pooled) case managers. This paper differs from DTT in terms of both

methodology and focus. This paper models the bounding systems as quasi-birth-

death (QBD) processes, while DTT use high-caseload asymptotic analysis to exam-

ine the performance of single-server and pooled systems. DTT focus on the optimal

control of the system—whether the case manager should prioritize new customers

or returning customers—while we focus on system stability and the determination

of caseload limits.

The models in Tezcan (2011) and Luo and Zhang (2013) are motivated by cus-

tomer service chat and instant messaging systems in which each agent simultane-

ously serves multiple customers. In both papers, the system is approximated with a

processor sharing model, that is, each agent’s capacity is infinitely divisible and all

customers are served simultaneously. Tezcan (2011) focuses on the optimal routing

policy, and he finds that under certain conditions the optimal policy is similar to our

JSC policy for system S. Luo and Zhang (2013) focus on the transient and steady

state behavior of the system, given a routing policy. Both papers derive their results

using a many-server asymptotic analysis. These processor sharing models are built

upon general functions that describe each manager’s case completion rate, given

caseloads. Our models instead describe the specific interactions between customers

and case managers. Our approach allows us to obtain a specific case completion

rate function and to predict the impact of changes in customer or manager behavior

(such as average duration of external delays or probability of service completion) on

system performance.

The B system approximation is related to Gilbert’s (1996) “perpetual backlog”

system—a finite-source model of a single case manager that assumes the manager

is always at the caseload limit. Finally, Kc (2013) empirically examines the effect

of caseload levels (or “multitasking”) on the productivity and service quality of ED
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physicians, and we will return to his results in Section 5.8.

5.4 Analysis of the Bounding Systems

In the remainder of the paper, we use the superscripts R, S, B, and P on perfor-

mance measures and other quantities to distinguish among the four systems that we

discuss. In this section, we focus on the R and P systems, which we believe provide

lower and upper bounds, respectively, on S system performance. Our numerical

studies support this hypothesis. In addition, these easy-to-analyze systems enable

us to quickly determine ranges of parameters for which the case manager system

is stable, as well as the range of performance measures we could expect to find in

the S system. In particular, the R and P system bounds dramatically reduce the

number of simulations needed to analyze the S system. The bounds also help us

to understand the dynamics of the case manager system, identifying when there

is considerable advantage in the pooling effect from routing to the server with the

smallest caseload, and when this advantage is small and the case manager system

performs close to a random routing system.

5.4.1 Random Routing and Pooled Systems

We formulate the subsystem for each individual case manager in the R system

as a QBD process (Latouche and Ramaswami 1999), with state variables i and j,

where i is the total number of cases in the system (in the pre-assignment queue or

assigned to the case manager) and j the number of cases in the internal queue or

in service. These two state variables are sufficient to determine the pre-assignment

queue length la ≡ (i −M)+, the caseload q = min(i,M), the internal queue length

(j − 1)+, and an indicator variable s = min (j, 1) that equals one if the manager is

busy and zero otherwise. The state space is Ω = {(i, j) : i ≥ 0, 0 ≤ j ≤ min (i,M)}.

We order the states (i, j) lexicographically and we treat j as the phase, with the

level equal to 0 when i < M and equal to la +1 otherwise. The possible transitions

are:
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• Arrival of a new case: (i, j) → (i+ 1, j + 1) with rate Λ/N , when i < M , and

(i, j) → (i+ 1, j) with rate Λ/N , when i ≥ M .

• Service completion that results in case completion: (i, j) → (i− 1, j − 1) with

rate sγµ when i ≤ M , and (i, j) → (i− 1, j) with rate sγµ, when i > M .

• Service completion that does not result in case completion: (i, j) → (i, j − 1)

with rate s (1− γ)µ.

• Completion of external delay: (i, j) → (i, j + 1) with rate (q − j)λ.

The general form for a QBD infinitesimal generator is:

Q =


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Following QBD convention, the diagonal matrix blocks correspond to transitions

where the level does not change whereas the off-diagonal blocks correspond to tran-

sitions where the level increases (above the diagonal) or decreases (below the diag-

onal) by one. The R and P systems both have infinitesimal generators with this

general form. Appendix B.1 defines the matrix blocks BR
0 , B

R
1 , and BR

2 for tran-

sitions out of, within, and into the (M + 1)M/2 boundary states. The R system

repeating matrix blocks AR
0 , A

R
1 , and AR

2 are square matrices of order M + 1 as

follows (using ∆ for generic diagonal elements in AR
1 and AR):
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





, (5.2)
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


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AR = AR
0 +AR

1 +AR
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























∆ Mλ

(1− γ)µ ∆ (M − 1)λ

. . .
. . .

. . .

(1− γ)µ ∆ λ

(1− γ)µ ∆

























. (5.4)

The matrix AR is the infinitesimal generator for the Markov chain of a finite-

source single-server queue with M customers that we will analyze in Section 5.5

when we investigate the stability of the R system.

We define the P system similarly to the R system, with the same state variables

i and j, for the total number of customers in the system and the total number of

customers in service or waiting in an internal queue, respectively. The auxiliary state

variables are computed as la = (i − NM)+, q = min (i,NM), and s = min (j,N).

The possible transitions are the same as for the R system and the matrix blocks

(shown in Appendix B.1) have similar structures. The sum AP of the repeating

matrix blocks corresponds to the Markov chain of a finite-source N -server queue

with NM customers, which will play a role in our analysis of the stability of the P

system in Section 5.5.

Let πk
0 , k = R,P be a column vector of stationary probabilities for the boundary

states, and let πk
n, k = R,P be a column vector of stationary probabilities for level

n, n ≥ 1 (with la = n − 1 customers in the pre-assignment queue). The probability

vectors πk
n satisfy the matrix-geometric recursion

πk
n+1 = πk

nR
k, n ≥ 1, (5.5)
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where the rate matrix Rk is the minimal nonnegative solution of the nonlinear matrix

equation

Ak
0 +RkAk

1 + (Rk)2Ak
2 = 0, k = R,P. (5.6)

We compute Rk using the modified SS method (Gun 1989) and we compute πk
0 and

πk
1 through standard QBD analysis, as detailed in Appendix B.1.

Table 5.1 shows the performance measures that we focus on. Expressions (5.7)-

(5.8) provide formulas to compute the average pre-assignment queue length, Lk
a, k =

R,P , for the R and P systems (the queue length is aggregated over all case managers

for theR system, for easier comparison to the other systems). Appendix B.1 provides

similar closed-form expressions for the other performance measures, for the R and

P systems.

Table 5.1: Performance measure definitions for systems k = P, S,B,R.

Expected Number Expected Time

Pre-Assignment: Lk
a W k

a

Internal Queue: Lk
q W k

q

External Delay: Lk
e T k

e = (1/λ)(1/γ − 1)

Service: Nρk (1/µ)(1/γ)

Total in System: Lk T k

LR
a = N

∞
∑

n=1

(n− 1)πR
n e = NπR

1 R
R(I −RR)−2e, (5.7)

LP
a =

∞
∑

n=1

(n− 1)πP
n e = πP

1 R
P (I −RP )−2e, (5.8)

where e is a column vector of ones.

5.4.2 Comparing the R, S, and P systems

In the P system there is no fixed customer-server assignment and a customer at

the head of the internal queue is served by the first available server. The customer

does not need to wait for a particular server to be free. Therefore, a given server
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is less likely to be idle due to an empty internal queue in the P system than in the

S system, where there is a fixed customer-server assignment. For this reason we

expect queue lengths and waiting times to be smaller in the P system than in the

S system. Pooling resources that work at the same rate is known to be beneficial in

many settings. For example, Smith and Whitt (1981) show that pooling twoM/M/s

loss systems with the same service time distribution is beneficial (but pooling might

not be beneficial if the service time distributions are different). Based on these

considerations, we conjecture the following:

Conjecture 5.1. For an S and a P system with the same parameters (N , M , Λ,

λ, µ, and γ), T S ≥ TP

The routing in the S system is state-dependent, using dynamic caseload infor-

mation for each manager in an attempt to achieve a more balanced distribution of

caseloads among managers than in the R system. In a system with better balanced

caseloads, the chances of having an idle server should be smaller, so we expect per-

formance measures such as queue lengths and waiting times to be smaller in the S

system than in the R system. Therefore, we conjecture the following:

Conjecture 5.2. For an S and an R system with the same parameters (N , M , Λ,

λ, µ, and γ), TR ≥ T S

These relationships have been established for the special case where γ = 1 and

M → ∞. In this case, the R system corresponds to N parallel, independent, and

identical M/M/1 queues, the S system corresponds to a join-the-shortest-queue

system with N parallel exponential servers and the P system corresponds to an

M/M/N system. Nelson and Philips (1989) argue that in this situation the number

of customers in the S system is stochastically larger than number of customers in

the P system, and the S system has a lower expected response time than the R

system. This relationship between S and R also holds true for more general service

time distributions with non-decreasing hazard rate (Weber 1978). (Whitt (1986)

discusses service time distributions for which JSQ is not optimal, however.) The
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bounds that we conjecture hold true for all computational experiments we have done

so far, up to simulation error.

5.5 Stability Conditions

Let Λk
lim be the largest external arrival rate that system k = R,S, P can accom-

modate without the expected length of the pre-assignment queue growing without

bound. We will refer to [0,Λk
lim) as the system k stability region. Intuitively, we

expect the limit on the external arrival rate to be the product of three components:

1. The number of case managers, N ,

2. The rate at which a case manager clears cases when busy, γµ,

3. The probability that a case manager is busy, if the external arrival rate is

sufficiently high to not limit the case manager’s busy probability.

The product of the first two components, Nγµ, is the rate at which the system

could clear cases if all case managers were always busy. The product of the first

and third components can be viewed as E[Bk
lim], the steady state expected number

of busy servers in a limiting system where all case managers have a full caseload

(for the P system, this means a system caseload of NM). We expect that the P

system will have a larger stability region than the R and S systems, because the P

system avoids situations where a case manager is idle, while at the same time a case

is waiting in internal delay.

In this section, we first demonstrate that the stability regions for the three sys-

tems coincide in the special case when M = 1 and in the limiting case when M

approaches infinity. Then we formally prove that the limit on the external arrival

rate for the R and P systems can be expressed as the product of the three compo-

nents that we have mentioned and that P has a larger stability region than R. We

conjecture that the R and S systems have the same stability regions and we provide

numerical support for this conjecture for systems with two case managers.
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When M = 1, a case will never wait for a case manager—its entire time with

the case manager will consist of processing steps and external delays, without any

internal delays. The average total time that a case is assigned to a case manager is

1/(γµ)+(1/γ−1)(1/λ) and out of this total, the average time that the case manager

is busy is 1/(γµ). It follows that the proportion of time that a case manager is busy,

if she has a case assigned at all times, is

1
γµ

1
γµ + ( 1γ − 1)( 1λ )

=
1

1 + γµ(1−γ)
γλ

=
1

1 + µ(1− γ)/λ
=

1

1 + x
, (5.9)

where x = µ(1−γ)/λ. Therefore, the external arrival rate limit is Λk
lim = Nγµ/(1+x)

for all three systems.

When M approaches infinity, then the R and P systems can be viewed as open

Jackson networks and straightforward analysis of these networks (included in Ap-

pendix B.2) shows that Λk
lim = Nγµ, that is, the external arrival rate limit equals

the rate at which the system can clear cases if all case managers are busy at all

times.

We provide general expressions for the external arrival rate limits for the R and

P systems in Theorem 5.3. We use a general QBD ergodicity condition (Latouche

and Ramaswami 1999) to prove the validity of these expressions.

Theorem 5.3. The R and P systems are stable if and only if Λ < Λk
lim for k = R,P ,

where

Λk
lim = γµE[Bk

lim], k = R,P (5.10)

and Bk
lim is the steady state number of busy servers in a limiting system for system

k = R,P .

The limiting system Rlim for R is a collection of N independent and identical

single-server finite-source Markovian queueing systems (M/M/1/./M) with popula-

tion size M . The limiting system Plim for P is an N -server finite-source Markovian

queueing system (M/M/N/./NM) with population size NM . The service rate is

(1− γ)µ and the average time until arrival is 1/λ for each customer in the popula-
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tion, for both limiting systems. The steady state expected number of busy servers in

these two systems can be expressed as follows:

E[BR
lim] = N

(

M
∑

i=0

min{i, 1}ωR
i

)

, (5.11)

E[BP
lim] = N

(

NM
∑

i=0

min{i/N, 1}ωP
i

)

, (5.12)

where ωk
i is the steady state probability of state i in the Markov chain corresponding

to matrix block Ak, for k = R,P .

Proof. The general QBD ergodicity condition that we use (Latouche and Ramaswami

1999, pg. 155) is that ωA0e < ωA2e, where ω is the steady state probability vector

corresponding to the transition matrix A = A0 + A1 + A2, satisfying ωA = 0 and

ωe = 1; A0, A1, and A2 are the repeating matrix blocks for the QBD.

Using the matrix blocks from (5.2)-(5.3) for the R system, ωRAR
0 e < ωRAR

2 e

reduces to Λ < Nγµ(1 − ωR
0 ), where ωR

0 is the steady state probability of the first

state in the Markov chain corresponding to matrix block AR. Inspection of the

matrix block AR in (5.4) reveals that it corresponds to a birth-death process, whose

transition diagram is illustrated in Figure 5.6. The system can be viewed as an

M/M/1/./M finite-source queueing system. With this interpretation, the sum of

the probabilities of all but the leftmost state in Figure 5.6 equals the probability

that the single server in this queueing system is busy. We refer to a collection of N

such systems as Rlim, because this collection of single-server finite-source queueing

systems describes how the R system would work if the external arrival rate was

sufficiently large to ensure that all N case managers had a full caseload of M at all

times. This proves (5.10) for k = R and E[BR
lim] as given in (5.11).

The proof of (5.10) for k = P and (5.12) follows the same steps. Inspection of the

matrix AP in (B.22) reveals that it is the transition matrix for an M/M/N/./NM

system, as illustrated in Figure 5.7. We refer to this system as Plim and note that

it corresponds to how the P system would operate if the external arrival rate was

large enough to ensure that the system had a full caseload of NM at all times. The
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Figure 5.6: State transition diagram for the AR matrix and the Rlim system.

Figure 5.7: State transition diagram for the AP matrix and the Plim system.

ergodicity condition ωPAP
0 e < ωPAP

2 e reduces to Λ < Nγµ(
∑NM

i=0 min{i/N, 1}ωP
i ),

where ωP
i is the steady state probability of state i in the Plim system shown in Figure

5.7. The summation in parentheses is the steady state expected proportion of busy

servers in the Plim system.

Figure 5.8 shows that P has a larger stability region than R for caseload limits

M between 1 and ∞ and confirms that their stability regions coincide when M = 1

and when M → ∞. This figure was generated by using the expressions in Theorem

1 to compute Λk
lim, k = R,P for systems with N = 2 case managers, with parameters

µ = 7.5, γ = 1/3, λ = 2.1, 5.1, and 9.6, and maximum caseload limits varying from

1 to 10. The stability limits increase when λ increases, because less time in external

delay leads to less forced server idleness.

It is possible to formulate the S system as a QBD process, by combining the state

variables for the caseload and queue length of each case manager into a single state

variable with finite (but large) range. We did this for N = 2 case managers (details

on the possible transitions are in Appendix B.2), in order to numerically compute

stability limits for the S system (ΛS
lim). We only need to generate the repeating
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Figure 5.8: New-case arrival rate stability limits for maximum caseloads of 1 to 10
cases, for random routing (bottom curves) and pooled (top) systems
with N = 2 case managers, µ = 7.5, γ = 1/3, λ = 2.1, 5.1, and 9.6.

matrix blocks (not the boundary matrix blocks) to compute stability limits. The S

system repeating matrix blocks are square matrices of order (M +1)N . We verified

numerically that the R and S systems have exactly the same stability limits for all

values of M and λ that are shown in Figure 5.8 (as well as for many other cases

that we tried, all with N = 2). This numerical evidence leads us to the following:

Conjecture 5.4. For an S and an R system with the same parameters (N , M , Λ,

λ, µ, and γ), ΛS
lim = ΛR

lim.

In addition to the numerical evidence, we observe that if the arrival rate of

new cases is sufficiently high, one would expect the internal queues of the R and

S systems to behave in the same way. For such highly loaded systems, each case

manager would operate, most of the time, as a single-server M -customer finite-

source queue, in both the R and the S systems. The numerical results that we

report in Section 5.8 (in particular, see the right panels of Figures 5.10-5.12) are

consistent with these arguments.

We conclude this section by proving that ΛP
lim ≥ ΛR

lim in general.

Theorem 5.5. Let Bk
lim(t) be the number of busy servers and Qk

lim(t) be the number

of customers waiting for service at time t in a klim system, where k = R,P . If both

the Rlim and the Plim systems start empty (BR
lim(0) = QR

lim(0) = BP
lim(0) = QP

lim(0)),
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then BP
lim ≥st B

R
lim, which implies that ΛP

lim = γµE[BP
lim] ≥ γµE[BR

lim] = ΛR
lim.

Proof. For t = 0 it is true that BP
lim(t) ≥st B

R
lim(t). Assume that BP

lim(t) ≥st B
R
lim(t)

for t ∈ [0, t′] and that BP
lim(t

′) = BR
lim(t

′) = b′ > 0. We will prove, using a coupling

argument, that the desired order will continue to hold after the next event after

time t′.

If QP
lim(t

′) > 0, then the Plim system has one or more waiting customers, which

implies that all of the servers in that system are busy, or BP
lim(t

′) = BR
lim(t

′) = N .

Therefore, an arrival to either Plim or Rlim will not change the number of busy

servers. A departure from Plim will not change Blim (because there is at least one

waiting customer in that system) and a departure from Rlim will either leave BR
lim

unchanged or reduce it by one, depending on whether the server that completes

service has a waiting customer or not. Thus, the desired ordering of BP
lim and BR

lim

is maintained regardless of what the subsequent event is.

If QP
lim(t

′) = 0, then it follows that QR
lim(t

′) ≥ 0 = QP
lim(t

′), which implies

that Plim has at least as many customers in external delay (NM − b′) as Rlim

(NM−b′−QR
lim(t

′)). We have the following distributions for the time until the next

event after t′ of each type:

Next arrival to Plim after t′: aP (t′) ∼ exp
{

(NM − b′)λ
}

(5.13)

Next arrival to Rlim after t′: aR(t′) ∼ exp
{

[NM − b′ −QR
lim(t

′)]λ
}

(5.14)

Next departure from Plim after t′: dP (t′) ∼ exp
{

b′(1− γ)µ
}

(5.15)

Next departure from Rlim after t′: dR(t′) ∼ exp
{

b′(1− γ)µ
}

(5.16)

Note that immediately after t′, customers arrive to the queue in Plim at the same

or a higher rate than they arrive to a queue in Rlim. Therefore, we can couple Plim

and Rlim as follows. After t′ we let Plim run freely. If the next event after t′ in

Plim is a departure, then we let a departure occur in Rlim with probability 1. If the

next event after t′ in Plim is an arrival, then we let an arrival occur in Rlim with

probability p = (NM − b′ − QR
lim(t

′))/(NM − b′). This construction ensures the
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proper distributions for dR(t′) and aR(t′) and keeps the sample path of the number

of busy servers in Plim at or above the sample path of the number of busy servers

in Rlim with probability 1 at all times. Therefore, BP
lim ≥st B

R
lim, which implies that

E[BP
lim] ≥ E[BR

lim] (Ross 1996, Lemma 9.1.1).

5.6 The Balanced System Approximation

In the B system, we make three assumptions that allow us to model the case

manager system as a birth-death process:

1. Balanced caseloads: We assume that cases are transferred between case

managers to ensure that the caseloads mi and mj of any two case managers

i and j are equal, if possible, and otherwise differ by at most one case. Ap-

pendix B.4 describes a case transfer mechanism that achieves this objective.

2. Markovian case completion rates: We assume that if a case manager

has a caseload m at time t, then she will complete a case in (t, t + dt] with

probability φ(m)dt + o(dt), where limdt→0 o(dt)/dt = 0, independent of all

other case managers.

3. Stationary finite-source case completion rates: We assume that the

case completion rate φ(m) of a case manager with caseload m equals the

steady-state case completion rate in system BSS(m): A single-server finite-

source Markovian queueing system with m customers (M/M/1/./m), with

service rate (1 − γ)µ (the rate at which cases cycle back) and average time

until arrival 1/λ for any customer in the population—identical to the limiting

system Rlim that we used in the stability analysis for the R system, except for

the population size. We also assume that the expected internal wait, given a

caseload of m, can be computed using the same M/M/1/./m system.

It follows from these assumptions that the total number of customers in the system,

i, evolves as a Markovian birth-death process. The birth rate bi in any state i is the

rate Λ of new case arrivals. In order to obtain the death rates, we decompose the
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total number of customers in the system as

i = n(i) + (N − u(i))mmin(i) + u(i)(mmin(i) + 1), (5.17)

where n(i) = (i − NM)+ is the length of the pre-assignment queue, mmin(i) =

(i− n(i)− u(i))/N is the minimum caseload of any manager, and u(i) = (i− n(i))

mod N is the number of managers withmmin(i)+1 cases. That is, N−u(i) managers

have a caseload of mmin(i) and the remaining u(i) managers have a caseload of

mmin(i) + 1. Given Assumption 2, it follows that the death rate di in state i equals

di = (N − u(i))φ(mmin(i)) + u(i)φ(mmin(i) + 1), i = 1, 2, . . . (5.18)

The death rate saturates at di = Nφ(M) for i > MN , which implies that the

birth-death process has a geometrically-decaying tail, and the B system is stable if

Λ < Nφ(M).

To compute φ(m), let ω0(m) be the steady-state probability that the server is

idle in system BSS(m). Then the steady-state server case completion rate equals

φ(m) = µγ(1−ω0(m))—the case completion rate while the server is busy, times the

server utilization. With this expression for φ(m) and the fact that ω0(M) = ωR
0 , we

see that the stability limit for the B system is the same as for the R system.

Define rB = Λ/(Nφ(M)). If the system is stable, that is, if rB < 1, then

standard birth-death process calculations reveal that the steady-state probability of

states 0 and NM , p0 and pNM , and the average pre-assignment queue length, LB
a ,

can be calculated as

p0 =

(

1 +

NM−1
∑

i=1

Λi

∏i
j=1 dj

+
ΛNM

∏NM
i=1 di

1

1− rB

)−1

, (5.19)

pNM =
ΛNM

∏NM
i=1 di

p0, (5.20)

LB
a = pNM

rB

(1− rB)2
. (5.21)

Using Little’s Law, the average pre-assignment wait is WB
a = LB

a /Λ.
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To approximate the expected wait in the internal queues, we first calculate the

expected queue length LSS(m) in the finite-source system BSS(m) form = 1, . . . ,M .

The overall expected number in internal queues is:

LB
q =

∞
∑

i=1

pi {(N − u(i))LSS(m(i)) + u(i)LSS(m(i) + 1)} (5.22)

= p0

{

MN−1
∑

i=1

(

Λi

∏i
j=1 dj

)

[(N − u(i))LSS(m(i)) + u(i)LSS(m(i) + 1)]

}

(5.23)

+ pNMN
LSS(M)

1− rB
(5.24)

By Little’s Law, the expected internal wait is WB
q = LB

q /Λ.

In Section 5.8 we will test the accuracy of this approximation as well as its ability

to determine optimal caseload limits. Note that by adjusting φ(m), the model can

be extended to include case manager service rates that vary with the caseload, as

well as reneging or balking from the queues.

5.7 Deterministic Approach for Setting Caseload Limits

Yamatani et al. (2009) propose a simple method for setting caseload limits: Di-

vide the time, χ, that a case manager is available per month by the time per month

that each case requires. We reinterpret this advice in the context of our model. The

amount of time each case requires per month from the case manager is χ multiplied

by the proportion of time that a case requires from its case manager while assigned,

that is, χ× [(1/µ)/(1/µ + 1/λ)]. The recommended caseload limit is therefore:

MD =
χ

χ(1/µ)/(1/µ + 1/λ)
=

1/µ + 1/λ

1/µ
. (5.25)

This approach implicitly assumes (i) that there is no variability in the system and

(ii) that the case manager is always working on the maximum possible caseload. In

Section 5.8.4 we will compare this method with other approaches we propose.
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5.8 Calibrating and Using the Models

In this Section, we solve the R, S, B, and P models for several problem instances,

to generate insights and to illustrate how the models can be used in practice. We

programmed the QBD calculations for the R and P models and the birth-death

process calculations for the B model in Matlab. The computation time per instance

was less than a second for each of the R and P models and negligible for the B

system. We simulated the S system using the Arena simulation software. For

each instance, we simulated 100 replications, each of which had a 500-hour warmup

period, followed by 2,000 simulated hours. These simulations required roughly 12

minutes of computation time per instance.

We begin, in Section 5.8.1, by estimating base-case parameters for the models,

using published data for an Emergency Department (ED). In Section 5.8.2, we

explore how the system behavior changes as we vary the base-case parameters, one

at a time. In Section 5.8.3, we discuss situations in which the S system behavior

approaches that of the R or P systems. In Section 5.8.4, we compare methods for

setting maximum caseloads.

5.8.1 Calibrating a Base Case from Partial Information

In practice, administrative data and observational studies for case manager sys-

tems may not capture sufficient information for direct estimation of all system pa-

rameters (M , N , Λ, λ, µ, and γ). For example, in an ED, administrative data

might track a patient’s total length of stay (LOS) and the times of consultations

with physicians but might not include information about when a patient’s external

delay (a diagnostic imaging test, for example) ends and internal delay (waiting for a

consultation with the assigned physician) begins. In this section, we illustrate how

one might address these potential difficulties.

We use information from a time study of emergency physician workload by

Graff et al. (1993). We view physicians as case managers. Graff et al. (1993) stud-

ied how physician service time varies with patient service category, length of stay,
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and intensity of service. The physicians in their study (from a university-affiliated

community teaching hospital) recorded the beginning and ending times of each in-

teraction with a patient, as well as the LOS—the time between patient registration

in the ED and patient release.

Table 5.2 lists statistics from Graff et al. for five patient types. The aggregate

patient averages in Table 5.2 permit direct estimation of the average number of

processing steps and the average service time per processing step, as follows:

Average number of processing steps =
1

γ
= 1.86 ⇒ γ = 0.54 (5.26)

Average physician service time =
1

µ
=

total service time

average number of steps
=

0.32 hrs.

1.86

(5.27)

= 0.17 hrs. = 10.3 minutes ⇒ µ = 5.91/hr.

Table 5.2: Data from Graff et al. (1993). All times are in hours.
Patient type Number Avg. service Avg. # of γ LOS Avg. # of ext. T − Ts

time (Ts) steps (1/γ) (T ) delays (Ne)

Nonselected 514 0.40 2.20 0.45 2.17 1.20 1.76
Walk-in 637 0.16 1.30 0.77 0.98 0.30 0.82

Obs. 52 0.93 6.30 0.16 12.41 5.30 11.48
Lac. repair 102 0.42 1.10 0.91 1.60 0.10 1.18

Critical 42 0.53 2.60 0.38 2.92 1.60 2.39
Total 1347

Wtd. avg. 0.32 1.86 0.54 1.98 0.86 1.67

The data do not allow direct estimation of the external arrival rate (Λ) and the

average external delay (1/λ). We can use the S model, however, to determine values

for (λ, Λ) that are consistent with the 1.98-hour average total LOS from Graff et

al. We decompose the total LOS as follows:

Total LOS = Pre-assignment delay + internal delay + service time (5.28)

+ external delay = 1.98 hours.

After substituting direct estimates for the average total LOS and the average service
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time, we are left with

Pre-assignment delay + internal delay + external delay = (5.29)

Wa(Λ, λ) +Wq(Λ, λ) + Te(Λ, λ) = 1.67 hours.

We can use the S model to identify (λ,Λ) pairs that satisfy (5.29) and are, therefore,

consistent with the data in Graff et al. (1993), but first we must set base-case values

for N and M . We assume N = 3 physicians (typical for a small to medium-sized

ED) with a maximum caseload of M = 5 patients (based on the empirical study by

Kc (2013), which found that when caseloads climb above 5, physician performance

declined significantly).

After fixing N , M , µ, and γ, we first varied λ and computed the stability limits

for the R and P systems, as shown in Figure 5.9. Then we simulated the S system

for several (λ,Λ) pairs that fell within the R system stability region. Figure 5.9

shows several such pairs that satisfy (5.29), up to simulation error. These pairs

form an approximate contour along which (5.29) is satisfied, and we see that this

contour lies entirely within the R system stability region. The complete set of values

corresponding to the (λ,Λ) pair that we chose for our base case are Λ = 8.6/hour,

λ = 1.8/hour, µ = 5.91/hour, γ = 0.54, M = 5, and N = 3. With the S model,

these values result in a physician utilization of 90%, average pre-assignment wait of

0.6 hours, average internal wait of 0.62 hours, and average external delay of 0.47

hours—values that appear plausible for an ED.

5.8.2 Variations from the Base Case

In Figure 5.10 we allow Λ to approach the R system stability limit (Λ/ΛR
lim ap-

proaches 1), where ΛR
lim = 9.44 and ΛP

lim = 9.57 per hour. Recall our Conjecture 5.4,

that ΛS
lim = ΛR

lim, which justifies the use of Λ/ΛR
lim as a measure of congestion for the

S system. The pre-assignment wait grows quickly while the internal wait increases

more slowly. The pre-assignment queue in a case manager system is analogous to an

infinite-capacity multi-server queue, and it’s length grows without bound as the ar-
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Figure 5.9: Contour of cases satisfying (5.29) along with the stability limits
.

Figure 5.10: Average waits for the R, S, B, and P systems when the new case arrival
rate Λ varies from 7.6 to 9.3 per hour.

rival rate approaches the system capacity. When Λ = 9.3 (99% of ΛR
lim), the pooling

benefits of the P system reduce the average pre-assignment delay eightfold com-

pared to the R system (from 21.23 to 2.81 hours). The state-dependent routing in

the S system achieves most of this benefit, with a 6.12-hour average pre-assignment

delay, while maintaining the benefits of continuity of care. In these experiments, as

in most of the experiments that we discuss in this subsection, the B system results

are almost identical to the S system simulation results.

The ratio Λ/ΛR
lim can also be varied by changing µ, λ, or γ (see equations (5.10)

and (5.11)). In Figures 5.11 and 5.12, we see that varying λ or γ has mostly the

same qualitative effect as varying Λ, as does the effect of varying µ (not shown).

The exception is the effect of changes in 1/λ, the average external delay, on internal

wait, as seen in the right panel of Figure 5.11. On the one hand, increasing 1/λ

decreases effective capacity, thereby increasing Λ/ΛR
lim and the pre-assignment delay
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Figure 5.11: Average waits for theR, S, B, and P systems when the average external
delay 1/λ varies from 0.37 to 0.97 hours.

Figure 5.12: Average waits for the R, S, B, and P systems when the average number
of processing steps 1/γ varies from 1 to 2.

(Figure 5.11, left panel). On the other hand, in heavily loaded systems where the

case managers operate close to their caseload limit, a longer average external delay

results in a shorter average internal wait, because the total number of cases in

external delay and the internal queue is almost constant (Figure 5.11, right panel).

The effect of varying µ is similar to the effect of varying γ.

5.8.3 When Does the S System Approach the P or R System?

In all of our experiments, the S-system pre-assignment delay is closer to the P -

system pre-assignment delay than the R-system pre-assignment delay, again demon-

strating that the S system provides most of the benefits of pooling. This was also

true for the total wait, because the total wait is dominated by the pre-assignment

wait.

For the internal wait, however, as Λ, 1/λ and 1/γ increase so that Λ/ΛR
lim ap-

proaches 1, the S system’s performance approaches that of the R system (see the

right panels of Figures 5.10-5.12). As Λ/ΛR
lim approaches 1, both the R and S sys-
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Figure 5.13: Average total, internal, and pre-assignment waits for the S system,
varying the caseload limit from M = 4 to 15. The deterministic
caseload limit for the base case is MD = 4.

tems become heavily loaded, with most new cases waiting in the pre-assignment

queue and then being routed to the first available case manager, thus removing the

benefits of state-dependent routing.

5.8.4 Setting Caseloads

Varying the caseload limit M adjusts the tradeoff between pre-assignment delay

and internal delay. On the one hand, with a higher M , the case manager is more

likely to be busy, so that the internal delay increases. On the other hand, the case

manager’s increased utilization increases the system capacity, which decreases the

pre-assignment delay. Figure 5.13 illustrates this tradeoff and shows that the impact

of changes in M on pre-assignment delay tend to dominate the impact on internal

delay, so that the total delay declines as M rises. This was true for all of our

numerical experiments. Therefore, we define W∞ as the average total wait when

there is no caseload limit (M = ∞) and we hypothesize that this is the minimum

possible average total wait in an S system.

From the literature on multitasking, however, we know that increased caseloads

can have a negative impact on service quality (Kc 2013). Therefore it would be

useful to identify reasonable caseload limits that reduce the impact of multitasking

while keeping the average total wait below a target.
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We ran simulation experiments to identify MS
10%, defined as the smallest caseload

limit such that the average total wait in the S system is at most 10% above the

minimum, W∞. Let MP
lim and MR

lim be the smallest caseload limits for which a

pooled system and a random routing system are stable, respectively. To find MS
10%,

we simulate the S system with M = MP
lim and then increment M by one case at

a time until W S/W∞ ≤ 1.1. We use a similar procedure to identify MB
10%, the

smallest caseload limit that brings the average total waiting time in the B system

below 1.1W∞. We also compute the deterministic caseload limit MD, using (5.25).

We ran two series of experiments: Series A, with lightly loaded systems and low

recommended caseload limits and Series B, with heavily loaded systems and high

recommended caseload limits. We controlled the system load via the ratio Λ/(Nγµ),

which corresponds to the case manager utilization for a system with M = ∞. The

experiments covered a wide range of parameter values that might be seen in health

care settings, for example, 1/λ varied from 23 minutes to 1 hour in Series A and from

2 to 4 hours in Series B. The parameter sets were primarily constructed using a full

factorial design, but with unstable systems eliminated and a few experiments added

to widen the range of recommended caseloads. Appendix B.3 lists all parameter

settings for Series A and B.

Table 5.3 and Figure 5.14 summarize the results of the experiments. The fourth

and fifth lines of Table 5.3 and the clustering of the B-system caseload limit rec-

ommendations on the diagonal in Figure 5.14 show that MB
10% provides us with an

accurate method for setting caseload limits. The balanced model caseload limits

usually match the exact MS
10% (75% of cases in Series A and 88% of cases in Series

B) and they differ from MS
10% by at most 1 in all cases. The deterministic approach,

on the other hand, is a poor approximation. The deterministic caseload limit MD

matches MS
10% in only 10% of the Series A cases and 4% of the Series B cases and

MD is often an overestimate, by up to 10 cases. Figure 5.14 also shows that MP
10%

often significantly underestimates the recommended caseload limit.

The B system is less successful at providing precise performance measure es-

timates, given the recommended caseload. From Table 5.3, the B-system average
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Figure 5.14: Recommended caseloads from the S simulation (MS
10%) versus caseload

limits from the deterministic model (MD), the balanced model (MB
10%),

and the stability limit of the pooled model (MP
lim)

and maximum absolute errors for total wait, compared to the S-system simulation,

were 9% and 34% in Series A, respectively. The performance of the approximation

was much better in Series B (1%, 6%). Note, however, that in Series A the absolute

waiting times were extremely small, so that the absolute total waiting time error

produced by the B system was also small, averaging 0.9 minutes.

Table 5.3: Summary of numerical experiments.
Series A Series B

Number of cases 81 24
Average for MP

lim 1.8 11.8
Average for Λ/(Nγµ) 0.56 0.92

% cases MB
10% = MS

10% 75% 88%

Max |MB
10% −MS

10%| 1 1

Avg. abs % system time error by B, given MB
10% 2% 0.4%

Max. abs. % system time error by B, given MB
10% 7% 3%

Avg. % waiting time error by B, given MB
10% 9% 1%

Max. abs. % waiting time error by B, given MB
10% 34% 6%

% cases MD = MS
10% 10% 4%

Max |MD −MS
10%| 9 10
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CHAPTER 6

Conclusion

In this dissertation we explored capacity planning in two different service sys-

tem settings: traditional multiserver systems and case manager systems. We were

particularly concerned with systems where servers and customers are humans, al-

though the results can be applied more generally. This lead us to take into account

specific end-of-shift policies and consider the cognitive load of multitasking in our

discussion.

For traditional nonstationary multiserver systems, we obtained an exact lower

bound on the staffing needed to ensure the desired QoS at all times, with time-

varying arrival processes and time-varying number of servers. In Chapter 2 we

constructed this lower bound based on stochastic ordering results we proved between

the virtual waiting time in the system of interest and the pseudo virtual waiting time

in an otherwise identical infinite-server system. We showed how these lower bounds

can be constructed for systems with both preemptive and exhaustive end-of-shift

policy and for systems with abandonment. We also showed that the stochastic

ordering between the virtual waiting time and the pseudo virtual waiting time can

be used to construct lower bounds on staffing requirements if the expected waiting

time or the average QoS in each period are used as performance measures (instead

of the QoS).

In Chapter 3 we discussed how to evaluate time-dependent state probabilities

and service levels (based on the pseudo virtual waiting time defined in Chapter 2) for
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different types of nonhomogeneous infinite-server systems. When computing service

levels for infinite-server systems with Poisson arrivals, where the state probabilities

follow a Poisson distribution, we can choose a truncation limit for the summation

in (3.16) based on the Poisson distribution that keeps the error within a specified

threshold, as suggested by Grassmann (1977) and discussed in Chapter 3. A future

research topic would be to recommend such truncation limits for systems where

state probabilities do not follow a Poisson distribution.

In Chapter 4 we reported results from computational experiments to compare

our lower bound with the SIPP approximation (commonly used in practice) and

with the requirements from an approach to choosing staffing levels which is also

based on an infinite-server system, the MOL approximation. The test cases we used

correspond to situations where the SIPP approximation has been shown to perform

poorly, and we confirm this in our results. The MOL staffing requirements ensured

the target QoS at all times in all test cases, but they had high costs. Our lower

bounds only ensured the QoS target at all times in one test case (which was ex-

pected, since they were not meant to be sufficient), but the minimum QoS was very

close to the target in all test cases (average minimum QoS of 77% for a target of

80%). Thus, we showed that our lower bound can perform very close to the tar-

get despite having significantly lower costs than the MOL requirements (our lower

bounds were on average 2.9% cheaper). We also showed that our lower bound can

be used as a starting point for the ICWC method (a staff scheduling optimization

method previously proposed by Ingolfsson et al. (2010)) to obtain staffing require-

ments which guarantee the desired QoS at all times, but are cheaper than the MOL

requirements in all test cases (on average 1.8% cheaper). Note that the ICWC

method found feasible staffing requirements very quickly when our lower bound was

used as a starting point, making this method competitive with approximate ap-

proaches such as MOL and SIPP. Furthermore, we showed that our lower bound

can be used to considerably increase the speed with which the scheduling method in

Ingolfsson et al. (2010) finds a low cost feasible solution to the scheduling problem.

The method is on average 86.7% faster when our lower bound is used. We would
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expect to obtain time savings in other methods that start the search for low cost

staffing solutions from a lower bound.

The lower bound we proposed is easy to compute and can be very useful as a

starting point for finding low-cost staffing schedules which satisfy the QoS target.

Furthermore, in situations where it is not essential that the QoS target be met at

all times, our lower bound can be used in an approximate approach to find staffing

schedules that provide QoS close to the target.

In Chapter 5 we developed a stochastic model of a case manager system. Exact

analysis of this baseline Markov chain model, which has two state variables for every

case manager, is difficult because of the curse of dimensionality. This motivated us

to formulate two simpler-to-analyze models, which we believe provide lower and

upper performance bounds, as well as a birth-death process approximation. We

provided expressions to determine stability limits for the bounding models, which

can help in planning simulation experiments for the baseline model.

Analysis and numerical experiments with these systems generated insights that

may be used to design and operate case manager systems. We showed that for

special cases, the stability limit of the baseline S system is equal to that of the R

system with independent case managers. The average performance of the S system

in terms of overall delay, however, is consistently closer to that of the P system,

with entirely pooled case managers.

We also found that as the arrival rate, average number of processing steps, and

average service time rise, both pre-assignment and internal delay rise. As the average

external delay rises, pre-assignment delay also rises but internal delay falls. The

effects of all these parameters on pre-assignment delay can be dramatic, exhibiting

typical queueing congestion behavior as the system approaches the stability limit.

Internal delay, however, varies inside a limited range.

Experiments with caseload limits demonstrated that managers may trade-off

pre-assignment and internal delay. The optimal caseload limit will depend upon the

relative costs of these delays, as well as upon other costs not modeled directly here,

such as the impact of caseloads on service quality (Kc 2013). In our computational
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experiments, we used our models to find the minimum caseload that satisfies a delay

criterion. We found that the birth-death process approximation provided caseload

limits that differ by at most one case from caseload limits obtained by simulating the

baseline model. A deterministic caseload limit calculation, proposed in the social

work literature, performs poorly. This calculation ignores the impact of system

parameters (such as the external delay) and may recommend caseload limits that

are either unreasonably high or are so low that the system is unstable. Finally,

another advantage of the birth-death approximation is that it is easily adapted to

incorporate particular relationships between the manager’s caseload and the case

completion rate, as documented in Kc (2013).
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APPENDIX A

Exact Necessary Staffing Requirements Based on

Infinite-Server Systems

A.1 Alternative Lower Bound for the Exhaustive Discipline Case

We examine an alternative way of using an infinite-server system to obtain lower

bounds on the number of servers and the virtual waiting time for a finite-server sys-

tem in which the number of servers varies with time under an exhaustive discipline.

In this case, given that δ1 servers are scheduled to leave the finite-server system at

time t1, the state probabilities in the infinite-server system undergo instantaneous

transitions according to the matrix BI in (2.15).

Since we assume that NF (t
−

1 ) ≥ NI(t
−

1 ), there are three possibilities for the

distribution of the number of customers in the two systems after the ejection:

1. If NF (t
−

1 ) ≥ NI(t
−

1 ) ≥ s0,

P (NF (t
+
1 ) = n) =











1, for n = NF (t
−

1 )− δ1

0, otherwise
(A.1)

P (NI(t
+
1 ) = n) =











1, for n = NI(t
−

1 )− δ1

0, otherwise
(A.2)
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2. If NF (t
−

1 ) ≥ s0 ≥ NI(t
−

1 ),

P (NF (t
+
1 ) = n) =











1, for n = NF (t
−

1 )− δ1

0, otherwise
(A.3)

P (NI(t
+
1 ) = n) =











φ(NI(t
−

1 )− n; δ1, s0, NI(t
−

1 )), for LI ≤ n ≤ UI

0, otherwise

(A.4)

where LI = [NI(t
−

1 )− δ1]
+ and UI = min(NI(t

−

1 ), s0 − δ1).

3. If s0 ≥ NF (t
−

1 ) ≥ NI(t
−

1 ),

P (NF (t
+
1 ) = n) =











φ(NF (t
−

1 )− n; δ1, s0, NF (t
−

1 )), for LF ≤ n ≤ UF

0, otherwise

(A.5)

where LF = [NF (t
−

1 )− δ1]
+ and UF = min(NF (t

−

1 ), s0 − δ1).

P (NI(t
+
1 ) = n) =











φ(NI(t
−

1 )− n; δ1, s0, NI(t
−

1 )), for LI ≤ n ≤ UI

0, otherwise.

(A.6)

In cases 1 and 2 it is straightforward to show that P (NF (t
+
1 ) > a) ≥ P (NI(t

+
1 ) >

a), for all a, and therefore NF (t
+
1 ) ≥st NI(t

+
1 ). For case 3, the same ordering

can be proven using the method proposed by Klenke and Mattner (2010) to prove

the likelihood ratio ordering between NF (t
+
1 ) and NI(t

+
1 ). We say that NF (t

+
1 ) is

greater than NI(t
+
1 ) in the monotone likelihood ratio order, NF (t

+
1 ) ≥lr NI(t

+
1 ),

if the likelihood ratio l(n) = P (NI(t
+
1 ) = n)/P (NF (t

+
1 ) = n) is nonincreasing in

n. According to Remark 2.1 and Proposition 2.1 in Klenke and Mattner (2010), in

order to prove that NF (t
+
1 ) ≥lr NI(t

+
1 ), it is enough to show that l(n) is monotone

decreasing in the interval LF ≤ n ≤ UI , l(LI) ≥ 1 (left-tail condition), and l(UF ) ≤ 1

(right-tail condition). Since the likelihood ratio ordering implies the conventional

stochastic ordering (Ross 1996), we conclude that NF (t
+
1 ) ≥st NI(t

+
1 ) in case 3. The

argument can be repeated to show that NI(t) ≤st NF (t) for all t.
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Figure A.1: Joint pdf for X and Y .

If the service times are exponentially distributed, then NI(t) ≤st NF (t) implies

WI(t) ≤st WF (t) (based on a minor modification of Theorem 4 in Bhaskaran (1986)).

A.2 Sample Path versus Hazard Rate Ordering: Counter Example

Let X and Y be two random variables with joint probability density function

(pdf):

fX,Y (x, y) =



































10
27 , for 1 ≤ y < 2, 0 ≤ x < 1

1
27 , for 2 ≤ y < 6, 0 ≤ x < y or 1 ≤ y < 2, 1 ≤ x < y,

or 0 ≤ y < 1, 0 ≤ x < y

0, otherwise

(A.7)

This pdf is only different from 0 in the gray region in Figure A.1, where 0 ≤ y ≤ 6

and x ≤ y. Furthermore, the probability density is higher in the crosshatched area

where 1 ≤ y ≤ 2 and 0 ≤ x ≤ 1.

It is easy to see that the sample path ordering of X and Y holds, as Pr{X ≤

Y } = 1, but we show that the hazard rate ordering does not hold in this case. The

random variable Y is said to be larger than the random variable X in a hazard rate

ordering sense if Pr{Y > τ + a|Y > τ} ≥ Pr{X > τ + a|X > τ} for all τ, a. Assume

that τ = 1 and a = 1. In this case we have:
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Pr{X > τ + a|X > τ} = Pr{X > 2|X > 1} =
Pr{X > 2}

Pr{X > 1}
=

1
27

(6−2)2

2

1
27

(6−1)2

2

=
16

25
= 0.64

(A.8)

Pr{Y > τ + a|Y > τ} =
Pr{Y > 2}

Pr{Y > 1}
=

1
27

(2+6)(6−2)
2

1
27

(2+6)(6−2)
2 + 1

27
(2−1)2

2 + 10
27(2− 1)(1 − 0)

(A.9)

=
32

53
≈ 0.60 (A.10)

Since Pr{Y > 2|Y > 1} < Pr{X > 2|X > 1} we conclude that although Pr{X ≤

Y } = 1, Y is not larger than X in a hazard rate ordering sense, and therefore the

sample path ordering does not necessarily imply the hazard rate ordering.

A.3 Computation of MOL Requirements

We computed MOL requirements for each M(t)/M/s(t) system in Chapter 4 as

follows:

1. We computed the average number of customers (or number of busy servers)

m(t) in an otherwise identical M(t)/M/∞ system (System I), using the fol-

lowing differential equation (Corollary 4 in Eick et al. (1993b)), where λ(t) =

λ
[

1 + γ sin
(

πt
4

)]

:

m′(t) = λ(t)− µm(t) ⇒ m′(t) = λ

[

1 + γ sin

(

πt

4

)]

− µm(t), 0 ≤ t ≤ 12

(A.11)

We solved (A.11) using the Runge-Kutta numerical integration method im-

plemented in the ode45 function in Matlab (Shampine and Reichelt 1997),

recording the value of m(t) each calculation period of δcalc = 5 minutes.

2. For each planning period j, spanning time interval [tij, t
f
j ] we found the mini-

mum number of servers needed to ensure the desired QoS in a M/M/s system
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with arrival rate λ = µmax
{

m(t), t ∈ [tij , t
f
j ]
}

, using formulas for the station-

ary state probabilities in an M/M/s system (Kleinrock 1974a) implemented

in the Queueing Toolpak, Version 4.0 (Ingolfsson and Gallop 2003).

A.4 Computation of Our Lower Bounds

We computed our lower bound for each M(t)/M/s(t) system in Chapter 4 as

follows:

1. We computed the state probabilities for an otherwise identical M(t)/M/∞ sys-

tem (System I), using the randomization method (Grassmann 1977). We im-

plemented the randomization method in the same fashion as Ingolfsson et al.

(2010), approximating the continuous arrival rate λ(t) by a piecewise con-

stant function λ(t) = λ̃l =
∫ lδcalc
(l−1)δcalc

λ(s)ds/δcalc for t ∈ ((l − 1)δcalc, lδcalc],

for calculation periods of δcalc = 5 minutes. For systems under a preemp-

tive discipline, we used the state probabilities at the end of each calculation

period as the initial state probabilities for the subsequent calculation period.

For systems under an exhaustive discipline, we multiplied the state probabil-

ities at the end of each calculation period by the appropriate ejection matrix

(matrix H in (2.12) or BI in (2.15)) and then used the resulting state proba-

bilities as the initial state probabilities for the subsequent calculation period.

In each calculation period we used an M(t)/M/K/K system to approximate

the infinite-server infinite-capacity system M(t)/M/∞, with K chosen so that

πK(t) < 10−4 for all t. Note that for systems under a preemptive discipline

we could use (A.11) to compute the time-dependent average number of cus-

tomers in the system and then compute time-dependent state probabilities,

which follow a Poisson distribution (Eick et al. 1993a,b). We chose to use a

method that works for both end-of-shift policies.

2. For each planning period j, spanning time interval [tij, t
f
j ], we found the min-

imum number of servers sj needed to ensure the desired QoS, which in our

experiments was P (WI(t) = 0) =
∑sj−1

i=0 πi ≥ 0.8 for t ∈ [tij , t
f
j ]. Note that the
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probability of no delay is computed in the same way for preemptive and ex-

haustive disciplines. If the chosen QoS were of the form P (WI(t) < τ) ≥ α the

calculations would be different for different end-of-shift policies, as discussed

in Chapter 3.

A.5 ICWC Staffing

The ICWC method alternates between a schedule generator and a schedule eval-

uator to find low cost feasible solutions to the staffing problem. It starts with strict

lower bounds on the number of servers needed to ensure the minimum QoS in each

period. An integer program is solved to find the minimum cost staffing plan satis-

fying the constraint that the number of servers in each period is greater than this

strict lower bound. This solution is then evaluated and the infeasible intervals,

where the QoS goes below the minimum required, are identified. In the next step

the additional number of servers needed in each infeasible interval to bring the QoS

up to the minimum required level is estimated (approximately). This information

is used to build new constraints on the number of servers in each infeasible interval

to be added to the original integer program. Since the additional number of servers

needed is an approximation, a parameter β ∈ [0, 1] is included to scale down the

added constraints, in order to avoid eliminating the optimal solution from the fea-

sible set of the integer program. The higher β is, the tighter the new constraints

are. The process of solving the integer program, evaluating the QoS for the solution

obtained, and adding new constraints to the integer program is repeated until a

feasible solution is reached. Note that the ICWC method allows for constraints on

the set of shifts that can be used, I, with a shift i ∈ I being represented as a binary

row vector aij of length n (the number of planning periods), where aij = 1 if shift i

includes planning period j and aij = 0 otherwise.

In Chapter 4.1 experiments we used our lower bound as a starting point for

the ICWC method. The ICWC method was run with a maximum duality gap of

0.5% and a maximum number of simplex iterations of 5,000. Also, the parameter
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β was set to 0.7 and the calculation period δcalc was set to 5 minutes in all of the

experiments.
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APPENDIX B

Queueing Models of Case Managers

B.1 Computing Steady State Probabilities and Performance Mea-

sures for the R and P Systems

B.1.1 R System

The R system the boundary matrix blocks are:

BR
0 = Λ/N







0(M−1)M/2,M+1

0M,1|IM






, (B.1)

BR
1 =

























∆ U1

L1 D1 U2

L2 D2
. . .

. . .
. . . UM−1

LM−1 DM−1

























, where UR
n = Λ/N [0n,1|In] , (B.2)
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LR
n = γµ







01,n

In






, and DR

n =

























∆ nλ

(1− γ)µ ∆ (n− 1)λ

. . .
. . .

. . .

(1− γ)µ ∆ λ

(1− γ)µ ∆

























, (B.3)

BR
2 = γµ







01,x

0M,x−M |IM






. (B.4)

The vectors πR
0 and πR

1 can be obtained from the boundary conditions

πR
0 B

R
1 + πR

1 B
R
2 = 0, (B.5)

πR
0 B

R
0 + πR

1 A
R
1 + πR

2 A
R
2 = 0, (B.6)

and the normalization condition

πR
0 e+

∞
∑

n=1

πR
n e = πR

0 e+ πR
1

∞
∑

n=1

(RR)n−1e = πR
0 e+ πR

1 (I −RR)−1e = 1, (B.7)

where AR
0 , A

R
1 , and AR

2 are defined in Section 5.4.1. Let iR0 be the column vector

of the number of customers assigned to a manager and jR0 be the column vector

of the number of customers in internal queue or in service in the boundary states.

We can obtain the state probabilities using (5.5) and we can compute performance

measures as:

• Average caseload:

LR
c = πR

0 i
R
0 +

∞
∑

n=1

MπR
n e = πR

0 i
R
0 +MπR

1

∞
∑

n=1

(RR)n−1e (B.8)

= πR
0 i

R
0 +MπR

1 (I −RR)−1e,
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• Average internal queue length:

LR
q = πR

0 (j
R
0 − e)+ +

∞
∑

n=1

πR
n

























0

0

1

...

M − 1

























(B.9)

= πR
0 (j

R
0 − e)+ + πR

1 (I −RR)−1

























0

0

1

...

M − 1

























• Average utilization:

ρR = πR
0 min{jR0 , 1}+

∞
∑

n=1

πR
n



















0

1

...

1



















= πR
0 min{jR0 , 1} + πR

1 (I −RR)−1



















0

1

...

1



















(B.10)

• Average number of cases in external delay:

LR
e = LR

c − LR
q − ρR (B.11)

• Average pre-assignment queue length, aggregated over all case managers to

allow comparisons with S and P systems:

LR
a = N

∞
∑

n=1

(n − 1)πR
n e = NπR

1 R
R(I −RR)−2e (B.12)
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• Average total system time:

TR =
LR
c

Λ/N
+

LR
a

Λ
, (B.13)

where the first term is the average time spent assigned to a case manager (in

the internal queue, external queue, or in service) obtained using Little’s Law

(each case manager receives an arrival rate of Λ/N) and the second term is the

average time spent in the pre-assignment queue, also obtained using Little’s

Law.

Note that Li
c, L

i
q, L

i
e are all measured “per case manager” (for i = R,P ), whereas

Li
a is a measure for the system as a whole.

B.1.2 P System

In the P system the boundary matrix blocks BP
0 , B

P
1 , and BP

2 are:

BP
0 = Λ





0(NM−1)NM/2,NM+1

0NM,1|INM



 , (B.14)

BP
2 = γµ

























0NM+1,(NM−1)NM/2

0 . . . . . . 0

min {1, N}

min {2, N}

. . .

min {NM,N}

























, (B.15)

BP
1 =

























∆ U1

L1 D1 U2

L2 D2
. . .

. . .
. . . UM−1

LM−1 DM−1

























, where Un = Λ [0n,1|In] , (B.16)

99



Ln = γµ

























0 . . . . . . 0

min {1, N}

min {2, N}

. . .

min {n,N}

























, and (B.17)

Dn =

























∆ nλ

min {1, N} (1− γ)µ ∆ (n− 1)λ

min {2, N} (1− γ)µ
. . .

. . .

. . . ∆ λ

min {n,N} (1− γ)µ ∆

























.

(B.18)

The repeating matrix blocks are (using ∆ for generic diagonal elements in AP
1

and AP ):

AP
0 = ΛI, (B.19)

AP
1 =







































∆ NMλ

(1− γ)µ ∆

.. .
. . .

(N − 1)(1− γ)µ ∆ 3λ

. . .
. . .

. . .

N(1− γ)µ ∆ λ

N(1− γ)µ ∆







































(B.20)

AP
2 = γµ







































0

. . .

(N − 2)

(N − 1)

N

. . .

N







































(B.21)
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AP = AP
0 +AP

1 +AP
2 = (B.22)

=







































∆ NMλ

(1− γ)µ ∆

.. .
. . .

(N − 1)(1− γ)µ ∆ 3λ

. . .
. . .

. . .

N(1− γ)µ ∆ λ

N(1− γ)µ ∆







































The vectors πP
0 and πP

1 can be obtained from the boundary conditions as in

(B.5) and (B.6) and the normalization condition as in (B.7). Let iP0 be the column

vector of the number of customers assigned to a manager and jP0 be the column

vector of the number of customers in internal queue or in service in the boundary

states. We can then obtain the state probabilities using Equation (5.5) and compute

performance measures:

• Average Caseload per Manager(LP
c )

LP
c =

1

N

[

πP
0 i

P
0 +

∞
∑

n=1

NMπP
n e

]

=
1

N

[

πP
0 i

P
0 +NMπP

1

∞
∑

n=1

RPn−1

e

]

=

(B.23)

LP
c =

1

N

[

πP
0 i

P
0 +NMπP

1 (I −RP )−1e
]

(B.24)
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• Average Length of Internal Queue per Manager (Lq)

LP
q =

1

N

























πP
0 max{jP0 − e, 0} +

∞
∑

n=1

πP
n
















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• Average utilization (ρP )
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• Average Number of Cases in External Delay per Manager (LP
d )

LP
e = LP

c − LP
q − ρP (B.29)
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Figure B.1: Jackson network for a single manager in a random routing system with
unlimited caseload.

• Average Length of Pre-Assignment Queue (LP
a )

LP
a =

∞
∑

n=1

(n− 1)πP
n e = π1R

P (I −RP )−2e (B.30)

• Average Total Time in the System (TP )

TP =
NLP

c

Λ
+

LP
a

Λ
(B.31)

B.2 Stability Limits in Special Cases

B.2.1 Stability Limits for R and P Systems with Infinite Caseload Limit

A single case manager in an R system with N case managers and unlimited

caseload can be represented by the Jackson Network (Jackson 1957) in Figure B.1.

In this Jackson network flow balance requires λ1γ = Λ/N , where λ1 is the arrival

rate to the case manager. In order for the network to be stable, every node in the

network needs to be stable. The external delay node has infinitely many servers,

so it will always be stable. In order for the service node to be stable we need

λ1/µ = Λ/(Nγµ) < 1 ⇒ Λ < Nγµ. The stability limit ΛR
lim = Nγµ is the rate

with which cases leave the system if the case managers are never idle. When M is

infinite, a case manager’s capacity is never reduced because of forced idleness while

there are cases available to work on.

A P system with N case managers and unlimited caseload can be represented

by the Jackson Network in Figure B.2. In this Jackson network λ1γ = Λ. In order

for the service node to be stable we need λ1/(Nµ) = Λ/(Nγµ) < 1 ⇒ Λ < Nµγ.

We conclude that as M tends to infinity, the stability conditions for the R and P
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Figure B.2: Jackson network for a pooled system with unlimited caseload.

systems converge to the same value.

B.2.2 Stability Limits for the S System with Two Case Managers

To formulate an S system with N = 2 case managers as a QBD we need 5 state

variables: l (total number of customers in the system), li (number of customers

assigned to case manager i, i = 1, 2), and qi (number of customers assigned to case

manager i, i = 1, 2, that are service or in internal queue). We order the states

lexicographically and define the level as 0 for the states where l < NM and as

l − NM + 1 for the states where l ≥ NM . We use l1, l2, q1, and q2 to define the

phase. The possible transitions are:

• Arrival of a new case:

(l, l1, l2, q1, q2) →















































(l + 1, l1 + 1, l2, q1 + 1, q2), when l1 < l2 ≤ M (rate Λ) or

l1 = l2 < M (rate Λ/2)

(l + 1, l1, l2 + 1, q1, q2 + 1), when l2 < l1 ≤ M (rate Λ) or

l1 = l2 < M (rate Λ/2)

(l + 1, l1, l2, q1, q2), when l1, l2 ≥ M (rate Λ)

(B.32)
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• Service completion that results in case completion:

(l, l1, l2, q1, q2) →


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


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(l − 1, l1 − 1, l2, q1 − 1, q2), when q1 > 0 and l ≤ 2M

(rate γµ)

(l − 1, l1, l2 − 1, q1, q2 − 1), when q2 > 0 and l ≤ 2M

(rate γµ)

(l − 1, l1, l2, q1, q2), when q1, q2 > 0 and l > 2M

(rate 2γµ), or min{q1, q2} = 0,

max{q1, q2} > 0, and l > 2M

(rate γµ)

(B.33)

• Service completion that does not result in case completion:

(l, l1, l2, q1, q2) →











(l, l1, l2, q1 − 1, q2), when q1 > 0 (rate [1− γ]µ)

(l, l1, l2, q1, q2 − 1), when q2 > 0 (rate [1− γ]µ)
(B.34)

• Completion of external delay:

(l, l1, l2, q1, q2) →











(l, l1, l2, q1 + 1, q2), when [l1 − q1] > 0 (rate [l1 − q1]λ)

(l, l1, l2, q1, q2 + 1), when [l2 − q2] > 0 (rate [l2 − q2]λ)

(B.35)

The S system with N = 2 repeating matrix blocks AS
0 , A

S
1 , and AS

2 are square

matrices of order (M + 1)2.

B.3 Parameters for Caseload Experiments

We list the parameters for the caseload experiments in Section 5.8.4 in Tables

B.1 (Series A) and B.2 (Series B).
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Table B.1: Parameters for Series A (N = 3 case managers and M = 5 cases in all
experiments).

Exp. # λ γ Λ µ Exp. # λ γ Λ µ

1 0.95 0.54 7.60 5.91 42 1.80 0.75 8.60 9.00
2 0.95 0.54 7.60 7.00 43 1.80 0.75 9.30 5.91
3 0.95 0.54 7.60 9.00 44 1.80 0.75 9.30 7.00
4 0.95 0.54 8.60 5.91 45 1.80 0.75 9.30 9.00
5 0.95 0.54 8.60 7.00 46 1.80 0.95 7.60 5.91
6 0.95 0.54 8.60 9.00 47 1.80 0.95 7.60 7.00
7 0.95 0.54 9.30 5.91 48 1.80 0.95 7.60 9.00
8 0.95 0.54 9.30 7.00 49 1.80 0.95 8.60 5.91
9 0.95 0.54 9.30 9.00 50 1.80 0.95 8.60 7.00
10 0.95 0.75 7.60 5.91 51 1.80 0.95 8.60 9.00
11 0.95 0.75 7.60 7.00 52 1.80 0.95 9.30 5.91
12 0.95 0.75 7.60 9.00 53 1.80 0.95 9.30 7.00
13 0.95 0.75 8.60 5.91 54 1.80 0.95 9.30 9.00
14 0.95 0.75 8.60 7.00 55 2.65 0.54 7.60 5.91
15 0.95 0.75 8.60 9.00 56 2.65 0.54 7.60 7.00
16 0.95 0.75 9.30 5.91 57 2.65 0.54 7.60 9.00
17 0.95 0.75 9.30 7.00 58 2.65 0.54 8.60 5.91
18 0.95 0.75 9.30 9.00 59 2.65 0.54 8.60 7.00
19 0.95 0.95 7.60 5.91 60 2.65 0.54 8.60 9.00
20 0.95 0.95 7.60 7.00 61 2.65 0.54 9.30 5.91
21 0.95 0.95 7.60 9.00 62 2.65 0.54 9.30 7.00
22 0.95 0.95 8.60 5.91 63 2.65 0.54 9.30 9.00
23 0.95 0.95 8.60 7.00 64 2.65 0.75 7.60 5.91
24 0.95 0.95 8.60 9.00 65 2.65 0.75 7.60 7.00
25 0.95 0.95 9.30 5.91 66 2.65 0.75 7.60 9.00
26 0.95 0.95 9.30 7.00 67 2.65 0.75 8.60 5.91
27 0.95 0.95 9.30 9.00 68 2.65 0.75 8.60 7.00
28 1.80 0.54 7.60 5.91 69 2.65 0.75 8.60 9.00
29 1.80 0.54 7.60 7.00 70 2.65 0.75 9.30 5.91
30 1.80 0.54 7.60 9.00 71 2.65 0.75 9.30 7.00
31 1.80 0.54 8.60 5.91 72 2.65 0.75 9.30 9.00
32 1.80 0.54 8.60 7.00 73 2.65 0.95 7.60 5.91
33 1.80 0.54 8.60 9.00 74 2.65 0.95 7.60 7.00
34 1.80 0.54 9.30 5.91 75 2.65 0.95 7.60 9.00
35 1.80 0.54 9.30 7.00 76 2.65 0.95 8.60 5.91
36 1.80 0.54 9.30 9.00 77 2.65 0.95 8.60 7.00
37 1.80 0.75 7.60 5.91 78 2.65 0.95 8.60 9.00
38 1.80 0.75 7.60 7.00 79 2.65 0.95 9.30 5.91
39 1.80 0.75 7.60 9.00 80 2.65 0.95 9.30 7.00
40 1.80 0.75 8.60 5.91 81 2.65 0.95 9.30 9.00
41 1.80 0.75 8.60 7.00
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Table B.2: Parameters for Series B (N = 3 case managers and M = 5 cases in all
experiments).

Exp. # λ γ Λ µ

1 0.25 0.20 3.40 5.91
2 0.40 0.20 3.40 5.91
3 0.50 0.20 3.40 5.91
4 0.25 0.30 5.00 5.91
5 0.40 0.30 5.00 5.91
6 0.50 0.30 5.00 5.91
7 0.25 0.40 6.90 5.91
8 0.40 0.40 6.90 5.91
9 0.50 0.40 6.90 5.91
10 0.25 0.50 6.90 5.91
11 0.40 0.50 6.90 5.91
12 0.50 0.50 6.90 5.91
13 0.25 0.20 3.01 5.91
14 0.40 0.20 3.01 5.91
15 0.50 0.20 3.01 5.91
16 0.25 0.30 4.52 5.91
17 0.40 0.30 4.52 5.91
18 0.50 0.30 4.52 5.91
19 0.25 0.40 6.03 5.91
20 0.40 0.40 6.03 5.91
21 0.50 0.40 6.03 5.91
22 0.25 0.50 7.54 5.91
23 0.40 0.50 7.54 5.91
24 0.50 0.50 7.54 5.91
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B.4 B System

The following is one mechanism that ensures that caseloads for any two case

managers differ by at most one case. If the pre-assignment queue is empty and case

manager i completes a job and is left with mi jobs, compare mi with the caseload

of the case manager k with the largest number of cases, mk. If mk −mi > 1, then

move one case from case manager k to case manager i. If the pre-assignment queue

is occupied when a case manager completes a job, then she pulls a case from the

pre-assignment queue. If a new case arrives and finds the pre-assignment queue

empty, then assign the case to a server with the smallest caseload. If all caseloads

mi = M , then an arriving case waits in the pre-assignment queue.
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