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Abstract 

Graphical rendering is implemented on a Single Instruction Multiple Data (SIMD) 

processor array using two styles of parallelism. The SIMD processor is evaluated 

as a platform for real time 3D rendering in a low power mobile environment, 

using the SIMD Array Processor and ARM922T™ CPU within the Atsana 

Semiconductor J2210 Media Processor. The first algorithm is tile based, and 

treats the Array Processor as an intelligent frame buffer. The second algorithm 

uses each processor to run a simple shader algorithm on one or more pixels. The 

SIMD tile algorithm shows a 10.5 times performance increase and is 8.4 times 

more energy efficient than the ARM on the simplest tests, but performance 

degrades in complex real world cases. The pixel algorithm shows a SIMD 

performance which exceeds 5 times the sequential algorithm and is 7.7 times 

more energy efficient than the ARM, but exposes memory bandwidth issues in the 

J2210. 
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Chapter 1 

Introduction 
Portable technology is becoming more prevalent every day. Most people are 

never without some sort of portable phone, music player or organizer. The 

requirements on these systems are conflicting, with the desire to be feature rich 

and powerful while maintaining a long battery life time. Originally primitive 

devices with monochrome displays have evolved to elegant devices with robust 

user interfaces and full colour displays. The demand on these devices to support 

both traditional productivity applications as well as entertainment has added a 

new challenge to the designer to push processing power up while keeping energy 

consumption down. This thesis investigates the computationally demanding 

application of real time 3D rendering on a low power mobile embedded platform 

such as a cellular phone. 
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1.1 Overview 

A low power Single Instruction Multiple Data (SIMD) hardware architecture is 

used to study the effectiveness of 3D rendering algorithms on a massively 

parallel, yet low power, platform. A SIMD architecture operates using a single 

instruction stream sent to multiple processors operating on their own individual 

data sets. While sequential processors which operate on a single data set can be 

described as Single Instruction Single Data (SISD), SIMD machines operate 

simultaneously on multiple data sets, and is therefore described as Single 

Instruction Multiple Data. Hardware requirements are intensive for 3D rendering 

applications and require alternative methods to SISD computation, due to the 

large amounts of individual computations that need be performed on large data 

sets. 

SIMD systems rely on potential parallelism inherent in the algorithms that 

are operating on the large data sets. Often the same operation is performed again 

and again on a data set in multimedia applications, such as accumulation by 

variable. When the data set is not dependent on previously calculated results, it is 

possible to do these operations in parallel. In 3D rendering every object must be 

filled with pixels in order to fill the screen's display with a 2D representation of 

the 3D scene. In a pixel processing loop each pixel may have a colour filter 

applied to the existing colour of the surface, for example. Thousands or millions 

of pixels may have the same operation performed using a logical or arithmetic 
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instruction. The ability to perform these operations in parallel can increase the 

throughput of the system in direct proportion to the number of processing 

elements (PEs). 3D rendering has large amounts of parallelism available at the 

vertex and pixel level. 

The power savings are attained on this platform by using a Processor-In-

Memory (PiM) architecture. PiMs have traditionally yielded low energy 

consumption while performing computation, if the application's requirements are 

suitable to the architecture, due to more efficient use of data. 

This dissertation shows that while certain aspects of the rendering 

application are both suitable and proficient in a SIMD PiM platform, there are 

underlying communication flaws in the architecture which prevent it from 

becoming a fully effective solution. 

1.2 Thesis Organization 

Seven chapters including this introductory chapter comprise this thesis. 

Chapter 2 is a summary of the background information required for this 

research. It provides a summary of past SIMD processors, including some 

research done with the 3D rendering application on SIMD architectures. It also 

provides an overview of the J2210 development platform used in this study. 

Chapter 3 provides the possible approaches for accelerating rendering 

algorithms using the platform. It provides solutions for parallelizing the major 

stages of the 3D rendering process, and motivates the solutions which were 
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chosen for this experiment. Chapter 3 also provides the description of the 

software vertex processing created for this project. 

Chapter 4 describes the implementation and results of the first of two 

SIMD solutions for the 3D implementation on the J2210. This solution 

parallelizes the algorithm over object space, filling the triangles with the array 

processor. 

Chapter 5 describes the implementation and results for the second pixel 

solution. This solution parallelizes the algorithm over pixel space, with each 

processing element in the array processor calculating independent pixel sets. 

Chapter 6 provides some alternative choices for future implementations of 

the hardware in order to minimize the issues seen in developing the prior two 

acceleration solutions on the J2210 hardware. 

Chapter 7 draws the conclusions and provides a summary of the 

main contributions in this thesis. It also touches on some areas of interest for 

future research. 
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Chapter 2 

Background 
This project combines several computer architecture concepts. The primary focus 

is the inherent parallelism of 3D rendering, when applied to a Single Instruction 

Multiple Data (SIMD) computer architecture. The particular SIMD platform used 

is a Processor in Memory (PiM) architecture, which provides extremely high 

memory bandwidth to the processors. The goal is to put these three topics 

together for fast low power rendering in an embedded environment. Specifically 

we explore the use of SIMD for efficient parallel computations, the concept of 

PiM for lower power consumption and high bandwidth, and the application of a 

3D rendering engine to this architecture. 

2.1 SIMD Computers 

Early applications of SIMD were in large scale supercomputers in the 1970s and 

1980s. Generally designed for scientific calculations, processors such as the 

ILLIAC IV, the Massively-Parallel Processor and the Connection Machines 1&2, 
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were physically large and powerful [1]. They used arrays of processors to 

perform parallel calculations on large data sets using a dedicated ALU and some 

amount of private memory per Processing Element (PE). Each is a two 

dimensional grid of processors featuring some form of communication 

interconnect for data movement. Generally these arrays have some sort of 

interface that communicates with a more traditional SISD processor to provide a 

constant stream of instructions. As well, the processing elements have some sort 

of interconnect network for communication as shown in Figure 2.1. 
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Figure 2.1: A Basic SIMD Architecture 



While large scale SIMD, with dozens of processors, has not become 

popular in personal computer CPU technology, the SIMD design has been applied 

to smaller scale arithmetic processing units. Intel's MMX instruction set allows 

simultaneous parallel integer operations through a specialized Arithmetic Logic 

Unit (ALU) [2]. It uses the architecture's existing 64 bit registers as an array of 

two, four or eight integer values for processing simultaneously with the same 

instruction. Later Intel added the SSE series of instruction sets which has its own 

dedicated 128 bit registers and added floating point support [3]. Hardware and 

instruction set extensions like MMX and SSE have been the limit of SIMD 

architecture in main system processors in recent years, but have provided 

significant performance benefits in suitable applications. 

2.1.1 SIMD Hardware for Experimentation 

The choice of hardware platform for experimentation is important for providing 

results that align with the goals of the research. While a system could be designed 

for research using an FPGA platform for SIMD, it would add considerable work 

and time to the project due to design and implementation time of a large SIMD 

array. It is also more appropriate to use a realized hardware architecture for 

verification of its functionality. An integrated circuit processor provided by 

Atsana Semiconductor is the hardware platform of choice for this research, due 

both to its ease of use and low power design. Atsana's J2210 architecture falls 

somewhere in between the smaller scale SIMD CPU instruction set extensions 

7 



and large scale processor arrays. The architecture relies on an ARM922T™ CPU 

as the host and main workhorse of the system. In addition to the ARM, the J2210 

contains a two dimensional SIMD array processor similar to the previously 

described SIMD architectures. It features 96 8-bit Computational Units (CUs) 

made up of bit serial PEs with control circuitry. The CUs are arranged in a 24x4 

two dimensional grid. Direct data communication is performed through memory 

reads of neighbouring CUs. 

The small package, low cost, and low power consumption of the J2210 

make it useful for applications in mobile communications and other portable 

digital devices. The array processor architecture has been used for still and full 

motion digital image capture, processing, and compression. The goal of this work 

is to extend this flexible array processor and system to real time 3D graphics 

rendering. This research will explore the suitability of the Atsana J2210 and 

SIMD architectures for 3D rendering in embedded low power applications. 

2.1.2 Prior Use of SIMD and Graphics 

Prior academic work in this area is largely based on the Pixel Planes architecture 

created by Henry Fuchs [4]. Fuchs' work revolved largely around using a SIMD 

style architecture where each processor controls an allocated portion of the frame 

buffer. The pixel planes architecture was designed for high end rendering using 

expensive hardware, before the availability of consumer end 3D rendering 

hardware. Fuchs designed his architecture around a 1280x1024 pixel frame 
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buffer, making a configurable amount of processing elements varying from 

sixteen thousand to three hundred thousand available. This number of processors 

meant each would control no more than one hundred pixels, and as few as a four. 

The 96 computational units in the J2210 may render his algorithms unsuitable for 

this application. However a similar divided frame buffer method of rendering has 

been tested on the J2210 processor in chapter 4. The embedded target means 

lower resolutions and fewer polygons, meaning the algorithm could be 

appropriate. 

Similar work was done by Michael F. Deering of Sun Microsystems while 

designing accelerated frame buffer memory [5]. Deering's work also used an 

intelligent frame buffer algorithm with simple processors embedded in the 

memory array. While not programmable or as flexible as pixel planes, it provided 

acceleration through an automatic depth buffer test at each pixel write, and single 

cycle alpha blending. A similar approach could be taken using the J2210 array 

processor as an intelligent frame buffer. Writes can be buffered and an array 

processor program can handle depth comparisons and alpha blending. This 

approach would not harness the full computational power of the CUs but will 

require the least amount of modification to a sequential algorithm. 

2.1.3 SIMD Low Power Applications 

The difference between our work and prior research is largely the target 

application. Previous SIMD graphics Tenderers have been targeted at high power 
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graphical systems, but have been made obsolete by higher clock frequencies and 

more hardware with programmable stream graphics pipelines. High frequencies 

and high transistor counts are not desirable in a low power, low cost device. By 

using a programmable SIMD approach we can solve the problem intelligently and 

with low silicon area cost and low energy consumption. The programmability of 

the SIMD array makes it more flexible than fixed function algorithms of 

traditional rendering hardware. 

What makes this research necessary and interesting is an increased 

demand in mobile applications, such as cellular phones. Mobile applications 

stress the importance of low power consumption due to limited battery life of 

portable devices. However, performance is rarely an acceptable trade-off to 

power consumption, as many consumers will not accept lower quality at the gain 

of longer battery life. The goal is to test the system for suitability of maintaining 

state of the art effects while consuming lower power than other architectures. A 

modern stream processor for graphics rendering will surely outperform a the 

simpler SIMD architecture, but the transistor count and clock frequency will 

hinder the products' battery life. A flexible middle ground is an interesting area 

of study relevant only to mobile applications at this time. Desktop processors are 

drastically increasing in power as they boost performance, with current generation 

architectures consuming 175 Watts and are rapidly approaching 200W and 

beyond [6]. Higher power consumption allows the stream processors to increase 
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performance by running at higher clock frequencies and including more parallel 

processors. This luxury is certainly not available in the mobile architectures. 

In addition to energy and speed, physical silicon area is an important issue 

in embedded applications. In parallel hardware, there is a linear trade-off 

between the number of processing elements and performance for a well designed 

algorithm, assuming sufficient parallelism following Amdahl's Law [7]. The 

number of processing elements is also directly proportional to the physical area on 

a chip that the array processor will consume. Chip area affects production costs 

greatly, since the number of chips per silicon wafer and the chip yield are directly, 

but not necessarily proportionately, affected. 

2.2 Processor in Memory Architectures 

Processor in Memory (PiM) architectures are built on the concept of placing 

microprocessors inside a memory array. These processors are usually small 

transistor count designs in order to be placed physically at the base of memory 

columns. This concept exploits the fact that the memory bandwidth is much 

higher inside the actual memory array, and has been shown to be up to four orders 

of magnitude higher [8]. This architecture is well suited to SEMD due to the 

inherent layout of processors and their own private memory. PiM also provides 

spatial locality for nearest neighbour transfers between processing elements, 

allowing fast communication between adjacent processing elements. 
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These architectures tend to be successful in extremely data intensive 

applications such as image and video compression and manipulation. The Pixel 

Planes architecture mentioned above uses a similar PiM concept, but with a DSP 

coprocessor provided for each 128x128 Pixel Processing array. Another inherent 

advantage of PiM is energy consumption. RAM is accessed by charging all the 

bitlines in the memory array, and uses less than 1% of those bits, based on the 

ratio of active bit lines to data pins. If a PiM SIMD architecture is using the entire 

row, there is no lost efficiency. PiM also provides energy savings due to shorter 

data buses between the memory and processor. 

The J2210 Array Processor uses a smaller scale PiM architecture most 

similar to ORAM, developed at the University of Toronto [9]. ORAM places 

simple bit-serial processors at the base of every memory column. It uses a few 

single bit registers in order to perform ALU operations on the data inside its 

column, which becomes its private memory. ORAM also uses a linear 

communication network between neighbouring PEs. The J2210 AP takes this 

implementation and extends it to use 8 bit wide columns with simple 8 bit 

registers and ALU. 

2.3 Development Platform 

The development platform for this project is the J2210 Customer Evaluation 

Board (CEB) provided by Atsana Semiconductor Corp. It features the J2210 
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media processor, as well as several other complimentary peripherals. The CEB is 

shown in Figure 2.2. 

Figure 2.2: Atsana J2210 Customer Evaluation Board 

The J2210 contains an ARM922T™ ™ microprocessor which serves as 

both the sequential processor and host of the SIMD array. The ARM has full 

access to the memory in the SIMD array. The role of the ARM is to move data in 

and out of the SIMD array, perform computations best done by a sequential 

processor, and invoke the array controller programs. The ARM is also free to do 

its own computations concurrently, which can support the SIMD software, or run 

a different task. 

The ARM sequential processor provides a reasonable benchmark 

comparison device since this is precisely the type of processor found in embedded 

13 



devices. The ARM Development Suite provides C++ compilers and linkers for 

executables to run on the target hardware. The ARM code for this project is 

written entirely in C and C++. 

The array processor uses a proprietary assembly language called the SIMD 

Execution Language (SEL). The SEL language uses direct access to the registers 

and memory variables, and is compiled by a proprietary tool provided by Atsana. 

It is important to note that the array processor consumes less energy per 

operation than the ARM host, which makes the parallel algorithm beneficial for 

low power operation. As noted above, the power advantage is a result of charging 

and using all bitlines in the memory array simultaneously, instead of charging a 

row and only using one word as a sequential processor would. 

The J2210 Array Processor contains 96 computational units suitable for 

integer operations. Typical integer operations are available, addition, subtraction, 

multiplication, shifts, and logical operations. Floating point operations are not 

available. 

The SIMD array uses uniform memory addressing and uniform network 

communication. The CU instructions are sent by the array controller which holds 

and fetches a set of programs for the array. These programs are written in the 

Atsana created SEL language. 
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Figure 2.3: J2210 High Level Block Diagram 

The J2210 tool kit features a descriptive profiler and simulator which can 

be used to obtain results for the SEMD algorithms. It provides cycle counts and 

power consumptions per algorithm and per instruction executed. This allows 

different SIMD algorithms to be compared in terms of execution time and energy 

consumption. Execution performance for the algorithms are compared against the 

ARM processor while running on hardware using an on-chip millisecond timer. 

Power consumption is measured by the current input to the J2210. By putting the 
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ARM to sleep while the array processor is executing it is possible to compare the 

power consumption of each of the processors executing. 

2.4 3D Rendering Process Overview 

The rendered scenes are created from arrays of vertices containing the 

information required for the processor to convert them into a 2D representation of 

the 3D scene. 3D rendering requires that the graphics hardware be powerful 

enough to create a scene built up from geometric points in real time. In PCs, 

before Graphics Processing Unit (GPU) hardware was common, 3D rendering 

was performed with the CPU, but even a powerful sequential processor will 

struggle with operations required for pixel processing due to the high memory 

bandwidth required for filling thousands of patches per second in complex scenes. 

Application Vertex Database (3D 32-bit, x,y,z world coordinates , 24-bit colour per vertex) 
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Figure 2.4: 3D Rendering Process Overview 
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The 3D rendering process is roughly split into two distinct parts, vertex 

level processing and pixel level processing, as shown in Figure 2.4. Traditional 

sequential processors are generally suitable for vertex level processing. The 

amount of memory accesses in the vertex stage is significantly lower than in the 

pixel stage, so memory bandwidth is less of an issue than with pixel processing. 

The operations performed on the vertices are largely floating point matrix 

operations [10], so the floating point coprocessor found in most CPUs provides 

significant performance increases. Since vertices can be processed largely 

independently of each other, SIMD instruction extensions in modern processors, 

such as Intel's SSE1/2, can drastically speed up the calculations. A CPU that can 

calculate four floating point operations simultaneously can process vertices at 

nearly four times the speed. However, this powerful processing engine will 

quickly hit its bottleneck-the pixel calculations. 

The process includes a transformation module for geometric translation, 

rotation, projection and scaling operations. The transformation engine operates 

on arrays of vertices which are the input to the system. They are points which 

describe some three dimensional object in local space. At this point the object is 

described by vectors in space with no image information. Once the vertices have 

been transformed they are mapped to coordinates for the rasterization phase. The 

rasterization procedure is the act of converting the vector input data into a two 

dimensional bitmap for the display. By using the data provided at the vertices, the 

17 



data is interpolated across the surface of the polygon when rendered. Typical 

vertex data includes depth, colour, and texture coordinates. The transformation 

engine uses floating or fixed point arithmetic. 

2.4.1 Implementation of the 3D Rendering Process 

The software transformation engine for this project is not speed critical 

since its performance is not being measured. It is merely used as an input system 

to both rasterization engines. The rasterization engine is written both for the 

sequential host processor and the SIMD array, allowing comparison between the 

two in terms of performance and power. This is possible due to the limited 

arithmetic required by the rasterization process. It consists mostly of memory 

operations and some interpolation through multiplication and accumulation, easily 

performed by both the sequential processor and the SIMD array. In order to 

achieve useful results the sequential version is designed to achieve peak 

performance on the ARM processor. Since the ARM and the SIMD array have 

different execution methods the algorithms used will be different. 

Sequential processors can efficiently fill a triangle using a triangle scan 

conversion algorithm [11]. The edge equations of the triangle are tested at each 

pixel to determine inclusion. The algorithm simply steps from one pixel the 

triangle to the next filling pixels until it detects an edge, then moves to the next 

scan line. The edges can be pre-computed to increase the efficiency, using the 
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Bresenheim algorithm [12]. This solution can be transferred to a parallel 

algorithm in a variety of methods, and each must be considered. 

Since the work is shared between two processors, the relative impact of 

the communication between them is an important consideration. For example, the 

host processor is required to supply data to the SIMD array. If the organization 

and movement of this data is too large, the time taken approaches the time taken 

for the host to do the calculations itself. This means that the data preparation has 

to be minimal, and the algorithm has to be efficient in terms of communication. 

2.5 Low Power Embedded Rendering Applications 

The target implementation for this SIMD architecture is a mobile handset phone, 

personal digital assistant, or similar battery powered portable device. The J2210 

itself was designed for accelerating real time image and video encoding and 

decoding at greatly reduced power. While the processor is designed for 

multimedia applications, we show that the SIMD array processor itself is suitable 

for pixel operations in a 3D rendering system. It is important to consider the 

application target when considering performance and power consumption. 

A typical media processor today features an embedded RISC host 

processor accompanied by a number of peripheral interfaces, embedded memory 

and finally some form of hardware accelerators. 
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The Atsana J2210 is a system on a chip design, which uses a general 

purpose ARM922T™™ RISC embedded microprocessor and a fully 

programmable array processor (AP) for low power multimedia processing. The 

array processor provides a low energy per operation architecture that provides 

more computation for a given capacity battery than other embedded systems. 

It is important to consider the target application, and how this work will 

differ from general 3D rendering research. The mobile application target will 

change various elements of the data being processed. The largest difference 

between a mobile solution and a desktop solution is screen size and resolution. 

Physical dimensions of the screen are significantly less than the minimum 15" of 

a desktop or television display. Reduction in screen size reduces the requirements 

for geometric detail in a scene, lowering the overall polygon count. Texture detail 

is lower, resulting in a lower bandwidth requirement for texture transactions. 

Colour depth is often lower; PC displays are generally 8 bits per colour, while a 

portable device will likely have 5 bits precision per colour. The most significant 

difference is screen resolution which has a significant impact on polygon fill rate. 

Three geometric points on a high resolution display can describe a triangle with 

hundreds of pixels, while the same points on a low resolution display will only 

have dozens. The time to fill a polygon increases at roughly a square of the 

dimensions. 
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Embedded displays tend to use defined fractions of larger display 

standards. The Common Intermediate Format (CIF) resolution describes a 

352x288 resolution, and a common embedded display resolution is Quarter 

Common Intermediate Format (QCIF) representing lA of the CIF resolution. 

Similarly higher resolution embedded displays tend to use the Quarter Video 

Graphics Array (QVGA) resolution of 320x240. 

The small package, low cost, and low power consumption of the J2210 

make it useful for applications in mobile communications and other portable 

digital devices. The array processor architecture has been used for still and full 

motion digital image capture, processing, and compression. The goal of this work 

is to extend this flexible array processor and system to real time 3D graphics 

rendering. By benchmarking these algorithms the bottlenecks of the system will 

be identified. These results should provide enough information on how 

modifications to the system could improve performance. These modifications are 

identified as the issues arise, and their impact on the system is analyzed. 

2.6 Summary 

This project uses a hardware platform that combines concepts of PiM and SEVID 

architectures with the goal of low power consumption. The target application is 

computationally expensive real time 3D rendering. The goal is to produce a low 

power, efficient rendering algorithm that is suitable to the J2210 array processor. 
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This chapter provides the background information necessary to step forward and 

combine these concepts into a SIMD rendering solution. 
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Chapter 3 
Data Parallelism in 3D Rendering 

In order to determine how to accelerate the 3D rendering process on the J2210 

architecture, the process must be broken down into stages. The overall view of the 

graphics rendering is broken into two major portions, vertex level processing and 

pixel level processing. Vertices describe the objects in three dimensional space, 

and conceptually represent a wireframe description of the scene. The task of 

taking these points and making them solid and textured is the pixel level 

processing. Both major portions offer parallelism which can be taken advantage 

of with SEVID hardware. 

We will show that the vertex stages are not well suited to being accelerated on the 

J2210, but the pixel stages show promise for a SEvID implementation on the 

J2210 Array Processor. A process diagram with a rough breakdown of pixel and 

vertex stages is shown in Figure 3.1. 
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Figure 3.1: 3D Rendering Process Breakdown 

3.1 Vertex Processing Data Parallelism 

In a rendered scene, all objects begin as a data set of vertices. Often applications 

load this binary data from a file and store it in system memory as it is needed. 

This vertex data is an array of points in a three dimensional space, and it is 

generally static floating point data. Since the data is static, there exists no 

dependency on the previous state of the data, each time the scene is drawn, the 

data is reloaded from its original state and the corresponding transformations are 

applied without any prior knowledge. In addition no object has any data 

dependency to any other object in the scene, since each element will be 

transformed independently. Objects can represent anything, from a box with a 

few vertices, to an entire landscape with millions. 
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3.1.1 Vertex Transformation Stage 

The transformation that these data sets go through to become part of the scene is a 

series of vector by matrix multiplications. Each point becomes a vector (a three 

dimensional point in space). The physical orientation of each point is changed 

through a transformation matrix. The transformation matrix will describe the 

operations that will be applied to each point in the objects. The transformation 

matrix is formed by combining a series of matrix operations, which are generally 

translation, rotation and scaling. Since one matrix can describe a combination of 

operations the transformation matrix for an object is only calculated once. Once 

the final matrix calculations are finished, they will be applied to each vertex in the 

object. Since the objects are generally rigid, the same matrix will be applied to all 

points in each object, independent of each other. A matrix by vector operation 

becomes a series of multiplications and additions. Applying a matrix to a single 

vertex is a simple operation. 

xmua=xxMn+yxM21+zxM31 

y,rans=xxMu + yxM22+zxMi2 (3-1) 

zmm=xxM13 + yxM23 + z*M32 

It can be seen that even for one point, there is 9 individual multiplications 

which have no dependencies, followed by 6 additions, which depend only on the 

multiplications before them. In a theoretical system with 9 parallel multipliers 

and 6 parallel adders, this is a two stage process to perform the complete matrix 
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by vector multiplication. The parallelism goes much beyond this simple single 

vertex scenario. The actual loop, shown below, has many iterations of the same 

operation. 

for each ofn vertices 
{ 

Xn,rans = *„ *Mn+y„ XM21+Zn X M , , 

yntrans =X*X MU +VnX ^ 2 2 + Zn X M32 

Znrans = Xn * ^ , 3 + Vn X ^ 2 3 + Zn X M , 

; 

In this loop it is apparent that there is no dependency between the current 

and previously calculated vertices. At this point, if there was a processor with 9 

by n multipliers and 6 by n adders it is still a two stage process. The parallelism 

is only broken when the matrix must be changed. In practice, most objects are 

static relative to the viewer, and they will all be applied by the same matrix. Only 

the other objects which have their own movements need a different 

transformation matrix. Generally since most the objects have hundreds of vertices 

as a minimum the actual matrix generation is a very small part of rendering, so 

even with hundreds of parallel multipliers, the usage of the multipliers and adders 

would be near 100%. 

3.1.2 Perspective Transformation Stage 

Moving beyond the transformation matrix, the perspective matrix is applied. The 

perspective matrix is what makes the scene mimic the human eye; as objects 

become further away, they become smaller. The perspective matrix is the same 
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for all objects in the scene, regardless of transformation, which further pushes the 

capability of parallel vertex calculations. The following is an example of a simple 

perspective projection calculation on the x and y coordinates 

Pz 
p ^ 

qy = - d 
Pz 

where q is the output vector, p is the input vector and d is the distance of the 

projection plane from the camera [13]. 

3.1.2 Lighting Stage 

Lighting operations are similar. Each light in the scene is applied to each vertex 

via a distance calculation. Several independent multiplications are added together 

to form a lighting effect, then divided by a distance calculation which depends on 

the properties of the light. As with transformations, all operations are vertex 

independent. Again, a simple lighting equation for point lights demonstrates that 

a division by the distance from the light is required. Here, 

1 
kc + k,d + k qd 

C 0 , (3.4) 

where C is the colour of the light, and kc, kj and kq are the constant, linear, and 

quadratic attenuation constants of the lights respectively [14]. 
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3.1.3 Vertex Acceleration on the J2210 

In most current rendering systems, the transformation, perspective and lighting 

stages of the process are calculated using floating point precision. Repeated 

multiplications and divisions quickly break down the accuracy of a fixed point 

representation. Unfortunately this dependence on the precision of floating point 

data makes the J2210's Array Processor inappropriate for vertex level parallel 

processing. While it is possible to implement vertex processing in a fixed point 

implementation, the 8-bit CU architecture on the Array Processor does not 

provide enough precision with its instruction set, which has at most 24 bits of 

precision with costly repeated multiplications. In addition the AP does not have 

the instructions needed for division required by the perspective correction stage. 

Apart from the mathematical issues, the data formatting presents another 

problem with vertex acceleration. The end result of the first stages does not leave 

data ideal for storage in the array processor. Several vertices in screen 

coordinates are scattered in the memory of the array processor. This data has to 

be sorted to be useful for triangle drawing, which requires unloading it all to the 

ARM for sorting, then loading it back, or having the array processor to do sorting, 

which would require many steps with nearest neighbour data transfer, hindering 

the effectiveness of this approach. Considering that each CU could contain data 

to be placed anywhere in the array, there could be up to 96 transfers in each 

direction, or 192 copies per byte, in addition to a small program to run with each 
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copy step, to determine if each CU is the destination. In addition to the raw data 

being copied, some destination information is required to be transferred as well. 

The pixel stage of rasterization is much more suitable to the architecture. 

3.2 Pixel Processing Data Parallelism 

In early real time rendering when the scenes were traditionally simple in the 

geometry states the pixel level calculations were the bottleneck. At this point 

pixel operations were all integer data, but even SIMD CPU extensions could not 

provide enough power to fill triangles at high resolutions with acceptable 

performance. Pixel operations are relatively independent of the input data. A 

triangle consisting of three floating point vertices can actually represent a few 

pixels, up to millions of pixels. The number of pixels in a triangle goes up 

quadratically as the linear resolution of the display increases. This is why early 

graphical applications which ran without a hardware accelerator were generally 

run at low resolutions like 320x200. A triangle which represents 200 pixels at 

320x240 could represent 800 pixels at 640x480 and 1600 pixels at 1280x960. 

Increasing the resolution by a factor of two in each dimension increases the 

processing time by a factor of four. 

3.2.1 Attribute Interpolation 

In order to fill the 2D frame buffer with the proper output colour data, several 

components need to be calculated on a pixel by pixel basis. Since all of the 
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information in a polygon is stored in the vertices which define its outer points, all 

of the data inside must be interpolated between those points. Colour data, 

represented individually in red (r), green (g) and blue (b) values is the lighting 

information for each pixel, based on the coloured value of both the polygon itself, 

as well as the intensity of the lights which are hitting it. Depth values (z) are 

required in order to evaluate which objects will be on top of each other in the two 

dimensional scene. When the polygon has a material surface, a texture must be 

applied. Texture coordinates are interpolated in a similar fashion to find the x and 

y index (s, t) into the 2D texture that is applied to the polygon, as shown in the 

pseudo code below. 

for each pixel n 
// Interpolate the values using the invariants 
interpolate depth z 
interpolate lighting r, g, b 
interpolate texture coordinate s, t 

// find texture colours using the interpolated texture coordinates s,t 
fetch texture r, g, b 

// modulate the texture r,g,b with the previously interpolated r,g,b 
combine lighting and texture r, g, b 

// if the pixel is closer than the previously written pixel, write it 
if z < zcurrent 

write back r, g, b, z 

Table 3.1: Pseudo code for pixel processing 

The interpolation operations are a method of taking the lighting colour 

values at each of the three vertices in a triangle and applying them to a pixel 

somewhere within that triangle. It is a combination of integer multiplication and 

addition. Combining the lighting and texture colours is a weighted multiplication. 
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The integer precision of the pixel processing makes it much simpler than floating 

point vertex operations. The sheer number of integer operations hurt the 

performance, but a more significant cause for poor performance of pixel 

processing by a standard CPU was the high memory bandwidth required to keep 

up with the operations, which is well described in the Graphics Hardware chapter 

of Real Time Rendering [13]. For each pixel in the frame several values must be 

read from and written to system memory, and the buffers are so large that the 

cache becomes less useful, due to large variances in spatial and temporal locality 

of the pixels being operated on. The graphics cards addressed this by putting 

private texture and frame buffer memories on the board with high bandwidth 

connections to the graphics processor. This high processor to frame buffer 

bandwidth requirement can also be addressed using a SIMD Processor in Memory 

architecture such as the J2210 AP. 

There are two specific aspects of the Array Processor which can be used to 

accelerate the pixel portion of the 3D rendering, memory bandwidth and parallel 

arithmetic. Power and speed measurements on both algorithms are calculated 

using the method described in chapter 4. 

3.2.2 Tile Based Parallelism 

The first method is described as a tile based method. This method is most 

similar to the Pixel Planes architecture described in chapter 2, in which each 

Computational Unit is responsible for a portion of the frame buffer, and when 
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combined they form the full image. While the Pixel Planes architecture had 

thousands of processing elements, the Array Processor has only 96. Where Pixel 

Planes was designed for speed and high precision scenes, the J2210 is designed 

for mobile, low power applications. Instead of a per-pixel, Phong shading 

approach [15], this implementation uses the more traditional linear interpolative 

Gouraud method [16] described above. The basic idea is to divide the frame 

buffer into 96 non-overlapping rectangles, each of which is assigned to a CU. The 

CU is responsible for filling in its own piece, while the other CUs do theirs in 

parallel. 

The array processor uses uniform memory addressing, which means that 

each CU in the array must read from or write to the same address in memory for 

any operation. As well there is no opportunity for conditional execution since any 

element in the array may be processing useful data, so each CU must always 

process each pixel inside of its portion in the frame, regardless of whether or not 

that pixel is inside the triangle it is currently working on. The layout is shown 

visually in Figure 3.2. 
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Figure 3.2: Pixel layout in the array as it forms the complete frame buffer. 

Since the array is already laid out in a two dimensional fashion, the frame 

buffer will be divided evenly in order to match. The basic idea is for the 

algorithm to run once for each triangle that can be calculated without dependency 

on another CU. A peak calculation rate of 96 independent triangles can be shaded 

per pass, if they are each contained within unique CUs. Of course if there is one 

very large triangle, which takes up a significant portion of the array, the rate drops 

off significantly, as low as one triangle per pass. However, as triangles shrink in 

size, the parallelism increases. If a triangle crosses a single rectangle boundary it 

immediately doubles the amount of processor time dedicated to that triangle, since 

it must be processed by two CUs. Therefore the smaller the triangles are, the less 

likely they cross boundaries. The implementation and results of this algorithm are 

described in detail in chapter 4. 
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3.2.3 Pixel Based Parallelism 

The second approach takes a more computational approach to the problem. Since 

each pixel inside of a triangle can be calculated independently of all others, they 

can all be calculated in parallel using only the interpolation values calculated from 

the vertices which describe it. This approaches uses the J2210 Array Processor as 

a 96 input ALU, calculating 96 pixels with each pass. Each CU runs a simple 

program to calculate the attributes required to write that pixel to the frame buffer, 

as shown below. The inclusion test is done before hand by the ARM processor. 

for each pixel h 
interpolate depth z 
interpolate lighting r, g, b 
interpolate texture coordinate s, t 

Table 3.2: Pseudo code for CU interpolation 

While not strictly a requirement, it is easiest when it works on a single 

triangle with each pass. Therefore a triangle with 96 pixels or less would take one 

pass of the algorithm, while larger triangles would require more, based on 

multiples of 96. Each interpolation step is basically two multiplications and two 

additions. The calculation of the red value of any pixel is as follows, 

„dR ; d R ( 3 - 5 ) 
** dx dy 

Rxy=Ro+x—+y-

where dRIdx and dR/dy are constant for the triangle. This calculation of R can be 

substituted for all of the other attributes. In order to estimate the feasibility of this 

algorithm on the J2210 Array Processor, we must compare the measured 

performance of addition and multiplication of the two architectures. The 
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following table depicts the measured comparison of addition and multiplication, 

using two values from memory, and writing the result out to memory. The 

following results are measured in real time from the hardware in continuous loop 

on the operations. The power measurements are done using the arrangement 

described in the power section of chapter 4. The Energy measurement includes 

both the Array Processor consumption as well as the Array Controller and CMEM 

Interface Unit required for it to run. The method for energy consumption 

measurement is described in chapter 4. 

ARM922T(192 
MHz) 
Array Processor 
(96MHz) 
Ratio (AP to 
ARM) 

Millions of 16 Bit 
Additions per Second 
13.9 

1498.5 

108x 

Energy Per Addition 
(nj) 
4.30 

0.039 

0.0 lx 

Table 3.3: Breakdown of addition operations on ARM and AP 

It can be seen that the 96 CU array processor exceeds the ARM922T™ by 

more than a factor of 100, both in terms of performance and energy consumption. 

Due to the parallel nature of the Array Processor, the speed and energy 

consumption of a single addition would be very similar to the consumption of the 

ARM. The increased performance requires a full array of data to work on, which 

is why this platform should be suitable to the parallel nature of pixel rasterization. 

Multiplication is implemented in the CU, by Atsana, using repeated binary 
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additions. Since it requires several additions to calculate the result, the 

performance increase is not as great, but still apparent. 

ARM 9227(192 
MHz) 
Array Processor 
(96MHz) 
Ratio (AP to 
ARM) 

Millions of 16 Bit by 8 
Bit Multiplications 
per Second 
13.9 

87.7 

6x 

Energy Per 
Multiplication (nj) 

4.37 

2.92 

0.67x 

Table 3.4: Breakdown of multiplication operations on ARM and AP 

Due to the fact that the implementation of multiplication by the 

Computational Units is serial addition, the result is roughly 17x slower than the 

addition, however the fact that there are 96 in parallel, still allows the array 

processor to be faster than the ARM by a factor of 6. As well the energy 

consumption remains much lower. 

The fact that power and speed advantages are available for both the 

addition and multiplication shows that it is feasible to treat the array processor as 

an ALU for the attribute interpolation portion of the 3D rendering process. The 

implementation and results of this approach are described in chapter 5. 
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33 Summary 

The 3D rendering process has significant data parallelism which can be readily 

exploited with a SIMD architecture since the data inputs are largely independent 

of the outputs. While vertex processing was found to be relatively inappropriate 

for the low precision integer architecture of the Atsana J2210 array processor, 

pixel processing has several appropriate stages. 

The first approach is a tile based frame buffer system in which the Array 

Processor acts as a series of processors inside the frame buffer, drawing the data 

directly into the memory. 

The second approach uses the Array Processor as an embedded massively 

parallel ALU for addition and multiplication operations present in the attribute 

interpolation stage. 
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Chapter 4 

Tile Based Rendering Approach 

The 3D rendering process presented previously contains several opportunities for 

parallel processing. The SIMD array in the Atsana J2210 provides 96, CUs which 

would best be fully utilized in order to maximize the performance gain of the 

parallel algorithm. In this algorithm the array processor performs the latter half of 

the rendering operations, beginning with the triangle setup. We will show that 

with the right data the tile based algorithm can show up to a speed increase of 

10.5x over the ARM with 8.4x less energy, but that performance increase can 

break down rapidly depending on the data input. The division of work is shown 

in Figure 4.1. 
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Figure 4.1: Division of Rendering work 

Since, in this implementation, the SIMD memory contains the frame 

buffer, pixel level data is useful as the end result, since it can be copied out 

directly to the external frame buffer for the display. The frame buffer will be 

divided evenly among the 96 CUs, so that each CU carries a specific number of 

pixels of the output image as shown in Figure 4.2. It will hold the RGB colour 

data and depth value. The frame buffer size in this implementation is 192x144, 

which is small, but reasonable for a hand held system that the J2210 is catered 

towards. This is slightly larger than the typical mobile QCIF display size of 

176x144. 
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Figure 4.2: Pixel layout in the array as it forms the complete frame buffer. 

With each CU taking a portion of the frame buffer, filling algorithms will 

be equally divided in screen space. If a triangle is contained within 4 CUs, it 

leaves 92 other CUs free to work on other triangles. As triangle sizes decrease, 

the maximum amount of parallelism is created. 

The line equations that describe the triangles are copied to the CU from 

the ARM host processor. The filling is done such that each CU tests if each of its 

pixels are within the triangle boundaries, and set their write enable bit, for 

masking. After a pixel is determined to be inside the triangle additional masking 

step is required. The depth test will resolve the relative depth of the pixels, which 

is used to determine the pixel's visibility, and thus draw mask. Once the pixels 

are determined to be included, colour interpolation is done on the processor array 

using an implementation of the Gouraud shading algorithm described in Chapter 3 
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to combine colours smoothly across the face of the triangle. After shading, if 

texturing is enabled, the texture coordinate for each pixel is determined. Texture 

lookups are not directly possible using a SIMD architecture with uniform memory 

addressing, but there are workarounds described in the texturing section in this 

chapter. This texture pixel, or texel, is applied to the existing colour value of the 

pixel, usually with a normalized product between the texel colour value and the 

shading colour value. For each colour, the value of the pixel and the texel are 

multiplied, the product is then normalized, as if both were scaled between 0 and 1. 

However, in the integer case they are scaled between 0 and 255, and the result is 

divided by 256 via an 8 bit right shift. On a perfectly white lit triangle, the full 

texture will appear, but if the lighting is red only, only the red components of the 

texture will show through. 

Since the CUs have no support for floating point arithmetic, the goal is to 

have an integer based algorithm for testing triangle boundaries. The traditional 

y=mx+b line equation will likely require a floating point slope and intercept, 

since there is no coefficient on the y variable and m can go to infinity. This 

equation can be converted to Ax+By+C=0 which can express the same 

information using only integer coefficients. The conversion is done by the ARM 

before supplying the Ax+By+C=0 equation to the CUs to facilitate the floating 

point arithmetic required. 
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The ARM processor can handle the input vertices, and form 3 line 

equations of the form listed above that will intersect to form a single triangle. 

Since the ARM can check to see which CUs the triangle will overlap, it can 

choose to send relevant triangle equations only to the CUs that require them. It 

can then send another set of equations to different CUs allowing them to process 

triangles which are relevant to their memory space. 

4.1 Host/Array Communication Implementation 

The Atsana J2210 Array Processor architecture has an unusual memory layout. 

Each of the 96 CUs has a private 4KB of memory. The memory is arranged 

physically as an array of 4096 bytes directly above the processing hardware. 

Since each CU has a one byte word length, writing to the memory from the ARM 

has proven to require some care. The function provided in the API is 

WriteMem32, which writes 4 bytes to the address provided. While the 

simulation API allows WriteMem8u, which only writes one byte, this project 

solely uses WriteMem32 in the interest of a code base that runs on both the 

target J2210 and the simulator. 

Since WriteMem32 writes 4 bytes, and due to the physical layout of the 

memory, the provided data actually writes over the address space of 4 CUs. 

Writing Oxf f f f f f f f at CU 0,0 will write Oxf f into CUs 0-3, as shown in 

Figure 4.3. 
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Figure 4.3: Memory layout in the CUs of the memory array. 

In order to write different values into the address space of neighbouring 

CUs, many bitwise operations must be performed. In order to write to the correct 

CUs, the data can be packed in advance using the code shown below. In order to 

have accurate values for the line equations, signed short integers (16 bit) are 

required, which means that the variable must be further broken down and placed 

in two successive locations. An example of writing 4 signed short integers into 4 

successive CUs is shown below. The first group is the most significant 8 bits of 

the variable, followed by the least significant bits. The code is iterated such that 

' j ' iterates through all rows, and ' i ' iterates through every fourth column. The 

first packed value written in the code below is the most significant byte of the 

short integers, and the second value is the least significant byte. 
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for(i=l; i<= ArrayWidth; i++) 

{ 
for(j=l; j<= ArrayHeight; j++) 

{ 
temp = ((startl»8) & OxOOOOOOff) | 

((start2) & OxOOOOffOO) j 
((start3<<8) & OxOOffOOOO) j 
((start4«16) & Oxff000000); 

WriteMem32(data_addr, i, j, temp); 

temp = ((startl) & OxOOOOOOff) | 
((start2<<8) & OxOOOOffOO) j 
((start3«16) & OxOOffOOOO)j 
((start4<<24) & OxffOOOOOO); 

WriteMem32(data_addr+l, i, j, temp); 

} 
} 

Table 4.1: Code for packing and writing short integers to the Array Processor 

Retrieving data from the array is much simpler. Although ReadMem32 

operates much in the same way as WriteMem32, the ARM host can cast the 

retrieved integer type as char, truncating all but the relevant byte. 

In terms of communication, the host provides all of the data for the SIMD 

programs through WriteMem32. It provides the line equations for triangle 

drawing, and vertex colour for the Gouraud shading algorithm. In addition to the 

data to be processed, the ARM code provides each CU with other useful data 

listed below. 

• Its physical location in the array at d a t a [XPOS], and d a t a [YPOS] 

• 0x01 at d a t a [ONE] 
• Oxf f at d a t a [FF] 
• Integers 0 through 7 starting at d a t a [XCOUNTER] for horizontal pixel 

counters 
• Integers 0 through 35 starting at d a t a [YCOUNTER] for vertical pixel 

counters 
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The CUs physical location is useful for many nearest neighbour 

operations. The SEL language cannot assign constants to registers, but can load 

variables, so useful data like 0x01 and Oxff can be retrieved from memory. While 

SEL can use its loop variables as array indexes, it cannot assign them to registers, 

which is why the ARM provides the data in memory. In the 3D SEL operations, 

the CU pixel memory is iterated through with two ' f o r ' loops, with values x and 

y. Since the x and y values are often needed, they are grabbed from memory 

with d a t a [XCOUNTER+x] and d a t a [YCOUNTER+y] to be used in the 

mathematical equations. 

4.2 Triangle Drawing Implementation 

The triangle edges are defined with three equations calculated by the ARM using 

integer division which the SEVID array is not easily capable of. It creates a half 

plane equation of the form Ax+By+C^0 with signed integer coefficients that the 

SEVID array can readily deal with. Depending on the placement of the three 

vertices, points in the triangle will be either under two of the three lines, and over 

one, or over two and under one. A special case for vertical lines assigns a very 

large slope, which will evaluate to a vertical line within the pixel space of the 

frame buffer. The type of triangle is determined by the x placement of the lowest 

pixel, either between the other two, or to the side, as shown in Figure 4.4. 
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Figure 4.4: Definition of the two orientations of triangles dealt with by the 
algorithm 

The SIMD array calculates the Ax+By+C line equation for each point in 

its local frame buffer using integer math, and checks the sign of the result. The 

sign of the result determines the pixels location, above, on, or below the line. The 

coefficient signs can be flipped to reverse the equation. This way, "inside the 

triangle" can always be set as a positive result to the line equation, simplifying the 

SIMD code. 

Each CU contains a write enable array, which holds the write enable bit 

for each of the 8x36 pixels that it manages. Initially all of the write enable bits 

are set to 1. The 1 value specifies inclusion in the triangle. Then, for each of the 

lines, it calculates whether or not each pixel is above or below the line. For a top 

line, it will set the write enable of every pixel above to 0. The 0 represents that 

the pixel is outside of the triangle. For a bottom line, it will set the write enable 

of every pixel below to 0. The final line will be done the same way, closing the 

triangle as shown in Figure 4.5. This process masks out the triangle, leaving the 

write enable bit high for any pixel that is actually contained within. This 

potentially means a very small portion of the CU is actually producing useful 
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results, but the entire array of pixels must be processed. On page 49 an 

optimization for multiple pixels per CU is described. 

oooooooto 
OOOOOOOD, 
oooooo^l 
00000111 
•oooliiia 

oooHinl 
oooooaii 
oooooooa 

00000000 

Figure 4.5: Example line intersections forming the write enable array to draw the 
triangle 

Each CU contains a different portion of the image. The 8x36 segments of 

pixel data have to be set to their absolute location in the frame buffer in order to 

properly draw triangles that span more than one CU. This is why each CU is 

loaded with an X and Y offset by the ARM host. The offset gives the absolute 

location of the bottom right pixel in each 8x36 segment of the screen image. The 

bottom right is chosen because the SEL language only accepts loops of one 

format. 

for(i = CONSTANT; i >= 0; i-=N){ ... } 

The origin of the frame buffer is the top left pixel of CU 0,0. For this 

design this means the loops have to start in the bottom right pixel and work the 

way up to the top left. 
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for(y = YPIXELSPERCU-1; y >= 0; y--) 

{ 
for(x = XPIXELSPERCU-1; x >= 0; x--){ ... } 

} 

So each CU begins with its lowest right pixel. The offset has to be added 

to ensure correct relation to the lines. This requires the use of some of the data 

provided by the ARM, mentioned in the communication section. 

// get the counter value (can't set to x) 
load counter value 
add counter to start offset 

Then the result is multiplied by the coefficient. 

// load A (line defines which of the 3) 
load A 
multiply A by x 

The 'b*y' term is calculated similarly, and the two are summed, and 

finally added to the ' c ' coefficient. Then the sign is checked to be positive, zero, 

or negative and the negative values will be masked away. 

Performing three multiplications per pixel, per line, results in 864 16-bit 

by 8-bit multiplications. Each signed 16-bit by 8-bit multiplication takes 40 

cycles, making this operation very costly in a real time system. With some 

analysis, it can be seen that the Ax+By+C line equation need only be calculated 

only once per CU. Each of the 36x8 pixels in a CU are looped through and 

calculated. If the x or y coordinates are only changed by a value of one, which 
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they will within the loop, the A or B coefficient can simply be added to the 

previous result. 

A ( x ) + B ( y ) + C = A ( x - l ) + A + B (y) + C ( 4 . 1 ) 

For each change in x, the value of A is added, for each change in y, B is 

added. So, Ax+By+c is calculated once per CU, per line, then for each of the 864 

pixels, only one addition operation is performed. The 16-bit addition or 

subtraction, takes 4 clock cycles, an order of magnitude less than the previous 

implementation. Now only 2 multiplications are required in the SIMD array per 

line, or 6 per polygon. 

The sequential code contains a function for reading the frame buffer from 

the SIMD array simulator and dumping the data to an uncompressed Targa (.tga) 

image. The uncompressed Targa format is a simple image format containing a 

small header for width, height, and pixel depth information followed by the raw 

pixel data. Figure 4.6 shows a dumped output of the triangle created by this 

algorithm set to white. The input vertices were (1,24), (46,2), (57,120). 

Figure 4.6: SIMD array painting a white triangle with three intersecting lines. 
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This triangle spans the first 8 CUs horizontally, and all 4 vertically. 

Different CUs loaded with different line equations will draw multiple independent 

triangles simultaneously. 

4.3 Gouraud Shading Implementation 

While filling triangles with solid colours can create realistic models, a shading 

technique will result in much smoother transitions. This stage takes the colour 

value at each vertex, and linearly interpolates along the surface of the triangle to 

create a smooth colour conversion. 

Since any three points in space will lie on a plane, there must be two 

slopes which define that plane, aligned to the x and y axis. The ARM processor 

finds these slopes for the SIMD array to shade the triangle. The colour in the 

current implementation is 24-bits-per-pixel RGB data. The ARM finds the slopes 

that define the red, green, and blue planes. These values are used in the complete 

interpolation equation (3.5). 

area = ((P2.x - Pl.x) * (P3.y - Pl.y) -
(P2.y - Pl.y) * (P3.x - Pl.x)); 

// Find the red slopes, 
//8 binary places after point 

drdx = (((P2.red - PI.red) * (P3.y - Pl.y) -
(P3.red - PI.red) * (P2.y - Pl.y)) 
<< 8) / area; 

drdy = (((P3.red - PI.red) * (P2.x - Pl.x) -
(P2.red - PI.red) * (P3.x - Pl.x)) 
<< 8) / area; 

Table 4.2: Calculations for fixed point interpolation coefficients 
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The colour output will always be unsigned integers, but the slopes will 

likely be small and fractional. The ARM creates these slopes using a fixed point 

16 bit short value, with 8 bits for the whole number portion and 8 bits for the 

fraction. This method creates values that are very easily implemented in the 

SIMD instruction set. In a 16 bit register, the value of the pixel is stored, and then 

the delta value is added. If the delta value is less than one, the whole portion may 

not change, but it may in the next iteration. 

// Calculate red 
load red value 
subtract x red delta 
store red value 

// Calculate green 
load green value 
subtract x green delta 
store green value 

// Calculate blue 
load blue value 
subtract x blue delta 
store blue value 

// Convert to 16 bit format 
combine red, green, blue to 16 bit format 

// Store if WE is true 
load write enable from array 
write pixel colour 

Table 4.3: Pseudo code for interpolation algorithm 

The Gouraud algorithm must also loop through each pixel in the CU and 

write only to the unmasked pixels. This means that the host must define the 
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starting value of each CU in the bottom right corner. As each x value increases, 

the d/dx is subtracted, since the loop is traversing from right to left. At the 

beginning of the next row, the value is reset, and the y delta is subtracted, and x 

loop repeats. 

Figure 4.7 shows the frame buffer contents of the Gouraud algorithm on 

two triangles that are drawn and shaded simultaneously using different CUs. 

Figure 4.7: Two triangles drawn and Gouraud shaded simultaneously by different 
CUs. 

This program has many work-arounds to the limited address generation 

unit of the SEL compiler. First, the x loop is unrolled manually. Since the 

desired output is sequential memory words of RGB data, the array index would 

need to be fairly complicated. Here BYTESPP defines the 3 bytes for each pixel, 

and XPIXELS is the width of the image in pixels. 

pixeldata[x*BYTESPP + y*XPIXELS*BTTESPP + COLOUR] = A2; 

Since the compiler would not accept this, the code was unrolled to 

eliminate x*BYTESPP and replaced with constants. Unfortunately, while the 

compiler supports y*16 in the array index, it does not support the y*24 required 
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for y*XPIXELS*BYTESPP so initially all work was done in 16 bits-per-pixel. 

In the current implementation there is 24 bits-per-pixel support, but the blue data 

is in a separate array. The separate array is useful for verification, but not for 

video output. To be used in a real time video system, a hardware enhancement 

will have to be made such that the RGB data is packed together. 

4.4 Depth Calculation and Evaluation 

One advantage of the Gouraud shading algorithm is that it also works with the 

depth of each pixel in the triangle. In addition to interpolating R,G, and B values 

between three vertices, the Z value can also be linearly interpolated. The Z value 

is actually determined before the Gouraud colour is used at all. 

In order to determine whether or not a pixel should be drawn, the depth 

value is determined using the same equations as the colour calculations above. If 

the depth value calculated is closer than the previous value, then the new value 

will be taken. This is performed on the SIMD array by setting a write enable flag 

if the value is closer. This write enable flag is then combined with the original 

write enable, from the triangle calculation, with a logical AND. If the pixel is 

closer, and inside the triangle, its final write enable value passed to the Gouraud 

algorithm will be set true, as shown in Figure 4.8. 
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Figure 4.8: The triangle figure above, this time with another triangle masking out 
a portion 

This algorithm allows opaque triangles to be passed in any order to the 

array processor and guarantees correct output. While in a sequential system the 

depth test can save a significant amount of calculation, those possibilities are less 

in this SIMD system. Since the SIMD utilization requires all pixels be calculated 

unless none at all need to be, the only situation in which the colour calculations 

could be discarded is if every pixel to be calculated in the array processor was 

masked out. 

// Similar to RGB calculations 
load z value 
subtract x z delta 
store z value 

// Now determine if closer 
if z is smaller, set WE 

// Mask with the old write enable value 
combine depth WE and triangle WE with logical and 

Table 4.4: Pseudo code for depth test 
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The actual number format of this algorithm is irrelevant, since all the 

numbers are relative to each other. They use 16 bit precision, which represents a 

216 level depth buffer. All numbers are considered positive, with numbers closest 

to 0 being closest to the camera. There are limitations to an integer depth value, 

as the Z data is prone to precision errors on two surfaces which may be close 

together, causing an artefact known as "z-fighting". Z-fighting appears as tears in 

a texture when precision problems cause two different polygons with similar z 

values to alternate which pixels are drawn. Integer Z will produce many more 

artefacts than a properly scaled floating point Z. 

Figure 4.9: Four Cubes drawn using the depth test and Gouraud shading algorithm 

4.5 Texture Coordinate Calculation 

Once the colour values are determined, the texture coordinates are calculated 

using the same method as the colour and depth values. These values are 

calculated as an index into the texture, so in a 64 pixel by 64 pixel texture, they 

will be between 0 and 63. They are calculated in an 8.8 fixed point integer format 

the same way as the colour values in the Gouraud step. The 8.8 fixed value is 
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stored in a 16 bit short integer, with the fixed binary point position dividing 8 bits 

of integer and 8 bits of fraction. This allows a maximum texture size of 256x256, 

which is significantly larger than required, since it is much higher than the display 

resolution. Typical texture sizes for this display resolution would be 16x16, 

32x32 and in highest detail cases, 64x64. 

// Similar to RGB, only now S & T texture indices 
load s value 
subtract x s delta 
store s value 

load t value 
subtract x t delta 
store t value 

load write enable 
store s 
store t 

Table 4.5: Pseudo code for texture calculation 

While the SEVID array is capable of calculating the index into the texture 

for each pixel in the triangle, it is not capable of fetching the actual colour data at 

that pixel, due to the fact that it cannot access external memory. Since the 

textures are too large to be stored inside the SEVID array, they must be held in the 

host memory. There are two alternatives to applying the texture colour to the 

Gouraud colour via the host processor. The first alternative is to let the SEVID 

array do the colour combination. This requires the host processor to retrieve the 

texture indexes from the array, look up the colour value at that index, and return 

the texture colour back to the SBVID array for combination. This has to be done at 

the texture index calculation time of each pixel. Since it requires reading and 
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writing to the SIMD array during the rasterization process, it is relatively 

inefficient. At each texture index calculation time, it is unknown whether or not 

the pixel will be in the final image, so the effort in fetching the texel may be 

completely wasted. This example only describes point sampling on the texture, 

let alone the much more common bilinear interpolations. With bilinear 

interpolation several adjacent pixels must be fetched and set to the array. 

The second approach is to have the SIMD array store a secondary buffer 

with the texture indexes for each pixel currently in the frame. This works exactly 

like the colour and depth buffers, and is masked in the same way as the colour 

buffer. This means at the end of the frame, when all triangles are drawn there is a 

complete list of texture coordinates in addition to the colour buffer. Now the host 

processor fetches all of those texture colours and applies them to the Gouraud 

colours as it retrieves the colour frame buffer from the Array Processor. This 

means, unlike the first solution, no texture lookups are wasted and it does not 

require writing back any data to the array processor. The downside of this 

approach is that it costs more memory, since an entire additional buffer is required 

for texture indices. 
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Figure 4.10: A black and white stripe texture modulated with the Gouraud 
shading 

4.6 Performance 

The Atsana Tool Centre simulator provides a whole profiler which breaks down 

the performance of the SIMD array [17]. The following table shows the break 

down of each step of the algorithm. 

Data 

Triangle Fill 
Depth Calculation 
and Test 
Colour calculation 
Texture Coordinates 

Total 

Clock Cycles 

41956 
13712 

28998 
17466 

102132 

Table 4.6: Clock cycle breakdown of algorithm stages 

Originally, a third of all clock cycles were the 8bit * 16bit multiplications 

used for the line equations. Since utilizing the cumulative coefficient 

interpolation described in the triangle drawing implementation, there are only 

three multiplications required per triangle. Since the update, 25% of the reduced 
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cycle count is the 16 bit subtraction. Other significant operations are loads, and 

stores to registers and the write enable, taking most of the remaining cycles. 

The cycle count of this triangle drawing and shading algorithm, excluding 

host sequential code is 102,132 clock cycles. The array runs at 96 MHz, meaning 

that these operations can be run 940 times per second, at a maximum of 96 

triangles per run. This equates to 90,240 triangles per second, peak performance. 

At 20 frames per second, a reduced frame rate which is typical for portable 

devices, it works out to 4,512 triangles per frame. 

This performance was compared against a measured tight loop running 

this algorithm 100 times per measurement on the J2210 hardware. The 

performance of the algorithm on the hardware is comparable to the simulator. 

Platform 

Simulator 
Hardware 

Error 

Operations Per 
Second 
940 
909.09 

3.3% 

Table 4.7: Hardware vs Simulator performance measurement 

While a relatively high peak performance is possible, it is heavily 

dependent on the location of the triangles. For example, if 100 triangles occupy 

the same computational units' screen space, the entire frame throughput is cut by 

a factor of 100. This is not an unlikely scenario, either. It is shown when 

rendering the Newell teapot [18], shown in Figure 4.11. The complex top handle 
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portion of the tea pot places 107 of 896 triangles inside one computational unit. 

This cuts the peak throughput of the array to 880 triangles per second, or 1 frame 

per second. While the teapot is an extreme example, 3D scenes tend to have a 

heavier concentration of polygons in the center of the screen. 

Figure 4.11: The Newell teapot rendered by the SIMD array with texturing 
disabled 

While slow compared to commercially available dedicated high-power 

desktop 3D processors, the speed is quite impressive considering the architecture. 

Assuming small triangles, the triangles per frame, or display size can increase 

linearly with the number of CUs. It is also important to consider the energy 

consumption of the algorithm on the array processor. 

4.7 Power and Energy 

By using the hardware implementation of the algorithm the power consumption 

can be measured. The power measurements are performed by placing an ammeter 

in series with the 1.2V voltage regulator in order to measure current [19]. This 

excludes the Input/Output pins which run at a higher 2.5V. The 1.2V regulator is 
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replaced by a Tektronix CPS250 Triple Output Power Supply, and the input 

current is measured using a Fluke 187 True RMS Multimeter. 

The 1.2V supply gives power only to the J2210 core circuits (not I/O 

pads), providing direct current consumption for only the J2210, not the other 

peripherals on the board. The J2210 itself contains the ARM 922T RISC, the 

Array Processor and supporting Array Controller, and a series of other peripherals 

for communication. The current is measured through consecutive execution 

loops, and DC power is calculated. 

Power — Current x Voltage (4.2) 

With the power consumption and the execution time, the energy 

consumption can be calculated. 

Energy = Power x Time (4.3) 

In these tests, all unused peripherals are put in sleep mode. The test cases 

are as follows. 

Test Case A - Leakage Current 

The J2210 CPU is shut down via the power down input chip on the CEB. 

This shuts down the DLL and clock inputs. 

Test Case B - ARM922T™ Full Screen Sequential Algorithm 

The ARM922T™ is executing its sequential rasterization algorithm on a 

full screen rectangle, effectively measuring the peak fill rate of the 

sequential algorithm. 
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Test Case C - Array Processor Full Screen SIMD Algorithm, AP Halted 

The Array Processor is executing the SIMD rasterization algorithm on a 

full screen rectangle, effectively measuring the peak fill rate of the SIMD 

algorithm. The Array Processor is disabled to measure the consumption of 

the Array Controller and Computational Memory (CMEM) Interface Unit 

(CIU), which handles communication between the Array Processor and 

ARM. 

Test Case D - Array Processor Full Screen SIMD Algorithm, AP Active 

The Array Processor is executing the SIMD rasterization algorithm on a 

full screen rectangle, effectively measuring the peak fill rate of the SIMD 

algorithm. The Array Processor is enabled, and producing proper output. 

Test Case E - ARM922T™ Teapot Sequential Algorithm 

The ARM922T™ is executing its sequential rasterization algorithm on the 

teapot model in order to characterize a more realistic example. 

The teapot contains roughly 1000 polygons. 

Test Case F - Array Processor Teapot Sequential Algorithm, AP Active 

The Array Processor is executing its sequential rasterization algorithm on 

the teapot model. 

62 



The current and time measurement of each test is shown below. The 

texture coordinates are calculated but not applied in order to calculate a fair 

comparison between both rasterizers. 

Test Case 

A Leakage 
B ARMFS 
C AC Only 
D APFS 
E ARM Tea 
F APTea 

Current 

3 mA 
47.9 mA 
79.5 mA 
107.2 mA 
52.3 mA 
105.5 mA 

Processing Time 

N/A 
23 ms 
N/A 
2.2 ms 
610 ms 
780 ms 

Table 4.8: Current consumption of the test cases 

By using the current measurement it is possible to compare the power 

consumption per device in the full screen power test. 

ARM922T 

57.5 mW 

AC + CIU 

37.92 mW 

Array Processor 

33.24 mW 

Table 4.9: Power consumption broken down by hardware 

It is clear that while the Array Processor takes relatively little power 

compared to the ARM, the Array Controller and CMEM Interface Unit do add 

more than 100% overhead in terms of power. The energy consumption is entirely 

dependent on the execution time of the algorithms. 
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Test Case 

Full Screen 
Teapot 

ARM922T™ 
Energy 
1.3 mJ 

35.0 mJ 

Array Processor 
Energy 

0.155 mJ 
55.5 mJ 

Energy Ratio 
ARMtoAP 

8.4x 
0.63x 

Table 4.10: Energy consumption 

While the full screen rendering shows a significant performance increase 

of 10.5x and 8.4x less energy, it is an easy problem with peak parallelism. 

Despite the peak performance of the SIMD algorithm being significantly faster, 

the more realistic example shows that the weakness of the tile based algorithm is 

apparent. 

On the other end of the spectrum, the teapot puts more than 10% of its 

triangles inside one CU. Since the bottleneck exists in one CU, the others are 

executing needlessly. The fact that the teapot contains many polygons which are 

physically close, means wasted work on most of the processing array, which 

means wasted energy. The teapot problem shows a slightly longer processing time 

and 1.5x more energy. 

The actual energy consumption is sensitive to data for this algorithm, 

given an unknown amount of processing time for any scene. Since 3D scenes 

generally contain more polygons in the center, this bottleneck is likely. 

4.8 Memory 

Memory consumption inside the array is important, due to limited space per CU. 

While the architecture would allow for more memory per CU, the SIMD array 
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takes up significant die space on the chip. The following table shows the 

breakdown of memory used for this algorithm. 

Data 

Line Coefficients 
and other constants 
Colour value 

Depth value 
Mask/Write Enable 
Texture 
Coordinates 

Total 

Number of values 

96 

8x36 = 288 
(number of pixels 
per CU) 
8x36 = 288 
8x36 = 288 
8x36 = 288 

Data Size 

2 Bytes (short 
integers) 
2 Bytes 

2 Bytes 
1 Byte 
4 Bytes 

Total 
Consumption 
192 Bytes 

576 Bytes 

576 Bytes 
288 Bytes 
1152 Bytes 

2784 Bytes 

Table 4.11: Memory Usage 

This leaves 1312 Bytes free in each CU. The maximum number of pixels 

becomes 432 per CU, which could be arranged as 12x36 or 9x48 per CU, or a 

complete frame buffer size of 288x144 or 216x192. 

4.9 Summary 

The tile based rendering algorithm is realizable on the J2210's Array Processor. 

The algorithm was fully implemented and functional. While performance 

numbers for this algorithm can be very positive, the unpredictable nature of input 

can cause significant slowdowns for complex scenes, specifically where many 

overlapping polygons exist. 

The performance variance directly translates to energy consumption, 

which can show results as high as 8.4x lower energy consumption, but can also be 
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shown to be negative in more realistic tests. The tile based algorithm has been 

implemented and proven on the hardware, but the results are data dependent. 
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Chapter 5 

Pixel Based Rendering Approach 

In this chapter we examine rendering using SIMD parallelism over pixel space. 

The tile based approach, examined in the previous chapter, is effective in certain 

cases, but performance is unpredictable in a real application. The biggest problem 

with the tiled approach is the gross inefficiency when dealing with small triangles 

in leading to a poor ratio of useful to non-useful work. Our second SIMD 

parallelization approach handles processing on a much finer grain parallelism, 

each CU dealing with one pixel at a time. This will result in 96 pixels of arbitrary 

screen coordinated processed simultaneously. No calculations will be performed 

on behalf of a pixel which is outside a triangle. We will show that the pixel based 

processing algorithm can yield a performance increase of 5x while consuming 

7.7x less energy on small patches. 

While vertex processing is an inherently parallel operation, the pixel 

operations can take significant advantage of sequential computations. Each pixel 
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can be processed faster using the results of the previous pixel in a common 

triangle. The method of this approach is using the gradient slopes and summing 

with the corresponding value of the previous pixel. 

R =R +— (5-D 
*•' *-h> dx 

This approach is appealing because the slope, dR/dx is always required 

and known, and the operation requires only an addition. Of course any arbitrary 

point can be calculated using a less optimized equation, which uses much more 

expensive multiplication. 

R*y=Ro+x—+y 
dR dR (5.2) 
— + y 
dx dy 

This equation holds true for any pixel in the triangle, based off of a 

common starting point. While both provide the same result, barring rounding 

error, the latter requires four times as many ALU operations, including possibly 

slower multiplication operations. So while a sequential processor always has the 

previous data on hand, this data will be absent to the parallel processor, since two 

adjacent pixels may be operated on simultaneously. This means the SEVID 

processor will have to overcome the performance hit of a greater number of 

arithmetic operations. Also, we still show that the existing communication 

methods between the host and Array Processor pose a bottleneck to effective 

performance. 
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5.1 Host/Array Division of Work 

In this approach the ARM host will test each pixel for triangle inclusion prior to 

sending it to the SEMD array. The ARM will operate on a triangle by triangle 

basis, breaking each down into a number of included pixels, and then sending the 

result to the SIMD array. While optional, it may also be desirable for the ARM to 

do a pre-emptive depth calculation, test and write, for a few reasons. First, the 

ARM has quick access to the necessary information in the depth buffer. Second, 

the precision of a 32 bit depth is important to prevent z-fighting issues. 

Depending on the application, floating point depth may be necessary. This also 

prevents the SIMD array from processing pixels that would be thrown out for 

failing a depth test, but does require more work from the ARM. The parallel 

execution of work is shown in Figure 5.1. 

Execution ARM Array Processor 
tlme I Application Code 

Vertex Processing 

Pixel Processing 

Figure 5.1: Parallel Execution Comparison 

The J2210 array processor is designed for small, low power systems, and 

has computational power suitable for integer arithmetic and logic operations. It is 
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interesting to see whether a programmable SIMD array can be used in traditional 

patch processing in real time 3D rendering engines. Patch processing, including 

colour, shading, depth calculation and texture mapping, is analyzed using the 

computational units that make up the array processor in the Atsana J2210. SIMD 

processors that are tightly coupled with memory can perform memory operations 

required for graphics efficiently [20]. A host processor can be used to perform the 

floating point vertex level calculations and transfer the patches into the array 

-processor for pixel level interpolation operations. 

Re-examining the pixel processing, this implementation slices the division 

of work slightly earlier than the tile based approach, pulling triangle drawing out 

of the array processors responsibility. The division of work is shown in Figure 

5.2. 

Application Vertex Database (3D 32-bit, x,y,z world coordinates , 24-bit colour per vertex) 

Vertex 
Transformation 
& Lighting 

Vertex 
Projection. 
Clipping 

Triangle drawing 

3D world coordinate 2D screen coordinate 2D unfille 
vertices & colour vertices with depth (z) 

& colour 

Host Processor 

i 
Depth, Colour and] 
Texture Data ! 

Triangle filling 
Colour, Depth, 
Texture H+Display 

I triangles Frame buffen Data 
16-bit, 24-bilR,G,B 

Array Processor 

Figure 5.2: Processor division of work 
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By removing the triangle drawing from the array processor we reduce the 

wasted work from the tile based approach, caused by always working on every 

pixel, whether it is in a triangle or not. The drawback of removing that 

responsibility is the extra work for the host processor. While the boundaries on 

processing look relatively clear cut, the array processor is not strictly independent 

in the triangle filling stage. Since the colour and depth buffers are kept outside of 

the array processor, it requires information from the host at specific intervals. 

These transactions are described in the sections that follow. 

5.2 Host/Array Communication Implementation 

Each vertex in the scene will become part of one or many polygons, which have 

to be drawn to create the scene, called patches. At this point the vertices are 

projected into screen space, and have to be filled with pixels in order to represent 

the triangles on a 2D frame buffer. 

The triangle processing loop is shown below: 

for each triangle 
calculate line equations ax + by + c = 0 
calculate colour interpolation equations 
calculate depth interpolation equation 
calculate texture interpolation equations 
for each scanline in bounding box 

for each pixel in scanline 
test pixel for inclusion 
if inside triangle 

send for pixel processing 

Table 5.1: Pseudo code for triangle inclusion test 
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In a simple case, each vertex is tagged with 7 pieces of information. First, 

four pieces of colour information, red(R), green(G), blue(B), and alpha 

transparency(A). These values can be specified by the 3D model data, but are 

more likely a result of coloured lighting calculations done in vertex processing. 

Then, for each texture applied to the patch there is a horizontal(S) and vertical(T) 

index into that texture at each vertex. Finally each vertex is tagged with a depth 

(Z) value. Since this information is only provided at the vertices, some level of 

interpolation is required for the other pixels. 

The pixel processing loop is shown below: 

for each pixel 
fetch currentZ 
interpolate Z 
if Z < currentZ 

interpolate R 
interpolate G 
interpolate B 
interpolate A 
get current framebuffer colour 
combine R,G,B,A, current colour 
interpolate texture coordinate S 
interpolate texture coordinate T 
fetch texel S,T 
blend texel texel, colour 
write pixel to framebuffer 
write depth value to Z buffer 

Table 5.2: Pseudo code for pixel processing 
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Each of the iterations depends only on the current pixel data being 

operated on, as well as the current contents of the colour buffer and Z buffer at 

that coordinate. The only concern for doing the operations in parallel is to ensure 

that two pixels of the same x and y coordinates are not being operated on 

simultaneously. If this is the case the depth buffer will ensure only the correct 

pixel data gets written. 

Once each vertex is projected to screen space by the host processor a 

significant amount of data must be sent to the array processor for pixel 

computation. For each attribute interpolated there are three values, the initial 

value, usually starting from the top of the triangle, and the change in that value 

with respect to x and y as it traverses the triangle. Multiply these three values by 

the 7 attributes (R, G, B, A, S, T, Z) for 21 values to be calculated. Additionally, 

since each computational unit is handling an arbitrary pixel, it needs to know its 

relative X and Y position in the 2D frame buffer. A total of 23 values need to be 

written to each CU, which is a very expensive operation. However, 21 of those 

values are common for each CU if the entire array process is working on the same 

triangle, leaving only the X and Y location of the pixel to be unique for each CU. 

If each of 96 CUs is processing a pixel within the triangle, requiring 23 

values, then a total of 2208 (23 values for 96 CUs) 16-bit integers must be written 

to the array processor per triangle. The latency of writes into the array processor 

memory creates an impractical amount time spent strictly feeding data to the array 
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processor. The measured time for this much data is listed in the result section 

below. 

While this particular approach may not be appropriate to the J2210 due to 

significant data writes, calculating the actual computational work is significant 

and useful. While 2208 writes is not suitable it is important to remember that 

each CU only has 2 unique values, its X and Y coordinate. Which means the 

other data, 21 words times 96 CUs, is shared. Since the array processor features a 

processor in memory architecture, it would be possible to enhance the hardware to 

support a broadcast write, which wrote these shared values directly into the values 

of all the CUs. This enhancement is discussed further in chapter 6. If added the 

number of writes would be reduced to the 21 interpolation values, as well as the X 

and Y coordinates for each CU. This brings input required down to a more 

manageable 213 (21 attribute values plus 2 values per CU) values, or 2.2 values 

per computed pixel. 

5.3 Triangle Drawing 

As described above, the host processor will do the actual drawing of the triangles, 

delegating the actual triangle filling to the array processor. The host processor 

uses a triangle scan conversion algorithm to determine each pixel's inclusion in 

the triangle based on the three line equations that describe it. It starts at the top 

point of the triangle and steps from the beginning of the precalculated edge until it 
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runs into the second bounding edge. Upon reaching the second edge it moves 

down to the next line in the triangle and repeats the process until the last line. 

This process is shown visually in Figure 5.3. 

Figure 5.3: Scanline processing algorithm implemented in the ARM 

While this is run by the host processor, it still uses the same fixed point 

integer arithmetic that is used by the array processor. The fixed point 

implementation is useful not only for speed, but for comparison of results 

between the two platforms, in terms of performance and the correctness of both 

algorithms. 

Once each pixel is determined to be inside the triangle, the X and Y values 

are stored in a data structure to be sent to the array processor for computation. 
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5.4 Gouraud Shading Implementation 

This method requires using the computational units as general purpose pixel 

processors. The CUs themselves are not associated with where the pixel lies. 

They are assigned a set of interpolation values and x and y coordinates to process. 

The CUs can be treated as a pooled resource of data, and balanced by the host 

processor. 

This calculation of a single pixel value is merely an evaluation of the 

arbitrary point equation shown below: 

„ ^ dC dC (5.3) 
C„=C0+x—+y — 

dx dy 

C, in this equation, is any of the colours for this coordinate. The same 

equation calculates the red, blue, green and alpha values. All the inputs are sent 

to the array processor prior to computation, so the result can be evaluated 

immediately. Figure 5.4 shows the division of pixels over CUs for one example 

triangle. 
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Figure 5.4: Division of work for single pixel per CU. 43 CUs are used to fill the 
triangle 

The drawback of this equation is the two multiplication components which 

require more than 10 times the cycles required for an addition. For large triangles 

it is faster to have each CU calculate a few, say four, adjacent pixels, and increase 

the granularity of the input. For each of the three neighbouring pixels, only an 

addition is required, as shown below. 

C =C + 
dC 
dx 

(5.4) 

Sending every individual pixel to a CU may be appropriate in some cases, 

but in others sending every second pixel horizontally and vertically to the CUs 

will yield much faster results, since the addition required to compute a neighbour 

is much faster than the multiplication for an arbitrary pixel. While there will be 

some wasted work on pixels outside the triangle, the cost is low. Each extra pixel 
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addition adds roughly 6 extra clock cycles per attribute, including the load and 

store. Over 6 attributes and 3 extra pixel additions it works out to roughly 108 

cycles, on top of the 1248 cycles for calculating the original pixel, or 8.6% more 

work for 4 times the results. This does not actually create much work for the host 

processor, since it is already aware of which pixels are inside and which are not, 

and will grab them accordingly from the array processor. We implemented this 

logic in the Array Processor algorithm, but have not implemented the logic for 

parsing and removing unused pixels on the host side. An example is shown in 

Figure 5.5 
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Figure 5.5: Division of work for four adjacent pixels per CU, 14 CUs are used 
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5.5 Depth(Z) Calculation and Evaluation 

The depth value can be calculated in the same way as the colour values above. In 

fact from the array processor's perspective the exact same program can be run and 

produce the correct results. 

„ „ dZ dZ (5.5) 
z,y

 =zo+x-r+y-r 
dx dy 

However, in this case the depth calculation may be more appropriate 

outside of the array processor. Since, unlike the tile based method, the depth 

buffer is stored outside of the array processor there is little advantage to having 

the value computed inside the array processor. In fact since the depth test can 

immediately determine if a pixel should be processed, having the array processor 

do work on a masked pixel is entirely wasted work. 

If the host processor does the depth test on a per pixel basis before 

sending the result to the CU it can choose to avoid the unnecessary work 

altogether at little cost. Simply adding the depth test to the triangle inclusion test 

described above will eliminate processing time spent on obscured pixels, leaving 

the array processor open for unmasked pixels as shown in Figure 5.6. If the entire 

triangle is found to be obscured before rendering the pixel programs do not even 

need to be run. 
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Figure 5.6: A triangle obscures the first triangle, reducing the number of pixels 
sent to the AP 

5.6 Texture Coordinate Calculation 

The texture coordinate equations can be calculated as the Gouraud colours above, 

using either the arbitrary point calculation, or the combination of arbitrary point 

and small tile. 

dS dS 

dx dy 

dT dT 
T =T0+x— + y 

dx dy 

(5.6) 

(5.7) 

Once calculated however, these values are merely indexes into a texture 

colour array that is completely unknown to the array processor. It is impossible to 

store the textures inside each CU, not feasible to index them, and impractical to 
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store them all across the array processor, so they must remain inside system 

memory. 

This requires a two way communication between the host and each CU at 

this stage in the process. Upon completion of the texture coordinate program, the 

host must grab all of the texture indices from the CUs and convert them to the 

memory address where the texture is stored. 

for each CU 
read S and T 
convert S and T to texture memory address 
read address data 
write data back into CU 

The amount of data going into and out of the array processor is not small, 

23 values per pixel in, and 7 out. Not only is the data movement costly, but this 

completion will stall the array processor until it can retrieve the data, which 

means the host processor will consistently be interrupted in order to keep the 

array processor busy. The data movement and the context switch for the host 

processor are both costly, hurting the feasibility of arbitrary texturing on the array 

processor side without specialized hardware. Some suggestions for this 

deficiency are addressed in chapter 6. 

Once the texture value is collected the value is modulated with the 

Gouraud shaded value to form the output colour. If alpha blending is enabled, the 

output colour is blended with the previous frame buffer value provided with the 
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initial data. At this stage the resulting image data is retrieved and placed in the 

frame buffer in system memory, and the process is complete. 

5.7 Performance 

To evaluate the performance of the array processor, it must be compared with a 

suitable platform. Currently, most portable devices use a RISC processor for 

software graphics processing, like the ARM found in the J2210. The array 

processor is clocked at 96 MHz with the ARM 922T at 192MHz, computational 

performance of the pixel algorithms are measured. The following algorithms are 

measured from test cases on the CEB using controlled test cases. The test cases 

perform the algorithm in a tight loop overall several seconds to measure the result. 

The shade algorithm is described above, and calculates any of the specific 

R,G,B,S,T,Z,A values at individual coordinates within the triangle. The results 

are shown in Table 5.1 in millions of operations per second. 

Algorithm 

Shade 

ARM922T 

1.41 

Array Processor 

0.077 

Table 5.3: Algorithms in millions of operations per second 

While the array processor is significantly slower in both operations, with 

each pass of the algorithm it produces 96 results. Normalizing the results to 96 

CUs shows a generous increase in performance. 
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Algorithm 

Shade 

ARM922T 

1.41 

Array Processor 
(per result) 

7.39 

Table 5.4: Algorithms in millions of operations per second, throughput 

In processing single pixel patches, the array processor can exceed the 

speed shading algorithm by more than a factor of 5. However, this result is also 

dependent on two factors. The first is that all 96 processors are busy in order to 

receive the maximum efficiency. Since scenes will be generated from millions of 

pixels, this should not be an issue. The second is that the patches are single pixels 

in size. In practice, the sequential processor can exploit values of neighbouring 

pixels to reduce computational cost. As performed in the tile algorithm, the 

sequential CPU can perform a small delta addition when calculating the nearest 

neighbour pixel seen in equation 5.1, instead of the full calculation shown in 5.2. 

This means that the CPU can replace the full shading algorithm with addition in 

larger patches. As patch size increases the array processor loses its edge. The 

following shows the processing time comparison per attribute for patches of 

increasing size. 
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Figure 5.7: Processing time comparison for varying patch sizes 

As shown in Figure 5.7 the array processor starts out significantly faster 

for smaller points. As it scales up however, the ARM is able to exploit the small 

marginal cost to interpolate via delta additions instead of recalculating the 

gradients with each pixel. The performance of the ARM surpasses the array 

processor as the number of pixels per patch increases. The break-even point is at 

a 10 pixel patch size. 

The AP can also be programmed to exploit the same nearest neighbour 

interpolation by having a fixed set of coordinates to operate on. Since the Array 

Processor CUs all have to execute the same algorithm, the nearest neighbours 

must be calculated by all CUs, needed or not. As described above, calculating 3 

neighbouring pixels only incurs an 8.6% penalty, so by programming the AP to 

calculate 4 pixels at a time, it can calculate all 4 at nearly the same cost as a single 
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pixel. Since all 4 pixels will not always be required, some calculation time may 

be wasted; however, the wasted time is almost negligible since it adds very little 

computation time. This brings the AP ahead of the performance of ARM for 

larger patches as shown in Figure 5.8. 
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Figure 5.8: Processing time comparison for varying patch sizes including the 4 
pixel array processor neighbour calculation 

All the calculated pixels will not be used, so work will be thrown away 

with this method, but even at 50% efficiency, say only 2 of every 4 pixels 

calculated are used, the algorithm still remains under the ARM in terms of 

processing time. 

At a 2.9% increase in processing time per pixel added, it is important to 

calculate the ideal number of adjacent pixels to calculate for varying patch sizes. 
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It is difficult to estimate the ideal block size for each average patch size 

due to the fact that the patches can vary from extremely orthogonal and having 

even dimensions to extremely thin and angled. The following table shows the 

number of blocks of each size to cover an isosceles right angle triangle of varying 

patch sizes, orthogonal to the screen. The patch size increases by the number to 

create the next right angle orthogonal triangle. 

Block Size 

4 (2x2) 

9 (3x3) 
16 (4x4) 

25 (5x5) 

Patch Size (pixels) 

1 
1 
1 
1 
1 

3 
1 
1 
1 
1 

6 
3 
1 
1 
1 

10 
3 
3 
1 
1 

15 
6 
3 
2 
1 

21 
6 
3 
3 
3 

Cycles Per 
Pass 

1356 

1536 
1788 
2112 

Table 5.5: Number of blocks required to cover an orthogonal isosceles triangle of 
varying size 

Multiplying out the number of passes by the number of clock cycles per 

block calculation we can see the fastest in each size. 

Block Size 

4 (2x2) 

9 (3x3) 
16 (4x4) 

25 (5x5) 

Patch Size (pixels) 

1 
1356 
1536 

1788 
2112 

3 
1356 
1536 

1788 
2112 

6 
4068 

1536 
1788 
2112 

10 
4068 
4608 

1788 
2112 

15 
8136 
4608 

3576 

2112 

21 
8136 

4608 
5364 
6336 

Table 5.6: Number of cycles to calculate all the pixels in orthogonal isosceles 
triangle, based on varying block sizes 

The following table shows the number of blocks of each size to cover the 

worst case patch shape for a square calculation block, which is a line. 
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Block Size 

4 (2x2) 
9 (3x3) 
16 (4x4) 

25 (5x5) 

Patch Size (pixels) 

1 
1 
1 
1 
1 

3 
2 
1 
1 
1 

6 
3 
2 
2 
2 

20 
5 
4 
3 
2 

25 
8 
5 
4 
3 

22 
11 
7 
6 
5 

Cycles Per 
Pass 

1356 
1536 
1788 

2112 

Table 5.7: Number of blocks required to cover a line of varying size 

Again we can find the fastest block in each patch size by multiplying by 

the number of cycles per block calculation. 

Block Size 

4 (2x2) 
9 (3x3) 
16 (4x4) 
25 (5x5) 

Patch Size (pixels) 

1 
1356 
1536 
1788 
2112 

3 
2712 

1536 
1788 
2112 

6 
4068 
3072 
3576 
4224 

10 
6780 
6144 
5364 
4224 

15 
10848 
7680 
7152 

6336 

21 
14916 
10752 
10728 
10560 

Cycles Per 
Pass 

1356 
1536 
1788 
2112 

Table 5.8: Number of cycles to calculate all the pixels in a line, based on varying 
block sizes 

Since we are dealing with a small display size, the average patch size will 

be low. The 2x2 and 3x3 blocks perform best on 1-10 pixel patches but even the 

5x5 block performs well on smaller patches. Again, the best size is dependent on 

the input data. 

5.8 Power and Energy 

The energy consumption of both algorithms is measured using the methods 

described in chapter 4. These results are for a small patch size of 1-4 pixels, 

where the SIMD processor may be considered to have a strong advantage. 
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However, as shown in the performance section the linear increase of the ARM 

processing time per pixel can be nearly matched by the Array Processor. Again 

the results can be broken down by the 3 major units of the processor. 

Test Case A - ARM922T™ Shading Algorithm 

The ARM922T™ is executing its sequential shading algorithm for 

attribute calculation in a tight loop. Processing time is shown for 192,000 

calculations. 

Test Case B - ARM922T™ Idle 

The ARM922T™ is idle, simulating consumption while waiting for the 

array processor to complete. It is not placed in sleep mode, but fed a 

series of NOPs. 

Test Case C - Array Processor Shading Algorithm, AP Halted 

The Array Processor is executing the shading algorithm for attribute 

calculation in a tight loop. The Array Controller and CIU are active, but 

the Array Processor is in sleep mode. Processing time is shown for 

192,000 calculations. 

Test Case D - Array Processor Shading Algorithm, AP Active 

The Array Processor is executing the shading algorithm for attribute 

calculation in a tight loop. The Array Controller, CIU and Array 

Processor are active. Processing time is shown for 192,000 calculations. 
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Test Case 

A ARM Shade 
B ARM Wait 
C AC Only 
D AP Shade 

Current 

52.3 mA 
43.5 mA 
54.3 mA 
78.7 mA 

Processing Time 

136 ms 
N/A 
N/A 
26 ms 

Table 5.9: Current consumption of test cases 

The power consumption of the test cases is calculated from the current. 

The ARM numbers are from test case A, the Array Processor numbers are based 

off of cases B and C while subtracting the idle consumption of the ARM from test 

case A. 

ARM922T 

62.76 mW 

AC + CIV 

12.96 mW 

Array Processor 

29.28 mW 

Table 5.10: Power consumption broken down by hardware 

It is notable that the power consumption of this algorithm when running in 

a tight sequence is significantly lower than the tile based algorithm for the Array 

Processor and hardware, which can be explained by the instructions. The 

algorithm provides fewer instructions that take longer to execute with 

multiplications, instead of additions, so there is less instruction fetches. This 

algorithm also works much more out of register arithmetic than the memory 

intensive tile based algorithm, meaning fewer loads and stores. 
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Energy consumption is calculated by using the measured execution time 

and power. On single pixel patches the performance of the SIMD algorithm is 

faster by a factor of 5x and lower on energy consumption by nearly 8x. 

Test Case 

C&D 

ARM922T™ 
Energy 
8.5 mJ 

Array Processor 
Energy 
l.lmJ 

Ratio (Arm to 
AP) 
7.7x 

Table 5.11: Energy consumption of 192,000 single pixel calculations 

As shown in the performance section, this is the ideal case for the Array 

Processor, however even the larger patch sizes can be completed in less time 

using the Array Processor as shown in Figure 5.8. Performance aside the power 

consumption of this algorithm on the Array Processor is 2x less than the 

ARM922T™ when active assuming both are running constantly. As the number 

of pixels per patch increases, the energy consumption for both the ARM and AP 

increase linearly, but since the AP uses less energy the break-even point is at a 

patch size of 34. The energy consumption for each algorithm is shown in Figure 

5.9. 

90 



1.20E-07 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Patch Size in Pixels 

Figure 5.9: Energy comparison for varying patch sizes including the 4 pixel array 
processor neighbour calculation 

5.9 Memory 

The AP seems ideal for pixel processing on small patches, but it is important to 

note the importance of access to external memory. External accesses are required 

at the beginning of the algorithm for the current depth and colour values for the 

depth test and colour blending. These can be provided by the vertex processor at 

the beginning of the algorithm. Texture data is more complicated; the processor 

does not know what texture data is required until it calculates the texture 

coordinates. At that point the texture data at the calculated address will need to be 

fetched. 
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The texture coordinates need to be translated into absolute memory 

addresses by the host processor, then the data must be fetched and given back to 

the array processor. 

While the array processor can be shown to outperform the ARM in 

computational power, it is important to consider its relationship to the system 

memory. To use a SIMD array processor a specialized interface to memory could 

be implemented as a coprocessor. A coprocessor with rapid access to depth 

buffer, colour buffer and texture data would allow the AP access to all required 

data without interfering with the host processor. 

5.10 Summary 

The array processor is suitable for pixel calculations, and performs well both in 

terms of performance and especially energy with up to 5x faster performance 

consuming 7.7x less energy. However, it is lacking in some areas which make it 

an incomplete solution without data serving from the ARM host. It needs 

arbitrary access to the colour and depth buffers, as well as texture memory. A 

DMA interface between the SIMD array and the memory system would provide 

enough capability to allow the array processor independence from the ARM for 

pixel processing. 

Computational performance of a SIMD architecture for pixel processing 

was shown to exceed that of a sequential RISC processor, especially as the size of 
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the polygons decreases. The low energy requirement would make it ideal in an 

embedded application. In addition to computational performance however, pixel 

processors need fast access to the data that they are manipulating. Sequential 

processors can take advantage of cache coherence to reduce the memory latency 

and bandwidth requirement. 

A SIMD processing array tied tightly to a custom DMA engine would 

prove a beneficial solution for accessing and processing pixel data. A cache 

would reduce latency in texture mapping and buffer writes. The parallelism 

inherent in pixel processing makes a SIMD architecture quite suited to the 

computations required. With the correct memory interface, a SIMD processor 

makes a powerful, appropriate, solution for real time 3D rendering. 

93 



Chapter 6 

System Level Communications and 
Efficiency 

SIMD to Sequential communications can become a bottleneck due to the amount 

of data to keep a SIMD array full. In cases where the SIMD system is not the sole 

processing unit, it is important to establish system level parallelism. The J2210 

uses the ARM922T™ processor as the host. It provides data and calls high level 

instructions for the Array Processor, but it is also free to work on problems itself, 

in parallel with the Array Processor. This requires a level of synchronization. In 

the J2210 the array processor is the back end processor or slave. The only control 

it has over the ARM is the ability to issue an interrupt when idle. System 

performance can increase dramatically if both processors can be kept fully 

utilized. Of course this ideal is not attainable in practice, but steps can be made to 

obtaining high utilization. We will describe several communications issues found 

in the J2210 and comment on possible solutions. 
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6.1 System Level Parallelism 

For ideal parallelism, neither processor should be blocked waiting for the other. 

In this case, since the array processor requires instructions and data from the host, 

this is not easily maintained. While the J2210 does allow the Array Processor 

and the ARM to execute in parallel, constant communication is required for them 

to form an efficient system. As vertex data is being processed by the ARM, 

ideally the pixels corresponding to the previous set of vertex data should be 

processed by the Array Processor. This is possible with the tile based 

implementation because the host and array responsibilities are much more 

defined. 

If texturing is disabled the Array Processor handles everything after the 

projection stage, allowing itself to complete the final image in its own frame 

memory. At this point the only work for the ARM is writing out the data to the 

display device. If texturing is enabled, then the division of work becomes less 

clear. As the data is being pulled out of the processor the texture data must be 

applied, since the Array Processor has no ability to fetch data from system 

memory directly. This interruption slows the flow of data, but both processors 

can still act quite independently in parallel. 

In the pixel based approach discussed in Chapter 5, there is much more 

host babysitting involved. Since the Array Processor is effectively used as a low 

level pixel processor the data inputs and outputs must constantly be fed and 
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retrieved. This two way communication ended up becoming a bottleneck for this 

algorithm on the J2210. The host ends up with little to no time for vertex 

processing. Data movement becomes the biggest bottleneck of the system. 

6.2 Data Movement 

In both algorithms there is an undesirable amount of data communication between 

the SEMD and sequential processors for them to be used in a real world 

application. The direct read and write of data from system memory into the 

array processor memory proves to be a bottleneck. 

6.2.2 Host processor Read/Write 

The following are the measured results of reading and writing data respectively, 

using a 32 bit word across 4 CUs. In addition the time results for addition and 

multiplication using the array processor are listed. Note that one pass of these 

algorithms should produce 96 results in parallel. The throughput results are 

shown in parentheses. 

Operation 
32 Bit Read Operation 

32 Bit Write Operation 

16 bit by 8 bit Multiplication 

16 bit Addition 

Time (ns) 
830 

488 

1093.44(11.39) 

64.0 (0.667) 

Table 6.1: Speed of read and write operations from ARM to AP 
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The array processor runs at 96MHz, or 10.42 ns per cycle. The ARM 

922T is running at 192MHz, or 5.21 ns per cycle. This means a 32 bit write 

operation takes nearly 100 cycles to calculate the address and write the data into 

array processor memory. Even this write only provides a single word of data to 4 

Computational units, at 8 bits each. In order to fill up the 192 inputs for the 16 bit 

array processor addition test, it would take 96 of these write operations. In the 

time of just a single write operation, the array processor could have done 7 

parallel additions, producing 672 results. Reading from the array processor is 

worse, since it must stall the ARM from the beginning of the read, while waiting. 

6.2.2 J2210 DMA 

The alternative to the direct host involvement in writing is to use Direct Memory 

Access (DMA) hardware, which would free the host from monitoring the reads 

and writes. While the J2210 architecture does feature DMA hardware, it is not 

designed for such small scale transfers for 3D rendering. The DMAs provided are 

directly connected to the Sensor and Variable Length Coder and not appropriate 

for data transfer. 
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6.3 Potential Hardware Improvements for 3D 
Rendering 

While the array processor itself is quite proficient at dealing with the 

computations required for 3D rendering, the J2210 system as a whole has some 

communication bottlenecks which break down the performance. 

6.3.1 System/Array DMA 

A configurable DMA in order to pass data back and forth between system 

memory and the array processor would alleviate the host processors stalls on 

reads and writes. The data would have to be formatted in a way such that it was 

appropriately laid out in system memory, or could be reshuffled by the DMA 

itself in order to be array processor ready. Ideally since the DMA would run on 

the system clock, there should not be any issues with clock boundary crossing. 

In the tile case, the DMA could be used to pull the entire frame buffer 

from the array processor, while the host works on the next frame input data. The 

current system required the host to remove all the frame data from the Array 

Processor and placed in system memory before it can be provided to the display 

output port. This operation was measured to take 14ms of host CPU time, and 

could be handled passively by the DMA in the background. 

A DMA could assist in the pixel calculation case as well. While this 

would free up the host processor from reads and writes, its true potential could be 

realized in keeping the array processor working as much as possible, providing 
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inputs and removing outputs. Considering the ratio of data transfer to useful work 

described in section 6.2.2, the data transfer still may be fast enough to keep the 

array processor working if expensive multiplication operations are involved. 

This system may however require relatively complex hardware in order to be 

configurable enough to be aware of the array processor's idle state, and the 

location and amount of data currently available to be provided and removed from 

the AP. 

In several cases a broadcast write would be useful, where the same data is 

written to every computational unit, instead of writing the same information to 

each CU group. Since the data lines are shared between CUs it should be possible 

in hardware to unmask all the CU groups while broadcasting the data. 

6.3.2 Display output DMA 

For use in a real time system, a frame rate should generally be higher than 15 

frames per second, ideally in the range of 30. A 15 frame per second rate, allows 

66ms of computation time. Measured results of writing data from the system 

memory frame buffer to the display port takes 36ms. This operation is far too 

costly for the host processor, and can be done passively by a DMA device 

transferring data directly from the system memory to the display output port. This 

may require double buffering, which is not uncommon in real time rendering 

systems. In double buffering, the renderer alternates between two frame buffers 

to write to, while the alternate buffer is being read by the display hardware. 
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6.3.3 Optimal CU and memory configurations 

For 3D rendering applications the memory required is less than the sheer amount 

of space required for the video and image encoding that the J2210 Array 

processor was designed for. Both the tile based and pixel based algorithms are 

scaleable in terms of CU usage. While more CUs is beneficial to both, again the 

issue of data movement overhead described in previous sections hinders the 

improvement. 

If the data issues are resolved, both algorithms are CPU bound and not 

memory bound, so dividing the memory into smaller areas with more processors 

would be linearly beneficial to both algorithms. 

6.4 Summary 

Communication is essential for proper system level parallelism between the host 

and SEVID array in any SIMD system. High communication latency has proven to 

be the largest issue in the implementation of 3D rendering algorithms on this 

hardware platform. This chapter discusses the issues and provides possible 

solutions for reducing overhead in future hardware revisions. 
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Chapter 7 

Conclusions 
Two implementations of 3D rendering algorithms on a low power SIMD 

architecture have been presented. The ideal target would be real time 3D 

rendering applications suitable for a mobile low power system. The Atsana J2210 

architecture was used as the development platform for its embedded SIMD Array 

Processor, and host ARM 922T. These two processors are comparable for a low 

power embedded application and used to compare results on the rendering 

algorithms. Results indicate that while the Array Processor inside the J2210 is 

quite capable of rendering performance and power improvements, communication 

issues cause the J2210 as a whole to be inappropriate for real time rendering. 

Chapter 4 describes implementation of the tile based rendering solution 

and provides speed and energy performance measurements taken from hardware. 

This solution effectively uses the Array Processor as an intelligent frame buffer. 

While the implementation is successful the measured results vary widely in terms 

of computation time and power consumption. While the peak performance is 

101 



10.5x faster than the ARM 922T consuming 8.4x less power, more realistic cases 

show that work load imbalance can greatly reduce the efficiency of the algorithm. 

Chapter 5 describes implementation of the Array Processor as a low level 

processor for pixel rendering. This implementation is much more successful, 

showing that on small patches the Array Processor can outperform the ARM in 

speed, and use up to 7.7x less energy and 5x the performance. However, it is 

important to note that this implementation has severe problems when dealing with 

communication bandwidth. The overhead of using the Array Processor as a 

parallel ALU outweighs the actual performance benefit by a significant factor, 

since it requires 23 writes per pixel at more than 100 cycles per write for a ~1000 

cycle operation. While the Array Processor itself is quite effective, the J2210 

platform as a whole is incapable producing improved energy and speed 

improvements on this algorithm. 

Chapter 6 discusses possible communication improvements in order to 

rectify the problems found in both rendering implementations. System hardware 

modifications are discussed for future revisions. DMA hardware in order to 

alleviate the communication issues is suggested to be the best solution. 

7.1 Future Research Directions 

Both of the presented algorithms were examined in relatively controlled test 

cases. It would be beneficial to hook up the algorithms to real scenes from real 
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time rendering software in order to gain more accurate results. In the chapter 4 

tile based algorithm CU utilization benchmarks on real applications could provide 

information on CU workload distribution and speedups. In the Chapter 5 pixel 

rendering algorithm it would be useful to see both the effect of varying patch size 

on the speed and energy consumption. 

It may be useful to provide a divided approach between that ARM and AP 

in the tile based method, using the AP for large triangles and the ARM for smaller 

triangles. There can be a threshold which determines if the AP is being actively 

used enough, or most of its cycles are being wasted, and remaining triangles can 

be processed by the ARM. Even a combination of tile and pixel based rendering, 

both on the array processor, could ease bottlenecks and issues with the algorithms. 

The most important concerns found during this research are data 

communication related. Both algorithms were hurt by the lack of a DMA and 

slow communication between the SIMD and ARM processors. There is 

significant future research available in devising a system for transferring 

rendering data between the Array Processor and host processor in a 3D rendering 

system. Automated hardware could significantly reduce the load on the system 

and host processor. With reduced latency when accessing the Array Processor 

memory, it may be possible for the ARM to store all of its rendering data inside 

the Array Processor, so that data movement would not be necessary at all. 

Additional DMA hardware between the Array Processor and display output 
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hardware would greatly benefit the tile based algorithm, eliminating the need to 

copy all the data out into system memory prior to displaying. 

The Array Processor itself can be modified for better rendering suitability. 

Studying the best ratio of processor to memory inside the Array Processor may 

provide useful insight into the efficiency of these algorithms. This is not a simple 

issue to tackle however, as more processing elements require more data 

movement from the host. 

An alternative approach would be to design an Array Processor with much 

less embedded memory, only a handful of registers. Reducing the size of the 

memory array may decrease the latency for host to AP communications. This 

implementation may be extremely suitable to the pixel based approach described 

in chapter 5, since it does not use much storage. In addition it may be worth 

investigating the trade-off of silicon area to a more advanced ALU hardware for 

multiplication, which is the most time consuming operation in the pixel algorithm. 

Modifying the CUs themselves for larger bit width (16 or 32) would provide more 

precision and reduce the amount of data reshuffling required when 

communicating with the ARM host. 
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