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A HYBRID CONTINUOUS/DISCRETE-TIME MODEL FOR
INVASION DYNAMICS OF ZEBRA MUSSELS IN RIVERS∗

QIHUA HUANG† , HAO WANG‡ , AND MARK A. LEWIS§

Abstract. While some species spread upstream in river environments, not all invasive species
are successful in spreading upriver. Here the dynamics of unidirectional water flow found in rivers can
play a role in determining invasion success. We develop a continuous-discrete hybrid benthic-drift
population model to describe the dynamics of invasive freshwater mussels in rivers. In the model, a
reaction-advection-diffusion equation coupled to an ordinary differential equation describes the larval
dispersal in the drift until settling to the benthos, while two difference equations describe the pop-
ulation growth on the benthos. We study the population persistence criteria based on three related
measures: fundamental niche, source-sink distribution, and net reproductive rate. We calculate the
critical domain size in a bounded domain by analyzing a next generation operator. We analyze the
upstream and downstream spreading speeds in an unbounded domain. The model is parameterized by
available data in the literature. Combining the results of model parameterization and theoretical anal-
ysis, we numerically analyze how the interaction between population growth and dispersal, river flow
rate, and water temperature affects both persistence and the spread of zebra mussels along a river.
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1. Introduction. The invasion of nonnative species has had pervasive and dele-
terious impacts on the world’s ecosystem [26, 35]. One prominent example is the
introduction of the zebra mussel (Dreissena polymorpha) into the rivers, lakes, reser-
voirs, and canals of North America. Because of their high fecundity and strong ability
to settle on almost any solid substratum, zebra mussels usually outcompete native bi-
valves [30], cause large reductions in phytoplankton [2] and zooplankton abundances
[6], greatly modify the cycling of nutrients [1], and cause severe damage to water-
works [10]. As a result, zebra mussels not only are “ecosystem engineers” that alter
both the structure and function of the environment they invade, but also give rise
to significant removal costs to individuals, municipalities, and corporations [34]. It is
estimated that zebra mussels cause $1 billion in damages and associated control costs
per year [28]. Because of its importance as an invader, there are very good records of
the geographic extent and rate of spread of the zebra mussel in various water bodies
and countries. Spread in North America has been generally reported at a high level
of spatial resolution [3].
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A MODEL FOR INVASION DYNAMICS OF ZEBRA MUSSELS 855

Successful invasion depends upon the size of an invading population at its source
as well as the ability of individuals to survive and successfully reproduce at their new
destinations. The potential of an aquatic nuisance species to survive and reproduce,
once it has been introduced, depends on the levels of physical, chemical, and biological
factors (e.g., water temperature, turbidity, flow rates, suitable substrate, calcium
concentration, salinity, pH, oxygen, food source) [8, 14, 24]. These environmental
factors may vary significantly among different types of water bodies. For instance, in
rivers, zebra mussels are most affected by unidirectional water flow, disturbance due
to water flow, suspended sediment, and minimal suitable substrates for attachment
[14]. Unidirectional water flow makes it difficult for local populations of zebra mussels
in rivers to increase in density, as their larvae are swept downstream. However, high
densities of zebra mussels can form in the lower courses of rivers because of slow flow
and reduced movement of bottom sediments [14]. Since its introduction to North
America in 1986, the zebra mussel has invaded several large rivers, including the
St. Lawrence, Hudson, Mississippi, Illinois, Ohio, Tennessee, and Arkansas rivers [30].

The main goal of this study is to develop and apply a mathematical model to
understand the interaction between population growth and dispersal, environmental
conditions, and river flow in determining upstream invasion success of zebra mussels.
To this end, we develop a novel, impulsive, spatially explicit model, with distinct
dispersal and growth stages, to describe the dynamics of zebra mussels in rivers. In
the model, the dynamics of the dispersing larval stage are governed by an advection-
diffusion-reaction equation, while juvenile and adult growth is described by two differ-
ence equations that map the population density in the current year to the population
density in the next year. This couples a population growth model to a physical model
for dispersal based on existing understanding of river flow dynamics. The model can
be used to investigate how the flow regime and environmental factors influence the
distribution, abundance, and spread of zebra mussels in river ecosystems.

To study whether zebra mussels are able to successfully invade a river, we con-
sider persistence criteria for zebra mussels based on our spatially explicit population
model. Recently, Krkos̆ek and Lewis [17] proposed three relevant measures of pop-
ulation persistence that relate to lifetime reproductive output in a spatially variable
environment. These measures were adapted in [25] to analyze an advection-diffusion-
reaction model for a stream population; such a single-compartment model regards
the whole river channel as a drift zone and assumes that an unstructured population
disperses and reproduces in the drift. In this work, we extend the three measures of
population in [25] to our structured continuous-discrete hybrid model.

The first measure of persistence, denoted by Rloc(x), describes the fundamental
niche of the population. By definition, individuals are assumed to experience only
birth and death after being introduced, but dispersal is excluded. In this work, we
use Rloc(x) to answer the following question: If an individual adult is introduced at
location x, in the absence of larval dispersal, how many adult offspring will it produce
(after undergoing reproduction, larval settlement, and the growth of settled larvae
and juveniles) over its lifetime? Thus, in the absence of dispersal, a population will
persist at the location x if Rloc(x) > 1, it but will not persist if Rloc(x) < 1.

The second measure of persistence, denoted by Rδ(x), describes the source-sink
distribution. It represents lifetime contributions of an individual introduced at x,
undergoing reproduction, dispersal, and survival. In this work, we use Rδ(x) to
answer the following question: If an individual adult is introduced at location x and
undergoes reproduction, larval dispersal and settlement, and the growth of settled
larvae and juveniles, how many adult offspring will be contributed by the originally
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856 QIHUA HUANG, HAO WANG, AND MARK A. LEWIS

introduced adult over its lifetime? Locations where Rδ(x) > 1 function as sources
because each adult at location x on average produces more than one adult in the
whole spatial domain over its lifetime. Locations where Rδ(x) < 1 function as sinks
because on average the lifetime reproductive output of an adult, introduced at location
x, is less than one. Although Rδ(x) maps how source and sink distribution changes in
the spatial habitat, it does not inform about the global persistence or extirpation of
a population. To do so we need the final measure of persistence, the net reproductive
rate, R0.

Mathematically, R0 is defined as the spectral radius of the next generation oper-
ator. Biologically, in this work, it can be interpreted as the average number of adults
produced by a single adult over its lifetime, assuming that the adult is subject to a
particular spatial configuration in the river. More precisely, this spatial configuration
is an asymptotically stable next generation distribution associated with R0. As a
threshold parameter, R0 is a powerful measure for studying population persistence in
demography and ecology. The population will grow if R0 > 1, but the population will
become extirpated if R0 < 1.

We then study the population persistence through critical domain size, which is
the minimum length of suitable river habitat required for a population to persist in
a river. It results from the assumption that a population can grow locally within
a bounded habitat, but might be lost from the habitat to an uninhabitable exterior
by movement across the boundary. We calculate the critical domain sizes under two
different types of boundary conditions by analyzing the next generation operator,
which is introduced to define R0.

While some species spread upstream in river environments, not all invasive species
are successful in spreading upriver. Here the dynamics of unidirectional water flow
found in rivers can play a role in determining invasion success. Based on our spatial
model, we calculate spreading speeds for a population in a river, both downstream (in
the direction of advection) and upstream. By doing so, we are able to understand the
interaction between population growth and dispersal and river flow in determining
upstream invasion success.

The model is parameterized based on experimental data on zebra mussel popu-
lations found in the literature. In particular, the survival and the growth in body
size are based on measured functions of temperature, and the dispersal is given by
the river flow dynamics. We then apply the results of model parameterization to nu-
merically calculate three measures of population persistence, critical domain size, and
propagation speeds for zebra mussels in a river. The numerical results illustrate how
water temperature and river flow dynamics affect the persistence and propagation of
zebra mussels in a river.

The rest of the paper is organized as follows. In section 2, we develop a spatially
explicit population model that describes the growth and dispersal of the zebra mussel
along a river. In section 3, we introduce three measures of population persistence.
In section 4, we calculate the critical domain size by analyzing the next generation
operator. In section 5, we calculate the downstream and upstream spreading speeds.
In section 6, we connect model to data via model parameterization. In section 7, the
numerical results are presented to illustrate the influence of temperature and river flow
on population persistence. Finally a brief discussion section completes the paper.

2. Model formulation. In this section, we develop a spatially explicit model
for the growth and spread of the zebra mussel (Dreissena polymorpha) in a river,
based on the life cycle of the zebra mussel. There are three main periods in the zebra
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mussel life cycle: the larval, juvenile, and adult stages. The larvae are planktonic,
drifting in a water column and eventually settling on a substrate. The juvenile state
begins after the settlement and ends when mussels become sexually mature. Mussels
are considered adults when they become sexually mature. On average, zebra mussels
live 2–5 years and can reproduce in their second year. Adult zebra mussels start to
reproduce when the water they live in is warm enough, usually starting in spring or
summer. The larval life stage is relatively short (from a few days to a few weeks [32])
compared to the zebra mussel lifespan (a few years). As a result, a model for the
spread of zebra mussels in a river requires the introduction of different time scales.

To describe the dynamics of a zebra mussel population in a river, we define u(x, t)
and w(x, t) as the density of dispersing larvae in the drift (number per volume) and the
density of settled larvae on the benthos (number per area), respectively, at location
x and time t. We assume that the larvae disperse, settle, and die continuously for
time t ∈ [0, τ ]. We let J(x, n) and A(x, n) denote the density of juveniles (number per
area) and the density of adults (number per area), respectively, at the beginning of the
breeding season in year n (n = 0, 1, 2, . . .). The mathematical model that describes
the spatial dynamics of the population undergoing growth and dispersal in a river of
length L is given by
(2.1)

ut = 1
q(x) (D(x)q(x)ux)x − Q

q(x)ux −m(x)u− σ(x)u, x ∈ (0, L), t ∈ (0, τ),

wt = h(x)σ(x)u, x ∈ (0, L), t ∈ (0, τ),

J(x, n+ 1) = ϕ(x, n)sl(x, T )w(x, τ), x ∈ (0, L),

A(x, n+ 1) = ϕ(x, n)[sj(x, T )J(x, n) + sa(x, T )A(x, n)], x ∈ (0, L),

α1u(0, t)− α2ux(0, t) = 0, α3u(L, t) + α4ux(L, t) = 0, t ∈ (0, τ),

u(x, 0) = r(x)A(x, n)/h(x), w(x, 0) = 0, x ∈ (0, L),

J(x, 0) = J0(x), A(x, 0) = A0(x), x ∈ (0, L).

In this model, the first equation presents a generic description of the random
movement, downstream advection, mortality, and settlement of larvae in the water
column. Here, q,D ∈ C2([0, L], (0,∞)) are the cross-sectional area of the river and the
spatially variable diffusion coefficient, respectively, Q > 0 is the constant discharge,
and m(x) > 0 and σ(x) > 0 are the spatially varying larval mortality rate and
settling rate, respectively. We assume that there exist positive constants m and σ
such that m(x) > m and σ(x) > σ for all x ∈ [0, L]. See [21] for the derivation of
the first equation of (2.1) from a three-dimensional conservation law for movement
of individuals in streams. The second equation of (2.1) describes the rate of change
of the density of settled larvae on the benthos. Here, h(x) is the spatially variable
water depth which rescales the population densities. For the benthic density w is
defined as number of larvae divided by benthic area, while the drifting density u is
defined as number of larvae divided by water volume (which can be calculated by the
benthic area multiplied by the water depth h). We assume that there exists a positive
constant h̄ such that h(x) < h̄ for all x ∈ [0, L].

The third and fourth equations of (2.1) describe the population growth on the
benthos from year to year. Here, sl(x, T ), sj(x, T ), and sa(x, T ) are the basal survival
rates for larvae, juveniles, and adults, respectively, and they are functions of location
x and water temperature T . The function ϕ(x, n) accounts for the density-dependent
survival of the population due to competition for limiting resources such as nutrients or
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space. Following [17], we choose a modified Beverton–Holt density-dependent survival
term:

(2.2) ϕ(x, n) =
1

1 + β[`l(T )w(x, τ) + `j(T )J(x, n) + `a(T )A(x, n)]
,

where β is the competition coefficient that relates competitive ability to a phenotypic
trait, and `l(T ), `j(T ), and `a(T ) are taken as the shell lengths of larvae, juveniles,
and adults, respectively. We assume that `l(T ), `j(T ), and `a(T ) are functions of
temperature T . We also assume that β is the same for each life-history stage and that
variation in competitive ability among stages is accounted for in `l(T ), `j(T ), and
`a(T ). By assuming that individuals compete for a limiting source (food), Huang et
al. [9] derived a nonspatial analogue of (2.2). A derivation of the survival term (2.2) is
provided in section S1 in the supplemental material (M105782SupMat.pdf [local/web
265KB]).

The equation u(x, 0) = r(x)A(x, n)/h(x) represents the density of larvae repro-
duced by adults during breeding season. Here 1/h(x) translates the population density
per unit benthic area into the population density per unit river volume. The initial
density of settled larvae w(x, 0) is assumed to be zero. J0(x) and A0(x) are the initial
distributions of juveniles and adults, respectively.

The boundary conditions corresponding to the first equation are either Dirichlet
(α1 = α3 = 1, α2 = α4 = 0), Neumann (α1 = α3 = 0, α2 = α4 = 1), or Robin
(αi ≥ 0, α1 + α3 6= 0, α2 + α4 6= 0) conditions. In particular, we allow for two
types of boundary conditions relevant to rivers, which are referred to as hostile and
Danckwerts’ boundary conditions in [25]. Hostile conditions represent zero-flux at the
river source (no individuals leave or enter the domain at the upstream boundary) and
zero-density at the river outflow (all individuals die at the downstream boundary):

(2.3) Qu(0, t)−D(0)q(0)ux(0, t) = 0 and u(L, t) = 0.

Danckwerts’ conditions also assume zero-flux at the upstream boundary but use a free-
flow or insulated condition at the downstream boundary (e.g., the river discharges
all individuals into a region such as a lake or a waterfall, from which they cannot
return [31]):

(2.4) Qu(0, t)−D(0)q(0)ux(0, t) = 0 and ux(L, t) = 0.

See [21] for a derivation and discussion of these boundary conditions from a random-
walk perspective. For convenience, we define the strongly elliptic linear operator

L :=
1

q(x)

∂

∂x

(
D(x)q(x)

∂

∂x

)
− Q

q(x)

∂

∂x
,

which represents both the random dispersal due to turbulence and intrinsic movement
of individuals and the directed dispersal due to downstream flow, respectively. The
first equation in (2.1) can then be written as

ut = Lu−m(x)u− σ(x)u.

The model (2.1) is an extension of the impulsive reaction-diffusion model studied
in [18]. Based on the impulsive model, Lewis and Li [18] developed a spatially explicit
theoretical framework that links a population’s vital rates and dispersal characteristics
with its spreading speeds and traveling waves speeds, as well as minimal domain size
for population persistence.
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3. Three measures of population persistence. In this section, we define
three measures of population persistence, described in the introduction, in a spatially
variable environment. Note that (w∗, J∗, A∗) ≡ (0, 0, 0) is the trivial solution of
the system consisting of the third and fourth equations of (2.1); we consider the
associated linearized system of (2.1) at (w∗, J∗, A∗) in this section. For simplicity, we
set sl(x, T ) := sl(x), sj(x, T ) := sj(x), and sa(x, T ) := sa(x).

3.1. Fundamental niche, Rloc(x). The first measure of persistence, denoted
by Rloc(x), determines fundamental niche space. By definition, it strictly excludes
dispersal and competition. In this scenario, model (2.1) reduces to

(3.1)

ut = −m(x)u− σ(x)u, x ∈ (0, L), t ∈ (0, τ),

wt = h(x)σ(x)u, x ∈ (0, L), t ∈ (0, τ),

J(x, n+ 1) = sl(x)w(x, τ), x ∈ (0, L),

A(x, n+ 1) = sj(x)J(x, n) + sa(x)A(x, n), x ∈ (0, L),

u(x, 0) = r(x)A(x, n)/h(x), w(x, 0) = 0, x ∈ (0, L),

J(x, 0) = J0(x), A(x, 0) = A0(x), x ∈ (0, L).

Solving the first equation of (3.1), we obtain

(3.2) u(x, t) =
r(x)A(x, n)

h(x)
e−(m(x)+σ(x))t.

Integrating the second equation of (3.1) on [0, τ ] and using (3.2) yields

(3.3) w(x, τ) =
σ(x)r(x)[1− e−(m(x)+σ(x))τ ]

m(x) + σ(x)
A(x, n) := Θ(x)A(x, n).

This means that the number of settled larvae produced by an adult at location x
is Θ(x). These settled larvae may survive until they grow into juveniles and adults
at the rate of sl(x) and sj(x), respectively. Thus, in the absence of larval disper-
sal, the number of adult offspring produced by an initially introduced adult at loca-
tion x in the first year is given by Θ(x)sl(x)sj(x). Moreover, the probability that
such an initially introduced adult will survive until the next year is sa(x); hence it
will yield sa(x)Θ(x)sl(x)sj(x) adult offspring in the second year. Similarly, in the
third year, the number of adult offspring produced by the initial adult is given by
(sa(x))2Θ(x)sl(x)sj(x).

We define Rloc(x) to be the number of adult offspring produced by an adult,
initially introduced at location x, over its lifetime. That is,

Rloc(x) = Θ(x)sl(x)sj(x) + sa(x)Θ(x)sl(x)sj(x) + (sa(x))2Θ(x)sl(x)sj(x) + · · ·

=
sl(x)sj(x)Θ(x)

1− sa(x)
=
r(x)sl(x)sj(x)σ(x)[1− e−(m(x)+σ(x))τ ]

[1− sa(x)][m(x) + σ(x)]
.

(3.4)

It follows from the definition of Rloc(x) that if Rloc(x) > 1, an adult introduced
at location x will yield more than one adult at x in the next generation, and the
population at x will increase over the generations. Therefore, locations with Rloc(x) >
1 correspond to the fundamental niches of the species.
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It is worth mentioning that Rloc(x) can be defined in an alternative way as follows.
Substituting (3.3) into the third equation of (3.1), we can rewrite the third and fourth
equations of (3.1) into the following matrix form:

(3.5)

(
J(x, n+ 1)
A(x, n+ 1)

)
= P(x)

(
J(x, n)
A(x, n)

)
,

where

P(x) =

(
0 sl(x)Θ(x)

sj(x) sa(x)

)
is called the projection matrix. We decompose P into transition and fecundity com-
ponents, P = T + F, where

(3.6) T(x) =

(
0 0

sj(x) sa(x)

)
, F(x) =

(
0 sl(x)Θ(x)
0 0

)
.

This decomposition allows for the calculation of the net reproductive rate, R0(x),
defined mathematically as

(3.7) R0(x) = ρ[F(x)(I−T(x))−1],

where I is the identity matrix and ρ[·] denotes the spectral radius of the matrix
F(I−T)−1, which is referred to as the next generation matrix [19]. It has been shown
[5] that when R0(x) > 1, the population grows, and when R0(x) < 1, the extinction
state is stable.

From (3.6) and (3.7), we obtain

R0(x) =
Θ(x)sl(x)sj(x)

1− sa(x)
=
r(x)sl(x)sj(x)σ(x)[1− e−(m(x)+σ(x))τ ]

[1− sa(x)][m(x) + σ(x)]
,

which is equivalent to (3.4). Hence, the fundamental niche Rloc(x) can be thought of
as a spatial extension of the net reproductive rate for nonspatial matrix population
models.

3.2. Source-sink distribution, Rδ(x). To define Rδ(x) we need to analyze
how larval dispersal and settling behaviors contribute to population spread in the
river. These behaviors are governed by the first two differential equations of (2.1).
To describe the effect of larval dispersal on source-sink dynamics, we first introduce a
dispersal kernel, k(x, y), which represents the probability density that a larva repro-

duced at location y will settle at location x. This kernel satisfies
∫ L
0
k(x, y)dx ≤ 1.

To simplify our analysis we assume that the length of the settlement interval, τ , is
sufficiently large for all settlement to effectively occur over the settlement interval
(τ � 1/[minx∈[0,L]{m(x) + σ(x)}]). Based on the first two differential equations
of (2.1), we are able to show that k(x, y) is an approximation of the solution of a
boundary value problem of an ordinary differential equation.

Theorem 3.1. For a fixed value of y ∈ [0, L], the probability density that a larva

reproduced at location y will settle at location x is given by k(x, y) = h(x)σ(x)[k̂(x, y)+

ε(x, y)], where k̂(x, y) is the solution of the following ordinary boundary value problem:

Lk̂(x, y)− [m(x) + σ(x)]k̂(x, y) = −δ(x− y)/h(x), x ∈ (0, L),

α1k̂(0, y)− α2k̂
′(0, y) = 0,

α3k̂(L, y) + α4k̂
′(L, y) = 0,

(3.8)
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where ′ denotes differentiation with respect to x. For a finite τ , ε(x, y) is bounded
uniformly in space by [exp(−τ minx∈[0,L]{m(x) + σ(x)})] · [maxx∈[0,L]{h(x)}]. The
error term ε→ 0 as τ →∞.

The proof of Theorem 3.1 is provided in Appendix A. Actually, ε is extremely
small for realistic parameter values. This is shown in section 6, where it is approxi-
mately e−43.

The solution to (3.8) is a Green’s function (see Chapter 7 in [7] and Chapter 3
in [33]). In particular, when q,D,m, σ, and h are constant, by arguments similar to
those in [25], we are able to obtain an explicit expression for the Green’s function

k̂(x, y) (Appendix B).
With the introduction of the dispersal kernel, we are ready to define the sec-

ond measure of population persistence, denoted by Rδ(x). The function Rδ(x) de-
scribes the contributions to adult offspring from an adult introduced at location x
over its lifetime, undergoing reproduction, larval dispersal, and growth dynamics.
Thus, Rδ(x) must account for the larval dispersal and subsequential survival of off-
spring to adulthood through a spatially continuous river. According to the definition
of dispersal kernel, the total number of settled larvae produced by a single adult

at x is given by r(x)
∫ L
0
k(y, x)dy. For a low-density population (ϕ(x, n) ≈ 1), the

probability that a larva settling at location y ∈ [0, L] will survive to reach the adult
stage is sl(y)sj(y). Thus, the number of adult offspring produced in the first year

is r(x)
∫ L
0
k(y, x)sl(y)sj(y)dy. Moreover, the probability that the initially introduced

adult will survive until the next year is sa(x); hence the number of adult offspring

yielded in the second year is sa(x)r(x)
∫ L
0
k(y, x)sl(y)sj(y)dy. Similarly, the num-

ber of adult offspring yielded in the third year is (sa(x))2sl(y)sj(y)r(x)
∫ L
0
k(y, x)dy.

Therefore, the total number of adult offspring yielded by a single adult at location x
over its lifetime Rδ(x) can be defined as

Rδ(x) = [1 + sa(x) + (sa(x))2 + · · · ]r(x)

∫ L

0

sl(y)sj(y)k(y, x)dy

=
r(x)

1− sa(x)

∫ L

0

sl(y)sj(y)k(y, x)dy.

(3.9)

Locations where Rδ(x) > 1 act as sources, because a single adult introduced at lo-
cation x will produce more than one adult offspring in the whole river domain [0, L]
over its lifetime. Locations where Rδ(x) < 1 serve as sinks, because the lifetime repro-
ductive output of an adult introduced at location x will result in less than one adult
offspring in the whole river. Thus, Rδ(x) is a measure of the source-sink dynamics in
the river.

3.3. Net reproductive rate, R0. Equation (3.9) maps how lifetime contri-
butions from an individual change with locations in a river. However, it does not
provide information on the global persistence or extirpation of the species. To do
this we need to introduce a next generation operator, denoted by Γ, in the context of
arbitrary initial population distribution.

The definition of our next generation operator is based on the following mathe-
matical setting. In the case where both upstream and downstream boundary value
conditions are Neumann or Robin boundary conditions (e.g., Danckwerts’ boundary
conditions), let X = C([0, L],R) denote the Banach space of continuous functions on
the interval [0, L] with the supremum norm ‖f‖∞ = maxx∈[0,L] |f(x)| for f ∈ X. The
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set of nonnegative functions forms a solid cone X+ in the Banach space X. In the
case where one or two boundary conditions are Dirichlet boundary conditions (e.g.,
hostile boundary conditions), let U = C0([0, L],R) denote the Banach space of contin-
uous functions on [0, L] vanishing on the boundary with the cone U+ of nonnegative
functions in U . Let U1 = C1([0, L],R) be the Banach space of continuously differen-
tiable functions on [0, L] with the norm ||f ||1 = maxx∈[0,L] |f(x)|+ maxx∈[0,L] |f ′(x)|.
Let X be the closed subspace of U1 consisting of continuously differentiable functions
vanishing on the boundary. The set X+ = X ∩ U+ is a solid cone in X.

For any small initial adult distribution A(x) of the spatial model (2.1), the asso-
ciated next generation adults will be distributed according to

(3.10) (ΓA)(x) = sl(x)sj(x)

∫ L

0

r(y)

1− sa(y)
A(y)k(x, y)dy, x ∈ [0, L],

where the integral term sums the contributions from all locations y towards the settled
larvae at location x. The term sl(x)sj(x) represents the probability that a settled larva
grows into an adult. Define

(3.11) R0 := ρ(Γ),

where ρ(Γ) is the spectral radius of the linear operator Γ on X. We call R0 the net
reproductive rate, which represents the average number of offspring an individual may
produce during its lifetime.

Similar to the next generation operator in [25] (see equation (2.13) therein), we
can show that the operator defined by (3.10) is a bounded, compact, linear operator
on X (see Proposition 2.6 in [25]). Then the Krein–Rutman theorem implies that
R0 is the dominant eigenvalue of the next generation operator Γ with a positive
eigenfunction. That is, there exists a positive function φ(x) such that

Γφ(x) = R0φ(x).

We refer to φ as the dominant eigenfunction associated with R0.
Although R0 cannot be thought of conceptually in terms of defining the funda-

mental niche Rloc(x) or source-sink regions Rδ(x), it does provide a global measure
of population persistence for the spatial model (over all initial conditions); that is,
after introduction, the population will grow at an intergenerational rate R0, and the
spatial distribution of the adults will stabilize at φ(x).

In this paper, we say that a population described by (2.1) will invade and persist
in the river if there exists ε > 0 such that for any A(x, 0) = A0(x) ∈ X+\{0} we have

(3.12) lim inf
n→∞

min
x∈[0,L]

A(x, n) ≥ ε

when the boundary conditions in (2.1) are Neumann or Robin conditions and

(3.13) lim inf
n→∞

max
x∈[0,L]

A(x, n) ≥ ε

when at least one of the boundary conditions is a Dirichlet condition. Otherwise, we
say that the population will be washed out.

Since the next generation operator Γ has a formula similar to that of the next
generation operator defined in [25] (see equation (2.13) therein), applying the results
of R0 analysis in [25] to this paper, we see that if R0 > 1 (R0 < 1), then the number
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of adults in the next generation will be more (less) than the current adults. Hence,
after many generations, more and more (less and less) adults will be reproduced by
their parents. Therefore, we conclude that the population will persist in the river if
R0 > 1 but will be washed out if R0 < 1.

For most cases it is impossible to find an analytical expression for R0. We
apply one of the principal projection methods, the collocated method, reviewed in
[4, sect. 3.1.1] and restated in [25], to numerically approximate R0. The details
about this numerical method are provided in section S2 in the supplemental material
(M105782SupMat.pdf [local/web 265KB]).

3.4. Connections between Rδ(x) and R0. Although the next generation
operator Γ is not involved in the definitions of Rδ(x) (3.9), the measures Rδ(x) and R0

are actually related to the next generation operator. In fact, Rδ(x) can alternatively
be defined as

(3.14) Rδ(x) =

∫ L

0

Γδ(y − x)dy;

here δ(·) is the Dirac delta distribution. In fact, if an adult individual is introduced
at location x, then the adult stage has an initial distribution

A(y) = δ(y − x),

where y ∈ [0, L] and x is fixed. By (3.10), the next generation population will be
distributed according to

(ΓA)(y) = Γδ(y − x) = sl(y)sj(y)

∫ L

0

r(z)

1− sa(z)
δ(z − x)k(y, z)dz

= sl(y)sj(y)
r(x)

1− sa(x)
k(y, x).

Integrating over all spatial locations y, we obtain∫ L

0

Γδ(y − x)dy =
r(x)

1− sa(x)

∫ L

0

sl(y)sj(y)k(y, x)dy,

which is equivalent to (3.9).

4. Critical domain size. In this section, we find the critical domain size (i.e.,
the minimum length of suitable river habitat for a population to persist) by analyz-
ing the net generation operator. We consider the special case of model (2.1) where
q,D,m, σ, h, r, sl, sj , and sa are constants and ϕ(x, n) = 1. We set the advection rate
Q/q = v.

Recall that R0 is the dominant eigenvalue of the next generation operator defined
by (3.10); therefore, we solve the eigenvalue problem

(4.1) ΓA(x) = λA(x) =
slsjr

1− sa

∫ L

0

A(y)k(x, y)dy.

We only consider the special case when ε = 0; thus, (4.1) is equivalent to

(4.2)
slsjrhσ

1− sa

∫ L

0

A(y)k̂(x, y)dy = λA(x).
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Applying the linear operator L−(m+σ) to (4.2), we obtain a Sturm–Liouville problem.
Then by choosing the threshold value R0 = λ = 1 and finding the minimum positive
solution of the Sturm–Liouville problem, we find that

(4.3) v < 2

√
D

(
slsjrσ

(1− sa)λ
−m− σ

)
= 2

√
D

(
slsjrσ

1− sa
−m− σ

)
:= v∗

is a necessary condition for the population to persist. When v < v∗, the critical
domain size, denoted by Lcrit, under hostile boundary conditions (2.3) is given by
(4.4)

Lhos
crit =

2D√
4D
(
slsjrσ
1−sa −m− σ

)
− v2

(
π − arctan

√
4D

v2

(
slsjrσ

1− sa
−m− σ

)
− 1

)
.

A full calculation is provided in Appendix C. Since (C.5) in Appendix C implies that
dλ/dL > 0, it follows that R0 > 1 if L > Lhos

crit, and R0 < 1 if L < Lhos
crit. That is,

when the length of the river is longer than the critical domain size, the population
can persist in the river; otherwise, the population will be washed out.

Similar calculations show when v < v∗/
√

2, the critical domain size under Danck-
werts’ boundary conditions is given by

(4.5) LDan
crit =

2D√
4D
(
slsjrσ
1−sa −m− σ

)
− v2

arctan

√
4D
v2

(
slsjrσ
1−sa −m− σ

)
− 1

2D
v2

(
slsjrσ
1−sa −m− σ

)
− 1

.

When v∗/
√

2 < v < v∗, the critical domain size is
(4.6)

LDan
crit =

2D√
4D
(
slsjrσ
1−sa −m− σ

)
− v2

π − arctan

√
4D
v2

(
slsjrσ
1−sa −m− σ

)
− 1

1− 2D
v2

(
slsjrσ
1−sa −m− σ

)
 .

From (4.4)–(4.6), we see that the critical domain sizes increase as advection in-
creases. This is consistent with the intuition that with faster advection, a population
will require a larger domain size to persist. The critical domain sizes approach infinity
as v → v∗.

The critical domain size under hostile boundary conditions for a single-compartment
(unstructured) population in a river was calculated by Speirs and Gurney [31] and
then was adjusted by Mckenzie et al. (see equation (3.10) in [25]). If we replace the
expression slsjrσ/(1 − sa) − m − σ in (4.4) with the intrinsic growth rate in [25]
(denoted by r = f − v), then (4.4) is equivalent to equation (3.10) in [25].

5. Spread in an unbounded domain. In the previous section, we derived
conditions for population persistence on a bounded domain. Here, we consider popu-
lation spread in an unbounded, previously uninhabited domain. We first construct a
redistribution kernel based on the dynamics of larval dispersal and settlement. This
allows us to convert the original continuous-discrete model (2.1) into stage-structured
integrodifference equations. Based on the integrodifference equation model, we cal-
culate the population’s asymptotic invasion speeds in the direction of the drift and
against the drift.
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5.1. Redistribution kernel in an unbounded domain. We construct a re-
distribution kernel, denoted by K(x, y), in an unbounded domain in this subsection.
K(x, y) describes the probability that a larva, released at location y, will settle at
location x, where x, y ∈ (−∞,∞). We let y = 0 and denote K(x, 0) by K(x) for
convenience. We assume that D, v,m, σ, and h are constants and consider

(5.1)
ut = Duxx − vux − (m+ σ)u, x ∈ (−∞,∞), t ∈ (0, τ),

wt = hσu,

subject to the initial conditions

(5.2) u(x, 0) = δ(x)/h, w(x, 0) = 0.

Let K(x) = w(x, τ). Integrating the second equation of (5.1) on [0, τ ], we have
K(x) = hσ

∫ τ
0
u(x, t)dt. Thus, integrating the first equation of (5.1) on [0, τ ], we find

that K(x) satisfies

(5.3) DK ′′(x)− vK ′(x)− (m+ σ)K(x) = u(x, τ)− δ(x)/h.

Similar to Theorem 3.1, for simplicity, instead of using (5.3) to compute the kernel
K(x), we consider an approximation of (5.3), that is,

(5.4) DK ′′(x)− vK ′(x)− (m+ σ)K(x) = −δ(x)/h,

with an error of solution that is uniformly bounded by [exp(−τ minx∈[0,L]{m(x) +
σ(x)})] · [maxx∈[0,L]{h(x)}].

Following steps similar to those in section 4.2 of [23], we are able to derive an
explicit expression for K(x), which is given by

(5.5) K(x) =

{
α exp{γ1x}, x ≤ 0,
α exp{γ2x}, x ≥ 0,

where

α =
σ√

v2 + 4D(m+ σ)
, γ1,2 =

v

2D
±
√( v

2D

)2
+
m+ σ

D
.

One can obtain an expression for K(x, y) by replacing 0 by y and x by x− y on the
right side of (5.5).

Actually, we are able to find an exact expression for the redistribution kernel K(x)
by explicitly solving (5.1)–(5.2) (see Appendix D for details). Noticing that the exact
expression of K(x) ((D.3) in Appendix D) is given by an integral with respect to t, we
will use (5.5), instead of (D.3), to calculate spreading speeds in the next subsection.

5.2. Spreading speed. From the definition of the redistribution kernel K(x, y),
we see that in an unbounded domain, at the end of the dispersal stage, the settled
larvae, reproduced by the adults with density A(x, n), will be distributed according
to

(5.6) w(x, τ) =

∫ ∞
−∞

r(y)A(y, n)K(x, y)dy, −∞ < x <∞.

Substituting (5.6) into the third equation of (2.1), we obtain the following stage-
structured integrodifference equation model:

J(x, n+ 1) = ϕ(x, n)sl(x)
∫∞
−∞ r(y)A(y, n)K(x, y)dy, −∞ < x <∞,

A(x, n+ 1) = ϕ(x, n)[sj(x)J(x, n) + sa(x)A(x, n)], −∞ < x <∞.
(5.7)
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The main purpose of this subsection is to calculate the upstream and down-
stream population spreading speeds based on model (5.7). We assume that the en-
vironment is spatially homogeneous. This implies that the vital rates depend only
on local population density and not explicitly on spatial location, and that the re-
distribution kernel depends only on relative distance x − y. With this assumption,
let (J(x, n), A(x, n))T = N(x, n); then according to the linear conjecture, the rate of
spread of the population modeled by (5.7) is governed by its linearization near (0, 0),

(5.8) N(x, n+ 1) =

∫ ∞
−∞

[B ◦K(x− y)]N(y, n)dy,

where B is the projection matrix given by

(5.9) B =

(
0 slr
sj sa

)
,

K(x− y) is the dispersal matrix given by

(5.10) K(x− y) =

(
δ(x− y) K(x− y)
δ(x− y) δ(x− y)

)
,

and symbol ◦ is the Hadamard product indicating element by element multiplication.
If there is no dispersal during a given transition, the associated kernel is the Dirac
delta function δ(x−y). That is, individuals stay where they are with probability one.

The spreading speed is the asymptotic velocity with which a locally introduced
population eventually spreads spatially into the surrounding habitat. We take the
approach of Neubert and Caswell [27], based on the work of Liu [20], and calculate
the spreading speeds c∗ as the minimum of a dispersion relation that relates traveling
wave speed c to wave steepness θ for the traveling wave solution to (5.8). However, we
extend this approach to account for the fact that spread in upstream and downstream
directions will be at different speeds.

We first consider a fixed profile traveling downstream with some constant speed,
c+. Thus, we assume a traveling wave solution of the form N(x, n+1) = N(x−c+, n).
Plugging this into (5.8), we have

(5.11) N(x− c+, n) =

∫ ∞
−∞

[B ◦K(x− y)]N(y, n)dy.

We consider the exponential ansatz

(5.12) N(x, n) = Ψe−θx,

where θ > 0 and Ψ is a vector that represents the population densities of the two
stages at point x = 0 in year n.

Substituting (5.12) into (5.11), we obtain

(5.13) eθc
+−θxΨ =

[
B ◦

∫ ∞
−∞

K(x− y)e−θydy

]
Ψ.

Changing variables to ξ = x− y and x yields

(5.14) eθc
+

Ψ =

[
B ◦

∫ ∞
−∞

K(ξ)eθξdξ

]
Ψ,
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where the matrix

B ◦
∫ ∞
−∞

K(ξ)eθξdξ =

(
0 slrM(θ)
sj sa

)
:= H(θ),

with M(θ) =
∫∞
−∞K(ξ)eθξdξ, which is referred to as the moment-generating function

of the redistribution kernel K(ξ). Using the expression for K(ξ) (see (5.5)), we find
that when γ2 + θ < 0 (i.e., θ < −γ2 =

√
(v/2D)2 + (m+ σ)/D − v/(2D)), the

moment-generating function M(θ) exists and is given by

M(θ) = α

[∫ 0

−∞
e(γ1+θ)ξdξ +

∫ ∞
0

e(γ2+θ)ξdξ

]
= α

(
1

γ1 + θ
− 1

γ2 + θ

)
.

(Note that γ1 + θ is always positive.)
Therefore, if θ < −γ2, then applying the results from [27], we find that the

downstream traveling wave speed is given by

(5.15) c+(θ) =
1

θ
ln ρ[H(θ)] =

1

θ
ln
sa +

√
s2a + 4slsjrM(θ)

2
,

and thus the (asymptotic) downstream spreading speed is given by

(5.16) c+∗ = inf
0<θ<−γ2

1

θ
ln ρ[H(θ)] = inf

0<θ<−γ2

1

θ
ln
sa +

√
s2a + 4slsjrM(θ)

2
,

where ρ[·] denotes the dominate eigenvalue of the matrix H(θ). We observe that c+(θ)
approaches infinity as θ → 0+ and θ → (−γ2)−. Thus, c+(θ) attains a minimum on
(0,−γ2). Setting the derivative of the function c+(θ) to zero, we get a critical point
θ+∗ such that c+∗ = 1

θ+∗
ln ρ[H(θ+∗ )].

For the upstream traveling wave speed c−, we consider the corresponding ansatz
N(x, n) = Ψeθx, where θ > 0. Accordingly, if θ < γ1, then the upstream traveling
wave speed is given by

(5.17) c−(θ) =
1

θ
ln ρ[H(−θ)] =

1

θ
ln
sa +

√
s2a + 4slsjrM(−θ)

2
,

and the (asymptotic) upstream spreading speed is given by

(5.18) c−∗ = inf
0<θ<γ1

1

θ
ln ρ[H(−θ)] = inf

0<θ<γ1

1

θ
ln
sa +

√
s2a + 4slsjrM(−θ)

2
.

Note that M(−θ) exists when θ < γ1. Also, we are able to get a critical point θ−∗
such that c−∗ = 1

θ−∗
ln ρ[H(θ−∗ )].

In Appendix E, we provide an alternative way to calculate the spreading speeds
c+∗ and c−∗ , in which one does not have to take the infimum as in (5.16) or (5.18).

It is worth pointing out that in section 5.1, for simplicity we obtained the ex-
pression of redistribution kernel K(x) (5.5) by letting u(x, τ) = 0. Actually, u(x, τ),
which represents the larval density in the drift at the end of breeding season, is ex-
tremely small, so (5.5) is a good approximation to the exact expression of K(x) ((D.3)
in Appendix D), and we expect that the spreading speeds we obtain in this section
are good approximations to the exact spreading speeds. However, if we use the ex-
act expression of K(x), then it would be very difficult to show the existence of the
moment-generating functions; hence we are unable to obtain the analytical expressions
for spreading speeds.
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6. Model parameterization. We estimate the parameters for model (2.1)–
(2.2) by connecting model to experimental data in the literature (see section S3 in
the supplemental material (M105782SupMat.pdf [local/web 265KB]) for details). In
particular, we consider the dependence of population survival rates and the growth
of shell length on temperature. The results of model parameterization are then used
to investigate how the temperature and water flow affect the long-term dynamics of
zebra mussels in a river. Population survival rates are related to temperature T by
the quadratic logistic regression (the estimated results for model parameters τ , m, σ,
r, and D are listed in Table 6.1)

(6.1) sl(T ) = sj(T ) = sa(T ) =
exp(b0 + b1T + b2T

2)

1 + exp(b0 + b1T + b2T 2)
,

plus our simplifying assumption that sl(T ) = sj(T ) = sa(T ). We ignore the effect of
temperature on larval length and choose `l(T ) = 2 mm. We estimate that the average
juvenile shell length is related to temperature T by

(6.2) `j(T ) =
24.71 exp(−8.89 + 0.66T − 0.02T 2)

1 + exp(−8.89 + 0.66T − 0.02T 2)
,

and the average adult shell length is related to temperature T by

(6.3) `a(T ) =
31.92 exp(−7.71 + 0.53T − 0.016T 2)

1 + exp(−7.71 + 0.53T − 0.016T 2)
.

Table 6.1
Some of the parameters in the model (2.1)–(2.2).

Symbols Definitions Estimated values
τ longest dispersing time before settling 30 days
m mortality rate of dispersing larvae 1.44/day
σ settling rate of dispersing larvae 0.00144/day
r reproduction rate of adults 4218/year
D diffusion coefficient 0.4 m2/second

7. Numerical results. In the previous section, we estimated all parameters,
except the flow rate v, the water depth h, and the competition coefficient β, in the
model (2.1)–(2.2). In this section, we use the results of model parameterization in
section 6 to study how the river flow, temperature, and boundary conditions affect
the population persistence through numerical simulations. To do so, we first rescale
the model (2.1)–(2.2) into a new system. By doing so, we avoid having to estimate
the parameter β, for which data are lacking. We rescale model (2.1)–(2.2) by setting

ũ = β`au, w̃ = β`lw, J̃ = β`jJ, Ã = β`aA.
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We drop the tildes for convenience and assume that D, q, m, σ, h are constants, so
that model (2.1)–(2.2) becomes

(7.1)

ut = uxx − vux −mu− σu, x ∈ (0, L), t ∈ (0, τ)

wt = hσu`l/`a, x ∈ (0, L), t ∈ (0, τ),

J(x, n+ 1) = ψ(x, n)sl(x, T )w(x, τ)`j/`l, x ∈ (0, L),

A(x, n+ 1) = ψ(x, n)[sj(x, T )J(x, n)`a/`j + sa(x, T )A(x, n)], x ∈ (0, L),

α1u(0, t)− α2ux(0, t) = 0, α3u(L, t) + α4ux(L, t) = 0, t ∈ (0, τ),

u(x, 0) = rA(x, n)/h, w(x, 0) = 0, x ∈ (0, L),

J(x, 0) = J0(x), A(x, 0) = A0(x), x ∈ (0, L),

where

(7.2) ψ(x, n) =
1

1 + w(x, τ) + J(x, n) +A(x, n)
.

Note that in the rescaled model (7.1)–(7.2), u has unit 1/area, and v, J , and A are
nondimensional. Clearly, system (7.1)–(7.2) has the same long-term dynamics as the
original model (2.1)–(2.2). Thus, in what follows, we make numerical simulations
based on system (7.1)–(7.2) instead of model (2.1)–(2.2).

7.1. Model solutions, persistence, and washout. First we numerically solve
the population model (7.1)–(7.2) by choosing the same temperature T = 15◦C (the
population survival rates can be calculated according to (6.1), and the shell lengths
can be calculated according to (6.2) and (6.3)) but two different flow velocities (top
row of Figure 7.1). We assume that the population is initially introduced in the
middle part of the river. The population distributions for the two cases at different
time points are shown in the top row of Figure 1. To show the action of the next
generation operator, we also numerically approximate R0 and its eigenfunction φ(x)
(bottom row of Figure 7.1) using the collocation method presented in section S2 in the
supplemental material (M105782SupMat.pdf [local/web 265KB]). Figure 7.1 indicates
that the net reproductive rate R0 determines the eventual fate of the population:
persistence (R0 > 1) or washout (R0 < 1).

7.2. The effect of water flow on source-sink dynamics. Next we consider
the source-sink regions in the river by computing Rδ(x). The results are presented
in Figure 7.2 for two different flow velocities. We compare Rδ(x) for the popula-
tion described by (7.1)–(7.2) subject to hostile boundary conditions (left column of
Figure 7.2) and Danckwerts’ boundary conditions (right column of Figure 7.2). The
dispersal described by the Green’s function k(x, 0.5) is also shown for low and high
flows (bottom row of Figure 7.2). Comparing the solid and dashed lines for each
type of boundary condition in Figure 7.2, we see that different flow velocities result
in different source-sink regions and different dispersal kernels. More precisely, Rδ(x)
decreases with increasing flow velocity, which leads to decreased source regions (where
Rδ(x) > 1) and increased sink regions (where Rδ(x) < 1). Moreover, increased flow
velocity leads to decreased dispersal in the upstream direction but increased dispersal
in the downstream direction. This indicates that larvae are easily washed downstream
but hardly disperse upstream as the flow velocity increases.

Recall that under hostile boundary conditions, the larvae disappear from the river
patch once they reach the downstream boundary, while under Danckwerts’ boundary
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Fig. 7.1. Top row: Numerical solutions of the population model (7.1)–(7.2). Bottom row: The
long-term persistence is determined by the action of the next generation operator Γ on the dominant
eigenfunction φ. The parameters: L = 1 km, h = 2 m, T = 15◦C. Depending on the flow velocity,
the population either persists (left column: low flow) or is washed out (right column: high flow) over
time.

conditions, larvae leave the river patch at the same rate as the advection takes them.
This is shown by the first row of Figure 7.2. When the flow is low, the source-sink
regions are very similar under different boundary conditions. However, when the
flow velocity is high, the values of Rδ(x) differ significantly under different boundary
conditions, especially in the downstream regions. Sink regions under hostile boundary
conditions may be source regions under Danckwerts’ boundary conditions. This is
because larvae are washed downstream more quickly with increasing flow; hence the
downstream conditions play a more important role in determining whether larvae are
able to settle down and produce enough offspring to the next generation.

7.3. The effect of interaction between temperature and river flow on
Rδ and R0. According to the life cycle of zebra mussels, our population model (2.1)
assumes that river flow affects the larvae dispersal in the drift, and water temper-
ature affects the survival and growth of settled larvae, juveniles, and adults on the
benthos. To understand how the river flow and water temperature interact to influ-
ence the source-sink regions and R0, we consider the average of Rδ(x), which can be

calculated by
∫ L
0
Rδ(x)dx/L := Rδ(x), as a function of flow velocity (v) and tem-

perature (T ), and we plot the contour line on which Rδ(x) = 1 (thin lines in Figure
7.3). For the same range of v and T , we also calculate R0 and plot the contour
lines on which R0 = 1 (thick lines in Figure 7.3). Again, we consider two differ-
ent boundary conditions: hostile boundary conditions (left panel of Figure 7.3) and
Danckwerts’ boundary conditions (right panel of Figure 7.3). As shown by Figure 7.3,
the maximum flow speed permitting that Rδ(x) > 1 (R0 > 1) under hostile boundary
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Fig. 7.2. Source-sink regions described by Rδ(x) (top row) and corresponding dispersal kernels
k(x, 0.5) (bottom row) for different flow velocities and different boundary conditions. Left column:
Hostile boundary conditions. Right column: Danckwerts’ boundary conditions. The parameters:
L = 1 km, h = 2 m, T = 15◦C.
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temperatures under hostile boundary conditions (left panel) and Danckwerts’ boundary conditions

(right panel). Thin contour lines: Rδ(x) = 1. Thick contour lines: R0 = 1. The parameters:
L = 0.5 km, h = 2 m.

conditions is lower than the maximum flow speed permitting that Rδ(x) > 1 (R0 > 1)
under Danckwerts’ boundary conditions.

As we mentioned earlier, as a measure of population persistence, Rδ(x) does not
inform us about the global persistence or extinction. From Figure 7.3, we see that it
is possible to have R0 > 1 even when Rδ(x) < 1 (left panel of Figure 7.3). It is also
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Fig. 7.4. The total density of juveniles and adults in different years n. Left panel: The flow
velocity is low, and the population spreads both upstream and downstream. Right panel: The flow
velocity is high, and the population spreads only downstream and is washed out. The parameters:
L = 400 km, h = 2 m, T = 10◦C.

possible to have R0 < 1 even when Rδ(x) > 1 (right panel of Figure 7.3). In other
words, the population might or might not be able to successfully invade even if the
majority of the domain is a source. Therefore, the mean values of Rδ(x) cannot be
used to determine the global persistence or extirpation of the population in a river.

We also choose a large river length L to make the same numerical simulations; the
two different boundary conditions yield similar results. This indicates that boundary
conditions play a less important role if the river length becomes larger.

7.4. The effect of flow on the population spread. To illustrate the effect
of flow velocity on the population spread in a river, we show two possible outcomes in
Figure 7.4. When the flow velocity is low, the population spreads in both directions
with a bias downstream (left panel of Figure 7.4). When flow velocity is high, the
population spreads only downstream and is washed out eventually.

7.5. Connection between the upstream spreading speed and the critical
domain size. If a population cannot spread upstream but is washed downstream,
it will not persist. Hence, persistence and ability of upstream propagation should be
closely connected. Figure 7.5 shows the dependence of the upstream spreading speed
(c−∗ ), the critical domain size for hostile boundary condition (Lhos

crit), and the critical
domain size for Danckwerts’ boundary conditions (LDan

crit ) on the flow velocity v. We
see from Figure 7.5 that the critical domain sizes are increasing functions of v, and
that at the threshold value v = v∗ ≈ 1.81 km/day (see (4.3) for the expression of v∗),
the critical domain sizes become infinity. On the other hand, as v increases from zero
to v∗, the upstream spreading speed c−∗ decreases until it reaches zero. That is, the
threshold flow velocity that allows the population to persist on a finite domain is the
same as the upper limit of flow rate that allows the population to spread upstream.

8. Discussion. While some species spread upstream in river environments, not
all invasive species are successful in spreading upriver. Here the dynamics of uni-
directional water flow in rivers play a role in determining invasion success. In this
paper, we develop a hybrid continuous/discrete-time model to describe the dynamics
of invasive freshwater mussels in rivers. In the model, a reaction-advection-diffusion
equation coupled to an ordinary differential equation describes the larval dispersal
in the drift and settling to the benthos, while two difference equations describe the
population growth on the benthos. We applied the spatial model to understand the
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Fig. 7.5. The dependence of critical domain size for hostile boundary conditions (thick solid
curve), critical domain size for Danckwerts’ boundary conditions (dashed curve), and the upstream
spreading speed (thin solid curve) on flow velocity v. The parameters: T = 10◦C; other parameters,
except v, are the same as those in Figure 7.1.

interaction between population growth and dispersal, water temperature, and river
flow in determining upstream invasion success of zebra mussels. Theoretically, we
extended the three measures of population persistence, Rloc(x), Rδ(x), and R0, which
were defined for a single-compartment model in [25], to our hybrid stage-structured
model. These measures are related in the context of a next generation operator. We
then found the critical domain size for the population to persist in a river by analyzing
the next generation operator. According to the advection-diffusion-reaction equation
in the model that governs the larval dispersal, we derived a dispersal kernel in an
unbounded domain. Such a kernel allows us to consider a related model of integrodif-
ference equations. We calculated the upstream and downstream spreading speeds of
the population based on the integrodifference equation model. The spatial model was
parameterized based on experimental data in the literature. In terms of the results of
model parameterization, we analyzed the model numerically to determine conditions
for persistence as a function of temperature and flow rate.

When we connected the model to experimental data via model parameterization,
we assumed that settled larvae, juveniles, and adults have the same survival rates,
because data are lacking. In practice, different stages of zebra mussels may have differ-
ent sensitivities to temperature; therefore, more data are needed to yield more precise
quantitative results. Furthermore, as we mentioned in the introduction, many other
environmental variables such as turbidity, calcium concentration, and food source also
affect the population survival and growth. Thus it may be appropriate to study how
the other environmental factors affect the population persistence in a river if data are
available.

Deep pools and shallows in a river are examples of heterogeneities that typically
occur on shorter spatial scales than the whole stretch of a river. It would be inter-
esting to further investigate how the heterogeneous landscapes affect the successful
invasion of zebra mussels. We expect that river heterogeneity may yield a situation
where zebra mussels can persist in rivers even when they cannot spread upstream.
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In addition, it might be worth studying how the critical domain size for an invasive
species (zebra mussel) depends on the river heterogeneity. This would extend the
theory of critical domain size in [21]. In that paper, based on a single-compartment
model, the authors analyzed the minimum length that supports a population by con-
sidering a spatially periodic pool-shallow river. Furthermore, the living conditions for
an invasive species and the hydrodynamics environment in a river can vary seasonally.
The theory developed here could be extended to more general models by including
seasonal variations in population growth [13, 12] and temporal variations of flow rate
[11].

The spatial model (2.1) can also be used to describe the dynamics of other related
invasive species, such as quagga mussel (Dreissena bugensis) in rivers. Quagga and
zebra mussels possess similar morphologies, life cycles, and functional ecologies. In
different types of water bodies, zebra and quagga mussels either coexist or one species
excludes the other (reviewed by [15] and [29]). These cases suggest that patterns
of relative dominance and competitive exclusion among these species may vary over
space and time, presumably under the influence of environmental variables. A com-
petition model given by a system of integrodifference equations has been developed to
explain interactions of zebra and quagga mussel in lakes [17], but the unidirectional
flow conditions of rivers will increase dynamical complexity, which may permit weaker
competitors but stronger dispersers to coexist in abundance at upstream locations
[22]. As a future effort, we plan to extend our single-species model to a competition
model that describes the competing dynamics of zebra and quagga mussels in rivers,
assuming that larvae disperse in the drift, and that juveniles and adults compete for
resources on the benthos. The model will then be used to understand how the interac-
tions between flow rate and environmental factors impact the persistence, extinction,
and competitive exclusion.

Appendix A. Proof of Theorem 3.1. We take the dispersal kernel k(x, y)
as the function w(x, τ), and w(x, t) is the second component of the solution of the
system

(A.1)
ut = Lu−m(x)u− σ(x)u,

wt = h(x)σ(x)u,

subject to the initial conditions

u(x, 0) = δ(x− y)/h(x), w(x, 0) = 0,

and the same boundary conditions as (2.1). Thus, integrating the second equation of
(A.1), we obtain

k(x, y) = w(x, τ) = h(x)σ(x)

∫ τ

0

u(x, t)dt := h(x)σ(x)k̃(x, y).

For a fixed y, integrating the first equation of (A.1) on [0, τ ], we have

(A.2) u(x, τ)− δ(x− y)

h(x)
=

∫ τ

0

[Lu−m(x)u− σ(x)u] dt.
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Simple calculation gives

(A.3)

∫ τ

0

[Lu−m(x)u− σ(x)u]dt

=
1

q(x)

d

dx

(
D(x)q(x)

d

dx

∫ τ

0

u(x, t)dt

)
− Q

q(x)

d

dx

∫ τ

0

u(x, t)dt

− (m(x) + σ(x))

∫ τ

0

u(x, t)dt

= Lk̃(x, y)− [m(x) + σ(x)]k̃(x, y).

A combination of (A.2) and (A.3) yields

(A.4) Lk̃(x, y)− [m(x) + σ(x)]k̃(x, y) = u(x, τ)− δ(x− y)/h(x).

To obtain boundary conditions, we integrate α1u(x, t)−α2ux(x, t) on [0, τ ] to get∫ τ
0

[α1u(x, t)− α2ux(x, t)]dt = α1k̃(x, y)− α2k̃
′(x, y).

Letting x = 0 and using the first boundary condition in (2.1), we obtain α1k̃(0, y)−
α2k̃

′(0, y) = 0. Similarly, we can obtain the second boundary condition α3k̃(L, y) +
α4k̃

′(L, y) = 0.

We assume that k̂(x, y) is a solution of (3.8) and let ε(x, y) = k̃(x, y) − k̂(x, y).
From the first equation of (A.1), we see that u(x, τ) → 0 as τ → ∞; hence ε → 0 as
τ →∞. To estimate ε for a finite τ , we define a linear operator with respect to x:

Mx := −h(x)L + [m(x) + σ(x)]h(x).

From (A.4), we see that k̃(x, y) satisfies

(A.5) Mxk̃(x, y) = −h(x)u(x, τ) + δ(x− y),

subject to the above-mentioned homogeneous boundary conditions. On the other
hand, from (3.8), we see that k̂(x, y) satisfies

(A.6) Mxk̂(x, y) = δ(x− y),

subject to the same boundary conditions.
Subtracting (A.6) from (A.5), we find that ε(x, y) satisfies

(A.7) Mxε(x, y) = −h(x)u(x, τ),

subject to the same boundary conditions. A combination of (A.6) and (A.7) yields

(A.8) ε(x, y) =

∫ L

0

h(z)u(z, τ)k̂(x− z, y)dz.

For a finite τ , u(z, τ) is the larval density at location z at the end of breeding
season after a larva is reproduced at location x and then experiences dispersal, settle-
ment, and death. If this initially introduced larva does not disperse, then its density
at location x is governed by the decay equation

ũt = −m(x)ũ− σ(x)ũ,

ũ(x, 0) = 1.
(A.9)
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Clearly, the solution of this equation satisfies ũ(x, t) ≤ exp(−tminx∈[0,L]{m(x) +
σ(x)}). Thus, with dispersal, we have that u(z, τ) ≤ exp(−τ minz∈[0,L]{m(z)+σ(z)})
for any z ∈ [0, L]. Noticing that

∫ L
0
k̂(x− z, y)dy ≤ 1, we estimate that

(A.10) |ε(x, y)| ≤ max
z∈[0,L]

{h(z)u(z, τ)} ≤ max
z∈[0,L]

{h(z)} exp
(
−τ min

z∈[0,L]
{m(z)+σ(z)}

)
.

Appendix B. Green’s function k̂(x, y) in (3.8). If the parameters q,D,m, σ,
and h in the first two equations of model (2.1) are constants, then the Green’s function
in the ordinary boundary value problem (3.8) is given by

(B.1) k̂(x, y) =

{
C1(y)eθ1x + C2(y)eθ2x, x < y,

C3(y)eθ1x + C4(y)eθ2x, x ≥ y,

where θ1,2 = [v±
√
v2 + 4D(m+ σ)]/(2D) (the flow velocity Q/q is denoted by v), and

C1(y), C2(y), C3(y), and C4(y) are constants depending on y. For hostile boundary
conditions, we have that

C1(y) =
exp[−(θ1 + θ2)y][exp(Lθ2 + θ1y)− exp(Lθ1 + θ2y)](−v +Dθ2)

D(θ1 − θ2)[v exp(Lθ1)− v exp(Lθ2) +D exp(Lθ2)θ1 −D exp(Lθ1)θ2]
,

C2(y) =
exp[−(θ1 + θ2)y][exp(Lθ2 + θ1y)− exp(Lθ1 + θ2y)](v −Dθ1)

D(θ1 − θ2)[v exp(Lθ1)− v exp(Lθ2) +D exp(Lθ2)θ1 −D exp(Lθ1)θ2]
,

C3(y) =
exp[Lθ2 − (θ1 + θ2)y][v exp(θ1y)− v exp(θ2y) +D exp(θ2y)θ1 −D exp(θ1y)θ2]

D(−θ1 + θ2)[v exp(Lθ1)− v exp(Lθ2) +D exp(Lθ2)θ1 −D exp(Lθ1)θ2]
,

C4(y) =
exp[Lθ1 − (θ1 + θ2)y][−v exp(θ1y) + v exp(θ2y)−D exp(θ2y)θ1 +D exp(θ1y)θ2]

D(θ1 − θ2)[−v exp(Lθ1) + v exp(Lθ2)−D exp(Lθ2)θ1 +D exp(Lθ1)θ2]
.

For Danckwerts’ boundary conditions, we have that

C1(y) =
exp[−(θ1 + θ2)y](v −Dθ2)[− exp(Lθ1 + θ2y)θ1 + exp(Lθ2 + θ1y)θ2]

D(θ1 − θ2)[D(exp(Lθ1)− exp(Lθ2))θ1θ2 + v(− exp(Lθ1)θ1 + exp(Lθ2)θ2)]
,

C2(y) =
exp[−(θ1 + θ2)y](v −Dθ1)[exp(Lθ1 + θ2y)θ1 − exp(Lθ2 + θ1y)θ2]

D(θ1 − θ2)[D(exp(Lθ1)− exp(Lθ2))θ1θ2 + v(− exp(Lθ1)θ1 + exp(Lθ2)θ2)]
,

C3(y)

=
− exp[Lθ2 − (θ1 + θ2)y]θ2[−v exp(θ1y) + v exp(θ2y)−D exp(θ2y)θ1 +D exp(θ1y)θ2]

D(θ1 − θ2)[D(exp(Lθ1)− exp(Lθ2))θ1θ2 + v(− exp(Lθ1)θ1 + exp(Lθ2)θ2)]
,

C4(y)

=
− exp[Lθ1 − (θ1 + θ2)y]θ1[v exp(θ1y)− v exp(θ2y) +D exp(θ2y)θ1 −D exp(θ1y)θ2]

D(θ1 − θ2)[D(exp(Lθ1)− exp(Lθ2))θ1θ2 + v(− exp(Lθ1)θ1 + exp(Lθ2)θ2)]
.

Appendix C. Calculation of critical domain size. Applying the linear
operator L− (m+ σ) to (4.2), we have

(C.1)
slsjrhσ

1− sa

∫ L

0

A(y)[Lk̂(x, y)− (m+ σ)k̂(x, y)]dy = λ[LA(x)− (m+ σ)A(x)].

Using the first equation of (3.8), we get

A′′(x)− v

D
A′(x) +

(
slsjrσ

(1− sa)Dλ
− m+ σ

D

)
A(x) = 0, x ∈ (0, L).
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When x = 0, by (4.2) and the second equation of (3.8), we find

α1A(0)− α2A
′(0) =

slsjrhσ

(1− sa)λ

∫ L

0

A(y)[α1k̂(0, y)− α2k̂(0, y)]dy = 0.

Similarly, using (4.2) and the third equation of (3.8), we can obtain that α3A(L) +
α4A

′(L) = 0.
We consider the following Sturm–Liouville problem under the hostile boundary

condition:

(C.2)
A′′(x)− v

DA
′′(x) +

(
slsjrσ

(1−sa)Dλ −
m+σ
D

)
A(x) = 0, x ∈ (0, L),

vA(0)−DA′(0) = 0, A(L) = 0.

The characteristic equation for (C.2) is

r2 − v

D
r +

(
slsjrσ

(1− sa)Dλ
− m+ σ

D

)
= 0,

with discriminant

∆(λ) =
( v
D

)2
− 4

(
slsjrσ

(1− sa)Dλ
− m+ σ

D

)
.

It is straightforward to show that (C.2) has zero solution only when ∆ ≥ 0. Thus,
positive solutions of (C.2) exist only when ∆ < 0 or, equivalently, when

(C.3) v < 2

√
D

(
slsjrσ

(1− sa)λ
−m− σ

)
.

Notice that the population persistence in a domain of length L occurs when
λ = R0 ≥ 1. If λ ≥ 1, then slsjrσ/((1− sa)Dλ) ≤ slsjrσ/((1− sa)D), in which case
(C.3) implies

v < 2

√
D

(
slsjrσ

(1− sa)λ
−m− σ

)
≤ 2

√
D

(
slsjrσ

1− sa
−m− σ

)
:= v∗.

If v > v∗, then either (C.2) has no positive solution or a positive solution exists but
λ < 1, which in either case implies that the zero solution is stable and the critical
domain size does not exist. Thus v < v∗ is a necessary condition for the population
to persist. When v < v∗, (C.2) has positive solutions taking the form

(C.4) A(x) = exp
( v

2D
x
)[

c1 cos

(√
−∆(λ)

2
x

)
+ c2 sin

(√
−∆(λ)

2
x

)]
,

where the constants c1 and c2 are determined by the boundary conditions.
To match the left-hand boundary condition, we now require

c1
c2

=
D

v

√
−∆(λ),

while matching the right-hand condition requires

c1
c2

= − tan

(
L

2

√
−∆(λ)

)
.
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A solution matching both boundary conditions thus requires

(C.5) tan

(
L

2

√
−∆(λ)

)
= −D

v

√
−∆(λ).

Therefore, if v < v∗, then substituting λ = R0 = 1 into (C.5), we can obtain the
critical domain size Lhos

crit under hostile boundary condition (2.3) as the minimum
positive solution of (C.5), which is given by

Lhos
crit =

2D√
4D
(
slsjrσ
1−sa −m− σ

)
− v2

(
π − arctan

√
4D

v2

(
slsjrσ

1− sa
−m− σ

)
− 1

)
.

Appendix D. An exact expression for redistribution kernel K(x). We
first solve the equation

(D.1) ut = Duxx − vux − (m+ σ)u, x ∈ (−∞,∞), t ∈ (0, τ),

subject to the initial condition u(x, 0) = δ(x− y)/h. A change of dependent variable
to û(x, t) = exp{(m+ σ)t}u(x, t) leads to an equation without the decay term, and a
transformation of independent variables to t̄ = t, x̄ = x− vt eliminates the advection
term. Hence, the advection-diffusion-decay equation (D.1) can be transformed into a
single diffusion equation. The complete transformation is

u(x, t) = exp
{ v

4D
(2x− vt)− (m+ σ)t

}
ū(x, t),

where ū(x, t) satisfies

(D.2) ūt = Dūxx.

A fundamental solution of (D.2) yields a fundamental solution of (D.1),

U(x, t) =
1√

4πDt
exp

{
− x2

4Dt

}
exp

{ v

4D
(2x− vt)− (m+ σ)t

}
.

Using the initial condition u(x, 0) = δ(x)/h, we obtain

u(x, t) =

∫ ∞
−∞

U(x− z, t)δ(z)
h
dz

=
1

h
√

4πDt
exp

{
− x2

4Dt

}
exp

{ v

4D
(2x− vt)− (m+ σ)t

}
.

Thus, the redistribution kernel

K(x) = hσ

∫ τ

0

u(x, t)dt

=
σ√
4πD

exp
{ vx

2D

}∫ τ

0

1√
t

exp

{
− x2

4Dt
−
(
v2

4D
+m+ σ

)
t

}
dt.

(D.3)

Appendix E. An alternative way to calculate spreading speeds. From
(5.15), we see that

(E.1) eθc
+

=
sa +

√
s2a + 4slsjrM(θ)

2
.
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We are interested in monotonic (rather than oscillatory) waves and real (rather than
complex) roots θ. Real roots emerges as a double root at the second-order contact
that is given by differentiating (E.1) with respect to θ (see Appendix A in [16]):

(E.2) c+eθc
+

=
slsjrM

′(θ)√
s2a + 4slsjrM(θ)

.

Dividing (E.2) by (E.1), we have

(E.3) c+ =
2slsjrM

′(θ)

sa
√
s2a + 4slsjrM(θ) + s2a + 4slsjrM(θ)

.

A combination of (E.1) and (E.3) leads to a parametric representation for θ ∈ (0,−γ2).
This representation will yield a downstream spreading speed c+∗ . Similarly, we can
find c−∗ using (5.17).
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