
Prediction is very difficult, especially about the future.

– Neils Bohr (1885 - 1962).

University of Alberta

Predicting Opponent Locations in First-Person Shooter Video Games

by

Stephen Michael Hladky

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

c©Stephen Michael Hladky
Fall 2009

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or
sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise

made available in digital form, the University of Alberta will advise potential users of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein
before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any

material form whatsoever without the author’s prior written permission.

Examining Committee

Vadim Bulitko, Computing Science

Michael Bowling, Computing Science

Marcia Spetch, Psychology

Abstract

Commercial video game developers constantly strive to create intelligent humanoid characters that

are controlled by computers. To ensure computer opponents are challenging to human players, these

characters are often allowed to cheat. Although they appear skillful at playing video games, cheating

characters may not behave in a human-like manner and can contribute to a lack of player enjoyment

if caught. This work investigates the problem of predicting opponent positions in the video game

Counter-Strike: Source without cheating. Prediction models are machine-learned from records of

past matches and are informed only by game information available to a human player. Results show

that the best models estimate opponent positions with similar or better accuracy than human experts.

Moreover, the mistakes these models make are closer to human predictions than actual opponent

locations perturbed by a corresponding amount of Gaussian noise.

Acknowledgements

I would like to thank the following people for their support and encouragement during my studies.

This thesis could not have been completed without their efforts.

• To my supervisor Vadim Bulitko for giving me the opportunity to investigate artificial in-

telligence in video games. Having become excited about the possibility of working with

Counter-Strike gameplay data at a graduate student orientation, little did I know that it would

become the focus of my research for the next few years. I am grateful for the guidance,

encouragement, and the utmost patience he offered me throughout my academic career.

• To the members of the Counter-Strike Artificial Intelligence (CSAI) research group for their

insights and suggestions for improving the quality of my research. Specifically to Michael

Bowling for providing a third-party perspective on my work and to Jeffery Grajkowski for

the code used to calculate lines-of-sight and parsing file structure in Counter-Strike maps.

• To my roommate and colleague David Thue for offering me a place to stay, partaking in the

many philosophical discussions about our research, and putting up with my messy lifestyle.

• To the members of the Intelligent Reasoning, Critiquing, and Learning (IRCL) research group,

specifically Alejandro Isaza, Greg Lee, Shanny Lu, and Chris Rayner, for their support and

companionship during each of our journeys in the pursuit of knowledge.

• To Michael and Kimberly Bombak, Barrett Rodych, Matthew Hillier, and all the members

of the Edmonton Kendo and Naginata Club (EKNC) for ensuring that I remained sane by

giving me a dose of the outside world every once in a while.

• To my parents, Joseph and Christine Hladky, and the rest of my family for all the phone

calls filled with encouragement, assurances, and love.

• Finally, to the Natural Sciences and Engineering Research Council of Canada (NSERC) and

the Informatics Circle of Research Excellence (iCORE) for their generous funding of my

research.

Table of Contents

1 Introduction 1
1.1 Skillfulness and Believability . 1
1.2 AI in Video Games . 2

1.2.1 Video Game Challenges . 2
1.3 Cheating in Video Games . 3

1.3.1 Examples of Cheating . 4
1.4 First-Person Shooters . 5
1.5 Predicting Opponent Locations . 6
1.6 Thesis Contribution . 6

2 Problem Formulation 8
2.1 Prediction Representation . 8
2.2 Opponent Location Prediction . 9
2.3 Performance Measures . 10

2.3.1 Prediction Accuracy Error . 10
2.3.2 Human Similarity Error . 11

3 Related Work 13
3.1 Object Tracking . 13
3.2 Commercial Approaches . 15
3.3 Spatial-Temporal Models . 16

3.3.1 Influence Maps . 17
3.3.2 Perception Reasoning . 18
3.3.3 Opponent Modeling . 19

3.4 Skillfulness and Believability Testing . 21

4 Background 24
4.1 Dynamic State Estimation . 24
4.2 Bayesian Filtering . 24
4.3 Hidden Markov Models . 26

4.3.1 Hidden Semi-Markov Models . 26
4.4 Particle Filters . 29

4.4.1 Importance Sampling . 30
4.4.2 Resampling . 30

4.5 Hidden Markov Models versus Particle Filters . 31

5 Proposed Approach 32
5.1 Joint and Factored Models . 32
5.2 Predictor Anatomy . 33

5.2.1 Hidden Semi-Markov Model Configuration 34
5.2.2 Particle Filter Configuration . 34

5.3 Model Training . 35
5.3.1 Building the Prior . 35
5.3.2 Building the Transition and Duration Functions 36
5.3.3 Building the Observation Function . 36

5.4 Model Management . 39
5.5 Summary . 40

6 Empirical Evaluation 41
6.1 Counter-Strike: Source . 41

6.1.1 Game Rules and Objectives . 42
6.1.2 Collecting Gameplay Data . 43

6.2 The User Study . 43
6.2.1 The Website . 44
6.2.2 The Application . 45
6.2.3 Statistics . 47

6.3 Experiment Setup . 48
6.3.1 Evaluating Performance . 49

6.4 Experiment Results . 49
6.4.1 Model Types . 49
6.4.2 Training Motion Models . 56
6.4.3 Sharing Training Data . 59
6.4.4 Motion Model Orders . 59

6.5 Summary . 62

7 Discussion 63
7.1 Challenges and Limitations . 63
7.2 Future Work . 64
7.3 Applications . 64

8 Conclusion 66

Bibliography 67

A Performance Measure Calculations 70

B Detailed Experiment Results 72

C User Study Materials 78

List of Tables

6.1 Experiment Parameters and Tested Values. 48
6.2 Terrorist Pareto Predictor Performance with Mean Update Times per Model (± Stan-

dard Error of the Mean). 52
6.3 Counter-Terrorist Pareto Predictor Performance with Mean Update Times per Model

(± Standard Error of the Mean). 54

List of Figures

1.1 Counter-Strike: Source, a first-person shooter video game developed by Valve Cor-
poration [48]. Note how the player views the game world from the perspective of
his avatar. 6

2.1 A screenshot taken from Gamespot.com [39] illustrating the scoreboard for the FPS
game Call of Duty 4 [1]. Note that the scores, names, and “dead” status of all players
(denoted by an image of dog tags to the left of the name) are visible on this screen
and can be accessed at any time during gameplay. 10

2.2 An example matching of a prediction vector (green circles) to a reference vector (red
circles). Dotted lines indicate the shortest in-game path between matched pairs. . . 11

2.3 Relationship of error measures. The bottom point denotes the true position of an
opponent while the other points denote the predictions of a human expert and a
computer predictor. The dashed line represents the prediction accuracy error and the
solid line represents the human similarity error. 11

3.1 Left: A “big daddy” approaches the player in Bioshock [35]. Right: The player
views an open area containing multiple opponents in Quake II [41]. 15

3.2 Left: An influence map from Halo 3 showing areas from which a player is likely to
eliminate another from the game [37]. Right: An influence map from Team Fortress
2 showing areas where players are likely to be eliminated [47]. In both images red
hues denote high probabilities while blue hues denote low probabilities. 17

3.3 A sample Warcraft 3 map used in experiments by Southey et al. [36, 58]. The black
line denotes an example path by an RTS unit. The white dots denote sensors which
have an observation radius of 2.5 times their size. 20

3.4 An office environment used in experiments by Bennewitz et al. [5]. Goal locations
are labeled by numbers and example human trajectories are denoted by solid dotted
lines. 21

4.1 Bayesian network structure for a hidden Markov model. 25
4.2 Bayesian network structure for a hidden semi-Markov model. 27

5.1 Structural differences between joint (left) and factored (right) predictors. Predictions
1 through N define the full prediction vector. 33

5.2 Example computing W . Left: A friendly player (orange arrow) is mapped to the
containing visibility cube (step 1). Center: The green centers are visible while the
red center has an obstructed LOS (step 2). Right: The green center is within the
player’s field-of-view (step 3). 38

5.3 The internal representations of predictors using both hidden semi-Markov models
(left) and particle filters (right). Green arrows represent friendly players while the
red arrows represent opponents. The blue hue squares in the left image illustrate
the posterior distribution; the brighter the colour, the greater the likelihood of an
opponent occupying the square. The blue dots in the right image denote individual
particles. 40

6.1 Left: Top-down view of the “de dust2” map [48]. Right: A schematic view of
the same map. Gray rectangles denote bomb sites. The Terrorist spawn area is
represented by the bottom gray oval and the Counter-Terrorist spawn area by the top
gray oval. The solid white lines at the top correspond to distances of 2000, 1000 and
500 coordinate units (longest to shortest). 42

6.2 Screenshots of the User Study application. 46

6.3 Examples of Pareto-optimal points on a scatter plot. The yellow line intersects those
points that form the Pareto frontier (i.e., are non-dominated). Left: The point con-
necting the red lines is dominated by the point connecting the green lines. Right:
The points connecting the green lines are both non-dominated. 50

6.4 Relationship of error measures (an extended version of Figure 2.3). The dotted line
denotes the error between a human’s prediction and the true position of an opponent. 50

6.5 Relationship between D(pi, oi), D(pi, hi), and D(oi, hi). 51
6.6 Human Similarity Error versus Prediction Accuracy Error for Terrorist Predictors by

Model Type. The bottom plot is a fragment of the top plot. 53
6.7 Human Similarity Error versus Prediction Accuracy Error for Counter-Terrorist Pre-

dictors by Model Type. The bottom plot is a fragment of the top plot. 55
6.8 Human Similarity Error versus Prediction Accuracy Error for Terrorist Predictors.

The asterisk on the y-axis represents a perfect predictor while other asterisks are
perturbed by Gaussian noise using standard deviations of 500, 1000, and 1500 co-
ordinate units (left to right). The dotted line is a least squares linear regression
indicating the performance trend of noisy predictors. 57

6.9 Human Similarity Error versus Prediction Accuracy Error for Counter-Terrorist Pre-
dictors. The asterisk on the y-axis represents a perfect predictor while other asterisks
are perturbed by Gaussian noise using standard deviations of 500, 1000, and 1500
coordinate units (left to right). The dotted line is a least squares linear regression
indicating the performance trend of noisy predictors. 57

6.10 Human Similarity Error vs. Prediction Accuracy Error for Terrorist Predictors. . . . 58
6.11 Human Similarity Error vs. Prediction Accuracy Error for Counter-Terrorist Predic-

tors. 58
6.12 Shared Training Data of HSMM Terrorist Predictors. From left to right (i.e., light to

dark), the bars represent the performance of predictors sharing “None”, “Half”, and
“All” of the training data among the motion models. 60

6.13 Shared Training Data of HSMM Counter-Terrorist Predictors. From left to right
(i.e., light to dark), the bars represent the performance of predictors sharing “None”,
“Half”, and “All” of the training data among the motion models. 60

6.14 First and Second-Order HSMM Terrorist Predictors. The left image plots Prediction
Accuracy Error along the y-axis while the right image plots Human Similarity Error.
The light bars represent first-order predictors and the dark bars represent second-order. 61

6.15 First and Second-Order HSMM Counter-Terrorist Predictors. The left image plots
Prediction Accuracy Error along the y-axis while the right image plots Human Simi-
larity Error. The light bars represent first-order predictors and the dark bars represent
second-order. 61

B.1 Shared Training Data of PF(500) Terrorist Predictors. From left to right (i.e., light
to dark), the bars represent the performance of predictors sharing “None”, “Half”,
and “All” of the training data among the motion models. 72

B.2 Shared Training Data of PF(500) Counter-Terrorist Predictors. From left to right
(i.e., light to dark), the bars represent the performance of predictors sharing “None”,
“Half”, and “All” of the training data among the motion models. 73

B.3 Shared Training Data of PF(1000) Terrorist Predictors. From left to right (i.e., light
to dark), the bars represent the performance of predictors sharing “None”, “Half”,
and “All” of the training data among the motion models. 73

B.4 Shared Training Data of PF(1000) Counter-Terrorist Predictors. From left to right
(i.e., light to dark), the bars represent the performance of predictors sharing “None”,
“Half”, and “All” of the training data among the motion models. 74

B.5 Shared Training Data of PF(2000) Terrorist Predictors. From left to right (i.e., light
to dark), the bars represent the performance of predictors sharing “None”, “Half”,
and “All” of the training data among the motion models. 74

B.6 Shared Training Data of PF(2000) Counter-Terrorist Predictors. From left to right
(i.e., light to dark), the bars represent the performance of predictors sharing “None”,
“Half”, and “All” of the training data among the motion models. 75

B.7 First and Second-Order PF(500) Terrorist Predictors. The left image plots Prediction
Accuracy Error along the y-axis while the right image plots Human Similarity Error.
The light bars represent first-order predictors and the dark bars represent second-order. 75

B.8 First and Second-Order PF(500) Counter-Terrorist Predictors. The left image plots
Prediction Accuracy Error along the y-axis while the right image plots Human Simi-
larity Error. The light bars represent first-order predictors and the dark bars represent
second-order. 75

B.9 First and Second-Order PF(1000) Terrorist Predictors. The left image plots Predic-
tion Accuracy Error along the y-axis while the right image plots Human Similarity
Error. The light bars represent first-order predictors and the dark bars represent
second-order. 76

B.10 First and Second-Order PF(1000) Counter-Terrorist Predictors. The left image plots
Prediction Accuracy Error along the y-axis while the right image plots Human Simi-
larity Error. The light bars represent first-order predictors and the dark bars represent
second-order. 76

B.11 First and Second-Order PF(2000) Terrorist Predictors. The left image plots Predic-
tion Accuracy Error along the y-axis while the right image plots Human Similarity
Error. The light bars represent first-order predictors and the dark bars represent
second-order. 76

B.12 First and Second-Order PF(2000) Counter-Terrorist Predictors. The left image plots
Prediction Accuracy Error along the y-axis while the right image plots Human Simi-
larity Error. The light bars represent first-order predictors and the dark bars represent
second-order. 77

Chapter 1

Introduction

1.1 Skillfulness and Believability

Creating a computational system that demonstrates human-like intelligence is a fundamental goal

for Artificial Intelligence (AI) research. A traditional approach to this problem has been to design AI

for small, well-defined domains that humans consider to be challenging, for example board games.

Several AI systems have been developed that surpass the best human players at such games: Deep

Blue for chess [50], Chinook for checkers [56], TD-Gammon for backgammon [59], and Logistello

for othello [11] to name a few.

Unfortunately, board games alone are an insufficient measure of human intelligence. Although

they test the proficiency of a player’s planning and decision-making abilities, such games are not

concerned with other human activities considered “intelligent” such as verbal communication, facial

expressions, and physical movement. An alternative approach to AI focuses on achieving human-

like intelligence by designing agents that exhibit realistic human behaviours. This approach is evi-

dent in virtual reality (VR) simulations where computer-controlled humanoid agents interact within

a three-dimensional virtual environment. Many successful commercial VR simulations provide hu-

mans with immersive training in fields such as military combat experience [38] and sports prac-

tice [40]. However, assessing the performance of an AI agent’s behaviour in VR applications is a

non-trivial task.

With the increase in processing power and ubiquity of personal computers in recent years, a

new medium for developing human-like intelligence has emerged: computer video games. Video

games are an ideal testbed for human-like intelligence because they reconcile the divergent aims of

the aforementioned approaches. Specifically, AI agents should be skillful at the game by making

strategically and tactically sound decisions. As well, AI agents should be believable by behaving in

a similar manner to other human players. This work proposes that AI agents who embody both of

these attributes enhance the realism of the game and contribute to overall human player enjoyment.

The main contribution of this thesis is the design and implementation of computational mod-

els for predicting opponent locations in First-Person Shooter (FPS) video games. The models are

1

tested in real-world scenarios using Counter-Strike: Source, a popular online tactical shooter video

game. Model performance is evaluated using two measures based on the notions of skillfulness and

believability mentioned above. Finally, the models are shown to be comparable to human experts at

predicting opponent locations and fit for use in commercial video games.

In this chapter, Section 1.2 introduces video game AI and identifies properties that make AI

development challenging. Section 1.3 discusses how “cheating” techniques have been used to ad-

dress these properties. The problem of predicting opponent locations in FPS games is motivated in

Sections 1.4 and 1.5. Finally, the contributions of this thesis are listed in Section 1.6.

1.2 AI in Video Games

Although there are many different types of video games, ranging from casual play to realistic sim-

ulations, this work focuses on games that utilize three-dimensional virtual environments. In these

games, human players typically interact within the game environment through an avatar, an in-game

entity whose actions can be manipulated by use of a hardware interface (e.g., mouse, keyboard,

gamepad). For example, an avatar might take the form of a sports car in racing games, a fantasy

creature in role-playing games, or a professional athlete in sports games. In each of these cases,

the player typically perceives the environment from the perspective of the avatar and may only take

actions that are afforded by the avatar. In essence, the avatar can be considered as the player’s virtual

manifestation within the game world.

One purpose for AI in computer video games is to provide computer-controlled avatars called

bots. Bots may be used in a variety of ways to produce enjoyable gameplay. For example, bots

can help enhance the realistic aspects of the game world, such as simulating life-like behaviour for

crowds of people in urban-themed environments [7]. As well, bots may aid story-telling by providing

rich, compelling characters with whom human players can engage in conversation [60]. Finally,

bots may be used as substitutes for human players, serving as allies in team-oriented games or as

opponents in adversarial games. This latter purpose is of particular interest because these bots must

provide an adequate challenge for human players (i.e., demonstrate skill). Also, because these bots

emulate human behaviour, their actions must appear as if a human performed them (i.e., demonstrate

believability). This work takes a step towards creating bots that appear both skillful and believeable.

1.2.1 Video Game Challenges

Video games are a challenging domain for bots because of several issues that must be addressed to

produce skillful and believable behaviour.

• Real-time scenarios. Video games with 3D virtual environments often operate in real-time

and as such bots must perform their current action while deliberating on the next one. This

property renders a number of standard algorithms in planning and pathfinding inapplicable as

2

they cannot guarantee a fixed amount of deliberation time per action.

• Large game states and action spaces. Classical games such as Chess and Checkers have

finite state spaces; that is, every possible state of the game can be enumerated. There are also

a finite number of actions a player can take on his turn to transition among the game states.

These two properties provide a foundation for search, a special class of AI techniques used

to decide on appropriate actions to take during games. Oftentimes video games do not share

these properties and thus pose significant challenges. Specifically, the state space can be con-

tinuous and the number of available actions in each state may also be vast and/or continuous.

Thus, an intelligent bot should be able to recognize important features of the state space and

use them to inform its decisions in the action space.

• Imperfect information. Recall that human players experience the game world from the per-

spective of their avatar. An avatar’s field-of-view is often limited to a small area of the game

environment and thus a correspondingly small portion of the game state is made known to

the controlling player at any given time. Similarly, bots must be able to make decisions using

only the information provided by their avatar.

• Teamwork. Cooperative multiplayer games require teams of players to work towards a com-

mon goal. Although players have the freedom to ignore their teammates, it is generally agreed

that coordinating player actions allows a team to engage in better strategies that are not avail-

able otherwise, thus contributing to a higher probability of winning. A bot that aims to co-

ordinate with other players must have a prior knowledge of effective strategies, be able to

determine which strategy its teammates are currently executing, and then assume an appropri-

ate role that contributes to the execution of the chosen strategy.

Due to these challenges, it would seem difficult to design a bot that can consistently outperform

expert human players in these games. Nonetheless, there are several commercial games that offer

levels of AI difficulty that are nearly impossible to defeat. How is this possible? One simple reason

is that developers allow bots to cheat.

1.3 Cheating in Video Games

Cheating is a common activity in all forms of games. In physical sports, athletes have been known

to take performance-enhancing substances (e.g., steroids) to become faster and/or stronger than their

opponents. If one considers the economy to be a game, cheating could be viewed as a stock trader

violating financial laws (e.g., reporting incorrect income, laundering money). In all cases, the temp-

tation to “break the rules” of the game is spurred by a potential benefit for the offending player.

In the former example the athlete wagers celebrity fame while in the latter the trader increases his

3

personal wealth. With regards to video games, entertainment value is a deciding factor in the com-

mercial success of a product and thus developers use cheating techniques in their bots as a means

to guarantee player satisfaction. In adversarial games, the process of confronting and overcoming a

challenging opponent is considered to be a source for player enjoyment. However, the difficulties

posed by the points in Section 1.2.1 coupled with the reality of intense production schedules make

development of challenging AI problematic. By providing bots with unfair advantages (discussed

in Section 1.3.1), developers can ensure a high degree of bot skill with the intention of delivering

satisfying gameplay for human players.

Unfortunately, there are certain undesirable consequences that come as a result from cheating.

If exposed, doping athletes may be expected to relinquish their awards and their fame might suffer

accordingly; a thief can be convicted of stealing resulting in fines and/or imprisonment. Video

games are also subject to the drawbacks of cheating. From an academic perspective, designing bots

that cheat is not considered progress towards practical artificial intelligence. Because cheating bots

rely on the game environment to favour their actions, they may not be able to perform successfully

in other unbiased domains. And, while some argue that video games do not require “full-blown”

AI [29] but rather only sufficient intelligence to maintain fun, if a bot is caught (or even perceived

as) cheating, then humans may be left feeling slighted or frustrated, ultimately leading to a loss of

player enjoyment.

Note that games may not provide both humans and bots with the same type of avatars. Consider

a fantasy role-playing game (RPG) where a human player controls a knight about to do battle in

a cave with a giant dragon controlled by a bot. If the dragon were to be endowed with superior

attack and defense abilities (e.g., deadly fiery breath and thick scales that can withstand the knight’s

sword), any direct combat with the dragon would certainly result in the knight’s demise. While the

knight does not share the dragon’s abilities, it is difficult to accuse the bot of cheating because any

perceived unfairness could be attributed to poor game design.1 However, in games where bots are

used as substitutes for humans, expert players have a solid understanding of what is possible with

their avatar. Bots that cheat in these games are at a greater risk of being caught because any bot

behavior that a human cannot emulate would be identified as suspicious.

1.3.1 Examples of Cheating

Despite the consequences of cheating, many video games still provide their bots with unfair advan-

tages in several ways. Because bots reside within the game itself, they can be easily endowed with

perfect accuracy and reactive control over their avatars. In sports games, an AI-controlled team can

always produce a pass or score a goal if necessary in situations where it would be nearly impossible

for humans players to do so. Likewise, soldier bots in combat games can ensure that they never

miss when firing their weapons. The bots are not subject to the human delay between perceiving the

1Typically, developers would design the game in a way such that players could defeat the dragon through an amazing feat
(e.g., collapsing the cave on the dragon) thus ensuring fair gameplay.

4

game world and executing actions nor do they need to provide their actions through crude manual

interfaces.

In the above examples, the act of cheating involves the enhancement of a bot’s abilities. This

type of cheating can be detected by directly observing a bot’s actions. However, cheating may

occur in subtler forms too, such as accessing and manipulating “unknowable” parts of the game

state. For instance, an important challenge faced by all players in real-time strategy (RTS) games

is the collection of resources for building structures and units. This challenge can be mitigated for

bots by artificially inflating the amount of resources they acquire. A player’s total resources are

typically hidden from opponents and thus this type of cheating must be detected by indirect means

(e.g., reasoning about the number of possible units one can construct given the average resources

available and the time elapsed during the game).

Ultimately, if a bot cheats by enhancing its abilities or acting on hidden information, it risks

taking actions that would not (or could not) be made by human players in the same situation. For

example, if a cheating poker bot is given information about the cards held in the hands of its oppo-

nents, the bot would always choose the correct action of folding when the opponents have higher

hands. However, without this hidden information, the alternative actions of betting and calling may

also offer statistically similar chances of winning. This work investigates the hypothesis that bots

can perform both skillfully and believably without cheating.

1.4 First-Person Shooters

One game genre that manifests all of the challenges presented in Section 1.2.1 (and thus makes

non-cheating AI very difficult to design) is First-Person Shooters (FPS). Popularized in 1992 by the

release of the game Wolfenstein 3D [42], the FPS genre has grown such that games are often hosted

at international tournaments. For example, the FPS games Halo 3 and Counter-Strike are listed as

official events by the World Cyber Games organization [43]. This professional level of competition

is indicative of a strong fan base that enjoys playing FPS games.

FPS games are characterized by two key features which, unsurprisingly, compose the genre title.

First, each player interacts with the game from a first-person perspective; that is, they perceive the

environment through the “eyes” of their avatar (see Figure 1.1). Avatars in FPS games typically take

on a humanoid form, affording the controlling player abilities such as running, jumping, climbing,

and other basic human movements. Second, the primary form of entertainment provided by FPS

games is firearm-based combat. Combat action takes place on virtual battlefields where avatars

assume the role of infantry soldiers. Each avatar is outfitted with (or can acquire) a varied selection

of weapons and equipment for the purpose of eliminating opponents from the game.

5

Figure 1.1: Counter-Strike: Source, a first-person shooter video game developed by Valve Corpora-
tion [48]. Note how the player views the game world from the perspective of his avatar.

1.5 Predicting Opponent Locations

Developing FPS bots is a hot topic in both the AI research community and video game industry.

Ideally, the behaviour of an FPS bot should be indistinguishable from that of an expert human player

and thus a bot should should emulate the complex human faculties involved when playing FPS

games. One faculty of interest is the estimation of current opponent positions – an important task

in games with partially observable game states [15, 12]. Knowing the location of opponents in FPS

games is very useful for several reasons: it can be used to determine the best strategy to play, serve

as a guide to direct a player’s field-of-view, and ensure survivability as the chance of being caught

unprepared is significantly reduced. From an academic perspective, predicting opponent locations

is a challenging task because the complex trajectories of human opponents must be modeled in

real-time over long periods without any knowledge of the opponents’ true locations.

1.6 Thesis Contribution

The main contribution of this work is the design and implementation of computational models for

predicting opponent locations. These models function as a stand-alone module, imparting a rea-

soning capability to bots with the aim of achieving skillful and believable behaviour. Specifically,

hidden semi-Markov models and particle filters (introduced in Chapter 4) form the core of these

modules with two key enhancements. First, the modules are machine-learned from records of past

6

matches, informing the models of the common direction and velocities of opponents (Section 3.3.3).

Second, these modules are not allowed to cheat, being informed only by the same sensory game

information that is available to a human player (Section 3.3.2).

The computational models are tested in actual recorded Counter-Strike: Source matches, presently

the most played online tactical shooter video game. The performance of the models are evaluated

by two measures, based on the notions of skillfulness and believability (Section 2.3). To compare

these models with expert humans at the same prediction task, a user study is conducted in which ex-

perienced human players are asked to provide their own guesses of opponent positions. The results

of the study and the performance of the models are presented in Chapter 6 followed by a discussion

and directions for future work in Chapter 7.

7

Chapter 2

Problem Formulation

The goal of this work is to design predictors, computational modules used to predict the positions

of opponents during FPS matches. This chapter presents a formal description of this prediction task,

referred to as the Opponent Location Prediction (OLP) problem. First, Section 2.1 proposes three

desirable properties that a good prediction representation should have. Next, the OLP problem is

detailed and a formal definition of a predictor is provided in Section 2.2. The chapter concludes by

presenting two performance measures based on the notions of skillfulness and believability which

are used to evaluate predictors in Chapter 6.

2.1 Prediction Representation

Although there are several ways to represent a prediction, this work uses a single point on the real

plane R2 to denote an opponent’s position. This formulation is desirable because it satisfies the

following three properties. First, predictions are simple to illustrate. It is common in many games

to display event notifications on a radar or “minimap” in a corner of a human player’s view screen

(Figure 1.1 has one in the top-left corner). Map coordinates are easily represented on a minimap,

making them an intuitive and practical means for conveying positional information in a real-time

setting.

Second, predictions are easy for humans to specify. The user study (described in detail in Sec-

tion 6.2) requires humans to perform the same task as a predictor and thus the specification process

should be as effortless as possible, lest participants become frustrated and withdraw from the study.

The data collected from the user study allows direct comparisons to be made between human and

machine predictions.

Finally, predictions are comparable to other predictions. Formally, (P,D) forms a metric space

where P is the set of all possible predictions (i.e., R2) and D : P x P → R is an arbitrary distance

function. A metric space provides a convenient way to measure the relative quality of predictions.

For example, one can assert that prediction p1 is “better” than prediction p2 according to a baseline

p3 if D(p1, p3) < D(p2, p3).

8

2.2 Opponent Location Prediction

The Opponent Location Prediction (OLP) problem is characterized by two adversarial teams engag-

ing each other in a closed three-dimensional game environment. One team is arbitrarily designated

the friendly team and the other the opposing team. The purpose of a predictor is to emulate the

human capacity to track members of the opposing team (referred to as opponents) while they move

about the environment. At any time during a match, the predictor must be able to output a prediction

vector A = (a1, a2, ..., an) , ai ∈ R2, a list of points estimating the current positions of all live

opponents.

A predictor operates from the perspective of the friendly team and it may utilize any informa-

tion known to a member of the friendly team to inform its predictions. Specifically, a predictor is

provided with the following game data as input:

• n: the number of opponents currently alive. It is common for FPS games to allow everyone

to view real-time statistics such as the scores, names, and alive/dead status of all players (see

Figure 2.1);

• t: the current time elapsed since the start of the game;

• O: the set of regions that at least one friendly player can view by an unobstructed line-of-

sight. While it may seem unreasonable to assume that a predictor should be able to know

the exact areas of the map that all teammates can see, it is common for experienced human

teams to use voice communication to keep members informed of current observations and

combat action [18]. Although there exist models for managing the transmission of informa-

tion between separate entities (e.g., sharing observations among players through information

particles [24]), this work foregoes this complication, focusing on the prediction task instead;

• S: the positions of opponents that occupy a region in O. When any friendly player has an un-

obstructed line-of-sight to an opponent, the opponent is said to be sighted and the opponent’s

positional coordinates are made known to the predictor. All opponents are considered to be

indistinguishable from each other;

• D: the positions of opponents that have been eliminated from the game.

This list of game variables defines the extent to which a predictor can be informed by the cur-

rent game.1 This formulation prohibits predictors from cheating; that is, a predictor cannot access

additional game information nor can it affect the gameplay in any way.

1The current map and the team being predicted are assumed to be global knowledge.

9

Figure 2.1: A screenshot taken from Gamespot.com [39] illustrating the scoreboard for the FPS
game Call of Duty 4 [1]. Note that the scores, names, and “dead” status of all players (denoted by
an image of dog tags to the left of the name) are visible on this screen and can be accessed at any
time during gameplay.

2.3 Performance Measures

The prediction representation discussed in Section 2.1 provides an objective approach for measuring

the success of a predictor. To evaluate the quality of a prediction, the prediction point can be com-

pared to a reference prediction point. The error incurred by a prediction with respect to a reference

prediction is the in-game distance between the two points. Specifically, this distance is the shortest

path traversable by an avatar that does not intersect walls or other impassable obstacles in the game

environment.

If two or more opponents are present, then the error is defined as the average distance between a

matching of points from a prediction vector to those of a reference vector (Figure 2.2). In all cases,

the matching that minimizes the average distance is chosen. Thus, predictors with low errors can be

said to make smaller mistakes and should be preferred over those with high errors.

Section 1.1 proposed that a bot should make skillful decisions while at the same time behave in

a human-like fashion. Inspired by these desirable properties, predictors are evaluated according to

two error measures: the prediction accuracy error (PAE) and the human similarity error (HSE). The

former error denotes the “lack of skillfulness” for a predictor while the latter denotes the “lack of

believability”. The defining feature of each measure is its selection of reference predictions, which

is discussed in the following sections.

2.3.1 Prediction Accuracy Error

To construct a reference vector for an error measure, one must consider the extreme case where a pre-

diction vector should incur no error at all. With regards to skillfulness, an optimal predictor should

10

Figure 2.2: An example matching of a prediction vector (green circles) to a reference vector (red
circles). Dotted lines indicate the shortest in-game path between matched pairs.

correctly estimate the exact location of every opponent at all times. Thus, the reference vector for

the PAE measure would be the vector consisting of the true location of opponents. Definition 2.3.1

presents a formal description of an optimal predictor.

Definition 2.3.1. A predictor is perfect if every prediction scores a PAE of 0.

2.3.2 Human Similarity Error

Like the PAE metric, the HSE also requires the definition of a reference vector to be complete.

However, this prompts the question “What are the most human-like predictions possible at any

given point during a match?”. Although there are several ways to quantify the “believability” of a

bot’s performance (discussed in detail in Section 3.4), the assumption is made that the most human-

Figure 2.3: Relationship of error measures. The bottom point denotes the true position of an op-
ponent while the other points denote the predictions of a human expert and a computer predictor.
The dashed line represents the prediction accuracy error and the solid line represents the human
similarity error.

11

like prediction is one made by a human expert. Therefore, a reference vector for the HSE metric

would be a prediction vector provided by a human expert assuming the role of a predictor. These

predictions are collected as part of the user study described in Section 6.2. Figure 2.3 shows an

example of how both error measures relate to the true location of an opponent.

12

Chapter 3

Related Work

This chapter provides a review of research and development related to the design of a computational

predictor. Section 3.1 begins the review with a discussion of object tracking, a general class of

problems of which the OLP problem is a special case. Four features are identified here that char-

acterize the OLP problem. Next, Section 3.2 analyzes commercial implementations of FPS bots

with particular attention paid to any opponent prediction faculties they may offer. Spatial-temporal

models are presented in Section 3.3 as potential solutions to the OLP problem. Motivation is pro-

vided for perception reasoning and opponent modeling, two concepts that can be incorporated into

spatial-temporal models to produce informed predictions. Finally, existing methods for testing the

skillfulness and believability of bot performance are reviewed in Section 3.4.

3.1 Object Tracking

Object tracking can be described as the problem of estimating the trajectory of an object as it moves

around on an image plane [66]. Oftentimes, this task plays a role in many larger tracking problem do-

mains, such as monitoring troop deployments for military surveillance [9], tracking hand movements

for gesture recognition [65], and identifying moving obstacles for path planning in robotics [14, 5].1

Each of these domains has different goals, assumptions, and constraints and it appears that no sin-

gle solution is adequate to address object tracking in general. This section identifies four features

that can be used to characterize object tracking problems. Although this selection of features is by

no means comprehensive, it does provide a basis for comparing the OLP problem to other object

tracking tasks.

Feature 1: Number of Targets

A target is an object to be tracked. Targets receives the attention of the tracking system (or

tracker), be it a machine or human. As the number of targets increases, so too must a greater tracking

effort be exerted by the tracker. While a computer’s effort may be constrained by its processing

1See Yilmaz et al. for an extensive review of object tracking research [66].

13

power, humans have a limit to their tracking abilities. Pylyshyn and Storm claim that humans can

successfully track in real-time up to five targets that appear identical to each other [51]. Because the

user study discussed in Section 6.2 allows only five players per team as well as an indefinite amount

of time for specifying predictions, the task of predicting opponent positions should not be beyond a

participant’s natural ability.

Feature 2: Environment Topology

Obstacles present on the image plane can also affect the difficulty of the tracking task. On planes

with no obstacles, a target is free to move in any direction, which may prove challenging if its

direction and velocity can change abruptly (see Feature 3). In contrast, FPS game environments are

often constructed as a maze of hallways and connecting rooms. The direction of a target’s trajectory

is restricted in narrow corridors, which may benefit the tracker by allowing him to concentrate on

targets in open areas.

Feature 3: Motion Complexity

Motion complexity refers to the policy governing a target’s movement. Consider two targets: a

billiard ball and floating grain of sand in a pond. The ball’s trajectory is easy to predict: it should

continue in a straight line after it has been hit by the cue, only changing direction when collision

occurs with a buffer of the billiard table or another ball. Unlike the billiard ball, the sand grain

constantly changes direction in the pond according to Brownian motion. However, predicting its

motion is also easy as it can be achieved using a simple random walk model. Simple policies are

often used in object tracking studies, such as a target that follows a circular path [63].

Goal-based movement is an example of a more complex motion policy. Bruce and Gordon track

humans who move along an optimal path between two of 17 possible locations [10]. A good tracker

must be able to discern the goal of a human given the current trajectory observed. The movement of

players in FPS games are even more complicated given that any goal location they attempt to arrive

at may be interrupted by combat, the announcement of a global event, or the time elapsed during the

current match. Each of these interruptions may cause the player to change strategies and hence their

direction and velocity. Thus, a tracker that deals with complex motion policies should be aware of

important environment features and understand how these features can affect a target’s movement.

Feature 4: Sighting Frequency

In object tracking studies, the limits of a human’s tracking ability is tested by increasing the

speed of target movement [63] and including additional moving objects called distractors for the

purpose of disrupting the human’s concentration [51, 2, 19]. In real-world scenarios, computer

systems are able to successfully track objects with fast, complex motions using image recognition

techniques (e.g., tracking balls in play for Foosball [67] and Robocup Soccer [30]). However, it is

14

common in all these situations that targets remain in plain sight. When a target’s position is occluded

from the tracker’s view, the object tracking task becomes an object prediction task, similar to the

OLP problem. The prediction task is made more difficult by increasing the time between sightings

of the targets.

3.2 Commercial Approaches

To track opponents in FPS video games, several different techniques have been implemented in

commercial products. This section investigates a few of these techniques and evaluates their ability

to address the OLP problem.

Figure 3.1: Left: A “big daddy” approaches the player in Bioshock [35]. Right: The player views an
open area containing multiple opponents in Quake II [41].

In the critically-acclaimed single-player FPS game Bioshock (Figure 3.1), the AI system simu-

lates a community of bots that act autonomously [35]. Bots are designed to engage any character

deemed hostile, be it the human player or another bot. With regards to OLP, a bot uses two vision

cones to track each of its targets [13]. A doubt vision cone is centered on the last known location of

the target and the bot looks in the direction of the cone when it decides to search for the opponent.

In contrast, a certainty cone corresponds to the bot’s current field-of-view. If the target remains in

this cone for a certain length of time, the bot has “sighted” the target and can take appropriate action

knowing the target’s exact location.

Unfortunately, the cone model is limited in its player tracking ability. If the bot is unable to find

any opponents in the doubt cone, the bot resumes its previous tasks, effectively “forgetting” that it

sighted an opponent. In essence, the cone model does not account for the movement of opponents

while they are out of view.

Laird addresses the above issue with his Quakebot, a bot designed to play the popular online

FPS game Quake II (Figure 3.1) [26, 41]. The Quakebot is based on the Soar cognitive architecture,

a production system designed to operate in real-world scenarios [28]. In Soar, a reasoning context is

used to represented the current state of the world and system. Information in the context may include

15

beliefs about the current world state, goals waiting to be achieved, and additional information that

has been deduced (or rather produced) from the application of production rules. This latter process

is referred to as “elaborating the context”. Coupled with the context is a knowledge base designed

to store the production rules. A rule can be an action the system can take in the world (called an

operator) or a method for generating subgoals with the aim of achieving a greater goal.

While the reasoning context and knowledge base form the core of Soar, several extensions have

been implemented to add or enhance cognitive features. The Quakebot demonstrates the addition of

anticipation, a subroutine used to predict the future actions of opponents [26]. When an opponent is

sighted, the subroutine creates a temporary context in which the bot places itself in the opponent’s

position. Soar then operates as if it were the opponent, creating goals and taking actions in the game.

The sequence of actions is recorded and returned to the bot after a specified time length, serving as a

prediction of the human’s future trajectory. This information is now placed in the reasoning context

and can be elaborated with the hope of producing informed decisions.

Unlike Bioshock bots, the Quakebot does track opponents when they are not in sight. However,

the opponent trajectories returned by the subroutine are only correct if the goals and decision-making

processes of the opponents are accurately encoded as Soar operators. If this is indeed the case, then

it would seem that the Quakebot should also behave similarly to human opponents. A panel of

eight judges reviewed video clips of the Quakebot in action but were unable to draw any significant

conclusions about the “humanness” displayed by the bot [27].

Wray et al. also use Soar as the decision system for their MOUTBot, an agent used to train

United States Marines for military operations on urbanized terrain (MOUT) [64]. In contrast to the

Quakebot, the MOUT bot maintains a threat object for each encountered opponent. A record-threat

operator is executed whenever a relationship changes between the bot and one of its opponents.

For example, when an opponent moves in or out of view of the bot, the appropriate threat object is

updated with information such as where and under what conditions the sighting occurred. However,

similar to the Bioshock bots, no proactive estimation of target positions are made while opponents

are not in view.

3.3 Spatial-Temporal Models

One issue common to the implementations described in the previous section is that no analysis

of the entire game environment is made. Very specific estimates (e.g., a sequence of coordinates)

of an opponent’s current and future positions are made and if it is discovered that the opponent

does not occupy any of these locations, there is no alternative prediction that can be provided. In

addition, these implementations do not update their models as time passes (with the exception of the

Quakebot), accounting for the possibility of opponents moving while out of sight.

Spatial-temporal models are a means of representing data that has both location and time-

dependent features. These models are well-suited to track players moving about the environment

16

and thus they form the basis of the predictors presented in Chapter 5. The following sections discuss

variants of spatial-temporal models, noting their advantages and disadvantages when applied to the

OLP problem.

3.3.1 Influence Maps

An influence map is a method for modeling the effect of a game feature on the environment over

time. Typically, the environment is partitioned into a finite set of regions and a value is maintained

for each region corresponding to the “influence” that the feature has on that region. These values

can be updated to reflect the changes in the feature’s influence as the game progresses.

Influence maps are frequently used in commercial FPS games. Figure 3.2 shows two examples

from the games Halo 3 and Team Fortress 2, highlighting the areas of the map where players com-

monly eliminate others from the game (or are eliminated themselves). Colours are often used to

illustrate the relative intensity of a feature, making it easy for players to analyze weakpoints in their

own strategies and that of other players.

Figure 3.2: Left: An influence map from Halo 3 showing areas from which a player is likely to
eliminate another from the game [37]. Right: An influence map from Team Fortress 2 showing areas
where players are likely to be eliminated [47]. In both images red hues denote high probabilities
while blue hues denote low probabilities.

Another feature that can be represented with influence maps is the notion of threat. For instance,

the official Counter-Strike: Source bot avoids dangers areas when pathfinding through the game

environment [8, 45]. Whenever combat is seen or heard by the bot, a threat value is increased in the

appropriate map region (and subsequently decays over time at a fixed rate). These threat values are

used to inflate the estimated cost for traversing the region; a large cost will ensure that an alternative

path is found through areas with lesser amounts of threat.

17

Hoobler et al. created Lithium, a visualization framework for overlaying feature information in

the FPS game Return to Castle Wolfenstein: Enemy Territory [20]. While the framework has the

ability to render several game features depending on the user’s preference, the most practical feature

is occupancy. In this mode, regions are displayed in the team colour of nearby players. A blend of

the team colours is used if two or more opposing players occupy the same or adjacent regions.

By themselves, influence maps are not designed to predict opponent locations. The occupancy

feature is assumed to be known at all times for all locations in the environment. In the following

sections, two techniques are presented that enhance influence maps when the occupancy feature

cannot be fully known, making them viable solutions to the OLP problem.

3.3.2 Perception Reasoning

Doherty and O’Riordan suggest that a realistic bot should utilize the sensory information provided

by its avatar to reason about the game environment [16]. Although other avatar sensory information

such as audio or collisions can be considered, this work only focuses on visual observations. With

regards to the OLP problem, a prediction should agree with all observations made about the game

environment, both past and present. Specifically, confirming that an opponent is not in a given area

is valuable information for informing predictions. For example, consider a room with a single entry

point. If an opponent has been sighted moving into the room and the entrance to the room is under

constant surveillance, a reasonable prediction would place the opponent somewhere within the room.

In this way, even if a length of time passes without any opponent sightings, observations can still

be used to constrain an influence map so that the opponent’s position remains in the boundaries of

the room. This analysis of observations, which will be referred to as perception reasoning, aids in

answering the question “what are the possible locations that an opponent can occupy?”.

Isla suggests the use of occupancy maps (an influence map modeling the occupancy feature) to

predict opponent positions [22]. When a friendly player observes a region that does not contain

any opponents, the probability corresponding to the region is set to zero and all other probabilities

are normalized. The values of newly observed regions are updated in a similar manner as friendly

players move throughout the map.

Isla evaluates occupancy maps as a means for guiding the search behaviour of bots [21]. In a

game environment filled with obstacles, an AI-controlled dog is instructed to find a roaming sheep

avatar controlled by a human. If the dog does not have a direct line-of-sight to the sheep, the dog

moves to the region with the highest probability to continue its search. If the sheep is not sighted in

this region, the appropriate probability is reduced to zero and dog heads towards the new region with

the largest associated probability. This sequence is repeated until the sheep is found or the search

task is discarded in favour of pursuing another goal. Isla claims that this “emergent” policy results

in intelligent search behaviour however no experiments were run to support the statement. Nonethe-

less, this process for updating region probabilities is incorporated into the predictors presented in

18

Chapter 5.

3.3.3 Opponent Modeling

Having used perception reasoning to restrict an opponent’s position to unobserved areas of the en-

vironment, a logical question to ask is “what are the probable locations that an opponent would

occupy?”. Ideally, predictions should be made along the opponent’s planned trajectory. As such,

any information about an opponent’s preferred motion can be used to discount areas that are not

frequented, further refining prediction accuracy.

In general terms, opponent modeling is the task of learning and encoding an opponent’s be-

haviour for the purpose of informing decisions. Opponent modeling has been used to enhance AI

in many different games. For example, research in Texas Hold’em poker has focused estimating

which class of card-playing strategies an opponent is currently playing [4, 57]. As well, modeling a

human player’s preferences has been used to construct dynamic stories in role-playing games [61].

To address the OLP problem, the predictors presented in Chapter 5 focus on modeling direction and

velocity, two important features for specifying player movement.

There are several ways to build models for opponents in FPS games. The simplest method

is to assume the opponent’s actions are uniform; that is, there is an equal probability of heading

in any direction regardless of the opponent’s current position. Isla makes this assumption in his

description of occupancy maps [22]. Unfortunately, this method does not take advantage of actual

game dynamics. For example, while it is theoretically possible for an opponent to stand in a corner

for the duration of a game, one would instead expect him to enact strategies and tactics that increases

his chance of winning the game. Moreover, the model is limited in that it can only track opponents

moving at a single, constant velocity. An evaluation of uniform models is presented in Section 6.4.2.

Bererton uses particle filters (discussed in Section 4.4) as a means to predict the current locations

of human opponents [6]. Specifically, particles serve as candidate positions that an opponent can

occupy and account for opponent movement by spreading throughout the environment according to

a Brownian (i.e., uniform) motion model. Bererton emphasizes that particle filters are an efficient

method for tracking opponents, noting that 31 targets were tracked simultaneously during tests.

However, no rigorous experiments were performed to confirm the accuracy of the motion model.

Instead, performance benefits are supported only by anecdotal evidence.

Another way to construct an opponent model is to specify common game strategies and tactics

by a set of hand-coded rules. Darken and Anderegg promote the construction of simulacra, motion

policies that are designed to emulate a specific opponent behaviour [15]. For example, a “hider”

simulacrum would have an agent take refuge at one of several locations known to be good hiding

places. In contrast, a “hunter” simulacrum would instruct the agent to close the distance between

its enemies once they have been sighted. However, representing complex behaviours requires both

expert knowledge and significant effort on the part of the designer to specify precise rules.

19

Southey et al. use hidden semi-Markov models (discussed in Section 4.3.1) to track the move-

ment of enemy units in a real-time strategy (RTS) game [58]. Specifically, a model is constructed for

every pair of regions on the map and each model encodes the path that a unit would take when mov-

ing from one region to the other. The model that best fits the unit sightings and observations of the

environment is used to predict the unit’s trajectory. Experimental results show success in predicting

unit trajectories, however this may be due to the significant number of sensors placed throughout the

map (see Figure 3.3). As well, units were modeled as using an optimal path for traveling between

goal regions. In contrast, predicting opponent positions in FPS games is more challenging because

opponent sightings are infrequent. Moreover, FPS players are not guaranteed to follow the shortest

path to goal locations. For example, in the event that players from different teams engage each other,

their former trajectories end up disrupted by combat.

Figure 3.3: A sample Warcraft 3 map used in experiments by Southey et al. [36, 58]. The black line
denotes an example path by an RTS unit. The white dots denote sensors which have an observation
radius of 2.5 times their size.

In recent years, machine learning has received significant attention as a method for specifying

opponent models. This method is desirable because the analysis of human behaviour can be done

automatically and account for any idiosyncrasies in human movement that might otherwise be for-

gotten by experts. The predictors presented in this thesis are trained on gameplay data provided by

humans as are the motion models described in the following works.

Bruce and Gordon also use particle filters to track the movement of human beings in an office

environment [10]. Before tracking begins, a corpus of human trajectories is separated into clusters

by hand. These clusters contains paths that are deemed similar to each other and are used to generate

a set of goal locations where players are likely to originate from or head towards. The particle filter

models the likelihood of a target following any particular cluster which can then be used to estimate

the goal locations of the target. This learned model is shown to be superior at predicting human

trajectories compared to a Brownian model. However, it should be noted that the experiment envi-

20

ronment is small and contains few obstacles. Large FPS environments can accommodate many goal

locations and long trajectories, making the clustering task impractical for humans. Although Rayner

presents an automated method for clustering player trajectories in Counter-Strike: Source [54], his

work focuses solely on opening gameplay.

As mentioned in Section 3.1, intelligent robots must deal with moving objects when planning

paths through their environments. Bennewitz et al. train a robot to recognize humans from a camera

input and avoid collisions by using a hidden Markov model trained on example human trajecto-

ries [5]. Experiments are carried out in an office-like environment where humans move about 8

different goal locations (Figure 3.4). The probability of a human occupying a region is used as a

coefficient when computing the cost of traversing the region during path planning. As such, the

robot will move such that its path avoids the estimated location of humans.

Figure 3.4: An office environment used in experiments by Bennewitz et al. [5]. Goal locations are
labeled by numbers and example human trajectories are denoted by solid dotted lines.

Despite the fact that this research claims to utilize human generated trajectory data, the nature of

these trajectories are simpler than that which is characteristic of FPS games. Specifically, humans

always moved at a constant velocity, no paths involved backtracking, and long trajectories were

segmented by goal locations where humans could rest for arbitrary lengths of time. The gameplay

data used in this work to train predictors is not subjected to any of these conditions which preserves

the complexity of human movement but increases the difficulty to capture this information in a

opponent model.

3.4 Skillfulness and Believability Testing

Section 2.3 presented two metrics for evaluating the performance of a prediction. While these met-

rics are designed for the OLP problem, determining the skillfulness and believability of a bot’s

actions is a much more complicated matter. With regards to skillfulness, games provide an inherent

measure of success, namely the final game result (win or loss). However, this measure requires the

results of several games to assert that a bot’s skill is statistically significant. Instead, other game

features may provide a more specific breakdown of a bot’s skill such as the number of opponents

21

eliminated during a game or an overall score that awards points based on completed goals and ob-

jectives. Overall, games provide several objective ways to measure skillfulness, unlike believability

which is evaluated subjectively.

The classic method for determining how believable a machine is at imitating humans is the

Turing test [62]. In a generalized formulation of the test, an interrogator is allowed to interact

with two subjects through an arbitrary medium (e.g., text terminal, video game environment). The

interrogator is informed that one subject is human and the other is a computer but the true identities

of the subjects remains unknown to him. After spending some time with the subjects, the interrogator

is asked which is human and which is a computer. The computer is said to have passed the test if

it is incorrectly labeled as a human, effectively fooling the interrogator by displaying human-like

behaviour in the medium. The Turing test is used for evaluating believability in some high-profile

competitions. For example, the Loebner Prize is awarded to programs that excel at natural language

processing [32] while the 2K Bot Prize tests the realism of combat decisions made by FPS bots [44].

The Turing test is very challenging to pass because the interrogator (or “judge”) is permitted to

interact with the subjects through any means afforded by the medium, possibly over long periods of

time. Unfortunately, even if a computer’s performance can be described as human-like, a random

decision will be made by the judge if he cannot determine which subject is human. While this issue

could be resolved by allowing judges to label subjects by a third “uncertain” option, there are several

other ways for grading the believability of a computer program.

Sometimes judges may only be permitted to observe subject behaviour, typically due to the

limitations of the chosen medium. In these cases, judges are shown video clips of the subjects in

action and are then asked to grade the believability of each. Instead of judging a collection of clip

simultaneously, Mac Namee asks judges to compare pairs of clips, stating one as “more believable”

than the other [33]. This approach facilitates a partial ordering of clips when several pairs are

compared. However, two judges may have conflicting opinions and grade the same pair of clips

differently. Moreover, every pair of clips must be evaluated to construct a complete ordering.

Another method for grading believability is to assign a single representative value to a clip.

Gorman et al. rate video clips of Quake II bot behaviour on a five-point scale, 1 being “definitely

artificial” and 5 being “definitely human” [18]. These values are then adjusted according to the

judge’s experience level and averaged over all gradings provided by all judges. The final result is

a believability index in the range (0, 1), defined by the authors as “a weighted representation of

the degree to which a given type of clip was regarded as human”. Alternatively, Laird and Duchi

use a combination of both an objective measure and the Turing test: judges are asked to grade the

believability of a bot on a scale of 1 to 10 and provide a guess as to whether the bot is human [27].

Because the process of judging bot behaviour is time-consuming and requires human experts,

a formal definition of believability would be ideal to automate the grading of bot performances.

However, Gorman et al. note that no such definition currently exists [18]. Livingstone proposes

22

a set of believability criteria, divided into three categories: Plan, Act, and React [31]. However,

these criteria have no objective specification (e.g., “AI should react to presence of foes and allies”)

and are by no means complete. A model of human behaviour could be used to construct a general

believability measure in the same way that human predictions help form the human similarity error

in Section 2.3.2. However, it may only be practical to build approximations of such a model, given

that specifying a complete, explicit description of human behavior is a difficult task.

23

Chapter 4

Background

This chapter presents background knowledge on dynamic state estimation, a general problem for-

mulation for modeling the state of a system over time (Section 4.1). Section 4.2 introduces the

Bayesian filter, a solution to dynamic state estimation that relies on several key assumptions about

the problem domain. These assumptions allow specialized algorithms to provide approximations of

the system’s current state given all information available about the system. Hidden Markov models

and particle filters are two such algorithms, both of which are presented in Section 4.3 and Sec-

tion 4.4 respectively. The chapter concludes with a discussion of the advantages each algorithm

offers and the tradeoffs necessary to maintain these advantages.

4.1 Dynamic State Estimation

The dynamic state estimation (DSE) problem is concerned with modeling the state of a system over

time. We present the discrete-time formulation of the DSE problem; that is, the system is assumed

to change states only at discrete intervals or time steps. On each time step t, the system transitions

to state St from its previous state St−1 and an observation Ot is emitted by the system (Figure 4.1).

The history of the system’s states can be written out as the sequence (S1, ..., St), which shall be

denoted by S1:t (a similar sequence can be constructed for the history of observations). Note that S1

corresponds to the system’s initial state at which time O1 is emitted.

Dynamic state estimation is a challenging problem because it prohibits the state St from being

determined directly. Instead, one must infer St using any information known about the system.

Because there may be a measure of uncertainty when making such inferences, it is common to use

a probability distribution P (St) to represent the current state of the system. Using this notation, the

probability P (St = s) denotes the likelihood of the system being in state s at time t.

4.2 Bayesian Filtering

One of the common questions asked about the DSE problem is “What is the current state of the

system?”. This is answered by calculating P (St | O1:t), the posterior distribution over all possible

24

Figure 4.1: Bayesian network structure for a hidden Markov model.

states given all the evidence (i.e., the entire history of observations). This inference task can be

achieved using Bayesian filtering. Bayesian filtering makes two assumptions based on the Markov

property: 1) the current state of the system is conditionally independent given the previous state

(i.e., P (St | S1:t−1) = P (St | St−1)), and 2) the current observation emitted is conditionally inde-

pendent given the current state (i.e., P (Ot | S1:t, O1:t−1) = P (Ot | St)). The standard Bayesian

filtering equation (Equation 4.5) can be derived using these assumptions [55]:

P (St | O1:t) = P (St | Ot, O1:t−1) (4.1)

= η P (Ot | St, O1:t−1)P (St | O1:t−1) (4.2)

= η P (Ot | St)P (St | O1:t−1) (4.3)

= η P (Ot | St)
∫
St−1

P (St | St−1, O1:t−1)P (St−1 | O1:t−1) (4.4)

= η P (Ot | St)
∫
St−1

P (St | St−1)P (St−1 | O1:t−1) (4.5)

Note that η is a normalizing constant. Equation 4.1 is derived by splitting up the evidence O1:t.

Bayes’ Rule is used to produce Equation 4.2, which is then simplified to Equation 4.3 by using

the second assumption. Equation 4.4 illustrates the marginalization over St−1 and simplified again

by the first assumption to produce Equation 4.5. The Bayesian filter computes P (St | O1:t) by

modifying the distribution of the previous time step P (St−1 | O1:t−1), a process called recursive

estimation. Hereafter αt(S) = P (S | O1:t) will be referred to as a message that is updated on each

time step, representing the estimation of the system’s current state.

In general, the Bayesian filter can be thought of as a two-step process. First, the previous mes-

sage αt−1(St−1) is modified by the transition function P (St | St−1), accounting for the state tran-

sition of the system. Second, the message is updated by the observation function P (Ot | St), effec-

tively weighting the message by the probability of observing Ot. Given a prior P (S1), these two

25

steps can be used repeatedly to compute α1:t(St), all the messages from time 1 to time t.

There are many other formulations of the DSE problem (and hence the Bayesian filtering equa-

tion), each of which is suited to different problem domains. For example, an entity external to the

system may enact an action At on each time step, which has the potential to affect the system transi-

tions. These actions can be incorporated into the transition function by P (St | St−1, At). However,

for the purposes of this work, no such variables are considered to be a part of the DSE problem.

4.3 Hidden Markov Models

As presented, Bayesian filtering requires the prior, transition function, observation function, and

messages to be integrable in order to compute the result of Equation 4.5. This formulation is sat-

isfactory for Kalman filters where each function and message are mulitvariate Gaussian distribu-

tions [23]. However, Gaussian distributions are easily represented by a closed formula. For systems

that do not have closed forms of their functions and messages, a common solution is to discretize the

state space. The Bayesian filter resulting from this modification is called the Hidden Markov Model

(HMM). Equation 4.6 presents the update expression for HMMs, a discrete version of Equation 4.5.

αt(S) = η P (Ot | S)
∑
S′

P (S | S′)αt−1(S′) (4.6)

Implementing the update as a sequential procedure results in Algorithm 1, the HMM update

function. Note that lines 1 and 2 correspond to the two-step process mentioned in Section 4.2.

Algorithm 1 Hidden Markov model update function
Require: Messages α1:t−1

Require: Observation Ot
1: αt(S)←

∑
S′ P (S | S′)αt−1(S′)

2: αt(S)← η P (Ot | S)αt(S)
3: return αt

4.3.1 Hidden Semi-Markov Models

In some problem domains, it is necessary for the system to remain in a state s for a finite length

of time. Consider the problem of tracking a car on city streets where the car’s state could be de-

fined by its GPS coordinates. An HMM should account for the situations where the car is waiting

at a red stop light. One solution is to allow the transition function to include self-transitions for s

(i.e., P (St = s | St−1 = s) > 0). Unfortunately, a caveat of this decision is that the probability

αt(St = s) diminishes asymptotically to 0 over time; in effect, the message permanently maintains

the possibility that the system could remain in s indefinitely.1 Moreover, the probability of transi-

1Except in the case where the observations prohibit the system from occupying s (i.e., P (Ot | St = s) = 0).

26

Figure 4.2: Bayesian network structure for a hidden semi-Markov model.

tioning from s is the same on every time step. It would be undesirable for the HMM to assume the

vehicle could move at any time step while the car proceeds only when the light turns green. A new

approach must be considered that models the time spent in each state.

Hidden Semi-Markov Models (HSMM) are similar to HMMs with the exception that the system

is allowed to change states within d̂ ∈ Z+ times steps. A counter D is used to represent the duration

of the system’s current state. On each time step, D is decremented until it reaches 0 at which point

the system changes states and D is “reset” according to a duration function P (d | St). Figure 4.2

illustrates how the counter can be incorporated into the HSMM structure. The dependencies be-

tween the counter and state nodes, represented by arrows in Figure 4.2, are defined by the following

equations [49]:2

P (St = s | St−1 = s′, Dt−1 = d) =

{
δ(s, s′) if d > 0 (remain in same state)
P (St = s | St−1 = s′) if d = 0 (change states)

(4.7)

P (Dt = d | St = s,Dt−1 = d′) =

{
δ(d, d′ − 1) if d′ > 0 (decrement counter)
P (d | St = s) if d′ = 0 (reset counter)

(4.8)

To ensure that α1:t(S) can be recursively estimated, another Markov assumption must be made

about the system durations: 3) the duration of the system’s state is conditionally independent given

the current state (i.e., P (d | S1:t, d1:t) = P (d | St)). This third assumption allows us to derive

Equation 4.13, the update expression for HSMMs.

2The Kronecker delta function, denoted δ(s, s′), evaluates to 1 when s = s′ and 0 otherwise.

27

αt(S, d) = P (Ot−d+1:t | S, d)
∑
S′

∑
d′

P (S, d | S′, d′)αt−d(S′, d′) (4.9)

= P (Ot−d+1:t | S, d)
∑
S′

∑
d′

P (S | S′)P (d | S)αt−d(S′, d′) (4.10)

= P (d | S)P (Ot−d+1:t | S, d)
∑
S′

P (S | S′)
∑
d′

αt−d(S′, d′) (4.11)

αt(S) =
∑
d

P (d | S)P (Ot−d+1:t | S, d)
∑
S′

P (S | S′)αt−d(S′) (4.12)

=
∑
d

P (d | S)

[
t∏

u=t−d+1

P (Ou | S)

]∑
S′

P (S | S′)αt−d(S′) (4.13)

Equation 4.9 shows how the HMM update procedure (Equation 4.6) can be extended to rep-

resent the joint probability of S and d [49]. Using the third assumption, it can be asserted that

P (S, d | S′, d′) = P (S | S′)P (d | S) (Equation 4.10). Equation 4.11 rearranges terms and sum-

mations for simplicity. Because αt(S) =
∑
d αt(S, d), the right-hand side of Equation 4.12 is

marginalized by d. Finally, the second assumption allows for P (Ot−d+1:t | S, d) to be rewritten as a

6product of observations, resulting in Equation 4.13. This equation forms the basis for Algorithm 2,

the HSMM update function.

Algorithm 2 Hidden semi-Markov model update function
Require: Message αt−1

Require: Partial Messages βt−d̂+1:t−1
Require: Observations Ot−d̂:t

1: βt(St)←
∑
St−1

P (St | St−1)αt−1(St−1)
2: A← z(|S|)
3: B ← P (Ot | St)
4: C ← o(|S|)
5: m← min(d̂, t)
6: for d = 1 to m− 1 do
7: A← A+ [P (d | St−d) ·B · βt−d+1(St−d+1)]
8: B ← B · P (Ot−d | St−d)
9: C ← C − P (d | St−d)

10: end for
11: αt(St)← η (A+ [C · P (Ot−m | St−m) · βt−m+1(St−m+1)])
12: return αt(St)

Note that z(n) is a vector of zeroes and o(n) is a vector of ones, both with size n. The hidden

semi-Markov model update begins by computing the partial message βt(St) on line 1. This mes-

sage is equivalent to the previous full message αt−1(St−1) multiplied by the transition function to

account for opponent movement (see Equation 4.14). However, βt(St) does not yet account for ob-

servations and the values it contains are not normalized. Algorithm 2 relies on a history of d̂ partial

messages, which can be constructed and stored on each update in a manner similar to that of the full

messages (that is, βt(St) is computed when αt(St) is computed).

28

βt(St) =
∑
St−1

P (St | St−1)αt−1(St−1) (4.14)

On lines 2 through 5, several vectors are initialized to either ones or zeros and a threshold m

is set to either the largest possible duration value or the current time step, whichever is less. Line

6 begins the main loop that incrementally builds the posterior distribution from the past m partial

messages. Line 7 updates the vectorA, which serves as an intermediate computation of the posterior.

Specifically, A is incremented by the partial message generated at time t−d+1, multiplied by both

B and the probability of transitioning after d time steps. Vector B acts as a filter, accumulating

observation probabilities at line 8 on each iteration of the loop. In this way, if the system were to

wait d time steps before transitioning, any estimation must be filtered by all the observations that

were emitted within the past d time steps. On line 9, vector C records the duration probabilities.

After the loop has finished processing, C will contain any “remaining” duration values that were not

applied to A on line 7. Finally, line 12 stores the complete posterior distribution in αt(S) using C

as the probability of transitioning after m time steps.

4.4 Particle Filters

The defining attributes of hidden Markov models are that the state space is assumed to be both

discrete and finite and that the system changes states according to a Markovian transition policy. If

the system does operate according to these conditions, then the HMM provides an optimal solution to

the DSE problem. However, for systems that do not, some error may be introduced in the messages.

Recall the car example and assume that the HMM models system states as individual city streets.

Although the car can be positioned at many different GPS coordinates along a given street, a single

probability represents the likelihood of the car driving anywhere on the street. Modeling states at

the street level can incur some error. For example, though the street probability may be large, the

likelihood of the car occupying lanes with oncoming traffic should be close to 0. This error can be

mitigated by reducing the state size at the cost of increasing the number of states required to cover

the city. However, the error may only be eliminated completely by modeling an infinite number of

states.

An alternative to the HMM is the particle filter (PF), a model that represents the message αt

by a set of weighted particles X = {(wi, pi), i = 1, ..., n} where weights conform to
∑
i w

i = 1

and particles pi are scalar vectors. These particles are an approximation (specifically, a Monte Carlo

sampling) of the continuous form of the message. In this way, a continuous message can be achieved

by increasing the number of particles n towards infinity (Equation 4.15).

P (St | O1:t) = lim
i→∞

∑
i

wit δSt−pi
t

(4.15)

29

While there are many types of PFs, each tailored to particular assumptions made about the

domain, this work uses a general variant: sampling importance resampling (SIR).3 An SIR particle

filter uses two techniques to generate a distribution of particles representing αt, both of which are

presented in the following subsections.

4.4.1 Importance Sampling

On each time step t, the goal of the particle filter update process is to produce a set of n particles

that approximates the message αt. The first solution that may come to mind is to sample particles

directly from αt. Unfortunately, this approach is rarely used in practice as it may be computationally

intensive to sample from αt.

Importance sampling is a technique used to estimate EQ(x)f(x) where f(x) is a random vari-

able and Q(x) is a distribution that should not (or cannot) be sampled directly. Instead, points can

be sampled from a known distribution R(x), referred to as the proposal distribution, and then cor-

recting the results by importance weights w(x) = Q(x)
R(x) . This method is shown to be sound by

Equation 4.19, which presents the equality of EQ(x)f(x) and ER(x)f(x)w(x).

EQ(x)f(x) =
∫
x

f(x)Q(x) (4.16)

=
∫
x

f(x)
Q(x)
R(x)

R(x) (4.17)

=
∫
x

f(x)w(x)R(x) (4.18)

= ER(x)f(x)w(x) (4.19)

The SIR particle filter defines Q(x) = αt = P (pt | O1:t), the distribution to be represented

by sampled particles. By expanding Q(x) to the full Bayesian filter form (Equation 4.5), the

proposal distribution is chosen to be R(x) = P (pt | pt−1), leaving the weights to be defined as

wit = P (Ot | pii) [3].4 Thus, given a previous set of particles Xt−1 sampled from αt−1, an approx-

imation of Q(x) can be generated by sampling particles from the transition function P (pt | pit−1)

and weighting them by the observation function P (Ot | pit).

4.4.2 Resampling

After several updates, a phenomenon called degeneracy often occurs where a few particles accumu-

late relatively large weights compared to the others. Maintaining a majority of particles with low

weights is undesirable because the particle filter is reduced to a select few possibilities with any

degree of “importance”. To combat this trend, an SIR particle filter resamples all particles (with
3See the tutorial by Arulampalam et al. for an overview of other particle filter variants [3].
4Although it is possible for both the proposal distribution and importance weights to be switched, the choices presented

here are standard practice for SIR particle filters.

30

replacement) from the new weighted distribution and the weights are set to uniform probabilities.

This process redistributes outliers around particles with high weights, thus providing a more accurate

representation of αt.

Algorithm 3 shows the implementation of an SIR particle filter.5 Note that lines 1 through 6

correspond to importance sampling process while lines 7 through 11 resample particles.

Algorithm 3 SIR Particle Filter update function
Require: A set of particles Xt−1

Require: Observation Ot
1: X̂t ← 0
2: Xt ← 0
3: for i = 1 to |Xt−1| do
4: sample pit ∼ P (pt | pit−1)
5: wit ← P (Ot | pit)
6: X̂t ← X̂t

⋃
{(pit, wit)}

7: end for
8: for i = 1 to |X̂t| do
9: sample pit ∼ X̂t

10: wit ← (|X̂t|)−1

11: X̂t ← X̂t

⋃
{(pit, wit)}

12: end for
13: return Xt

4.5 Hidden Markov Models versus Particle Filters

Although both hidden Markov models and particle filters are solutions to the DSE problem, each

technique has its own advantages and disadvantages. As mentioned in Section 4.3, hidden Markov

models assume that the state space is discrete and finite. While this simplification results in a com-

pact solution to the DSE problem, the computation time required to update HMMs increases with

the number of states. Thus for large domains HMMs become prohibitively expensive to compute.

In contrast, particle filters can model a distribution with potentially greater fidelity than that of

HMMs because they do not make the same assumptions about the state space. PFs can also be

adapted to associate particles with a duration counter similar to that of HSMMs, which will be ex-

plained in Chapter 5. Nominatively, the computation costs of PF updates scale only with the number

of particles, as opposed to the number of system states. Yet, there are two drawbacks which must be

noted. First, a large number of particles must be maintained by a PF to accurately represent complex

distributions with many state variables. Second, while resampling does help reduce degeneracy, it

comes at the cost of repositioning outliers close to other particles (a phenomenon called sample

impoverishment). Both of these issues can increase the time required to run particle filter update

function.

5The notation wi
t and pi

t corresponds to the appropriate values of particles in Xt.

31

Chapter 5

Proposed Approach

This chapter presents the primary contribution of this thesis: the design and implementation of pre-

dictors. These predictors are based on the hidden semi-Markov model and particle filter techniques

described in Chapter 4, which are herein simply referred to as motion models. The following section

discusses the general structure of a predictor and explains how motion models are incorporated into

this structure. Section 5.3 details how the prior, transition, and duration functions for models can be

learned from game log data. As well, this section also describes a method used to compute the values

of the observation function online. Finally, Section 5.4 explains how models are managed during

the course of a game, particularly when special events occur such as the sighting of an opponent and

the announcement of a player being eliminated from the game.

5.1 Joint and Factored Models

To use hidden semi-Markov models and particle filters for predicting opponent positions, the predic-

tion problem must be formulated in terms of a discrete DSE problem. Conceptually, a model should

always maintain an estimation of each opponent’s position even as opponents move throughout the

game environment. This can be achieved by treating opponents as the system of the DSE problem.

Because a system must always reside in one of a finite number of states, the game environment is

partitioned intoH = (h1, h2, ..., hi) regions and each opponent is required to occupy a single region

at all times.

There are two common ways to represent opponent positions by motion models. One method is

to estimate the joint position of all opponents. This technique uses a single model whose state space

is defined byHn (where n is the number of opponents alive), essentially the Cartesian product of all

regions occupied by opponents. A joint-position model has strong representational power because

synchronization among enemy movements can be encoded in the transition and duration functions.

In effect, this allows strategies and tactics involving more than one player to be learned from game-

play data. Unfortunately, the state space grows exponentially with the number of opponents being

tracked, a drawback that hinders the practicality of this technique. This drawback becomes prevalent

32

Figure 5.1: Structural differences between joint (left) and factored (right) predictors. Predictions 1
through N define the full prediction vector.

when specifying the transition function. For a modest partitioning of 100 regions and tracking 5 op-

ponents, there are 1019 probabilities that must be stored when using a tabular format, an intractable

task for any current computer. Even if sufficient memory were available, a significant amount of

training data would be required to learn these probabilities and any calculation involving the whole

transition function could not be computed in an online scenario.

The alternative method is to use a factored representation of opponent positions. This tech-

nique uses several models to track opponents in a game, namely one motion model per opponent

alive. In contrast to the joint representation, the state space of each factored model is defined by

H . Unfortunately, the transition and duration functions in this representation are unable to capture

any associations between enemy movements as each model is completely independent of the oth-

ers. However, the computations required to produce a prediction are tractable and comparatively

little data is needed for training due to the significantly reduced state space. Figure 5.1 illustrates

the structural differences between predictors using these two different formulations. The factored

representation is adopted for predictors in this work.

5.2 Predictor Anatomy

A predictor is responsible for maintaining an estimate of each opponent’s position. By using a

factored state representation, the predictor need only manage the motion models themselves; the

task of updating an opponent position is contained within an individual model and is abstracted

from the predictor. On each time step, a predictor performs four key operations in the following

order:

1. Deallocate models to ensure that the total number is equal to the number of opponents alive.

2. Associate each sighting of an opponent (if any) with a unique model.

3. Update all models to the current time step.

4. Generate a prediction from each model.

33

The implementation of the first two operations are independent of the model type being used (be

it HSMMs or PFs) and are discussed in Section 5.4. In contrast, the third and fourth operations are

particular to each model type and are detailed in the following subsections.

5.2.1 Hidden Semi-Markov Model Configuration

To utilize an HSMM for predicting an opponent’s position, the map of the game environment is

discretized via a two-dimensional grid G. By setting H = G, each grid cell is considered a state

of the system (i.e., a possible location for an opponent to occupy). The likelihood of the opponent

occupying grid cell g ∈ G at time t is determined by calculating P (St = g | O1:t). Note that for a

large partitioning of a game map, there may be many places for an opponent to reside within a single

grid cell. Therefore an HSMM’s prediction is the coordinate pair corresponding to the center of the

grid cell with the highest probability, or more formally arg max
g∈G

P (St = g | O1:t).

5.2.2 Particle Filter Configuration

The formulation of the particle filter in Section 4.4 cannot be applied directly to the prediction

problem; the proposal distribution and importance weights as presented are undefined. Darken and

Anderegg propose a configuration of a particle filter for predicting opponent positions [15]. This

work implements their method and extends it by incorporating the use of training data and allowing

players to be stationary for several time steps. Specifically, the prior, transition function, duration

function, and grid required by HSMMs are used as a basis for constructing the proposal distribution

and importance weights.

Unlike an HSMM, a particle filter does not depend on the set of possible system states to be

finite. Thus, setting H = R2 enables each particle to act as a candidate coordinate of the opponent’s

position. Intuitively, these particles should be moved about the map according to the motion models.

Algorithm 4 shows the update process for generating a new set of particles from the particles of the

previous time step. Let CG(p) ∈ G represent the grid cell that contains particle p. On each time step

t, current particle pit is produced by adding a movement vector mi ∈ R2 to previous particle pit−1

(line 7). The vector is constructed from two pieces of information: a target qi ∈ R2, the center of a

grid cell sampled from the transition function (line 3), and a counter di sampled from the duration

function (line 4). Note that mi is recalculated with a new target and velocity on time steps where pit
enters the grid cell of target qi (line 2). Each importance weight wi is calculated as the probability

of observing O given that opponent is indeed located at pit (line 8). Finally, the resampling phase

of the particle filter takes place on lines 10 through 15 with the function returning the new set of

particles Y as well as updated movement vectors and targets.

A particle filter’s prediction is generated by randomly selecting a particle. Although this may

appear to be a naı̈ve selection mechanism, this policy is chosen to contrast with the HSMM predic-

tion policy. A PF prediction reflects the variance of the posterior distribution of particles. There

34

Algorithm 4 Particle Filter
Require: A set of weighted particles X
Require: A set of targets Q
Require: A set of movement vectors M
Require: Observation O
Ensure: |X| = |Q| = |M |

1: for i = 1 to |X| do
2: if CG(pi) = CG(qi) then
3: sample qi ∼ P (St | St−1 = CG(pi))
4: sample d ∼ P (D | St = CG(qi))
5: mi ← (qi − pi)d−1

6: end if
7: pi ← pi +mi

8: wi ← P (O | St = CG(pi))
9: end for

10: for i = 1 to |X| do
11: sample pj ∼ X
12: qi ← qj

13: mi ← mj

14: Y ← Y
⋃
{(pj , |X|−1)}

15: end for
16: return Y,Q,M

is a good chance the prediction will be selected from areas of the map with high concentrations of

particles and less so in outlying regions. The effectiveness of both the HSMM and PF prediction

methods are evaluated in Chapter 6.

5.3 Model Training

Chapter 3.3 proposed that perception reasoning and opponent modeling can be used to inform a

predictor’s estimates of opponent positions. This section discusses how these two techniques can be

incorporated into motion models, specifically by encoding expert human gameplay in the transition

and duration functions and by representing the sensory information perceived by friendly players in

the observation functions.

5.3.1 Building the Prior

Every motion model uses a common prior particular to a given map and team. Given the set of

possible starting locations for opponentsK = {k | k ∈ R2}, the prior is constructed as a distribution

over G as defined by Equation 5.1.

P (S1 = g) =
∑
k δ(CG(k), g)
|K|

(5.1)

35

5.3.2 Building the Transition and Duration Functions

The transition and duration functions are used to encode the movement directions and velocities of

opponents respectively. Both of the functions can be learned simultaneously by analyzing player

trajectories from several game logs. Game logs store player histories as a set of game state “snap-

shots” or frames; that is, at certain time intervals the world coordinates, view cone, health, and other

attributes are recorded for each player. This format provides a convenient way to update motion

models: time steps are fixed to occur with the same frequency at which frames are recorded. By

varying the rate at which game frames are recorded, motion models can be adjusted to take advantage

of the amount of computation power available.

A player’s trajectory is defined as the sequence of map coordinates J = {j1, j2,, jn} that

the player occupies on each game frame. Algorithm 5 iterates over all trajectories in the game logs

to build the transition and duration functions, represented in a tabular format as matrices T and

D respectively. The algorithm keeps track of the previous grid cell a player occupies as the game

progresses. On frame t, if a player is observed to reside in the same cell as on the previous frame

(i.e., jt = jt−1), a counter d is incremented by 1 (lines 9 through 14). When the player transitions to

a different cell (i.e., jt 6= jt−1), the values T [jt, jt−1] and D[d, jt−1] are incremented and d is reset

(lines 15 and 16). Once all trajectories have been analyzed, both T and D are normalized resulting

in the transition and duration functions respectively (lines 18 through 21).

5.3.3 Building the Observation Function

The observation function is used to represent the possible areas of the map visible to members of

the friendly team on the current time step. Because these areas change as players move around on

the map, the observation function must be constructed online. To make this task tractable, the game

environment is discretized via a three-dimensional grid V . Binary values denoting a clear line-of-

sight (LOS) between the center coordinates of each pair of visibility cubes are computed offline.

The visibility grid is used as a lookup table to quickly determine the areas of the map visible from a

given location. The use of V for LOS calculations introduces some error (e.g., not all parts of cube

may share the same LOS as its center coordinate) which can be mitigated by decreasing the size of

cubes. However, doing so will increase the memory required by the lookup table.

The process of constructing the observation function begins by determining the set of cubes

W ⊆ V visible to at least one player on the friendly team. There are three steps involved in

computing W which is repeated for each friendly player in the game (an example is shown in

Figure 5.2):

1. Identify CV (h), the visibility cube containing a friendly’s head located at coordinates h.

2. Determine the set of visibility cubes W ′ with unobstructed line-of-sight to CV (h).

3. Filter W ′ to elements that are within the player’s view cone. These elements compose W .

36

Algorithm 5 Transition and Duration Construction
Require: A set of game logs L
Require: Map grid G
Require: Transition matrix T
Require: Duration matrix D
Ensure: T [x, y] = 0, ∀x, y
Ensure: D[x, y] = 0, ∀x, y

1: for all game logs l in L do
2: for all player trajectories J in l do
3: n← |J |
4: f ← 1
5: gcur ← CG(jf)
6: increment f
7: while (f ≤ n) do
8: d← 0
9: repeat

10: gprev ← gcur
11: gcur ← CG(jf)
12: increment d
13: increment f
14: until (gcur 6= gprev or f > n)
15: increment T [gcur, gprev]
16: increment D[d, gcur]
17: end while
18: for all g in G do
19: normalize T [x, g] over x
20: normalize D[x, g] over x
21: end for
22: end for
23: end for
24: return T, D

37

Figure 5.2: Example computing W . Left: A friendly player (orange arrow) is mapped to the con-
taining visibility cube (step 1). Center: The green centers are visible while the red center has an
obstructed LOS (step 2). Right: The green center is within the player’s field-of-view (step 3).

Once W is known, the observation function can be defined by mapping the visibility cubes in

W to their respective grid cells. Let X(g) represent the set of all visibility cubes whose centers

(disregarding the z-coordinate) are contained in grid cell g. Equation 5.2 shows how X(g) is used

to evaluate P (Ot | St = g). Note that this process requires the dimensions of the grid cells to be

larger or equal to the dimensions of the visibility cubes.1

As well, Equation 5.2 calculates the weights for particles using the method described above

(effectively line 8 of Algorithm 4). However, in the event that the dimensions of grid cells and

visibility cubes are not equal, another two-dimensional grid G′ with the same cell sizes as V can

be substituted for G. This ensures that only the elements of V that are directly above and below a

grid cell g′ ∈ G′ are considered when X(g′) is evaluated. All experiments in Chapter 6 use this

enhancement for particle filters.

P (Ot | St = g) = 1− |W ∩X(g)|
|X(g)|

(5.2)

wit = P (Ot | St = CG(pit)) (5.3)

P (Ot | St) is a vector of size |G| with each value bounded in the range [0, 1]. Intuitively, each

value represents the portion of a corresponding grid cell in G that is visible to the friendly team.

For example, if grid cell g is completely observed, then P (Ot | St = g) = 0 denoting that it is

impossible for an opponent to reside in g. Motion models reflect this by weighting intermediate

probability distributions by the observation function. Consider Equation 5.4, the discrete Bayesian

filter reprinted from Section 4.3. With regards to the above example, αt(S = g) evaluates to 0 and

therefore no prediction should be made at g.

1By allowing the dimensions of elements in V and G to be independent, one can control sizes of the visibility cubes to
be as small as possible within practical limits. A finer visibility grid produces more accurate LOS results.

38

αt(S = g) = η P (Ot | S = g)
∑
S′

P (S = g | S′)αt−1(S′) (5.4)

5.4 Model Management

The previous sections in this chapter discussed how motion models update their distributions and

the processes for generating predictions. The predictor executes these operations across all models

simultaneously, ensuring that the time steps of all models are synchronized. Occasionally, an event

occurs at which time special updates must be made to a particular model. Specifically, when an

opponent is sighted by a friendly player, the predictor must match that sighting to a model and

update it accordingly. Similarly, when an opponent is eliminated from the game, a model must

be chosen and removed to maintain the one-to-one ratio of models to opponents. The policies for

dealing with these two situations are presented below.

If an opponent is sighted in a grid cell g ∈ G at time t, the posterior distribution of the motion

model tracking that opponent is explicitly adjusted such that P (St = g | O1:t) = 1 and P (St 6=

g | O1:t) = 0. This constrains the distribution to the grid cell containing the opponent. However,

which model should receive this update? The prediction problem assumes that all opponents are

indistinguishable from each other thus prohibiting sightings from being directly associated with a

model. The approach used in this work is to update the model that has the “greatest likelihood” of

sighting the opponent at his current location; that is, the model with the highest value for P (St =

g | O1:t−1) is matched and all others update normally.

One drawback to this policy is that it is possible for a single model to be matched with sightings

of two different opponents on different time steps. While this is undesirable (ideally two separate

models should receive updates), it is not an illogical matching. A model is matched with two (or

more) different sightings only when the same sequence of sightings could have been produced by a

single opponent. Unfortunately, an incorrect matching can have lasting consequences on the quality

of a model’s predictions. Consider the worst case where only single sightings are observed and ev-

ery sighting is assigned to a single predictor. The remaining predictors no longer receive any special

updates and as a result their distributions begin to become stationary. The maximum probability in

such a distribution would be very low, a situation that could be avoided had the sightings been di-

vided among the predictors with another matching policy. The effects of different matching policies

on predictor performance would be worth investigating in future research.

If 2 or more opponents are sighted on the same time step, the assignment process is expanded

to match the grid cells (g1, ..., gn) containing sighted opponents to motion models. The chosen

matching is determined by Equation 5.5, specifically the one that results in the maximal sum of

P (St = gi | O1:t−1) where π(i) is a permutation over the motion models. Note that ties are bro-

ken randomly when calculating the summations. Thus, for a single sighting in grid cell g where

39

Figure 5.3: The internal representations of predictors using both hidden semi-Markov models (left)
and particle filters (right). Green arrows represent friendly players while the red arrows represent
opponents. The blue hue squares in the left image illustrate the posterior distribution; the brighter
the colour, the greater the likelihood of an opponent occupying the square. The blue dots in the right
image denote individual particles.

the probability P (St = g | O1:t−1) = 0 for each predictor, the sighting is assigned to a random

predictor.

arg max
π

n∑
i=1

P (St = gi | O1:t−1)π(i) (5.5)

Finally, when an opponent is eliminated from the game, models in a similar manner by matching

the models to the last grid cells occupied by dead opponents. A model matched at this stage is

removed from the predictor for the remainder of the game.

5.5 Summary

This chapter detailed how hidden semi-Markov models and particle filters can be configured to pre-

dict opponent positions. A graphical representation of these models in action is shown in Figure 5.3.

The posterior distribution of the HSMM is depicted by blue hue squares, which are few in number

but represent general areas of the map. In contrast, the distribution of the particle filter is approxi-

mated by numerous blue dots that are not confined to the center of grid cells. Although these two

techniques are based on the Bayesian filter, the both offer two unique ways to generate opponent

predictions. The performances of these models are compared in Chapter 6.

40

Chapter 6

Empirical Evaluation

This chapter presents an analysis of predictor performance in real-world scenarios. The following

section introduces Counter-Strike: Source (CS:S), an online multiplayer FPS video game developed

by Valve Software [48]. This game is used as a testbed to evaluate the abilities of predictors to model

opponent behaviour, perform in real-time, and accurately predict opponent locations. This section

also explains the game rules, common strategies, and the process used to collect CS:S game logs for

testing. To compare predictors to humans at the prediction task, an online user study was held to

capture the predictions for use in believability testing. Section 6.2 describes the design of the user

study and provides a walkthrough of the user study. Finally, the experiment setup and evaluation is

detailed in Sections 6.3 and 6.3.1 with results presented in Section 6.4.

6.1 Counter-Strike: Source

Counter-Strike: Source is a desirable testbed for a couple of reasons. First, Counter-Strike is one the

most popular online FPS franchises, often achieving daily peaks of 80 000 people playing simultane-

ously [46]. The game’s large player base alleviated several experiment setup issues (e.g., acquiring

an ample amount of game logs containing expert gameplay) and its general popularity helped to

draw participants to the user study.

Second, players engage in complex movement during CS:S games. When combat action occurs,

players can be eliminated with a single shot to their avatar’s head and those that manage to stay

alive have no way to replenish their health. Because the survivability of a player is so volatile,

typically the team with the greater number of players wins the game. Rayner shows that for both

bot and human gameplay, CS:S teams that outnumber their opponents (even by one player) have a

probability of winning greater than 0.5 [54]. To ensure the greatest chance of survival, expert human

players resort to strategies and tactics such as utilizing cover effectively, approaching danger zones

cautiously, and advancing quickly while teammates provide covering fire. Predicting the location

of players executing these complex movements poses a significant challenge for both predictors and

humans alike.

41

6.1.1 Game Rules and Objectives

One of the defining features of Counter-Strike is its goal-based gameplay.1 Specifically, two teams

are pitted against each other: the Terrorists and the Counter-Terrorists. The Terrorists are tasked

with planting a bomb at one of two bomb sites (see Figure 6.1). In contrast, the role of the Counter-

Terrorists is to prevent the Terrorists from setting off the bomb.

Before a game commences, each player’s avatar appears in their team’s start zone or spawn area.

Players are unable to move during this intermediate phase called freeze time. However, they are able

to purchase weapons, armour, grenades, and other miscellaneous equipment in preparation for the

current game. Players must acquire what they need during this phase; no health-replenishing items

are present on the game map. It is also at this time that a random Terrorist player is given the bomb.

When the game timer starts, all players are allowed to leave their spawn area and advance

throughout the map. During this time, either team can win by eliminating all members of the op-

posing team. If the Terrorists fail to plant the bomb within a specified time limit, then the Counter-

Terrorists win. However, if the bomb is been planted, the only way the Counter-Terrorists can win

is by defusing the bomb before its timer goes off. In this situation, the Terrorists win if the bomb

explodes or they eliminate all Counter-Terrorist players.

If a player is eliminated during the course of a game, they must wait until the next game to play

again. Although waiting may appear to be an inconvenience, a typical game lasts anywhere from

three to five minutes. The relatively short duration of each CS:S round allows several rounds to be

played in sequence.

Figure 6.1: Left: Top-down view of the “de dust2” map [48]. Right: A schematic view of the same
map. Gray rectangles denote bomb sites. The Terrorist spawn area is represented by the bottom
gray oval and the Counter-Terrorist spawn area by the top gray oval. The solid white lines at the top
correspond to distances of 2000, 1000 and 500 coordinate units (longest to shortest).

1Although CS:S allows for users to create custom maps and game rules, the experiments presented herein only use the
“defuse” game mode, a ruleset that is commonly played in both casual online games and professional tournaments.

42

6.1.2 Collecting Gameplay Data

A database of 190 CS:S game logs was collected at Fragapalooza 2006 and 2007, an annual video

game competition held in Edmonton, Canada [17].2 This venue was chosen to ensure that the game

logs contained championship-level gameplay; all players gave their best efforts and no intentionally

foolish behaviour was captured (e.g., players running aimlessly through the game environment).

All matches are played on the map “de dust2”, a popular choice among CS:S players for its

asymmetric but fair design (see Figure 6.1). Also, each match situated five Terrorists versus five

Counter-Terrorists and lasted longer than thirty seconds. The collected games were compiled into a

database and then analyzed to make sure that only complete games were stored and that no players

left the game during a round. Additionally, the freeze time phase was removed from the beginning

of each log file.

The game logs collected serve two purposes for experiments. First, they are used to train motion

models for predictors. A total of 140 logs were randomly selected to be used only for training.

Second, they are used as test games for evaluating the performance of predictors. An experimental

trial involves selecting a test log and then iterating over all game frames, requesting a prediction

vector from a predictor at each frame. The remaining 50 game logs were used for this purpose.

6.2 The User Study

In Chapter 2, two error measures were defined for estimating the performance of predictors: Predic-

tion Accuracy Error (PAE) and Human Similarity Error (HSE). Recall that both of these measures

work by comparing a prediction vector to a “reference” vector. For PAE, the reference vector is com-

posed of the opponents’ true locations; this information can easily be found within the testing log.

However, HSE compares predictors to humans and thus a source of human predictions is required

to form reference vectors for this measure. The user study is designed to test human participants at

the prediction task and collect the appropriate information to complete the HSE measure.

The user study consists of two major components: the website and the application. The web-

site serves an online portal for participants to sign up for the user study, presents textual and video

instructions, administers questionnaires, and provides a download link for the application. The on-

line format was chosen because it made the user study accessible to a global audience, enabled any

person to participate (as long as they had an internet connection and ran the Windows operating sys-

tem), and allowed participants to complete parts of the study at their own pace. The application is a

stand-alone program that presents test games to participants through a user-friendly interface. Par-

ticipants are only given the same game information available to predictors must annotate the game

logs with their best guesses as to where opponents are located at each point in time. Sections 6.2.1

and 6.2.2 describe the entire user study process from the perspective of a participant.

2Special thanks to Jeffery Grajkowski and other staff of the Alberta Ingenuity Centre for Machine Learning (AICML)
who facilitated the collection of the gameplay data.

43

6.2.1 The Website

To participate in the user study, a participant must first create an account on the user study website.

This account is used to associate the parts of the study completed by the participant (e.g., game

annotations, questionnaire answers) to a unique username. In this way, the participant is able to login

to the website at their leisure without losing any previous work. To preserve the anonymity of the

participant, no identifying information is collected (e.g., name, email address) and any potentially-

identifying information (e.g., username, password) is stored in an encrypted format. Due to this

privacy policy, it is impossible to recover a participant’s username or password if they happen to

forget either of them. As such, the main page of the website instructs all participants to create a new

account if this situation does arise.

Once an account is created, the participant is presented with a sequence of webpages called

the tutorial. The tutorial is designed to guide a new participant through the user study process.

The participant is able to navigate the sequence using “Next” and “Back” links available on each

webpage. The following list details the tutorial pages in order and describes the purposes of each.

• Introduction: a welcome page describing the purpose of the user study and how the tutorial

functions.

• Briefing Questionnaire: an optional questionnaire to be completed at the participant’s leisure.

This questionnaire requests the participant’s age group, gender, and experience playing both

CS:S and FPS video games in general. The full list of questions can be found in Appendix C.

• Instructions: a five minute instructional video on how to use the application can be viewed or

downloaded. Additional information such as hotkeys and solutions to potential (but unlikely)

interface issues are presented here.

• Download: a link to the application is provided as well as system requirements to run the

program. The application was only compiled for use on computers supporting Microsoft

Windows XP or Vista.

• Intermission: the participant is now instructed to run the application and annotate at least one

game. Once complete, the participant should continue the tutorial (though there is nothing to

prevent the participant from proceeding anyways).

• Debriefing Questionnaire: another optional questionnaire to be completed at the participant’s

leisure. This questionnaire allows the participant to elaborate on any ideas or tricks they used

to annotate games and provides a place for the participant to report general comments about

the user study. Again, the full list of questions can be found in Appendix C.

• My Results: a comprehensive a breakdown of the participant’s annotations, ranking his per-

formance to that of the other participants in the user study and as well as a predictor in devel-

44

opment. This page offers some incentive for the participant to annotate as many games as he

wishes in hopes of improving their overall scores.

• Thank You: a complementary page congratulating the participant for completing the tutorial

and encouraging the annotation of additional games.

Once the participant has reached the “Thank You” page, a menu bar appears allowing direct

navigation to any tutorial webpage as well as four new ones described below.

• My Profile: this page provides the participant with the options to change their password and

delete their account. If the participant chooses the latter option, he must confirm his decision

by clicking a message prompt. All data collected from the user including questionnaire an-

swers and game log annotations are deleted and the participant is signed out of their account.

• Preferences: participants can customize the game log selection mechanism of the user study

application by setting filter options on the preferences page. In particular, a participant can

restrict the game log selection to individual teams he wishes to annotate (the default setting

allows test logs to be selected from both teams).

• Support: participants can reference this page for troubleshooting help regarding the user

study website and/or application.

• Contact: contact information of the researchers running the user study. This is also available

when creating a new user study account and thus participants do not need to be logged in to

access this webpage.

Participants may sign out of their account at any time by clicking a “Logout” link available on

all webpages.

6.2.2 The Application

Upon running the application, the participant is presented with a window displaying a top-down

view of the “de dust2” map (Figure 6.1). A game drawn randomly from the test logs is loaded

and the participant is allied with a particular team. Metadata about the current game such as time

elapsed and number of players alive is displayed on a bar at the top of the window. Player locations

are displayed on the map by arrows pointing in the direction which the corresponding player is

facing. For example, members of the friendly team are represented by green arrows in Figure 6.2.

A semi-transparent teal overlay highlights the areas of the map that the friendly players are able to

see. While friendly player arrows are visible at all times, opponent arrows remain hidden from the

participant’s view unless observed. For example, the red arrow in Figure 6.2a is located in a friendly

player’s field of view and thus made visible to the participant.

45

(a) A game frame requiring annotation with an observed
opponent. Because observed opponents are automat-
ically marked, the participant needs to mark only the
three remaining unobserved opponents.

(b) A game frame requiring confirmation. Although
five marks have been placed, the participant must click
the “Confirm Marks” button to continue on with the
game.

(c) A game frame in practice mode with a dead oppo-
nent. The dead opponent is represented as a black ar-
row.

(d) A message warning the participant that he has not
completely annotated the current game. This mes-
sage appears when the participant clicks on either the
“Mode” or “New Game” buttons.

Figure 6.2: Screenshots of the User Study application.

46

The participant is able to watch the game using the “Auto-Advance” button, which advances

the game log frame by frame. At certain frames during the game, the participant is required to

click on the map with his computer mouse, declaring his best guesses as to the current positions

of unobserved opponents. Clicking places a red dot on the map, which may be cleared by clicking

the “Clear” button (observed opponents are automatically “clicked” as is the case in Figure 6.2a).

One click for each opponent must be made in order to click the “Confirm” button which allows the

participant to continue with the rest of the game (Figure 6.2b). Once the end of the game is reached,

the participant is able to upload their predictions to the user study website. No partially annotated

games are allowed to be submitted.

Occasionally a special event may occur during a game. The participant is informed via a pop-up

message if a global notice was sent to all players (e.g., the bomb was planted, the game ends). Also,

if a player happens to die, the arrow representing the player is displayed in black for one frame (see

Figure 6.2c), ensuring that the participant is aware of the reduction in player numbers. At any time

the participant may choose to quit the program. In this situation, a dialog box is displayed warning

the participant that leaving now will result in the loss of their annotations.

Several measures are taken to prevent potential biases from affecting predictions. Although

participants are able to view past frames by pressing the arrow keys, they are not allowed to edit their

past annotations, thus preventing the usage of future observations to improve their predictions. As

well, a game cannot be annotated by the same participant more than once. After a game is submitted,

it is removed from the pool of games that the participant can annotate. To ease the learning curve

associated with predicting from a top-down view, participants are able to switch to a practice mode

at any time by clicking the “Mode” button. The practice mode allows participants to display the

locations of enemy places by toggling the “Observations” button, however they are unable to upload

their annotations to the user study website. To reduce participant fatigue, the application only allows

every fifth game log frame to be annotated and no prediction time limit is imposed.

6.2.3 Statistics

In total, 137 people created accounts on the user study website however only 28 participants pro-

vided annotations. Of the 28 participants, only one identified herself as a female in the briefing

questionnaire. The participants annotated 98 games, 50 from the perspective of the Terrorists and

48 from the Counter-Terrorists. Unfortunately, not all humans are equally skilled at tracking mov-

ing objects. Green and Bavelier show that video game players have increased attentional capacity

compared to persons who do not play video games [19]. Also, having a prior knowledge of typical

CS:S gameplay is an advantage when predicting opponent positions. To compare predictors with a

challenging alternative, only the annotations provided by human experts are used in the following

experiments. An “expert” is defined as a participant who claims to have at least one year experience

playing CS:S and 25 participants met this criteria. As such, the Human Similarity Error measure

47

utilizes the 38 test games in which Terrorist positions were predicted by human experts (41 games

for Counter-Terrorists).

6.3 Experiment Setup

Because hidden semi-Markov models and particle filters are general frameworks, there are several

configurable properties that are inherited by predictors. Table 6.1 lists all the variable parameters

of a predictor and the corresponding values tested. The “Model Type” parameter indicates that a

predictor uses semi-hidden Markov models or particle filters with either 500, 1000, or 2000 particles

each. For example, a PF(2000) predictor tracking five opponents would update 10 000 particles on

every time step. “Model Order” is discussed in detail in Section 6.4.4. The “Shared Data” parameter

represents how much training data is shared among the five motion models used in each predictor

(the purpose of this parameter is described in Section 6.4.3). Predictors sharing “All” of the data train

each model on all 140 training logs. In contrast, a “None” predictor splits the training logs randomly

into five groups and each group in turn is used to model a single opponent. Predictors sharing “Half”

of the data split the training longs randomly into two groups; the first group is shared across all

modes while the second group is split up in a manner similar to the “None” predictors. Finally,

“Grid Cell Size” denotes the coordinate unit length and width of grid cells in G. The dimensions

of these cells were chosen to keep a relatively consistent difference between the number of cells

composing each grid. In total, 384 unique predictors were constructed based on these properties and

their performance results are presented in Section 6.4.

Table 6.1: Experiment Parameters and Tested Values.

Parameter Values
Opposing Team Terrorist, Counter-Terrorist

Model Type HSMM, PF(500), PF(1000), PF(2000)
Model Order 1, 2
Shared Data None, Half, All

Grid Cell Size 550, 450, 400, 350, 325, 300, 275, 255

There are also several configuration parameters that are arbitrarily fixed for all experiments. The

dimensions of cubes in V is set to 100 coordinate units.3 As well, to make sure that calculations

involving the duration function remain tractable, the time limit in which the system can remain in

the same state (i.e., d̂) is set to 10. Therefore, if a trajectory in a game log indicates that the player

remains in a grid cell longer than 10 time steps, the player is assumed to have transitioned after the

tenth step. No self-transitions were allowed between states in the transition function. Finally, the

player’s view cone is limited to a 90◦ field-of-view.

3For comparison, a player’s in-game character stands 64 units high and can move at a maximum velocity of 320 units per
second.

48

6.3.1 Evaluating Performance

In all experiments, the performance of a predictor is measured by the Prediction Accuracy Error

(PAE) and Human Similarity Error (HSE). These two measures are reported in CS:S coordinate units

and quantify the performance of a predictor from several game frames over several testing game logs.

The error for a given game frame t can be represented by F (Xt, Yt) where Xt the prediction vector

and Yt is the reference vector. Specifically, Equation 6.1 is used to calculate F (Xt, Yt) where π is a

permutation over elements in Yt and nt is the number of opponents alive. In brief, this value is the

average error from a matching of predictions to reference points that minimizes the cumulative error

between matched pairs. The error for a game is then calculated as the average error from all frames

in the game. Finally, the PAE or HSE error reported for each predictor is the average error over all

50 testing game logs. A detailed explanation of this entire process can be found in Appendix A.

F (Xt, Yt) = min
π

1
nt

(
nt∑
i=1

D(xit, y
π(i)
t)

)
(6.1)

6.4 Experiment Results

This section presents the results of the thesis across four areas of interest. Section 6.4.1 compares and

contrasts predictors based on the “Model Type” parameter mentioned in Section 6.3. Section 6.4.2

evaluates the benefit of using trained motion models on human gameplay data. Section 6.4.3 inves-

tigates the effects of sharing various amounts of data among motion models during training. Finally,

the differences between using first-order and second-order models is analyzed in Section 6.4.4.

The goal of a predictor is to minimize both the PAE and HSE as much as possible. However,

these measures may be antagonistic at times; that is, in some situations the good performance of a

predictor on one measure negatively impacts its performance on the other. Given these two divergent

measures of success, how can one claim that a predictor is “better” than another? One solution is to

weight skillfulness and believability by some arbitrary “importance” values. However, this solution

relies on the opinion of the person interpreting the experiment results. An unbiased approach is

to focus on non-dominated performance. A predictor p is considered non-dominated if no other

predictor r exists such that: 1) all errors of r are equal to or less than those of p, and 2) r has at

least one error strictly less than that of p. The class of non-dominated predictors are called Pareto-

optimal and such predictors can be considered “no worse off” than any other in the class. Figure 6.3

illustrates how both dominated and non-dominated predictors can represented by a scatter plot.

6.4.1 Model Types

In Figures 6.6 and 6.7, two classes of predictors are plotted for each model type. The “Average”

class consists of a single point representing the average performance over all predictors sharing the

49

Figure 6.3: Examples of Pareto-optimal points on a scatter plot. The yellow line intersects those
points that form the Pareto frontier (i.e., are non-dominated). Left: The point connecting the red
lines is dominated by the point connecting the green lines. Right: The points connecting the green
lines are both non-dominated.

same model type. The “Pareto” class consists of all non-dominated predictors and thus more than

one point may be plotted for each model type. This latter class depicts the performance to be gained

if one were to spend time tuning parameters to a particular video game.

To evaluate the success of predictors, two performance thresholds are marked on the graphs by

dotted lines. These thresholds are drawn from the performance of human experts at the OLP task.

Figure 6.4 illustrates this error, which can be viewed in two ways: as the PAE of a human’s predic-

tions and as the HSE of a perfect predictor. With regards to Figures 6.6 and 6.7, the vertical dotted

lines represent the human experts’ PAE while the horizontal lines represent a perfect predictor’s

HSE. A prediction can score both a PAE and HSE of 0 only when the prediction, the reference point

specified by a human expert, and the opponent’s true location are the same coordinates. However,

this is often not the case and thus there is a limit on how low a predictor’s average error can be. The

diagonal dotted lines indicate the optimal performance achievable by any predictor; no predictor can

be plotted below these lines according to the following theorem.

Figure 6.4: Relationship of error measures (an extended version of Figure 2.3). The dotted line
denotes the error between a human’s prediction and the true position of an opponent.

50

Theorem 6.4.1. Let predictor performance be graphed as coordinates (x, y) on a scatter plot where

the x-axis and y-axis correspond to the PAE and HSE respectively. No point will fall in the triangle

formed by the x-axis, y-axis, and the line y = −x + z, where z is the average distance between

human predictions and actual opponent locations.

Proof. Let us rewrite the line equation from the perspective of a single predictor. Consider three

vectors of Cartesian points with size n: the actual locations of opponents O, human predictions H ,

and the predictor’s predictions P . The shortest in-game path between any pair of points (a, b) is

defined by the function D(a, b). Because the PAE and HSE measures represent the average distance

error over several predictions, we can replace y with avg(D(pi, hi)) and x with avg(D(pi, oi))

where i indexes each vector. In a similar way, z can be replaced by avg(D(oi, hi)). Figure 6.5

illustrates how this notation applies to Figures 6.6 and 6.7.

We aim to show that avg(D(pi, hi)) < − avg(D(pi, oi)) + avg(D(oi, hi)) is impossible. The

inequality can be written as avg(D(pi, hi))+avg(D(pi, oi)) < avg(D(oi, hi)). Let us assume that

a predictor performs within the region. Because avg(x) + avg(y) = avg(x+ y) (where x and y are

vectors of the same length), we can state avg(D(pi, hi)+D(pi, oi)) < avg(D(oi, hi)). If this latter

expression is true for the average, then it must also be true for (at least) one indexed set of points.

We denote this set by dropping the index: D(p, h)+D(p, o)) < D(o, h)). If we consider each point

to be a vertex of a triangle, the distances between these points form the triangle edges. However,

this inequality contradicts the triangle inequality: D(p, h) +D(p, o) ≥ D(o, h).

Figure 6.5: Relationship between D(pi, oi), D(pi, hi), and D(oi, hi).

Predicting Terrorist Opponents

Figure 6.6 illustrates the performance of predictors tracking players on the Terrorist team. Foremost,

two Pareto HSMM predictors display the best performance out of all four model types. Specifically,

they make more accurate predictions than human experts and any mistakes they make are closer

51

Table 6.2: Terrorist Pareto Predictor Performance with Mean Update Times per Model (± Standard
Error of the Mean).

Type Order Share Grid Size Mean PAE Mean HSE Mean Upd. Time
HSMM 1 None 450 1142.64 1179.29 0.55±0.11 ms

HSMM 1 None 550 1160.19 1168.18 0.26±0.04 ms

PF(500) 2 None 300 1240.13 1337.57 44.82±0.17 ms

PF(500) 2 Half 275 1253.25 1313.97 45.47±0.19 ms

PF(500) 2 Half 255 1259.8 1307.14 46.5±0.21 ms

PF(500) 2 Full 275 1274.4 1304.54 45.69±0.21 ms

PF(500) 2 None 255 1285.24 1290.49 46.62±0.22 ms

PF(1000) 2 Full 325 1223.04 1299.13 87.94±0.26 ms

PF(1000) 2 None 300 1226.11 1291.58 89.92±0.33 ms

PF(1000) 1 Full 275 1236.93 1283.93 91.5±0.42 ms

PF(1000) 1 None 350 1285.74 1278.47 86.64±0.25 ms

PF(2000) 2 Full 275 1181.5 1281.47 185.23±0.56 ms

PF(2000) 1 Full 325 1185.01 1273.39 178.59±0.5 ms

PF(2000) 1 None 300 1204.9 1236.91 181.69±0.53 ms

to human predictions than a perfect predictor. An interesting observation is that these predictors

use large grid cell sizes (see Table 6.2) and thus there are only a few map coordinates (namely,

the center of grid cells) where HSMM predictions are possible. These coordinates are spaced out

over the map, which may be an advantage in situations where an opponent location is relatively

uncertain. For example, at the beginning of the game, Terrorist players have the option to travel

along three divergent routes to the bomb sites. A large grid cell size forces the predictor to make

general estimates which helps to minimize the PAE when an opponent could be in one of several

places that are far apart.

Table 6.2 lists the configurations of each Pareto predictor plotted in Figure 6.6. The Pareto

HSMM predictors have a very small update time (less than 0.6 milliseconds) which makes them

suitable for implementation in a commercial video game.4 Although the Pareto PF predictors require

comparatively more time to execute an update, all motion models are highly parallel and may be

made practical by offloading computations to separate threads in systems with several CPU/GPU

cores.

With regards to the PF predictors, an expected trend is observed: these predictors have lower

HSE and PAE values as the number of particles increases. While the majority of these predictors do

not perform within the region formed by the dotted lines, the Average predictors for all model types

have a PAE within 100 coordinate units of the human experts’ performance. Because all model

types perform well across most grid cell sizes, the direction and velocity features seem sufficient to

capture Terrorist player movement effectively. Section 6.4.2 examines this particular issue in-depth.

4All experiments were run on a 2.8GHz Intel Core 2 processor with 2GB of RAM.

52

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 200 400 600 800 1000 1200 1400

H
um

an
 S

im
ila

rit
y

E
rr

or

Prediction Accuracy Error

Pareto HSMM
Pareto PF(500)

Pareto PF(1000)
Pareto PF(2000)
Average HSMM

Average PF(500)
Average PF(1000)
Average PF(2000)

 1000

 1050

 1100

 1150

 1200

 1250

 1300

 1350

 1400

 1000 1050 1100 1150 1200 1250 1300 1350

H
um

an
 S

im
ila

rit
y

E
rr

or

Prediction Accuracy Error

Pareto HSMM
Pareto PF(500)

Pareto PF(1000)
Pareto PF(2000)
Average HSMM

Average PF(500)
Average PF(1000)
Average PF(2000)

Figure 6.6: Human Similarity Error versus Prediction Accuracy Error for Terrorist Predictors by
Model Type. The bottom plot is a fragment of the top plot.

53

Table 6.3: Counter-Terrorist Pareto Predictor Performance with Mean Update Times per Model (±
Standard Error of the Mean).

Type Order Share Grid Size Mean PAE Mean HSE Mean Upd. Time
HSMM 2 None 350 1147.91 1240.93 36.1±0.13 ms

HSMM 2 None 325 1155.39 1229.77 52.85±0.18 ms

PF(500) 2 None 255 1164.03 1234.54 47.39±0.21 ms

PF(500) 1 Half 255 1178.24 1222.23 47.07±0.15 ms

PF(500) 2 Half 255 1187 1216.44 47.85±0.23 ms

PF(500) 2 Full 350 1191.19 1213.88 43.72±0.14 ms

PF(500) 2 Half 350 1195.76 1192.88 43.66±0.12 ms

PF(500) 2 Full 300 1208.56 1186.42 45.68±0.18 ms

PF(1000) 2 Full 350 1154.68 1205.75 87.89±0.2 ms

PF(1000) 2 None 300 1160.69 1184.85 91.04±0.23 ms

PF(1000) 1 None 350 1170.93 1177.84 88.87±0.36 ms

PF(1000) 1 Half 450 1200.81 1159.39 85.99±0.21 ms

PF(2000) 2 Full 275 1142.25 1181.77 187.05±0.41 ms

PF(2000) 2 Half 275 1156.99 1179.42 190.92±0.43 ms

PF(2000) 2 Half 350 1162.35 1166.41 178.45±0.37 ms

PF(2000) 1 Full 350 1164.43 1165.69 178.17±0.36 ms

PF(2000) 1 Half 350 1170.94 1160.98 178.26±0.35 ms

Predicting Counter-Terrorist Opponents

Figure 6.7 presents the results of predictors tracking Counter-Terrorist opponents. When comparing

absolute error values, the Pareto Counter-Terrorist predictors perform better than their counterpart

Terrorist predictors in Figure 6.6. Unfortunately, the relative error between the predictors and per-

formance thresholds is large with no predictor crossing any threshold. This result may be attributed

to a particularly low PAE achieved by human experts. A likely explanation is that humans com-

prehend the intricacies of Counter-Terrorist movements. While Terrorist strategies focus on quickly

traversing the map to get to the bomb sites, Counter-Terrorists act defensively, relying on ambushing

and standoff tactics that require players to remain stationary for extended periods of time. The im-

posed limit of d̂ = 10 also contributes to poor predictor performance because it prevents the motion

models from accurately capturing such tactics. To accurately model Counter-Terrorist behaviour, a

value for d̂ greater than 10 and features other than trajectory direction and velocity may need to be

considered when training predictors.

Predicting with Gaussian Noise

As discussed in Section 1.3, cheating can be used to improve the PAE of a predictor. However, a

bot that knows the locations of its opponents with an uncanny consistency may not be considered

human-like. This section investigates the question whether masking cheating by random noise can

result in more believable predictions. Figures 6.8 and 6.9 plot several cheating predictors by aster-

isks. A perfect predictor is located on the y-axis (because its PAE is always 0) and estimations by

54

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 200 400 600 800 1000 1200 1400

H
um

an
 S

im
ila

rit
y

E
rr

or

Prediction Accuracy Error

Pareto HSMM
Pareto PF(500)

Pareto PF(1000)
Pareto PF(2000)
Average HSMM

Average PF(500)
Average PF(1000)
Average PF(2000)

 1000

 1050

 1100

 1150

 1200

 1250

 1300

 1350

 1000 1050 1100 1150 1200 1250

H
um

an
 S

im
ila

rit
y

E
rr

or

Prediction Accuracy Error

Pareto HSMM
Pareto PF(500)

Pareto PF(1000)
Pareto PF(2000)
Average HSMM

Average PF(500)
Average PF(1000)
Average PF(2000)

Figure 6.7: Human Similarity Error versus Prediction Accuracy Error for Counter-Terrorist Predic-
tors by Model Type. The bottom plot is a fragment of the top plot.

55

this predictor are perturbed by varying amounts of Gaussian noise, resulting in the performances

represented by the other asterisks. The set of Pareto predictors from Figures 6.6 and 6.7 are also

plotted for comparison. Finally, a least squares regression line is fit to the set of cheating predictors

to emphasize any performance trend.

In both Figures 6.8 and 6.9, an increase in the standard deviation of Gaussian noise is met with

a corresponding increase an asterisk’s PAE value. This is clear by observing the steady incline of

the regression lines. As the PAE of the noisy predictors approach that of human experts (specifi-

cally, the predictor with standard deviation of 1500), the HSE is significantly larger than that of all

non-cheating predictors. In this way, the mistakes made by the HSMM and PF predictors can be

considered more human-like than those made when using Gaussian noise to hide cheating.

Gaussian noise obfuscation has a greater HSE than trained predictors because map topology is

not taken into account. While a prediction perturbed by noise may be close to the true opponent

location in Euclidean space, the shortest path between these points in the game environment may be

long if there happens to be a wall or obstacles in the way. Conversely, human experts understand how

the environment layout can restrict an opponent’s movement and they use this information to inform

their predictions. An alternative way to mask cheating could use a random walk or other in-game

path generator to perturb the opponent’s position. Though such a technique resolves the topology

issue, this idea is not investigated in this work (though it would be worthy of further research). In

summary, human experts do make mistakes but their mistakes are not normally distributed.

6.4.2 Training Motion Models

The ability of predictors to model opponent movements has thus far been presented as an advantage

over other competing prediction methods. However, because of the complex motions exhibited in

CS:S gameplay, it is of interest to know whether or not the training can capture any useful knowledge

that would improve predictor performance. To investigate this issue, Figures 6.10 and 6.11 represent

each of the 384 predictors as a single point. For each predictor, a second one is tested using a uniform

motion model; that is, the model is encoded such that an opponent in some grid cell g has an equal

probability to transition to any traversable cell adjacent to g. For this test it is expected that the

predictors with uniform motion models should predict worse than the trained predictors.

Figure 6.10 shows almost all trained predictors performing with lower errors than the majority of

uniform predictors. This can be attributed to the typical attacking strategies for the Terrorist team.

Because the goal of the Terrorists is to plant the bomb at the opposite end of the map from their

spawn area, the general positions of Terrorists will progress to the other end of the map over the

course of the game. Figure 6.10 supports the proposition that this Terrorist movement is captured

in the motion models. Conversely, the Counter-Terrorist case does not show as drastic a difference

between trained and uniform models (Figure 6.11). Instead, most trained predictors perform only

as well as the best uniform models. Considering that human experts were able to predict with a

56

 1150

 1200

 1250

 1300

 1350

 1400

 1450

 1500

 1550

 1600

 0 200 400 600 800 1000 1200 1400

H
um

an
 S

im
ila

rit
y

E
rr

or

Prediction Accuracy Error

Gaussian Noise
Pareto HSMM

Pareto PF(500)
Pareto PF(1000)
Pareto PF(2000)

Figure 6.8: Human Similarity Error versus Prediction Accuracy Error for Terrorist Predictors. The
asterisk on the y-axis represents a perfect predictor while other asterisks are perturbed by Gaussian
noise using standard deviations of 500, 1000, and 1500 coordinate units (left to right). The dotted
line is a least squares linear regression indicating the performance trend of noisy predictors.

 1000

 1050

 1100

 1150

 1200

 1250

 1300

 1350

 1400

 1450

 1500

 0 200 400 600 800 1000 1200 1400

H
um

an
 S

im
ila

rit
y

E
rr

or

Prediction Accuracy Error

Gaussian Noise
Pareto HSMM

Pareto PF(500)
Pareto PF(1000)
Pareto PF(2000)

Figure 6.9: Human Similarity Error versus Prediction Accuracy Error for Counter-Terrorist Predic-
tors. The asterisk on the y-axis represents a perfect predictor while other asterisks are perturbed by
Gaussian noise using standard deviations of 500, 1000, and 1500 coordinate units (left to right). The
dotted line is a least squares linear regression indicating the performance trend of noisy predictors.

57

 1100

 1200

 1300

 1400

 1500

 1600

 1700

 1800

 1900

 2000

 2100

 2200

 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

H
um

an
 S

im
ila

rit
y

E
rr

or

Prediction Accuracy Error

Trained
Uniform

Figure 6.10: Human Similarity Error vs. Prediction Accuracy Error for Terrorist Predictors.

 1150

 1200

 1250

 1300

 1350

 1400

 1450

 1500

 1550

 1100 1150 1200 1250 1300 1350 1400 1450

H
um

an
 S

im
ila

rit
y

E
rr

or

Prediction Accuracy Error

Trained
Uniform

Figure 6.11: Human Similarity Error vs. Prediction Accuracy Error for Counter-Terrorist Predictors.

58

low PAE in Section 6.4.1, it is likely that both the trained and uniform predictors are both poor at

predicting the positions of Counter-Terrorist opponents.

6.4.3 Sharing Training Data

It was shown in Section 6.4.2 that predictors trained on Terrorist data perform better than uniform

predictors. An important question to ask is how much data is required to produce these successful

motion models. Are all 140 training logs necessary to learn the transition and duration models or can

it be done with fewer? Figures 6.12 and 6.13 present a comparison between three types of predictors

sharing training data as explained in Section 6.3.

PF model types do not show any significant difference by varying the amount of training data

per model (these figures can be found in Appendix B). However, the HSMM predictors that do share

logs among their models typically perform poorly compared to those that do not. One explanation

for this phenomenon can be drawn from games were few opponent sightings are made. Consider the

start of such a game where an HSMM predictor initializes its probability distributions to the prior.

Note that at this point all distributions are equal and each model will update its distribution in exactly

the same way until an opponent is sighted. The result is that all predictions returned from the models

will be a single point, representing the strategy of all friendly players grouping together wherever

they go on the map. While the trajectory data may be accurate in defining player movement, pre-

dicting every opponent to follow this strategy results in a high PAE. Note that particle filters do not

suffer from this issue because they randomly select a particle when predicting each opponent. The

“All” predictor variants, while being less informed (each model trained on 28 logs), offer varied

motion models that resolve the above issue for games that contain very few sightings. Therefore, it

can be concluded that very few game logs are required to identify the common trajectories of players

and that players disperse more often than group together when no opponents have been sighted.

6.4.4 Motion Model Orders

Thus far, the motion models presented in Chapter 5 and tested the previous experiments are “first-

order” models; that is, the probability of an opponent moving to some grid cell gt+1 at time t + 1

is conditional only upon the probability of the opponent occupying the current grid cell gt and the

number of times steps until the next transition. Note that this formulation only allows for an oppo-

nent’s future position to be dependent upon his past position, not his past trajectory. To elaborate

on this distinction, consider a horizontal hallway where typical gameplay involves players moving

down the hallway in a straight line (no backtracking). Also, assume that the frequency of observing

players starting from the left and moving to the right is the same as those moving from right to left.

If an opponent is suspected to be in the middle of the hallway, a first-order model would predict with

equal probability that the opponent would move to the left or right, even if the opponent had been

previously sighted moving in a particular direction. In contrast, the transitional probabilities of a

59

 1000

 1100

 1200

 1300

 1400

 1500

 1600

2-255
2-275

2-300
2-325

2-350
2-400

2-450
2-550

1-255
1-275

1-300
1-325

1-350
1-400

1-450
1-550

P
re

di
ct

io
n

A
cc

ur
ac

y
E

rr
or

Order - Grid Size

 1000

 1100

 1200

 1300

 1400

 1500

 1600

2-255
2-275

2-300
2-325

2-350
2-400

2-450
2-550

1-255
1-275

1-300
1-325

1-350
1-400

1-450
1-550H

um
an

 S
im

ila
rit

y
E

rr
or

Order - Grid Size

Figure 6.12: Shared Training Data of HSMM Terrorist Predictors. From left to right (i.e., light to
dark), the bars represent the performance of predictors sharing “None”, “Half”, and “All” of the
training data among the motion models.

 1000

 1100

 1200

 1300

 1400

 1500

 1600

2-255
2-275

2-300
2-325

2-350
2-400

2-450
2-550

1-255
1-275

1-300
1-325

1-350
1-400

1-450
1-550

P
re

di
ct

io
n

A
cc

ur
ac

y
E

rr
or

Order - Grid Size

 1000

 1100

 1200

 1300

 1400

 1500

 1600

2-255
2-275

2-300
2-325

2-350
2-400

2-450
2-550

1-255
1-275

1-300
1-325

1-350
1-400

1-450
1-550H

um
an

 S
im

ila
rit

y
E

rr
or

Order - Grid Size

Figure 6.13: Shared Training Data of HSMM Counter-Terrorist Predictors. From left to right
(i.e., light to dark), the bars represent the performance of predictors sharing “None”, “Half”, and
“All” of the training data among the motion models.

60

“second-order” model are conditioned on the previous two cells occupied by the opponent. This for-

mulation resolves the above prediction issue by using the past direction of the opponent (as opposed

to the location only) to predict the current direction in which he is heading.

 1000

 1100

 1200

 1300

 1400

 1500

 1600
255

275

300

325

350

400

450

550

255

275

300

325

350

400

450

550

Grid Size

Figure 6.14: First and Second-Order HSMM Terrorist Predictors. The left image plots Prediction
Accuracy Error along the y-axis while the right image plots Human Similarity Error. The light bars
represent first-order predictors and the dark bars represent second-order.

 1000

 1100

 1200

 1300

 1400

 1500

 1600

255

275

300

325

350

400

450

550

255

275

300

325

350

400

450

550

Grid Size

Figure 6.15: First and Second-Order HSMM Counter-Terrorist Predictors. The left image plots
Prediction Accuracy Error along the y-axis while the right image plots Human Similarity Error. The
light bars represent first-order predictors and the dark bars represent second-order.

Figure 6.14 shows that first-order models perform more adequately than second-order models

for HSMM predictors estimating Terrorist positions. The same cannot be said for Counter-Terrorist

opponents (Figure 6.15) where larger grid cell sizes show a marginal but insignificant improvement

for second-order models. Also, in parallel to the results of Section 6.4.3, there is no discernible

difference between first and second-order models for particle filters (complete results are listed in

Appendix B). For second-order models to have an effect on performance, it appears that more train-

ing data is needed to properly specify the transition and duration functions. Section 6.4.2 concluded

that CS:S player movement can be adequately captured by these functions and Figure 6.14 suggests

that first-order models are capable of doing so.

61

6.5 Summary

This chapter presented the performance results of predictors evaluated according to the PAE and

HSE measures. It was shown in Section 6.4.1 that predictors estimating Terrorist positions per-

formed as well (if not better) than the human experts against the PAE measure. In addition, the

best HSMM predictors perform with a lower HSE than perfect predictions. The computation time

required to update these predictors is less than a millisecond, making them suitable for implementa-

tion in commercial FPS games. Moreover, both Terrorist and Counter-Terrorist predictors maintain

an HSE consistent with perfect predictors. Gaussian noise is insufficient to mask cheating, instead

displaying non-human errors (i.e., high HSE performance) when compared to HSMM and PF pre-

dictors at a similar PAE.

Section 6.4.2 illustrated that training predictors on expert human gameplay does improve perfor-

mance along both the PAE and HSE measures. Section 6.4.3 noted that HSMM predictors perform

well with varied trajectories for individual predictions and do not benefit from sharing movement

data among motion models. Finally, second-order models do not show any conclusive improvement

over first-order models.

62

Chapter 7

Discussion

Having presented the results of this work in Chapter 6, Section 7.1 of this chapter identifies some of

the challenges and limitations encountered during the user study and experiments. With these issues

in mind, Section 7.2 proposes a few directions in which this research can be extended. Section 7.3

concludes by discussing some novel applications of predictors as components of a bot and as non-

cheating aids for human players.

7.1 Challenges and Limitations

The foremost limitation of this work is the lack of a large game log corpus. A significant collection of

game logs would reduce overfitting when training on grids with very small cell sizes, thus capturing

low-level movement that is not currently possible. Unfortunately, it is difficult to collect logs that

are guaranteed to have competent gameplay. Ideally, a plugin should be developed that would be

distributed to mass amounts of players. The plugin would record games and store them in a central

research database for future analysis. A large portion of these games would involve poor or foolish

gameplay and thus should be pruned from the database. This task would have to be automated,

filtering undesirable gamelogs according to some criteria. However, developing a definition for

“expert gameplay” is a problem in itself. The lack of data also applies to the number of participants in

the user study. The study was unable to collect more than one human-annotated game for each testing

log and thus the reference predictions for each game frame were generated by a single participant.

Despite all the precautions taken in the user study to ensure that participants were tested in the

same manner as predictors, there were two differences that may have impacted HSE performance

in favor of the participants. First, because all players are displayed as arrows in the user study

application, participants were informed of the directions that both friendly and opponent players

were facing. Second, participants could use friendly behaviour to inform their predictions. For

example, if a friendly player was observed to be jostling back and forth with no opponent in sight, a

human expert might recognize the player to be engaged in a firefight. If the opponent happened to be

sighted on an off-frame (the brief time between frame recordings), friendly players may often hide

63

behind cover, reducing the chance that the opponent is sighted again. In this scenario, a predictor

would have no knowledge of the sighting while a participant might be able to deduce the opponent’s

location through indirect means.

7.2 Future Work

There are several avenues for extending the work presented in this thesis. Predictors currently learn

only the movement directions and velocities of players from gameplay data. Given an ample corpus

of game logs, learning can be conditioned on additional known game state features. For example, if

it is assumed that an opponent’s weapon can be determined when sighted, then associating weapons

with observed movement may improve the quality of information captured by the transition and

duration functions. In this way, the movement policy of a sniper can be maintained separately from

that of a player carrying a shotgun. As well, an increased limit on the number of time steps an

opponent is allowed to remain in a single state (i.e., d̂) should also be explored, though doing so will

impact the time to compute updates.

Section 5.1 states that factored models were chosen in favor of joint-position models because

of the intractable update calculations involved with the latter. The downside to this decision is that

predictors are unable to learn any synchronized player movements, an important type of coordination

and teamwork. Future work involving this issue might focus on developing a hybrid system where

joint models are trained for subsets of a team (e.g., for pairs of players).

One drawback to the point predictions described in Section 2.1 is that uncertainty cannot be

accurately encoded in the representation. For instance, a situation may arise in-game where it is

equally probable for an opponent to exist in two distinct locations yet a single point prediction

must be provided. While this representation was avoided in this work because it would complicate

the process of specifying a prediction, probability distributions could be used in place of point

predictions to capture uncertainty in a prediction. For instance, two distributions could be compared

to each other using a Mahalanobis distance metric to account for the shortest in-game paths between

points in the environment [34].

7.3 Applications

The original purpose of a predictor was to serve as a stand-alone module that can be inserted into

the decision-making system of a bot. The module would impart the bot with human-like reasoning

about opponent locations in real-time. Although the experiments in this work used Counter-Strike:

Source as a testbed, efforts were made to ensure that predictors could be applied to any game where

spatial navigation is important. However, beyond this purpose there are several novel applications

in which predictors can play an integral role.

By itself, a predictor is strictly informative; its sole task is to provide an estimation of opponent

64

locations. However, predictions can obviously be used to inform a bot’s controlling mechanisms.

Consider the orientation of a bot’s field-of-view. A realistic view policy would be to look in the

direction where the greatest threat is expected to originate. Predictions could be used as simple

representation of threat. However, if a bot’s view to a prediction is obstructed, the bot should not

display unintelligent behaviour (e.g., staring at walls or other inanimate objects). Instead, an oppo-

nent’s trajectory could be computed and the bot directed to look towards the furthest visible edge of

the trajectory.

An even more interesting challenge is to make use of opponent movement projected into the

future. All predictions have thus far been generated on the current time step t yet Bayesian filters

have the ability to estimate P (St+n|O1:t) where n ≥ 1. This distribution gives an approximation of

where the opponents will be after n time steps. Although the distribution degrades in accuracy as

n increases, this technique can nonetheless be used to choose between complex strategies that take

many time steps to execute.

Because of its non-cheating design, a predictor can be used to aid novice players in predicting

opponent locations during a live game. An overlay could be constructed similar to the images in

Figure 5.3 that would appear in games that enable players to view a map of the game environment.

Depending on the game, the predictor might not be able to utilize all observations of friendly team-

mates to inform the predictor however it would be nearly undetectable because it does not need to

interact directly with a game server.

Finally, one major advantage to incorporating opponent modeling into a predictor is the option

to customize the motion models for teaching purposes. For example, if team A knows that it will

be facing team B in an important tournament, then team A could collect logs of team B’s past

gameplay, learn a predictor from the logs, and then use the predictor as an overlay for training prior

to the real match. This work provides predictors with this type of customizability, a small step

towards a bot that can assess an opponent’s tactical strengths and weaknesses by analyzing past

gameplay.

65

Chapter 8

Conclusion

This thesis investigated the problem of predicting opponent positions in First-Person Shooter video

games. First, the notions of skillfulness and believability were formalized as two performance mea-

sures. Several AI challenges that are present in modern video games were described and cheating

techniques were argued as inadequate solutions to these challenges because they increased skillful-

ness at the expense of believability. This work proposed that AI can be both skillful and believable

without cheating, and focused on the prediction problem to show that this is possible. Hidden

semi-Markov models (HSMM) and particle filters (PF) were configured as predictors, stand-alone

non-cheating modules whose purpose is to predict opponent positions in the first-person shooter

(FPS) game Counter-Strike: Source. To simulate the reasoning faculties that humans use when

making predictions, these predictors were trained on logs of expert human gameplay and they uti-

lized the sensory information available to players to produce informed predictions. Predictions were

graded according to the two performance measures, specifically the prediction accuracy error and

the human similarity error. The latter measure was constructed using predictions provided by hu-

mans through a user study designed to test participants at the prediction problem. Results show

that HSMM predictors can be as accurate as expert human players and can perform efficiently in

real-time scenarios. As well, the mistakes they do make are more human-like that those made by

perturbing true opponent locations with a corresponding amount of Gaussian noise. These results

indicate that complex human movement in FPS games can be learned successfully from gameplay

data.

66

Bibliography

[1] Activision. Call of Duty 4 official website. http://www.callofduty.com/CoDMW, 2009.

[2] R. Allen, P. Mcgeorge, D. Pearson, and A. B. Milne. Attention and expertise in multiple target
tracking. Applied Cognitive Psychology, 18(3):337–347, 2004.

[3] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle filters for on-
line non-linear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing,
50(2):174–188, 2002.

[4] N. Bard and M. Bowling. Particle filtering for dynamic agent modeling in simplified poker.
In Proceedings of the Twenty-Second National Conference on Artificial Intelligence, pages
515–521, 2007.

[5] M. Bennewitz, W. Burgard, G. Cielniak, and S. Thurun. Learning motion patterns of people
for compliant motion. International Journal of Robotics Research, 2004.

[6] C. Bererton. State estimation for game AI using particle filters. In Proceedings of the AAAI
Workshop on Challenges in Game AI, Pittsburgh, Pennsylvania, 2004. AAAI Press.

[7] S. Blyth and H. J. Hamilton. Crowdmixer: Multiple agent types in situation-based crowd
simulations. In Proceedings of the Second Conference on Artificial Intelligence and Interactive
Digital Entertainment, pages 15–20, 2006.

[8] M. Booth. The official Counter-Strike bot. Presentation at Game Developers Conference,
2004.

[9] D. A. Borovies. Particle filter based tracking in a detection sparse discrete event simulation
environment. Master’s thesis, Naval Postgraduate School, Monterey, California, March 2007.

[10] A. Bruce and G. Gordon. Better motion prediction for people-tracking. In Proceedings of the
International Conference on Robotics and Automation, 2004.

[11] M. Buro. The othello match of the year: Takeshi Murakami vs. Logistello. International
Computer Chess Association Journal, 20(3):189–193, 1997.

[12] M. Buro. Real-time strategy games: A new AI research challenge. In Proceedings of the
Fourth International Joint Conference on Artificial Intelligence, pages 1534–1535, Acapulco,
Mexico, 2003.

[13] A. J. Champandard. How to help players notice the ”I” in AI?
http://aigamedev.com/discussion/notice-intelligence-bioshock, February 2008.

[14] C. H. Chen, C. Cheng, D. Page, A. Koschan, and M. Abidi. A moving object tracked by a
mobile robot with real-time obstacles avoidance capacity. In Proceedings of the Eighteenth
International Conference on Pattern Recognition, volume 3, pages 1091 – 1094, 2006.

[15] C. Darken and B. G. Anderegg. Particle Filters and Simulacra for More Realistic Opponent
Tracking, chapter 4.6, pages 419–427. In Rabin [53], 2008.

[16] D. Doherty and C. O’Riordan. Toward More Humanlike NPCs for First-/Third-Person Shooter
Games, chapter 5.6, pages 499–511. In Rabin [53], 2008.

[17] Fragapalooza. Fragapalooza official website. http://www.fragapalooza.com/, 2008.

67

[18] B. Gorman, C. Thurau, C. Bauckhage, and M. Humphrys. Believability testing and Bayesian
imitation in interactive computer games. In Proceedings of the Ninth International Conference
on the Simulation of Adaptive Behavior, pages 655–666, September 2006.

[19] C. S. Green and D. Bavelier. Action video game modifies visual selective attention. Nature,
423:534–537, 2003.

[20] N. Hoobler, G. Humphreys, and M. Agrawala. Visualizing competitive behaviors in multi-user
virtual environments. IEEE Visualization, pages 163– 170, 2004.

[21] D. Isla. The virtual hippocampus: Spatial common sense for synthetic creatures. Master’s
thesis, Massachuettes Institute of Technology, August 2001.

[22] D. Isla. Probabilistic Target Tracking and Search Using Occupancy Maps, pages 379–387. In
Rabin [52], 2006.

[23] R. E. Kalman. A new approach to linear prediction and filtering problems. Journal of Basic
Engineering, 1960.

[24] M. Klaas, T. Southey, and W. Cheung. Particle-based communication among game agents. In
Proceedings of the First Conference on Artificial Intelligence and Interactive Digital Enter-
tainment, 2005.

[25] H. W. Kuhn. The hungarian method for the assignment problem. Naval Research Logistics
Quarterly, 2:83–97, 1955.

[26] J. E. Laird. It knows what you’re going to do: Adding anticipation to a Quakebot. In Proceed-
ings of the Fifth International Conference on Autonomous Agents, pages 385–392, Montreal,
Quebec, Canada, 2001.

[27] J. E. Laird and J. C. Duchi. Creating human-like synthetic characters with multiple skill levels:
A case study using the Soar Quakebot. In Proceedings of the AAAI 2000 Fall Symposium
Series: Simulating Human Agents. AAAI Press, November 2000.

[28] J. E. Laird, A. Newell, and P. S. Rosenbloom. Soar: An architecture for general intelligence.
Artificial Intelligence, 33(3):1–64, 1987.

[29] J. E. Laird and M. van Lent. Human-level AI’s killer application: Interactive computer games.
In Proceedings of the Seventeenth National Conference on Artificial Intelligence, pages 1171–
1178, 2000.

[30] R. A. Lastra, P. A. Vallejos, and J. Ruiz-del Solar. Self-localization and ball tracking for
the Robocup 4-legged league. In Proceedings of the Second IEEE Latin American Robotics
Symposium, September 2005.

[31] D. Livingstone. Turing’s test and believable AI in games. Computers in Entertainment, 4(1),
January 2006.

[32] H. G. Loebner. Loebner prize. http://www.loebner.net/Prizef/loebner-prize.html, 2007.

[33] B. Mac Namee. Proactive persistent agents: Using situational intelligence to create support
characters in character-centric computer games. PhD thesis, Department of Computer Sci-
ence, University of Dublin, Dublin, Ireland, 2004.

[34] P. C. Mahalanobis. On the generalized distance in statistics. In National Institute of Science
(India), volume 12, pages 49–55, Calcutta, India, 1936.

[35] 2K Boston. Bioshock official website, 2007.

[36] Blizzard Entertainment. Warcraft 3 official website. http://www.blizzard.com/us/war3/, 2009.

[37] Bungie, LLC. Halo 3 heatmaps. http://www.bungie.net/Online/Heatmaps.aspx, 2009.

[38] Coalescent Technologies Corporation. MTVC: Mobile virtual training capability, 2008.

[39] Gamespot.com. Call of Duty 4 scoreboard screenshot, 2009.

[40] Gridiron Technologies. Pro simulator official website, 2008.

[41] id Software. Quake II official website, 2008.

68

[42] id Software. Wolfenstein 3D official website, 2008.

[43] International Cyber Marketing, Inc. World Cyber Games official website, October 2008.

[44] Take-Two Interactive. 2K Bot Prize. http://botprize.org/, 2009.

[45] Valve Software. Counter-Strike: Source. http://store.steampowered.com/app/240/, 2008.

[46] Valve Software. Steam and game stats. http://store.steampowered.com/stats/, 2008.

[47] Valve Software. Team Fortress 2 statistics. http://www.steampowered.com/status/tf2/tf2 stats.php,
April 2008.

[48] Valve Software. Valve games, 2008.

[49] K. Murphy. Hidden semi-Markov models (HSMMs). Technical report, University of California
at Berkley, 2002.

[50] M. Newborn. Kasparov versus Deep Blue: Computer chess comes of age. Springer-Verlag
New York, Inc., New York, NY, 1996.

[51] Z. Pylyshyn and R. Storm. Tracking multiple independent targets: Evidence for a parallel
tracking mechanism. Spatial Vision, 3(3):1–19, 1988.

[52] S. Rabin, editor. AI Game Programming Wisdom 3. Charles River Media, 2006.

[53] S. Rabin, editor. AI Game Programming Wisdom 4. Charles River Media, 2008.

[54] D. C. Rayner. Analysing openings in tactical simulations. Master’s thesis, Department of
Computing Science, University of Alberta, 2008.

[55] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pearson US Imports
& PHIPEs, second edition, November 2002.

[56] J. Schaeffer, N. Burch, Y. Bjornsson, A. Kishi-moto, M. Muller, R. Lake, P. Lu, and S. Sutphen.
Checkers is solved. Science, 317(5844):1518–1522, July 2007.

[57] F. Southey, M. Bowling, B. Larson, C. Piccione, N. Burch, and D. Billings. Bayes’ bluff:
Opponent modeling in poker. In Proceedings of the Twenty-First Conference on Uncertainty
in Artificial Intelligence, pages 550–558, 2005.

[58] F. Southey, W. Loh, and D. Wilkinson. Inferring complex agent motions from partial trajec-
tory observations. In Proceedings of the Eighth International Joint Conference on Artificial
Intelligence, pages 2631–2637, Hyderabad, India, 2007.

[59] G. Tesauro. Temporal difference learning and TD-Gammon. Communications of the ACM,
38(3):58–68, 1995.

[60] D. Thue. Player-informed interactive storytelling. Master’s thesis, Department of Computing
Science, University of Alberta, 2007.

[61] D. Thue, V. Bulitko, M. Spetch, and E. Wasylishen. Interactive storytelling: A player mod-
elling approach. In Proceedings of the Third Conference on Artificial Intelligence and Interac-
tive Digital Entertainment, pages 43–48, 2007.

[62] A. Turing. Computing machinery and intelligence. Mind, 59(236):443–460, 1950.

[63] F. A. J. Verstraten, P. Cavanagh, and A. T. Labiancab. Limits of attentive tracking reveal
temporal properties of attention. Vision Research, 40(26):3651–3664, 2000.

[64] R. E. Wray, J. E. Laird, A. Nuxoll, D. Stokes, and A. Kerfoot. Synthetic adversaries for urban
combat training. In Proceedings of the Sixteenth Conference on Innovative Applications for
Artificial Intelligence, July 2004.

[65] Y. Wu and T. S. Huang. Vision-based gesture recognition: A review. Gesture-Based Commu-
nication in Human-Computer Interaction, 1739:103–115, 1999.

[66] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A survey. ACM Computing Surveys,
38(4):1–45, December 2006.

[67] D. Zhang and B. Nebel. Learning a table soccer robot a new action sequence by observing and
imitating. In Proceedings of the Third Conference on Artificial Intelligence and Interactive
Digital Entertainment, pages 61–66, 2007.

69

Appendix A

Performance Measure Calculations

There are three steps involved in the computation of both the Prediction Accuracy Error (PAE) and

Human Similarity Error (HSE).

Step 1: Compute the frame error.

For a given game frame t, the frame error F (Xt, Yt) is calculated as the mean error per prediction

between the prediction vector Xt and reference vector Yt. Specifically, Equation A.1 is used to

calculate F (Xt, Yt) where π is a permutation over elements in Yt and nt is the number of opponents

alive.1 When calculating the PAE for a predictor, Yt are the true positions of opponents at frame t.

In contrast, calculating the HSE utilizes the predictions of human experts for Yt.

F (Xt, Yt) = min
π

1
nt

(
nt∑
i=1

D(xit, y
π(i)
t)

)
(A.1)

The distance function D(x, y) in Equation 6.1 is an approximate shortest path between coor-

dinates x, y ∈ R2 in the game environment. Because the process of determining the shortest path

between every pair of 3D coordinates is computationally prohibitive, the environment is partitioned

by the visibility matrix and visibility cubes are used as vertices along the path. Specifically, the path

is constructed from CV (x) to CV (y) through cube centers that have line-of-sight and are adjacent

to each other in V (that is, all cubes sharing an edge, face, or corner with another). Because all

predicted positions do not record a z-cooridnate value, the “column” of cubes U(i) that exist above

and below CV (i) is determined and the shortest path between any element of U(x) and any element

of U(y) is used. Note that if coordinate i is placed in an invalid area of the environment (e.g., within

a wall), CV (i) evaluates to the valid cube whose coordinate center is closest to i. In this way, it is

impossible for a prediction to be placed “out of bounds”.

Step 2: Compute the game error.
1The calculation in Equation A.1 is effectively a greedy minimal matching process. While more efficient algorithms

exist for finding minimum weighted matchings (e.g., the Hungarian method [25]), matching 5 pairs of points requires only
5! = 120 comparisons.

70

The game errorG is calculated as the mean error per prediction over all frame errors for a game.2

Equation A.2 shows how G is calculated where t represents the total number of frames in the game.

Note that each frame error is weighted by the number of opponents alive during that frame. This

prevents frames at the end of the game (which typically have few players left alive) from skewing

the overall average.

Due to the short time span between game frames (0.45 seconds), the error calculated for a given

frame can be influenced by the error for the previous frame. For instance, if a predictor made very

poor predictions for frame t and no opponents were sighted by friendly players, it is quite likely

that the performance for the next frame t + 1 will also be poor. Conversely, the frequent sightings

resulting from large firefights would certainly help a predictor’s accuracy over multiple frames.

Despite this issue, the game error is still a desirable measure because situations such as these do

exist in real-world scenarios and must be addressed by any competent prediction system.

G =
∑
t nt F (Xt, Yt)∑

t nt
(A.2)

Step 3: Compute the predictor error.

Finally, the predictor error is computed as the mean error per prediction over all game errors

from the set of testing logs.

2Only the error of every fifth frame is used when computing the HSE of a predictor to remain consistent with the frequency
at which the humans predicted during the user study.

71

Appendix B

Detailed Experiment Results

 1000

 1100

 1200

 1300

 1400

 1500

 1600

2-255
2-275

2-300
2-325

2-350
2-400

2-450
2-550

1-255
1-275

1-300
1-325

1-350
1-400

1-450
1-550

P
re

di
ct

io
n

A
cc

ur
ac

y
E

rr
or

Order - Grid Size

 1000

 1100

 1200

 1300

 1400

 1500

 1600

2-255
2-275

2-300
2-325

2-350
2-400

2-450
2-550

1-255
1-275

1-300
1-325

1-350
1-400

1-450
1-550H

um
an

 S
im

ila
rit

y
E

rr
or

Order - Grid Size

Figure B.1: Shared Training Data of PF(500) Terrorist Predictors. From left to right (i.e., light to
dark), the bars represent the performance of predictors sharing “None”, “Half”, and “All” of the
training data among the motion models.

72

 1000

 1100

 1200

 1300

 1400

 1500

 1600

2-255
2-275

2-300
2-325

2-350
2-400

2-450
2-550

1-255
1-275

1-300
1-325

1-350
1-400

1-450
1-550

P
re

di
ct

io
n

A
cc

ur
ac

y
E

rr
or

Order - Grid Size

 1000

 1100

 1200

 1300

 1400

 1500

 1600

2-255
2-275

2-300
2-325

2-350
2-400

2-450
2-550

1-255
1-275

1-300
1-325

1-350
1-400

1-450
1-550H

um
an

 S
im

ila
rit

y
E

rr
or

Order - Grid Size

Figure B.2: Shared Training Data of PF(500) Counter-Terrorist Predictors. From left to right
(i.e., light to dark), the bars represent the performance of predictors sharing “None”, “Half”, and
“All” of the training data among the motion models.

 1000

 1100

 1200

 1300

 1400

 1500

 1600

2-255
2-275

2-300
2-325

2-350
2-400

2-450
2-550

1-255
1-275

1-300
1-325

1-350
1-400

1-450
1-550

P
re

di
ct

io
n

A
cc

ur
ac

y
E

rr
or

Order - Grid Size

 1000

 1100

 1200

 1300

 1400

 1500

 1600

2-255
2-275

2-300
2-325

2-350
2-400

2-450
2-550

1-255
1-275

1-300
1-325

1-350
1-400

1-450
1-550H

um
an

 S
im

ila
rit

y
E

rr
or

Order - Grid Size

Figure B.3: Shared Training Data of PF(1000) Terrorist Predictors. From left to right (i.e., light
to dark), the bars represent the performance of predictors sharing “None”, “Half”, and “All” of the
training data among the motion models.

73

 1000

 1100

 1200

 1300

 1400

 1500

 1600

2-255
2-275

2-300
2-325

2-350
2-400

2-450
2-550

1-255
1-275

1-300
1-325

1-350
1-400

1-450
1-550

P
re

di
ct

io
n

A
cc

ur
ac

y
E

rr
or

Order - Grid Size

 1000

 1100

 1200

 1300

 1400

 1500

 1600

2-255
2-275

2-300
2-325

2-350
2-400

2-450
2-550

1-255
1-275

1-300
1-325

1-350
1-400

1-450
1-550H

um
an

 S
im

ila
rit

y
E

rr
or

Order - Grid Size

Figure B.4: Shared Training Data of PF(1000) Counter-Terrorist Predictors. From left to right
(i.e., light to dark), the bars represent the performance of predictors sharing “None”, “Half”, and
“All” of the training data among the motion models.

 1000

 1100

 1200

 1300

 1400

 1500

 1600

2-255
2-275

2-300
2-325

2-350
2-400

2-450
2-550

1-255
1-275

1-300
1-325

1-350
1-400

1-450
1-550

P
re

di
ct

io
n

A
cc

ur
ac

y
E

rr
or

Order - Grid Size

 1000

 1100

 1200

 1300

 1400

 1500

 1600

2-255
2-275

2-300
2-325

2-350
2-400

2-450
2-550

1-255
1-275

1-300
1-325

1-350
1-400

1-450
1-550H

um
an

 S
im

ila
rit

y
E

rr
or

Order - Grid Size

Figure B.5: Shared Training Data of PF(2000) Terrorist Predictors. From left to right (i.e., light
to dark), the bars represent the performance of predictors sharing “None”, “Half”, and “All” of the
training data among the motion models.

74

 1000

 1100

 1200

 1300

 1400

 1500

 1600

2-255
2-275

2-300
2-325

2-350
2-400

2-450
2-550

1-255
1-275

1-300
1-325

1-350
1-400

1-450
1-550

P
re

di
ct

io
n

A
cc

ur
ac

y
E

rr
or

Order - Grid Size

 1000

 1100

 1200

 1300

 1400

 1500

 1600

2-255
2-275

2-300
2-325

2-350
2-400

2-450
2-550

1-255
1-275

1-300
1-325

1-350
1-400

1-450
1-550H

um
an

 S
im

ila
rit

y
E

rr
or

Order - Grid Size

Figure B.6: Shared Training Data of PF(2000) Counter-Terrorist Predictors. From left to right
(i.e., light to dark), the bars represent the performance of predictors sharing “None”, “Half”, and
“All” of the training data among the motion models.

 1000

 1100

 1200

 1300

 1400

 1500

 1600

255

275

300

325

350

400

450

550

255

275

300

325

350

400

450

550
Grid Size

Figure B.7: First and Second-Order PF(500) Terrorist Predictors. The left image plots Prediction
Accuracy Error along the y-axis while the right image plots Human Similarity Error. The light bars
represent first-order predictors and the dark bars represent second-order.

 1000

 1100

 1200

 1300

 1400

 1500

 1600

255

275

300

325

350

400

450

550

255

275

300

325

350

400

450

550

Grid Size

Figure B.8: First and Second-Order PF(500) Counter-Terrorist Predictors. The left image plots
Prediction Accuracy Error along the y-axis while the right image plots Human Similarity Error. The
light bars represent first-order predictors and the dark bars represent second-order.

75

 1000

 1100

 1200

 1300

 1400

 1500

 1600

255

275

300

325

350

400

450

550

255

275

300

325

350

400

450

550

Grid Size

Figure B.9: First and Second-Order PF(1000) Terrorist Predictors. The left image plots Prediction
Accuracy Error along the y-axis while the right image plots Human Similarity Error. The light bars
represent first-order predictors and the dark bars represent second-order.

 1000

 1100

 1200

 1300

 1400

 1500

 1600

255

275

300

325

350

400

450

550

255

275

300

325

350

400

450

550

Grid Size

Figure B.10: First and Second-Order PF(1000) Counter-Terrorist Predictors. The left image plots
Prediction Accuracy Error along the y-axis while the right image plots Human Similarity Error. The
light bars represent first-order predictors and the dark bars represent second-order.

 1000

 1100

 1200

 1300

 1400

 1500

 1600

255

275

300

325

350

400

450

550

255

275

300

325

350

400

450

550

Grid Size

Figure B.11: First and Second-Order PF(2000) Terrorist Predictors. The left image plots Prediction
Accuracy Error along the y-axis while the right image plots Human Similarity Error. The light bars
represent first-order predictors and the dark bars represent second-order.

76

 1000

 1100

 1200

 1300

 1400

 1500

 1600

255

275

300

325

350

400

450

550

255

275

300

325

350

400

450

550

Grid Size

Figure B.12: First and Second-Order PF(2000) Counter-Terrorist Predictors. The left image plots
Prediction Accuracy Error along the y-axis while the right image plots Human Similarity Error. The
light bars represent first-order predictors and the dark bars represent second-order.

77

Appendix C

User Study Materials

78

Rev. 2-06

UNIVERSITY OF ALBERTA

FACULTIES OF ARTS, SCIENCE & LAW

RESEARCH ETHICS BOARD

Application for Ethical Review

of Human Research in the Faculty of Science

Instructions:

1. Use this form to request ethics review for research involving human subjects that does not require the use of identifiable health information.

Human research that does involve identifiable health information should be submitted directly to the Health Research Ethics Board,

http://www.hreb.ualberta.ca . Once the HREB review is completed, two (2) copies of the application together with HREB approval letter

should be forwarded to the ASLREB Science member indicated below in (2).

2. Submit two (2) copies of this application form together with supporting materials (questionnaire instruments, interview questions, consent

forms, recruitment materials, debriefing forms, safety approvals, etc.) to the ASLREB Science member, Dr. Tom Johnson, Department of

Psychology, P-217 Biological Sciences Building.

`

A. Project Title: Evaluating Spatial Predictions in a Video Game Environment

B. Applicant Information

Name: Stephen Hladky E-Mail: hladky@cs.ualberta.ca

Department: Computing Science Phone: 780 492 2821

Mailing Address: Department of Computing Science, ATH-221, University of Alberta

Are you: Faculty Staff Graduate Student Undergraduate Student

If you are a student or student intern:

Academic Supervisor: Vadim Bulitko E-Mail: bulitko@cs.ualberta.ca

Department: Computing Science Phone: 780 492 3854

If you are a student intern:

Employment

Supervisor:

 E-Mail:

Company/Institution: Phone:

Mailing Address:

 Other Investigators on this project

 Name Institutional Affiliation /Department E-mail address

1. Vadim Bulitko Department of Computing
Science

 bulitko@cs.ualberta.ca

2.

3.

C. Project Information

For the items below, please check all that apply:

Project Type:

 Staff Student Class Project Grant Proposal Thesis In Class Research

 Quality Assurance Secondary Analysis of Data Mass Testing Subject Pool

Funding:

 AHFMR CIHR NSERC SSHRC UofA Internal

 Other (specify):

79

ASLREB

Rev. 8-06

D. Signatures

Your signature indicates that you agree to abide by all policies, procedures, regulations and laws governing the ethical

conduct of research involving humans as described in GFC 66, http://www.ualberta.ca/~unisecr/policy/sec66.html

Applicant: Date:

The signature of the supervisor(s) below indicates that the supervisor has reviewed and approved the student’s
proposal.

 Academic Supervisor: Date:

Employment Supervisor: Date:

E. Project Details

1. Please provide a short summary of the project that describes the research objectives, principal methods employed, research

participants, and hypotheses.

Providing real-life training in critical scenarios for humans is difficult because of expensive costs (e.g.,

piloting airplanes), potentially lethal dangers (e.g., military drills), and permanent consequences (e.g.,

diplomatic relations). Virtual Reality (VR) simulators are a viable alternative to real-life training

because they present environments with low associated risks and costs while offering an opportunity for

trainees to acquire essential skills. However, in order for VR simulators to be effective as a training

tool, they must capture essential aspects of the training domain with high fidelity. In scenarios that

require trainees to interact with other humans, such humans have to be controlled by intelligent

computer programs with convincing realism. Traditional techniques for modelling complex human

behaviour (e.g., if-then rules, finite state machines) have been met with little success. Our goal is to

improve in this area by "machine learning" such behaviours from recordings of actual human

behaviour. In particular, we are focusing on the ability of humans to predict the spatial locations of

other agents within an enclosed environment. We have trained a computer program (the "predictor") to

simulate this ability and we wish to compare its performance to that of human subjects.

The popular video game Counter-Strike: Source was chosen as a testbed because we have compiled a

database of several hundred expert-level human gameplay logs, a crucial component for training the

predictor. The game pits two opposing teams against one another, each with their own specific task to

complete. The goal of the game is to prevent the opposing team from accomplishing its task, either by

denying opponents opportunities to complete the task within a certain time limit, or by dispatching all

opponents from the game. The predictor is trained to estimate the locations of players on a particular

team. This user study will require participants to perform the same task, given the same information

available to the predictor, such as the current time of the prediction and gameplay history.

The objective of this study is to evaluate the quality of the predictor by testing its predictions against

human predictions. Our hypothesis is that, for a given gameplay log, our computer program will produce

predictions for opponent locations that are as accurate or better than human predictions. Additionally,

we wish to use the prediction data collected from the participants to train future prediction programs to

perform more similarly to humans.

80

ASLREB

Rev. 8-06

2. Describe the source of research participants. Indicate the manner in which participation will be solicited and the nature of

any inducements or promises offered for participation. For secondary analysis of data, please describe the source and

characteristics of the dataset.

Anyone of age 18 or older is able to volunteer his or her time to participate in the user study. A personal

computer running the Windows operating system, an internet connection and an account on the user

study website are required in order to participate. Advertisement mediums will consist of emails and

posters within the university as well as posts on public websites and online forums. The user study will

initially be restricted to at most 100 participants. However, if the research team deems it appropriate,

this limit may be increased or dispensed entirely to accommodate more participants. No monetary

compensation will be provided.

3. Describe the procedures to be used including the tasks and procedures involved in participating.

In order to register for the study, participants will be required to create an account on the user study

website. To successfully create an account, the participant must first acknowledge and agree with the

terms and conditions in the user study consent form. When an account has been created, the participant

will be requested to complete an online questionnaire identifying their age, gender, experience with

Counter-Strike: Source, etc. Also, participants will be asked to download a prediction-recording

computer program. Instructions for use of the program will be provided through videos available on the

user study website. Once the participant has downloaded the program to their computer, they will be

able to run it by double-clicking on its icon. Upon doing so, the participant will be required to enter the

username and password of their user study website account (Figure 1).

Next, a window will appear presenting a top-down view of a Counter-Strike: Source map (Figure 2)

with a grid overlay. Arrows on the map indicate the orientations of visible players. The participant will

be assigned to a particular team by the program. All arrows of players on the same team as the

participant will be shown (in green) while opposing team arrows will remain hidden. The participant

will be able to annotate the log by clicking and dragging their cursor over areas on the map where they

predict players on the opposing team to be located (Figure 3); these predicted areas will be highlighted

in blue.

The participant will be able to fast-forward and rewind through the gameplay. Additional features

provided to the participant will include the "observations" of teammates. These areas, shown in red,

denote the areas of the map that teammates are able to see (Figures 4 and 5).

Once a log has been fully annotated, the participant's predictions (i.e., the blue overlays) will be

automatically uploaded to the user study website, and a new game log to annotate will be displayed.

While there are no time limits imposed on the participant to complete an annotation, the average log

takes approximately 5 to 10 minutes for an inexperienced person to annotate. The participant will be

allowed to annotate as many logs as they choose to in a given session, and they may quit the program at

any time. If the participant wishes to annotate more games, they may run the program again at their

leisure (but will be required to enter in their username and password each time).

Participants will also be provided with standard website account services. These services include the

ability to change one's password, delete one's account, and to specify which maps participants prefer to

annotate.

81

ASLREB

Rev. 8-06

4. Describe how you will deal with the issues of informed consent and continuing voluntariness of participation in the

research. For minors, describe how you will obtain consent of guardians.

In order to create an account on the user study website, the participants will be required to read a consent

form informing them of the nature and purpose of the user study as well as their rights as participants.

Only those participants who fill out the form with valid information and select the check box will be

registered in the user study. All participants will be informed that they may discontinue their

participation at any time during the study. If a participant chooses to discontinue their participation,

they will be able to delete their account through the user study website at which time all data collected

from them will be deleted. Minors will not be allowed to participate in the user study.

5. Describe how you will grant anonymity to participants and how responses will be kept confidential. If names or other

identifying information are coded with data, describe how access to data is limited and safeguarded. Indicate who will have

access. If appropriate, describe how consent is obtained from participants for exceptions to anonymity/confidentiality (e.g.,

focus groups). If data are to be taken from existing sources, discuss the implications of pre-existing (implicit or explicit)

guarantees of confidentiality/anonymity.

No names or other identifying information will be collected during the study. Each participant will be

identified only by their user ID number which will be generated automatically by the user study

website. While a username and password is required by each participant to log into the website and

prediction-recording program, this information is stored in an encrypted format in a user study database,

thus maintaining strict participant anonymity. Only members of the research team will have access to

the data.

6. Describe your plans for the retention and disposal of data.

User study website access and all communications to and from the prediction-recording program will be

through secure internet connections. All data will be stored in a secure database on a Computing

Science department server for a minimum of five years. Access to the database will be allowed only to

members of the research team.

82

ASLREB

Rev. 8-06

7. If concealment and/or deception is to be employed, provide explicit justification. Indicate how and when participants will

be informed of the concealment and/or deception.

No concealment or deception will be employed.

8. Describe the nature of any risks to the physical or psychological well-being or integrity of participants that might arise

from your procedures, and discuss your justifications, safeguards, and resolutions for these risks where appropriate.

There will be no dangerous substances or risks of physical harm beyond those associated with a regular

computer use. Users will be required to call upon prior experiences playing the game Counter-Strike:

Source. Although Counter-Strike: Source has been rated Mature by the Entertainment Software Rating

Board (see http://www.esrb.org/ratings/ratings_guide.jsp for details), the only original game assets the

prediction-recording program uses is the top-down view of game maps (Figure 2). There are no visible

or audible representations of violent content.

9. Indicate when participants will be debriefed, and describe the nature and extent of debriefing. Indicate how participants

may follow-up with researchers to ask questions or obtain information about the study.

There will be no formal debriefing to participants because the nature and details of the study as well as

the pretences under which it is being conducted will be made known prior to their participation.

However, participants may access their user study website accounts during and after the conclusion of

the study to reference an analysis of their prediction performance. This analysis will be similar to the

example in Figure 6, a graph depicting three performance curves:

1. The performance of the participant on logs they have annotated.

2. The aggregate performance of all participants for the same set of logs.

3. The performance of the predictor or the same set of logs.

At any time participants can send an email to any member of the research team to ask any questions or

raise any issues they might have.

83

ASLREB

Rev. 8-06

10. Describe any apparatus, element of the physical environment, substance or other materials that could cause harm to a

participant if a malfunction, misuse, accident, allergic reaction, or side-effect were to occur. If the participant comes into

contact with a potentially hazardous apparatus or material, who will be responsible for checking for defects/malfunctions, and

on what schedule will inspections be made? If participants come into contact with some substance that could cause harm,

please document your safeguards. Describe safety approvals that you have obtained or applied for (e.g., biohazards,

electromechanical, radiation, etc.)

Participants are required to use a computer with an internet connection to access the user study software

and website. Effects from participating in the user study will be similar to that of home computer usage.

11. Describe qualifications of research personnel if special conditions exist within the research that could cause physical or

psychological harm or if participants require special attention because of physical or psychological characteristics, or if made

advisable by other exigencies.

No additional research personnel are required.

12. Describe any potentially hazardous duties that will be required of research personnel, including physical, mental, or legal

risks. Describe the safeguards you have implemented for your personnel.

Not applicable.

Please submit twp (2) copies of your application together with supporting materials to Dr. Tom Johnson, Department of

Psychology, P-217 Biological Sciences Building.

84

Figures Reference

FIGURE 1: Username and password entry

FIGURE 2: Main screen with grid overlay

85

FIGURE 3: Main screen with a participant's prediction

FIGURE 4: Observation overlay

 86

FIGURE 5: Participant Predictions with Observation Overlay

FIGURE 6: Example of a Participant's Performance

87

Research Information and Participant's Consent Form

You must be 18 years of age or older to participate in this study.

Introduction

Welcome! You are invited to participate in a research study being conducted by Stephen

Hladky and Dr. Vadim Bulitko of the Department of Computing Science at the

University of Alberta. The purpose of this study is to evaluate the ability of humans to

predict the locations of opponents in the video game Counter-Strike: Source. There are

two objectives to this study. First, we are interested in comparing human predictions

with those made by computer programs to determine which group predicts with an

overall higher accuracy. Secondly, we wish to use the prediction data from the

participants to train prediction programs to perform more similarly to humans.

Your participation

In order to participate in the user study you are required to create an account on the user

study website (http://ircl.cs.ualberta.ca/games/cs/userstudy). Through the account you

must fill out an online questionnaire, which should take about five minutes. You may

skip any item in the questionnaire by leaving them blank. You will also receive a link to

a prediction-recording program, which you should download to your computer.

Information on how to use the program can be found through instructional videos on the

user study website.

When running the prediction-recording program, you will be presented with a replay of a

Counter-Strike: Source match from a top-down view. Players on the map are represented

by arrows indicating the directions that they are facing. The team composed of green

arrows are friendly players; you will be able to see these arrows at all times. In contrast,

the opposing team is composed of red arrows and remains hidden from view. You will

be able to play the match using VCR-style forward and rewind controls, watching the

arrows move throughout the map. At certain points in the replay, you will be required to

annotate the map by providing a prediction of the locations of opponents. This is done by

clicking your mouse on a grid to highlight grid cells that you believe to contain

opponents.

To aid you in your predictions, you will be able to toggle an "observation overlay", a red-

hue colour-map that indicates the locations on the map that friendly players are able to

see. If an opponent is located at a position that your team can see, that opponent's arrow

will become visible for that moment.

Once you finish annotating a game (which may take anywhere between five and ten

minutes), your predictions will be uploaded to the user study web server and a new replay

will be downloaded for you to annotate. Incomplete annotations will neither be saved nor

sent to the user study server. You are free to skip any replay presented to you for any

reason (e.g., you are unfamiliar with the current map, or feel you would not be able to

88

provide an accurate prediction for the current replay). You may annotate as many games

as you wish; when complete, simply close the prediction-recording program.

You may annotate more games at later date by running the prediction-recording program

at your leisure. Additionally, you will be able to view an analysis of your prediction

performance via your user study account.

Your rights

Your decision to participate in this study is entirely voluntary and you may decide at any

time to withdraw from the study. If you withdraw, all data collected from you during the

study will be destroyed. All data collected will remain confidential and only researchers

associated with the project will have access to the data. The data will be securely stored

by Stephen Hladky for a minimum of five (5) years. The results of this study may be

presented at scholarly conferences, published in professional journals, presented in class

lectures, and used as part of or to inform future research projects. No monetary

compensation will be provided to participants of the user study.

Benefits and risks

All Software (download-able programs and updates) and Services (facilities made

available to participants through the user study, such as the user study website) are

provided "as-is". The members of the user study research team, the Human Research

Ethics Committee, the Department of Computing Science, and the University of Alberta

shall not be responsible or liable, directly or indirectly, in any way for any loss or damage

of any kind incurred as a result of, or in connection with your use of the Software and/or

Services. Moreover, the user study research team reserves the right to at any time modify

or discontinue, temporarily or permanently, all or part of the Software and/or Services as

they deem appropriate. Such modifications or discontinuations will be preceded by a

notice on the user study website. The Software and Services carry no warranties explicit

or implied of any kind.

There are no foreseeable physical or mental risks to this study, but if any risks should

arise, the researchers will inform the participants immediately. If you should experience

any adverse effects, please contact Stephen Hladky immediately.

Contact information

If you have any questions of concerns on the study, or if you wish a clarification of your

rights as a research participant, you can contact Stephen Hladky, Dr. Vadim Bulitko, or

the Human Research Ethics Committee at the phone numbers or addresses below.

Stephen Hladky
M.Sc. Candidate

Department of Computing

Science

Vadim Bulitko, Ph.D.
Assistant Professor

Department of Computing

Science

Tom Johnson, Ph.D.
Chair, Human Research

Ethics Committee

Department of Psychology

89

University of Alberta

Edmonton, AB T6G 2E8

(780) 492-2821

hladky@cs.ualberta.ca

University of Alberta

Edmonton, AB T6G 2E8

(780) 492-3854

University of Alberta

Edmonton, AB T6G 2E9

(780) 492-2834

Signatures

By clicking the "Create Account" button below, you confirm that you have read and

understood the purpose and details of the study and indicate your willingness to

participate.

You must be 18 years of age or older to participate in this study.

90

Participant Questionnaire

PART I

(To be completed by the participant at the beginning of the user study (i.e. when a user

account is created). Participants may change their answers at any time before the

conclusion of the user study. Any answer may be left blank by the participant.)

1. What is your gender?

Male

Female

2. Please select your age group.

18 to 21 years

22 to 25 years

26 to 29 years

30 to 33 years

34 to 37 years

38+ years

3. How frequently do you play first-person shooter video games?

Never

Less than once a month

At least once a month

At least once a week

Daily

4. How frequently do you play Counter-Strike and/or Counter-Strike:Source?

Never

Less than once a month

At least once a month

At least once a week

Daily

5. How long have you been playing first-person shooter video games?

Less than 6 months

6 months to 1 year

1 year to 2 years

2 years to 4 years

4 years to 7 years

More than 7 years

91

6. How long have you been playing Counter-Strike and/or Counter-Strike:Source?

Less than 6 months

6 months to 1 year

1 year to 2 years

2 years to 4 years

4 years to 7 years

More than 7 years

PART II

(To be completed by the participant after at least one game has been annotated.

Participants may change their answers at any time before the conclusion of the user

study. Any answer may be left blank by the participant.)

7. Please describe any techniques, procedures, reasoning, or thoughts that you felt helped

you to predict opponent locations.

__

__

__

8. Please record any comments you may have about the user study (e.g., how it was

conducted, overall experience, etc.)

__

__

__

92

