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Abstract

Non-linear fluctuations are a common feature of data extracted from plasma ex-

periments and are common in the edge regions of magnetically confined plasmas where

long filament-like structures of density and temperature can generate them. These

fluctuations are associated with turbulence and vortices leading to complex chaotic

transport in these regions. Hence, the analysis of these fluctuations are important

due to the applications of plasma confinement in research like nuclear fusion.

Non-linear time series are present in many fields of research such as atmospheric

sciences, neuroscience, finance, seismology and more. Hence, methods to understand

non-linear dynamics has been of utmost importance to researchers. One of the main

outcomes of non-linear time series analysis is to identify the nature of the time series

as periodic, chaotic or stochastic. There have been many methods developed to

perform this analysis from well established methods such as Lyapunov exponents to

newly developed methods such as multifractal analysis.

The following thesis explores three methods of non-linear time series analysis:

CH-Plane method, Hurst exponent and Lyapunov exponent. CH-Plane is a newly

developed method to identify whether a time series is based on underlying dynamics

of a deterministic or stochastic nature. Hurst exponent is a well known quantifier for

the memory of a system. Lyapunov exponent is the most commonly used quantifier

for the degree of chaotic nature in a system. These methods are used to analyze Ion

Saturation Current and Floating Voltage fluctuation data from a plasma experiment

focusing on cross-field transport fluctuations associated with temperature filaments

in cold plasma background. Through this, the thesis shows the breadth of non-linear

time series analysis methods available to researchers and their applications in plasma

research.
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CHAPTER 1.

Introduction

Plasmas are very common in the universe from space plasmas such as those that

make up stars to atmospheric plasmas such as the auroras to even closer on Earth

in devices such as neon lights and welding arcs. Study of plasmas then becomes a

very important means to understanding our own universe. To achieve this, plasmas

have been created in labs on Earth and held in magnetic containment devices such

as tokamaks. The foremost application of such lab plasmas in recent times has been

in nuclear fusion experiments as they are the best medium to facilitate fusion as

evidenced by the very stars in our universe. This results in a need to understand

the behaviour of magnetized plasmas and as well as their interactions with the con-

tainment fields at the edges of the system. In this direction, this thesis puts forth

the analysis performed on data collected from experiments exploring one behaviour

of magnetized plasmas: particle and energy transport through fluctuations from fila-

mentary structures in plasma.

Any discussion regarding plasma must begin with defining plasma. Plasma is an

ionized gas that exhibits quasi-neutrality and collective behaviour[1]. The collective

behaviour refers to the fact that particles in a plasma exhibit similar behaviour and

move together like a fluid[1]. As plasmas are made of charged particles, there are

electromagnetic forces that tie their behaviour together. Quasi-neutrality refers to

the fact that the density of the various charged particles can be considered to be

nearly equal and hence they can all be treated to have a single plasma density[1].
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CHAPTER 1. INTRODUCTION

However, since it is an ionized gas, it must be kept confined by a strong magnetic

field. For an ionized gas to be considered a plasma, it has to satisfy three conditions.

First, the length of the system must be greater than the electron Debye length, λd:

λde =

√︃
ϵokTe

ne2
(1.1)

Second, the number of particles in the Debye sphere must be much greater than

one. Thirdly, the product of the plasma frequency, ω, and the mean time between

collisions, τ , must be greater than one[1]. Plasmas are generally characterized by

two properties: the number density, n, and temperature, generally written with the

Boltzmann constant k as kT , of the charged particles making up the plasma[1]. The

vast range of particle densities and temperatures leads to the existence of a great

variety of plasmas from space plasmas to gas discharges. Of great interest among

these types of plasmas is particle transport and energy transport. This thesis explores

the transport and fluctuations from filament-like structures in plasma.

Transport is a characteristic phenomena of magnetically confined plasma with a

pressure gradient[2]. Pressure gradients can be generated by structures in plasma

such as temperature filaments. Transport in plasmas appears in two forms: diffusion

of particles through the plasma known as particle transport and the transfer of energy

through the plasma known as heat transport. Local transport for ambipolar diffusion

is modelled by Fick’s law[1] which defines particle flux and heat flux respectively as:

Γe =
(︁
De

Classical + De
Anomalous

)︁
∇ne (1.2)

Qe =
(︁
χe

Classical + χe
Anomalous

)︁
∇Te (1.3)

Here, De and χe are the electron particle and thermal diffusivity respectively and
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CHAPTER 1. INTRODUCTION

consist of a classical component and anomalous component. Classical transport is

determined through collisional mechanisms while the anomalous transport is made of

many forms of cross-field waves and oscillations[1]. Transport in plasma is driven by

fluctuations in temperature and density. Fluctuations are a common feature of any

magnetized plasma[3].

De
Anomalous =

⟨nẽvr̃⟩
▽ne

(1.4)

χe
Anomalous =

⟨Tẽvr̃⟩
▽Te

(1.5)

Here, nẽ is the fluctuation in electron density, Tẽ is the fluctuation in electron tem-

perature and vr̃ is the fluctuation in radial velocity. The transport then depends on

the fluctuations of the plasma parameters and drift velocity of the electrons. Fluctu-

ation of the plasma parameters depend on potential fluctuations when the velocity is

mainly dominated by E ×B drift.

Collisional transport is the classical transport mechanism where heat is trans-

ported through collisions between the ions and electrons. The classical transport

from a heat source like a temperature filament is done through thermal diffusion

along both the axial and radial directions controlled by the thermal conductivity in

those respective directions. So, in a magnetically confined plasma with magnetic field

Boẑ, the electron thermal conductivity is[4]:

κ∥ =
(3.16)neTeτe

me

(1.6)

κ⊥ = 1.47
κ∥

(Ωeτe)2
(1.7)

Here κ∥ is the thermal conductivity along the magnetic field while κ⊥ is the thermal

conductivity perpendicular to the magnetic field. ne, Te and me are the electron

3



CHAPTER 1. INTRODUCTION

density, electron temperature and electron mass respectively. Finally, τe is the electron

collision time of the plasma, Ωe is the electron cyclotron frequency and Λ is the

coulomb logarithm which are defined as:

τe =
(3.44 × 105)Te

3/2

neΛ
(1.8)

Ωe =
eBo

m
(1.9)

Λ = 12πnλd
3 (1.10)

From the above equations, it can be seen that transport along the magnetic field, κ∥ ∝

Te
5/2, is much higher than perpendicular to the magnetic field, κ⊥ ∝ Te

−1/2, leading

to classical transport being anisotropic[4]. The transport equation for collisional

transport in two dimensions in cylindrical co-ordinates can then be written as[4]:

3

2
n∂tTe =

1

r
∂r (rκ⊥∂rTe) + ∂z

(︁
κ∥∂zTe

)︁
− 3

men

miτe
(Te − Ti) + Q (1.11)

Here, Q is the total heat in the plasma system from the external heat source. Ti and

mi are the ion temperatures and ion masses respectively.

Anomalous transport is generated by unstable waves in non-equilibrium plasmas

with macroscopic gradients in density and/or temperature. A common type of anoma-

lous transport to be focused on in this thesis are resistive drift waves in magnetically

confined plasmas. Resistive drift waves are a type of pressure gradient driven uni-

versal instability[1]. They resemble a twisted flute and have a rotation around the

magnetic field direction as they propagate slowly along the magnetic field direction

as seen in fig.1.1a. For a magnetically confined plasma in a magnetic field Boẑ, the

4



CHAPTER 1. INTRODUCTION

(a) Flute Instability (b) Drift Wave

Figure 1.1: The schematic of a resistive drift wave is shown. The left panel shows
the propagation of the drift wave through a plasma column. The right panel shows
the density fluctuations of the drift wave. The figures are taken from the textbook
”Introduction to Plasma Physics and Controlled Fusion” by Chen[1].

drift of the ions and electrons under a density gradient of KT∇no, respectively is[1]:

vi =
KTi

eBo

no
′

no

ŷ (1.12)

ve = −KTe

eBo

no
′

no

ŷ (1.13)

Further, the electrons flow along the magnetic field with the drift waves establishing

a thermodynamic equilibrium resulting in them now obeying a Boltzmann relation[1]:

n1

no

=
eϕ1

KTe

(1.14)

Due to the above pressure gradient, a density variation is created between the region

5



CHAPTER 1. INTRODUCTION

within the instability with higher density n1 and outside with lower density n0 as

seen in fig.1.1b[1]. This creates an electric field, E1 from the denser region inside to

the rarer region outside causing a drift velocity v1 in the x-direction[1]:

v1x =
Ey

Bo

=
ikyϕ1

Bo

(1.15)

Assuming that the fluctuations are incompressible in the x-direction and that the

wave propagates faster across the field rather than along, the equation of continuity

is[1]:

∂n1

∂t
= −v1x

∂no

∂x
(1.16)

Putting in Eqn.1.14 and Eqn.1.15 into Eqn.1.16 , we get[1]:

ikyϕ1

Bo

no
′

= −iω
eϕ1

KTe

no (1.17)

⇒ ω

ky
= −KTe

eBo

no
′

no

= ve (1.18)

This is the electron drift velocity defined in eqn.1.13. Since these waves move at

electron drift velocities, they are called drift waves. Moreover, electron-ion collisions

act as a resistance causing a potential drop between the crest and trough of a wave

stopping the electric field from the electron flow along the magnetic field from growing

indefinitely[1]. This additional effect results in these waves being called resistive drift

waves. The dispersion relation for resistive drift waves is[1]:

ω2 + iσ∥(ω − ωo) = 0 (1.19)

ωo = kyve (1.20)

6



CHAPTER 1. INTRODUCTION

If σ∥ ≫ ω, then, the dispersion relation can only be satisfied if ω ≈ ωo. Then, the

dispersion relation can be written as[1]:

ω ≈ ωo + (iωo
2/σ∥) (1.21)

From the dispersion relation, it can be clearly seen that the drift waves have a positive

imaginary part for the frequency making them unstable. The transport equation for

temperature in the presence of these drift waves in two dimensions is[5]:

3

2
n(∂tTe + vx∂xTe + vy∂yTe) = ∂x(κ⊥∂xTe) + ∂y(κ⊥∂yTe) − κ∥

Te

L2
+ Qei + Qeff

(1.22)

Qeff is the radial heat flux from the filament and Qei is the heat loss from electron-ion

collisions while L is the characteristic length of the temperature filament. To solve

this transport equation, a model of the drift velocity, {vx, vy} is needed which depends

on potential fluctuations as[5]:

vd⃗ = −(c/B)∇⊥Φ × ẑ (1.23)

Hence, to study the fluctuations, a model of potential is sufficient as everything else

is governed by it. It has been found from previous experiments that drift waves start

with an azimuthal mode of m=1 before evolving to higher order modes. The plasma

experiment under analysis is dominated by drift waves with mode m = 1 and a global

mode or m = 0 mode[5]. There is also a smaller contribution from a higher m = 6

mode. This potential was modeled by Shi et al. as[5]:

Φ(r, θ, t) = Re
[︁
A1J1(k1r)eiθe−iωte−αr + A6J6(k6r)ei6θe−iωte−αr

]︁
+ Akr2 (1.24)

7



CHAPTER 1. INTRODUCTION

Here, r and θ are the radial and angular distances away from the center of the filament

and t is the time. k, k1 and k6 are the wave numbers of the global mode, the first mode

and the sixth mode of the oscillation while A, A1 and A6 are the amplitudes of the

respective modes. ω is the frequency of oscillation and α represents the temperature

gradient around the filament.

Finally, as the drift waves die down, the fluctuations become chaotic in nature

and transport is governed by these chaotic fluctuations as long as the heat source

remains[5]. Drift waves and chaotic fluctuations will inevitably occur in any plasma

with a pressure gradient such as magnetically confined plasma. This results in a need

to understand these waves in depth to improve the performance of the confinement

devices. However, these fluctuations are non-linear in nature. Hence, to analyze the

data from plasma experiments, methods to analyze non-linear time series are needed.

(a) M1 + M0 (b) M1 + M6 + M0

Figure 1.2: Shi-Pace model potential is plotted for various modes of drift waves. The
left panel shows the drift wave with mode 1 visible at the centre and the global mode
visible at the outer edges. The right panel shows the drift wave with mode 1 visible
at the centre, mode 6 visible at the outer edges and the global mode.

It has been shown by Wold that any stationary time series can be defined as a

8



CHAPTER 1. INTRODUCTION

sum of a deterministic time series and a stochastic time series[6]. The deterministic

part of a time series can be periodic or chaotic. Hence, identifying the nature of a

time series is an important avenue of analysis for experimental data.

A periodic system is one of the most basic systems seen in nature from pendulums

to harmonic oscillators. A periodic system is a deterministic system defined by a set

of equations, differential or otherwise, consisting of periodically varying coefficients[7].

A periodic system, X(t) is defined by its time period, T , which defines how long it

takes before the system reaches the previously recorded state, i.e, X(t+T ) = X(t)[7].

The most common form of a periodic systems are trigonometric functions describing

circular motion.

Chaotic systems are very commonly observed from natural systems such as weather

patterns to man-made systems such as stock markets[8]. Chaotic systems are deter-

ministic systems that are modelled by simple set of differential equations and show

complicated behaviour[9]. Their major identifying feature is their sensitivity to initial

conditions. So, for two particles in a chaotic system separated by an initial distance

δx, the separation after some time t is δxeλt[8], where λ is the Lyapunov exponent.

Essentially, any perturbation in the initial conditions of the system is enhanced ex-

ponentially up to saturation as the system evolves. Chaotic systems are appealing

as their extremely irregular behaviour is controlled by very simple differential equa-

tions. Hence, many mathematical methods such as multifractal analysis, attractor

reconstruction and more have been devised that allow researchers to take chaotic

time series recorded from a system in an experiment and reconstruct the differential

equation that define the system[9]. Hence, identifying chaotic nature in experimental

data is extremely useful as it allows the system under study to be analyzed through

simple mathematical tools.

Stochastic processes are a common description of complex random process taking

9



CHAPTER 1. INTRODUCTION

place in nature. A very well known example is the random motion of particles in

a gas called Brownian Motion. Stochastic processes are time series of random vari-

ables resulting from functions depending on a single index of values such as time or

real numbers[10]. Due to their random nature, the future behaviour of stochastic

series cannot be determined based on its previous behaviour unlike chaotic series.

Due to this, stochastic series are analyzed through their statistics instead. The ran-

dom variables making up the stochastic series are studied based on their probability

distributions and state space[10].

Both chaotic and stochastic series can show strong non-linearity and unpredictabil-

ity making distinguishing them using linear analysis like Fourier transforms difficult[11–

13]. Further, chaotic series derived from higher-dimensional non-linear process share

a lot of properties with stochastic series such as wide-band power spectrum[13, 14].

Low-dimensional chaos is even harder to distinguish from stochastic processes in ex-

perimental data[12, 15–17]. While chaotic systems can be described through simple

equations and stochastic nature can be studied through statistics, identifying such

nature in a time series is difficult. Complex systems show strong non-linearity due

to the presence of a lot of microscopic sub-systems varying on fast time scales that

interact non-linearly with collective behaviour of the system varying on longer time

scales[10]. So, any time series recorded from such complex systems in experiments is

consequently going to be non-linear in nature.

A time series is generally seen as a realization from a stochastic process. For a

finite set of time indexed data, there are infinitely many stochastic processes that

can be considered to model the data. Finding the best model out of the infinite

possibilities to characterize the underlying process is one of the main goals of time

series analysis. A linear time series is one which is recorded from a linear process

10



CHAPTER 1. INTRODUCTION

which is a process that obeys superposition and scaling properties as follows[18]:

f(ax + by) = af(x) + bf(y); a, b ∈ R (1.25)

where a and b are the scaling factors. A linear time series is usually modelled using

ARMA models made of an auto-regressive (AR) model and a moving average (MA)

model[19]. An auto-regressive model of a time series, X, describes the time series as

a linear regression model made of its past values. An AR model of the time series X

of order p is then defined as[19]:

X(t) = b1X(t− 1) + b2X(t− 2) + ... + bpX(t− p) + ϵ (1.26)

Here, ϵ is white noise. A moving average model on the other hand defines a linear

time series as a moving average of white noise of order q as[19]:

X(t) = ϵ(t) + a1ϵ(t− 1) + a2ϵ(t− 2) + ... + aqϵ(t− q) (1.27)

These two models are combined to give the ARMA model of order (p, q) used to define

linear time series[19]:

X(t) = b1X(t− 1) + b2X(t− 2) + ... + bpX(t− p)+ (1.28)

ϵ(t) + a1ϵ(t− 1) + a2ϵ(t− 2) + ... + aqϵ(t− q) (1.29)

However, over the years, many time series have been identified in experiments that

cannot be modelled through models used for linear time series. These time series

are referred to as non-linear time series. Such time series are characterized by fea-

tures such as non-normality, asymmetric cycles, sensitivity to initial conditions and

11



CHAPTER 1. INTRODUCTION

more[19]. These features make analysis of non-linear time series difficult as linear

models cannot adequately represent the non-linear features resulting in the need for

purpose built tools to analyze non-linear time series. This thesis focuses on three

such tools: CH-Plane method, Hurst exponent and Lyapunov exponent.

The CH Plane is a method to analyze a given time series to see if it is periodic,

chaotic or stochastic by plotting the entropy of the series against its complexity.

This method is the focus of Chapter 2. Hurst exponent is a quantitative measure

of memory of a system and is focused on in Chapter 3. Lyapunov exponent is a

very commonly used measure based on particle trajectories to quantify the degree

of chaotic nature of a time series and is focused on in Chapter 4. Further, machine

learning is used to relate Hurst and Lyapunov exponents. The three methods are

used to analyze fluctuation time series data from a plasma experiment to show the

application of non-linear time series analysis.

12
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Entropy-Complexity Plane

Analysis of time series data from experiments to identify chaotic or periodic nature

has been an ongoing challenge. Many methods such as Lyapunov Exponents have

been put forth to perform such an analysis. Analysis of the periodicity of signals

all depend on knowing the various states a system under examination can exist in.

However, this leads to a significant downside as the data acquired from experiments

is always in a discreet form without no easy means to discover the states of the

system[20]. For example, data from the observation of a star’s magnetic field cannot

be prepared in any way as its not feasible to manipulate the star in any way (at least

not with current human technology). The ideal method for time series analysis would

be one which works on any arbitrary series without any form of preparation of data.

A recent method developed to perform such an analysis of time series is called the

Entropy-Complexity Plane (CH-Plane)[21].

The idea for this method first originated in 1995 by Lopez-Ruiz et al. who sug-

gested using complexity as a measure to analyze the periodic or chaotic nature of

time series[22]. However, the problem still lay in how to apply the method to an

arbitrary time series. This problem was solved by Bandt and Pompe who came up

with a method to define a probability array of various states of a time series based

on amplitude permutations of the series under analysis allowing it to be completely

arbitrary[20]. This method was the final piece needed which allowed Martin et al. to

develop the CH Plane. Together with the idea from Lopez-Ruiz et al., they defined a
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complexity measure, an entropy measure based on the probability array built using

the Bandt-Pompe method with which they then plotted the entropy along the hori-

zontal axis and the complexity along the vertical axis to build the Entropy-Complexity

Plane or CH-Plane[21]. A further addition was then later made to the CH-Plane by

adding upper and lower bounds to the complexity value that could be seen for each

entropy value giving a maximum and minimum curve bounding a valid region[21].

This finally gave the complete CH-Plane as a tool to analyze the nature of time se-

ries. This method has been used extensively to analyze time series data in fields of

plasma physics[23, 24], neuroscience[25, 26], cardiology[27], economics[28], quantum

mechanics[29], image discrimination[30] and more.

2.1 Bandt-Pompe Probability

The Bandt-Pompe method, alternately called the permutation entropy method,

was introduced by Bandt and Pompe to define a probability density array of the

various states of a time series. They did this by defining the states as the vari-

ous permutations of the amplitude of the time series, hence the name permutation

entropy[20]. The method is performed as follows:

For a time series x = {x1, x2, ..., xT} of length T , it is subdivided into smaller sub-

series of length d defined as[20]:

et = {xt, xt+1, ..., xt+d−1} ; t ∈ [1, T − d + 1] (2.1)

This sub-series length, d, is known as the embedding dimension[20]. The embedded

signals are derived for each consecutive element of the time series from the first data

point until the T − d + 1 data point, giving T − d + 1 sub-series which will help

define the various states currently contained in the time series[20]. This will now

allow us to find the probability density of the states of a system. But to do that, all
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the probability states a system can exist in need to be defined first. This is done by

considering all the permutations that the amplitude elements of a sub-series of length

d can take as the probability states, πn[20]. This gives us d! probability states. For

example, for a embedding dimensions of d = 3, the permutation states are:

π1 = 1, 2, 3

π2 = 1, 3, 2

π3 = 2, 1, 3

π4 = 2, 3, 1

π5 = 3, 1, 2

π6 = 3, 2, 1

With the possible states that can exist now defined, the probability of occurrence of

these states in the time series can be calculated. To do this, the embedded sub-series

are arranged in either ascending or descending order of their amplitudes keeping note

of how the positions have been ordered after the sort. This order in which the indices

of the amplitudes have been arranged form the states currently existing in the system.

These states are then compared to the list of all possible states to see the frequency of

occurrence of each possible state. This array of frequency of each state is normalized

to the total number of states in the time series, which corresponds to the number

of embedded sub-series, to give the probability array or the permutation entropy.

Hence, it is defined as[20]:

P (π) =
#(t|t ≤ T − d + 1, {xt, ..., xt+d} has type π)

T − d + 1
(2.2)
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Take the following time series as an example:

x = 3, 14, 4, 9, 21, 15, 28

Using an embedding length of d = 3, 5 sub-series will be acquired as follows:

e1 = 3, 14, 4

e2 = 14, 4, 9

e3 = 4, 9, 21

e4 = 9, 21, 15

e5 = 21, 15, 28

Arranging these sub-series in ascending order of their amplitudes and looking at the

position of these elements afterwards;

e1 = 3, 4, 14 → 1, 3, 2

e2 = 4, 9, 14 → 2, 3, 1

e3 = 4, 9, 21 → 1, 2, 3

e4 = 9, 15, 21 → 1, 3, 2

e5 = 15, 21, 28 → 2, 1, 3

Now, comparing these to the permutation states, π, of the system, the frequency of

repetition of each state, p(πn), can be found.

p(π1) = 1

p(π2) = 2
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p(π3) = 1

p(π4) = 1

p(π5) = 0

p(π6) = 0

This array is normalized to the number of sub-series, 5 to get the probability distri-

bution:

P (π) = 0.2, 0.4, 0.2, 0.2, 0, 0

The choice of the embedding dimension is a very important one as it determines the

number of states that a time series can access and so, can affect the probability density.

Firstly, the embedding dimension, d, must be chosen such that the number of available

states, d!, is much smaller than the length of the time series[20, 31]. This is to ensure

enough sub-series can be extracted to get an accurate representation of the probability

density and features do not get obscured. Further, larger embedding dimension can

lead to so many accessible states that every feature in the time series amplitude

exists as its own individual state resulting in a completely uniform probability density

erasing the ability to learn anything about the time series[20, 31]. Another problem

with larger embedding dimensions is increased computing time[20, 31]. Hence, Bandt

and Pompe suggest using an embedding dimension between 3 and 7[20]. Now, the

Bandt-Pompe method has been defined, with which, any arbitrary time series can

be analyzed to acquire a probability distribution of states of the system without any

sort of preparation of the data or experiment.
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2.2 Shannon Entropy

Entropy measure is one of the two quantities used to define the CH-Plane. Entropy

quantifies the number of ”patterns” that exist in a time series which are represented

as the various states in the probability distribution array[21]. The more varied states

that exist in the time series, the higher the value of the entropy[21]. For the CH-Plane,

Shannon Entropy will be used as the entropy measure.

Shannon entropy is defined based on the probability density of the states of a

system. Thanks to the Bandt-Pompe method, a probability density can be defined

for any time series which will be used to define the Shannon entropy. For a given

probability density, P , the Shannon Entropy is defined as[21]:

S[P ] = −
d!∑︂

j=1

pj log(pj) (2.3)

This entropy is normalized to the maximum value of Shannon entropy. This is

achieved when every single probability state has equal probability of occurrence,

1
d!

[21].

Pmax = {pj =
1

d!
for j = 1 to d!} (2.4)

Using this, the maximum entropy comes out to be Smax = log(d!)[21].

So, the normalized Shannon Entropy is[21]:

H[P ] =
S[P ]

Smax

=
S[P ]

log(d!)
(2.5)

Normalized Shannon Entropy takes a value between 0 and 1. Shannon entropy has a

low value for periodic series as there are only a few states that are repeated over and
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over. Noise on the other hand has a high entropy as it has a lot of different states due

to its random nature. Chaotic series have a moderate entropy as they have a large

number of states showing up in the time series[21].

2.3 Complexity

Complexity is the other quantity needed to define the CH-Plane. Complexity is a

measure of the level of correlation between the states that exist in a time series[21].

It expresses how closely related the various ”patterns” in a time series are.

Complexity is defined as[21]:

C[P ] = H[P ]Q[P ] (2.6)

where H[P ] is the Shannon entropy and Q[P ] is known as the disequilibrium measure.

Many different disequilibrium measures can be used but two of particular focus are

the Wooters Distance[21] and the Jensen-Shannon Divergence[21]. A third complexity

measure called Fisher Information Measure will also be explored, however, it does

not follow the form of equation 2.6[32]. All of these complexity measures will be

normalized so that they take a value between 0 and 1.

2.3.1 Wooters Distance

The Wooters Statistical Distnce is a measure originally used in Quantum Me-

chanics to differentiate the various states of a system as well how closely related they

are[21]. As such, it is measured with respect to two probability arrays. To measure

the complexity of the probability array of an arbitrary time series, it is compared to

a uniform probability distribution. For building the CH Plane, the probability array

of the time series from the Bandt-Pompe method and the probability array corre-

sponding to the maximum entropy as defined by equation 2.4 are used. Hence, the
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normalized Wooters Distance is defined as[21]:

QW [P |Pmax] = arccos

{︄
N∑︂
j=1

(pj)
1/2

(︃
1

N

)︃1/2
}︄

arccos

{︄(︃
1

N

)︃1/2
}︄

(2.7)

Wooters Distance is low for both periodic series and noisy series[21]. Periodic series

only have a few states and hence a low level of correlations between states leading

to low Wooters Distance. Noisy signals have a lot of states but not a lot of corre-

lation between those states as they are all random leading to low Wooters Distance

once again. Chaotic series have a moderate Wooters Distance as they have a signif-

icant number of states and hence a significant amount of correlation between those

states[21].

2.3.2 Jensen-Shannon Divergence

Jensen-Shannon Divergence is a relative entropy measure and is always measured

as a comparison between two probability arrays. They measure the level of correlation

between the two probability arrays[21]. Like the Wooters Distance, the probability

array from the Bandt-Pompe method will be compared relative to the probability

array giving maximum entropy as defined by equation 2.4. Then, the normalized

Jensen-Shannon Divergence is defined as[21]:

QJS [P |Pmax] =
S[P+Pmax

2
] − S[P ]

2
− S[Pmax]

2

−1
2

{︁
d!+1
d!

log[d! + 1] − 2 log[2d!] + log[d!]
}︁ (2.8)

Where, Qmax is defined as[21]:

Qmax = −1

2

{︃
d! + 1

d!
log[d! + 1] − 2 log[2d!] + log[d!]

}︃
(2.9)
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Jensen-Shannon Divergence works the same as Wooters Distance with low values for

periodic and noisy series while chaotic series have a moderate value[21].

2.3.3 Fisher Information Measure

The Fisher Information Measure (FIM) is an entropy measure that quantifies the

level of disorder in a system[32]. It has been suggested as an alternative measure

to Shannon entropy to measure the information entropy of a physical process. The

FIM is measured with respect to the probability density array of the system under

examination alone unlike the previous two disequilibrium measures. So, the Discreet

Normalized Fisher Information Measure is defined as[32]:

QF [P ] = F0

N−1∑︂
j=1

{︁
(pj+1)

1/2 − (pj)
1/2
}︁2

(2.10)

Where, F0 is defined as[32]:

F0 =

⎧⎨⎩ 1, if pj∗ = 1 for j∗ = 1 or j∗ = N and pj = 0 for all other j

1/2, otherwise
(2.11)

FIM works the opposite of Shannon Entropy. Periodic series have a high FIM value

while noisy series have a low value[32]. Chaotic series have a moderate value as in all

the previous measures[32].

2.4 Complexity Curves

There is one final component left to create the CH-Plane. The complexity mea-

sures cannot take any value. Since each value of Shannon Entropy corresponds to

how many states exist in the time series, there can only exist so many correlations

between those existing states. This constrains the complexity between a maximum

and minimum value. Over the entire domain of the Shannon Entropy, this constraint
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leads to the presence of a maximum and minimum complexity curve. These curves

are determined based on geometry and set theory of the probability space[21, 23].

2.5 CH-Plane

With all the components assembled, the CH-Plane can finally be constructed. The

Shannon Entropy is plotted along the horizontal axis and the Complexity is plotted

along the vertical axis to form the Entropy-Complexity Plane[21]. The maximum and

minimum curves are added to the plane completing the CH-Plane[21]. The three CH-

Planes that will be studied are the Wooter-Shannon (CW×H) Plane, Jensen-Shannon

(CJS ×H) Plane and the Fisher-Shannon (CF ×H) Plane.

Figure 2.1: Jensen-Shannon Plane is shown with a few signals of varying nature. The
dotted line represents Fractional Brownian Motion (fBm) indicating the stochastic
region.
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Figure 2.2: Wooters-Shannon Plane is shown with a few signals of varying nature. The
dotted line represents Fractional Brownian Motion indicating the stochastic region.

The CW ×H Plane and CJS ×H Plane behave the same way. Periodic signals are

close to the bottom left as they have low entropy and complexity. Noisy signals are

at the bottom right as they have high entropy but low complexity. Chaotic signals

lie near the middle of the plane close to the maximum complexity curve as they have

moderate entropy and complexity. Stochastic signals lie towards the right of the

plane midway between the maximum and minimum complexity curve as traced out

by the Fractional Brownian Motion (fBm) line. The fractional Brownian motion is

a family of Gaussian stochastic processes controlled by the Hurst exponent that are

self-similar and show long range dependence[33]. Fractional Brownian motion is one

of the simplest stocastic processes to model and hence works as a good measure of
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the stochastic region on the CH-Plane. The CW × H Plane and CJS × H are good

at differentiating periodic series, chaotic series and noise as they assign them to very

clearly differentiated regions in their respective planes[32]. They are however very

sensitive to noise.

Figure 2.3: Fisher-Shannon Plane is shown with a few signals of varying nature. The
dotted line represents Fractional Brownian Motion indicating the stochastic region.

The CF ×H plane behaves almost opposite to the previous two planes. There are

no complexity constraints in this plane as both measures quantify entropy. Periodic

signals lie near the top left as they have high FIM but low Shannon Entropy. Chaotic

signals lie near the center of the plane as they have a moderate FIM and Shannon

Entropy. Noisy signals lie at the bottom right as they have low FIM and high Shannon

Entropy. Stochastic signals lie towards the right of the plane closer to the bottom
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but still above the noisy signals as shown by the fBm line. The CF ×H plane is very

good at differentiating between different degrees of chaotic nature[32].

Each CH Plane has its own advantages and disadvantages and the CH Plane to

be used must be chosen based on the analysis needed to be performed. This thesis

will use the Jensen-Shannon CH Plane for analysis.

2.5.1 Periodic Signals

Periodic signals, as stated before, are found to lie towards the bottom left of the

CH Plane as seen in fig.2.1. However, this is not the full picture. Periodic signals

have been found to appear all over the CH Plane depending on two main factors. The

first is the ratio between the frequency of the signal (f) and the sampling frequency

(fs)[34]. Periodic signals can lie anywhere along the left edge of the CH Plane close

to the maximum complexity curve depending on the frequency ratio as seen in fig.2.4.

Signals with lower frequency ratio are closer towards the bottom left and signals with

higher frequency ratio are closer to the top left of the plane. The second factor is

noise. The presence of noise can move the periodic signal into the chaotic and even

noisy regions depending on the signal-to-noise ratio as seen in fig.2.5. Both these

factors combined can result in a periodic signal lying in all regions of the CH Plane

and can lead to some confusing situations such as a periodic signal falling in the

chaotic region. So, extra care must be taken to account for the above factors when

applying the CH Plane to periodic signals.

2.5.2 Chaotic Signals

Chaotic signals lie in the central region of the CH Plane closer to the maximum

complexity curve. They generally have an entropy value between 0.3 and 0.65[21].

Like with the periodic signals, noise can also affect chaotic signals and make them

move outside the chaotic regions on the CH Plane. The method used to deal with
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Figure 2.4: The CH Plane location for a sine wave is plotted for various frequency
ratios. The triangle at the bottom left represents a 1 Hz sine wave.

noise for chaotic signals is through sub-sampling as seen in 2.6.

2.5.3 Sub-Sampling

Sub-sampling of signals is a pre-processing method applied to the time series to

reduce the effect of noise when using the CH-Plane. The sub-sampling method focuses

on the frequencies of interest in a given time series by changing the sampling frequency

and hence the nyquist frequency cutting out any unnecessary high frequency signals

which is generally dominated by noise[21, 35].

To perform sub-sampling, the original time series is modified by skipping a regular

number of points called the sub-sampling dimension, s[21]. To avoid aliasing, a low-

pass filter is applied first to remove the power from the frequencies outside the range of
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Figure 2.5: The CH Plane location for a sine wave is plotted for various noise levels.
The black square represents a sine wave without any noise.

interest. This reduces the sampling frequency to fs
s

. So, the sub-sampling dimension

must be chosen such that the new sampling frequency only covers the frequencies

under study and any other unneeded higher frequencies are eliminated. However,

this method has one problem in that the sub-sampled time series has a lower length

than the original signal which might not be feasible if the original series was already

short. Moreover, aliasing also becomes a problem as power from the cut parts of

the series get redistributed into the remaining parts requiring a low-pass filter to be

applied first.

To solve these problems, an alternate method called length preserve sub-sampling

can be used[35]. As the name suggests, this method sub-samples the series while

preserving its original length. In this method, rather than skipping points in the
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Figure 2.6: The CH Plane location of Lorenz series and its sub-sampled version is
shown.

original time series, the points are skipped in the embedded series. For a sub-sampling

dimension s, when making the embedded series, instead of taking consecutive points,

points are taken every s points away to give a set of embedded series defined as[35]:

et = {xt, xt+s, ..., xt+(s×(d−1))} ; t ∈ [1, T − (s× (d− 1))] (2.12)

The embedded signals are started from every consecutive point as before. This way,

every single point in the original time series is accounted for while the sampling

frequency is still reduced to the region of interest as before. This way, both the

problem of length reduction and power aliasing is solved. The rest of the CH Plane

methodology is performed as usual.
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2.5.4 Stochastic Signals and Noisy Signals

Stochastic signals tend to lie towards the right of the CH Plane with entropy

value greater than 0.4 and a moderate complexity value in the middle between the

maximum and minimum complexity curves as indicated by the Fractional Brownian

Motion line in fig.2.1[21].

White noise signals all lie towards the bottom right of the CH Plane[21]. White noise

is a type of stochatic signal with zero mean, finite variance and the covariance matrix

of

Cov(xi, xj) = 0 for all i ̸= j (2.13)

The CH Plane is very sensitive to noise[21, 32]. So, adding noise to the other three

types of signals can result in them falling towards the bottom right of the plane. This

is the reason noise analysis and sub-sampling are used before applying the CH Plane.

2.6 Summary

The CH-Plane is a tool used to analyze the nature of signals; whether they are

periodic, chaotic, stochastic or noisy. The CH-Plane was built by Martin, Rosso et al

as a tool to analyze the nature of any arbitrary time series without any pre-preparation

of data needing to be built into the experiment.

The CH-Plane method first uses the Band-Pompe permutation entropy method to

acquire a probability density array of various amplitude permutations in a time series.

Using this probability density array, the entropy and complexity are calculated. For

entropy, Shannon entropy is used while for complexity, Jensen-Shannon Divergence

is used. Plotting the entropy along the horizontal axis and complexity along the

vertical axis along with two extrema curves that define the upper and lower limits to
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complexity at every entropy value gives the full CH-Plane.

On the CH-Plane, periodic signals are considered to occupy the bottom left region,

however, they can in fact be found all over the plane depending on ratio of frequency of

the signal to sampling frequency and noise level. For the remaining natures, chaotic

signals fall near the middle of the plane close to the maximum complexity curve,

stochastic signals fall towards the right midway between the complexity curves, and

noisy signals fall to the bottom right. A method of pre-processing called sub-sampling

can be used to focus the time series onto frequencies of interest.

All of this together, gives the CH-Plane tool that will be used to analyze the data

from plasma experiments for this project.
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CHAPTER 3.

Time Series Analysis of

Fluctuations in a Plasma

Experiment

Filamentary structures are common in many plasmas seen in the universe from

space plasmas to plasma devices on Earth[2, 36]. These filamentary structures can

drive temperature and density fluctuations in the plasma which can determine the

transport mechanisms. These filamentary structures are closely connected to the

plasma edge region of confinement devices where they can drive non-linear drift wave-

type fluctuations[36]. This results in a need to understand the fluctuations due to

filamentary structures to better build and control plasmas in experimental settings

better. This motivates an analysis of plasma experiments around temperature fila-

ments to see if these fluctuations and transport are chaotic or stochastic in nature.

3.1 Experimental Set-Up

The experiment was performed using the Large Plasma Device (LAPD) at the

Basic Plasma Facility, UCLA[36, 37]. The LAPD is made of a cylindrical chamber

18 m in length and 60 cm in diameter surrounded by solenoidal field coils to produce

a uniform magnetic field[36, 37]. There is a Barium Oxide cathode at one end of

the chamber and a mesh anode 50 cm away from the cathode. The chamber is
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Figure 3.1: The schematic of the Large Plasma Device is shown. The plasma chamber
is 18 m in length and 60 cm in diameter. A constant magnetic field of 0.1T is applied
along the length of the chamber pointing towards the cathode. The cathode crystal
is inserted at port 0 while the langmuir probe is inserted at port 39.

filled with helium gas at a pressure of 1.28 × 10−5 torr[36, 37]. The Helium plasma

is created through collisional ionization with electrons. The LAPD also has ports

spaced 32 cm apart along its length which are used to insert probes and devices into

the plasma[36, 37]. These ports are used to insert the crystal cathode used as a heat

source and the Langmuir probe used to measure the plasma parameters.

To create the temperature filament in the plasma, a 3 mm diameter Cerium hex-

aboride crystal cathode is used[36]. The crystal is ohmically heated to generate an

electron beam. The electrons conduct down along the length of the plasma column

in the direction of the magnetic field to create a long and thin filament of higher

temperature region in the plasma which extends to less than 10 m in length and 20

mm in diameter[36]. This temperature filament acts as the source of fluctuations in

the experiment. The cathode is mounted onto a probe and inserted into the plasma

column through the ports on the side of the LAPD at port 39[36].
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3.1.1 Langmuir Probe

Langmuir probes are devices used to measure plasma parameters such as tem-

perature, density and potential in cold plasmas[38]. This is done by measuring the

electron or ion current which is related to the plasma parameters. Langmuir probes

usually consist of a metallic wire or surface that is inserted into the plasma and bi-

ased with respect to a reference electrode to draw an electron or ion current as needed

based on the measurements required[38].

The Langmuir probe is generally used to measure ion saturation current. When

the Langmuir probe is biased at a voltage lower than the plasma potential so that

it is negatively charged with respect to the background, it draws in the positive

ions[38]. This flow of ions is called the ion saturation current and it continues till the

probe potential reaches the plasma potential at which point, the ions start getting

repelled. The ion saturation current, when electron temperature is greater than ion

temperature, is related to the plasma parameters as follows[38]:

Isat ≈ enAprobe

√︃
kTe

m
(3.1)

Here, Aprobe is the area of the collecting surface of the probe, Te is the electron

temperature and n is the plasma density. The ion saturation current measured by the

Langmuir probe is independent of the shape of the collecting surface and only depends

on its area. From the saturation current, the required plasma parameters can be

extracted. As the experiment is analyzing fluctuations, the temperature fluctuations

to the first order, δTe, are extracted from saturation current fluctuations, δIsat, as[39]:

δTe ≈ 2⟨Te⟩

(︄
1 −

√︄
1 − 2

δIsat
⟨Isat⟩

)︄
(3.2)
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The floating potential can also be measured from the Langmuir probe as follows[38]:

Vf = Vp +

(︃
kTe

e

)︃
log

(︃√︃
2πme

mi

)︃
(3.3)

In the above experiment, a Langmuir probe is inserted through the ports on the side

of the LAPD to measure the saturation current. The probe is mounted on drivers

that can be programmed to sweep the plasma spatially with a movement accuracy of

less than 1 mm.

3.2 Experimental Procedure

The experiment is conducted in the afterglow phase of the plasma. The main BaO

cathode is biased by -70 V with respect to the anode to create a beam of thermionic

electrons into the cylindrical chamber which then creates the He plasma through

collisional ionization with the He gas in the chamber[36]. The plasma column created

is magnetically confined by the 0.1 T magnetic field and fills the whole chamber. This

is the main discharge phase of the plasma and it has an electron temperature of 5 eV

and a density of 2 × 1012 cm−3 in this phase[36]. After 12 ms, the bias is turned off

and the plasma moves into the afterglow phase where the electron temperature drops

to less than 0.25 eV[36]. The experiment is conducted during this phase.

The crystal heat source is activated 2 ms into this phase by biasing the crystal

cathode -20V with respect to the anode and the bias is maintained for 20 ms[36].

This generates a long filament of higher temperature in a cold plasma background. A

Langmuir probe mounted on an automated probe drive is inserted at port 39[36]. To

collect data, the probe is placed at one point and saturation current is measured. This

is repeated for multiple shots. Then, the probe is moved to another spatial location

and the process is repeated[36]. This is done until a 1cm× 1cm plane is traced out.
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This process is then repeated to measure the floating voltage by passing the current

through a resistor. This method of data taking works due to high reproducibility of

the plasma conditions in each run[36].

Figure 3.2: The 1cm×1cm plane of floating voltage measured by the Langmuir probe
captured at 0.1162 ms after the cathode is turned on and the temperature filament
is generated is shown.

3.3 Results

The saturation current is measured radially from the center of the heat source to

a distance of 2.7 cm. The saturation current has two main regions: a periodic region

for the first 4 ms and a chaotic region for the remaining 11 ms as seen in fig.3.3.

The floating voltage is measured by the probe in a 1 cm x 1 cm plane containing the

heat source as seen in fig.3.2. The voltage time series is measured for 40 ms. It has
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(a) Time Series: Periodic Section (b) Time Series: Chaotic Section

(c) Power Spectrum

Figure 3.3: The results of ion saturation current measured at a distance of 0.3 cm
radially away from center of heat source is shown. The top left panel shows the
saturation current for 0-4 ms while the top right panel shows the saturation current
for 4-15 ms. The bottom panel shows the power spectrum of the saturation current
seen in the top two panels.

two main regions: a periodic region for the first 7 ms and a chaotic region for the

remaining 13 ms as seen in fig.3.4.
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(a) Time Series: Periodic Section (b) Time Series: Chaotic Section

(c) Power Spectrum

Figure 3.4: The results of the floating voltage measured at a distance of 0.1 cm
radially away from center of heat source is shown. The top left panel shows the
floating voltage for 4-7 ms while the top right panel shows the floating voltage for
7-20 ms. The bottom panel shows the power spectrum of the floating voltage seen in
the top two panels.

3.4 Analysis

3.4.1 Saturation Current

fig.3.5 shows the CH plane for the first 4 ms of the saturation current. We can see

from fig.3.5a that the CH plane matches with the periodic signal CH plane shown in

fig.2.5 showing that the first section of the saturation current time series is periodic.

The CH Plane for the remaining 10 ms is shown in fig.3.6. The region originally
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falls along the fractional brownian motion as seen in fig.3.6a making the region look

stochastic. However, once the time series is subsampled to focus on the frequencies of

interest; the first 500 kHz exponential region seen in the power spectrum in fig.3.3c,

the time series moves into the chaotic region of the CH Plane as seen in fig.3.6b.

This shows that the heat transport starts as a periodic process and then transitions

to a chaotic process. However, the transition to chaos is not very well seen in the

current data. At radii further away from the center, the time series starts to look

more stochastic even with subsampling due to the presence of noise. This effect is

more pronounced further away from the center as the amplitude of the current series

drops and noise dominates more.

(a) Periodic Section (b) Periodic section subsampled

Figure 3.5: The CH Plane positions of the periodic segment of the saturation current
time series at various radii is shown. The left panel shows the result for the original
time series while the right panel shows the results for the subsampled time series.
The radial profile of the saturation current is shown in the inset plot.
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(a) Chaotic section (b) Chaotic Section subsampled

Figure 3.6: The CH Plane positions of the chaotic segment of the Saturation current
time series at various radii is shown. The left panel shows the result for the original
time series while the right panel shows the results for the subsampled time series.
The radial profile of the saturation current is shown in the inset plot.

3.4.2 Floating Voltage

(a) Periodic Section (b) Periodic section subsampled

Figure 3.7: The CH Plane positions of the periodic segment of the floating voltage
time series at various radii is shown. The left panel shows the result for the original
time series while the right panel shows the results for the subsampled time series.
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(a) Chaotic section (b) Chaotic Section subsampled

Figure 3.8: The CH Plane positions of the chaotic segment of the floating voltage
time series at various radii is shown. The left panel shows the result for the original
time series while the right panel shows the results for the subsampled time series.

To see this transition better, the voltage data is also analyzed. The CH Planes in

fig.3.7 and fig.3.8 show the CH Plane for the floating voltage data. fig.3.7a shows the

CH plane location for the first 7 ms of the data. fig.3.7b shows the location of the

same data when subsampled down. As in the case with the current data, the voltage

data follows the periodic trend established in fig.2.5 in both the unsubsampled and

subsampled cases. This shows that the first 7 ms is clearly periodic. The CH Plane

for the next 13 ms is shown in fig.3.8. As in the current time series, the voltage series

originally falls in the middle of the plane between the complexity curves along the

fBm line making it look stochastic. But, once subsampled to focus on the frequencies

of interest; the first 150 kHz showing the exponential trend in the power spectrum in

fig.3.4c, the time series moves very clearly up into the chaotic region. All of the radii

from the center to all the way out are clearly in the chaotic region and are not spread

out into the stochastic region unlike the current data. So, the voltage data clearly

shows the latter 13 ms is chaotic in nature better than the current data. This also

indicates that the voltage data suffers less disruptions from noise. This also shows
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very definitively that the exponential trend in power spectrum is a good indicator for

chaotic nature as subsampling both the current and voltage time series to focus on

this region makes the data move into the chaotic region of the CH Plane.

This indicates overall that the cross field heat transport starts off classical and

then slowly changes to be anomalous in the presence of a filamentary heat source.

Figure 3.9: The CH Plane of the subsampled floating voltage time series data for
periodic region (red box), chaotic region (blue box) and background plasma (black
box) from the center of heat source up to 0.5 cm away.

3.5 Summary

The CH Plane is used to analyze current and voltage data acquired from a plasma

experiment about cross field heat transport from filamentary temperature region in

a cold plasma. From analyzing both the current and voltage data, it is seen that

when the heat source is turned on, the transport starts out periodic for the first 4-7
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ms before transitioning to be chaotic for the remaining period that the heat source

is maintained. It is also found that voltage is more robust to disruptions from noise

as opposed to current. Moreover, the chaotic nature is found to be clearly seen when

the time series is subsampled to focus on the exponential region of frequencies seen in

the power spectrum showing that this exponential region is an indication of chaotic

dynamics.
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Non-Linear Time Series Analysis:

Hurst Exponent

The Hurst exponent is a measure introduced by Edwin Hurst as a way to quantify

the long term memory and persistence of a time series in 1951 during his research

about dam construction on the river Nile[40, 41]. Hurst exponent takes a value

between 0 and 1. A Hurst exponent less than 0.5 indicates anti-persistent nature

meaning that if the time series was previously increasing, the time series in the future

will be decreasing and vice versa[42]. Conversely, a Hurst exponent greater than 0.5

indicates persistent nature meaning that if the time series was previously increasing,

the time series in the future will continue to be increasing[42]. Hurst exponents

have been used to analyze plasma turbulence[43], atmospheric phenomena[44], fluid

flows[45], aeronautics[46] and more.

There have been multiple methods introduced to calculate the Hurst exponent such

as Rescaled Range method[40, 47, 48], Detrend Fluctuation Analysis[40, 47, 49] and

wavelet methods[47]. The analysis provided below uses the Rescaled Range method

to calculate the Hurst exponents.

4.1 Rescaled Range Method

The Rescaled Range (R/S) method is one of the main methods used to find the

Hurst exponent of a time series. The rescaled range is calculated by dividing the
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range by the standard deviation and is performed as follows.

For a given time series X = {xi, i = 1, 2, ..., N} of length N, it is broken into smaller

sub-samples of length n from n = {2, 3, ..., N}[50]. The rescaled range is calculated

for each sub-sample by dividing the range by the standard deviation. The standard

deviation of the sub-sample is calculated as[50]:

S(n) =

⌜⃓⃓⎷ 1

n

n∑︂
i=1

xi − X̄ (4.1)

Then, to calculate the range, first the mean of the subsample is calculated[50]:

X̄ =
1

n

n∑︂
i=1

xi (4.2)

Then, the mean adjusted series is calculated by subtracting the mean from each

element of the sub-sample as[50]:

Bk = xk − X̄, k = 1, 2, ..., n (4.3)

Then a cumulative sum series is calculated from the mean adjusted series as[50]:

Dk =
k∑︂

j=1

Bj, k = 1, 2, ..., n (4.4)

Now, the range is calculated as the difference between the maximum and the minimum

value of the cumulative sum series, D[50]:

R(n) = max (D1, D2, ..., Dn) −min (D1, D2, ..., Dn) (4.5)
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The range is then rescaled by the standard deviation by just dividing them[50]:

Q(n) =
R(n)

S(n)
(4.6)

The above rescaled range series can be used to find the Hurst exponent of the time

series as[50]:

Q(n) = CnH (4.7)

By plotting the rescaled range, Q and the subsample length, n, on a log-log plot and

fitting it to a straight line, the Hurst exponent can be found from the slope[50].

4.2 Synthetic Examples

To see the rescaled range method in action, it is performed on the sine wave and

two common types of chaotic maps: the Lorenz series and the Logistic map.

(a) Time Series (b) Rescaled Range Plot

Figure 4.1: The results of the rescaled range analysis of a Sine Wave is shown. The left
panel shows the sine wave used for analysis. The right panel shows the rescaled range
plotted against the scale length on a log-log scale. A linear trend and an oscillatory
trend are seen in the rescaled range and are fit by separate linear fits indicated by
the dotted lines.
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Periodic signals like sine waves show two regimes of Hurst exponent as seen in

fig.4.1b. The first regime of rescaled range gives a Hurst exponent close to 1 showing

strong persistence behaviour[50]. The second regime of the rescaled range shows an

oscillatory pattern and can be used to extract out the period of the signal[50]. This

pattern for the rescaled range is a good indicator of periodic behaviour in a time

series.

(a) Time Series (b) Rescaled Range Plot

Figure 4.2: The results of the rescaled range analysis of the Lorenz system for β = 7/3,
ρ = 28 and σ = 10 is shown. The left panel shows the time series solution in x̂
direction. The right panel shows the rescaled range plotted against the scale length
on a log-log scale. Two different linear trends are seen in the rescaled range and are
fit by separate linear fits indicated by the dotted lines.

The Lorenz system is the most well known model of a chaotic system and is used

to model the chaotic nature of weather phenomenon[51]. It was introduced by Lorenz

in 1963 to model the convection of particles in a two dimensional fluid cell that was

heated from below and cooled from above[51–53]. The Lorenz model is acquired from

the fourier transform in two dimensions of the Navier-Stokes equations governing the

fluid convection in the fluid cell truncated to only three modes[51, 53]. The Lorenz

model is a system of three differential equations parameterized by three variables β,
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ρ and σ as follows[51–53]:

dx

dt
= σ(y − x) (4.8)

dy

dt
= x(ρ− z) − y (4.9)

dz

dt
= xy − βz (4.10)

Here, x gives the convective fluid motion, y gives the horizontal temperature variation

and z gives the vertical temperature variation all under the influence of gravity[51–

53]. Further, σ is the Prandtl number, ρ is the Rayleigh number and β is a geometric

factor[51–53]. Solving the above system of differential equations gives three time

series; x(t), y(t) and z(t). The solutions can be a chaotic time series depending

on the values of β, ρ and σ[51–53]. This series has a double scroll pattern with

two stable equilibrium points that the series tends towards[51–53]. A particle in

the Lorenz system has motion on two time scales: a short time scale motion where

a particle orbits around one of two fixed points and a long time scale where the

particle orbits around the whole system[50–52]. The Lorenz series shows two Hurst

exponent values as seen in fig.4.2. The rescaled range plot shows that the first section

has a higher Hurst exponent at H = 0.8 while the latter section has a lower Hurst

exponent at H = 0.4. These two Hurst exponents correspond to the two time scales

of motion present in a Lorenz system. The first segment corresponds to the short

time scale behaviour while the second segment corresponds to the long time scale

motion[44, 50]. Moreover, one Hurst exponent is above 0.5 while the other is below

0.5 showing the presence of both persistence and anti-persistence in the Lorenz map.

The short time scale Hurst exponent is greater than 0.5 indicating persistence showing

the tendency to maintain the orbit around the fixed point. Meanwhile, the long time

scale Hurst exponent is less than 0.5 indicating anti-persistence showing the tendency
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to eventually decay into the orbit around one of the fixed point.

(a) Time Series (b) r = 3

Figure 4.3: The results of the rescaled range analysis of the logistic map for r = 3
is shown. The left panel shows the time series. The right panel shows the rescaled
range plotted against the scale length on a log-log scale. The H=0.5 Hurst exponent
fit line is indicated by the black dotted line.

(a) Time Series (b) r = 3.7

Figure 4.4: The results of the rescaled range analysis of the logistic map for r = 3.7
is shown. The left panel shows the time series. The right panel shows the rescaled
range plotted against the scale length on a log-log scale. The H=0.5 Hurst exponent
fit line is indicated by the black dotted line.

The logistic map is another common chaotic map. It is a discreet time series based
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on the logistic equation[54]:

xn+1 = rxn(1 − xn) (4.11)

The logistic map is used to model population growth and a r-value greater than 3.4

gives a chaotic nature to the time series[54]. It is a chaotic series with only a single

time scale. The logistic map shows only a single Hurst exponent as seen in fig.4.3

and 4.4. fig.4.3b shows only a Hurst exponent greater than 0.5 indicating persistence

while fig.4.4b shows only a Hurst exponent less than 0.5 indicating anti-persistence.

Moreover, they both only show a single Hurst exponent. This shows that the logistic

series only has a single time scale behaviour[44, 50].

4.3 Experimental Data Analysis

Hurst exponent for the periodic section are shown for the current in fig.4.5 and the

voltage in fig.4.6. The current rescaled range very clearly shows a linear high Hurst

exponent for the first region while the second region shows oscillations like the sine

wave Hurst exponent in fig.4.1b. While the second region is not seen in the voltage

rescaled range in fig.4.6b, the rescaled range still has a linear trend with a Hurst

exponent close to one. This confirms that the first few milliseconds of the electron

transport from the filament are periodic in nature before changing to be more chaotic.

The Hurst exponents of the chaotic regions are shown in fig.4.7 for the current

data and fig.4.8 for the voltage data. They both show double Hurst exponents in

chaotic regions of the time series similar to the chaotic Lorenz series. This double

Hurst exponent is very clearly seen in the saturation current time series. As seen

in fig.4.7b, the saturation current time series shows Hurst exponents of H = 0.2

and H = 0.9 indicating the presence of both persistent and anti-persistent features.
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(a) Time Series (b) Rescaled range

Figure 4.5: The rescaled range analysis for the saturation current time series at 0.1 cm
away from the center of the filament for the periodic segment from 0.25 ms to 4 ms
is shown. The left panel shows the time series analyzed. The right panel shows the
rescaled range plotted against the scale length on a log-log scale. A linear trend and
an oscillatory trend are seen in the rescaled range and are fit by separate linear fits
indicated by the dotted lines.

(a) Time Series (b) Rescaled range

Figure 4.6: The rescaled range analysis for the floating voltage time series at 0.15 cm
away from the center of the filament for the periodic segment from 4 ms to 7 ms
is shown. The left panel shows the time series analyzed. The right panel shows the
rescaled range plotted against the scale length on a log-log scale. A linear trend and
an oscillatory trend are seen in the rescaled range and are fit by separate linear fits
indicated by the dotted lines.
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(a) Time Series (b) Rescaled range

Figure 4.7: The rescaled range analysis for the saturation current time series at 0.1 cm
away from the center of the filament for the chaotic segment from 4 ms to 15 ms
is shown. The left panel shows the time series analyzed. The right panel shows the
rescaled range plotted against the scale length on a log-log scale. Two different linear
trends are seen in the rescaled range and are fit by separate linear fits indicated by
the dotted lines.

(a) Time Series (b) Rescaled range

Figure 4.8: The rescaled range analysis of the floating voltage time series at 0.15 cm
away from the center of the filament for the chaotic segment from 7 ms to 20 ms
is shown. The left panel shows the time series analyzed. The right panel shows the
rescaled range plotted against the scale length on a log-log scale. Two different linear
trends are seen in the rescaled range and are fit by separate linear fits indicated by
the dotted lines.
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The floating voltage also shows similar values for both its Hurst exponents as seen

in fig.4.8b showing Hurst exponents of H = 0.25 and H = 0.83 further reinforcing

the presence of persistent and anti-persistent behaviours. As indicated through the

Lorenz map, the multiple Hurst exponents correspond to multiple time scales in the

time series. Both the voltage and current have a short time scale oscillation where

the electrons revolve around the nodes represented by the larger Hurst exponent of

the first region and a long time scale oscillation where the electrons revolve around

all the nodes represented by the smaller Hurst exponent of the second region.

The Hurst exponent analysis can also be spread over the entire 1 cm x 1 cm plane

of floating voltage data that was measured. This allows for an analysis of the change

of behaviour of the electron transport over space.

(a) H1 (b) H2

Figure 4.9: The Hurst exponents for the 1cm × 1cm plane of floating voltage for
the chaotic segment from 7 ms to 20 ms is shown. The left panel shows the Hurst
exponent for the short time scale behaviour of chaotic segment while the right panel
shows the Hurst exponent of the long time scale behaviour of the chaotic segment.

The Hurst exponents for the chaotic regime of the time series seen in fig.3.2 show

two Hurst exponents over the whole region indicating the presence of two time scales

of motion. The first Hurst exponent representing the short time scale behaviour as
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seen in fig.4.9a varies between values close to 1 and 0.5 showing that the short time

scale behaviour overall is mostly persistent. The Hurst exponent is closer to 1 nearer

to the center of the filament showing strong persistence near the orbit center. The

Hurst exponent drops close 0.5 showing a more random nature before settling to a

moderately high Hurst exponent indicating strong persistence. The second Hurst

exponent representing the long time scale behaviour as seen in fig.4.9b varies between

values close to 0.5 near the center and 0 further out, showing that the long time scale

behaviour overall is mostly anti-persistent. The entire surface shows a Hurst exponent

below 0.5 showing that the long time scale behaviour is completely anti-persistent.

(a) H1 (b) H2

Figure 4.10: The Hurst exponents for the 1cm × 1cm plane of floating voltage for
the periodic region from 0 ms to 7 ms is shown. The left panel shows the Hurst
exponent for the linear trend of the rescaled range while the right panel shows the
Hurst exponent of the oscillatory trend of the rescaled range of the periodic segment.

Fig.4.10 meanwhile, shows the Hurst exponent for the periodic region of the float-

ing voltage time series. It shows a double exponent as seen in the sine wave. The

Hurst exponent of the first segment of the rescaled range seen in fig.4.10a shows that

the Hurst exponent is close to 1 similar to a sine wave for most of the plane, save the

center of the filaments showing that the behaviour is periodic. Even there, it is still
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a high Hurst exponent value showing that the behaviour is still mostly periodic. As

indicated before, the floating voltage does not really show a clear second oscillatory

region of rescaled range, so, the Hurst exponent shown in fig.4.10b does not give much

information besides indicating that a second region does exist.

4.4 Summary

Hurst exponent, introduced by Edwin Hurst, is a measure used to quantify the

long term memory of a time series. The Hurst exponent is calculated using the

rescaled range method.

The Hurst exponent is calculated for two common chaotic time series to show

its application in practice. The Lorenz series shows two different Hurst exponents;

one large and one small, indicating that it has behaviour on two time scales as well

as both persistent and anti-persistent behaviour while the logistic map only shows a

single Hurst exponent indicating only a single type of behaviour and time scale.

The Hurst exponent is calculated for saturation current and floating voltage to an-

alyze the long term memory of fluctuations associated with cross-field transport. The

saturation current and floating voltage time series both show a double Hurst exponent

similar to the Lorenz series. This indicates that the chaotic portion of the time series

has both a short time scale behaviour as well as a long time scale behaviour. Further,

the short time scale behaviour has a large Hurst exponent indicating persistence in

its behaviour while the long time scale behaviour has a low Hurst exponent indicating

anti-persistence in its behaviour.
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Non-Linear Time Series Analysis:

Lyapunov Exponent

The Lyapunov exponent is a widely used quantitative measure to characterize

deterministic chaos[55–58]. Lyapunov exponents have been used in many fields such

as medicine[59, 60], naval engineering[61], fault detection[62], fluid dynamics[63], ma-

chine learning[64, 65] and more to characterize dynamical systems. Lyapunov expo-

nent quantifies the rate of divergence or convergence of two nearby trajectories in a

physical system[55, 56, 65]. Through this, the exponent can be used to measure the

sensitivity of a system to initial conditions[55]. An entire range of Lyapunov expo-

nents can be defined for a physical system based on the various trajectories present,

but just the Maximum Lyapunov exponent is usually enough to analyze a time series.

Calculating the Lyapunov exponent is not an easy task. For a system whose

equations of motions are known, calculating the trajectories and hence, the Lyapunov

exponent is simple. However, for experimental time series, the equations of motions

are not usually known. Further, most time series only measure a single variable in

an experiment rather than a trajectory of a particle[55]. This results in calculating

Lyapunov exponent from time series more complicated as the time series needs to

somehow be converted into a trajectory first. A method to calculate the Lyapunov

exponent for a uniformly sampled time series was developed by Rosenstein et al[55].
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5.1 Method

For a given uniformly sampled time series,

X = {x1, x2, ..., xN}

a trajectory is reconstructed in phase space with phase vectors through a time-delay

method defined as[55]:

Ki = {xi, xi+τ , ..., xi+(m−1)τ}; i = 1, 2, ...,m

Here, τ is the time lag and m is the embedding dimension. So, this gives us M =

N − (m− 1)τ phase vectors of length m. Each phase vector defines the state of the

system at some discreet time i. Rosenstein et al. suggest choosing the embedding

dimension to be below Taken’s theorem and choosing the time lag to be the lag

when the auto correlation function drops to 1− 1/e of the initial value[55]. Once the

trajectory is created, for each point on the trajectory, the closest point to it is found

and the distance between those is calculated as[55]:

di(0) = min∥xi − xj∥ (5.1)

For every pair of ”neighbours”, the trajectories diverge at an exponential rate con-

trolled by the Lyapunov exponent, λ, as[55]:

di(j) = di(0) expλ(i∆t) (5.2)
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Linearizing the above equation by taking logarithm on both sides gives a set of near

parallel lines for each j with a slope of λ. These lines can then be averaged as[55]:

y(j) =
1

∆t
⟨log(di(j))⟩ (5.3)

A least squares fit can be performed on the above curve from whose slope the Maxi-

mum Lyapunov exponent can be extracted[55].

MATLAB Predictive Maintenance toolbox has a built in function

LyapunovExponent(x,fs,m,τ) that calculates the Lyapunov exponent of the time series

x with sampling frequency fs. τ and m are the time lag and embedding dimension

which can be given to define the phase space vectors. First, the function constructs the

phase space vector, y from the given time lag and embedding dimension (or chooses

appropriate values if not provided). Then for each point, yi, in the phase space, the

closest point yj is identified such that ∥yi−yj∥ is minimized and |i−j| > Mean Period.

Then, for each point, i, the Lyapunov exponent is calculated as:

λ(i) =
1

(Kmax −Kmin + 1)dt

Kmax∑︂
K=Kmin

1

K
log

[︃
∥yi+K − yj+K∥

∥yi − yj∥

]︃
(5.4)

The Maximal Lyapunov exponent is then calculated by using a standard linear curve

fit to the above curve and extracted from the slope.

A negative Lyapunov exponent indicates convergence while a positive exponent

indicates divergence. Since diverging trajectories are a defining feature of chaotic

series, a positive Lyapunov exponent is a good indicator of chaos[55–58].

5.2 Synthetic Time Series

To see the algorithm in action, the Lyapunov exponent is calculated for a sine wave

to show convergence and Lorenz system to show divergence. Fig.5.1 shows the results
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(a) Phase Space (b) Lyapunov Exponent Fit

Figure 5.1: The Lyapunov exponent analysis of a sine wave is shown. The left panel
shows the trajectory of the sine wave in a phase space which has a dimension of 3
and time lag of 1. The right panel shows the linear fit to calculate the Lyapunov
exponent using the Rosenstein method.

of the algorithm for the sine wave. As expected, the phase space for a sine wave as

seen in fig.5.1a is just an ellipse. The maximum Lyapunov exponent comes out to be

−0.001 indicating converging trajectories. This is expected as every particle would

experience the exact same motion and will eventually converge as indicated visually

by the ellipse in phase space.

Fig.5.2 shows the results of the algorithm for the Lorenz system. The phase space

for the Lorenz system is the double scroll trajectory as seen in fig.5.2a . The Maximum

Lyapunov exponent is found to be 394 which shows that the trajectory is diverging

and hence confirms the chaotic nature of the Lorenz system.

Fig.5.3 shows the results of the algorithm for the Logistic series for r = 3. The

logistic series here lacks chaotic nature and this can be seen by the negative Lyapunov

exponent obtained in fig.5.3b indicating convergence of trajectories. This is further

supported by the phase space trajectory which is a simple circular trajectory resulting

in a natural convergence. Fig.5.4 shows the results of the algorithm for the Logistic
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(a) Phase Space (b) Lyapunov Exponent Fit

Figure 5.2: The Lyapunov exponent analysis of the Lorenz system is shown. The
left panel shows the trajectory of the Lorenz system in a phase space which has a
dimension of 3 and time lag of 9. The right panel shows the linear fit to calculate the
Lyapunov exponent using the Rosenstein method.

(a) Phase Space (b) Lyapunov Exponent Fit

Figure 5.3: The Lyapunov exponent analysis of the logistic map for r = 3 is shown.
The left panel shows the trajectory of the Logistic map in a phase space which has
a dimension of 2 and time lag of 1. The right panel shows the linear fit to calculate
the Lyapunov exponent using the Rosenstein method.

series for r = 3.8. The logistic series here on the other hand is chaotic in nature. This

is supported by the negative Lyapunov exponent being positive as seen in fig.5.4b

indicating divergence of trajectories.

59



CHAPTER 5. NON-LINEAR TIME SERIES ANALYSIS: LYAPUNOV
EXPONENT

(a) Phase Space (b) Lyapunov Exponent Fit

Figure 5.4: The Lyapunov exponent analysis of the logistic map for r = 3.8 is shown.
The left panel shows the trajectory of the Logistic map in a phase space which has
a dimension of 2 and time lag of 1. The right panel shows the linear fit to calculate
the Lyapunov exponent using the Rosenstein method.

5.3 Comparison to Hurst Exponent and Machine

Learning

From the previous chapter, it has been noted that Hurst exponent can also be used

as an indication of chaotic nature. This leads to the natural question of comparing

the two measures.

A Chirikov Map is used to analyze this comparison. The Chirikov map is parame-

terized by (K,p0,x0) exhibiting periodic, chaotic, sticky behaviour or all of the above.

The Chirikov Map is defined as[65]:

pn+1 = pn +
K

2π
sin(2πxn) (5.5)

xn+1 = xn + pn+1 (5.6)

p0,x0 set the initial conditons for the map while K controls the chaotic nature with
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gloabal chaos occuring for K = 0.97163540631[65]. A set of Chirikov maps are made

Figure 5.5: The Chirikov map for K = 3.228259, x0 = 0.2865 and p0 = 0 is shown.

by varying K and x0 while keeping p0 = 0. Then, the Lyapunox exponent and Hurst

exponents are calculated for these maps giving us a surface in a K × x0 domain.

As seen in fig.5.6 , Lyapunov Exponent and Hurst exponent are similarly correlated

to each other for the Chirikov Map[65]. This can now be used to train a machine

learning algorithm to calculate the Hurst exponent for a Chirikov Map of a given K

and x0.

Machine learning (ML) is a computational technique used to predict a certain

quantity of interest by building a model based on existing data to be applied on future

data to be collected[66]. In simplest possible terms, Machine Learning is a method

to solve an optimization problem based on a multi-dimensional model. A data set of

the system under consideration containing a set of input variables characterizing the
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(a) Lyapunov Exponent (b) Hurst Exponent

Figure 5.6: The comparison between the Lyapunov exponent on the left and the
Hurst exponent on the right is shown for the Chirikov map in a K × x0 domain with
p0 = 0.

state of the system, called the features of a system, and the output variables defining

the quantity of interest, called labels of a system, is built called the training data[66].

This is fed to ML algorithms which over many iterations build a set of functions that

map each feature of the system to its respective label. The set of these mapping

functions is called a hypothesis space[66]. Armed with this hypothesis space, the

machine learning algorithm can then be used to predict labels for features in new

data sets from experiments. There are many different algorithms to perform machine

learning such as deep learning, neural networks, and more[66]. For our purposes, a

k-nearest neighbours algorithm will be used.

Nearest Neighbour methods is a collection of various methods used to solve re-

gression problems involving numeric labels,i.e, y ∈ R, by constructing a hypothesis

space[66]. The most commonly used type of space and the one used for the analysis

in this thesis is Euclidean space with the vector distance, ∥x− x′∥ also belonging to
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the same space[66]. So, consider a given data set,

D = {xi, yi} (5.7)

where xi are the features and yi are its respective labels. Further, let X and Y be

the space containing all the features and labels of the data set respectively. Then,

a hypothesis space is built made of maps h(x) : X −→ Y where, h(x) for a feature

x, only depends on the labels of the k nearest neighbours to that feature as defined

by the euclidean distance to those neighbours[66]. Hence, this method is usually

known as k-nearest neighbours method. The downside to this method is that it is

very dependant on the training data set given to it[66]. For a data with new features,

the algorithm needs to be trained again using those new features. This downside is

not a major problem for our purposes as we are only analyzing a single model and

experiment. For the algorithm used in this thesis, only a single nearest neighbour is

used[65]. MATLAB Statistical and Machine Learning toolbox has a built-in function

fitcknn(labels,features) that takes in the labels and features of a system and builds

a k-nearest neighbours model object that can then be passed to predict(model,data)

along with the data to predict the labels for the features seen in experimental data.

To show the k-nearest neighbours method in action, it is applied to the Chirikov

map chaotic exponents to show how it predicts Hurst exponents based on Lyapunov

exponents. For training the machine learning program, the Lyapunov and Hurst

exponent surfaces previously made will be used[65]. The input variables of K, x0

and the Lyapunov exponent are fed to the program with the Hurst exponents being

the labels to be predicted[65]. This allows the program to build a model that can

now predict Hurst exponents of a Chirikov map given the K, x0 and the Lyapunov

exponent values. To test our model, the Lyapunov exponents used in the training set

63



CHAPTER 5. NON-LINEAR TIME SERIES ANALYSIS: LYAPUNOV
EXPONENT

are fed into the model to see if it can predict the Hurst exponents correctly. It can

seen from fig.5.7 , that it does predict the Hurst exponents correctly.

Figure 5.7: The Hurst exponent predicted by the machine learning model when fed
the Lyapunov exponents from the training set.

5.4 Experimental Time Series

Now, the Lyapunov exponent is calculated for the experimental data from the

electron transport experiment. Further, a comparison is also made the the Hurst

exponent results from the previous chapter.

Fig.5.8a shows the Lyapunov exponent for the entire 1 cm x 1 cm surface for the

chaotic section of the time series. The entire surface has a high Lyapunov exponent

showing that the entire region is chaotic in nature. The regions closer to the filament

also have a higher Lyapunov exponent as compared to regions farther out indicating

that the chaotic nature reduces as the distance from the filament increases. Moreover,
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(a) Chaotic section (b) Periodic section

Figure 5.8: The Lyapunov exponents for the 1cm×1cm plane of the Floating voltage
time series experimental data is shown. The left panel shows the Lyapunov exponents
of the chaotic segment of the time series which ranges from 7 ms to 20 ms while the
right panel shows the Lyapunov exponents of the periodic segment of the time series
which ranges from 0 ms to 7 ms

the actual location of the filament also shows a low Lyapunov exponent which is

expected as there is not much transport happening exactly at the filament.

Comparing the surface of Lyapunov exponents in fig.5.8a to the Hurst exponents

in fig.4.9, a remarkable similarity can be seen. Though they are similar, they are

inverted in that where the Lyapunov exponent is higher, the Hurst exponent is lower

and vice versa. So, when the time series is more chaotic, it is less persistent. This is

even more apparent in fig.5.9 which shows the comparison between the two exponents

in a radial direction. It can be seen that while the hurst exponent starts low and

increases further out from the filament, the Lyapunov exponent starts out higher and

drops lower further away from the filament.

To further confirm our results, machine learning is used to see if the results can

be replicated. Shi, Pace et al. modeled the electric potential around filamentary heat
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Figure 5.9: The comparison between the Lyapunov exponents and the Hurst expo-
nents of the floating voltage time series in a radial direction from 0 cm to −0.5 cm
along the y-direction and at 0 cm along the x-direction for the chaotic segment of the
time series which ranges from 7 ms to 20 ms is shown.

sources as discussed in Chapter 1 and is given below[5]:

Φ(r, θ, t) = Re
[︁
A1J1(k1r)eiθe−iωte−αr

]︁
+ Akr2 (5.8)

The drift waves generated from a single temperature filament only show the first

mode and the global mode. This can be used to create a model of our time series

during the periodic section. Further, the CH Planes in fig.3.5 and fig.3.7 can be used

to find and add in the relevant noise levels to more closely match the model to our

data. The resulting Shi-Pace model is seen in fig.5.10 . This model can then be used

to calculate the Lyapunov and Hurst exponents, seen in fig.5.11, to train a machine
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Figure 5.10: The Shi-Pace model with the appropriate noise scaling added in that is
used for building the training data set is shown.

learning algorithm. As seen in fig.5.11, the Lyapunov exponent and Hurst exponent

of the Shi-Pace model shows a clear anti-correlation between them like in our data.

This acts as the first check to show that our experimental results are accurate.

Now, a nearest neighbours machine learning algorithm is trained using the Lya-

punov exponent and Hurst exponent from the Shi-Pace model similar to the Chirikov

map from earlier to relate the Lyapunov exponent to the Hurst exponent. Once

the algorithm is trained, it is applied to the Lyapunov exponent acquired from our

data. As seen from fig.5.12b, the Hurst exponent predicted by the algorithm has low

Hurst exponent near the center of the filament while it is much higher further away.

Comparing the result produced by the machine learning algorithm to the results ac-

quired from the data, it can be seen from fig.5.12 that while the machine learning
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(a) Hurst Exponent (b) Lyapunov Exponent

Figure 5.11: The comparison between the Hurst exponents on the left and the Lya-
punov exponent on the right for a 1cm× 1cm plane of the Shi-Pace potential model
is shown.

results are extreme, they match with the experimental results. They both show a

low Hurst exponent near the filaments while the region outside the filaments shows a

high Hurst exponent. This shows that even the machine learning algorithm predicts

strong anti-correlation between Lyapunov and Hurst exponents. This is expected as

the strong periodic nature of the drift waves leads to low Lyapunov exponent while

the persistence of the periodic oscillations of the drift waves leads to higher Hurst

exponent. However, some radial variation in the chaotic exponents can be seen. This

is also expected due to the temperature gradient of the background plasma resulting

in a higher noise level near the filament increasing the Lyapunov exponent due to the

noise adding more chaotic elements closer to the filament and lower Hurst exponent

due to more anti-persistence near the filament. This is the final confirmation showing

the validity of the experimental results.
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(a) Hurst Exponent from Data (b) Hurst Exponent from ML

Figure 5.12: The comparison between the Hurst exponent acquired from the machine
learning algorithm and the Hurst exponent acquired from data for the periodic seg-
ment of the 1cm× 1cm plane of the floating voltage time series experimental data is
shown. The left panel shows the Hurst exponent acquired by applying rescaled range
method to the periodic segment of the experimental time series. The right panel
shows the Hurst exponents acquired by applying Machine Learning to the Lyapunov
exponent of the periodic segment of the experimental time series.

5.5 Summary

Lyapunov exponent is a widely used measure to quantify the chaotic nature of a

system. Lyapunov exponent is generally calculated from particle trajectories defined

by equations of motion. However, this is difficult to perform with experimental time

series as the equations of motion are not usually known and the quantities under in-

vestigation may not even be able to define such equations. Rosenstein et al. developed

a method to calculate Lyapunov exponents for time series by building trajectories in

a phase space created by time-delayed series.

This method is used to analyze various synthetic time series: sine wave, Lorenz sys-

tem, and Logistic map as well as the experimental time series. The sine wave and the

Logistic map for r = 3 show negative Lyapunov exponents indicating periodic nature

while the Lorenz system and the Logistic map for r = 3.8 show a positive Lyapunov
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exponent indicating chaotic nature.

Further, Machine Learning is also used to show the relationship between Lyapunov

and Hurst exponents. A k-nearest neighbours algorithm is trained on the Lyapunov

and Hurst exponents of Chirikov map to show this in action. Finally, the Lyapunov

exponent is calculated for the experimental data from the electron heat transport

experiment. The Lyapunov exponent is calculated for the 1cm×1cm plane of floating

voltage and comparing it to the Hurst exponent, an anti-correlation between them is

seen. To further confirm this, a k-nearest neighbours machine learning algorithm to

predict Hurst exponents from Lyapunov exponents is trained using the Lyapunov and

Hurst exponents from the Shi-Pace potential model which models the electron heat

transport. This model is then fed the Lyapunov exponent based on the experimental

data and it is seen that it also predicts anti-correlation between Lyapunov and Hurst

exponents. This confirms our experimental results.

Therefore, Lyapunov exponent is shown to be a good measure of chaotic nature

and is compared to Hurst exponent. These results are used to analyze and confirm

our experimental results.
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Summary and Future Work

Understanding fluctuations from temperature filaments in plasmas is an important

avenue for research as these structures are common in edge regions of magnetically

confined plasmas. Through the course of this thesis, an analysis of non-linear time

series of fluctuations from a plasma experiment designed to explore transport from

filamentary structures was shown. To do this, three methods to analyze non-linear

time series are explored: CH-Plane method, Hurst exponent and Lyapunov exponent.

Chapter 2 introduced the CH-Plane methodology formulated by Rosso et al[21].

It is a method to determine the nature of a time series as periodic, chaotic, stochastic

or noise by plotting the complexity of the time series against its complexity and

analyzing its location on the resulting complexity-entropy plane or CH-Plane. To

calculate entropy and complexity, the probability of occurrence of various states of a

system need to be known. Experimental data however is usually collected as discreet

time series rather than probability densities. Here, a method introduced by Bandt

and Pompe is used which allows a probability density to be defined for any arbitrary

time series through defining amplitude permutations of smaller embedded segments

of the time series as its states[20]. With the probability density, Shannon Entropy

is used as the entropy and Jensen-Shannon Divergence is used as the complexity.

Further, an upper and lower bounds are added to the complexity values. All of this

is used to build the CH-Plane which can be used to analyze non-linear time series to

determine their nature.
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Chapter 3 introduces the plasma experiment under observation and analyzes the

fluctuations time series acquired from that experiment using the CH-Plane method.

The plasma experiment was performed in the Large Plasma Device at UCLA by

Scott Karbaschewski and Dr. Van Compernoll[36]. The experiment used a ohmically

heated crystal cathode to generate a long high temperature filament in a cold plasma

background. Then, a Langmuir probe was used to record fluctuations in saturation

current and floating voltage arising from the filament in a 1cm × 1cm plane around

the filament. The current and voltage time series acquired from the plasma experi-

ment is then analyzed using the previously introduced CH Planes. It is shown that

the fluctuations start with periodic nature before transitioning to chaotic nature. It

is also shown that the chaotic nature drops off radially from the filament follow-

ing the density and temperature gradient. Through this chapter, the application of

CH-Planes to experimental data is shown by analyzing fluctuations acquired from a

plasma experiment.

Chapter 4 introduced Hurst exponents, a common quantifier for memory of a time

series. Hurst exponent is a measure used to quantify if a time series will continue

its current increasing or decreasing trend in amplitude, persistence, or switch to

the opposing trend in the future, anti-persistence. It was found that chaotic series

have multiple Hurst exponents with each exponent corresponding to the various time

scales of behaviour[50]. This knowledge was used to analyze the current and voltage

fluctuation from the plasma experiment. It was shown that fluctuations start with

periodic nature and then switch to chaotic nature confirming the CH-Plane analysis.

Further, by calculating the Hurst exponent for the entire plane of data, it was shown

that the chaotic section of the time series shows persistence for the short-time scale

behaviour while the long time scale behaviour is persistent. The periodic section was

shown to be persistent in nature. So, through this chapter, an analysis of memory
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was added onto the knowledge gained from the CH-Plane analysis to give a better

classification of the chaotic and periodic sections of the fluctuations from filamentary

structures in plasma.

Chapter 5 introduced the Lyapunov exponent, a common measure to identify the

chaotic nature of time series. Lyapunov exponent quantifies the degree of separation

of two particles in a system that start nearby as the system evolves. A positive Lya-

punov exponent indicates chaos while a negative exponent indicates periodic nature.

This however requires knowledge of particle motion which is not always feasible in

experimental data resulting in a need for a method to calculate Lyapunov exponents

for arbitrary time series. To this end, Rosenstein et al., developed a method that used

phase-space trajectories in a time-delayed phase space constructed from the time se-

ries to calculate the Lyapunov exponent[55]. Using this method, it is shown that

the current and voltage fluctuations from the plasma experiment start with periodic

nature before shifting to a chaotic nature matching the results acquired from CH-

Plane and Hurst exponent analysis. Further, Machine Learning algorithm is used

to relate Lyapunov exponents to Hurst exponents. A k-nearest neighbours machine

learning algorithm is trained on the Shi-Pace drift wave model to predict the Hurst

exponent when provided the Lyapunov exponent. This then applied to the Lyapunov

exponent calculated from the fluctuation data from the plasma experiment and it was

shown that the machine learning algorithm prediction of the Hurst exponent matches

the results acquired earlier in the thesis. Through this, the application of Lyapunov

exponents to non-linear time series analysis is shown as well as the use of Machine

Learning to analyze chaos in time series.

Through these various methods of analysis of non-linear time series, it has been

shown that fluctuations from filament-like structures in plasma start with periodic

nature before developing chaotic features. However, filament-like structures appear

73



CHAPTER 6. SUMMARY AND FUTURE WORK

in groups in general unlike the plasma experiment described in this thesis which

only analyzed a single filament. The fluctuations from multiple filaments is more

complicated due to interactions between particle transports from multiple filaments

resulting in higher mode drift waves as well as vortices and turbulence. Plasma

experiments have been conducted on multiple heat filaments such as the ones by Dr.

Scott Karbashewski and Dr. Sydora[24, 36, 39]. Applying the methods described

in this thesis to the fluctuation results from those experiments could provide great

insight into the transport behaviour due to multiple filaments and is a great avenue

for future research.

This thesis acts as a record of non-linear time series analysis applied to plasma

experiments. Through the course of this thesis, a variety of non-linear time series

analysis methods are presented and applied to a plasma experiment.
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