
Predictive Representation Learning for Language
Modeling

by

Qingfeng Lan

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Qingfeng Lan, 2020

Abstract

Language Modeling (LM) is often formulated as a next-word prediction

problem over a large vocabulary, which makes it challenging. To effectively

perform the task of next-word prediction, Long Short Term Memory

networks (LSTMs) must keep track of many types of information. Some

information is directly related to the next word’s identity, but some is more

secondary (e.g. discourse-level features or features of downstream words).

Correlates of secondary information appear in LSTM representations, even

though they are not part of an explicitly supervised prediction task. In

contrast, Reinforcement Learning (RL) has found success in techniques that

explicitly supervise representations to predict secondary information.

Inspired by that success, we propose Predictive Representation Learning

(PRL), which explicitly constrains LSTMs to encode specific predictions, like

those that might need to be learned implicitly. By dividing the complex

next-word prediction task into many simpler prediction tasks of secondary

information, we show that PRL 1) significantly improves two strong language

modeling methods, 2) converges more quickly, and 3) performs better when

data is limited. Our fusion of RL with LSTMs shows that explicitly encoding

a simple predictive task facilitates the search for a more effective language

model.

ii

To my families

iii

All knowledge is, in final analysis, history.
All sciences are, in the abstract, mathematics.

All judgements are, in their rationale, statistics.

– Calyampudi Radhakrishna Rao

iv

Acknowledgements

First, I would like to thank my great supervisor Alona Fyshe for her strong
and consistent support. She edited my papers word by word, corrected my
mistakes, and made her suggestions. She always encouraged me when I felt
hopeless. I could not imagine how I can finish my master’s degree without her
advice and support. A special thank you to Martha White, who helped me a
lot during my trip to reinforcement learning. Thank Lili Mou for being in my
supervisory committee, reading my thesis and providing insightful feedback.

I would also like to thank my collaborators, colleagues, and friends for their
help: Yangchen Pan, Luke Kumar, Zichen Zhang, Lei Ding, Yue Wang, Negar
Hassanpour, Russell Greiner, Huizhen Yu, Yi Wan, Shangtong Zhang, Vincent
Liu, and Chenyang Huang. Thank all students of Alona Fyshe for providing
advice to polish my paper and presentation. Finally, I want to thank all AMII
and RLAI members for their help during the past two years.

v

Contents

1 Introduction 1

2 Background 3
2.1 Language Modeling . 3

2.1.1 Word Embeddings . 4
2.1.2 Recurrent Neural Networks 7
2.1.3 Neural Language Models: RNNs Applied to Language 9

2.2 Reinforcement Learning . 10
2.2.1 Value Functions . 11
2.2.2 General Value Functions 12
2.2.3 Q-learning . 13
2.2.4 General Value Function Networks 13

2.3 Conclusion . 14

3 Predictive Representation Learning 15
3.1 Sequence Labeling as an RL Problem 15
3.2 Label Trace . 16
3.3 Predictive Representation Learning 17
3.4 Conclusion . 19

4 Experiments 20
4.1 PRL’s Effect on LM . 21
4.2 Analysis of Convergence Rate and Influence of Dataset Size . 24
4.3 Performance of the GVFN-LSTM 26
4.4 Effect of POS Tagging Accuracy on PRL 28
4.5 Ablation Analysis of Label Trace 29
4.6 Conclusion . 30

5 Related Work 32
5.1 Predictive Representations . 32
5.2 Multi-task Learning . 34
5.3 Learning from Hints . 35

6 Conclusion and Future Work 36

References 38

Appendix A Runtime and Model Size 44

Appendix B Experiment with Named Entity Recognition 45

vi

List of Tables

4.1 The comparison of test perplexities on PTB and WT2 for LM
based on AWD. The ∆ columns show the improvements of
AWD-PRL-P/Q in terms of perplexity, compared with AWD.
We report results with and without neural cache. All results
were averaged over 5 runs with the standard errors reported.
PRL improves the performance of AWD, with and without
neural cache. 23

4.2 The comparison of test perplexities on PTB and WT2 for LM
based on MoS. The ∆ columns show the improvements of
MoS-PRL-Q in terms of perplexity, compared with MoS. We
reported results with dynamic evaluation (Dyneval) and
without (No Dyneval). All results were averaged over 5 runs
with the standard errors reported. Overall, PRL improves the
performance of MoS. 23

4.3 The comparison of POS tagging accuracy on PTB and WT2
using POS-LSTM and POS-PRL. The incomplete models
without the label trace components are denoted as LSTM (no
T) and PRL (no T). All results were averaged over 5 runs
with the standard errors reported. 27

4.4 The ablation study of the label trace for AWD-PRL-Q on PTB
and WT2. AWD-PRL-Q (no T) is derived from AWD-PRL-
Q by removing the label trace component. The ∆ columns
show the improvements of AWD-PRL-Q and AWD-PRL-Q (no
T) in terms of perplexity, compared with AWD. We report
results with and without neural cache (column Neural Cache
and column No Neural Cache). All results were averaged over
5 runs with the standard errors reported. Without the label
trace, the performance of AWD-PRL-Q is significantly worse. 30

A.1 The training speed and the number of parameters of each model. 44

B.1 The comparison of test perplexities on PTB for LM based on
AWD, with and without an auxiliary task. The ∆ columns
show the improvements of AWD-PRL-Q in terms of
perplexity, compared with AWD. We report results with and
without neural cache. All results were averaged over 5 runs
with the standard errors reported. For both POS tagging and
NER, PRL improves the performance of AWD, with and
without neural cache. In terms of improvement for LM, POS
tagging is a better auxiliary task compared with NER. 45

vii

List of Figures

2.1 The model structures of CBOW and Skip-gram. CBOW is
trained to predict the current word based on the surrounding
words. In contrast, Skip-gram predicts the surrounding words
given the current word. This figure is taken from [33]. 6

3.1 An MDP representation of the sentence example for POS
tagging. Only when the correct label is selected does the
MDP move to the next state, receiving cumulant of 1. All
incorrect labels result in a transition to the terminal state (T)
with cumulant 0. 16

3.2 The model structure of PRL. The encoder (the red rectangle)
is shared by both tasks while each task has its own decoder.
Each word w is encoded by the shared encoder into a word
vector e. The label trace T (the pink square) is concatenated
with the word vector e to form a new word vector T + e. The
POS decoder decodes T + e into an action-value vector Q (the
yellow square). For the LM decoder, the action-value vector
Q is concatenated with the first hidden state h1 inside the LM
decoder to form a new hidden state Q + h1. The multi-layer
LSTM proceeds as is typical in LM. 18

4.1 The validation perplexity for AWD and AWD-PRL-Q on
Penn Treebank during training. Average over 5 runs is shown,
shaded regions represent standard errors. AWD-PRL-Q
converges faster than AWD. 25

4.2 The validation perplexity for AWD and AWD-PRL-Q on
WikiText2 during training. Average over 5 runs is shown,
shaded regions represent standard errors. AWD-PRL-Q
converges faster than AWD. 25

4.3 The percent change in perplexity of AWD-PRL-Q over AWD
on the test set of Penn Treebank and WikiText2, as a function
of dataset size (measured by the number of training tokens).
Average over 5 runs is reported. PRL improves language models
trained with datasets at different scales. 26

4.4 The relation between the accuracy of POS tagging and
perplexity of LM on Penn Treebank and WikiText2. The
perplexity drops almost linearly as the POS tagging accuracy
increases. 29

viii

Chapter 1

Introduction

Language generation is a complex task. When generating the next word in a
sentence, there are multiple things to keep track of (style of writing, sentence
topic, current point in a sentence’s structure, etc.), and yet it remains a
highly unconstrained problem. A common solution to the language
generation problem is to train a Recurrent Neural Network (RNN) to predict
the next word in a sequence, conditioned on the previous words.

An effective RNN must retain relevant past information, and also
compute some information about what is likely to happen beyond the next
word. In multiple instances, the hidden states of RNNs have been shown to
encode predictions about upcoming words (plurality, grammatical number
information, and subject-verb dependency [24]). But RNNs are not given any
guidance on what they should remember, nor what predictions they should
encode (beyond the identity of the next word). This makes the learning
problem much more difficult, and difficult problems tend to require more
data.

Predicting future events is a key component of the problem settings in
RL. RL uses value functions to encode predictions about future rewards, and
predictions secondary to the main reward can be incorporated using General
Value Functions (GVFs). RL has shown that models generalize better when
state representations are forced to encode secondary predictions [25, 48], a
concept known as the predictive representation hypothesis [43]. This technique
has been successful in robotics and time series prediction [38, 49, 62].

1

We take inspiration from RL and propose a new approach to representation
learning: Predictive Representation Learning (PRL). In general, PRL breaks
a complex prediction task into several more tractable prediction tasks. In
turn, tackling these simpler tasks would help solve the more difficult task.
Specifically, PRL uses Q-learning to train a GVF for a simple sequence labeling
task (we use part-of-speech tagging, but any sequence labeling task could be
used in principle). The predictions of the GVF are then incorporated into the
hidden representations of a language model, allowing the language model to
leverage those predictions when predicting the next word.

To summarize, our main contributions are:

• an example of how to solve sequence labeling tasks with an RL algorithm;

• PRL, an auxiliary task learning framework that uses a GVF to force
predictive representations;

• evidence that PRL improves language modeling performance perplexity
by up to 5%;

• evidence that PRL improves both the convergence rate and sample
efficiency.

2

Chapter 2

Background

In this chapter, we review the background of this thesis. We first introduce
Language Modeling (LM) which is the main task we use to test our method
Predictive Representation Learning (PRL) in the experiments. Since
reinforcement learning is applied in PRL, we then present some basic
knowledge of reinforcement learning, including (general) value functions and
Q-learning algorithm. Finally, we introduce general value function networks
as an important component of PRL.

2.1 Language Modeling

Language modeling is the task of predicting the next word in a document. It
can be the foundation of many NLP tasks, such as machine translation,
sentiment analysis, text classification, and question answering. It plays a
central role in understanding natural language for computers.

A language model assigns a probability to each sentence. Using the chain-
rule of probability, we can factorize the probability of a sequence of words
w1, · · · , wT into

p(w1, · · · , wT) = p(w1)p(w2 | w1) · · · p(wT | w1, · · · , wT−1) (2.1)

where T is the length of this sentence and wi is the i-th word in the sentence.
Thus, the probability of each word in the sentence is conditioned on the
preceding words.

3

A good language model assigns a high probability p(w1, · · · , wT) to a
sentence w1, · · · , wT in the corpus. To train a language model, we optimze
the parameters in the model to maximize p(w1, · · · , wT). This is equivalent
to maximze ln p(w1, · · · , wT) =

∑T
i=1 ln p(wi | w1:i−1). However,∑T

i=1 ln p(wi | w1:i−1) is influenced by the length of a sentence. So we
normalize it and take the natural exponential to get the definition of
perplexity:

exp

(
− 1

T

T∑
i=1

ln p(wi | w1:i−1)

)
(2.2)

where w1:i−1 = (w1, · · · , wi−1). The perplexity measure is usually used as a
quality indicator of a language model. The lower the perplexity is, the better
a language model is. It is also a common loss function of neural language
models.

In the following sections, we introduce some key components of modern
neural language models, including word embeddings and recurrent neural
networks. Finally, we introduce some examples of neural language models.

2.1.1 Word Embeddings

The earliest computer ENIAC was slow and heavy. It only knew simple
calculations of numbers, far from understanding natural language. To
empower a computer to understand natural language, we need to find out an
efficient way to store and process language. Since words are the building
blocks of a language, constructing the digital representations of words is the
first step to train computers to understand natural language. There are
mainly two forms of word representations. The most straightforward way is
called local representation which represents each word with a different
discrete symbol or a one-hot vector [17]. Although this form of
representation is easy to understand, it suffers from the curse of
dimensionality. The length of the one-hot vector is the same as the
vocabulary size which usually is a huge number. For example, there are
about one million words in English according to Wikipedia. The large size of

4

one-hot vectors greatly increases the computational burden of language
models. Moreover, there is no generalization between different words -
knowing the information of one word does not help understand the other
word because of the independency of features.

To solve these problems, Hinton [18] introduced distributed
representations to represent a concept in the form of connection weights of
neural networks. In the case of word representations, each word is
represented as a word embedding which is a feature vector of real numbers.
And the meaning of a word is distributed across features in this vector. It
reduces computation significantly since the word embedding is usually dense
and low-dimensional. The information captured from word A is stored in the
word embedding dimensions which can be shared with word B for similar
features. This property of word embeddings greatly improves generalization.
For example, both “apple” and “orange” are fruit. We can then use one
dimension in word embeddings to represent this feature so that what we learn
about fruit from “apple” can be shared with “orange” as well as other fruits.

However, since word embeddings are usually learned automatically by
optimizing some function (as we will see next), they lack interpretability.
Although, there are some methods to interpret them, (e.g. visualizing the
projection of word embeddings in 2D or 3D space to show the implicitly
learned relationships between words [32], checking the similarity of two words
by computing a similarity score given word embeddings with a score
function [39], testing word embeddings with semantic and syntactic tasks
and showing that the semantic and syntactic regularities are captured as
constant vector offsets [34]), interpretation is still a hard and open problem.

The meaning of a word not only exists in itself but also exists in the
interactions with other words, especially with the words nearby in sentences.
The representation space of word embeddings is essentially a hyperspace and
each word embedding is just a point in this space. In this scenario, learning
good word embeddings is the same as putting words on the right locations in
the representation space. Based on these ideas, many self-supervised learning

5

methods have been developed to automatically adjust the locations of words
in the representation space. In 2003, Bengio et al. [3] proposed a neural
network language model (NNLM) with millions of parameters to learn a
distributed representation for a large number of words. This model adjusts
the word embeddings by maximizing the predicted probability of the next
word given the previous words. Later, Mikolov et al. [33] proposed Word2Vec
which implements two novel models, Continuous Bag-of-Words model
(CBOW) and Continuous Skip-gram model (Skip-gram), for efficiently
computing word embeddings from large text corpora. CBOW is trained to
predict the current word based on the surrounding words. In contrast,
Skip-gram predicts the surrounding words given the current word. Compared
to NNLM, these two models are more efficient for learning high-quality word
embeddings and they are better at capturing syntactic and semantic
information as shown in a word similarity task.

Figure 2.1: The model structures of CBOW and Skip-gram. CBOW is trained
to predict the current word based on the surrounding words. In contrast, Skip-
gram predicts the surrounding words given the current word. This figure is
taken from [33].

Although CBOW and Skip-gram perform well on the word similarity task,
6

they do not utilize global statistics of a text corpus since they are trained only
on a small scope around a center word. To cope with this problem, Pennington
et al. [41] proposed GloVe – a new weighted least squares regression model, to
directly capture global corpus statistics. This model outperforms Word2Vec
methods on word analogy, word similarity, and named entity recognition tasks.

2.1.2 Recurrent Neural Networks

Recently, neural networks (NN), especially deep neural networks, have been
applied to many areas and achieved great success, such as computer vision [60],
speech recognition [2], and reinforcement learning [37]. A traditional neural
network only accepts a fixed-sized vector as an input. A Recurrent Neural
Network (RNN) [11] is a special NN which accepts inputs of variable sizes.
The same parameters are shared across all time steps. It is also able to capture
and store long-term information. These properties make it a natural option to
handle sequential data. RNNs have been applied in many NLP tasks, such as
language modeling [35], machine translation [26], speech recognition [13], and
part-of-speech tagging [42].

Specifically, the core of an RNN unit is a state-to-state transition function:

ht = f(xt,ht−1) (2.3)

where xt is the current input (e.g. the word at time t), ht is the current hidden
state, ht−1 is the previous hidden state, and f is usually a nonlinear function.
The hidden state h plays the role of memory that stores long-term information
and it is updated by the function f given the input and the previous hidden
state.

In theory, f can be any reasonable function; in implementation, for a
simple RNN, it is usually composed of an element-wise nonlinearity and an
affine transformation:

ht = ϕ(Wxt +Uht−1) (2.4)

where W and U are two weight matrixes; ϕ is a nonlinearity, such as a sigmoid
function or a hyperbolic tangent function.

7

Compared to simple RNNs, long short-term memory (LSTMs) [19], as an
RNN variant, is better at capturing long-term information. In an LSTM unit,
a memory cell ct is used to store the memory content. Moreover, an input
gate it and a forget gate ft are employed to control how much new content
to remember and how much old content to forget, resepectively. They are
computed given the current input xt and the previous hidden state ht−1:

it = σ(Wixt +Uiht−1), (2.5)

ft = σ(Wfxt +Ufht−1) (2.6)

where Wi, Wf , Ui, and Uf are weight matrixes; σ is a sigmoid function.
Similarly, an output gate ot controls what memory content to output (i.e. ht):

ot = σ(Woxt +Uoht−1), (2.7)

ht = ot ⊙ tanh(ct) (2.8)

where Wo and Uo are weight matrixes for the output gate; ⊙ is the Hadamard
product.

The new memory cell ct is a weighted sum of the previous memory cell
ct−1 and the new content gt:

ct = ft ⊙ ct−1 + it ⊙ gt (2.9)

where
gt = tanh(Wgxt +Ught−1). (2.10)

With the help of these gates and the memory cell, an LSTM unit is able to
memorize, forget, and export the memory content adaptively.

Many one-layer RNNs can be stacked together to build a deep RNN [10,
40, 50]. The input of the lowest RNN is the original input and the output of
lower RNN becomes the input of higher RNN. In theory, the hidden state of
a deep RNN can capture more diverse information at different timescales.

A regular RNN only has one forward direction when processing the coming
information. This means that RNNs can only utilize information up to the

8

current frame; the future input is dropped. The power of RNNs is limited
since the future information may also be useful to make a decision, improve the
prediction performance, or even correct a mistake. To overcome the limitation,
Schuster and Paliwal [51] proposed bidirectional recurrent neural networks
(BRNNs) which have two directions – the forward direction and the backward
direction. A forward pass carries the historical information before the current
timestep. Similarly, a backward pass carries future information beyond the
current timestep. This advantage allows BRNNs to outperform regular RNNs
on many tasks [14].

2.1.3 Neural Language Models: RNNs Applied to
Language

A neural language model usually consists of two parts – an encoder and a
decoder. The input words are first encoded by the encoder into a list of
word embeddings. The decoder then decodes the word embeddings into a
probability distribution over the next word. Both the encoder and the decoder
are parameterized by neural networks in the neural language model.

Bengio et al. [3] proposed a neural probabilistic language model and proved
that training a large model (with millions of parameters) within a reasonable
time is possible. Since a multi-layer perceptron is used to process the input
words and a multi-layer perceptron only accepts a fixed length of words, they
assumed that

p(wi | w1:i−1) ≈ p(wi | wi−n:i−1) (2.11)

where n is the size of input window.
Although this assumption simplifies the language model greatly, it also

limits the power of a language model since the input information outside the
input window is ignored. To fix this problem, Mikolov et al. [35] replaced the
multi-layer perceptron by an RNN so that the new language model accepts
variable length of words. We can train an RNN to model the probability
distribution over the next word wt+1 given a hidden state vector ht and a

9

nonlinearity ϕ:
ϕ(ht) = p(wt+1 | w1:t). (2.12)

Implemented with an RNN, this language model significantly outperforms
standard n-gram language models (e.g. Kneser-Ney smoothed 5-gram
model [20]).

In 2018, Merity et al. [30] introduced AWD-LSTM which is an LSTM
based language model improved with many advanced techniques, such as
DropConnect, NT-ASGD, randomized-length backpropagation through time,
embedding dropout, temporal activation regularization, and activation
regularization. Together these techniques greatly decrease the perplexities of
AWD-LSTM on two datasets.

In practice, the capacity of softmax-based language models (i.e. models
use a softmax function to generate probability distribution, such as
AWD-LSTM) is limited by the softmax function, which impedes the ability
to model highly context-dependent patterns in natural language. Yang et al.
[63] introduce latent variables into an RNN language model and propose the
mixture of softmaxes (MoS) method to improve the expressiveness of the
softmax function. MoS improves the state-of-the-art perplexities on two
language modeling benchmarks significantly.

2.2 Reinforcement Learning

In this section, we introduce some basic knowledge of reinforcement learning.
In a typical reinforcement learning setting, an agent interacts with an
environment by receiving scalar rewards and observing environment states.
At each time step t, the agent observes a state St from the state space S, and
takes an action At chosen from the action space A. Then it transitions to the
next state St+1 ∈ S according to the transition probability function
P : S ×A×S → [0, 1] and receives a scalar reward Rt+1 = r(St, At, St+1) ∈ R

where r : S ×A× S → R is the reward function. The return Gt is defined as

10

the sum of discounted rewards,

Gt
.
=

∞∑
k=t

γk−tRk+1 (2.13)

with a discount factor γ ∈ [0, 1]. A policy π : S → A is a projection from a
state space to an action space1.

2.2.1 Value Functions

Given a policy π, we define the value functions which include a state-value
function and an action-value function. The state-value function of a state s is
the expected return starting from state s following the policy π, defined as

V π(s)
.
= Eπ[Gt|St = s],∀s ∈ S (2.14)

where Eπ[·] is the expected value of a random variable given that the agent
follows the policy π. Similarly, the action-value function of a state-action pair
(s, a) is the expected return starting from s, taking the action a, following the
policy π, defined as

Qπ(s, a)
.
= Eπ[Gt|St = s, At = a],∀(s, a) ∈ S ×A. (2.15)

The goal of the agent is to find an optimal policy that maximizes the
expected return. We first define the optimal state-value function as the largest
value among state-values following all possible policies

V ∗(s)
.
= max

π
V π(s) (2.16)

for all s ∈ S. Similarly, we define the optimal action-value function as

Q∗(s, a)
.
= max

π
Qπ(s, a) (2.17)

for all (s, a) ∈ S × A. A greedy policy with respect to Q∗ is known to be an
optimal policy. We denote this optimal policy as π∗ and

π∗(s) = argmax
a∈A

Q∗(s, a) (2.18)

1We only consider deterministic policies in this thesis. In general, policies can be
stochastic which project state-action pairs to probabilities, i.e. π : S ×A → [0, 1]

11

for all s ∈ S.
Note that in Eq. 2.13 the discount factor γ controls the present value of

the future reward. At time step t + k, reward Rt+k+1 is discounted by γk.
The smaller γ is, the lower the present value of the future reward is. Assume
all rewards are 1, Gt

.
=
∑∞

k=t γ
k−tRk+1 = 1

1−γ
. We then use 1

1−γ
to represent

how far the agent can see in the future. For γ = 0, 1
1−γ

= 1 and the agent is
myopic, and only focuses on the immediate reward. When γ → 1, 1

1−γ
→ ∞,

the agent is farsighted and treats all future rewards equally. In other words,
value functions encode information about future rewards and the importance
of the information is controlled by the discount factor γ.

2.2.2 General Value Functions

General Value Functions (GVFs) are well named, as they generalize value
functions. In a GVF, the discount factor is replaced by a termination function
γ : S → [0, 1] so that a different discount can be applied for each state. In a
GVF, the reward signal Rt ∈ R is replaced with the more general cumulant
signal Ct ∈ R. The cumulant signal can be any scalar signal which allows an
agent to predict not only the sum of rewards but the sum of any scalar signal.
Formally, we define the target as

Gt(γ, C)
.
=

∞∑
k=t

(
k∏

i=t+1

γ(Si)

)
Ck+1. (2.19)

Note that when the termination function γ is a constant mapping and Ct = Rt,
we get the original definition of return (Eq. 2.13). Using the target Gt(γ, C),
the general state-value function is written as

V π
γ,C(s)

.
= Eπ[Gt(γ, C)|St = s] (2.20)

for all s ∈ S, given a policy π. Similarly, the action-value function is written
as

Qπ
γ,C(s, a)

.
= Eπ[Gt(γ, C)|St = s, At = a] (2.21)

for all (s, a) ∈ S × A. In the following, for compactness, we use notations
V (s) and Q(s, a) as simplifications of V π

γ,C(s) and Qπ
γ,C(s, a). For

12

implementation (Chapter 4), we only consider the case that γ is a constant
function for simplicity. We denote this constant as γ in an abuse of notation.

2.2.3 Q-learning

Q-learning [61] has succeeded in solving many RL problems. It attempts to
learn the optimal action-value function Q∗. It solves the Bellman equation

Q∗(s, a) = E
[
Yt

∣∣St = s, At = a
]

(2.22)

by dynamic programming where

Yt
.
= Rt+1 + γmax

a′∈A
Q∗(St+1, a

′). (2.23)

Once we get the solution Q∗(s, a), we can get an optimal policy easily by
selecting an action from argmaxa∈AQ∗(s, a) for each state s. This Q
function is usually parameterized with a neural network Q(s, a; θ) where θ

are the parameters and can be optimized with Stochastic Gradient Descent
(SGD) by minimizing the square loss

1

|A|
∑
a∈A

(Yt(a)−Q(St, a; θ))
2 (2.24)

where
Yt(a) = Rt+1 + γmax

a′∈A
Q(St+1, a

′; θ). (2.25)

Following [56], we fix Yt(a) during an update. So instead of updating θ by full
gradients, they are updated by semi-gradients, i.e.

θ ← θ + α
2

|A|
∑
a∈A

[Yt(a)−Q(St, a; θ)]∇Q(St, a; θ) (2.26)

where α is the learning rate.

2.2.4 General Value Function Networks

The General Value Function Network (GVFN), a variant of RNNs, was
proposed by [49]. It was inspired by the predictive representation hypothesis,
which posits that constraining the hidden states of models to be predictions

13

leads to better generalization. In a GVFN, each component of the hidden
state is a prediction about the future in the form of a GVF. At each step t,
each state component is updated towards the target Gt(γ, C). For example,
the goal of an air quality agent is to keep the air in a building at a stable
state, no matter how the outside environment changes. To do so, the agent
may want to predict aspects of the outside environment, such as temperature
and humidity. In principle, GVFN can be applied to predict these values.
Forcing hidden states to be GVFs also prevents overfitting to current data,
and regularizes by reducing the hypothesis state space [49].

GVFNs can be combined with different RNNs. For example, GVFs can be
combined with an LSTM to create a GVFN-LSTM. Similarly, we can create a
GVFN-GRU or a GVFN-RNN.

2.3 Conclusion

We have explained word embeddings, recurrent neural networks, and how to
apply them in neural language models. We also explained some basic concepts
in RL, including value functions, general value functions, Q-learning algorithm,
and general value function networks.

In the next chapter, we will present our method PRL and show how these
concepts are applied together in PRL.

14

Chapter 3

Predictive Representation
Learning

In this chapter, we present our main method which learns a predictive
representation with the help of GVFNs. We first show that sequence labeling
tasks can be formalized as RL problems and then introduce a key component
of our method, called label trace. Finally, we propose a new RNN model
called Predictive Representation Learning (PRL) to solve the language
modeling task.

3.1 Sequence Labeling as an RL Problem

Many tasks in NLP are sequence labeling tasks, such as Part-Of-Speech (POS)
tagging, named entity recognition, and chunking. We use POS tagging as an
example to illustrate how a sequence labeling task is transformed into an RL
problem.

“I am going to school.” is the example sentence we want to label. The
correct POS labels are “I (Pronoun) am (Verb) going (Verb) to (Preposition)
school (Noun).” We set the state space S to be the vocabulary set, i.e. S =

{I, am, going, to, school, . . . }. The action spaceA is the set of all possible POS
labels, such as A = {Pronoun, V erb, Preposition,Noun, . . . }. The example
sentence together with the correct labels can be represented as a finite Markov
Decision Process (MDP) as shown in Fig. 3.1. When a correct POS label
for the current word is chosen, it leads to the next state with cumulant 1;

15

otherwise, it goes to the terminal state (T) with cumulant 0. For example, in
state “am” if action “Verb” is taken, the agent goes to the next state (“going”);
otherwise it transitions to the terminal state.

Figure 3.1: An MDP representation of the sentence example for POS tagging.
Only when the correct label is selected does the MDP move to the next state,
receiving cumulant of 1. All incorrect labels result in a transition to the
terminal state (T) with cumulant 0.

Recall that in general, Q(s, a) is the expected return starting from state s,
taking the action a in RL. In this setting, Q(s, a) is the expected discounted
number of steps that a policy using Q(s, a) will be able to correctly label the
next word, from the current state s if it took labeling action a. If this number
is large, it suggests that a is the correct label. Additionally, the magnitudes
of Q(s, a) for the possible actions provide information about ambiguity: if
all the other actions have Q(s, a) = 0, then the model is quite sure that the
maximal action is the right label; otherwise some of the other actions could be
considered. The goal is to find an optimal policy that maximizes the expected
target, by choosing the correct label for each word. Following this pattern,
other sequence labeling tasks can also be formulated as RL problems.

3.2 Label Trace

In Section 2.2, we showed how value functions and general value functions
encode future information which is essential to predict signals in the future.
Here, we point out that historical information is also important for doing

16

predictions. In this section, we introduce label traces as a way to encode
history.

Label traces encode the labels (e.g. POS tags) of words already seen in the
sentence. Let A1, . . ., At be the label sequence chosen by the optimal policy.
The label trace Tt(a) for a ∈ A is the exponentially discounted count of a over
the already observed words. Formally, we define

Tt(a)
.
=

t∑
k=1

γt−k
1(Ak = a) (3.1)

where γ ∈ [0, 1] is a discount factor and 1 is an indicator function.

3.3 Predictive Representation Learning

In this section, we develop a new RNN model with the encoder-decoder
structure called Predictive Representation Learning (PRL). In general, PRL
is a framework designed for auxiliary task learning. Here, we consider the
case where Language Modeling (LM) is the main task, and POS tagging is
the auxiliary task. The goal of LM is to predict the next word. Though in
principle, any sequencing labeling task could be used, we experimented with
POS tagging because it is complementary to LM, but has a smaller
prediction space. Though POS taggers usually predict the POS label of the
current word (wt), to align with LM, our POS tagger predicts the POS label
for the next word (wt+1) without observing it. We present our model in
Fig. 3.2. It mainly consists of three parts - the shared encoder, the POS
decoder, and the LM decoder.

Given an input sentence and the true labels, we transform the sentence
into an MDP as shown in Section 3.1. Then we feed the sentence as a list
of words into the shared encoder (the red rectangle in Fig. 3.2) where each
word w is encoded to a word vector e (the green rectangle). The encoder is an
embedding layer (i.e. a lookup table that stores word vectors of a vocabulary
set).

In our experiments, the POS decoder is a 2-layer RNN. We concatenate
the label trace vector T (the pink square in Fig. 3.2) with the word vector

17

Figure 3.2: The model structure of PRL. The encoder (the red rectangle) is
shared by both tasks while each task has its own decoder. Each word w is
encoded by the shared encoder into a word vector e. The label trace T (the
pink square) is concatenated with the word vector e to form a new word vector
T + e. The POS decoder decodes T + e into an action-value vector Q (the
yellow square). For the LM decoder, the action-value vector Q is concatenated
with the first hidden state h1 inside the LM decoder to form a new hidden state
Q+ h1. The multi-layer LSTM proceeds as is typical in LM.

18

(e) to form a new word vector (i.e. T + e) which contains historical label
information. The POS decoder decodes T + e into an action-value vector Q

(the yellow square). Each element in Q is the action-value for taking an action
a ∈ A where A is the POS label set. Thus, the length of this vector is the
number of actions in A. The action-value for each label represents an estimate
of the goodness of that label. To generate the predicted label, we take argmax

over these action-values.
In this setting, the training of a POS tagger is equivalent to finding an

optimal policy to maximize the expected target (as shown in Section 3.1). We
use Q-learning [61] to learn an optimal policy, but other RL algorithms could
also be applied.

The LM decoder is a 3-layer LSTM. After the POS decoder computes
the action-value vector Q, it is then concatenated with the first hidden state
h1 inside the LM decoder to form a new hidden state Q+h1. This new hidden
state is the input to the next LSTM layer. The rest of the computation
proceeds as is typical in a multi-layer LSTM, and produces a prediction for
the next word. Following previous work, cross-entropy is the loss function.

LM is strongly related to POS tagging [16]. With access to the predicted
POS label of the next word, a language model may be able to reduce the
number of probable next words under consideration, thus improving accuracy.

3.4 Conclusion

In this chapter, we showed how to transform a sequence labeling problem to
an RL problem and solve it with an RL algorithm. We also introduced label
traces to encode history that helps prediction. Finally, we proposed our model
PRL. In the next chapter, we will conduct experiments to test PRL and show
the superiority of PRL compared to baseline methods.

19

Chapter 4

Experiments

In this chapter, we perform our experiments on two widely used benchmarks
- Penn Treebank (PTB) [28] and WikiText-2 (WT2) [31]. For the following
experiments, LM is the main task while POS tagging is the auxiliary task. To
align with the goal of LM, we change the goal of POS tagging to predicting
the correct POS label for the next word instead of the current word.

For PTB, we used the version pre-processed by [36]. This dataset contains
929k training words, 73k validation words, and 82k test words. It has 10,000
unique words, and all other words are replaced by ⟨unk⟩ tokens. We extracted
the corresponding POS labels from the original PTB dataset.

WT2 is created from Wikipedia articles with over 30,000 words. It is
about twice the size of the PTB dataset and contains 2088k training words,
217k validation words, 245k test words. Since the original WT2 dataset has
no POS labels, we used the English POS tagger in spaCy 1 to label sentences
in WT2.

In the following sections, we first combine PRL with two state-of-the-art
language models and show that the perplexities are reduced significantly. We
also find out that PRL accelerates the learning process and improves
language models trained with smaller datasets, by analyzing the convergence
rate and the influence of dataset size on PRL. Then we report the
performance of GVFN-LSTM on POS tagging. Furthermore, we show the
effect of POS tagging accuracy on PRL which hints at a promising future for

1https://github.com/explosion/spaCy

20

PRL. Finally, we do a model ablation analysis to show the importance of the
label trace component in PRL.

4.1 PRL’s Effect on LM

In this section, we show that the performance of LM can be further improved
when predictive representations are incorporated. For the following
experiments, LM is the main task while POS tagging is the auxiliary task.

We first integrate a GVF as an auxiliary task into ASGD Weight-Dropped
LSTM (AWD-LSTM) [30]. In this thesis, we use AWD as a shorter name for
AWD-LSTM.

Our model that combines AWD with PRL is called AWD-PRL-Q in which
Q stands for the action-values.

To fairly assess the contributions of AWD-PRL-Q, we needed a baseline
that also had access to next-word POS predictions. We call this baseline
AWD-PRL-P in which P stands for the probability distribution over the POS
label set generated by the POS decoder. AWD-PRL-P is derived from AWD-
PRL-Q by replacing the action-values Q with the probability distribution P
produced by an LSTM POS tagger, which still has access to the label trace
T . We will compare the effect of these two representations – the action-values
versus probability distribution – on LM performance.

For the LM decoder, we used the same hyperparameters and optimization
settings provided in the official codebases 2. The POS decoder is a 2-layer
LSTM (for AWD-PRL-P) or GVFN-LSTM (for AWD-PRL-Q) with hidden
size 380 and a linear layer neural network.

For AWD-PRL-Q, the parameters in the POS decoder were optimized by
the square loss 1

|A|
∑

a∈A(Yt(a) − Q(St, a; θ))
2 defined in Section 2.2.3. The

parameters in AWD-PRL-P were optimized by cross-entropy loss. The best
learning rate was selected from {30, 28, 26, 24, 22, 20, 18, 16, 14, 12, 10,
8, 6} based on validation performance. The discount factor γ in AWD-PRL-

2https://github.com/salesforce/awd-lstm-lm

21

P and AWD-PRL-Q was chosen from {0, 0.5, 0.67, 0.8, 0.9, 0.99}. During
training, we select a task from LM and POS tagging in turn. A batch of data
samples is used to update the parameters in the corresponding decoder and
the shared encoder by gradient descent. The whole process is repeated until
convergence. Note that all samples in a batch have a same length by cutting
off long sentences or pending short sentences.

We trained all models for 5 different random initializations. We used 500
epochs for PTB and 750 epochs for WT2 following [30]. The runtime and the
size of each model are in the appendix. Following [63], we removed finetuning
to reduce training time. Models were evaluated using perplexity (PPL, lower
is better). We reproduced the original results with AWD’s official codebase.

Table 4.1 shows the averaged results of all models over 5 runs as well as
the standard errors. Note that our reproduced results are slightly worse than
the results reported in [30] since we report the averaged perplexities over 5
runs without further finetuning the models. Results with and without neural
cache [12] are both reported.

On both datasets, AWD-PRL-P and AWD-PRL-Q outperform AWD,
with or without applying neural cache. This supports our hypothesis that
constraining the learned representation to be simple predictions improves
model performance. It also confirms that predicted POS tags improve the
performance of LM, whether the information itself is represented by a
probability distribution or action-values. Furthermore, the perplexities of
AWD-PRL-Q are consistently lower than the perplexities of AWD-PRL-P,
and so GVFN-LSTMs outperform LSTMs in this setting. The Q values’
representation of future information (as a form of predictive representations)
is more beneficial to LM than simple probabilities (P).

To test the generalization of PRL, we incorporated it into another language
model, Mixture of Softmaxes (AWD-LSTM-MoS) [63]. In this thesis, we use
MoS as a shorter name for AWD-LSTM-MoS.

Our model which combines PRL with MoS is called MoS-PRL-Q.
We used a similar training process and hyperparameter tuning as in the

22

Dataset Model No Neural Cache Neural Cache
Test PPL ∆ Test PPL ∆

PTB AWD 58.48 ± 0.06 / 54.36 ± 0.07 /
PTB AWD-PRL-P 56.31 ± 0.06 2.17 52.01 ± 0.05 2.35
PTB AWD-PRL-Q 55.90 ± 0.06 2.58 51.90 ± 0.06 2.46
WT2 AWD 68.85 ± 0.11 / 54.24 ± 0.07 /
WT2 AWD-PRL-P 67.52 ± 0.06 1.33 52.86 ± 0.05 1.38
WT2 AWD-PRL-Q 66.75 ± 0.07 2.10 52.58 ± 0.05 1.66

Table 4.1: The comparison of test perplexities on PTB and WT2 for LM based
on AWD. The ∆ columns show the improvements of AWD-PRL-P/Q in terms
of perplexity, compared with AWD. We report results with and without neural
cache. All results were averaged over 5 runs with the standard errors reported.
PRL improves the performance of AWD, with and without neural cache.

Dataset Model No Dyneval Dyneval
Test PPL ∆ Test PPL ∆

PTB MoS 56.44 ± 0.06 / 49.99 ± 0.05 /
PTB MoS-PRL-Q 53.88 ± 0.06 2.56 48.21 ± 0.04 1.78
WT2 MoS 64.92 ± 0.18 / 44.08 ± 0.07 /
WT2 MoS-PRL-Q 64.39 ± 0.14 0.53 44.13 ± 0.08 -0.05

Table 4.2: The comparison of test perplexities on PTB and WT2 for LM based
on MoS. The ∆ columns show the improvements of MoS-PRL-Q in terms of
perplexity, compared with MoS. We reported results with dynamic evaluation
(Dyneval) and without (No Dyneval). All results were averaged over 5 runs
with the standard errors reported. Overall, PRL improves the performance of
MoS.

23

previous experiment for AWD. Models were trained to convergence for 800
epochs on both datasets. The runtime and the size of each model are in the
appendix. We reproduced the original results with hyperparameters provided
in the official codebase 3. For similar reasons to the case of AWD, our
reproduced results are slightly worse than the results reported [63].

Table 4.2 shows the averaged results of the two models over 5 runs as well as
the standard errors. Results with dynamic evaluation [21] (column Dyneval)
and without dynamic evaluation (column No Dyneval) are reported. MoS-
PRL-Q outperforms MoS on PTB and WT2 consistently without dynamic
evaluation. With dynamic evaluation, the performance gaps of two models
narrow. Overall, the results show that PRL improves the performance of LM.

In the experiments, it is found that a small discount factor (<0.9) usually
leads to a better performance. This indicates that a good agent may not need
to look ahead for a large number of steps. The relation between the label of
the current word and the label of a word far away is just too weak to take it
into account.

4.2 Analysis of Convergence Rate and
Influence of Dataset Size

We have shown that PRL improves the performance of the final trained
language models. Because PRL helps to guide representation learning, we
hypothesized it would also improve the convergence rate and sample
efficiency. Fig. 4.1 shows the validation PPL while training AWD and
AWD-PRL-Q on PTB. Notice that the PPL of AWD after 500 epochs is
achieved by AWD-PRL-Q after 100 epochs. The results for WT2 are similar,
as shown in Figure 4.2.

PRL helps language models converge faster, but what is convergence like
with less data? To study the influence of dataset size on LM performance,
we trained AWD and AWD-PRL-Q with a subset of the training data. We

3https://github.com/zihangdai/mos

24

0 100 200 300 400 500
Epoch

60

65

70

75

80

PP
L

AWD
AWD-PRL-Q

Figure 4.1: The validation perplexity for AWD and AWD-PRL-Q on Penn
Treebank during training. Average over 5 runs is shown, shaded regions
represent standard errors. AWD-PRL-Q converges faster than AWD.

0 200 400 600
Epoch

70

75

80

85

90

PP
L

AWD
AWD-PRL-Q

Figure 4.2: The validation perplexity for AWD and AWD-PRL-Q on
WikiText2 during training. Average over 5 runs is shown, shaded regions
represent standard errors. AWD-PRL-Q converges faster than AWD.

25

500 1000 1500 2000
Number of Training Tokens (×1k)

0.00

0.01

0.02

0.03

0.04

0.05

Pe
rc

en
t I

m
pr

ov
em

en
t i

n
PP

L Penn Treebank
WikiText2

Figure 4.3: The percent change in perplexity of AWD-PRL-Q over AWD on
the test set of Penn Treebank and WikiText2, as a function of dataset size
(measured by the number of training tokens). Average over 5 runs is reported.
PRL improves language models trained with datasets at different scales.

created several smaller PTB and WT2 datasets and trained models on them.
In Fig. 4.3, we see improvements on PTB, even when we include only 250k
tokens. The performance of AWD-PRL-Q on WT2 with 250k tokens is slightly
worse than AWD, but improvements are seen with just slightly more tokens.
The percent improvement in PPL can approach 5%, and appears to stabilize
at 3% even as the dataset size surpasses 2M tokens. Thus, PRL can improve
language models trained with smaller datasets, and even when the datasets
are quite large, there still exists a significant improvement.

4.3 Performance of the GVFN-LSTM

We were also interested in the performance of a GVFN-LSTM POS tagger,
and the impact of the label trace on POS tagging accuracy. To study this,
we ignored the LM decoder part from AWD-PRL-P and AWD-PRL-Q after
we trained them as shown in Section 4.1, and had two models – POS-LSTM
(the baseline model, derived from AWD-PRL-P) and POS-PRL (our method,
derived from AWD-PRL-Q).

To test the impact of the label trace on POS tagging, we first removed

26

the label trace components from AWD-PRL-P and AWD-PRL-Q and got two
models, denoted as AWD-PRL-P (no T) and AWD-PRL-Q (no T) respectively.
We trained two models the same as we did in Section 4.1, and then ignored the
LM decoder part. Thus we had two baseline models from AWD-PRL-P (no
T) and AWD-PRL-Q (no T), denoted as POS-LSTM (no T) and POS-PRL
(no T) respectively).

Table 4.3 shows the test performance of POS-LSTM and POS-PRL on
PTB and WT2, with and without the label trace. All results were averaged
over 5 runs with the standard errors reported.

Dataset Model Test accuracy
PTB POS-LSTM 50.23% ± 0.03%
PTB POS-LSTM (no T) 48.45% ± 0.02%
PTB POS-PRL 44.56% ± 0.02%
PTB POS-PRL (no T) 42.40% ± 0.06%
WT2 POS-LSTM 49.96% ± 0.01%
WT2 POS-LSTM (no T) 48.38% ± 0.04%
WT2 POS-PRL 43.97% ± 0.02%
WT2 POS-PRL (no T) 42.28% ± 0.03%

Table 4.3: The comparison of POS tagging accuracy on PTB and WT2 using
POS-LSTM and POS-PRL. The incomplete models without the label trace
components are denoted as LSTM (no T) and PRL (no T). All results were
averaged over 5 runs with the standard errors reported.

Notice that predicting the POS label for the next word is much harder
than predicting the POS label for the current word. The accuracy of POS
tagging for the next word is barely 50% while the accuracy of POS tagging for
the current word is close to 100% [5].

The ablation experiments also show that the label trace component
improves the POS prediction significantly. This suggests that forcing the
representation to explicitly encode historical information improves future
prediction. Although both POS-LSTM and POS-PRL can learn to extract
and retain historical information, the explicit encoding of history still helps.

Note that POS-LSTM outperforms POS-PRL on both datasets. In Section
4.1, we showed that AWD-PRL-Q (a model that uses predictions from POS-

27

PRL) is better than AWD-PRL-P (a model that uses predictions from POS-
LSTM). Thus, AWD performs best when supported by a less accurate POS
tagger. As we will see, this also contradicts the results in Section 4.4, which
show that higher POS tagging accuracy leads to better performance of LM.
Recall that action-values from AWD-PRL-Q encode not only the prediction of
the immediate next POS label, but all labels following the current word. In
comparison, the probability distribution in AWD-PRL-P only tells us about
the immediate next POS label. Perhaps it is AWD-PRL-Q’s additional future
predictions that provide the performance boost.

4.4 Effect of POS Tagging Accuracy on PRL

We have shown that the performance of LM is improved by PRL. Note that
this is true even though the accuracy of the underlying POS tagging is as low
as 50%. This inspired us to ask: what would the impact of PRL be if the
POS tagging was more accurate? How does the LM improve as POS tagging
improves?

Current state-of-the-art methods for predicting a POS label given the
representation of the current word (i.e. the word to be tagged) are extremely
accurate [5]. Recall that our model predicts the POS label of the next word
without access to that word’s embedding. We leveraged these two facts in
order to study the effect of POS tagging accuracy on MoS-PRL-Q. We
developed a “cheating” model, wherein the POS tagger, trained to predict
the POS label of the next word, actually has access to the embedding of that
next word (rather than access only to the current word). This is clearly
cheating because some information of the next word is leaked to the LM
decoder through the POS action-values. But, because the upper limit of
these cheating predictions can approach 90%, we can more fully experiment
with the impact of POS tagging accuracy on MoS-PRL-Q. To control the
accuracy of POS tagging, we changed the size of the hidden layers in the
POS decoder (smaller layers leads to lower performance). Note that we

28

trained the cheating model with only 10 epochs.
Fig. 4.4 shows how PPL changes as the accuracy of POS tagging

changes. The PPL decreases almost linearly as the accuracy of POS tagging
increases to 80%. This again strongly supports our hypothesis that
constraining representations to be predictive can improve the performance of
LM. Moreover, it hints at a promising future for PRL. As we improve the
accuracy of POS tagging or incorporate other sequence labeling tasks with
higher accuracy, we can expect the performance of LM to improve too.

0.4 0.6 0.8
Accuracy of POS Tagging

20

40

60

80

PP
L

Penn Treebank
WikiText2

Figure 4.4: The relation between the accuracy of POS tagging and perplexity
of LM on Penn Treebank and WikiText2. The perplexity drops almost linearly
as the POS tagging accuracy increases.

4.5 Ablation Analysis of Label Trace

We have shown that the label trace component improves the POS prediction
significantly. We further showed that higher POS tagging accuracy leads to a
better language model. Based on these two statements, we draw the corollary
that the label trace component should improve the performance of language
modeling. In this section, we conducted an ablation study on both PTB and
WT2 to check the corollary. We remove the label trace component from AWD-
PRL-Q and the new model is denoted as AWD-PRL-Q (no T).

29

Dataset Model No Neural Cache Neural Cache
Test PPL ∆ Test PPL ∆

PTB AWD 58.48 ± 0.06 / 54.36 ± 0.07 /
PTB AWD-PRL-Q 55.90 ± 0.06 2.58 51.90 ± 0.06 2.46
PTB AWD-PRL-Q (no T) 58.74 ± 0.04 -0.26 54.54 ± 0.03 -0.18
WT2 AWD 68.85 ± 0.11 / 54.24 ± 0.07 /
WT2 AWD-PRL-Q 66.75 ± 0.07 2.10 52.58 ± 0.05 1.66
WT2 AWD-PRL-Q (no T) 69.29 ± 0.07 -0.44 54.51 ± 0.07 -0.27

Table 4.4: The ablation study of the label trace for AWD-PRL-Q on PTB
and WT2. AWD-PRL-Q (no T) is derived from AWD-PRL-Q by removing
the label trace component. The ∆ columns show the improvements of AWD-
PRL-Q and AWD-PRL-Q (no T) in terms of perplexity, compared with AWD.
We report results with and without neural cache (column Neural Cache and
column No Neural Cache). All results were averaged over 5 runs with the
standard errors reported. Without the label trace, the performance of AWD-
PRL-Q is significantly worse.

We report the results in Table 4.4. The performance of AWD-PRL-Q (no
T) is significantly worse than AWD-PRL-Q, even worse than AWD. This
supports our corollary that the label trace component can improve the
performance of language modeling.

As shown in Section 4.3, after we remove the label trace component from
AWD-PRL-Q, the accuracy of POS tagging drops significantly. A POS decoder
with poor performance generates bad predictive representations which contain
too much noise information. The representations with low quality hurt the
performance of LM itself. The label trace doesn’t improve the performance of
LM directly; it improves the quality of the predictive representations which
finally lead to a better language model.

4.6 Conclusion

In this chapter, we performed our experiments to show that PRL improves
the performance of LM when it is combined with language models. We also
analyzed the convergence rate and sample efficiency of PRL. Then, we
surprisingly found that the performance of GVFN-LSTM for POS tagging is

30

actually worse than LSTM which pointed out a future research direction.
Moreover, we studied the effect of POS tagging accuracy on PRL and
concluded that higher POS tagging accuracy would lead to better
performance of LM. Finally, we did an ablation study to show the
importance of label traces.

31

Chapter 5

Related Work

In this chapter, we present the related work of our method. Overall, our
work is closely related to three areas – predictive representations, multi-task
learning, and learning from hints.

5.1 Predictive Representations

The predictive representations hypothesis, first proposed in the area of RL,
posits that representations which predict future observations are better for
generalization [43].

Littman and Sutton [25] developed the Predictive State Representation
(PSR) which updates the state representation recursively. In particular, a
PSR is a vector of predictions for several action-observation sequences.
These sequences are also known as tests. Among all tests, core tests are those
tests that are sufficient to make predictions about the future. For each core
test, an agent records the test success probability and this probability then
becomes a feature in the state representation of the agent. The core tests are
usually specially selected with some methods [6, 22, 29, 44, 52]. Sun et al.
[55] developed the Predictive State Inference Machine (PSIM), which directly
learns predictors for inference in predictive state space. In the context of
dynamic systems, a PSIM was shown to converge faster than simple
auto-regressive models. Rafols et al. [43] showed that predictive
representations help to improve sample efficiency, allowing agents to learn

32

faster in a grid-world navigation task.
Value functions and general value functions can also be viewed as a

special form of tests. Sutton and Tanner [57, 59] extended
Temporal-Difference (TD) learning methods and proposed TD networks as
an effective alternative learning algorithm for PSR. TD networks include two
kinds of networks: question networks and answer networks. A question
network suggests a question about possible future observations, analogous to
a test in PSR. An answer network learns to answer the question; it is
analogous to the function used to compute the success probability of the test.
The predictions of TD networks are then incorporated into state
representations. Sutton and Tanner showed that TD networks can learn
state representations that make it possible to find an exact solution of a
non-Markov problem.

Later, Sutton et al. [58] proposed the Horde architecture to learn general
knowledge about the environment in the form of a large amount of GVFs. It
is shown that GVFs have the capacity to capture and encode both short- and
long-term information, which improves performance and generalization [48].
Based on this work, Schlegel et al. [49] proposed a new RNN architecture, the
General Value Function Network (GVFN), which combines GVFs in an RNN.
In a GVFN, a state consists of predictions about the future. Schlegel et al.
went on to show the robustness of GVFNs for several time series prediction
tasks and RL prediction problems.

Predictive representations have also proved their value in the area of NLP.
Kuncoro et al. [23] proposed structure-distilled BERT models by injecting
explicit syntactic inductive biases into BERT models. The syntactic biases are
expressed as syntactically informative predictions, in the form of probability
distributions. The structure-distilled BERT models were found to outperform
the baseline method on six diverse structured prediction tasks. These results
demonstrated that predictive representations of syntactic biases are beneficial
for large models that exploit large amounts of data.

33

5.2 Multi-task Learning

Many multi-task learning frameworks have been proposed for NLP tasks.
During training, parameters for each task can be shared among tasks,
improving the optimization of those shared parameters. Bingel and Søgaard
[4] found that multi-task learning can help neural networks training get out
of local minima. Multi-task learning also improves model generalization,
accelerates the training process, and allows for knowledge sharing across
domains [7, 45].

Specifically, Luong et al. [27] developed a multi-task sequence to sequence
model and found that training this model on syntactic parsing and image
caption data improves translation quality between English and German.
Søgaard and Goldberg [53] presented a multi-task learning RNN architecture
for sequence tagging. When comparing low-level task supervision (e.g. POS
tagging) at both the innermost and outmost layers of the RNN, Søgaard and
Goldberg found that supervision at the innermost layer gives the greatest
increase in performance. Furthermore, Hashimoto et al. [15] proposed a joint
many-task model that reflects linguistic hierarchies, and achieves
state-of-the-art or competitive results on five different NLP tasks. Similarly,
Sanh et al. [47] introduced a hierarchical model trained on a set of selected
semantic tasks by supervising low-level tasks at lower layers and more
complex tasks at higher layers. They also found that the learned sentence
representations encode more diverse semantic information. Subramanian
et al. [54] applied large scale multi-task learning to learn a general purpose
distributed sentence representations. They demonstrated that these learned
representations are competitive to or even better than general-purpose
sentence representations produced by previous methods. Such
representations also greatly speed up low-resource learning. More recently,
Ruder et al. [46] proposed the Sluice Network, a multi-task learning
framework, where the amount of sharing is learnable. In particular, sharing
of layers, subspaces, and skip connections are all learnable; the amount of

34

sharing is updated automatically during training. Sluice Networks showed
gains on named entity recognition and semantic role labeling tasks. In
practice, they were also robust across domains.

Unlike these approaches, our work focuses on encouraging the predictive
nature of the underlying representations and incorporating those predictions
into states. Additionally, the multi-task model structure we propose is different
from them in terms of using information from auxiliary tasks.

5.3 Learning from Hints

Our work is also closely related to learning from hints [1]. Hints are pieces
of information about the function we want to learn, such as features of the
function. Useful hints can be used to reduce the hypothesis function space.
The predicted features can also be incorporated as auxiliary tasks to benefit
the learning of the main task, as supported by our work. Specifically, hints
are equivalent to the output of GVFNs in our work.

Yu and Jiang [64] built a neural network architecture for cross-domain
sentiment classification, and included two auxiliary tasks to predict whether
the input text contained domain-independent positive or negative sentiment
words. They found their model could identify more domain-specific sentiment
words, compared to several highly competitive baseline methods. In a similar
vein, Cheng et al. [8] proposed a multi-task RNN language model for sentence-
level name detection. In this model, the auxiliary task is to predict whether
a sentence has a name in it as an auxiliary task. Compared to a system using
n-gram lexical features, their sentence-level model improves the name-error
detection F-score by 26%.

35

Chapter 6

Conclusion and Future Work

Representation learning is an important topic in machine learning. Good
representations are crucial for models that must represent states or otherwise
compress input information. However, the criteria of what makes a good
representation are not always clear.

In this work, we explored a concept known as predictive representations
hypothesis which has shown great success in the area of RL, in the scenario
of language modeling. To be specific, we introduced PRL as an addition to
RNN models that learns predictive representations with the help of a GVF.
It supports auxiliary task learning and can improve the learned solutions for
sequence labeling tasks. We incorporated PRL into two strong language
models and tested them on two standard benchmarks. Our main results
demonstrated that PRL outperforms the baselines significantly in terms of
perplexities. Furthermore, we analyzed the convergence rate and sample
efficiency of different methods. The results showed that PRL converged much
faster than the baselines, and it improved the performance of LM even when
training datasets are small. As a by-product, we also reported the
performance of the auxiliary task (i.e. POS tagging) in our experiments. We
discovered that AWD-PRL-Q is worse than AWD-PRL-P in terms of the
POS tagging accuracy, although AWD-PRL-Q is better than AWD-PRL-P
for LM. Note that the action-values from AWD-PRL-Q encode not only the
prediction of the immediate next POS label, but all future labels following
the current word. This fact might explain why AWD-PRL-Q is better at

36

predicting the next word even though its POS tagging accuracy is lower.
However, future work is still needed to figure this out. Then we studied the
effect of POS tagging accuracy on PRL. The results showed that the
performance of LM can be further improved if the POS tagging accuracy was
higher, which points out a future improvement of PRL. Finally, we did an
ablation experiment to verify the importance of label trace.

Our results point to several options for future work, too. We would like
to test our method on more datasets, more sequence labeling tasks, and
measure the influence of the number of auxiliary tasks in the auxiliary task
learning setting. Solving sequence labeling tasks with other RL algorithms
(e.g. SARSA and Actor-Critic in [56]) is also an interesting direction. The
transformer [9], which has shown great improvement for LM, is another ripe
area for GVFs.

We also note that our work requires additional labeled data to learn
predictive representations. In the future, it may be possible for algorithms to
define their own supervision tasks (self-supervision), and incorporate those
predictions into the learned representations. As mentioned previously, this
occurs naturally in RNNs for LM, but encouraging it more explicitly could
leverage the advances we presented here without requiring new labeled
datasets. However, the NLP community’s strong tradition of creating
benchmarks (and associated labeled data) means there will remain plenty to
gain by using supervised learning in the PRL framework.

37

References

[1] Yaser S Abu-Mostafa. “Learning from hints in neural networks.” In:
Journal of Complexity 6 (1990), pp. 192–198. doi:
10.1016/0885-064X(90)90006-Y. 35

[2] Dario Amodei et al. “Deep speech 2: End-to-end speech recognition in
english and mandarin.” In: International Conference on Machine
Learning. 2016, pp. 173–182. 7

[3] Yoshua Bengio et al. “A neural probabilistic language model.” In: Journal
of Machine Learning Research 3.Feb (2003), pp. 1137–1155. 6, 9

[4] Joachim Bingel and Anders Søgaard. “Identifying beneficial task
relations for multi-task learning in deep neural networks.” In:
Proceedings of the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume 2, Short Papers.
2017, pp. 164–169. 34

[5] Bernd Bohnet et al. “Morphosyntactic tagging with a meta-BiLSTM
model over context sensitive token encodings.” In: Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics.
Vol. 1. 2018, pp. 2642–2652. doi: 10.18653/v1/P18-1246. url: https:
//www.aclweb.org/anthology/P18-1246. 27, 28

[6] Byron Boots, Sajid M Siddiqi, and Geoffrey J Gordon. “Closing the
learning-planning loop with predictive state representations.” In: The
International Journal of Robotics Research 30.7 (2011), pp. 954–966. 32

[7] Rich Caruana. “Multitask learning.” In: Machine Learning 28.1 (1997),
pp. 41–75. 34

[8] Hao Cheng, Hao Fang, and Mari Ostendorf. “Open-domain name error
detection using a multi-task RNN.” In: Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing.
2015, pp. 737–746. doi: 10 . 18653 / v1 / D15 - 1085. url:
https://www.aclweb.org/anthology/D15-1085. 35

[9] Zihang Dai et al. “Transformer-XL: attentive language models beyond a
fixed-length context.” In: Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics. 2019, pp. 2978–2988. doi:
10.18653/v1/P19-1285. url: https://www.aclweb.org/anthology/
P19-1285. 37

38

[10] Salah El Hihi and Yoshua Bengio. “Hierarchical recurrent neural
networks for long-term dependencies.” In: Advances in Neural
Information Processing Systems. 1996, pp. 493–499. 8

[11] Jeffrey L Elman. “Finding structure in time.” In: Cognitive Science 14.2
(1990), pp. 179–211. 7

[12] Edouard Grave, Armand Joulin, and Nicolas Usunier. “Improving neural
language models with a continuous cache.” In: International Conference
on Learning Representations. 2016. url: https://openreview.net/
forum?id=B184E5qee. 22

[13] Alex Graves and Navdeep Jaitly. “Towards end-to-end speech
recognition with recurrent neural networks.” In: International
Conference on Machine Learning. 2014, pp. 1764–1772. 7

[14] Alex Graves and Jürgen Schmidhuber. “Framewise phoneme
classification with bidirectional LSTM and other neural network
architectures.” In: Neural Networks 18.5-6 (2005), pp. 602–610. 9

[15] Kazuma Hashimoto et al. “A Joint Many-Task Model: Growing a Neural
Network for Multiple NLP Tasks.” In: Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Processing. 2017, pp. 1923–
1933. 34

[16] Peter A. Heeman. “POS tags and decision trees for language
modeling.” In: Joint SIGDAT Conference on Empirical Methods in
Natural Language Processing and Very Large Corpora. 1999. url:
https://www.aclweb.org/anthology/W99-0617. 19

[17] Geoffrey E Hinton. “Distributed representations.” In: Parallel Distributed
Processing (1986), pp. 77–109. 4

[18] Geoffrey E Hinton et al. “Learning distributed representations of
concepts.” In: Proceedings of the Eighth Annual Conference of the
Cognitive Science Society. Vol. 1. Amherst, MA. 1986, p. 12. 5

[19] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory.”
In: Neural Computation 9.8 (1997), pp. 1735–1780. 8

[20] Frankie James. “Modified Kneser-Ney smoothing of n-gram models.” In:
Research Institute for Advanced Computer Science, Tech. Rep. 00.07
(2000). 10

[21] Ben Krause et al. “Dynamic evaluation of neural sequence models.” In:
Proceedings of the 35th International Conference on Machine Learning.
Vol. 80. 2018, pp. 2766–2775. url: http://proceedings.mlr.press/
v80/krause18a.html. 24

[22] Alex Kulesza, Nan Jiang, and Satinder Singh. “Spectral learning of
predictive state representations with insufficient statistics.” In:
Twenty-Ninth AAAI Conference on Artificial Intelligence. 2015. 32

39

[23] Adhiguna Kuncoro et al. “Syntactic Structure Distillation Pretraining
For Bidirectional Encoders.” In: arXiv preprint arXiv:2005.13482 (2020).
url: https://arxiv.org/abs/2005.13482. 33

[24] Yair Lakretz et al. “The emergence of number and syntax units in
LSTM language models.” In: Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational
Linguistics: Human Language Technologies. Vol. 1. 2019, pp. 11–20.
url: https://www.aclweb.org/anthology/N19-1002. 1

[25] Michael L Littman and Richard S Sutton. “Predictive representations
of state.” In: Advances in Neural Information Processing Systems. MIT
Press, 2002, pp. 1555–1561. url: https://papers.nips.cc/paper/
1983-predictive-representations-of-state. 1, 32

[26] Shujie Liu et al. “A Recursive Recurrent Neural Network for Statistical
Machine Translation.” In: Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers).
2014, pp. 1491–1500. 7

[27] Minh-Thang Luong et al. “Multi-task sequence to sequence learning.”
In: International Conference on Learning Representations. 2016. 34

[28] Mitchell Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz.
“Building a large annotated corpus of English: the Penn Treebank.” In:
Computational Linguistics 19.2 (1993), pp. 313–330. url:
https://www.aclweb.org/anthology/J93-2004. 20

[29] Peter McCracken and Michael Bowling. “Online discovery and learning
of predictive state representations.” In: Advances in Neural Information
Processing Systems. 2006, pp. 875–882. 32

[30] Stephen Merity, Nitish Shirish Keskar, and Richard Socher.
“Regularizing and optimizing LSTM language models.” In:
International Conference on Learning Representations. 2018. url:
https://openreview.net/forum?id=SyyGPP0TZ. 10, 21, 22

[31] Stephen Merity et al. “Pointer sentinel mixture models.” In:
International Conference on Learning Representations. 2016. url:
https://openreview.net/forum?id=Byj72udxe. 20

[32] Tomas Mikolov et al. “Distributed representations of words and
phrases and their compositionality.” In: Advances in Neural
Information Processing Systems. 2013, pp. 3111–3119. 5

[33] Tomas Mikolov et al. “Efficient estimation of word representations in
vector space.” In: arXiv preprint arXiv:1301.3781 (2013). 6

40

[34] Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig. “Linguistic
regularities in continuous space word representations.” In: Proceedings
of the 2013 Conference of the North American Chapter of the
Association For Computational Linguistics: Human Language
Technologies. 2013, pp. 746–751. 5

[35] Tomáš Mikolov et al. “Recurrent neural network based language
model.” In: Eleventh Annual Conference of the International Speech
Communication Association. 2010. 7, 9

[36] Tomáš Mikolov et al. “Empirical evaluation and combination of advanced
language modeling techniques.” In: Twelfth Annual Conference of the
International Speech Communication Association. 2011. url: https://
www.isca-speech.org/archive/interspeech_2011/i11_0605.html. 20

[37] Volodymyr Mnih et al. “Human-level control through deep reinforcement
learning.” In: Nature 518.7540 (2015), pp. 529–533. 7

[38] Joseph Modayil, Adam White, and Richard S Sutton. “Multi-timescale
nexting in a reinforcement learning robot.” In: International Conference
on Simulation of Adaptive Behavior. Springer. 2012, pp. 299–309. doi:
10.1177/1059712313511648. 1

[39] Malvina Nissim, Rik van Noord, and Rob van der Goot. “Fair is better
than sensational: Man is to doctor as woman is to doctor.” In:
Computational Linguistics 46.2 (2020), pp. 487–497. url:
https://doi.org/10.1162/coli_a_00379. 5

[40] Razvan Pascanu et al. “How to construct deep recurrent neural
networks.” In: arXiv preprint arXiv:1312.6026 (2013). 8

[41] Jeffrey Pennington, Richard Socher, and Christopher D. Manning.
“GloVe: Global Vectors for Word Representation.” In: Proceedings of
the 2014 Conference on Empirical Methods in Natural Language
Processing. 2014, pp. 1532–1543. doi: 10.3115/v1/D14- 1162. url:
http://www.aclweb.org/anthology/D14-1162. 7

[42] Barbara Plank, Anders Søgaard, and Yoav Goldberg. “Multilingual Part-
of-Speech Tagging with Bidirectional Long Short-Term Memory Models
and Auxiliary Loss.” In: Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers).
2016, pp. 412–418. 7

[43] Eddie J Rafols et al. “Using predictive representations to improve
generalization in reinforcement learning.” In: International Joint
Conference on Artificial Intelligence. 2005, pp. 835–840. url:
https://www.ijcai.org/Proceedings/05/Papers/1650.pdf. 1, 32

[44] Matthew Rosencrantz, Geoff Gordon, and Sebastian Thrun. “Learning
low dimensional predictive representations.” In: Proceedings of the
Twenty-first International Conference on Machine Learning. 2004,
p. 88. 32

41

[45] Sebastian Ruder. “An overview of multi-task learning in deep neural
networks.” In: arXiv preprint arXiv:1706.05098 (2017). 34

[46] Sebastian Ruder et al. “Sluice networks: Learning what to share between
loosely related tasks.” In: ArXiv abs/1705.08142 (2017). 34

[47] Victor Sanh, Thomas Wolf, and Sebastian Ruder. “A hierarchical
multi-task approach for learning embeddings from semantic tasks.” In:
Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33.
2019, pp. 6949–6956. 34

[48] Tom Schaul and Mark Ring. “Better generalization with forecasts.” In:
International Joint Conference on Artificial Intelligence. 2013. url:
https://www.ijcai.org/Proceedings/13/Papers/246.pdf. 1, 33

[49] Matthew Schlegel et al. “General value function networks.” In: arXiv
preprint arXiv:1807.06763 (2018). url: http://arxiv.org/abs/1807.
06763. 1, 13, 14, 33

[50] Jürgen Schmidhuber. “Learning complex, extended sequences using the
principle of history compression.” In: Neural Computation 4.2 (1992),
pp. 234–242. 8

[51] Mike Schuster and Kuldip K Paliwal. “Bidirectional recurrent neural
networks.” In: IEEE transactions on Signal Processing 45.11 (1997),
pp. 2673–2681. 9

[52] Satinder Singh, Michael R James, and Matthew R Rudary. “Predictive
state representations: a new theory for modeling dynamical systems.”
In: Proceedings of the 20th conference on Uncertainty in artificial
intelligence. 2004, pp. 512–519. 32

[53] Anders Søgaard and Yoav Goldberg. “Deep multi-task learning with low
level tasks supervised at lower layers.” In: Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 2:
Short Papers). 2016, pp. 231–235. 34

[54] Sandeep Subramanian et al. “Learning General Purpose Distributed
Sentence Representations via Large Scale Multi-task Learning.” In:
International Conference on Learning Representations. 2018. 34

[55] Wen Sun et al. “Learning to filter with predictive state inference
machines.” In: Proceedings of The 33rd International Conference on
Machine Learning. 2016, pp. 1197–1205. url:
http://proceedings.mlr.press/v48/sun16.html. 32

[56] Richard S Sutton and Andrew G Barto. Reinforcement learning: an
introduction. Second. MIT Press, 2018. 13, 37

[57] Richard S Sutton and Brian Tanner. “Temporal-Difference networks.”
In: Advances in Neural Information Processing Systems. 2005, pp. 1377–
1384. 33

42

[58] Richard S Sutton et al. “Horde: A scalable real-time architecture for
learning knowledge from unsupervised sensorimotor interaction.” In: The
10th International Conference on Autonomous Agents and Multiagent
Systems-Volume 2. 2011, pp. 761–768. 33

[59] Brian Tanner and Richard S Sutton. “Temporal-Difference Networks
with History.” In: International Joint Conference on Artificial
Intelligence. 2005, pp. 865–870. 33

[60] Athanasios Voulodimos et al. “Deep learning for computer vision: A brief
review.” In: Computational Intelligence and Neuroscience 2018 (2018). 7

[61] Chris Watkins. “Learning from delayed rewards.” PhD thesis. 1989. url:
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf. 13, 19

[62] Adam White. “Developing a predictive approach to knowledge.” PhD
thesis. 2015. doi: 10.7939/R3FF3M75H. 1

[63] Zhilin Yang et al. “Breaking the softmax bottleneck: a high-rank RNN
language model.” In: International Conference on Learning
Representations. 2018. 10, 22, 24

[64] Jianfei Yu and Jing Jiang. “Learning sentence embeddings with auxiliary
tasks for cross-domain sentiment classification.” In: Proceedings of the
2016 Conference on Empirical Methods in Natural Language Processing.
2016, pp. 236–246. doi: 10.18653/v1/D16-1023. url: https://www.
aclweb.org/anthology/D16-1023. 35

43

Appendix A

Runtime and Model Size

All models were trained on an NVIDIA Tesla V100-32GB GPU. We report the
training speed and the number of parameters of each model in Table A.1. All
models were trained on an NVIDIA Tesla V100-32GB GPU.

Dataset Model Speed # Param
PTB AWD 38 s/epoch 35.44 M
PTB AWD-PRL-P/Q 55 s/epoch 39.20 M
WT2 AWD 60 s/epoch 44.76 M
WT2 AWD-PRL-P/Q 76 s/epoch 48.59 M
PTB MoS 81 s/epoch 30.41 M
PTB MoS-PRL-Q 110 s/epoch 33.95 M
WT2 MoS 412 s/epoch 47.17 M
WT2 MoS-PRL-Q 476 s/epoch 50.84 M

Table A.1: The training speed and the number of parameters of each model.

44

Appendix B

Experiment with Named Entity
Recognition

To test our method further, we introduced named entity recognition (NER) as
another auxiliary task. We tested model AWD-PRL-Q on Penn Treebank using
NER. The NER labels were generated using spaCy. Results were presented in
Table B.1. It is shown that NER also helps improve the performance of LM,
although the improvement is not as much as POS tagging.

Auxiliary Task Model No Neural Cache Neural Cache
Test PPL ∆ Test PPL ∆

/ AWD 58.48 ± 0.06 / 54.36 ± 0.07 /
POS AWD-PRL-Q 55.90 ± 0.06 2.58 51.90 ± 0.06 2.46
NER AWD-PRL-Q 57.06 ± 0.05 1.42 52.97 ± 0.05 1.39

Table B.1: The comparison of test perplexities on PTB for LM based on AWD,
with and without an auxiliary task. The ∆ columns show the improvements of
AWD-PRL-Q in terms of perplexity, compared with AWD. We report results
with and without neural cache. All results were averaged over 5 runs with the
standard errors reported. For both POS tagging and NER, PRL improves the
performance of AWD, with and without neural cache. In terms of improvement
for LM, POS tagging is a better auxiliary task compared with NER.

45

	Introduction
	Background
	Language Modeling
	Word Embeddings
	Recurrent Neural Networks
	Neural Language Models: RNNs Applied to Language

	Reinforcement Learning
	Value Functions
	General Value Functions
	Q-learning
	General Value Function Networks

	Conclusion

	Predictive Representation Learning
	Sequence Labeling as an RL Problem
	Label Trace
	Predictive Representation Learning
	Conclusion

	Experiments
	PRL’s Effect on LM
	Analysis of Convergence Rate and Influence of Dataset Size
	Performance of the GVFN-LSTM
	Effect of POS Tagging Accuracy on PRL
	Ablation Analysis of Label Trace
	Conclusion

	Related Work
	Predictive Representations
	Multi-task Learning
	Learning from Hints

	Conclusion and Future Work
	References
	Appendix Runtime and Model Size
	Appendix Experiment with Named Entity Recognition

