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Abstract 

 

Background 

Primary ovarian insufficiency (POI) is one concerning adverse effect of cancer treatments for 

female childhood cancer survivors. Currently, treatment-related risk factors have been 

established and used for risk prediction. However, the incremental value of genetic information 

in the form of a polygenic risk score (PRS) in risk prediction for POI is unknown. We 

investigated the prediction potential of menopause-related PRSs by integrating them into the 

existing clinical prediction model. 

 

Methods 

A total of 1985 participants in the Childhood Cancer Survivor Study (CCSS) original cohort 

were used in this study. The published genome-wide association (GWA) studies for age at 

natural menopause conducted in the general population was used to construct a general 

population-based PRS (gPRS), while top genetic risk associations (P<10-5) from a published 

GWAS of POI among female cancer survivors participating in the St. Jude Lifetime Cohort 

Study (SJLIFE) was used to evaluate a cancer survivor-based PRS (cPRS). The clumping and 

thresholding (C+T) method was applied to construct additional cPRS (named ctPRS) for the 

CCSS samples under more liberal linkage disequilibrium and p-value thresholds. Time-specific 

logistic regression models were developed for risk prediction. A clinical risk score (CRS), 

modified from a previous study, was included in the models as an offset term to account for the 
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clinical risk factors. The added value of the PRSs (gPRSs and cPRSs) were examined by 

including the PRS as a main effect in the time-specific logistic regression. The interaction 

between PRS and ovarian radiation therapy (RT: yes/no) [PRS*RT] and CRS [PRS*CRS] were 

also evaluated. The area under the ROC curve (AUC), average precision (AP), scaled Brier 

Score (sBrS), Spiegelhalter-z statistic, and the calibration curve were computed using a 5-fold 

cross-validation framework to assess the model performance. Finally, these metrics were 

compared with those of the baseline clinical prediction model – CRS model. 

 

Results 

Sixteen PRSs were constructed in total, including three gPRSs (PRS48, PRS69, and PRS262) 

computed from two GWA studies for age at natural menopause in the general population, 

thirteen cPRSs (PRS6, and additional twelve ctPRSs developed from C+T method) constructed 

from a childhood cancer survivor-based GWA study for POI. The AUC, AP, and sBrS value of 

the baseline -- CRS model were 0.797 (95% CI: 0.778, 0.816), 0.539 (95% CI: 0.502, 0.574), and 

0.236 (95% CI: 0.203, 0.267), respectively. The main effect models with any PRSs performed 

similarly: the AUC values were between 0.775 to 0.780, the AP values ranged from 0.530 to 

0.532, indicating adequate performance but no improvement in the discrimination compared to 

the baseline model; the Spiegelhalter-z statistics decreased from 11.427 to a range between 0.099 

and 0.154, implying improved calibration of PRS main effect models; the overall performance, 

i.e., sBrS, slightly improved compared to the CRS model, ranging from 0.236 to 0.27. The AUC, 

AP and sBrS estimates of the PRS*CRS models were similar to those of the CRS model, ranged 

from 0.792 to 0. 799, 0.528 to 0.537, and 0.227 to 0.257, respectively. The Spiegelhalter-z 
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statistics, ranging from 3.774 to 6.686, decreased compared to that of the CRS model. The 

PRS*RT models performed similarly to the PRS main effect models: the AUCs were in a range 

of 0.775 -0.780; the AP ranged from 0.528 to 0.537; the Spiegelhalter-z statistics ranged from 

1.401 to 1.485. The calibration curve showed that the CRS model underestimated the risk of 

POI. And the PRS main effect and the PRS*RT models performed similarly: the models 

overestimated the risk for participants in high-risk groups (actual risk >0.5) and underestimated 

the risk for low-risk groups (actual risk <0.5). The PRS*CRS models calibrated well initially 

while overestimating the risk with the observed risk increase. None of the PRSs in the main 

effect models was significant, while both PRS*CRS and PRS*RT interactions were statistically 

significant in the interaction models. 

 

Conclusions 

Incorporating the genetic information in the predictive model did not improve the discrimination 

but sometimes improved the model calibration. In summary, the gPRS main effect model and 

ctPRS*RT interaction models had similar performance and were the best models among all: the 

overall performance improved compared to the CRS model, where the improvement came from 

better model calibration. The generalizability of the models should be assessed in external 

validation using external data in the future. 
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1 Introduction 

 

Childhood cancer survivors are a rapidly growing group in developed countries due to the 

advancement in cancer treatments(1). In the late 1980s, 71% of children diagnosed with cancer 

will survive at least five years after their initial cancer diagnosis. With the improvement in 

cancer treatment, the five-year survival rate is over 80% in North America(2). This is a 

significant improvement, and consequently, the size of the childhood cancer survivor population 

has grown dramatically, to approximately 300,000 individuals in Canada and 483,000 survivors 

in the US(2,3). However, the remarkable increases in survival have been accompanied with 

adverse effects later in life known as late effects due to the toxicity of cancer treatments(4). 

Approximately two-thirds of childhood cancer survivors experience late effects, which may 

include cardiopulmonary, endocrine, renal or hepatic dysfunction, reproductive difficulties, 

neurocognitive impairment, psychosocial difficulties and the development of subsequent 

cancers(5).  

 

One of the late effects for female cancer survivors is primary ovarian insufficiency (POI), 

characterized by permanent natural cessation of menstruation before 40 years old(6). POI can 

occur early, during, or immediately following the completion of cancer treatment(7) or, more 

commonly, in the years that follow the completion of cancer treatments prior to age 40(8). In the 

general population, the prevalence of POI is approximately 1%(9), whereas a study reported that 

10.9% (100 out of 921) of childhood cancer survivors developed POI(8). Additionally, another 
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study reported a 13-fold (95% CI = 3.26 to 53.51; P<.001) increased risk in developing POI in 

childhood cancer survivors compared to their non-survivor siblings(10). 

 

Risk prediction models for POI have been proposed to identify individuals at high risk of 

developing POI. Treatment-related risk factors, such as radiation therapy and chemotherapy, 

have been studied and incorporated into a predictive model for POI in female survivors of 

childhood cancer(11,12). In recent decades, GWA studies have identified genetic variants 

associated with menopause-related phenotypes(13,14). However, little is known regarding the 

potential of menopause-related polygenic risk score (PRS) to identify POI at different risk levels, 

and the effect of PRS-treatment interactions on POI. Therefore, this study aims to develop 

prediction models using genetic information from GWA studies in combination with clinical risk 

factors, and investigate potential PRS-treatment interactions. 

 

The purpose of the predictive models is to identify individuals who are at high risk of POI. For 

individuals at high risk of developing POI, patients can be counseled before or shortly after 

cancer treatment regarding the risk and the need for fertility preservation such as oocyte and 

ovarian tissue cryopreservation(15). If the risk of developing POI is low, clinicians can provide 

counseling to patients and their families to avoid suffering and cost to undergo interventions for 

fertility preservation. By providing quantitative evidence for potential POI risk among cancer 

survivors, the ultimate goal is to improve the quality of life among female childhood cancer 

survivors. 
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This thesis is structured as follows. The remainder of Chapter 1 reviews the literature on POI, 

previous related risk modeling work, and genetic susceptibility for POI. Chapter 1 also describes 

the statistical methods used in model development and evaluation, followed by an overview of 

the data for model development. Chapter 2 presents the construction of PRS using genetic data. 

Chapter 3 highlights the development and assessment of risk prediction models incorporating 

PRS. Finally, Chapter 4 summarizes the findings, discusses study limitations, and provides 

recommendations for future research.
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1.1 Literature Review 

 

The Prevalence of Primary Ovarian Insufficiency 

It is estimated that approximately 90% of women experience menopause between the age of 45 and 55 

years(16), with the median age at natural menopause occurring between 50 and 52 years of age(17). Primary 

ovarian insufficiency (POI) occurs if a woman experiences menopause naturally before age 40, and the 

prevalence of POI is about 1%  in the general population(18). However, among childhood cancer survivors, the 

continually growing five-year survival rate (exceeds 80% already) adds to an increasing prevalence of POI as a 

result of cancer therapies; currently, about 10% of cancer survivors experience POI(19). 

 

Impact of Primary Ovarian Insufficiency 

Individuals with POI are more likely to develop chronic diseases. Shah et al. have shown that patients have an 

increased probability of developing cardiovascular disease in the post-menopause years(20). Lower estrogen 

levels following menopause also increase the risk of developing hypertension and ventricular remodeling(21). 

At the same time, menopause and chronic diseases also place a mental strain on both patients and their families. 

It has been shown that women with ovarian dysfunction were more likely to develop anxiety and depression 

(22–24). 

 

A primary concern of POI is infertility, as fertility is irreversible after POI onset. Some fertility preservation 

options, such as oocyte and ovarian tissue cryopreservation, are available to preserve reproductive 

function(9,25,26). However, a study has suggested that cancer patients feel challenged to make decisions about 

fertility preservation(27). One reason is that these decisions are time-pressured. Many participants reported that 

they did not have enough time for decision-making before cancer treatment(28). Additionally, uncertainty 
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makes it challenging to make decisions(29). For example, women have to trade-off the risk of developing POI 

after cancer treatments with no guarantee of favorable outcomes from the fertility preservation procedure. Some 

decision aid methods have been proposed(30), which mainly focused on improving patients’ knowledge about 

fertility preservation.  

 

Clinical Risk Factors and Clinical Risk Prediction Model  

Extensive studies have been undertaken to identify treatment-related risk factors associated with compromised 

reproductive function following cancer treatment(31). Radiation exposure to the ovary, abdominal or pelvic can 

induce genomic damage in oocytes and the surrounding granulosa cells, leading to either a decreased or 

exhausted ovarian follicle pool depending on the extent of the damage(32). Also, chemotherapy agents, 

especially alkylating agents (such as busulfan, cyclophosphamide, lomustine, procarbazine, etc.) can prevent 

cell division and growth by interacting with DNA and reduce the number of follicles for maturation and 

reproduction, increasing the risk for ovarian dysfunction(33). 

 

Well-established clinical risk factors and cancer treatments mentioned before have been evaluated as risk 

factors to develop risk prediction models for compromised reproductive function in female cancer survivors. 

For example, Clark et al. has used clinical predictors such as cumulative alkylating drug dose(11), radiation 

exposure to the ovary, abdomen and pelvis, age at cancer diagnosis, and hematopoietic stem-cell transplant 

receipt to build models to predict an individual’s risk for developing menopause within five years following a 

cancer diagnosis(11). Lu has investigated the association between clinical risk factors and their potential 

interactions on POI and incorporated them into a predictive model for developing POI risk at different ages in 

female cancer survivors(12). 
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Genetic Risk for Primary Ovarian Insufficiency 

Aside from clinical risk factors, genetic studies have shown that POI is a complex, heterogeneous disorder that 

is influenced by multiple genetic components(34). Genetic studies have shown that the genetic variations on the 

X chromosome contribute mostly to the etiology of POI. Meanwhile, increasing attention has focused on 

autosome single-gene variations known to regulate follicle development and maturation. For example, a 2009 

study discovered that the Newborn ovary homeobox gene (NOBOX) plays a critical role in early 

folliculogenesis(35). Deficiency in NOBOX disrupts early folliculogenesis and oocyte-specific gene expression, 

accelerating post-natal oocyte loss and abolishing the transition from primordial to growing follicles. Moreover, 

the mutations in follicle-stimulating hormone receptor genes, such as FSHR and LHCGR, were found to affect 

the development and maturation of follicles and oocytes(36). 

 

Many techniques have been applied to discover the genetic variants associated with different phenotypes. A 

popular technique, Genome-wide Association Study (GWAS), has been widely conducted to study the genetics 

of phenotypes in recent decades(13), which aims to find common variants associated with phenotypes(37). The 

GWAS technique consists of screening and comparing genetic variants in patients with the disease of interest 

and healthy controls. In GWAS, the association between a genetic variant to the phenotype is observed when 

there is a statistically significant difference in the allelic frequency of the genetic variant between diseased 

patients and healthy controls after controlling for multiple testing. 

 

Potential of Polygenic Risk Score 

Although GWA studies have led to the identification of many variants associated with POI, the effect size of 

each genetic variant identified from GWAS is typically small and accounts for only a small fraction of 

heritability, meaning that single variants have limited predictive power(38). Thus, I evaluated the genetic risk 
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for POI in the form of a PRS, or a score that combines the estimated effects of many disease-/phenotype-

associated genetic variants reported in published GWAS data. PRS has been proposed as a genetic risk 

prediction tool for a wide range of diseases. According to the PGS catalog, an open database of published 

polygenic risk scores, 829 PRSs were built for 214 traits as of July 2021(39). A clinically useful PRS would 

allow clinicians to identify individuals at elevated risk of disease, thus informing disease screening(40), 

therapeutic interventions(41), and life planning(42) to prevent or delay disease onset.  

 

1.2 Methodology Review 

 

1.2.1 Polygenic Risk Score 

A polygenic risk score (PRS, also termed a polygenic score or genetic risk score) estimates an individual's 

genetic liability to a trait or disease(38). An individual’s PRS is a sum of genotypes at selected genetic loci, 

weighted by corresponding genotype effect size estimates derived from GWAS summary statistics. The base 

data (discovery GWA studies), consisting of summary statistics of the association between genetic variants and 

phenotypes, is required to construct a PRS. Then the PRS can be calculated for the individuals in the target 

data, which usually includes new samples independent of the base samples with genotype and phenotype data. 

Finally, the potential of the PRS in risk prediction can be examined using the target data. The target data was 

introduced in the following section (Section 1.3).  

 

The general steps for computing a PRS include: a) selecting base data; b) quality control of the base and target 

data; c) and finally, the construction of PRS. The workflow for constructing a PRS is presented in Figure 1-1. 

The rest of this section included more details. 
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Figure 1-1 The workflow for PRS construction 

 

a) Selection of Base Data (GWA studies) 

When it comes to the selection of GWA studies, I considered several factors as listed below. 

Sample Size of GWAS: Given that the PRS is built based on the summary statistics from GWA studies, the 

GWA studies should have a reasonable sample size so that it is powerful enough to detect the association 

between genetic variants and phenotype and ultimately increase the predictive ability of the PRS(38,43). GWA 

studies with a relatively larger sample size are recommended.  

Genetic Ancestry of the Sample: Allele frequencies and correlations between genetic variants (i.e., linkage 

disequilibrium patterns) vary among different ancestry groups. The estimated effect size of a given genetic 

variant might be different from population to population. For this reason, the ancestry of the base and target 

samples should be the same to ensure an accurate estimation. 

Phenotype Being Studied: The phenotype studied in the base data should be the same as the phenotype of 

interest in the PRS construction. However, some phenotypes might share similar genetic architecture(44). GWA 
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studies for other traits that are relevant to the phenotype of interest could be a substitute when GWA studies for 

phenotypes of interest are not available 

 

b) Quality Control of Base and Target Data 

Following the base data selection is the quality control, mainly including standardizing the genome build and 

removing overlapping samples between the base and target data. 

Standardize the Genome Build: Currently, there are several different genome builds(45). If the positions of the 

genetic variants in the base and target data differ by genome build, genomic positions between the base and 

target data should be standardized(46). Online tools such as Ensembl(47) or LiftOver (48) can be used to 

standardize the genome build across base and target data. 

Sample Overlapping: Study samples that overlap between the base and target data must be removed as sample 

overlapping can result in inflation of the association between the PRS and the phenotype tested in the target 

data(49). 

 

c) Calculating Polygenic Risk Score 

The next step is to calculate the PRS for individuals in the target data. An individual’s PRS is usually a 

weighted sum of the number of risk alleles and thus can be given by: 

 𝑃𝑅𝑆 = ∑ 𝛽𝑖𝑥𝑖𝑖  Equation 1-1 

 

Where 𝑖 is an indicator for the 𝑖th genetic variant, 𝛽𝑖 is the log odds ratio or the coefficient of linear regression 

in the base data, and 𝑥𝑖 is the number of risk alleles at the 𝑖th genetic variant. (note: risk allele refers to the allele 

of a genetic variant that associated with the disease risk) 
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I considered the following two strategies for the PRS construction: 

1) PRS with independent genetic variants: A common way to construct a PRS is to utilize the independent 

genetic variants that are genome-wide significant (P-value <5x10-8). The advantage of this method is that 

the target data is not necessary. 

 

2) Clumping and Thresholding Method: The clumping and thresholding (C+T) method(50–52) is another 

popular way to derive PRS. Specifically, the clumping(C) step forms a clump around the most significant 

genetic variant (index genetic variant). This clump included the nearby variants within some genetic 

distance (for example, within 250 kilobases) of the index genetic variant. Then the algorithm computes the 

pairwise correlation or linkage disequilibrium (or LD R2) between the index genetic variant and the nearby 

variants using the reference samples' genotyping data. All nearby variants that are correlated with this 

index variant beyond a pre-specified LD R2 threshold (e.g., 0.1, 0.4, etc.) are removed. The clumping step 

goes on with the next most significant genetic variant (new index variant) that has not been removed yet. In 

summary, clumping iteratively circles through genetic variants so that only variants with LD R2 less than a 

pre-specified value are kept. The thresholding (T) step removes the remaining genetic variants with GWAS 

association P-value under a certain threshold (e.g., P <5x10-5). The C+T method provides more flexibility 

in comparison to the abovementioned strategy 1). Researchers can specify different LD R2 and P-value 

thresholds. Target data is used to decide which combination of LD R2 and P-value threshold allows the 

PRS to perform best in the risk prediction. 
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1.2.2 Risk Prediction 

Time-specific Logistic Regression  

Logistic regression is one of the most commonly used approaches for modeling the relationship between 

variables and a binary outcome. The general form of logistic regression can be expressed as: 

ln(𝑝/(1 − 𝑝)) = 𝛽0 + 𝛽1 𝑋1 + 𝛽2 𝑋2. . . +𝛽𝑘𝑋𝑘 Equation 1-2  

 

 where p denotes the probability of the outcome of interest occurring, p/(1-p) represents the odds of the 

outcome, and 𝑙𝑛 denotes the natural logarithm. 𝑋1, 𝑋2, ... 𝑋𝑘 are the predictors (could be potential interactions) 

and 𝛽1, 𝛽2, …, 𝛽𝑘 are their coefficients, and 𝛽0 is the intercept. Logistic regression models the log odds of a 

binary outcome using a linear combination of predictors. Several assumptions are required to use logistic 

regression, including a linear relationship between the continuous covariates and the log odds of the outcome, 

no multicollinearity among the covariates, and independence among individuals. 

 

Logistic regression explores the risk factors for the outcome and determines the relative importance of risk 

factors with respect to the outcome. The odds ratio, given by exp(β), is used to measure the association. For a 

continuous variable, the odds ratio can be interpreted as holding all other covariates constant, the odds of the 

outcome of interest occurring will change by exp(β) for one unit increase in the covariate value. For a 

categorical variable, the odds ratio can be interpreted as: the odds of the outcome of interest occurring in a 

specific category is exp(β) times the odds of that in the reference category. 

 

Logistic regression is very popular for its interpretability. However, logistic regression cannot handle time-to-

event data, as logistic regression does not take the time of the event's occurrence into consideration in the 

modeling. In this study, POI is determined by two elements: the ovarian status and the age at menopause (i.e., 
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time-to-event data). Thus, censoring is a concern when modeling POI risk. For example, a survivor's POI status 

was censored if she was 27 at her last follow-up and had a normal menstrual function. She was still at risk of 

POI. However, the actual outcome is not observable due to censoring.  

 

The inverse-probability-of-censoring weighting (IPCW) method was employed in previous studies to account 

for the censored observations(53). Briefly, the IPCW weights were obtained by modeling the censoring process 

using the same set of covariates, such as age at diagnosis and radiation dosage to the ovary, for modeling the 

POI status(12). Censored individuals will thus contribute to the risk model through the IPCW weights. 

Individuals with known POI status will be given weights in the estimation of the logistic regression model. 

Therefore, we call this model "time-specific logistic regression". 

 

The previous risk prediction study used the multiple imputation technique to deal with the missing data(54). In 

the multiple imputation procedure, each missing value will obtain multiple imputed values given the observed 

data. As illustrated in the hypothetical example in Figure 1-2, patients 2 and 3 have one missing value in 

variable 1 (Var 1) and variable 2 (Var 2), respectively. The multiple imputation technique assigned five values 

for the missing values. The Multiple imputation has been shown to yield unbiased parameter estimates when the 

assumption of missing at random is satisfied. It also reduces information waste, which is common in complete 

case analysis. The previous risk prediction study has imputed each missing value with five values(12). The 

imputed values were used in this study. Therefore, the target data consists of five copies of the original CCSS 

data. 
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Figure 1-2 A hypothetical example of multiple imputation 

 

Apart from censoring and missing, the competing risk event of surgical premature menopause (SPM, had 

bilateral oophorectomy) needs to be considered. Female childhood cancer survivors who had bilateral 

oophorectomy before the age of 40 would not develop menopause naturally (i.e., are no longer at risk of natural 

menopause). The competing risk is considered in the IPCW method, where there is an indicator variable for the 

event (menopause, menstruation, or surgical premature menopause) 

 

1.2.3 Evaluation of Model Performance 

Five-fold Cross-Validation  

The internal validation was performed under a five-fold cross-validation framework. Figure 1-3 shows the 

process of cross-validation. In step 1, the eligible observations in the dataset were randomly divided into five 

roughly equal-sized parts. In step 2, One part of the data (noted as D1) was left out as the validation set. The 

remaining four parts were combined as the training set (D2-D5, blue part). The risk prediction model was 

developed using the training set and applied to obtain the predicted risk for patients in the validation set (D1). 

This process was repeated as shown in step 3; thus, each observation in the work data gets a predicted risk. As 

we have five copies of work data (multiple imputation was applied to deal with missing data), the procedure in 
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Figure 1-3 was repeated over the five datasets. Therefore, each observation will have five predicted risks. 

Finally, the five predicted risks were averaged to represent an individual’s risk, and the averaged risk was 

compared to the observed POI status to assess the model performance mentioned below. 

 

Figure 1-3 The workflow for the cross-validation framework 

 

We need to evaluate the quality of the predictive model after model development. For the prediction of a binary 

outcome, we typically examine three different perspectives:  

1. the closeness of the predictions to the observed outcome (overall performance), 

2. the discrimination power of the prediction model, and 

3. the calibration of the prediction model. 
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The following performance measures are used and will be calculated under a five-fold cross-validation 

framework. 

 

The Overall Performance: Scaled Brier Score 

The overall performance is quantified by the distance between the predicted outcome (for a binary outcome, it 

refers to the predicted probability) and the observed outcome. The squared difference, defined as the Brier 

score, is usually calculated to quantify the distance(55). The formula of Brier score is calculated as the mean 

squared error of the prediction, written as:  

𝐵𝑆 =
1

𝑁
∑(𝑝𝑖 − 𝑦𝑖)

2

𝑁

𝑖=1

           Equation 1-3 

 

Where 𝑝𝑖 is the probability of the outcome of the ith individual, N is the number of individuals being predicted, 

𝑦𝑖 is the actual observed outcome of the ith individual. Brier score corresponds to the goodness of fit of the 

model, and it takes values in the interval [0,1]. A smaller distance between the predicted and observed outcome 

indicates a better prediction.  

 

However, the range of Brier scores changes by incidence rate. For instance, with incidence = 0.5, the Brier 

score will range from 0 for a perfect prediction to a maximum of 0.25 for a non-informative model where the 

overall proportion of the event of interest is usually given as the predicted probability of the event occurring for 

each individual in the dataset. While with incidence decreased from 0.5 to 0.1, the maximum Brier score will 

decrease to 0.09. Thus, the interpretation and comparison of multiple Brier scores is challenging when Brier 

scores are calculated from different incidence rates.  
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One alternative way to evaluate the overall performance is to use scaled Brier Score (sBrS).(56). It is calculated 

as: 

𝑠𝐵𝑟𝑆 =  1 −
𝐵𝑆

𝐵𝑆𝑟𝑒𝑓
= (

𝐵𝑆𝑟𝑒𝑓 − 𝐵𝑆

𝐵𝑆𝑟𝑒𝑓
)           Equation 1-4 

 

where 𝐵𝑆𝑟𝑒𝑓 is the Brier score of the baseline prediction model(s) which need to be improved. The baseline 

prediction models could be any pre-existing models. More commonly, a null model is employed as a baseline 

model, in which each individual in the data set is given a constant predicted probability, which is the overall 

proportion of the outcome of interest in the study sample. The Brier score for a null model is calculated as: 

𝐵𝑆𝑟𝑒𝑓 =
1

𝑁
∑(�̅� − 𝑝𝑖)

2

𝑁

𝑖=1

         Equation 1-5   

 

Where �̅� is the event rate of the outcome of interest of the study samples, and 𝑝𝑖 is the probability of the 

outcome of the i th individual, and N is the number of individuals in the work data. 

 

As we can see from equation 1-4, 𝑠𝐵𝑟𝑆 is very similar to the coefficient of determination (𝑅2) in the linear 

regression(57). 𝑠𝐵𝑟𝑆 measures the fractional amount of improvement in the Brier score of a model compared to 

the baseline model and is more interpretable than the Brier score. A 𝑠𝐵𝑟𝑆 of zero indicates that the prediction is 

only as good as the baseline model, and a 𝑠𝐵𝑟𝑆 of one suggests that the prediction is perfect. A 𝑠𝐵𝑟𝑆 less than 

zero indicates that the prediction is even worse than that of the null model(58).  
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The Discrimination 

Discrimination assesses a predictive model's ability to discriminate those who have the outcome from those who 

do not, i.e., the model's ability to accurately classify the outcome as event or non-event. The area under the 

receiver operating characteristic (ROC) curve is the most commonly used metric to evaluate the discrimination 

of prediction algorithms. The ROC curve plots true-positive rate (TPR, or sensitivity) versus false-positive rate 

(FPR, or 1-specificity) of the predictive models over all possible cutoffs for the probability of an outcome, 

where true positive rate and false positive rate were calculated as: 

 

The area under the ROC curve (AUC) summarizes the model performance over all possible cutoffs. AUC 

represents the probability that a randomly chosen observation with a positive outcome (case) has a higher 

predicted risk score than a randomly chosen observation with a negative outcome (noncase). According to the 

definition of AUC, it can be calculated by randomly selecting a case and a non-case as a pair, then calculating 

the proportion of pairs where the case has a higher predicted risk score than that of the non-case over all 

possible pairs.  

 

AUC ranges from 0.5 to 1.0. An AUC of 0.5 (A ROC curve with the line at 45 degrees ) represents the true 

positive rate equals the false positive rate, indicating that the predictive model is unable to discriminate between 

positive and negative outcomes. An AUC value greater than 0.5 implies that the prediction model has some 

ability to distinguish between positive and negative outcomes. The higher the AUC, the better the 

discrimination performance of the predictive algorithm. A perfect predictive model has an AUC of 1.0.  

 



 

18 

 

The Averaged Precision (AP) 

The precision-recall (PR) curve is developed to evaluate the prediction model. The PR curve plots the positive 

predicted value (also termed as precision) against the sensitivity (also termed as recall). The area under the PR 

curve, also known as averaged precision, is a measurement summarizing the precision over all possible 

thresholds(59). the AP is shown more appropriate for the outcome of interest of lower prevalence in the target 

population than AUC, independent of the event rate. The AP has a value between the event rate of the outcome 

of interest and 1.0, with AP = event rate representing a noninformative model, and a bigger AP indicating better 

predictive power of the prediction model. 

 

The Calibration 

Though the discrimination (usually quantified by AUC) is popularly used, a high AUC value does not indicate 

accurate risk prediction as AUC is a ranking metric(60). For example, for an algorithm with adequate 

discrimination, the risk estimates for all samples may be systematically overly high, regardless of whether they 

developed the outcome or not. Therefore, the agreement between the observed outcomes and predicted values 

needs to be assessed to evaluate the reliability of the predictions. The agreement, often called calibration, is 

another key property of predictive models though it is far less reported(61). Some guidelines for prediction 

modeling studies, such as the TRIPOD (transparent reporting of a multivariable prediction model for individual 

prognosis or diagnosis) guideline recommends reporting on the calibration performance(62). The calibration is 

more clinically useful than discrimination when the algorithm is used for informing decision-making. A poorly 

calibrated risk estimate may lead to a false decision-making. Take the POI risk prediction model as an example, 

it is unacceptable to under- or over-estimate the risk of developing POI. For example, if a patient's POI risk is 

underestimated, she may opt out of the fertility preservation treatment, thus denying her the opportunity to have 

a biological child. For a patient with an over-estimated POI risk, the fertility preservation would expose her to 

unnecessary risk as these procedures are usually invasive, and lead to possible harmful complications. 
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Therefore, the under- and over-estimate may lead to under- and over-treatment. Reporting the calibration 

performance could possibly prevent incorrect and potentially harmful clinical decisions. A well-calibrated 

model is that for individuals with a predicted risk of p%, the observed frequency of events among those 

individuals should be approximately p%.(58). For example, if the mean predicted probability for a group of 

individuals is 20%, the model is well-calibrated if the observed probability is close to 20%.  

 

Spiegelhalter-z Statistic 

The Brier score is an overall measure of performance and can be decomposed to calibration and discrimination. 

Spiegelhalter-z statistic is used to measure the calibration aspect of the Brier score(63). By expanding the 

square in equation 1-5, the Brier score can be decomposed into: 

𝐵𝑆 =
1

𝑁
∑(𝑦𝑖 − 𝑝𝑖)

2

𝑁

𝑖=1

 

                                            = 
1

 𝑁
∑ (𝑦𝑖 − 𝑝𝑖)(1 − 2𝑝𝑖

𝑁
𝑖=1 ) +

1

𝑁
∑ 𝑝𝑖(1 − 𝑝𝑖)

𝑁
𝑖=1  

 

    Equation 1-6 

The first term measures the lack of calibration, and the second term measures the lack of discrimination of the 

predictions. The Spiegelhalter-z statistic is defined as:   

𝑧 =
∑ (𝑦𝑖 − 𝑝𝑖)(1 − 2𝑝𝑖)

𝑛
𝑖=1

∑ √(1 − 2𝑝𝑖)2𝑝𝑖(1 − 𝑝𝑖)
𝑛
𝑖=1

         Equation 1-7 

 

It asymptotically follows a standard normal distribution. The Spiegelhalter-z statistic has a value of zero under 

the null hypothesis of perfectly calibrated, statistically significant scores. (i.e., 𝒛 < −1.96 or 𝒛 > 1.96) generally 

indicate poor calibration.  
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Calibration Plot 

The plot helps visualize the calibration. The calibration plot usually has the prediction on the x-axis and the 

outcome on the y-axis. The perfect predictions should be at the 45-degree line and help for orientation. For 

binary outcomes, we can first group individuals by similar predicted probabilities, e.g., group by quantiles. 

Then we compare the mean observed proportions with the event of each subgroup to its mean predicted 

probabilities. Moreover, smoothing techniques such as the loess algorithm can be applied to estimate the 

relationship between the observed proportions of the event and the predicted probabilities.  

 

1.3 The CCSS Original Cohort 

 

The Childhood Cancer Survivor Study (CCSS), a multi-institutional retrospective cohort study, was established 

to prospectively assess late mortality, subsequent neoplasms, adverse cardiac and pulmonary outcomes, fertility 

outcomes, and health-related behaviors of cancer survivors(64,65). The CCSS original cohort was first 

established in 1994 and recruited survivors in North America that met the following eligibility criteria: (1) 

diagnosed between January 1st 1970 and December 31st 1986; (2) age less than 21 at diagnosis; (3) lived for at 

least five years after the date of a cancer diagnosis.  

 

1.3.1 Baseline Demographic Data 

A baseline questionnaire was completed by 14,054 eligible subjects in CCSS original cohort. The questionnaire 

consisted of 289 questions regarding demographics, medical care practices, prescription medications, medical 

conditions, and so on. Five follow-up surveys were released to obtain updated information regarding health 

conditions and monitor potential adverse effects of cancer treatment. Demographic information was requested 

from CCSS. Of particular interest to this study are age, sex, race, cancer type, age at cancer diagnosis(66).  
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1.3.2 Treatment Data 

All participants who completed the baseline questionnaire were asked to sign a consent form to allow access to 

all medical records since their cancer diagnosis. Then a detailed summary of cancer treatment information, 

including chemotherapy, radiation therapy, and surgery information for each cohort member, was extracted 

from the medical record. Data was collected regarding the specific chemotherapy agents and their respective 

doses and radiation dose and location. A list of treatment variables is provided in Appendix A. 

 

1.3.3 Genotyping Data 

The buccal cell genomic DNA information of eligible participants who had completed the baseline 

questionnaire was also collected during May 1999 and June 2006(67). A specimen collection kit was mailed to 

participants, which included a cover letter outlining the study, a consent form, an instruction sheet, a 45 mL 

bottle of mouthwash, a specimen collection container, return mail labels, and postage. The participants were 

asked to return the sample to the Molecular Genetic Laboratory in Cincinnati, Ohio. A total of 5739 participants 

have genotype data available, among which 2958 are female participants(68). The genotyping data was 

requested from CCSS, and standard quality control (QC) of CCSS original cohort genotype data was 

performed(69).  

 

Definition of POI Outcomes 

The outcome of interest in this study is POI, defined as either: (1) experiencing menopause naturally before the 

age of 40 years, or (2) never experiencing menarche by age 18(6). Two variables are needed to determine the 

outcomes: Ovarian status and the age at the event onset. The above-established definition and patients’ self-

reported menstrual history information in the baseline and follow-up 1, 4, and 5 questionnaires help classify 



 

22 

 

patients as POI, surgical premature menopause (SPM, had bilateral oophorectomy), or normal. Ambiguous 

cases whose ovarian status could not be determined were further manually reviewed by endocrinologists, based 

on the patients’ responses for menstrual history questions; age at event onset is derived from the CCSS surveys. 

The age at last menstrual period or surgical time informs age at menopause or surgical menopause, respectively. 

For patients with incomplete age information, age at event onset was imputed in consultation with 

endocrinologists. 

 

CCSS Study Sample Eligibility 

Data of the female cancer survivors in the CCSS original cohort study was obtained in order to develop risk 

predictive models for POI in female childhood cancer survivors. The inclusion and exclusion criteria were 

applied according to previous studies(12). The detailed exclusion criteria are included in Appendix B. Results 

from explanatory data analysis are provided in Appendix C.  
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2 Polygenic Risk Score Construction  

 

2.1 Introduction 

 

GWA studies have been used to identify genetic variants associated with diseases. They have revealed that most 

conditions have a polygenic pattern where many genetic variants – individually having only a small effect on 

the disease – contribute to the development of disease(1). A PRS quantifies the cumulative effect of many 

genetic variants for a particular disease(2). The most typical method for calculating a PRS is to add up the 

number of risk alleles (0, 1, or 2) that an individual carries for each genetic locus included in the PRS, weighted 

by the effect sizes of the risk alleles reported by a GWAS for the disease of interest. The weights are usually 

given as beta coefficients (effect sizes) from linear regression or log odds ratios for binary outcomes. The 

significance (P-value) of the genetic variants in the GWA studies is often used to determine whether a genetic 

variant should be included in the PRS (3). 

 

GWA studies have also been done for menopause-related phenotypes. For POI, there have been five GWA 

studies so far. Each of the five studies had a small sample size, with the largest including roughly 1300 people. 

Four of them were performed among people of European or East Asian ancestry in the general population. One 

study was conducted among childhood cancer survivors (4), where 799 female cancer survivors in the St. Jude 

Lifetime Cohort Study (SJLIFE) were used to identify genetic variants associated with clinically diagnosed 

POI. In the analysis of female survivors, models were adjusted for alkylating agents (cyclophosphamide 

equivalent dose) and ovarian radiotherapy (RT) doses. The results showed that 20 out of 830,884 genotyped 

variants had a P value less than 10-5. Among them, 13 genetic variants (upstream of the Neuropeptide Receptor 

2 gene) were associated with POI prevalence. A haplotype formed by 4 of the 13 variants showed association 
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with POI for patients exposed to ovarian RT, indicating an interaction between genetics and radiation treatment. 

Replication was performed in 1624 survivors from the Childhood Cancer Survivor Study (CCSS), and the 

association was also observed between the haplotype and POI for patients exposed to ovarian radiotherapy 

(OR= 3.97, 95%CI= [1.67 to 9.41], P= .002). 

 

Aside from GWA studies for POI, thirteen GWA studies conducted in the general population with larger study 

sample sizes are available for age at natural menopause, the biggest of which is a meta-analysis of GWA studies 

conducted in the general population with up to 69,360 women of European ancestry(5). The study showed that 

1,208 out of a total of ~2.6 million genetic variants reached the genome-wide significance threshold (P < 5 

×10−8) for association with age at natural menopause. Among those significant genetic variants, 54 

independent genetic variants at 44 genetic loci were identified, explaining 6% of the variance in age at natural 

menopause. The variance explained increased to 21% for the top 29,958 independent variants with an 

association P value less than 0.05. A more recent study included 119,160 samples (European ancestry) from the 

UK Biobank and examined about 9.5 million genetic variants. This larger study identified 74 independent 

genetic variants that were associated with POI(6). A summary of these studies is provided in Appendix E. 

 

Ideally, a GWAS for POI would be the best data source for studying POI polygenic risk prediction. However, 

the general population's existing GWA studies for POI are limited by their small sample sizes. Therefore, I 

focused on the GWA studies for a highly related complex trait, age at natural menopause, to formulate POI-

related polygenic risk scores. It has been hypothesized that age at natural menopause and POI are possible 

manifestations of the same underlying genetic susceptibility owing to the inheritance patterns observed(7). 

Studies have also shown that POI and age at natural menopause share common genetic factors involved in DNA 

repair and maintenance(8). 
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Although the success of GWAS has successfully identified genetic variants associated with human diseases, the 

small effect size of a single variant on disease has fundamentally limited the ability to use a single genetic 

variant in disease risk prediction and disease diagnosis(9,10). In 2009, a study used multiple genetic variants to 

evaluate the risk of individuals developing schizophrenia, demonstrating the ability of common variants in 

disease risk assessment(11). Since then, a number of studies have used multiple genetic variants to assess 

disease risk: the most notable is a 2018 study demonstrating the use of multiple-gene predictors in the form of 

PRS to stratify individuals’ risk for five common diseases(12). As of July 2021, over 800 PRSs have been 

published for more than 200 different traits(13). 

 

To our knowledge, PRSs have not been developed and used in risk prediction for POI in childhood cancer 

survivors or the general population. Therefore, we propose to evaluate genetic risk using PRSs based on the 

summary statistics from GWASs conducted in both the general population and childhood cancer survivors. The 

evaluation of the general population PRS for POI in survivors may not only have clinical utility for the survivor 

population but can also provide further insights into the relative contribution of general population PRS to POI 

in childhood cancer survivors. Furthermore, PRSs can be used to investigate gene-by-environment interactions 

and risk stratification(14). 

 

2.2 Methods 

Base Data 

As discussed in Section 1.2.1-a), base data (i.e., GWA studies summary statistics) is needed to compute a PRS. 

GWA studies for age at natural menopause conducted in the general population were pulled from two public 

databases: GWAS catalog(15) and GWASatlas(6). The summary statistics of a GWA study conducted in the 
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female childhood cancer survivors using the SJLIFE cohort were obtained by corresponding with the study's 

original authors (4). Summary statistics, including genetic variant identifiers, genome build, effect allele, 

reference allele (non-effect allele), effect allele frequency, regression coefficient (effect size), standard error (of 

the regression coefficient), sample size, and P-value, were extracted.  

 

Target Data 

The study samples in the Childhood Cancer Survivor Study (CCSS) original cohort (introduced in Section 1.3) 

were used as the target data. The summary statistics in the base data were used to calculate the PRS for all 

individuals in the target data. For the C+T method, aside from base data, target data is also used to compute the 

LD R2 required in the clumping step. 

 

Inclusion and exclusion criteria 

The inclusion and exclusion criteria for base data (GWA studies) were discussed carefully in Section 1.2.1-a). 

and can be summarized as follows: 

o GWA studies conducted in general population or cancer survivor sample(s) of predominantly European 

ancestry; 

o GWA studies with relatively larger sample size; 

o Phenotype definition in GWA studies/meta-analyses is POI or is relevant for the study of menopause-

related phenotypes (for example, age at natural menopause); 

o GWA studies conducted with appropriate standard sample/variant quality control procedures 

o GWA studies with summary statistics data, including: 
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▪ Genetic variant identifiers: the coordinate of the genetic variant including chromosome and 

base pair position, human genome assembly/build 

▪ Effect allele: the allele that was coded for association testing and can either increase or decrease 

risk. 

▪ Reference allele: the non-effect allele 

▪ Effect allele frequency: the frequency of the effect allele of a genetic variant in the population 

▪ Regression coefficient/effect size: the change in the trait value or disease risk with each 

additional copy of the effect allele (i.e., the coefficients of regression) 

▪ Standard error: standard error of the regression coefficient 

▪ Sample size: the sample size of the base data 

▪ P-value: the significance of the genetic variant 

 

The inclusion and exclusion criteria for the target data (CCSS original cohort) have been established in a 

previous study (Appendix B). Furthermore, Participants without genotype data and who were not of European 

genetic ancestry were excluded. Individuals who overlapped with the SJLIFE were also excluded from the study 

as target data should be independent of the base data to avoid potential inflation. (discussed in Section 1.2.1-b)).  

 

Quality Control for Base and Target Data 

Quality control for the base and data was conducted before computing PRS: 1) the Ensembl online coordinate 

converting tool(16) was used to standardize the genetic variant coordinates to the hg19 genome build. GWA 

studies with missing reference allele information were imputed. Given the provided dbSNP identifiers, the 

missing reference allele information was imputed from the cited dbSNP reference (dbSNP build 129), which 
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was obtained from the UCSC Genome Browser(17); 2) the genetic variants that were matched in both the base 

and target data were kept for analysis (detailed matching algorithm is given in Appendix D).  

 

Constructing the PRS 

Two strategies were applied for the PRS construction: 1) only genetic variants that achieved genome-wide 

significance in their respective GWA studies were included; or 2) the C+T method was applied to the cancer 

survivor-based GWA study to build several cPRSs (named ctPRSs) (discussed in Section 1.2.1-c)). For the C+T 

method, the LD R2 between genetic variants was computed using the CCSS samples’ genotyping data. Different 

LD R2 and P-value thresholds were considered to compute several candidate PRSs: LD R2 = {0.1,0.4,0.8}; P-

value = {5x10-2, 5x10-3, 5x10-4, 5x10-5}. For LD calculations, genomic windows of 250 kilobases were used. 

The PRSs were calculated using PLINK (version 1.9)(18)  and R (version 4.0.3) (https://cran.r-

project.org/bin/windows/base/)(19). 

 

2.3 Results 

Selection of Base Data 

In total, eighteen GWA studies were examined. A summary of the eighteen GWA studies is available in 

Appendix E. After applying the inclusion and exclusion criteria, the two most recent GWA studies conducted in 

the general population for age at natural menopause were selected for computing general population-based 

PRSs (gPRSs). The two GWA studies identified 74 and 54 independent genetic variants associated with age at 

natural menopause among 9.5 and 2.6 million genetic variants, respectively. The only GWAS for POI 

performed among childhood cancer survivors in the SJLIFE cohort was used to construct a cancer survivor 

population-based PRS (cPRS) despite the limited sample size.  

 

https://cran.r-project.org/bin/windows/base/
https://cran.r-project.org/bin/windows/base/
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Table 2-1 Summary of the relevant information of the three selected GWA studies. 

Phenotype: Age at natural menopause POI 

Study Watanabe et al., 

2019  

Day et al., 2015  Brooke et al., 2019 

Meta-analysis 

component 

yes yes No 

Nhit* 74 54 None 

Discovery cohort 119160 38,968 European 

women 

799 female cancer survivors with 85.7% of 

European ancestry and 14.3% of African ancestry 

Replication cohort NA 14,435 European 

women 

1624 female cancer survivors with 98.3% of 

European ancestry and 1.7 of African ancestry 

Number of quality-

controlled genetic 

variants 

~ 9.5 million ∼ 2.6 million ~ 830 thousand 

Phenotype 

measurement 

Self-report Self-report Self-report with clinical assessment 

Phenotype 

definition 

Age at last 

menstrual period 

Age at last 

menstrual period 

Primary ovarian insufficiency (Yes/No) 

Note: Nhit is the number of independent genetic variants associated with the phenotype using P<5x10-8 as the 

critical value. 

 

Target data 

 

Of the 4541 female childhood cancer survivors, 4432 female survivors remained in the study sample after 

applying the exclusion criteria established by previous studies. Additionally, 1977 individuals were excluded 

for missing genotype data, 250 individuals not of European descent were excluded, and 220 individuals 

involved in the SJLIFE POI GWAS were excluded. The total study sample consisted of 1985 individuals.  

 

  

https://atlas.ctglab.nl/traitDB/3366
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4661791/
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The Polygenic Risk Score  

As discussed in the methods, two strategies were applied for the PRS construction. In total, sixteen PRSs, 

including three gPRSs and thirteen cPRSs. The results are summarized in Figure 2-1. 

 

Figure 2-1 An overview of the PRS construction 

 

1) PRSs with independent genetic variants 

The independent significant genetic variants reported in the three selected GWA studies were used directly to 

build the PRS, represented by PRS48, PRS69, and PRS6, where the numbers in the names refer to the number 

of genetic variants that were included in that PRS. METAL was applied to meta-analyze results from the two 

GWASs conducted in the general population(20) (the METAL methodology is described in Appendix G). The 
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Genome-wide significant (P<5x10-8) genetic variants with LD R2 less than 0.1 were kept, resulting in 262 

independent genetic variants, which were further used to build a new PRS, named PRS262. The density plots of 

the four PRSs are given in Figure 2-2. 

 

Note: the x-axis is the PRS, and the y-axis is the density 

Figure 2-2 Density plots of gPRSs/cPRS by ovarian status 

 

Overall speaking, the distributions of PRS among POI cases overlapped with that among normal individuals. It 

was seen that for PRS48 and PRS6, the frequency of more extreme PRS is larger in the normal group; however, 
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for PRS69 and PRS262, the frequency of PRS with extremely low value is relatively higher in the POI cases 

than that in the normal group. 

 

2) C+T method-based PRSs 

The C+T method-based PRSs (ctPRSs) were computed using the summary statistics from the cancer survivor-

based GWA study and CCSS samples. Note: the x-axis represents the P-value threshold; the y-axis represents 

the number of genetic variants selected under each setting, and γ represents the pairwise correlation threshold 

(LD R2) between genetic variants. 

Figure 2-3 shows the number of genetic variants that were selected by the C+T method with different parameter 

settings. As expected, a larger correlation coefficient and P-value allow more genetic variants to be chosen. 

Appendix H shows the distribution of ctPRSs in different parameter settings.  

 

Note: the x-axis represents the P-value threshold; the y-axis represents the number of genetic variants selected 

under each setting, and γ represents the pairwise correlation threshold (LD R2) between genetic variants. 

Figure 2-3 The number of genetic variants selected under 12 different hyperparameter settings   
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2.4 Discussion 

Combining common genetic variants into a polygenic risk score has been shown to identify individuals at a high 

level of disease risk successfully. Such stratification could inform disease screening, therapeutic interventions, 

and life planning to prevent or delay disease onset. 

 

Three general population-based PRSs (PRS48, PRS69, PRS262) were computed from two GWA studies 

conducted in the general population for age at natural menopause. One female cancer survivor-based PRS 

(PRS6) was constructed given the GWAS summary statistics obtained from the female childhood cancer 

survivors for POI, plus twelve candidate ctPRSs were computed using the cancer survivor GWAS and CCSS 

samples. The density plots showed that the PRS distributions between the POI cases and controls were similar.  

 

One challenge in building cPRSs is the limited availability and sample sizes of GWA studies among childhood 

cancer survivors. In my research, the cPRSs (PRS6 and 12 ctPRSs) were constructed using the only existing 

POI GWAS in the childhood cancer survivors. Same as the gPRSs, the development of the cPRSd can be 

improved, and validation can be done when more extensive GWA studies in childhood cancer survivors become 

available. 

 

The C+T method is easy to apply and interpret compared to alternative methods. However, there are two 

concerns when applying the C+T method. First, in this study, the target data – CCSS original cohort was used 

as the reference panel to calculate the LD R2. The reference panel should be selected carefully. The LD R2 

estimates could be biased if the study samples of the reference panel and the samples in the initial GWAS study 

came from different populations. Second, the C+T method used the original effect estimates from the GWA 



 

39 

 

studies in the PRS construction. However, better PRSs may be built using more advanced techniques which can 

re-estimate the effect sizes of genetic variants.   
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3 Risk Prediction for Primary Ovarian Insufficiency in Female Childhood Cancer 

Survivors 

 

3.1 Introduction 

 

The risk prediction model for POI in female childhood cancer survivors has been built mainly using clinical 

information obtained from clinical records, including demographic information, age at diagnosis, race, bone 

marrow transplant (Yes/No), total body irritation dose, abdomen radiation dose, minimal ovary radiation dose, 

and exposures to any of 21 chemotherapy agents (listed in Appendix A) (1) Aside from clinical risks, the 

utilization of genetic information in the form of PRS in risk stratification for several diseases has been 

demonstrated in studies in recent years. Using PRS, researchers were able to identify 8.0, 6.1, 3.5, 3.2, and 1.5 

percent of the population as having a threefold elevated risk of coronary artery disease, atrial fibrillation, type 2 

diabetes, inflammatory bowel disease, and breast cancer, respectively(2). 

 

While the prediction models for POI using treatment exposures as predictors have been established(1), little is 

known regarding the added value of PRSs and PRS-treatment interactions on top of pre-existing clinical 

prediction models. Therefore, I evaluated the potential incremental value of the PRSs constructed from the 

GWAS summary statistics from the general population and childhood cancer survivor studies in improving risk 

prediction for POI, after accounting for clinical risks. 

 

3.2 Methods 

Study Population 

The study samples included 1985 female childhood cancer survivors in the CCSS original cohort study (see 

Sections 1.3)(3). 
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Statistical Analysis 

Time-specific logistic regression at age 40 was used to estimate the POI risk in this study. As mentioned in 

Section 1.1, in addition to clinical risk factors such as radiation therapy, genetic variation can contribute to the 

POI risk. I considered both clinical and genetic components in the logistic regression. However, instead of 

estimating the effect for each clinical risk factor, a clinical risk score (CRS) is included in the model to 

represent the clinical risk(1). The CRS is introduced in the following paragraphs. 

 

The CRS is the linear predictor -- a linear combination of the regression coefficients and the predictors -- in the 

previous risk prediction model for POI(1). To get a genuine estimate of the clinical risk, the effect of the CRS 

was adjusted by remodeling the relationship between the CRS and the outcome of interest on new data(4). The 

remodeling can be written as:  

𝑓(𝑦𝑛𝑒𝑤) = 𝑎 + 𝑏 ∗ 𝑙𝑖𝑛𝑒𝑎𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 

The linear predictor is the CRS estimated from the previous clinical risk prediction model. The coefficient of 

the linear predictor (𝑏) represents the amount of adjustment required to obtain a “true” effect of the clinical 

factors on POI. This remodeling process is called recalibration. and 𝑏 is also known as the calibration slope(5). 

Ideally, 𝑏 will have a value of 1, representing the perfect calibration. A calibration slope less than 1 indicates 

the amount we need to reduce on effects of predictors on average to make the model well-calibrated for new 

patients from the underlying population. In contrast, a calibration slope larger than 1 indicates the amount 

needed to increase for better calibration(4). The adjusted clinical risk score (CRS), i.e., 𝑏*linear predictor, is 

included in the logistic regression as an offset term. The PRS then is added to the model to account for the 

variations of POI risk that could not be explained by the clinical risk -- CRS.  
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We also considered ancestry as a confounding variable in the time-specific logistic regression, as ancestry is a 

determinant of the genetic structure and is often considered in genetic studies. The effect estimation of PRS may 

be spurious if the ancestry is not considered(6). The ancestry difference may come from the demographic 

history of a population, natural selection, and random fluctuations resulting from admixture(7). Principal 

components analysis (PCA) is often used to infer the population structure (ancestry difference)(8,9). The top 

principal components (PCs) obtained from PCA can be used as covariates in the modeling to account for the 

population structure(10). I included the first five PCs in the model to account for the ancestry.  

 

The CRS was used as the baseline, written as:  

log(p/(1-p)) = CRS 

The main effect of PRSs and the interaction effect between PRSs and 1) the CRS; 2) radiation therapy (Yes/No) 

were examined. The conceptual models were written as:  

Main effect model:          log(p/(1-p)) ~ PRS+ offset (CRS) +first five PCs 

The interaction models:  log(p/(1-p)) ~ PRS*CRS + offset (CRS) +first five PCs 

                log(p/(1-p)) ~ PRS*ovarian radiation therapy (RT: yes/no) + offset (CRS) + first five 

PCs 

Where p represents the probability of developing POI. p/(1-p) is the odds ratio, and the linear predictor in the 

right hand of the formula is proportional to log(p/(1-p)). PRSs calculated from both the general population and 

childhood cancer survivor GWA studies were examined in separate models.  

 

A five-fold cross-validation framework was used for the internal validation(11). Model performance was 

assessed using the following metrics: the area under the receiver operating characteristic curve (AUC) was used 
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to measure the discrimination(12). The average positive predictive value (AP)(13) was used to measure the 

predictive accuracy. The Spiegelhalter-z statistic(14) was calculated to quantify the calibration. The overall 

performance was assessed using scaled Brier Score (sBrS). The 95% confidence intervals for AUC, AP, and 

sBrS were computed using bootstrapping resampling technique(12). Calibration curves were generated to 

visualize the performance by plotting the mean observed proportions with the event of each subgroup to its 

mean predicted probabilities. Finally, we compared the CRS model with the above-listed models and examined 

the incremental value of adding PRS in the prediction of POI. Analysis was performed using R version 

4.0.3(15).  

 

3.3 Results 

Model Evaluation 

The modeling and internal validation were based on the weighted samples (IPCW weights). A total of 2427 

“participants” were used for the analysis after accounting for censoring weights, with 276 (11.40%) participants 

developing POI during the study period. The performance measurements, sBrS, AP, and AUC, plus 

Spiegelhalter-z statistic of the time-specific logistic regression models were computed. All the metrics were 

computed on the validation sets, and the results were then averaged over the validation sets.  

 

The performance of all models is summarized in Table 3-1. The first row provides the performance of the CRS 

model as a baseline: the sBrS estimate was 0.236 (95% CI: 0.203-0.267); the AUC estimate was 0.797 (95% CI: 

0.778-0.816), indicating adequate discrimination; and the AP value was considerably higher than the 0.114 

event rate, reaching 0.539 (95% CI: 0.502-0.574). However, the Spiegelhalter-z statistic was 11.427 (95% CI: 

9.467-13.387), indicating the calibration could be improved. 
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Values of all metrics were similar across different types of PRSs (i.e., gPRSs, cPRSs). The three gPRSs 

(PRS48, PRS69, and PRS262) performed similarly, so only the results for PRS69 are presented in this Chapter. 

The results for PRS48- and PRS262-based models are provided in Appendix J. Of twelve candidate ctPRSs, the 

ctPRS with LD R2=0.4 and P=5x10-5 performed best based on the average performance of AUC, AP and sBrS, 

and the Spiegelhalter-z statistic in the 5-fold internal cross-validation. Appendix K provided the results for all 

12 candidate ctPRSs.) The ctPRS mentioned below is the ctPRS with LD R2=0.4 and P=5x10-5, which included 

nine genetic variants.  

 

For the PRS main effect models, AUCs ranged from 0.775 to 0.780, and AP values ranged from 0.530 to 0.532. 

The AUC and AP values were similar to that of the CRS model, showing that none of the PRS main effect 

models improved discriminatory accuracy compared to the CRS model. The Spiegelhalter-z statistics ranged 

from 0.099 to 0.154, indicating the models were relatively well-calibrated. Compared to the CRS model, the 

Spiegelhalter-z statistics decreased from 11.427 to a range between 0.099 and 0.154, implying improved 

calibration in the PRS main effect models. The overall performance, measured by sBrS, improved with the 

improvement in calibration. 

 

The AUC, AP, and sBrS estimates for the PRS*CRS models ranged from 0.792 to 0. 799, 0.528 to 0.537, and 

0.227 to 0.257, respectively. These results were close to that of the CRS model, indicating that the PRS*CRS 

models did not improve discriminatory accuracy. Though the Spiegelhalter-z statistics, ranging from 3.774 to 

6.686, decreased compared to the CRS model (Spiegelhalter-z statistic: 11.427), the 95% CIs, none of which 

included 0, suggested that the Spiegelhalter-z statistics were not statistically significant. 
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For the PRS*RT models, the AUCs were slightly lower than the CRS model (AUC: 0.797, 95%CI (0.778, 

0.816)), ranging from 0.775 to 0.780. The AP values for the PRS*RT models ranged from 0.528 to 0.537, 

which remained similar to the CRS clinical model's AP value. So the PRS*RT models still did not improve the 

discriminatory accuracies compared to the CRS model. However, similar to the PRS main effect models, the 

Spiegelhalter-z statistics for the PRS*RT models decreased compared to the CRS model (a range of 1.401-

1.485 vs. 11.427) and were statistically significant. 

 

In summary, these metrics suggested that the PRS*CRS models did not improve the model performance. The 

PRS main effect models and PRS*RT models improved the overall performance of the models by improving 

the calibration (bolded in Table 3-1). However, none of the models improved the discrimination. 
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Table 3-1 Summary of model performance 

  sBrS AP AUC Spiegelhalter-z 

CRS 0.236 (0.203, 0.267)  0.539 (0.502, 0.574) 0.797 (0.778, 0.816) 11.427 (9.467,13.387) 

Main effect models  

PRS69 0.277 (0.242, 0.311) 0.532 (0.495, 0.569) 0.780 (0.756, 0.804) 0.134 (-1.826,2.094) 

PRS6  0.274 (0.240, 0.308) 0.530 (0.494, 0.568) 0.775 (0.748, 0.801) 0.154 (-1.806, 2.114) 

ctPRS 0.276 (0.242, 0.310) 0.531 (0.495, 0.569) 0.776 (0.749, 0.801) 0.099 (-1.861, 2.059) 

Interaction models  

CRS with  

PRS69 0.227 (0.180, 0.274) 0.537 (0.496, 0.578) 0.799 (0.780, 0.818) 6.686 (4.726, 8.646) 

PRS6 0.239 (0.193, 0.284) 0.534 (0.494, 0.575) 0.795 (0.776, 0.816) 5.781 (3.821, 7.741) 

ctPRS  0.257 (0.214, 0.299) 0.528 (0.486, 0.572) 0.792 (0.773, 0.813) 3.774 (1.814, 5.734) 

RT with 

PRS69 0.267 (0.229, 0.304) 0.520 (0.481, 0.557) 0.752 (0.731, 0.774) 1.485 (-0.475,3.445) 

PRS6 0.268 (0.230, 0.305) 0.520 (0.481, 0.557) 0.752 (0.731, 0.774) 1.401 (-0.559, 3.361) 

ctPRS 0.269 (0.231, 0.306) 0.519 (0.478, 0.560) 0.755 (0.732, 0.779) 1.142 (-0.818, 3.102) 

Note: Values are averaged over validation sets; ctPRS is the clumping and thresholding PRS, CRS represents the clinical risk score model, AUC is 

the area under the receiver operating characteristic curve, AP is the time-specific average positive predictive value. sBrS is the scaled Brier Score. 

Among all candidate ctPRSs constructed in Chapter 2, ctPRS with clumping = 0.4 and thresholding = 5e-5 was selected based on the averaged 

model performance. Detailed methodology and selection procedures were given in Appendix K. The metrics were accounted for IPCW weights
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The Calibration Curve 

The calibration of the models was assessed using Spiegelhalter-z statistic as aforementioned. Furthermore, 

calibration curves were plotted to visualize the results. Figure 3-1 and Figure 3-2 show the calibration curves. 

The x-axis shows the range of predicted probabilities of developing POI, and the y-axis reflects the observed 

proportions of POI in each subgroup.  

 

Figure 3-1 shows the results for the CRS and PRS main effect models. The CRS model underestimated the POI 

risk, illustrated by the red line lying above the diagonal dashed line. The PRS69, PRS6, and ctPRS models 

performed similarly, with calibration curves close to the diagonal line. The PRS main effect models performed 

well for participants in medium risks but overestimated the risk for participants in high-risk groups (risk >0.5) 

and underestimated the risk for low-risk groups (risk <0.5). The PRS69 main effect model performed best in 

low-risk groups compared to the remaining models. 

 

Figure 3-1 Calibration curves for the main effect models
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Note: red line refers to the CRS clinical model, purple line refers to the PRS69 models, the green line refers to the PRS6 models, and blue line refers 

to the ctPRS models. 

Figure 3-2 Calibration curves for the interaction models 

 

Figure 3-2 shows the calibration curves for the interaction models. The PRS*CRS interaction models (Figure 3-2 left) performed well initially, but 

the curve was away from the diagonal line with the increase of the actual risk in participants, indicating overestimating the actual risks. Among the 

PRS*CRS models, the ctPRS*CRS model performed best, followed by the PRS6*CRS model, and finally, the PRS69*CRS model. The calibration 

curves of PRS*RT models (Figure 3-2 right) showed similar patterns with the PRS main effect models, with overestimated actual risk for participants 

in the high-risk groups and underestimated actual risk for participants in the low-risk groups. 
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Risk Stratification 

Using 5%, 20%, and 50% as cutoffs, the predicted probabilities of developing POI were stratified into four risk 

categories, that is, <5%, 5% to <20%, 20% to <50%, and ≥50%, corresponding to low, medium-low, medium, 

and high-risk groups, respectively. 

Table 3-2 shows the risk stratification for the PRS main effect models. The risk stratification of the CRS 

showed that among 75 participants with a predicted risk greater than 50%, 84% developed POI. However, 

22.4% of participants who developed POI were predicted as medium-low risk (5%-20%), indicating an 

underestimated risk for patients in this group. Among 69 participants who were classified into the medium-risk 

subgroup (20%-50%), 43 (63%) participants were diagnosed with POI.  

 

The PPV value for the CRS model in the high-risk (>50%) subgroup was slightly higher than that of the rest 

models. The PPV value for the CRS model in the high-risk subgroup was 84%. The PRS69 main effect model 

performed best among PRS main effect models, with 107 cancer survivors having predicted risk greater than 0.5 

(high-risk), among whom 82.24% of participants developed POI. The PPV values for the rest models were even 

smaller than that of the PRS69 main effect model.  

 

Among participants who were predicted as medium risk (20%-50%) of developing POI in CRS, PRS69, PRS6, 

and ctPRS main effect models, 62%, 31%, 29%, and 29% of them developed POI, respectively. The 

interpretation of the results in the medium-risk group may differ regarding the different focuses in clinical 

practice. For example, if using a POI risk of 50% as the cutoff point for fertility preservation decision-making, 

The misclassification rate of the PRS main effect models in the subgroup is around 29%-31%. In contrast, the 

misclassification rate reached 62% for the CRS model. However, if a lower POI risk, say 20%, is of clinical 

significance, in this case, the CRS model can perform better in assisting the decision-making process.  
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The risk prediction for the medium low-risk (5%-20%) subgroup in the PRS main effect models was better 

compared to the CRS model (if we predict medium low-risk group as not going to develop POI). Among those 

303 participants classified into the medium-low risk subgroup by the CRS model, 22% were misclassified. The 

PRS69 main effect model classified 1450 cancer survivors into the medium-low risk subgroup, among whom 

93% did not develop POI (93% ≈ (1450-101)/1450), reducing the misclassification rate from 22% to 7%. The 

misclassification rates among the medium-low risk subgroup were even lower for the PRS6 and ctPRS main 

effect models (6%).  

 

The risk prediction results were comparable among the models for the low-risk subgroup. The PPV value for 

the baseline model is 5.15%. And the PPV values ranged from 4.01% to 6.48% in the PRS main and interaction 

models. 

 

In summary, the PRS main and interaction models generated similar results for risk stratification using the 

selected cutoffs. The risk stratification results in the low- and high-risk subgroups were similar among the CRS 

and PRS-based models. However, the PPV results for the medium-low and medium-risk subgroups differ 

between the CRS and PRS-based models.  
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Table 3-2 Risk stratification of the risk prediction models 

Risk Categories <5% (low-risk) 5%-20% (medium-low) 20%-50% (medium) >50% (high-risk) 

  

POI 

event 

# of 

survivors 
PPV(%) 

POI 

event 

# of 

survivors 
PPV(%) 

POI 

event 

# of 

survivors 
PPV(%) 

POI 

event 

# of 

survivors 
PPV(%) 

CRS 102 1980 5.15 68 303 22.44 43 69 62.32 63 75 84.00 

Main Effect Models 

PRS69 29 682 4.25 101 1450 6.97 58 188 30.85 88 107 82.24 

PRS6 36 629 5.72 99 1507 6.57 52 181 28.73 89 110 80.91 

ctPRS 37 662 5.59 96 1470 6.53 53 184 28.80 89 111 80.18 

Interaction 

Models 

 

CRS with  
  

PRS69 65 1507 4.31 44 531 8.29 47 206 22.82 120 183 65.57 

PRS6 65 1468 4.43 49 607 8.07 50 184 27.17 112 168 66.67 

ctPRS 47 1273 3.69 65 815 7.98 55 189 29.10 109 150 72.67 

RT with 

PRS69 36 898 4.01 95 1243 7.64 51 162 31.48 93 123 75.61 

PRS6 39 886 4.40 90 1247 7.22 54 174 31.03 92 119 77.31 

ctPRS 52 803 6.48 79 1328 5.95 53 181 29.28 91 115 79.13 

Note: censoring weights (IPCW) were considered 
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The Coefficients and Significance 

In addition to the predictive power, the significance of the genetic component is also of interest. We used a five-

fold cross-validation framework (discussed in Section 1.2.3). We have five datasets generated from multiple 

imputation. Each dataset has five training sets, resulting in 25 training sets in total. Therefore, the modeling 

process was repeated 25 times. So instead of getting a single value for the parameters of interest (coefficient of 

PRS/PRS*CRS/PRS*RT), 25 estimates were generated for each parameter of interest. To present the point 

estimates, I summarized the means and medians for the coefficients and significance of PRS main effects and 

PRS*CRS/PRS*RT interaction effects in Table 3-3 and Table 3-4. I also provided the boxplots for the 

coefficients and significance in Figure 3-3 to show the variations.  

Table 3-3 Summary of the coefficient estimates of PRSs in the training sets  

 

Table 3-4 Summary of P-values associated with PRSs in the training sets  
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    PRS main effect models     PRS*CRS models      PRS*RT models 

 

Note: the first row is the results of the coefficients, the second row is the results of the significance; the first column displays the results for PRS main 

effect models, and the second column is the results for PRS*CRS models, the third column is the results for PRS*RT models. 

Figure 3-3 Boxplots of the coefficient estimates and their P-values of PRSs over the training sets 
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The second row of the boxplots in Figure 3-3 and Table 3-4 suggested that none of the PRSs in the main effect 

models were statistically significantly associated with POI after accounting for the CRS and the first five PCs. 

(P-value ranged from 0.25 to 0.75); all PRS*CRS interactions are statistically significant; all the PRS*RT 

interactions, except for the ctPRS*RT interaction, are also statistically significant.  

 

For the significant associations (between PRS*CRS/PRS*RT and developing POI), The effect sizes for PRS69-

based interactions were larger than that of the PRS6-based interactions. For example, on average, in the 

presence of ovarian radiation, a one-unit increase in the PRS69*RT will lead to a 6.5 times increase in the odds 

of developing POI (OR=exp(1.87)≈6.5, P-values <0.005). However, the PRS6*RT and ctPRS*RT models 

showed that the odds of developing POI among patients who received ovarian radiation therapy would increase 

by 13.54% and 56.83%, with one unit increase in the PRS6 and ctPRS, respectively. If a patient did not receive 

any ovarian radiation, the PRS would not affect the risk of developing POI. For the PRS*CRS interactions, a 

one-unit increase in the PRS69*CRS will lead to a 164-times increase in the odds of developing POI; and the 

PRS6 *CRS model showed that the odds of developing POI would increase by 38.96% with one unit increase in 

the PRS6*CRS on average. And one unit increase in the ctPRS*CRS will lead to a 2.8 times (2.8=exp (1.03)) 

increase in the odds of developing POI. 

 

3.4 Discussion 

 

This research investigated the added value of genetics in prediction models for POI by including genetic 

variants in the form of PRS. PRS generated from either the general population or cancer survivors were 

included in a time-specific logistic regression model. Both the main effect and interaction effect between PRS 

and treatments were examined.  
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The performance, from PRS main effect model to the PRS*CRS, and PRS*RT interaction models implied that 

after accounting for clinical risk factors, the inclusion of genetic data in the form of PRS could improve the 

overall performance of the predictive model for POI. Three different PRSs computed from GWAS conducted in 

the general population or childhood cancer survivors performed similarly. The predictive accuracy, which was 

captured by AP values, was similar across all models. The AUC values were also similar, with those in the 

CRS*PRS models being slightly lower than those in the other models. The Spiegelhalter-z statistics suggested 

that the addition of genetics improved the calibration.  

 

One implication from this study is that the general population-based PRS which included 69 genetic variants, 

showed predictive power for POI in the childhood cancer survivor population. The calibration improved by 

having the PRS69 as the main effect in the model, though the main effect of PRS69 was not statistically 

significant in the model.  

 

The study did not observe an association between POI and the PRS6 calculated from the six independent 

genetic variants reported from the GWA study of the childhood cancer survivor. In the previous GWAS study, 

though none of the genetic variants showed a statistically significant association with POI, the researchers 

suggested that the presence of a haplotype among patients exposed to ovarian RT may be at a high risk of 

developing POI. The PRS6*RT and ctPRS*RT interaction effects were found in this study, which further 

confirmed the conclusion in the previous study(16). However, the genetic variants included in the haplotype 

identified in the cancer survivor GWA study, PRS6, and ctPRS barely overlap.  
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The genetic information (i.e., genetic summary statistics) and clinical risk were obtained from the existing 

studies. The sample size of the GWAS for POI in childhood cancer survivors was limited, which may have 

resulted in the PRS not being representative of the genetic profile of POI. The GWAS study included only 799 

cancer survivors with 30 (3.8%) cases. The limited sample size and the small number of cases might lead to 

effect estimates with large variance for the genetic variants. In the future, more extensive studies should be 

conducted to validate the PRS.  

 

The gPRSs were computed from GWA studies in the general population and were applied to the cancer survivor 

population. Also, the gPRSs was derived from the GWA studies for age at natural menopause, which is not 

necessarily the same as POI. The validity of the gPRSs could be examined if some external datasets from the 

general population are available. 

  

Another limitation was that half of the participants were censored in this study. The censoring weights were 

applied to the participants with observed outcomes to account for the censoring. For the application of the 

censoring weights, we assumed missing at random and independence between the event and censoring process. 

The censoring weights may not be valid if these assumptions are not met. 

 

In conclusion, after controlling for clinical risk factors (represented by a CRS), the PRS-based genetic profile 

has shown prediction potential for POI in childhood cancer survivors. In comparison to the CRS clinical model, 

including general population-based PRS in the predictive model enhanced the calibration of the prediction 

models. Effect modification of PRS on ovarian radiation therapy were observed. External validation will be 

required in the future to confirm the findings. Ultimately, the predicted risk could be used for risk classification 

and as a quantitative reference for clinicians and patients when making fertility preservation decisions.  
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4 Conclusions 

 

4.1 Summary 

Primary ovarian insufficiency is a major concern in female childhood cancer survivors(1). The POI risk 

prediction models would help clinicians identify individuals at elevated risk of the condition, thus informing 

clinical decision-making regarding fertility preservation and improving the long-term quality of life for 

childhood cancer survivors(2). The treatment-related risks have been developed for POI and showed potential 

for risk stratification(3). This study aims to investigate whether the model performance can be improved by 

incorporating the genetic profile on the basis of the existing clinical risk model. 

 

In Chapter 1, I reviewed researches of clinical risk factors, genetic architecture, and the clinical risk prediction 

model for POI. I also introduced the construction of the PRS, and the modeling and evaluation of risk prediction 

models. Finally, the CCSS original cohort was introduced as the main data source of this study. 

 

In Chapter 2, GWA studies were extracted, and sixteen PRSs were constructed: three gPRSs (PRS48, PRS69 

and PRS262) were built from two GWA studies for age at natural menopause in the general population; a GWA 

study for POI conducted in the SJLIFE cohort was used to construct thirteen cPRSs (PRS6 and twelve ctPRSs), 

where PRS6 was constructed from the top 6 independent genetic variants (with P<10-5) and ctPRSs were 

constructed using the C+T method. 

 

In Chapter 3, PRS main effect models were examined using the time-specific logistic regression at age 40 after 

accounting for the CRS and the first five PCs. These include PRS69, PRS6, and ctPRS main effect models. 

Potential interactions including PRS* CRS and PRS*RT were also examined. A five-fold cross-validation 

framework was applied for the model building and performance evaluation. The time-specific logistic 

regression models were developed on the training set. The AP, AUC, sBrS values, calibration curves, and the 
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Spiegelhalter-z Statistic were calculated on the validation datasets to assess the model performance. The 

coefficient estimates and associated P-values for these PRSs were also presented in Chapter 3. 

 

The model performance of the PRS main effect models was similar. The PRS main effect models performed 

similarly to the CRS model regarding the AUC and AP values. The discrimination did not improve compared to 

the CRS model. However, the calibration curves and the Spiegelhalter-z Statistics suggested improvements in 

the calibration in the PRS main effect models. The PRS69 main effect model was able to identify more POI 

cases in survivors predicted to be high POI risk. The PRS*CRS interaction models overestimated the risk in 

general, and the PRS*RT, especially the ctPRS*RT model performed well. 

 

4.2 Study Limitations 

There is a lack of external data from the general population for the development of general population-based 

PRS. As a result, only significant independent genetic variations reported in GWA studies were used to create 

the general population-based PRSs, meaning that information of the remaining genetic variants which might 

have some predictive power for POI was not considered. Moreover, the statistical significance does not 

necessarily guarantee a higher predictive power(4). Genetic variants which are less significant could be 

considered if external data is available in the future. Also, the general population-based PRSs were developed 

from GWA studies for age at natural menopause instead of POI. The idea of applying PRS for age at 

menopause on the POI risk prediction model was based on the assumption that POI and age at natural 

menopause shared a similar genetic architecture(5). Though the assumption has been expressed by researchers 

and was reasonable, GWA studies for POI in the general population could be used if available. 

 

The effect size estimates of the genetic variants in the GWA study conducted in the female childhood cancer 

survivors might not be accurate due to the limited sample size(6). Thus, the improvement observed in the 
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calibration should be interpreted with caution. Moving forward, the developed model needed to be applied to 

external data to assess its validity. Moreover, the GWA study for POI in the cancer survivor population could be 

conducted when more GWAS data is available. Consequently, the PRS for POI in the population of female 

childhood cancer survivors could be reconstructed with more confidence. 

 

The effect estimate of the ctPRS in the ctPRS main effect model showed the opposite direction to effect 

estimates of the genetic variants in the GWAS study. Theoretically, the effect estimates of both the ctPRSs and 

the genetic variants should be in the same direction, as the PRS is simply a sum of effect sizes of all the 

variants(7). The difference may come from the following aspects. First, both analyses have accounted for the 

clinical component to study the genetics of POI in childhood cancer survivors. However, the clinical component 

was considered differently between the original GWAS study and my study. The clinical component in my 

study entered the model as a clinical risk score which was modeled from the demographic information, 

chemotherapy agents, and radiation dosage to ovary information, whereas the GWAS study utilized the 

cyclophosphamide equivalent dose of alkylating agents (CED) and ovarian radiotherapy (Yes/No) to account 

for the clinical risk(8). Second, the GWA study used a continuous variable to account for the ancestry, but my 

study used the first five PCs. Moreover, the summary statistics — specifically, effect sizes and P-values—differ 

between the published GWAS study and the received summary statistics data(8). The GWA study reported the 

likelihood ratio test for the association between genetic variants and POI, but the received summary statistics 

data contained the Wald test, which reported similar effect estimates as the likelihood ratio test but different P-

values (the significance of the genetic variants was different when the sample size was relatively small, which is 

the case in the original GWA study) for each genetic variant. The same problem was also present for the cPRS. 

The results in Chapter 3 suggested that the increase of the PRS could possibly decrease the risk of POI, though 

the effect was not statistically significant. 
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This study focused on European ancestry, thus the PRS and risk prediction models, which inform interventions, 

are more likely to benefit people of European ancestry (which account for 16% of the total global population). 

The PRS could be inaccurate when being applied to other populations. Currently, around 80% of GWA studies 

are conducted on people of European descent, resulting in a significant bias in the population that benefits(9). 

The bias can be corrected only by conducting further GWAS research in different racial groups, and more 

people will benefit from the PRS. 

 

The genetic variants on chromosome X were not included in the PRS construction for POI, despite the fact that 

chromosome X variations explained some of the variances for age at natural menopause/POI(5). Because of the 

uniqueness of chromosome X, most GWA studies ignore sex chromosomes and focus solely on autosomal 

genetic variations in their analyses(10), which is the case for menopause-related phenotypes studies. Therefore, 

the exclusion of genetic variations that happened on chromosome X might have limited the potential of the 

PRS. 

 

The age at the last menstrual period was self-reported, and recall bias could affect the time at risk for POI, thus 

affecting the modeling results(11). Besides, about half of the study participants in this study were censored. The 

time period for childhood cancer survivors to remain at risk of POI before age 40 can be up to 40 years. Thus 

the probability of censoring is high(12). The censored individuals did not contribute directly to the estimation of 

risk but contributed information to estimate the IPCW weights(13). Individuals with POI status assessed at an 

older age were given higher weights to account for the fact that they are more likely to be censored before 

experiencing menopause. The validity of the IPCW weights is based on the assumption that the censoring is 

independent of the event time given covariates(13).  
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4.3 Recommendations for Future Directions and Applications 

Though the PRSs improved the calibration, external validation is necessary to confirm the validity of the risk 

predictive models before applying them in clinical practice. Following the external validation, the predicted 

risks could be categorized into different risk levels to inform the decision-making process. 

 

The genetic variants included in the gPRSs and cPRSs do not overlap. This difference may be due to the 

different genetic architectures in these two populations or the limited GWA studies in childhood cancer 

survivors. The comparison between the gPRSs and cPRSs would be more accessible when cPRSs were being 

constructed with larger GWA studies in the childhood cancer survivors. 

 

The effect modification of RT on the PRS was observed, showing a possible gene-treatment interaction. 

Collaboration with doctors is required to understand the effect modification of genetics on RT. Moreover, the 

interaction between PRS/single gene and other clinical risk factors (such as chemotherapy dosage and diagnosis 

type) is worth investigating in collaboration with clinicians.   
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Appendices 

Appendix A Data dictionary of variables  

Table A-1 Data dictionary 

 

 
Variable names Type (units) Description 

o
u

t

co m
e status categorical/factor ovarian status factor (4 levels): Normal, AOF, PM, SPM 

a_event numeric (years) age at event 

d
em

o
g
ra

p
h

ic
s age_dx numeric (years) age at diagnosis 

diagnose categorical/factor 

cancer diagnose type (8 levels): 

Leukemia, CNS, HD, HNL, Kidney (Wilms), Neuroblastoma, Soft tissue 

sarcoma, Bone cancer 

race categorical/factor race (3 levels): White, Black, Other 

BMT bmt categorical/factor 
received BMT within 5 years from first cancer diagnosis 

factor (2 levels): No Yes 

ra
d
io

th
er

ap
y
 tbidose numeric (cGy) cumulative radiation doses to total body within 5 years 

minovary numeric (cGy) 

Minimum cumulative ovarian radiation dose within 5 years. The average 

radiation doses to right and left ovaries were estimated separately, and the lower 

dose was recorded as minimum ovarian radiation dose. 

pitdose numeric (cGy) cumulative radiation doses to pituitary within 5 years 

C
h

em
o

 t
h
er

ap
y
 

bcnu numeric (mg/m2) cumulative dose of BCNU within 5 years 

busulfan numeric (mg/m2) cumulative dose of busulfan within 5 years 

ccnu numeric (mg/m2) cumulative dose of CCNU within 5 years 

chlorambucil numeric (mg/m2) cumulative dose of chlorambucil within 5 years 

cyclophosphamid

e 
numeric (mg/m2) cumulative dose of cyclophosphamide within 5 years 

ifosfamide numeric (mg/m2) cumulative dose of ifosfamide within 5 years 

melphalan numeric (mg/m2) cumulative dose of melphalan within 5 years 

nitrogen_mustard numeric (mg/m2) cumulative dose of nitrogen_mustard within 5 years 

procarbazine numeric (mg/m2) cumulative dose of procarbazine within 5 years 

thiotepa numeric (mg/m2) cumulative dose of thiotepa within 5 years 

carboplatin numeric (mg/m2) cumulative dose of carboplatin within 5 years 

cis_platinum numeric (mg/m2) cumulative dose of cis_platinum within 5 years 

bleomycin numeric (mg/m2) cumulative dose of bleomycin within 5 years 

daunorubicin numeric (mg/m2) cumulative dose of daunorubicin within 5 years 

doxorubicin numeric (mg/m2) cumulative dose of doxorubicin within 5 years 

idarubicin numeric (mg/m2) cumulative dose of idarubicin within 5 years 

methotrexate numeric (mg/m2) cumulative dose of methotrexate within 5 years 

mitoxantrone numeric (mg/m2) cumulative dose of mitoxantrone within 5 years 

vm_26 numeric (mg/m2) cumulative dose of VM 26 within 5 years 
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vp_16 numeric (mg/m2) cumulative dose of VP 16 within 5 years 
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Appendix B The exclusion criteria established in a previous study for CCSS original cohort  

 

Exclusion criteria: Long-term (≥5-year) female survivors who:  

o Had missing menstrual history information in any questionnaires; 

o Did not reach age 18 at their latest follow-up questionnaire; 

o Whose menstrual status cannot be determined; 

o Were exposed to a cranial or pituitary radiation dose higher than 30 Gy; (suspected pituitary 

dysfunction) 

o Had a history of tumors in the hypothalamus or pituitary region;  

o Had a history of Turner or Down’s Syndrome;  

o Had a secondary malignancy within five years of primary cancer diagnosis
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Appendix C Explanatory data analysis 

Cancer diagnoses 

 

Figure C-1 The number of patients in different cancer diagnoses   

 

 

 

Figure C-2 Histogram of cancer diagnose by ovarian status
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o Age at diagnose  

 

Figure C-3 Histogram and boxplot for age at cancer diagnosis by ovarian status  
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o Radiation  

 

Figure C-4 Density plots of radiation dose for different body regions by ovarian status 

 

Table C-1 The number and proportion of patients who received ovarian radiation therapy by ovarian status 
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o Chemo-therapy agents 

Table C-2 The number of patients who received chemo-agent by ovarian status 
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o Age at event 

 

Figure C-5 The frequency plots for age at event by ovarian status 
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o Outcome status 

Table C-3 Summary statistics of ovarian status 

Ovarian status Number (proportion) 

POI 226(11.4%) 

Surgical PM 118 (5.9%) 

Normal 1641 (82.7%) 

Note: Surgical PM means surgical premature menopause 
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Appendix D Matching alleles between Day et al. and CCSS original cohort 

The matching algorithm for the inclusion and exclusion of genetic variants used in Day et al.

 

Figure D-1 Matching alleles between Day et al. and the CCSS original cohort 
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Appendix E Summary of the GWA studies for menopause-related phenotypes 

Table E-1 Summary of extracted GWA studies in the general population/childhood cancer survivors 

First author 
Publication 

date 
Study Trait(s) 

Discovery 

sample number 

and ancestry 

Replication 

sample number 

and ancestry 

Inclusion (yes/no) 

and reason 

Watanabe 

K1 
8/19/2019 

A global overview of pleiotropy and genetic 

architecture in complex traits 

age at 

menopause 

119160 more 

than 80% are 

European 

NA Yes 

Bae H2 6/10/2019 
Genetic associations with age of menopause 

in familial longevity. 

age at 

menopause 
7611 European 

3082 unknown 

ancestry 

No, limted sample 

size 

Horikoshi 

M3 
5/17/2018 

Elucidating the genetic architecture of 

reproductive ageing in the Japanese 

population. 

age at 

menopause 
43861 East Asian 32545 European 

No, not of 

European ancestry 

in the discovery 

stage 

Day FR4 11/1/2015 

Large-scale genomic analyses link 

reproductive aging to hypothalamic signaling, 

breast cancer susceptibility and BRCA1-

mediated DNA repair. 

age at 

menopause 
69626 European NA Yes 

Pyun JA5 9/16/2013 

Genome-wide association studies and 

epistasis analyses of candidate genes related 

to age at menarche and age at natural 

menopause in a Korean population. 

age at 

menopause 
1827 East Asian NA 

No, not of 

European ancestry 

Rahmani 

M6 
4/16/2013 

Shared genetic factors for age at natural 

menopause in Iranian and European women. 

age at 

menopause 

352 Greater 

Middle Eastern 

(Middle Eastern, 

North African or 

Persian) 

573 Greater 

Middle Eastern 

(Middle Eastern, 

North African or 

Persian)38968 

European 

No, limited sample 

size; unknown 

ancestry 

Ran S7 4/4/2013 

Bivariate genome-wide association analyses 

identified genes with pleiotropic effects for 

femoral neck bone geometry and age at 

menarche. 

age at 

menopause 
1728 European 

826 East Asian501 

European 

No, limited sample 

size 

https://atlas.ctglab.nl/traitDB/3366
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Perry JR8 1/9/2013 

A genome-wide association study of early 

menopause and the combined impact of 

identified variants. 

age at 

menopause 
17091 European 8340 European Yes 

Stolk L9 1/22/2012 

Meta-analyses identify 13 loci associated with 

age at menopause and highlight DNA repair 

and immune pathways. 

age at 

menopause 
38968 European 14435 European Yes 

Chen CT10 11/30/2011 

Replication of loci influencing ages at 

menarche and menopause in Hispanic women: 

the Women's Health Initiative SHARe Study. 

age at menarche, 

age at 

menopause 

3468 Hispanic or 

Latin American 
NA 

No, not of 

European ancestry 

He C11 5/17/2009 

Genome-wide association studies identify loci 

associated with age at menarche and age at 

natural menopause. 

age at menarche, 

age at 

menopause 

17438 European NA Yes 

Stolk L12 5/15/2009 
Loci at chromosomes 13, 19 and 20 influence 

age at natural menopause. 

age at 

menopause 
2979 European 2560 European 

No, limited sample 

size 

Lunetta 

KL13 
9/19/2007 

Genetic correlates of longevity and selected 

age-related phenotypes: a genome-wide 

association study in the Framingham Study. 

age at 

menopause, 

aging, exercise 

test, age at death 

1345 unknown 

ancestry 
NA 

No, limited sample 

size; unknown 

ancestry 

Park J14 10/26/2020 

Association of an APBA3 Missense Variant 

with Risk of Premature Ovarian Failure in the 

Korean Female Population. 

primary ovarian 

insufficiency 
242 East Asian 322 East Asian 

No, not of 

European ancestry 

Brooke 

RJ15 
2/8/2018 

A High-risk Haplotype for Premature 

Menopause in Childhood Cancer Survivors 

Exposed to Gonadotoxic Therapy. 

primary ovarian 

insufficiency 

114 African 

unspecified 685 

European 

NA 

No, limited sample 

size; mixed 

ancestry 

Pyun JA16 2/10/2012 
LAMC1 gene is associated with premature 

ovarian failure. 

primary ovarian 

insufficiency 

48 unknown 

ancestry 

316 unknown 

ancestry 

No, limited sample 

size; unkown 

ancestry 

Qin Y17 10/18/2011 

Association of 8q22.3 locus in Chinese Han 

with idiopathic premature ovarian failure 

(POF). 

primary ovarian 

insufficiency 
1286 East Asian 1200 East Asian 

No, not of 

European ancestry 

Knauff 

EA18 
6/9/2009 

Genome-wide association study in premature 

ovarian failure patients suggests ADAMTS19 

as a possible candidate gene. 

primary ovarian 

insufficiency 
334 European 150 European 

No, limited sample 

size 

Note: sorted by trait and publication date; the superscript represents the ordered number. 



 

88 

 

 

Appendix F Quality control of genetic variants in Day et al. and CCSS original cohort 

 

Coordinate Transformation  

Among the three selected GWA studies, the genetic variants extracted from Day et al. and the CCSS original 

cohort are in different genome build, which requires special handling. The following flow chart illustrates the 

quality control of the genetic variants of the Day paper. Initially, around 2.5 million genetic variants were 

obtained from reproGen.[13] The missing reference allele information was imputed using a reference panel by 

matching the genetic identifier of genetic variants from GWA studies and the reference panel. 1295 unmatched 

and 548 duplicated genetic variants were excluded. The remaining 2,416,852 genetic variants were on hg 18 

build, thus were further transformed into hg 19. The flowchart on the next page showed the workflow. 

 

Note: Matched by rsid: rsid is the identifier of the genetic variants; Coordinate transformation: convert the 

coordinates of genetic variants in hg18 to hg19 

Figure F-1 Flowchart for coordinate transformation 

https://www.zotero.org/google-docs/?wqfBui
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Matching Base and Target Data 

Furthermore, the genetic variants from base and target data were matched, the overlapped genetic variants were 

kept. Finally, 2,416,147 genetic variants that exist in both the GWA studies and CCSS original cohort were kept 

for the development of PRS as the summary statistics information of the remaining two GWA studies was 

complete. The genetic variants were matched using the same algorithm mentioned above.   
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Appendix G Using the Metal tool to re-estimate the effect sizes of genetic variants in two GWA studies 

conducted in the general population  

 

This study used two GWA studies in the general population to compute two gPRSs (PRS48 and PRS69). A 

meta-analysis was done to combine the evidence for association from these two GWA studies in the general 

population. The Metal tool can be used for this purpose. Briefly, the effect size estimates and standard error of 

the genetic variants from these two studies are used as input; each genetic variant will be assigned a weight, 

which is represented by: 

𝑤𝑖 = 1/𝑠𝑒2 

Where 𝑖 refers to the 𝑖th genetic variant, and 𝑠𝑒 refers to the standard error. The coefficient estimate and 

standard error for each variant is re-estimated with the weight: 

𝑠𝑒 =  √1/ ∑ 𝑤𝑖𝑖  ,  β = ∑ 𝛽𝑖𝑤𝑖𝑖 / ∑ 𝑤𝑖𝑖  

Furthermore, the Z-statistics and P-value can be derived from standard error and coefficient estimate, where 

𝑍 = 𝛽/𝑠𝑒 and 𝑃 = 2𝛷(| − 𝑍|) 

The summary statistics were re-estimated using Metal. A correlation coefficient of 0.1 and a P-value of 5e-08 

were used as the threshold to select independent significant genetic variants for PRS construction. Finally, 262 

genetic variants were selected to construct a new gPRS (named PRS262). 
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Appendix H Density plots of 12 candidate ctPRSs by ovarian status 

The 12 candidate ctPRSs are listed, with the columns representing different P-value thresholds (5e-2, 5e-3, 5e-4, and 5e-5), and the rows representing 

the clumping parameters (0.1,0.4, and 0.8) 

   c=0.1       c=0.4       c=0.8 
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Note: The x-axis is the PRS value; the y-axis is the density. 

Figure H-1 The density plots of 12 candidate ctPRSs 
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Appendix I Comparison of classification performance between the CRS and gPRS models 

One of the Edinburgh Selection Criteria(14) for oocyte cryopreservation stated that patients with high risk (over 

50%) of developing POI were suggested for ovarian tissue cryopreservation. Thus, 0.5 was used as a cutoff to 

compare the model performance further. Using .5 as the cutoff, some measurements were summarized in the 

following table: We see that most of the metrics were similar between CRS and gPRS models. However, with 

similar false-positive rates, the sensitivity of the gPRS model improved compared to the CRS model.  

 

Table I-1 Some measurements of the models 

   Sensitivity Specificity PPV NPV 

CRS 0.250 0.994 0.840 0.909 

Main Effect Models 

PRS69 0.319 0.991 0.822 0.919 

PRS6 0.322 0.990 0.809 0.919 

ctPRS 0.324 0.990 0.802 0.920 

Interaction 

Models 

 PRS69 0.435 0.971 0.656 0.930 

CRS with  PRS6 0.406 0.974 0.667 0.927 

  ctPRS 0.395 0.981 0.727 0.927 

RT with 

PRS69 0.338 0.986 0.756 0.921 

PRS6 0.335 0.987 0.773 0.921 

ctPRS 0.331 0.989 0.791 0.920 

 

Note: PPV is positive predictive value; NPV is the negative predictive value; 
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Appendix J Calibration and threshold-free performance metrics for three gPRSs  

1) Calibration of gPRSs models (gPRSs: PRS48, PRS69, and PRS262) 
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Figure J-1 Calibration plots of gPRS-based models  
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2) Threshold-free metrics for gPRS-based models 

Table J-1 Threshold-free metrics for gPRS-based models 

  sBrS AP AUC Spiegelhalter-z 

Main 

effect 

models 

PRS48 0.274 (0.239, 0.307) 0.531(0.495, 0.568) 0.775 (0.748, 0.801) 0.185 (-1.775, 2.145) 

PRS69 0.277(0.242, 0.311) 0.532(0.495, 0.569) 0.780(0.756, 0.804) 0.134(-1.826, 2.094) 

PRS262 0.273 (0.239, 0.307) 0.529 (0.493, 0.566) 0.778 (0.752, 0.803) 0.209 (-1.751, 2.169) 

Interaction 

models 

PRS48*CRS 0.226 (0.179, 0.272) 0.532 (0.491, 0.573) 0.796 (0.776, 0.815) 6.557 (4.597, 8.517) 

PRS69*CRS 0.227 (0.18, 0.274) 0.537 (0.496, 0.578) 0.799 (0.78, 0.818) 6.686 (4.726, 8.646) 

PRS262*CRS 0.224 (0.175, 0.271) 0.534 (0.494, 0.576) 0.801 (0.781, 0.82) 6.889 (4.929, 8.849) 

PRS48*RT 0.266(0.228, 0.304) 0.519 (0.480, 0.556) 0.752 (0.731, 0.775) 1.473 (-0.487, 3.433) 

PRS69*RT 0.267 (0.229, 0.304) 0.520 (0.481, 0.557) 0.752 (0.731, 0.774) 1.485 (-0.475, 3.445) 

PRS262*RT 0.266 (0.229, 0.304) 0.519 (0.480, 0.556) 0.753 (0.731, 0.774) 1.509 (-0.451, 3.469) 

Note: The table gives the pointe estimates and the corresponding 95% confidence intervals for each measurement 

The results showed that: 

o The gPRS based models generated similar performance regarding sBrS, AP and AUC.  

o The Spiegelhalter-z statistics suggested the gPRS main effect models had better calibration, with PRS69 performed best.  

o The PRS*RT models performed better than the PRS*CRS models 
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Appendix K Threshold-free performance metrics for 12 candidate ctPRSs 

Table K-1 Model performance of twelve candidate ctPRSs 

 
ctPRS sBrS AP AUC Spiegelhalter-z 

Averaged 

performance 

Main effect 

models 

c=0.1, t= 5e-02 0.275 (0.241, 0.309) 0.532 (0.495, 0.570) 0.784 (0.759, 0.81) 0.193 (-1.767, 2.153) 0.53 

c=0.1, t= 5e-03 0.274 (0.239, 0.308) 0.533 (0.496, 0.570) 0.795 (0.775, 0.815) 0.320 (-1.640, 2.280) 0.534 

c=0.1, t= 5e-04 0.277 (0.242, 0.310) 0.531 (0.494, 0.570) 0.781 (0.757, 0.805) 0.119 (-1.841, 2.079) 0.53 

c=0.1, t= 5e-05 0.276 (0.242, 0.310) 0.531 (0.495, 0.569) 0.776 (0.749, 0.801) 0.099 (-1.861, 2.059) 0.528 

c=0.4, t= 5e-02 0.273 (0.239, 0.308) 0.530 (0.494, 0.568) 0.778 (0.751, 0.804) 0.238 (-1.722, 2.198) 0.527 

c=0.4, t= 5e-03 0.274 (0.240, 0.308) 0.531 (0.493, 0.569) 0.790 (0.769, 0.810) 0.285 (-1.675, 2.245) 0.532 

c=0.4, t= 5e-04 0.276 (0.241, 0.310) 0.531 (0.494, 0.570) 0.779 (0.753, 0.803) 0.126 (-1.834, 2.086) 0.529 

c=0.4, t= 5e-05 0.276 (0.242, 0.310) 0.531 (0.495, 0.569) 0.776 (0.749, 0.801) 0.099 (-1.861, 2.059) 0.528 

c=0.8, t= 5e-02 0.273 (0.239, 0.307) 0.531 (0.494, 0.568) 0.783 (0.758, 0.808) 0.288 (-1.672, 2.248) 0.529 

c=0.8, t= 5e-03 0.276 (0.242, 0.309) 0.535 (0.497, 0.571) 0.797 (0.777, 0.815) 0.243 (-1.717, 2.203) 0.536 

c=0.8, t= 5e-04 0.277 (0.242, 0.310) 0.533 (0.497, 0.571) 0.781 (0.756, 0.806) 0.149 (-1.811, 2.109) 0.53 

c=0.8, t= 5e-05 0.275 (0.24, 0.308) 0.531 (0.495, 0.568) 0.773 (0.746, 0.799) 0.13 (-1.830, 2.090) 0.526 

Interaction 

models (with 

CRS) 

c=0.1, t= 5e-02 0.224 (0.176, 0.271) 0.534 (0.493, 0.576) 0.8 (0.779, 0.819) 6.932 (4.972, 8.892) 0.519 

c=0.1, t= 5e-03 0.224 (0.176, 0.271) 0.535 (0.494, 0.576) 0.801 (0.781, 0.82) 6.968 (5.008, 8.928) 0.52 

c=0.1, t= 5e-04 0.228 (0.181, 0.275) 0.537 (0.497, 0.579) 0.801 (0.782, 0.822) 6.625 (4.665, 8.585) 0.522 

c=0.1, t= 5e-05 0.257 (0.214, 0.299) 0.528 (0.486, 0.572) 0.792 (0.773, 0.813) 3.774 (1.814, 5.734) 0.526 

c=0.4, t= 5e-02 0.224 (0.176, 0.271) 0.534 (0.493, 0.576) 0.799 (0.779, 0.819) 6.934 (4.974, 8.894) 0.519 

c=0.4, t= 5e-03 0.224 (0.176, 0.271) 0.535 (0.494, 0.576) 0.801 (0.78, 0.82) 6.952 (4.992, 8.912) 0.52 

c=0.4, t= 5e-04 0.229 (0.182, 0.275) 0.537 (0.497, 0.579) 0.8 (0.782, 0.821) 6.588 (4.628, 8.548) 0.522 

c=0.4, t= 5e-05 0.257 (0.214, 0.299) 0.528 (0.486, 0.572) 0.792 (0.773, 0.813) 3.774 (1.814, 5.734) 0.526 

c=0.8, t= 5e-02 0.224 (0.176, 0.271) 0.534 (0.493, 0.576) 0.8 (0.779, 0.819) 6.934 (4.974, 8.894) 0.519 

c=0.8, t= 5e-03 0.224 (0.176, 0.272) 0.535 (0.495, 0.577) 0.801 (0.781, 0.82) 6.948 (4.988, 8.908) 0.52 

c=0.8, t= 5e-04 0.231 (0.184, 0.277) 0.536 (0.495, 0.578) 0.8 (0.781, 0.82) 6.482 (4.522, 8.442) 0.522 

c=0.8, t= 5e-05 0.257 (0.215, 0.299) 0.528 (0.487, 0.572) 0.789 (0.769, 0.811) 3.736 (1.776, 5.696) 0.525 

Note: Averaged performance is an average value of sBrS, AP and AUC.
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The hyperparameter selection is based on the value of both the averaged performance and the Spiegelhalter-z 

statistics. A larger averaged performance and a lower Spiegelhalter-z statistic indicated better performance. The 

table showed that the averaged performances over different hyperparameter settings were similar. However, the 

Spiegelhalter-z statistic indicated that ctPRSs with a lower P-value performed better in the main effect and 

interaction models. A ctPRS with c=0.4 and t=5e-05 was selected and used for the PRS construction if given 

external data. 
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Appendix L Replication of two GWA studies 

 

Using the CCSS samples as the replication cohort, time-specific logistic regression was done for each 

significant genetic variant reported in Watanabe et al. and Brooke et al. The following table summarized the 

direction of each variant-POI association and its corresponding P-value. Since the multiple imputation and 

cross-validation framework were used (see section 1.2.3), each genetic variant then had 25 coefficient estimates 

and corresponding P-values. The table summarized the total number of times that the association in the 

replication analysis is the same as that in the original GWA study over all training sets. The proportion that the 

association estimated from the replication cohort and the original GWAS is in the same direction. Besides, the 

total number of times that the associations are significant was also counted and reported. Similarly, the 

proportion of significant associations for each genetic variant was calculated. 

 

The table showed that only a few genetic variants (14 out of 69) are statistically significant. Of the 69 genetic 

variants, 18 variants showed the same direction of association between the replication and the original GWA 

study among all training sets, with seven genetic variants showing significant associations sometimes.14 out of 

69 genetic variants had the same directions between the replication and the original GWA studies 72-96 percent 

of the time. Eleven genetic variants always had a different direction of associations, with four variants showing 

significant associations sometimes. 
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Table L-1 The agreement between the replication analysis and Watanabe et al. 

  
genetic identifier 

coefficient   P-value 

# of negative 

coeffcients 

proportio

n 
  

# of significant 

coefficients 

proportio

n 

1 chr1.242011344.C.G_C 25 1  0 0 

2 chr12.122203915.C.T_C 25 1  11 0.44 

3 chr12.123593382.C.T_T 25 1  0 0 

4 chr12.57146069.T.G_G 25 1  0 0 

5 chr16.11948895.T.C_C 25 1  1 0.04 

6 chr16.89786761.C.T_C 25 1  0 0 

7 chr17.5327481.T.G_T 25 1  0 0 

8 chr19.55827175.G.A_A 25 1  3 0.12 

9 chr20.5580789.C.T_T 25 1  0 0 

10 chr3.183573235.C.T_C 25 1  0 0 

11 chr8.48926264.T.A_A 25 1   0 0 

12 chr12.120189879.A.G_A 25 1  2 0.08 

13 chr14.34985658.C.T_T 25 1  0 0 

14 chr5.173410833.A.G_A 25 1  0 0 

15 chr5.176425581.A.C_A 25 1  0 0 

16 chr13.61113739.G.A_G 25 1  4 0.16 

17 chr14.20938251.A.C_C 25 1  3 0.12 

18 chr19.46890160.T.C_T 25 1  3 0.12 

19 chr1.39361425.T.G_G 24 0.96  0 0 

20 chr10.131590300.T.A_A 24 0.96  0 0 

21 chr12.130822471.C.T_T 24 0.96  0 0 

22 chr22.39021165.T.C_C 24 0.96  0 0 

23 chr8.129607823.T.C_C 24 0.96   0 0 

24 chr2.67597525.T.A_A 23 0.92  0 0 

25 chr7.99785765.T.G_G 21 0.84  0 0 

26 chr1.6701978.T.C_C 21 0.84  2 0.08 

27 chr12.66704225.A.G_A 20 0.8  0 0 

28 chr2.171794631.A.G_A 20 0.8  0 0 

29 chr6.31601012.T.C_C 20 0.8  0 0 

30 chr10.78008749.C.T_T 20 0.8  0 0 

31 chr2.152280246.A.G_A 19 0.76  0 0 

32 chr4.101069386.C.T_T 18 0.72   0 0 

33 chr2.121146501.T.C_T 16 0.64  0 0 

34 chr17.41245466.G.A_G 15 0.6  0 0 

35 chr19.56321414.C.A_A 15 0.6  0 0 

36 chr5.175953121.C.T_T 15 0.6  0 0 

37 chr8.37884310.T.C_C 14 0.56  0 0 

38 chr1.180961245.G.A_G 11 0.44  0 0 

39 chr4.185745029.C.T_C 11 0.44  0 0 

40 chr1.46728913.A.G_A 11 0.44  0 0 

41 chr19.23166913.T.C_C 8 0.32  0 0 

https://atlas.ctglab.nl/traitDB/3366
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42 chr20.5948227.G.A_G 8 0.32  3 0.12 

43 chr4.48814687.T.C_T 8 0.32  0 0 

44 chr11.32549463.C.T_T 8 0.32  0 0 

45 chr17.62479273.A.C_C 7 0.28  0 0 

46 chr20.63244.A.C_C 7 0.28  0 0 

47 chr15.41446950.C.T_T 6 0.24  0 0 

48 chr15.86293503.G.C_G 6 0.24  0 0 

49 chr17.55363674.A.T_T 5 0.2  0 0 

50 chr20.25426173.C.T_C 5 0.2  0 0 

51 chr7.56162172.G.C_C 5 0.2  0 0 

52 chr10.126658075.G.A_A 4 0.16  0 0 

53 chr10.97826334.A.G_G 3 0.12  0 0 

54 chr11.30226356.T.C_T 3 0.12  0 0 

55 chr12.10875928.A.C_A 1 0.04  0 0 

56 chr12.12884357.A.G_A 1 0.04  0 0 

57 chr12.76040392.T.C_C 1 0.04  5 0.2 

58 chr15.89780538.A.G_G 1 0.04  0 0 

59 chr16.35069526.G.A_A 0 0  0 0 

60 chr17.37835240.C.T_C 0 0  1 0.04 

61 chr2.27627366.G.A_A 0 0  15 0.6 

62 chr2.48017768.C.A_C 0 0  0 0 

63 chr4.84364808.T.C_T 0 0  0 0 

64 chr5.154257868.T.C_T 0 0  0 0 

65 chr5.6740468.T.G_G 0 0  20 0.8 

66 chr6.10887276.C.G_G 0 0  0 0 

67 chr7.105994726.G.A_A 0 0  0 0 

68 chr7.5453537.G.T_G 0 0  0 0 

69 chr9.33004375.C.A_A 0 0   2 0.08 

Note: In the Watanabe et al., the risk allele is positively related with the age at natural menopause. Therefore, 

the expected direction of the association should be negative when studying the association between genetic 

variant and POI.  

 

A similar table was created for the replication of the associations between POI and 6 genetic variants reported in 

the cancer survivor-based GWA study. However, the results differed from the original GWA study. Only one 

genetic variant (chr10.44103895.T.C_T) showed significant association, and the direction of the association 

changed. chr19.35619019.A.G_G and chr4.156116644.T.C_C showed same directions but the associations 

were not significant. 

 

Table L-2 The agreement between the replication analysis and Brooke et al. 

https://atlas.ctglab.nl/traitDB/3366
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genetic identifier 

coefficient P-value 

# of positive 

coefficients proportion 

# of 

significant 

coefficients proportion 

chr19.35619019.A.G_G 25 1 0 0 

chr4.156116644.T.C_C 25 1 0 0 

chr4.69830542.G.A_G 17 0.68 0 0 

chr2.46000486.A.G_A 8 0.32 0 0 

chr5.39416294.G.C_G 8 0.32 0 0 

chr10.44103895.T.C_T 5 0.2 3 0.12 

 

A summary of the coefficients and corresponding p-values for each variant are given in the following tables for 

your reference. Overall speaking, the direction of the coeffecients of 3 out of 6 genetic variants from the cancer 

survivor-based GWA study, and 32 out of 69 genetic variants for the general population-based GWA study 

were replicated respectively, though the associations were not significant. 

Table L-3 Summary of the coefficient and corresponding P-values for genetic variants in Brooke et al. 

p-value       

Mean (SD) 0.291 (0.285) 
0.583 

(0.224) 
0.780 

(0.168) 
0.468 

(0.200) 
0.696 

(0.200) 
0.750 

(0.190) 

Median 
[Min, Max] 

0.147 
[0.0320, 
0.865] 

0.626 [0.189, 
0.974] 

0.838 [0.448, 
0.993] 

0.529 [0.102, 
0.872] 

0.734 [0.260, 
0.988] 

0.800 [0.265, 
0.998] 

 

Table L-4 Summary of the coefficient and corresponding P-values for genetic variants in Watanabe et al. 

genetic  identifier 
coefficient P-value 

Mean (SD) Median [Min, Max] Mean (SD) Median [Min, Max] 

chr1.180961245.G.A_G 0.017(0.097) 0.054 [-0.195, 0.126] 0.660 (0.174) 0.671 [0.307, 0.917] 

chr1.242011344.C.G_C -0.123 (0.077) -0.107 [-0.316, -0.013] 0.544 (0.232) 0.558 [0.105, 0.941] 

chr1.39361425.T.G_G -0.196 (0.146) -0.254 [-0.429, 0.114] 0.307 (0.248) 0.178 [0.066, 0.964] 

chr1.46728913.A.G_A 0.044 (0.059) 0.062 [-0.0766, 0.135] 0.733 (0.105) 0.730 [0.521, 0.925] 

 chr10.44103
895.T.C_T 

chr19.35619
019.A.G_G 

chr2.460004
86.A.G_A 

chr4.156116
644.T.C_C 

chr4.698305
42.G.A_G 

chr5.394162
94.G.C_G 

estimate       

Mean 
(SD) 

-0.218 
(0.148) 

0.113 (0.076) 
-0.0312 
(0.060) 

0.142 (0.070) 0.059(0.096) 
-0.046 
(0.072) 

Median 
[Min, Max] 

-0.282 [-
0.389, 0.055] 

0.087 [0.005, 
0.300] 

-0.016 [-
0.142, 0.064] 

0.121 [0.027, 
0.303] 

0.0721 [-
0.092, 0.248] 

-0.040 [-
0.223, 0.062] 
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chr1.6701978.T.C_C -0.0348(0.088) -0.046 [-0.177, 0.139] 0.659 (0.192) 0.659 [0.300, 0.991] 

chr2.121146501.T.C_T -0.008(0.115) 0.021 [-0.199, 0.175] 0.639 (0.234) 0.673 [0.277, 0.944] 

chr2.152280246.A.G_A -0.057 (0.104) -0.064 [-0.235, 0.076] 0.646 (0.208) 0.693 [0.256, 0.995] 

chr2.171794631.A.G_A -0.068(0.119) -0.065 [-0.246, 0.155] 0.575 (0.235) 0.600 [0.219, 0.980] 

chr2.27627366.G.A_A 0.137 (0.088) 0.109 [0.031, 0.306] 0.506 (0.243) 0.564 [0.107, 0.874] 

chr2.48017768.C.A_C 0.196 (0.046) 0.196 [0.131, 0.297] 0.385 (0.107) 0.371 [0.188, 0.616] 

chr2.67597525.T.A_A -0.052(0.091) -0.0630 [-0.235, 0.138] 0.784 (0.132) 0.768 [0.485, 0.998] 

chr3.183573235.C.T_C -0.127 (0.052) -0.135 [-0.239, -0.018] 0.553 (0.172) 0.494 [0.229, 0.931] 

chr4.101069386.C.T_T 0.005 (0.070) -0.009 [-0.114, 0.128] 0.802 (0.149) 0.831 [0.547, 0.995] 

chr4.185745029.C.T_C 0.027 (0.055) 0.0218 [-0.085, 0.112] 0.797 (0.151) 0.783 [0.539, 0.992] 

chr4.48814687.T.C_T 0.126 (0.132) 0.181 [-0.179, 0.258] 0.355 (0.151) 0.319 [0.154, 0.607] 

chr4.84364808.T.C_T 0.237 (0.095) 0.273 [0.036, 0.360] 0.246 (0.236) 0.110 [0.043, 0.836] 

chr5.154257868.T.C_T 0.216 (0.109) 0.191 [0.045, 0.436] 0.545 (0.198) 0.568 [0.186, 0.889] 

chr5.173410833.A.G_A -0.267 (0.170) -0.293 [-0.566, 0.018] 0.343 (0.314) 0.181 [0.006, 0.935] 

chr5.175953121.C.T_T 0.020 (0.058) 0.038 [-0.083, 0.122] 0.770 (0.106) 0.791 [0.489, 0.988] 

chr5.176425581.A.C_A -0.163 (0.105) -0.159 [-0.315, 0.043] 0.410 (0.285) 0.395 [0.071, 0.920] 

chr5.6740468.T.G_G 0.096(0.053) 0.098 [0.022, 0.198] 0.620 (0.195) 0.680 [0.290, 0.897] 

chr6.10887276.C.G_G 0.327 (0.086) 0.313 [0.203, 0.525] 0.237 (0.105) 0.239 [0.060, 0.447] 

chr6.31601012.T.C_C -0.055 (0.089) -0.065 [-0.204, 0.084] 0.703 (0.201) 0.736 [0.357, 0.993] 

chr7.105994726.G.A_A 0.231 (0.103) 0.229 [0.067, 0.447] 0.278 (0.191) 0.264 [0.018, 0.721] 

chr7.5453537.G.T_G 0.299 (0.058) 0.306 [0.179, 0.412] 0.148 (0.0798) 0.129 [0.035, 0.381] 

chr7.56162172.G.C_C 0.105 (0.065) 0.103 [-0.009, 0.242] 0.607 (0.220) 0.591 [0.212, 0.979] 

chr7.99785765.T.G_G -0.060 (0.091) -0.093 [-0.199, 0.125] 0.674 (0.180) 0.650 [0.362, 0.975] 

chr8.129607823.T.C_C -0.055 (0.0601) -0.050 [-0.156, 0.064] 0.743 (0.148) 0.801 [0.457, 0.976] 

chr8.37884310.T.C_C 0.060 (0.126) 0.073 [-0.163, 0.259] 0.608 (0.223) 0.560 [0.261, 0.992] 

chr8.48926264.T.A_A -0.482 (0.186) -0.522 [-0.786, -0.059] 0.253 (0.243) 0.172 [0.019, 0.897] 

chr9.33004375.C.A_A 0.223 (0.087) 0.207 [0.093, 0.366] 0.280 (0.192) 0.275 [0.037, 0.696] 

chr10.126658075.G.A_A 0.170 (0.039) 0.155 [0.113, 0.263] 0.360 (0.102) 0.386 [0.145, 0.513] 

chr10.131590300.T.A_A -0.081 (0.085) -0.071 [-0.266, 0.027] 0.665 (0.255) 0.684 [0.157, 0.972] 

chr10.78008749.C.T_T -0.035 (0.117) -0.021 [-0.284, 0.128] 0.654 (0.226) 0.693 [0.150, 0.932] 

chr10.97826334.A.G_G 0.789 (0.167) 0.725 [0.573, 1.18] 0.0723 (0.055) 0.068 [0.001, 0.175] 

chr11.30226356.T.C_T 0.299 (0.105) 0.283 [0.145, 0.593] 0.330 (0.137) 0.323 [0.062, 0.589] 

chr11.32549463.C.T_T 0.119 (0.096) 0.153 [-0.0273, 0.271] 0.530 (0.309) 0.368 [0.120, 0.999] 

chr12.10875928.A.C_A 0.326 (0.158) 0.373 [0.064, 0.565] 0.465 (0.237) 0.364 [0.175, 0.890] 

chr12.120189879.A.G_A -0.119 (0.054) -0.108 [-0.232, 0.006] 0.524 (0.178) 0.563 [0.196, 0.971] 

chr12.122203915.C.T_C -0.198 (0.128) -0.131 [-0.409, -0.044] 0.431 (0.282) 0.544 [0.045, 0.826] 

chr12.123593382.C.T_T -0.449 (0.178) -0.505 [-0.656, -0.109] 0.143 (0.222) 0.039 [0.008, 0.630] 

chr12.12884357.A.G_A 0.255 (0.084) 0.273 [0.081, 0.390] 0.226 (0.178) 0.176 [0.034, 0.673] 

chr12.130822471.C.T_T -0.039 (0.113) -0.078 [-0.192, 0.183] 0.577 (0.208) 0.562 [0.261, 0.947] 

chr12.57146069.T.G_G -0.228 (0.088) -0.246 [-0.405, -0.049] 0.462 (0.179) 0.438 [0.168, 0.868] 

chr12.66704225.A.G_A -0.255 (0.338) -0.151 [-0.897, 0.113] 0.566 (0.371) 0.708 [0.013, 0.973] 

chr12.76040392.T.C_C 0.270 (0.162) 0.261 [0.022, 0.626] 0.493 (0.242) 0.464 [0.081, 0.949] 

chr13.61113739.G.A_G -0.124 (0.101) -0.152 [-0.263, 0.048] 0.514 (0.298) 0.412 [0.150, 0.995] 

chr14.20938251.A.C_C -0.086 (0.062) -0.089 [-0.189, 0.0416] 0.675 (0.182) 0.689 [0.382, 0.995] 

chr14.34985658.C.T_T -0.691 (0.475) -0.606 [-1.99, 0.058] 0.412 (0.222) 0.366 [0.062, 0.913] 

chr15.41446950.C.T_T 0.065 (0.034) 0.073 [-0.004, 0.131] 0.717 (0.143) 0.679 [0.465, 0.997] 

chr15.86293503.G.C_G 0.077 (0.046) 0.071 [-0.004, 0.165] 0.678 (0.177) 0.694 [0.339, 0.977] 
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chr15.89780538.A.G_G 0.238 (0.068) 0.219 [0.131, 0.374] 0.209 (0.113) 0.195 [0.059, 0.444] 

chr16.11948895.T.C_C -0.122 (0.067) -0.093 [-0.274, -0.055] 0.532 (0.197) 0.614 [0.113, 0.767] 

chr16.35069526.G.A_A 0.237 (0.106) 0.278 [0.007, 0.348] 0.251 (0.300) 0.102 [0.042, 0.966] 

chr16.89786761.C.T_C -0.187 (0.093) -0.173 [-0.366, -0.038] 0.397 (0.228) 0.373 [0.075, 0.848] 

chr17.37835240.C.T_C 0.159 (0.088) 0.185 [0.008, 0.302] 0.449 (0.252) 0.338 [0.122, 0.964] 

chr17.41245466.G.A_G 0.023 (0.074) 0.032 [-0.091, 0.137] 0.739 (0.131) 0.721 [0.505, 0.982] 

chr17.5327481.T.G_T -0.483 (0.124) -0.526 [-0.655, -0.232] 0.0421 (0.075) 0.006 [0.001, 0.241] 

chr17.55363674.A.T_T 0.194 (0.0824) 0.212 [-0.007, 0.316] 0.339 (0.228) 0.257 [0.084, 0.975] 

chr17.62479273.A.C_C 0.188 (0.134) 0.217 [-0.086, 0.371] 0.317 (0.270) 0.239 [0.034, 0.971] 

chr19.23166913.T.C_C 0.169 (0.176) 0.235 [-0.168, 0.371] 0.350 (0.186) 0.315 [0.112, 0.835] 

chr19.46890160.T.C_T -0.080 (0.077) -0.062 [-0.237, 0.030] 0.726 (0.221) 0.791 [0.312, 0.998] 

chr19.55827175.G.A_A -0.094 (0.067) -0.109 [-0.242, -0.003] 0.641 (0.238) 0.597 [0.212, 0.984] 

chr19.56321414.C.A_A 0.0386 (0.143) 0.024 [-0.208, 0.320] 0.755 (0.177) 0.792 [0.386, 1.00] 

chr20.25426173.C.T_C 0.157 (0.117) 0.135 [-0.011, 0.402] 0.705 (0.204) 0.737 [0.310, 0.989] 

chr20.5580789.C.T_T -0.329 (0.172) -0.277 [-0.668, -0.073] 0.615 (0.159) 0.635 [0.332, 0.906] 

chr20.5948227.G.A_G 0.171 (0.183) 0.156 [-0.140, 0.449] 0.624 (0.188) 0.683 [0.271, 0.832] 

chr20.63244.A.C_C 0.129 (0.081) 0.149 [-0.010, 0.279] 0.583 (0.242) 0.509 [0.188, 0.993] 

chr22.39021165.T.C_C -0.007 (0.077) -0.028 [-0.111, 0.195] 0.784 (0.170) 0.803 [0.428, 0.998] 
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