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Abstract

The quantum-classical Liouville equation (QCLE) provides a foundation for simu-

lating the dynamics of quantum systems coupled to classical environments. Many

processes including proton-transfer reactions, electron-transfer reactions, and heat

transport in molecular junctions, for example, take place in such mixed quantum-

classical systems. The most accurate algorithms for solving the QCLE require very

large ensembles of trajectories to obtain converged results, which is computationally

prohibitive for many systems. The recently developed “Deterministic evolution of

coordinates with initial decoupled equations” (DECIDE) method has demonstrated

promise in solving the QCLE with high accuracy and low computational cost for sev-

eral model systems; however, its broad scale applicability is still under investigation.

Previously, the applications of DECIDE relied on subsystem and adiabatic energy

basis representations. While these representations are convenient for certain systems,

the position representation is convenient for many other systems, including systems

undergoing proton- and electron-transfer reactions. Thus, as a starting point, we

cast the DECIDE equations of motion for a simple one-dimensional proton-transfer

model in a finite quantum harmonic oscillator position basis. After solving the
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DECIDE equations of motion in this basis, we showed that it is possible to generate

trajectories that conserve the total energy of the system and we calculated various

quantities of interest. Next, we considered a two-dimensional proton-transfer model.

In this case, it was not possible to generate trajectories that conserve energy out to

arbitrary times. Our analysis revealed that the finite nature of the position basis

and the order of the Hamiltonian are responsible for the accumulation of numerical

errors that ultimately lead to a breakdown of energy conservation.

In a recent study, our group proposed a novel platform for an open excitonic

quantum battery (EQB), which takes advantage of a symmetry-protected dark state

residing in a decoherence-free subspace. While in this dark state, the EQB can store

an exciton for an indefinite period of time without any environment-induced popula-

tion losses (known as the storage phase). When a symmetry-breaking perturbation

is connected to the EQB, the battery begins to discharge the exciton (known as

the discharge phase). In this thesis, we demonstrated that the quantum battery is

not only loss-free with respect to exciton population during the storage phase, but

also with respect to the battery energy. We then went on to explore the population

and energy dynamics of the battery during the discharge phase over a wide range

of parameter regimes – site energies, bath temperatures, and bath reorganization

energies. Our results shed light on how to control the rate/amount of population

and/or energy from the battery.
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Chapter 1

Introduction

Most systems of interest in chemistry and biology contain very large numbers of
degrees of freedom (DOF). An exact simulation of the dynamics of such a system
requires a fully quantum mechanical treatment of the entire system, which is com-
putationally prohibitive due to the exponential scaling with the number of DOF.
One approach to overcoming this issue is to treat a few degrees of freedom of in-
terest quantum mechanically (i.e., subsystem) and the remainder classically (i.e.,
environment or bath) [1, 2, 3]. Within this approach, the quantum subsystem is
described in terms of a Hilbert space and the classical environment in terms of a
phase space of positions and momenta. Previously, these mixed quantum-classical
techniques have been applied to a wide range of phenomena, e.g., proton transfer
reactions [4, 5], electron transfer reactions [6, 7], proton-coupled electron transfer
reactions [8, 9, 10, 11, 12, 13, 14], exciton transport in photosynthetic complexes
[15, 16, 17], and heat transport in molecular junctions [18, 19, 20, 21], etc.

The quantum-classical Liouville equation (QCLE) serves as a starting point for
simulating the dynamics of mixed quantum-classical systems [2, 3, 22]. Over the
years, a host of techniques have been developed based on approximate solutions of
the QCLE [4, 3, 23, 16, 22, 24]. The most accurate of these techniques are the so-
called stochastic surface-hopping solutions [4, 23], but they require extremely large
ensembles of trajectories to obtain converged results and, as a result, will be com-
putationally prohibitive for many systems. On the other hand, the Poisson Bracket
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Mapping Equation (PBME) approach provides a highly computationally efficient
approximate solution of the QCLE, but its applicability is mainly restricted to sys-
tems with weak subsystem-bath couplings [25, 26, 6, 27]. Recently, the “Determin-
istic evolution of coordinates with initial decoupled equations" (DECIDE) method
was developed, which offers a favourable balance between computational economy
and accuracy [24]. DECIDE has two main advantages compared to the stochastic
QCLE-based methods: (i) It is a deterministic method that requires the integration
of L2(L2 − 2 + 2N) coupled differential equations (where L is the number of basis
functions used to represent the subsystem and N is the number of environmental
DOF). Typically, only a few thousand trajectories are required to obtain converged
results, in contrast to several orders of magnitude more trajectories in the case of
the stochastic QCLE-based methods; (ii) There is no need to diagonalize the Hamil-
tonian matrix on-the-fly. DECIDE has demonstrated great promise in solving the
QCLE with high accuracy and low computational cost for a number of model sys-
tems, including the spin-boson model [24, 28], Fenna-Matthews-Olson model [24, 28],
a three-state photo-induced electron transfer model [24], nonequilibrium spin-boson
model [19, 20, 29], and a quantum battery model [30].

To date, the DECIDE equations have been represented in complete spin, subsys-
tem, and adiabatic energy bases, and successfully applied to simulating the dynamics
of Hamiltonians expressed in these bases. However, the feasibility of expressing the
DECIDE equations in a finite position basis has yet to be explored. In this thesis,
we represent the DECIDE equations in a quantum harmonic oscillator basis and use
the resulting equations to simulate the dynamics of one- and two-dimensional models
[31] of proton transfer reactions.

In a recent study by our group, we simulated the exciton population dynamics of
an open quantum network model of a charged excitonic quantum battery (EQB) [30].
By initializing the EQB in a symmetry-protected dark state, it was possible to store
an exciton indefinitely without any loss to the surrounding thermal baths. Moreover,
it was shown that the exciton could be discharged by breaking the symmetry of
the EQB. In this thesis, we use the DECIDE method to study both the exciton
population and energy dynamics of this quantum battery model across a wide range
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of parameter regimes, viz., site energies, bath temperatures, and bath reorganization
energies.

The thesis is organized as follows. In Chapter 2, we first discuss the Wigner-
Weyl transform, which has been widely used in mixed quantum-classical dynamics,
as it provides an invertible mapping between Hilbert space operators and phase space
functions. In particular, we introduce the partial Wigner-Weyl transform to the bath
DOF, which retains a Hilbert space description of the quantum subsystem. Then,
we derive the QCLE, which is the starting point for the development of a host of
mixed quantum-classical dynamics methods. At the end of the chapter, we derive
the DECIDE equations of motion and briefly discuss their underlying approxima-
tions and energy conservation. In Chapter 3, we explore the ability of the DECIDE
method for simulating the dynamics of one- and two-dimensional proton transfer
models in a finite position basis. In Chapter 4, we study the exciton population and
energy transfer dynamics of a model quantum battery over a wide range of param-
eter regimes, using the DECIDE method. Finally, we summarize our findings and
propose ideas for future work in Chapter 5.
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Chapter 2

Mixed Quantum-Classical Dynamics

2.1 Wigner-Weyl transform

The Wigner-Weyl transform was first introduced by Wigner in 1932 [32]. Wigner’s
original goal was to find correction terms that would bridge quantum and classical
mechanics [33, 32]. The transform can be understood in terms of probability func-
tions. For example, for a given wave function in position space, ψ(x), the probability
density is |ψ(x)|2. The wave function can also be expressed in momentum space as

ϕ(p) =
1√
h

∫︂
e−ixp/h̄ψ(x) dx = ⟨p|ψ⟩ , (2.1)

where h̄ = h/2π (h is Planck’s constant) and the associated probability density is
|ϕ(p)|2. Both expressions above depend on a single variable, either x or p. The
Wigner-Weyl transform provides a way to represent the probability distribution in
terms of position (x) and momentum (p) simultaneously. By definition, the Wigner-
Weyl transform of an operator Â is

AW (x, p) =

∫︂
e−ipy/h̄ψ∗(x+

y

2
)Âψ(x− y

2
) dy,

=

∫︂
e−ipy/h̄

⟨︂
x+

y

2
|Â|x− y

2

⟩︂
dy, (2.2)
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where x and p are vectors containing the positions and momenta of all DOF in the
system and y is an arbitrary integration variable.

Using the above definition, one can derive several properties of this transforma-
tion. First, for the identity operator 1̂,

1W =

∫︂
e−ipy/h̄

⟨︂
x+

y

2
|1̂|x− y

2

⟩︂
dy

=

∫︂
e−ipy/h̄δ(x+

y

2
− x+ y

2
) dy = 1. (2.3)

Second, for an operator Â that is only a function of x̂, the Wigner-Weyl transform is

AW (x) =

∫︂
e−ipy/h̄

⟨︂
x+

y

2
|Â|x− y

2

⟩︂
dy

=

∫︂
e−ipy/h̄A(x− y

2
)δ(y) dy. (2.4)

Similarly, for an operator Â that is only a function of p̂, its Wigner-Weyl transform
is A(p). Third, the trace of the product of two operators Â and B̂ is

Tr(ÂB̂) =
1

h

∫︂ ∫︂
AW (x, p)BW (x, p) dxdp. (2.5)

The Wigner function, which corresponds to the probability density of x and p, is
defined in terms of the density operator ρ̂ = |ψ⟩⟨ψ| as

ρW (x, p)/h =
1

h

∫︂ ∫︂
e−ipyh̄|x+ y

2
⟩⟨x− y

2
| dxdy ≡ W (x, p). (2.6)

For example, the Wigner functions for the ground and first-excited states of the
quantum harmonic oscillator are shown in Fig. 2.1. The expectation value of a
Wigner-Weyl-transformed operator Â is given by

⟨Â⟩ = Tr(ρ̂Â) =

∫︂ ∫︂
W (x, p)AW (x, p) dxdp. (2.7)

For a Hamiltonian Ĥ = T (p̂) + U(x̂), where T is the kinetic energy and U is the
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Figure 2.1: Wigner functions for the (a) ground state, W0(x, p) = 2 exp(−p2 − x2),
and (b) excited state, W1(x, p) = 2(−1+2p2+2x2) exp(−p2−x2), of the dimensionless
quantum harmonic oscillator (Ĥ = −1

2
d2

dx2 + 1
2
x2). The expressions for the Wigner

functions are taken from Ref. [33].

potential energy, the expectation values of T (p̂) and U(x̂) are

⟨T ⟩ =
∫︂∫︂

W (x, p)TW (p) dxdp, (2.8)

and
⟨U⟩ =

∫︂∫︂
W (x, p)UW (x) dxdp. (2.9)

W (x, p) is normalized, i.e.,∫︂ ∫︂
W (x, p) dxdp = Tr(ρ) = 1. (2.10)

The Wigner-Weyl transform of the product of two operators is [34]

(ÂB̂)W = AW (x, p) exp (h̄Λ/2i)BW (x, p) ≡ AW (x, p) ∗BW (x, p). (2.11)

In the above equation, ∗ denotes the Moyal star product [35, 36] and Λ is the Poisson
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bracket operator,

Λ =

←−
∂

∂p
·
−→
∂

∂x
−
←−
∂

∂p
·
−→
∂

∂x
, (2.12)

where the arrows denote the directions of the operator. (The derivation of Eq. 2.11
may be found in Ref. [34].) The exponential in Eq. 2.11 may be expanded in the
following series,

eh̄Λ/2i = 1 +
h̄

2i
Λ +

(︃
h̄

2i
Λ

)︃2

/2! + . . . . (2.13)

Another useful expression is the Wigner transform of the Boltzmann operator
Ω ≡ e−βH , where β = 1/kT [34, 37]. For a canonical ensemble in equilibrium, the
probability of a specific state is proportional to Ω. For example, let us consider a
system containing one harmonic oscillator whose Hamiltonian is

Ĥ =
p̂2

2
+

1

2
ω2x̂2, (2.14)

where x̂ and p̂ are the mass-weighted position and momentum operators, respectively.
The Wigner-Weyl transform of Ω may be obtained as follows. Consider the derivative
of Ω with respect to β,

∂Ω

∂β
= −ĤΩ. (2.15)

Taking the Wigner-Weyl transform of both sides of this equation, we obtain

∂ΩW

∂β
= −HW exp (h̄Λ/2i)ΩW . (2.16)

Since ΩW (β = 0) = 1, Eq. 2.16 becomes

∂ΩW

∂β
= −HW cos (h̄Λ/2)ΩW , (2.17)

which is also known as the Bloch equation. Inserting the expression for Ĥ in Eq. 2.14
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into Eq. 2.16, we obtain

∂ΩW

∂β
= −HWΩW + (h̄2/8)

[︃
∂2

∂x2
+ ω2 ∂

2

∂p2

]︃
ΩW . (2.18)

To arrive at Eq. 2.18, the second-order expansion of Eq. 2.13 was used with the
first-order term omitted because ΩW (β = 0) = 1. Then, one assumes a solution for
ΩW of the form,

ΩW = exp [−A(β)HW +B(β)] . (2.19)

Therefore,
dA(β)

dβ
HW +

dB(β)

dβ
= −HW −

1

4
h̄2ω2A+

1

4
h̄2ω2HW . (2.20)

By comparing the coefficients, one finds

A = (2/h̄ω) tanh h̄ωβ/2, (2.21)

B = − ln cosh h̄ωβ/2. (2.22)

Then, the probability of the harmonic oscillator being at x and p (setting h̄ = 1) is

ρ =
tanh βω/2

π
exp

[︃
−2 tanh(βω/2)

ω

(︃
p2

2
+
ωx2

2

)︃]︃
. (2.23)

Finally, for a set of N harmonic oscillators,

ρ =
N∏︂
j=1

tanh βωj/2

π
exp

[︃
−2 tanh(βωj/2)

ωj

(︃
p2

2
+
ωjx

2

2

)︃]︃
. (2.24)

2.2 Quantum-Classical Liouville Equation

In this section, we derive the quantum-classical Liouville equation (QCLE) [2, 3, 22],
which has been used as the starting point for deriving a host of mixed quantum-
classical dynamics techniques. The derivation begins with the quantum Liouville

8



equation for the density operator of a quantum system,

∂ρ̂

∂t
= − i

h̄

[︂
Ĥ, ρ̂

]︂
, (2.25)

where [· · · ] denotes a commutator. Since a mixed quantum-classical system is com-
posed of a quantum subsystem that is coupled to a classical bath (or environment),
one then applies a partial Wigner-Weyl transform over the bath DOF to the quantum
Liouville equation to obtain

∂ρ̂W (R,P, t)

∂t
= − i

h̄
((Ĥρ̂)W − (ρ̂Ĥ)W ) (2.26)

= − i
h̄
(ĤW (R,P )eh̄Λ/2iρ̂W (R,P, t)− ρ̂W (R,P, t)eh̄Λ/2iĤW (R,P )),

where R and P are vectors containing the positions and momenta, respectively, of the
classical DOF. Before carrying out the next step, we introduce several dimensionless
variables. This is done by first defining an arbitrary energy unit ϵ0, such that the
time unit becomes t0 = h̄/ϵ0 and the length unit becomes λm = (h̄2/mϵ)1/2. Using
these units, the dimensionless variables are

q̂′ = q̂/λ, R′ = R/λm

p̂′ = p̂′/(mλm/t0) = p̂′/(mϵ0)
1/2, P ′ = P/(Mϵ0)

1/2, (2.27)

where m and M denote the masses of the quantum and classical DOF, respectively.
In terms of the dimensionless variables, Eq. 2.26 becomes

∂ρ̂′W (R′, P ′, t′)

∂t′
= −i(Ĥ

′
W (R′, P ′)eµΛ/2iρ̂′W (R′, P ′, t′)−ρ′W (R′, P ′, t′)eµΛ/2iĤ

′
W (R′, P ′)),

(2.28)
where µ = (m/M)1/2. Expanding Eq. 2.28 and keeping only up to first-order terms
in µ (since it is assumed that the subsystem DOF are much lighter than the bath

9



DOF and, thus, higher order terms in µ are very small), one obtains

∂ρ̂′W (R,P, t)

∂t
= −i

[︂
Ĥ

′
W (R′, P ′), ρ̂′W (R′, P ′, t′)

]︂
(2.29)

+
µ

2

(︂
{Ĥ

′
W (R′, P ′), ρ̂′W (R′, P ′, t′)} − {ρ̂′W (R′, P ′), Ĥ

′
W (R′, P ′, t′)}

)︂
.

Switching back to unscaled variables, one obtains

∂ρ̂W (R,P, t)

∂t
= − i

h̄

[︂
ĤW (R,P ), ρ̂W (R,P, t)

]︂
(2.30)

+
1

2

(︂
{ĤW (R,P ), ρ̂W (R,P, t)} − {ρ̂W (R,P ), ĤW (R,P, t)}

)︂
,

which is known as the QCLE. Defining the quantum-classical Liouville operator LW ,
one may conveniently write the QCLE as

∂ρ̂W (R,P, t)

∂t
≡ −iLW ρ̂W (R,P, t). (2.31)

One can also derive an analogous equation for any observable in the Heisenberg
picture, namely

∂ÂW (R,P, t)

∂t
= iLW ÂW (R,P, t). (2.32)

To solve the QCLE, one must first choose a basis for the Hilbert space of the
quantum subsystem. For example, for a system with the following general Hamilto-
nian,

ĤW (R,P ) =
P 2

2M
+

p̂2

2m
+ V̂ W (q̂, R) ≡ P 2

2M
+ ĥW (R), (2.33)

where ĥW (R) = p̂2

2m
+ V̂ W (q̂, R), one may choose the eigenstates of ĥW (R) as the

basis. This basis is often referred to as the adiabatic basis. Taking matrix elements

10



of both sides of the QCLE using this basis, one obtains [2]

∂ραα
′

W (R,P, t)

∂t
= −iωα,α′(R)ραα

′

W (R,P, t)

+
1

2

∑︂
α′′

P

M

(︂
ραα

′′

W dα′′α′ − dαα′′ρα
′′α′

W

)︂
− P

M

∂ραα
′

W

∂R

−1

2

∑︂
α′′

(︃
Fαα′′

W

∂ρα
′′α′

W

∂P
+
∂ραα

′′
W

∂P
Fα′′α′

W

)︃
, (2.34)

where ωαα′(R) = [Eα(R) − Eα′(R)]/h̄ is the transition frequency between adiabatic
states |α⟩ and |α′⟩, dαα′ =

⟨︁
α;R| ∂

∂R
|α′;R

⟩︁
is the nonadiabatic coupling vector, and

Fαα′
W = −

⟨︂
α;R|∂V̂ W (q̂,R)

∂R
|α′;R

⟩︂
is the Hellmann-Feynman force acting on the classi-

cal DOF.

2.3 The DECIDE Approach

In this section, we derive the DECIDE equations of motion [24]. Let us start by
considering a fully quantum system with a time-independent Hamiltonian, whose
subsystem and bath coordinates are denoted by x̂ and X̂, respectively. In the Heisen-
berg picture, the dynamics of the subsystem and bath coordinates are given by the
quantum Liouville equation, namely

d

dt
x̂(t) =

i

h̄

[︂
Ĥ, x̂(t)

]︂
=
i

h̄
eiL̂

Q
t
[︂
Ĥ, x̂

]︂
≡ i

h̄

(︂[︂
Ĥ, x̂

]︂)︂
(t)

d

dt
X̂(t) =

i

h̄
eiL̂

Q
t
[︂
Ĥ, X̂

]︂
=
i

h̄

(︂[︂
Ĥ, X̂

]︂)︂
(t), (2.35)

where eiL̂
Q
tÂ = eiĤt/h̄Âe−iĤt/h̄. In the above equation, the time arguments outside

the brackets indicate that one should first evaluate the commutator, then apply
the time dependence. Taking the partial Wigner transform of the above equations,
assuming that the subsystem and bath are initially decoupled, and retaining only
zeroth order terms in h̄ in the resulting Moyal product expansion, we obtain the
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DECIDE equations of motion,

d

dt
(x̂(t))W =

i

h̄

(︂
eiL̂

Q
t
)︂
W
eh̄Λ/2i

(︂[︂
Ĥ, x̂

]︂)︂
W

≈ i

h̄
eiL̂

W
t
(︂[︂
ĤW , x̂

]︂)︂
=
i

h̄

(︂[︂
ĤW , x̂

]︂)︂
(t)

d

dt
(X̂(t))W ≈ −eiL̂

W
t
(︂{︂
ĤW , X

}︂
a

)︂
= −

(︂{︂
ĤW , X

}︂
a

)︂
(t), (2.36)

where the antisymmetrized Poisson bracket is given by {ĤW , ÂW}a = 1
2
{ĤW , ÂW}−

1
2
{ÂW , ĤW}. It should be noted that, to account for noncommutativity in the above

equations, one has to replace coupling terms in the Hamiltonian with their Weyl-
ordered symmetric forms, e.g., x̂X would be replaced by 1

2
(x̂X + Xx̂). To arrive

at Eq. 2.36, we assumed that ([Ĥ, x̂])W = [ĤW , x̂] and ([Ĥ, X̂])W = − h̄
i
[ĤW , X̂]a,

i.e., the subsystem and bath are initially decoupled. Then, after expanding the
exponential of the Poisson bracket operator Λ, we only kept the zeroth order term
in h̄, i.e.,(︂

eiL̂
Q
t
)︂
W
eh̄Λ/2i

(︂[︂
Ĥ, x̂

]︂)︂
W
≈ eiL̂

W
t
(︂[︂
ĤW , x̂

]︂)︂
=

(︂[︂
ĤW , x̂

]︂)︂
(t). (2.37)

The errors caused by these approximations become significant when the subsystem
dynamics is highly non-Markovian, namely when the dependence on the initial bath
coordinates is important [24]. This can be the case for very low bath temperatures,
very strong subsystem-bath coupling, and very slow baths, i.e., when memory effects
are very pronounced [20, 24].

For the general form of the partially Wigner-transformed Hamiltonian given in
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Eq. 2.33, the DECIDE equations of motion for the subsystem and bath DOF become

d

dt
x̂(t) =

i

h̄

[︂
ĤW , x̂

]︂
=

p̂

m
,

d

dt
p̂(t) =

i

h̄

[︂
ĤW , p̂

]︂
= −∂V̂ W

∂x
.

d

dt
X(t) = −

{︂
ĤW , X

}︂
=
∂ĤW

∂P
· ∂X
∂X
− ∂ĤW

∂R
· ∂X
∂P

=
P

m
,

d

dt
P (t) = −

{︂
ĤW , P

}︂
= −∂V̂ W

∂X
. (2.38)

Finally, as in the case of the QCLE, one must select a convenient basis for the
quantum subsystem to solve these equations.

To show that the total energy of system is conserved over the course of the
dynamics, we start by taking the time derivative of a matrix element (in any basis)
of the Hamiltonian

dHαα′
W

dt
=

[︄
∂ĤW

∂x̂

dx̂

dt
+
∂ĤW

∂p̂

dp̂

dt
+
∂ĤW

∂X

dX

dt
+
∂ĤW

∂P

dP

dt

]︄αα′

, (2.39)

where Hαα′
= ⟨α|ĤW |α′⟩. Substituting the expressions for the time derivatives of

the subsystem and bath DOFs in Eq. 2.38 into Eq. 2.39, we find that

dHαα′
W

dt
= 0, (2.40)

thereby proving that the energy of the total system is conserved.
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Chapter 3

DECIDE in the Position Basis

3.1 1D Proton Transfer Model

We first apply the DECIDE equations of motion in a position basis to simulating the
dynamics of a simple 1D harmonic proton transfer model. This model represents a
proton in a hydrogen bond.

3.1.1 Model

The Weyl-ordered Hamiltonian of our 1D harmonic proton transfer model is given
by

ĤW =
p̂2

2m
+

P 2

2M
+ A0x̂2 +

1

2
k1Xx̂+

1

2
k1x̂X, (3.1)

where x̂/p̂ is the position/momentum operator of the proton, X/P is the length/mo-
mentum of the hydrogen bond stretch, and A0 and k1 are constants. A sketch of the
harmonic protonic potential is shown in Fig. 3.1. A convenient basis for representing
a proton transfer problem is the set of quantum harmonic oscillator wave functions,
i.e.,

ϕn(x) = ⟨x|ϕn⟩ = (2nn!
√
π)−1/2b1/2Hn(bx) exp[−b2x2/2], (3.2)

where Hn is the nth Hermite polynomial, b is an arbitrary constant, and n =

0, 1, 2, . . .. Note that if X in Eq. 3.1 is 0, then the exact solution of the time-
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Figure 3.1: Harmonic potentials (red, X = 0 Å; blue, X = 0.2 Å) for a proton in a
hydrogen bond, where D, H, and A represent the hydrogen bond donor, proton, and
hydrogen bond acceptor, respectively. x and X correspond to the displacements of
the proton and hydrogen bond length, respectively, from their equilibrium values.

independent Schrödinger equation is ϕn(x) with b =
(︁
2mA0/h̄2

)︁1/4. In this work,
we take b =

(︁
8mA0/h̄2

)︁1/4 instead (for the reason given in Section 3.2). The eigen-
functions of ĤW may be expanded in this basis as |ψi⟩ =

∑︁
n c

i
n|ϕn⟩, where cin is the

coefficient of the nth basis function. For this expansion, we use 12 basis functions
(n = 0, . . . , 11). Substituting the eigenfunction expansion into the time-independent
Schrödinger equation, we obtain an eigenvalue problem of the form Hc = cE, where
H is the Hamiltonian matrix expressed in the chosen basis, c is a matrix contain-
ing the cin’s of the ith eigenfunction, and E is a diagonal matrix containing the
eigenvalues Ei(X). The Hamiltonian matrix elements are calculated by numerical
integration and the eigenvalue problem is solved (to obtain the cin’s and eigenvalues)
using built-in functions in MATLAB. Using this method, we calculated the ground-
and first-excited state adiabatic potential energy surfaces [E0(X) and E1(X), respec-
tively] shown in Fig. 3.2.

The Schrödinger equation with the Hamiltonian in Eq. 3.1 can be solved analyti-
cally and exactly by first rewriting the potential energy as A0(x+ k1

2A0Xx)
2− k21

4A0X
2.
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The resulting adiabatic energies are

En(X) =

√︃
2A0

m
(n+

1

2
)h̄− k21

4A0
X2, n = 0, 1, 2, 3, . . . (3.3)

where n labels the energy level. Comparing our variational result to the exact one,
we find that good agreement is obtained when X is close to 0, but differences emerge
when |X| > 0.25 (see Fig. 3.2). The convergence of the variational result can be
improved by increasing the number of basis functions; however, the level of accuracy
achieved with 12 basis functions is sufficient for our purposes.
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Figure 3.2: Ground- and first-excited state adiabatic potential energy surfaces of the
1D harmonic proton transfer model. V denotes a variational result and A denotes an
analytical result. The following parameter values were used to obtain these surfaces:
A0 = 3367.6 cm−1 Å−2, k1 = 1.7× 104 cm−1 Å−2, and m = 1 amu.
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3.1.2 Simulation details

The DECIDE equations of motion for the harmonic proton transfer model are given
by

d

dt
x̂(t) =

i

h̄
[ĤW , x̂] =

p̂

m
,

d

dt
p̂(t) =

i

h̄
[ĤW , p̂] = −A0x̂− k1X,

d

dt
X(t) = −{ĤW , X} =

P

m
,

d

dt
P (t) = −{ĤW , P} = −k1x̂. (3.4)

In the harmonic oscillator basis, the equations of motion become

d

dt
xαα

′
(t) =

pαα
′

m
,

d

dt
pαα

′
(t) = −A0xαα

′ − k1Xαα′
,

d

dt
Xαα′

(t) =
Pαα′

m
,

d

dt
Pαα′

(t) = −k1xαα
′
, (3.5)

where, for example, xαα′
= ⟨α|x̂|α′⟩ and |α⟩ is the αth harmonic oscillator state.

Given the size of the basis set, the total number of coupled differential equations is
122 × 4.

We assume the initial state of the composite system to be factorized, i.e., ρ̂(0) =
ρ̂S(0)ρB,W (0), where ρ̂S(0) is the initial density operator of the subsystem (viz., the
proton) and ρB,W (0) is the initial Wigner distribution of the bath (viz., the hydrogen
bond stretch). In our simulations, the system is initialized in the adiabatic ground
state |ψ0⟩ of the Hamiltonian in Eq. 3.1, such that ρ̂S(t) = |ψ0⟩⟨ψ0|. In the harmonic
oscillator basis, the initial values of the matrix elements of the subsystem degrees of
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freedom xαα
′ and pαα′ are given by the following analytical expressions:

xαα
′
(0) =

1

2

(︁
h̄2/2mA0

)︁1/4 (︂√
α + 1δα+1,α′ +

√
α′ + 1δα,α′+1

)︂
,

pαα
′
(0) = i

(︁
2h̄2mA0

)︁1/4 (︂√
α + 1δα+1,α′ −

√
α′ + 1δα,α′+1

)︂
. (3.6)

The initial values of the matrix elements of the bath degrees of freedom Xαα′ and
Pαα′ are given by

Xαα′
(0) = X0δα,α′ , Pαα′

(0) = P0δα,α′ , (3.7)

where X0/P0 is the initial value of the bath position/momentum. In practice, X0 and
P0 may be sampled from Wigner distributions corresponding to thermal equilibrium
states. However, in this study, we choose X(0) = −0.2 Å (which is also used for the
study in Section 3.2) and P0 = 50 a.u., since we only generate a single trajectory
for demonstration purposes. Starting from these initial conditions, the DECIDE
equations of motion in Eq. 3.5 are integrated using the Runge Kutta 4th order
method [38] with a time step of 1 a.u. to simulate the dynamics of the system.

The expectation value of a property Â(t) may be calculated according to

⟨Â(t)⟩ =
∑︂
ββ′

∫︂
dX(0)dP (0) Aββ′

(t)ρβ
′β

S (0)ρB,W (0). (3.8)

However, since we only consider single trajectories in this study, we take ρB,W (0) =

1. In particular, we are interested in the conservation of the total energy along a
trajectory, which is calculated according to

⟨Ĥ(t)⟩ =
∑︂
αα′

Hαα′
(t)ρα

′α
S (0). (3.9)

3.1.3 Results

Figure 3.3 shows the values of X, adiabatic energy, bath kinetic energy, and total
energy along a representative trajectory. For a positive initial value of P0, we see
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that X increases up till about 4000 time steps and then starts to decrease. The
adiabatic energy increases, while the bath kinetic energy decreases over the course
of this trajectory. Finally, as seen in Fig. 3.3d, the total energy of the system is
well-conserved along this trajectory.
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Figure 3.3: Results for the 1D harmonic proton transfer model obtained with a
time step of 1 a.u. and the following parameter values: A0 = 3367.6 cm−1 Å−2,
k1 = 1.7× 104 cm−1 Å−2, m = 1 amu, M = 200 amu, X0 = -0.2 Å, and P0 = 50 au.
(a) Bath position, X(t), (b) Adiabatic energy, ⟨ p̂

2

2m
+ A0x̂2 + 1

2
k1Xx̂ + 1

2
k1x̂X⟩, (c)

Bath kinetic energy, P 2

2M
, (d) Total system energy, ⟨Ĥ⟩(t).
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3.2 2D Proton Transfer Model

3.2.1 Model

Next, we consider a simple 2D proton transfer model inspired by the well-known
Azzouz-Borgis model [39], which was designed to describe the proton transfer dy-
namics in a hydrogen-bonded phenolamine complex dissolved in methyl chloride (see
Fig. 3.4). Our goal is to test the ability of the DECIDE method to tackle a more
realistic model of a proton transfer reaction in solution. This model, due to Jain and
Subotnik [31], is composed of one protonic degree of freedom x̂ (treated quantum
mechanically), one hydrogen-bond donor-acceptor distance X2 (treated classically),
and one low-frequency solvent coordinate X1 (treated classically). Its Hamiltonian
is given by

ĤW =
p̂2

2m
+

P 2
1

2M1

+
P 2
2

2M2

+ V̂ (x̂, X1, X2), (3.10)

where
V (x̂, X1, X2) = V0(x̂) + V1(X1, X2) + Vc(x̂, X1, X2). (3.11)

In the above equation,
V0(x̂) = A0x̂2 +B0x̂4, (3.12)

V1(X1, X2) =
1

2
M1ω

2
1X

2
1 +

1

2
M2ω

2
2X

2
2 + k3X1X2 (3.13)

and
Vc(x̂, X1, X2) =

1

2
k1x̂X1 +

1

2
k1Xx̂+

1

2
k2x̂

2X2 +
1

2
k2X2x̂

2. (3.14)

The protonic potential V0(x̂) is a double-well potential. We note that, if one expands

V0(x̂) about a point x0 = ±
√︂
− A0

2B0 corresponding to the lowest energy, i.e.,

V0(x̂− x0) = −
A02

4B0
− 4A0(x̂− x0)2 + . . . , (3.15)
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Figure 3.4: Proton transfer in a hydrogen-bonded complex (D-H-A) dissolved in a
polar solvent. (a) Complex in the covalent state with the solvent unpolarized, and
(b) complex in the ionic state with solvent polarized.

and neglects the terms ofO(x3) or higher, the time-independent Schrödinger equation
could be solved analytically to yield the same solution as in Eq. 3.2 with x replaced
by x− x0.

Regarding the parameter values, we first used the values given in Ref. [31] in
an effort to reproduce (at least qualitatively) some results in that study. However,
after repeated attempts, we were not able to reproduce the results using the values
as given. Instead, we found a new parameter set (except for the values of A0 and
B0, which were the same as in Ref. [31]), which gave rise to very similar adiabatic
potential energy surfaces to those in Fig. 7d of Ref. [31] (see Fig. 3.5). The details
of how we arrived at the parameter values are provided in Appendix A.

3.2.2 Simulation details

Given the double-well character of the protonic potential, one may think to choose
a non-orthogonal basis consisting of two sets of harmonic oscillator basis functions,
each of which is centred at a different minimum of the potential. However, when con-
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Figure 3.5: 1D slices along X2 = 0.18 Å of the first five adiabatic potential energy
surfaces ⟨ψn| p̂

2

2m
+ V0 + Vc|ψn⟩ + V1, generated with 16 harmonic oscillator basis

functions.

sidering the sum of V0 and Vc, it turns out that a single harmonic oscillator basis [as
defined in Eq. 3.2 with b =

(︁
8mA0/h̄2

)︁1/4] centered at x = 0 was more appropriate.
This is due to the fact that the first order terms in Eq. 3.14 make the potential asym-
metric and shift the minima significantly, making it difficult to choose appropriate
centers for the two sets of basis functions. To solve the time-independent Schrödinger
equation for this model, we use the same approach as described in Section 3.1. As
in the case of the 1D proton transfer model, we use 12 harmonic oscillator basis
functions to expand the adiabatic eigenfunctions.

In the harmonic oscillator basis, the 122×6 coupled DECIDE equations of motion
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for this model are

d

dt
xαα

′
(t) =

i

h̄
[ĤW , x̂]

αα′
=

[︃
p̂(t)

m

]︃αα′

,

d

dp
pαα

′
(t) =

i

h̄
[ĤW , p̂]

αα′
=

[︁
−2A0x̂(t)− 4B0(x̂

3(t))− k1X1(t)− k2x̂(t)X2(t)− k2X2(t)x̂(t)
]︁αα′

,

d

dt
Xαα′

1 (t) = −{ĤW , X1}αα
′
=

[︃
P1(t)

M

]︃αα′

,

d

dt
Xαα′

2 (t) = −{ĤW , X2}αα
′
=

[︃
P2(t)

M

]︃αα′

,

d

dt
Pαα′

1 (t) = −{ĤW , P1}αα
′
=

[︁
−Mω2

1X1(t)− k3X2(t)− k1x̂(t)
]︁αα′

,

d

dt
Pαα′

2 (t) = −{ĤW , P2}αα
′
=

[︁
−Mω2

2X2(t)− k3X2(t)− k2x̂2(t)
]︁αα′

. (3.16)

To generate a trajectory, we choose the initial values of the bath coordinates to be
X1 = −0.2 Å, X2 = 0.1 Å, P1 = 50 au, and P2 = 50 au. The subsystem is initialized
in the ground state of the Hamiltonian in Eq. 3.10, with the same initial values of
the quantum coordinates xαα′ and pαα

′ as in Eq. 3.6. The equations of motion are
integrated using the Runge Kutta 4th order method [38] with a time step of 1 a.u.

3.2.3 Results and discussion

We now present and discuss the results of a detailed analysis, which demonstrates the
issues that can arise when using an incomplete basis set for this model. In Fig. 3.6a,
we present the total energy, calculated using Eq. 3.1.2, along a representative tra-
jectory. As can be seen, the total energy is not conserved. In Fig. 3.6b, we plot
X2(t) vs. X1(t) over the course of this trajectory. Although the total energy is not
conserved, this result is at least qualitatively correct at early times, since we expect
the bath coordinates to move along positive directions when the initial momenta are
both positive. When the size of the basis set is increased from 12 to 100 functions,
we see that the total energy converges to a particular curve as a function of time, but
remains not conserved (see Fig. 3.7). Similarly, increasing the size of the basis set
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causes the trajectory of the bath coordinates X1 and X2 to converge to a particular
curve. These results highlight an issue with casting the DECIDE equations for this
model in a finite position basis, which we will discuss next.
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Figure 3.6: (a) Total energy ⟨Ĥ⟩ vs. time along a representative trajectory, starting
from X1(0) = -0.2 Å, X2(0) = 0.1 Å, and P1(0) = P2(0) = 50 au, and generated using
a time step of 1 au, m = 1 amu, and M = 200 amu, (b) A plot of X1(t) vs. X2(t)
over the course of this trajectory.
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Figure 3.7: Effect of varying the number of basis functions on the total energy ⟨Ĥ⟩:
(a)12, (b) 20, (c) 50, and (d) 100 functions. Effect of varying the number of basis
functions on the X1(t) vs. X2(t) plots: (e)12, (f) 20, (g) 50, and (h) 100 functions.

To gain insight into this issue, we first note that the matrix elements (xn)αα′ (for
n ≥ 2) are not evolved directly in the DECIDE method. Rather, the value of (x2)αα′ ,
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for example, is calculated by first expanding it as follows,

(x2)αα
′
=

N∑︂
i=1

xαixiα
′
, (3.17)

where N is the number of basis functions. Alternatively, in matrix form, we may
write⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓
(x2)11 (x2)12 . . . (x2)1N

(x2)21 (x2)22 . . . (x2)2N

. . . . . . . . . . . .

(x2)N1 (x2)N2 . . . (x2)NN

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓ =

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓
x11 x12 . . . x1N

x21 x22 . . . x2N

. . . . . . . . . . . .

xN1 xN2 . . . xNN

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓×

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓
x11 x12 . . . x1N

x21 x22 . . . x2N

. . . . . . . . . . . .

xN1 xN2 . . . xNN

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓

(3.18)
For convenience, we use the forward Euler integration method to demonstrate the
issue associated with representing the DECIDE equations of motion for this model
in a finite position basis, i.e.,

f(t = ∆t) = f(t = 0) +
df

dt
(t = 0)∆t, (3.19)

where f(x) is an arbitrary time-dependent function. To reduce the numerical error
in the Euler method (since it is much less accurate than the Runge Kutta 4th order
method), we choose a very small time step of ∆t = 0.025 a.u. for this analysis.
According to Eq. 3.6, for an infinitely large basis set, the values of the xαα′ matrix
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elements (in units of Bohr radius) at t = 0 are⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓

0 0.2513 0 0 0 0 0 0 . . .

0.2513 0 0.3554 0 0 0 0 0 . . .

0 0.3554 0 0.4353 0 0 0 0 . . .

0 0 0.4353 0 0.5027 0 0 0 . . .

0 0 0 0.5027 0 0.562 0 0 . . .

0 0 0 0 0.562 0 0.6156 0 . . .

0 0 0 0 0 0.6156 0 0.6649 . . .

0 0 0 0 0 0 0.6649 0 . . .

0 0 0 0 0 0 0 0.7109 . . .
...

...
...

...
...

...
...

... . . .

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓

.

As can be seen, this matrix is sparse, with non-zero elements only immediately above
and below the diagonal elements. Let us now consider how to calculate at t = 0 an
accurate value of (x3)9,10, for example, which can be expanded as follows,

(x3)9,10 =
∞∑︂
i=1

∞∑︂
j=1

x9,ixi,jxj,10

= (x9,8x8,9 + x9,10x10,9)x9,10 + (x9,10x10,11)x11,10, (3.20)

where we have used the fact that the xαα′ matrix at t = 0 is sparse to simplify the
sums and arrive at the second line of the equation. In other words, to accurately
evaluate (x3)9,10, one does not require an infinitely large basis set; instead, one may
reliably evaluate the second line of Eq. 3.20 when N = 12. The same is true for
(x3)10,11 at t = 0 when N = 12. On the other hand, if N = 12, the calculation for
(x3)11,12 at t = 0 will not reliable, as the required evaluation of x12,13 is not possible
when the basis set contains only 12 functions.

According to Eq. 3.19, the value of each matrix element at a given time depends
on its previous value. An unreliable evaluation of (x3)11,12 will make d

dt
p11,12 at t = 0

unreliable, which will make p11,12 at t = 0.025 a.u. unreliable. Then, x11,12 at t = 0.05

a.u. will become unreliable. Thus, the matrix element (x3)10,11 at t = 0.05 a.u. (whose
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evaluation relies on x11,12) becomes unreliable starting at t = 0.05 a.u. Based on this
example, one can therefore expect that more matrix elements become unreliable as
time evolves. Initially, only the edge elements of the (x3)αα

′ matrix are unreliable,
but as time goes on, the inner elements become unreliable too.

Another way to explain this is by considering the zero elements in the xαα
′ .

The first line of Eq. 3.20 is a summation over an infinite number of terms. One
is able to simplify the sums because there are many zero elements in the initial
matrix. If all xαα′ matrix elements are non-zero, to evaluate (x3)9,10 we would have
to evaluate terms like x9,13, which are absent if N = 12. Although the initial matrix
has zero elements, it can be verified that many elements will become non-zero after
several steps, e.g. x8,0 = 0 at t = 0, but after four steps, it becomes non-zero.
This deterioration process can be very fast due to the cubic terms in the DECIDE
equations (see Eq. 3.16). For a basis set with 500 basis functions, it takes less than
30 time steps (0.75 a.u.) with the forward Euler integrator to make all elements
unreliable, which is much shorter than any timescale of interest. It is these unreliable
elements which ultimately lead to a breakdown in the energy conservation.

In the case of the 1D harmonic proton transfer model, the total energy is con-
served because there are no x2 or higher order terms in the equations of motion.
That being said, there are still some small errors when calculating energies because
there are x2 and p2 terms in the Hamiltonian (see Eq. 3.1).
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Chapter 4

Enhancing the Performance of an
Open Quantum Battery

4.1 Introduction

A quantum battery (QB) is a device that can store energy in a quantum system and
release the energy when needed. In practice, a QB may interact with an environment
(known as an open QB), which could lead to losses that negatively impact its per-
formance. Thus, any theoretical studies of QBs should account for the presence of
an environment. Along these lines, one can model an open QB as an open quantum
network (OQN), which is composed of a network of quantum systems (known as
sites) some or all of which are coupled to an environment that cause decoherence
and dissipation processes to occur [40, 41, 42].

Over the years, researchers have proposed a number of ways for protecting a
quantum system from its environment. One well-known approach is based on the
concept of a decoherence-free subspace (DFS) − a subspace of the Hilbert space
where only unitary dynamics takes place [43, 44]. As a result, this subspace is
free from the influence of dissipation and decoherence by an environment. As has
been proved in Refs. [45], [46], and [47], if there exists a unitary operator that
commutes with all elements in the master equation, the system will possess invariant
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subspaces. Among such subspaces, the one-dimensional subspaces are DFSs because
the dynamics maps them onto themselves. A quantum state that lives in a DFS
is a dark state (DS). DFSs and DSs have many potential applications in quantum
information and quantum computing [48, 49, 50, 51, 52, 53]. Recently, researchers
have proposed several ideas for stabilizing and enhancing the performance of QBs and
other OQNs by utilizing DFSs [30, 54, 55, 56]. In Ref. [30], our group exploited the
concept of a symmetry-protected dark state to propose a model for an open excitonic
quantum battery (EQB) that is capable of storing an exciton for an indefinite period
of time despite being coupled to thermal baths.

The effect of temperature gradients on energy/charge transport in nanoscale sys-
tems has been the subject of intensive study by both theorists and experimentalists
over the past two decades. By introducing a temperature gap between two ther-
mal baths connected to a quantum system, researchers have predicted and observed
thermal rectification [57, 58], nonequilibrium heat transport [59, 20, 19], and mass
flux [60, 61]. In our group’s previous study [30], we simulated the exciton popula-
tion dynamics of the EQB coupled to two baths with equal temperatures during the
discharge phase, but did not study the population and energy transfer dynamics in
the presence of a thermal gradient. Given the interesting nonequilibrium transport
phenomena observed in other quantum systems, a study exploring the effects of dif-
ferent temperature gaps on the population/energy discharge dynamics is worthwhile.
Thus, in this work, we study both the energy changes and populations dynamics of
the open QB during the discharge phase, over a wide range of bath temperature
gaps, bath reorganization energies, and site energies. Our goal is to find parameter
regimes that maximize the performance of the battery in discharging both energy
and exciton population.
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4.2 QB Model

Following Ref. [30], we consider the same OQN model of a para-benzene-like molecule.
Setting h̄ = 1, the Hamiltonian of the closed network is given by

ĤN =
6∑︂

n=1

En|n⟩⟨n|+ h
∑︂
⟨n,m⟩

|n⟩⟨m|, (4.1)

where |n⟩ corresponds to a singly excited state [62, 63] localized on site n, En is the
energy of site n, h is the nearest-neighbor electronic coupling strength, and the sum
⟨n,m⟩ denotes a cyclic summation over the nearest-neighbour sites in the network.
The numbering of the sites is depicted in Figure 4.1. To construct the OQN, the two
para-sites of the network are coupled to heat baths each containing a collection of
harmonic oscillators. The sum of the bath Hamiltonians and network-bath coupling
terms is given by

ĤB + ĤNB =
1

2

∑︂
n∈SSs

M∑︂
j

[︄
P̂

2

n,j + ω2
n,j

(︃
R̂n,j −

Cn,j

ω2
n,j

|n⟩⟨n|
)︃2

]︄
, (4.2)

where M is the number of harmonic oscillators in each bath, P̂ n,j and R̂n,j are the
mass-weighted momentum and position operators of the jth oscillator, respectively,
ωn,j is the corresponding frequency, and Cn,j is the bath-network coupling strength.
The sites coupled to the baths are referred to as surface sites (SSs) while the remain-
ing sites are referred to as bulk sites (BSs). In contrast to the case in Hückel theory
where En = ε for all n , we choose the same En values for the BSs but different
values for the SSs.

Despite the different SS energies and attached baths, the system possesses the
following unitary symmetry operator [64]

Π̂ = |1⟩⟨1|+ |4⟩⟨4|+ |2⟩⟨6|+ |3⟩⟨5|+ h.c., (4.3)
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which satisfies
[Π̂, ĤN ] = 0, [Π̂, |n⟩⟨n|] = 0 ∀n ∈ SSs. (4.4)

As a result, Π̂ shares the same eigenstates with ĤN . Due to the existence of this
symmetry operator, the system possesses two DFSs with the corresponding DSs |ψα⟩
and eigenvalues uα [46, 65]

|ψ1⟩ =
1

2
(|5⟩+ |6⟩ − |2⟩ − |3⟩) , u1 = EBS + h

|ψ2⟩ =
1

2
(|3⟩+ |6⟩ − |2⟩ − |5⟩) , u2 = EBS − h (4.5)

where EBS denotes the site energy (En) of the BSs. If the system is initialized in
the dark state |ψα⟩, it will undergo a dissipationless dynamics, i.e., if we define the
population of each site in terms of the projection operator P̂nn = |n⟩⟨n|, then the
dark state will be invariant under the effect of the evolution operator of the composite
system and the site populations will be

⟨P̂nn(t)⟩ = ⟨P̂nn(0)⟩ =

{︄
0, ∀n ∈ SSs
1
4
, ∀n ∈ BSs,

(4.6)

where ⟨·⟩ denotes an ensemble average. Because the excitation is stored indefinitely
in this state, this is termed the storage phase.

When a symmetry-breaking perturbation (SBP) is added to the OQN, the sym-
metry operator and DSs no longer exist and the QB may begin to discharge a stored
exciton. In this study, this is done by attaching a bath of M harmonic oscillators to
sites 2 and 3 simultaneously [65]. The corresponding Hamiltonian for the SBP and
network-SBP coupling is

ĤP + ĤNP =
1

2

M∑︂
k

[︄
p̂2k + Ω2

k

(︃
r̂k −

γk
Ω2

k

Ŝ

)︃2
]︄
, (4.7)

where p̂k, r̂k, Ωk, and γk are the momentum operator, position operator, frequency,
and coupling strength of the kth oscillator, respectively, and Ŝ = |2⟩⟨2|+ |3⟩⟨3|. This
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phase is termed the discharge phase.

4.3 Simulation Details

Due to the large number of degrees of freedom (DOF) in the QB, thermal baths, and
SBP, a fully quantum dynamical simulation of the composite system would be com-
putationally expensive. Thus, following Ref. [30], we use a mixed quantum-classical
method known as “Deterministic evolution of coordinates with initial decoupled equa-
tions" (DECIDE) [24], which treats the OQN quantum mechanically and the bath
classically. Previously, the DECIDE method has been successfully applied to a host
of model systems over a large range of parameter regimes [24, 20, 19, 28] and is thus
expected to produce reliable results in this case. That being said, DECIDE may
yield inaccurate results for systems with very slow heat baths (i.e., when the bath
cut-off frequency is much smaller than the subsystem energy gaps) or with very low
bath temperatures (neither of which is the case for the present model).

To apply the DECIDE method, we must first apply the partial Wigner transform
[32, 2] to the classical DOF, viz., the positions and momenta of the bath and SBP
oscillators. The partially Wigner-transformed Hamiltonian of the composite system
is

ĤW = ĤN+ĤNB({Rn,j})+HB({Pn,j}, {Rn,j})+χ
[︂
HP ({pk}, {rk}) + ĤNP ({rk})

]︂
,

(4.8)
where Pn,j, Rn,j, pk, and rk are the momentum and position variables of the baths
and SBP. The parameter χ is equal to 1 when a SBP is attached to the OQN and
0 otherwise. The quantum coordinates of the OQN are taken to be P̂nm = |n⟩⟨m|,
while the classical coordinates are the momenta and positions of the baths and SBP.
According to the DECIDE method, the equations of motion for the quantum and
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classical coordinates are given by [30]

d

dt
Pββ′

nm (t) = i

[︄
6∑︂

l=1

VlnP̂ lm(t)−
6∑︂

v=1

VmvP̂nv(t)

]︄ββ′

− i
2

∑︂
j

Cn,j(Rn,j(t)P̂nm(t) + P̂nm(t)Rn,j(t))
ββ′

(δn,1 + δn,4)

+
i

2

∑︂
j

Cm,j(Rm,j(t)P̂nm(t) + P̂nm(t)Rm,j(t))
ββ′

(δm,1 + δm,4)

−χ i
2

∑︂
k

Ck(Rk(t)P̂nm(t) + P̂nm(t)Rk(t))
ββ′

(δn,2 + δn,3)

+χ
i

2

∑︂
k

Ck(Rk(t)P̂nm(t) + P̂nm(t)Rk(t))
ββ′

(δm,2 + δm,3),

d

dt
Rββ′

n,j (t) = P ββ′

n,j (t),

d

dt
P ββ′

n,j (t) = −ω2
n,jR

ββ′

n,j (t) + Cn,jPββ′

nn (t)(δn,1 + δn,4),

d

dt
rββ

′

k (t) = pββ
′

k (t),

d

dt
pββ

′

k (t) = −Ω2
kr

ββ′

k (t) + χγk(P̂22 + P̂33)
ββ′

(t), (4.9)

where Vnn = En +
∑︁M

j=1C
2
n,j/(2ω

2
n,j)(δn,1 + δn,4) + χ

∑︁M
k=1 γ

2
k/(2Ω

2
k)(δn,2 + δn,3) and

Vnm = h. We assume the initial state of the system to be a factorized, i.e., ρ̂tot(0) =
ρ̂N(0)ρB,W (0)ρP,W (0), where ρ̂N(0) is the initial density operator of the network, and
ρB,W (0) and ρP,W (0) are the initial Wigner-transformed densities of the heat baths
and SBP, respectively (N.B.: ρP,W (0) is omitted when the OQN is not attached to the
SBP). The initial state of the network is taken to be the dark state ρ̂N(0) = |ψ1⟩⟨ψ1|,
where |ψ1⟩ is defined in Eq. 4.5. The initial values of the quantum coordinates are
always taken to be Pββ′

nm = δβ,nδm,β′ . The bath oscillators are initialized in thermal

33



equilibrium states given by (setting kB = 1)[34, 37]

ρB,W (0) =
∏︂
n=1,4

M∏︂
j=1

tanh(βωn,j/2)

π
× exp

[︃
−2 tanh(βωn,j/2)

ωn,j

(︃
P 2
n,j

2
+
ω2
n,jR

2
n,j

2

)︃]︃
,

(4.10)
where β = 1/kBT is the inverse temperature. The oscillators of the SBP are also
initialized in a thermal equilibrium state with an analogous form to that of the baths.
The initial positions and momenta of the bath and SBP oscillators are sampled from
Eq. 4.10 and its analog for the SBP, respectively. The system-bath and system-
SBP couplings are characterized by a Debye-Drude spectral density, i.e., J(ωn,j) =

2λb
ωn,j

ω2
n,j+1

. In this work, the spectral density is discretized to yield the following
expressions for the coupling strengths Cn,j and frequencies ωn,j in Eq. 4.2 [66, 67]

ωn,j = tan(j arctan(ωmax/ωc)/M)ωc, (4.11)

Cn,j = 2
√︁
λb arctan(ωmax/ωc)/(πM)ωn,j, (4.12)

where λb is the bath reorganization energy and ωc is the bath cut-off frequency [68].
Previously, the 4th order Runge-Kutta method was used to integrate the DECIDE
equations of motion in Eq. 4.9, yielding conserved total populations for the system
under study [24, 30]. However, in this work, we found that a much smaller time step
or a higher order integrator is needed for energy conservation and more accurate
calculations of the various components of the total energy. High-order Runge-Kutta
methods such as the 8th order method [69] can yield accurate results with a relatively
large time step, but it contains many integration stages which increases the simula-
tion time drastically. Considering the trade-off between the time step and number
of integration steps, we employed the 6th order Runge-Kutta method in this work.
For a 1 ps trajectory generated using this integrator with a time step of 0.16 fs, the
total energy drift is less than 1× 10−2 cm−1 (see Fig. B.1 in Appendix B).

The time-dependent populations of each site are calculated via ensemble averages
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of the projection operators P̂ nn, viz.,

⟨P̂nn(t)⟩ =
∑︂
ββ′

∫︂
dX(0)Pββ′

nn (t)ρβ
′β

N (0)ρE,W (0). (4.13)

Similarly, the average total energy of the composite system is

⟨Etot(t)⟩ =
∑︂
ββ′

∫︂
dX(0)Ĥ

ββ′

W (t)ρβ
′β

N (0)ρE,W (0). (4.14)

In the above equations, ρE,W = ρB,W in the absence of the SBP and ρE,W = ρB,WρP,W

when the SBP is attached to the system. We have verified that
∑︁6

n=1⟨P̂nn(t)⟩ = 1

(i.e., population conservation) and d
dt
Etot(t) = 0 (i.e., energy conservation). The

total energy of the composite system can be split into several parts: the energy of
the OQN (EN), the energy of the baths (ENB + EB), and the energy of the SBP
(ENP + EP ). EN can be further split into the on-site energy and exchange energy,
corresponding to the terms

∑︁6
n=1En|n⟩⟨n| and h

∑︁
⟨n,m⟩ |n⟩⟨m|, respectively, in the

Hamiltonian in Eq. 4.1. All simulation results are averaged over 10,000 trajectories,
which ensures that the error bars are much smaller than the symbols in the figures.

4.4 Results

We start by considering the time-dependent site populations and energies of the
OQN, SBP, and baths in the storage (χ = 0) and discharge (χ = 1) phases, using the
parameter values from Ref. [30], viz., E1 = 250 cm−1, Ei∈{2,3,5,6} = 200 cm−1, E4 =

0 cm−1 (N.B.: E4 is smaller than the energies of the remaining sites because site 4 is
set to be the exit site, which, in practice, would be attached to a sink that captures
the exciton/energy), h = 60 cm−1, TL = TR = 300 K, Tp = 300 K, λb = 35 cm−1,
λp = 10 cm−1, ωc = ωp = 106 cm−1, ωmax = 50ωc, and M = 100. In Fig. 4.1a,
we see that the populations of all sites are perfectly conserved during the storage
phase (viz., the populations of sites 2, 3, 5, and 6 remain 0.25, and the populations
of sites 1 and 4 remain 0). Similarly, as seen in Fig. 4.1c, the system, left bath, and
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Figure 4.1: Time-dependent site populations (upper panels) and energies (lower
panels) of the OQN, SBP, and baths in the storage (left panels) and discharge (right
panels) phases. In panel d), energy changes are calculated by subtracting the initial
value of the energy from the value at each time. The results were generated using
the following parameter set: E1 = 250 cm−1, Ei∈{2,3,5,6} = 200 cm−1, E4 = 0 cm−1,
h = 60 cm−1, TL = TR = 300 K, Tp = 300 K, λb = 35 cm−1, λp = 10 cm−1,
ωc = ωp = 106 cm−1, ωmax = 50ωc, and M = 100.
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right bath energies are perfectly conserved. Consistent with the theory, there is no
population/energy leakage during the storage phase.

As seen in Fig. 4.1b, after attaching the SBP, the populations of sites 1 and 4
increase while the remaining site populations decrease over the 1 ps time period. At
t = 1 ps, the population of site 4 (i.e., the exit site) is greater than that of site 1 and
the BSs. In Fig. 4.1d, we plot the changes in the system (OQN), left bath, right bath,
and SBP energies with respect to their initial values. As can be seen, the system and
left bath energies decrease while the SBP and right bath energies increase. Thus,
during the discharge phase, energy flows from the OQN and left bath into the right
bath and SBP, with considerably more energy flowing to the right bath than to the
SBP.

We now investigate the effects of varying the bath temperatures, bath reorganiza-
tion energy, and site energies on the site populations and energy flow in the battery,
in an effort to find parameter sets that will maximize the population of the exit site
and minimize the energy loss of the OQN. To simplify our exploration of the param-
eter space, we vary one parameter at a time while keeping the remaining parameters
fixed. First, we fix the temperature of the left bath at 300 K and vary the tempera-
ture of the right bath, while keeping the OQN, SBP, and remaining bath parameters
unchanged. In Figures 4.2a and c, we see that increasing the right bath temperature
leads to a decrease in the population of site 4 and relatively small increases in the
populations of the remaining sites. As for the energy changes (see Figures 4.2b and
d), the system and left bath lose energy, but the energy loss becomes smaller and
remains relatively constant, respectively, with increasing right bath temperature. On
the other hand, the SBP and right bath gain energy, but the amount of energy gain
becomes smaller and remains relatively constant, respectively, with increasing right
bath temperature. When we fix the temperature of the right bath at 300 K and vary
the temperature of the left bath, the behaviours of the site populations are similar to
those observed in the case when the temperature of the right bath is varied, except
for that of site 4 which now exhibits a substantially smaller decrease (see Figure 4.2c).
As for the energy changes (see Figure 4.2d), the behaviours of the SBP and OQN
energies are similar to those observed in the case when the temperature of the right
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Figure 4.2: Site populations (left panels) and energy changes (right panels) in the dis-
charge (χ = 1) phase for different bath temperature gradients. (a-b) Time-dependent
site populations and energy changes for right bath temperatures of 300 K (solid lines)
and 900 K (dashed lines), with TL = 300 K. (c-d) Site populations and energy changes
after 1 ps for different right bath temperatures and a left bath temperature of 300
K (denoted by right bath gradient), and different left bath temperatures and a right
bath temperature of 300 K (denoted by left bath gradient).
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bath is varied. On the other hand, the bath energies are significantly different, with
the energy changes of the left and right baths becoming more negative and remaining
relatively constant, respectively, with increasing left bath temperature.
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Figure 4.3: (a) Site populations and (b) energy changes in the discharge phase after
1 ps for different right bath reorganization energies and a left bath reorganization
energy of 35 cm−1 (denoted by right bath gradient), and different left bath reorga-
nization energies and a right bath reorganization energy of 35 cm−1 (denoted by left
bath gradient).

Next, we vary the bath reorganization energy λb. From Fig. 4.3, we see that
increasing the right bath reorganization energy causes the site 1/4 population to
decrease/increase, the right bath energy to increase, and the system to lose more
energy; the populations of the remaining sites, left bath energy, and SBP energy
remain relatively constant. On the other hand, we see that increasing the left bath
reorganization energy does not have a significant impact on the site population and
energy changes.

We now investigate the effects of varying the SS energies on the site populations
and energy changes. Results after 1 ps and time-dependent results for different
combinations of the SS energies are given in Appendix B and Fig. 4.4, respectively. As
seen in Fig. 4.4a, setting the SS energies equal to each other leads to roughly equal SS
populations, with the SS populations decreasing when increasing from E1 = E4 = 100

cm−1 to E1 = E4 = 250 cm−1. When the energies of the SSs are greater than those of
the BSs, the BSs are more populated than the SSs after 1 ps. Conversely, when the
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Figure 4.4: Time-dependent site populations (left panels) and energy changes (right
panels) in the discharge phase (χ = 1) for different SS energies. (a-b) Results for
E1 = E4 = 100 cm−1, E1 = E4 = 200 cm−1, and E1 = E4 = 250 cm−1. (c-d) Results
for E1 = 250 cm−1, and E4 = 0, 100, and 250 cm−1. The values of the remaining
parameters are Ei∈{2,3,5,6} = 200 cm−1, TA = TB = 300 K, and λb = 35 cm−1.

energies of the SSs are smaller than those of the BSs, the SSs are more populated than
the BSs after 1 ps. When the energies of the SSs are equal to those of the BSs, we
see that the SS and BS populations approach each other over time, becoming almost
equal after 1 ps. With regards to the energy changes, setting the SS energies equal
to each other leads to roughly equal changes in the left and right bath energies, with
the bath energy changes decreasing and becoming more negative when increasing
from E1 = E4 = 100 cm−1 to E1 = E4 = 250 cm−1. More specifically, there are
energy gains in the baths for E1 = E4 = 100 cm−1 and energy losses for the larger
SS energies, with the loss increasing with increasing SS energy. Conversely, there
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is an energy loss from the system when E1 = E4 = 100 cm−1 and energy gains for
the larger SS energies, with the gain increasing with increasing SS energy. The SBP
energy remains almost unchanged for the different SS energies. In Figs. 4.4c and d,
we plot the results for E1 = 250 cm−1 and different values of E4. As can be seen,
increasing the energy of site 4 from 0 to 100 cm−1 does not cause a significant change
in the site 4 population; however, increasing the energy of site 4 from 100 to 250
cm−1 causes a ≈ 50% drop in the site 4 population after 1 ps. Moreover, when the
energy of site 4 is smaller than those of the remaining sites, site 4 becomes the most
populated site after 1 ps. The populations of the remaining sights do not change
significantly in going from E4 = 0 to 100 cm−1, but they each increase by several
percent after 1 ps in going from E4 = 100 to 250 cm−1. As for the energy changes,
increasing the energy of site 4 leads to more energy transfer from the right bath to
the system, which in turn causes the system’s energy to change from decreasing to
increasing.

4.5 Discussion

4.5.1 Storage phase

As mentioned in the previous section, the OQN perfectly preserves the excitation
during the storage phase. Because the initial values of ⟨P̂11⟩ and ⟨P̂44⟩ are zero, the
expectation values of the coupling terms in the equations of motion (Eq. 4.9) are
also zero (i.e., ⟨

∑︁
j Cn,j(Rn,j(t)P̂nm(t) + P̂nm(t)Rn,j(t))⟩ = 0), causing d

dt
⟨P̂nn(t)⟩ to

remain zero for all times. Thus, there are no population changes during the storage
phase.

In terms of the energies, we first consider the time derivatives of the bath energy
matrix elements,

d

dt
[HB + ĤNB]

ββ′
=

1

2

∑︂
j

[︃
C2

n,j

ω2
n,j

d

dt
P̂nn − Cn,jRn,j

d

dt
P̂nn − Cn,j

(︃
d

dt
P̂nn

)︃
Rn,j

]︃ββ′

,

(4.15)
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where n on the RHS of the equation could either be 1 or 4, depending on whether the
left bath or right bath is considered. The details of how we arrived at this equation are
provided in Appendix B. We can see that the time derivative of the expectation value
of the bath energy, d

dt
⟨HB+ĤNB⟩, is 0 because d

dt
P11 and d

dt
P44 are 0. This indicates

that there is no energy transfer between the bath and OQN during the storage phase,
regardless of the parameter values (even if a thermal gradient between the baths is
present). On the other hand, d

dt
⟨
∑︁M

j P 2
n,j⟩ and d

dt
⟨
∑︁M

j ω2
n,jR

2
n,j⟩ are non-zero, which

leads to an energy exchange between the kinetic and potential energies of the baths.

4.5.2 Discharge phase

After attaching the SBP to the OQN, the expectation values of the coupling terms ap-
pearing in the equations of motion (Eq. 4.9), viz., ⟨

∑︁
j Cn,j(Rn,j(t)P̂nm(t)+P̂nm(t)Rn,j(t))⟩,

become non-zero. As a result, ⟨P̂nn(t)⟩ and the energies start to change. As proposed
in Section 4.3, the OQN energy can be written as the sum of on-site and exchange
energies. The change in the exchange energy is given by

∆Eexch(t) = −h
∑︂
⟨n,m⟩

[︂
⟨P̂nm(t)⟩ − ⟨P̂nm(0)⟩

]︂
. (4.16)

At t = 0, only ⟨P̂23⟩, ⟨P̂32⟩, ⟨P̂56⟩ and ⟨P̂65⟩ are non-zero (since the OQN is initialized
in |ψ1⟩). Their values decrease from 0.25 to ≈ 0.07 over the course of 1 ps (see
Fig. B.2 in Appendix B), which makes Eexch increase. For the dynamics displayed
in Figs. 4.1b and d, Eexch increases by 25.59 cm−1 (as calculated by Eq. 4.16). For a
similar reason, Eexch increases for most of the parameter regimes we studied (results
not shown). Considering the initial values of ⟨P̂nn(0)⟩ in Eq. 4.6 and the fact that∑︁6

n=1 ⟨P̂nn(t)⟩ = 1, the on-site energy change is (setting all BS energies to be equal,
i.e., Ei∈{2,3,5,6} = EBS)

∆Eon−site(t) =
6∑︂

n=1

En⟨P̂nn(t)⟩ −
6∑︂

n=1

En⟨P̂nn(0)⟩

= (E1 − EBS)⟨P̂11(t)⟩+ (E4 − EBS)⟨P̂44(t)⟩. (4.17)
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From this expression, we see that the population changes of the BSs do not contribute
to the on-site energy change. Since site 4 is chosen to be the exit site, E4 is set to a
lower value than EBS. Thus, the higher the population of site 4, the more negative
the on-site energy change will be. In fact, for the dynamics displayed in Figs. 4.1b
and d, Eon−site decreases by 50.88 cm−1 (as calculated by Eq. 4.17), which is greater
than the increase in Eexch. This explains the decrease in the OQN energy observed in
Fig. 4.1d. In addition, Eq. 4.17 tells us that the differences E1 −EBS and E4 −EBS

are important rather than the absolute values of E1 and E4. Indeed, if we shift all six
site energies by the same constant, we will obtain the same population and energy
change dynamics during the discharge phase (results not shown). As both Eon−site

and Eexch rely on the quantum coordinates, when there is no change in the quantum
coordinates (e.g., in the storage phase), there will be no changes in both the on-site
and exchange energies.

It should be noted that, although desirable, it is not possible to separate the
OQN (or system) energy into six parts corresponding to each site. Such a separation
should be independent of the absolute values of the site energies. In other words,
if we shift all of the site energies by a constant, the OQN energy change during
the discharge phase belonging to each site should remain the same. This separation
is possible for Eexch, e.g., one can define the exchange energy belonging to site 1
as −h

2
(⟨P̂12(t)⟩ + ⟨P̂21(t)⟩ + ⟨P̂16(t)⟩ + ⟨P̂61(t)⟩). However, it is not possible to

divide the on-site energy in a unique way. For example, if we define the on-site
energy belonging to each site to be En⟨P̂nn(t)⟩, then we see that the energy change
En(⟨P̂nn(t)⟩ − ⟨P̂nn(0)⟩) depends on the value of En. Therefore, we consider the
OQN energy as a whole rather than attempting to decompose it into contributions
from the various sites. Nonetheless, based on the expression for the OQN energy
(viz.,

∑︁6
n=1En|n⟩⟨n| + h

∑︁
⟨n,m⟩ |n⟩⟨m|), it is safe to assume that the OQN energy

belonging to each site will scale linearly with its population, with the slope depending
on the energy gap, e.g., when E4−EBS is negative, this will result in more population
on site 4 and less energy associated with site 4.

When ∆Eexch is comparable to ∆Eon−site, we observe a turnover in the OQN
energy over the course of a trajectory [see, for example, Fig. 4.2b (900 K) and
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Fig. 4.4d (100)]. This is because the exchange energy evolves at a nearly constant
rate (see Fig. B in Appendix B), while the population of each site and, in turn, the
on-site energy change faster in the beginning and slower at later times.

4.5.3 Effect of site energy

For the parameter set used to generate Fig. 4.1 (with E4 − EBS = −200 cm−1), we
find that the (E4 − EBS)⟨P̂44(t)⟩ term in Eq. 4.17 primarily determines the on-site
energy change, viz., (E4 −EBS)⟨P̂44(t = 1 ps)⟩ = −56.37 cm−1, while ∆Eon−site(t =

1 ps) = −50.88 cm−1. If we decrease |E4 − EBS|, we therefore expect the overall
OQN energy loss to decrease. Indeed, this is what is observed in Fig 4.4d in going
from E4 − EBS = −200 cm−1 to −100 cm−1; in the latter case, the energy of the
OQN only decreases by 1.12 cm−1 after 1 ps. It should be noted that the OQN
energy change is not necessarily always negative during the discharge phase. If E1

and E4 are both greater than EBS and the SSs become populated, then ∆Eon−site

becomes positive. Moreover, if ∆Eexch also increases, the OQN will gain energy from
the baths (see Fig. 4.4d).

Based on the results in Section 4.4, a few general comments are in order. Gener-
ally speaking, the higher the site energy, the lower the site population. In addition,
with a higher site energy, more energy transfers from the bath to the OQN. As seen
in Fig. 4.4, for the highest E4, the (positive) OQN energy change increases and the
(negative) bath energy changes decrease, while the magnitude of the SBP energy
remains low and relatively constant, i.e., energy transfer from the bath to the OQN.
If one changes the site energy of a particular site, then the population of that site
will be mainly affected. If two sites have the same site energy, we expect them to
eventually have equal populations. Finally, when all sites have the same site energy,
all sites will have the same population after a sufficiently long period of time, despite
starting with different initial populations (see Fig. 4.4a).
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4.5.4 Effect of bath reorganization energy and temperature

As seen in Eq. 4.12, increasing the bath reorganization energy λb will increase the
coupling strength Cn,j. For example, if we increase λb from 35 cm−1 to 70 cm−1,
the coupling strength for each oscillator in the bath will increase by a factor of√
2. Increasing the coupling strength increases the magnitudes of the coupling terms

in the equations of motion, which translates into faster energy transfer between the
system and bath. As seen in Fig. 4.3b, increasing the energy transfer rate of the right
bath results in more energy transfer out of the bath after 1 ps. On the other hand,
increasing the energy transfer rate of the left bath does not cause any significant
changes in the left bath energy and site 1 population. This may be due to the
relatively low population at site 1, viz., after 1 ps, the populations at sites 1 and 4
are ≈ 0.11 and 0.28, respectively (see Fig. 4.1).

Increasing the bath temperature (or decreasing β) will increase the width of
the initial Wigner distribution in Eq. 4.10, i.e., −

√︂
ωn,j

2 tanh(βωn,j/2)
. This increase is

particularly significant for oscillators with low frequencies. It can be verified both
analytically and numerically that the ensemble averages of the initial bath kinetic
energy,

∑︁M
j P 2

n,j, and bath potential energy,
∑︁M

j ω2
n,jR

2
n,j, grow linearly with increas-

ing temperature. For example, increasing the temperature of a bath from 300 K to
600 K to 900 K will increase its kinetic energy from ≈ 1.43× 104 eV to ≈ 2.38× 104

eV to ≈ 3.37 × 104 eV. As seen in Fig. 4.2d, increasing the left bath or right bath
temperature will lead to similar amounts of additional energy transfer out of the
bath. This temperature-driven increase in energy transfer to the OQN is relatively
independent of the other parameters. As seen in Fig. 4.5, for different site 4 ener-
gies, increasing the right bath temperature by a given amount leads to roughly the
same increase in energy transferred from the bath to the OQN. In this way, one can
decrease the OQN energy loss by increasing the temperature of any bath. Finally,
varying the temperature of a given bath has a larger effect on the site connected
to it. For example, if we increase the left bath temperature while keeping the right
bath temperature constant, there will be a larger change in the site 1 population
than the site 4 population (see Fig. 4.2). These results suggest that one could design
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Figure 4.5: (a) Site populations and (b) energy changes after 1 ps in the dis-
charge phase for different right bath temperatures and site 4 energies, with E1 =
250 cm−1, Ei∈{2,3,5,6} = 200 cm−1, and TL = 300 K.

a QB that minimizes the OQN energy loss while maintaining a relatively large site
4 population.
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Figure 4.6: Correlation plots between bath energy changes and site populations
after 1 ps for different combinations of bath temperatures and reorganization en-
ergies. (a) Left bath energy vs. site 1 population for all 16 combinations of TL =
300, 500, 700, 900 K and λb,L = 40, 60, 80, 100 cm−1, with TR = 300 K and λb,R = 35
cm−1. (b) Right bath energy vs. site 4 population for TR = 300, 500, 700, 900 K and
λb,R = 40, 60, 80, 100 cm−1, with TL = 300 K and λb,L = 35 cm−1. The values of the
remaining parameters are E1 = 250 cm−1, Ei∈{2,3,5,6} = 200 cm−1, E4 = 0 cm−1, and
h = 60 cm−1. (The temperature and reorganization energy corresponding to each
point are not shown.)
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Finally, we noted two different linear relationships between the bath energy
changes and SS populations (after 1 ps) generated from simulations performed across
a wide range of bath temperatures and reorganization energies (see Fig. 4.6). The
reason(s) behind these relationships is still under exploration.
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Chapter 5

Conclusions and Future Work

Mixed quantum-classical dynamics is a powerful approach for simulating the dy-
namics of chemical and biological systems with large numbers of DOF. Among the
QCLE-based methods, the DECIDE method has exhibited a highly favourable bal-
ance between computational cost and accuracy for treating model Hamiltonians ex-
pressed in complete energy bases.

In Chapter 3, we applied the DECIDE method for the first time to a simple
one-dimensional, second-order Hamiltonian for a proton in a strong hydrogen bond.
This required casting the DECIDE equations of motion in a finite quantum harmonic
oscillator basis. We showed that for a sufficiently large basis it is possible to generate
trajectories that conserve the total energy of the system. We also demonstrated the
calculation of the hydrogen bond length and various energies over the course of a rep-
resentative trajectory. Then, we considered a two-dimensional proton transfer model
devised by Subotnik et al. [31]. This model describes the transfer of a proton between
a donor and an acceptor group, mediated by a solvent coordinate. We first found
a suitable parameter set to yield adiabatic potential energy surfaces with a conical
intersection between the ground and first-excited state surfaces. Then, we cast the
DECIDE equations of motion for this model in a quantum harmonic oscillator basis
and simulated its dynamics. Although the resulting trajectories appeared to be qual-
itatively reasonable, the total energy was not conserved beyond very short times. A
detailed analysis revealed that the breakdown in energy conservation was due to the
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incompleteness of the basis set, which is inherent to the position representation, and
the higher order (i.e., cubic, quartic) terms in the Hamiltonian. This indicated that
a finite position basis is not suitable for representing the DECIDE equations of mo-
tion for Hamiltonians with cubic or higher order terms, and therefore an alternative
approach is needed.

In Chapter 4, we explored the population and energy dynamics of a quantum
battery model, originally proposed in Ref. [30], over a wide parameter regime. In the
battery’s storage phase, we demonstrated that, in addition to no population leakage,
there is no energy leakage from the battery into the connected baths. During the
discharge phase, the changes in the battery energy are determined by the energy gap
between BSs and SSs rather than the absolute value of each site energy. When the
energy of the exit site is lower than those of the BSs, the battery energy decreases
in most of the parameter regimes we studied. Lowering a given site energy causes
the corresponding site population to increase. When the site energies are equal, the
site populations reach roughly equal values after 1 ps, despite the different initial
populations.

With regards to the effect of the bath parameters, increasing the bath temperature
increases the width of the initial Wigner distribution, while increasing the bath
reorganization energy only changes the coupling strengths. Varying the parameters
of a given bath has a larger effect on the site the bath is directly connected to. We
also observed a linear relationship between the bath energy changes and the site
populations, which depend on the site energy gaps.

The choice of parameters for the quantum battery model can be made depending
on the desired purpose for the battery. For example, for an energy battery, one may
like the battery to gain energy from its environment during the discharge phase. In
such a case, if one could make the energies of the SSs greater than those of the BSs,
this would ensure that the battery gains energy and the SS populations continue
to increase. On the other hand, for an excitonic battery, one may like to maximize
the population of the exit site, regardless of the change in battery energy. In such
a case, one could lower the exit site energy, or lower the temperature of the right
bath while maintaining the original temperature of the left bath. If one requires a
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quantum battery with little loss in battery energy and a higher exit site population,
one could either increase the exit site energy or increase the temperature of the left
bath. This would lead to more energy transfer out of the left bath to mitigate the
loss in battery energy.

In this work, we have demonstrated the ability of our quantum battery model
to serve as an energy/exciton storage device. However, ways to harness the stored
energy/exciton have yet to be explored. In principle, this could be done by attaching
the battery to a sink to extract the energy/exciton during the discharge phase. By
giving an explicit form to the sink, one may begin to study QB-powered processes.
In addition, in this work, we used a uniform nearest-neighbor electronic coupling
strength between each site. However, it is possible to use non-uniform coupling
strengths while preserving the symmetry and dissipationless dynamics of the system
during the storage phase. Thus, future work will investigate the dynamics resulting
from the use of non-uniform and time-dependent coupling strengths.
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A Parameter determination for 2D proton transfer

model

The goal was to obtain similar potential energy surface slices to those in Fig. 7d in
Ref. [31]. This was accomplished using the same values of A0 (−3367.6 cm−1 Å−2)
and B0 (133501.2 cm−4 Å−2) as in Ref. [31]. For the masses, we used m = 1 amu and
M = 200 amu. To set the remainder of the parameter values, we took the following
steps. First, we chose X2 = 0.18 and only considered V0 and Vc. For X1 = 0,
the potential energy surface has a symmetric double-well profile. The depth (i.e.,
difference between the energy at x = 0 and xmin) of the potential is A0+k2X2

2

4B0 , where
A0 + k2X2 is a negative value ensuring the existence of minima. We set k2 to be a
negative number and, as the value of k2 is decreased, the wells become deeper. When
the wells become deeper, the energy difference between the ground and first-excited
states become closer. Figure A.1a shows the variational energy of the first five states
as a function of k2, while Fig. A.1b shows the energy difference between the ground
and first-excited states as a function of k2. The analytical energy difference for the
double-well potential V (x) = −1

4
h4x2 + 1

2
c2x4 is [70]

∆E = 29/4
h5√
πc
e
− h6

6
√
2c2 , (A.1)

A schematic plot of this difference as a function of h4 is shown in Fig. A.1c. As can be
seen, when h4 is large enough, the energy gap between the first two states decreases
with increasing h4, which is in agreement with the result in Fig. A.1b. Based on
our calculations, to obtain nearly degenerate ground state energies, the value of k2
should be around −2× 105 cm−1 Å−3. Thus, we chose k2 = −2× 105 cm−1 Å−3.

The next step was to determine the value of k1. The coefficient of the first order
term in x is k1X1. The effect of this term is to make the double-well potential
asymmetric and, for some values, one of the two minima of the potential disappears.
Since the coefficient of x is k1X1, simply varying k1 will not affect the shape of the
potential, but just stretches it over the range of X1. Figure A.1d shows the potential
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Figure A.1: Steps for determining the parameter values in the 2D proton transfer
model: (1) Vary k2 (a-c), (2) Fix k2 = −2× 105 cm−1 Å−3 to determine k1 (d), and
(3) Determine k3, ω1, and ω2 (e-i). (a) Variational energy,

⟨︂
Ψn| p̂

2

2m
+ V0 + Vc|Ψn

⟩︂
,

of the first five energy levels as a function of k2, with X1 = 0 and X2 = 0.18 Å.
Note the y-axis ranges from −4 × 104 to 0. (b) Difference between the ground and
first-excited state energies in (a). (c) Difference between the ground and first-excited
state energy as a function of the coefficient of the second-order term in Eq. 5.1.
(d) 1D slices along X2 =0.18 Å of the first five adiabatic potential energy surfaces,
⟨Ψn| p̂

2

2m
+ V0 + Vc|Ψn⟩, as a function of X1. (e) Ground-state adiabatic potential

energy surface, ⟨Ψ0| p̂
2

2m
+ V0 + Vc|Ψ0⟩, as a function of X1 and X2. (f) Ground-state

adiabatic potential energy surface including V1, ⟨Ψ0| p̂
2

2m
+ V0 + Vc|Ψ0⟩ + V1, as a

function of X1 and X2. (g) Contour plot of V1, as a function of X1 and X2. (h)
First-excited state adiabatic potential energy surface, ⟨Ψ1| p̂

2

2m
+ V0 + Vc|Ψ1⟩, as a

function of X1 and X2. (i) First-excited adiabatic potential energy surface including
V1, ⟨Ψ1| p̂

2

2m
+ V0 + Vc|Ψ1⟩ + V1, as a function of X1 and X2. All surfaces were

generated with 16 harmonic oscillator basis functions, k1 = 1.7× 104 cm−1 Å−2, and
k2 = −2× 105 cm−1 Å−3. Units of energy are cm−1.
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surface with respect to X1. We chose k1 = 1.7× 104 cm−1 Å−2, as this value ensures
that the desired three local minima (as seen in Fig. 3.5) exist in the third excited
state potential when −0.5 < X1 < 0.5. If k1 is too large or too small, the number of
minima will be different.

Now we can add V1 into our consideration to find appropriate values for k3, ω1,
and ω2. As there are no quantum variables in V1, we can calculate its value directly.
V1 alters the shape of the potential surface. For example, without V1, the ground
state energy always decreases when X1 is away from the center. By introducing
V1, there are now two minima in the ground state. The value of ω1 determines the
positions of the two minima. We chose ω1 = 13560.98 cm−1. Similarly, we chose the
value of ω2 to be 90312.43 cm−1. The addition of k3X makes the potential energy
surface no longer symmetric about the y-axis. By adjusting the positions of the two
minima in Fig. A.1f, we found k3 = −4× 103 cm−1 Å−2.
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B Appendix to Chapter 4

Total Energy Drift

Here we show the total energy as a function of time for the QB model. As can be
seen in the figure, the total energy drift is less than 1× 10−2 cm−1.
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Figure B.1: Average total energy as a function of time during the discharge phase.
The average was calculated using an ensemble of 10,000 trajectories. All parameter
values are the same as in the caption of Fig. 4.1.
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Effect of Varying SS Energies

Table B.1: Site populations and energy changes during the discharge phase after 1
ps for different values of E1 and E4 with Ei∈{2,3,5,6} = 200 cm−1.

En of SSs Site Populations Energy Changes [cm−1]
E1 E4 Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 System Left Bath Right Bath Probe
250 0 0.1098 0.1528 0.1486 0.2818 0.1505 0.1565 -25.2871 -16.1494 32.8629 8.5810
400 250 0.0549 0.1967 0.2050 0.1453 0.2033 0.1949 30.5251 -10.3941 -26.5583 6.4347
100 100 0.2166 0.1441 0.1411 0.2139 0.1423 0.1419 -22.1795 7.5300 6.3110 8.3458
200 200 0.1617 0.1698 0.1720 0.1584 0.1711 0.1670 16.9965 -13.7518 -12.1952 8.9579
250 250 0.1312 0.1859 0.1848 0.1296 0.1857 0.1827 28.0908 -18.6962 -17.5048 8.1177
200 50 0.1393 0.1472 0.1445 0.2703 0.1491 0.1496 -17.1695 -9.5391 18.8073 7.9086
250 100 0.1146 0.1546 0.1570 0.2570 0.1565 0.1603 1.1991 -12.6415 3.1000 8.3498
150 0 0.1725 0.1419 0.1381 0.2619 0.1410 0.1447 -34.9490 -4.2506 30.8475 8.3595

Derivation of Eq. 4.15

Here we show the steps for deriving the expression for the time derivative of the bath
energy matrix elements given in Eq. 4.15 of the main text.

d

dt
[HB + ĤNB]

ββ′
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1

2
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j

d

dt

[︃
P 2
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n,jR
2
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ω2
n,j

P̂nn − Cn,jRn,jP̂nn − Cn,jP̂nnRn,j

]︃ββ′

=
1

2

M∑︂
j

[︃
Pn,j

d

dt
Pn,j +

(︃
d

dt
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)︃
Pn,j + ω2

n,jRn,j
d

dt
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(︃
d

dt
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)︃
Rn,j

+
C2

n,j

ω2
n,j

d

dt
P̂nn − Cn,j

(︃
d

dt
Rn,j

)︃
P̂nn − Cn,jP̂nn

d

dt
Rn,j

−Cn,jRn,j
d

dt
P̂nn − Cn,j

(︃
d

dt
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(︂
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d
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P̂nn − Cn,j

(︃
d
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P̂nn

)︃
Rn,j

]︃ββ′

=
1

2

∑︂
j

[︃
C2

n,j
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n,j

d
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P̂nn − Cn,jRn,j

d

dt
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(︃
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)︃
Rn,j

]︃ββ′

,
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which yields Eq. 4.15. To arrive at the third equality, we substituted the equations
of motion in Eq. 4.9. Substituting the expressions for Cn,j and ωn,j from Eqs. 4.11
and 4.12 yields the bath-specific form of the time derivative of the expectation value
of the bath energy,

d

dt
⟨HB + ĤNB⟩ =

2

π
λb arctan(ωmax/ωc)

d

dt
⟨P̂nn(t)⟩

−1

2

∑︂
j

Cn,j

[︃
Rn,j

d

dt
⟨P̂nn(t)⟩+

(︃
d

dt
⟨P̂nn(t)⟩

)︃
Rn,j

]︃
.

Time-dependent Quantum Coordinates

Here we provide a figure showing the values of the time-dependent quantum coordi-
nates during the discharge phase. It should be noted that by using these values and
Eq. 4.16, one can calculate ∆Eexch(t).
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Figure B.2: Time-dependence of expectation values of off-diagonal quantum coordi-
nates during the discharge phase. Ensemble averages were taken over 10,000 trajec-
tories. All parameter values are the same as in the caption of Fig. 4.1.
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