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ABSTRACT
In the past few years, several digital 'control.
» .

algorithms . have been + proposed that - incorporate a

nonparametric description of the process into the control

.lobp. One. sulh aigorithm is internal model ‘control(IMC);

Q

applicable to single input-single output(SISO) as well as
multiple input—multiple output(MIMO) applications. A review

of IMC 1is carried out to investigaté the merits of this
. ‘ . )
algorithm.

The evaluation of IMC begins with a thorough

1

examination of design and stability properties for the,

single variable IMC predictive coﬁ&rbller. The results of

simulation studies, using second order linear differential

_ equations that model minimum phase, nonminimum phase(NMP) or__.--

unstable process behavior, are presented té illustrate the
single variable IMC tuning procedure.

The single variable IMC deveiopment is folloﬁed‘ by
examinatién of the multivariable IMC properties. In this
section ;pecial emphasis 1is given fo the design and
implementation  of the IMC time delay precompensator.

Analogous to the single variable development, results of

simulation studies are presented to demonstrate the

application of the IMC time delay precompensator and MIMO

controller. These studies use a transfer function matrix
v

model -of a distillation column to represent process

behavior.



The evaluation of IMC conclu8es with a comparison of
IMC to the Smith predictor, the inferential Smith predictor,
dynamic matrix control, model algérithmic .control, the
self~tuning controller and the -multivariable Ogqunnaike ‘and\
Ray time delay compensator from the viewpoint of theory and
implementation. Simulation results using both 1linear and
qonlinear‘stochaspic process models are presented to support
the comparison. Also, a discussion of the oplions avéilable
to iaentify nonparametric process models in deterministic or
stochastic environments is included.
i The examination of IMC reveals truncation error in the
nonparametric process representatibn often leads to severe

B4

deterioration 1in control performance. .In addition the

comparison demonstrates the weaknesses of the trial and

error IMC tuning procedure . for NMP processes or

~

multivariable processes described by a transfer function

matrix with the minimum time delay in an off-diagonal

@

position.
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¢
1. INTRODUCTION

New methods to optimally control process operations are
continually evolving and changing. In the past five years
sevaral digital control algorithms have been propbsed which
incorporate a nonparametric .description of the procéss
dynamics into the control loop. Internal model control (IMC)
introduced by Garcia and Morarifﬁ,2,3],exemplifies this. type
of control policy; The fundamental principles that govern
IMC as well as the implemeﬁtation of IMC for singie and
multivariable processes will be reviewed in this work. 1In
addition a comparison of IMC to other nonparametric control
algorithms and to other optimal control algorithms is used
to weigh the relative advantages and disadvantages of IMC.

Internal model <control 1is a comprehensive‘ control
policy for single input, single output (SISO) or multiple
input, multiple output (MIMO) systems. The authors refer to
related work carried out by Brosilow[4]; . Cutler and
Ramaker[5,6)] and Smith[7] because these contral algorithms
are very similar to IMC.

The investigation of IMC is split inta threa chapters.
In Chapter 2 the theory and application of - IMC for single
Qariable processes are developed. ~Thevspecial features that
IMC incorpofates to ~control aultivariable procéssea are
examined in Chapter 3. Both chapters begin by deriving the
fundamental.properties followed by simulation studies that
~demonstrate the tuning procedures for the sinéle or

multivariable IMC controller and 1illustrate, how  the



controller parameters‘aré applied .to achieve desirable servo
and regulatory behavior.

The information provided in Chapters 2 and 3 is used in
Chapter 4 to compare IMC to several single and one
multivariable control algo;ithm. | Chapter 4' effectiyely
highlights the strengths’and weaknesses of the IMC control
poiicy. Chapter 5 summarizes the important results of the

investigation and draws conclusions from these results.
1 . a



2. INTERNAL MODEL CONTROL FOR SISO SYSTEMS

2.1 IMC for SISO Systems
. . . e .
The fOllOWlng material will deal exclusively with SISO
systems but it should be recognized that many of the design
object1ves, tuning procedures, stab111ty properties etc. are

3

applicable to MIMO systems.

2.1.1 Criteria used to evaluate the performance of a
cdnfrol system N
Garcia and Morari[1] state four «criteria used to
evaluate the performdnce‘ of any control system. These
criteria are
i. Regulatory Behavior:
The output variables dre to be kept at their setpoint
despite unﬁeasured disturbances affecting the process.
ii. Servo behavior: |
Changes in setpoint should be tracked duiékly and
.smoothly. ) —
,
iii. Robustness:
Stability and control performance should be maintainédjv
in the face of structural and parametric changes in th
underlying process model. Th{s is equiQalent fo

~requiring that it be possible to design the controller

with minimal a priori process information.



iv. Ability to deal with constraints:
For optimizing control applications where the operation
is close to process constraints the controller should
" be able to guarantee -safe operat1on
These criteria do not include the response of the controller

to stochastic - disturbances since these effects are

considered to be of secondary importance.

2.2 IMC structure and properties

The Iconventional feedback controller and the - IMC
controller block d1agrams are shown in Figures-2.1 and 2.2.
The IMC controller is essent1ally a feedforward controller”,
with the feedback loop used to correot for process/model
mismatch and unmeasured disturbances. 'The IMC controller
structure can be made equ1ualent to conventlonal controllers
in the following manner. . If the process 1nput output
relationship is represented by the equation

y(z) = G(z)m(a) + d(z) . . | o 20201
then for the"control- scheme_ Shown in Figure 2.1, the
controller output 1is given'byc

m(z) = C(z)(s(z)-y(2)) |
The IMC controller, as can be seen from Figure 2.2

calculates the controller output baSed upon the equation
. i , : e

n(z) = Gelz)(s(z)-y(2)) | 2.2.2
‘1—Gc(zlG(z). : . :

so it follows that the two control schemes are equivalent if

C(z) is defined as
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c(z)= Gclz) ~ . 2.2.3
1-Gec (2)G(z)

The IMC configuration is purported to be superior to
the chventionai feedback control scheme since the. IMC
controller 1is easier to design and includes robustness as a
design objective due to the nature of the feedback signal.

The feedback signal d(z) represents the difference between

the process output and the model output. For a correct
Qrocess 'model, the signal d(z)=d(z). 1f no disturbance
exists and the model is correct, d(z)=0. This feedback

signal adds robustness to \ﬁhe control loop because it
corrects for plant/model mismatch and unmeasured

disturbances.

Combination of equations 2.2.1 and 2.2.2 to eliminate

~

m(z) allows the closead loop transfer function to be written

as

y(z) = G(z)6c(z)(s(z)-a(z)
1T + Gec(z)(G(z)~-G(z)
d

5\
!
isturbance effects, stability is

) +d(z) 2.2.4
)

“r  bounded setpoint or
ens-red as long as the roots of the characteristic equation
1+Gc (z) (G(z)-G(z)) =0 , 2.2.5
remain inside . the wunit circle. From the? .closed loop
charactérisfic equation 1t 1is easily demonstrated, for an
open léop stable process and stable controlier, that if
G6(z)=G(z), then the closed loop system will always be
§table. A process that exhibits open loop unstable
»

~characteristics (characteristic roots outside the unit

circle) should first be stabilized using conventional

~on



controllers.
" Furthermore if the process model satisfies the
condition G(1)=G(1), it can be shown, as demonstrated 1in
Appgndix A, that Zzero offset will result. | |

—

2.3 Tuning the IMC controller

From eqUaFibn 2.2.4 it would appear that an obvious .
choice fdr Gp(z) is‘1/G(z).w‘Even if 6&(z)#G(z), with this
choice forvéc(z) equation 2.2.4 reduces to

y(z) = s(z) ' 2.3.1
However thi% choice for Gc(z)'hgs serious drawbacks. By
reference to Equation 2.2.2 using Ge(z)=1/6(z), it follows
that this choice is equivalent to advocating an ihfinite
gain controller”since the dehominator in this equation will
equal zero for thié choice of Gc(z). Also from eguation
2.2.4 the best controller results in equation 2.3.1 even if
the model is incdrrectu Obviously thg definitipn of the
best controller‘must be qualified. . R |

The aforementioned problems exist. since the best
controllér is not realizable due to the inherent one step
sampling delay introduced by the diécrete representaﬁionhof
a éontinuous process, and due to transport delay. Inve ing
a process model which contains time delay results in a
nonéausal'controller. Garcla ana Morari[1] resolve this
problem using two apprgaches. The first approach factorizes

6(z) into two parts

G(z) = 6.(2)6.(2) : 2.3.2



]

Gel(z) = 1/6_(z) \ - 2.3.3
G.(z) will contain all of the time delayé"andfggonminimum
phase (NMP) charagtefistics_of G(z). The NMP éﬂéracte{iftic
refers to a transfer function with zeros outside Sgafhe unit

circle. I1f these =zeros were left in G.(z), the resulting

. controller would have poles outside the wunit circle. An

example illustratiﬁg the design of G.(z) 1is shown 1in

Appendix B. The factorization 1is optimal since the
controller \given by equation 2.3.3, results‘in a épntroller
that drives the discrete brocess, to the setpoint,\\in the
shortest possible Eime ‘

if G(z) = G(z) and dﬂz)=0 then

y(z) = 6.(z)s(z)
Gércia and Mo}ari[1] have denoted this controller, the-
'perfect’ controller. It is equivalent to a controller that

cancels all process transfer fuﬁction poles and =zeros,
inside the unit circle. This type of controller is also
cémmonly calledrthe deadbeat controller[8]. For ©practical
purposes tﬁe pérfect controller 1is often unacceptable
because the controller drives the process output to the
setpoint yithout considering the other process statés. As a
consequence, unacceptable oscillations between samples
occur.,

Since a high order process would be diffi;ult to
factorize, and since computer implementation of even simble
factofizations is difficult, a seéond approach is discussed

in the next section.
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2.4 The predictive control problem

It 1s necessary to revise the IMC design approach not
only for the reasons already mentioned but also to
facilitate on-line tuniﬁg and to include 1input t;i_nd output
constraints as a design objective. Garcia and Morari
present the predictive control law as. a satisfactory
solution to these requirements. The process, preJiouéTx\
described by an  autoregressive model, is now described by aﬁ‘
impulse response model which is written as

y(z) = z- ' 'H(z)u(z) + d(z)" 2.4
and allows a.prediction of the process outpdt based entirely
upon past inputs. This‘model representation is not easily
factored to remove NMP characteristics, instead the tuning
parameters essentially manipulate the original mcaie l untii
an approximation of the process results that proyides
satisfacﬁory control dynamics. As mentioned 1in Sectidn 2.3,
the previous design method will often result in a controller
with very poor dynamics. By refofmulating the process model
and including tuning parameters, this new method will allow
on—line/}ﬁning to remove undesirable effects.

e - IMC control policy calculates control outputs m,

over a izion of P samples into the future. These outputs

mimimize he sum of the squared errors 1in the costing

function given by



n ™M O

J = min{ [y,* (ya(ktr+3)-y(k+r+j|k))?
m(k) 1°' M
, + LB m(k+i-1)21} 2.4.2
j= ' :
subject to: ¢
y(k+7+5 k) =ym(k+r+3| k) +d (k+7+5|k) ' 2.4.3

ym(k+r+j|k)=h1m(k+j-1)+h2m(k+j-2)+...€h m(k+j-N)
' N 2.4.4

As can be seen, equation 2.4.3 requires a prediction of the
process disturbance d(k+7+j|k), over the horizon. The IMC
policy instead ‘qf employing a prediction, assumes that the
best estimate of ghis disturbance is given by the present
feedback signal d(z). Use of the costing function expresSed
by equation 2.4.2 penalizes excursions of both the
controlled and manipulated variables so the trajectory
followed by either variable can be influenced to conform to

operating constraints. The control law that results from

the solution to this minimization is defined in Appendix C.

2.5 Tuning parameters
The five tuning\parameters used with IMC to alter the
process oﬁtput and or controller action afe the followi%g
i. Input suppression parameter (M):
The -input suppression parameter specifies thé number of
time steps, M, over which the control input is allowed
to vary. For example, choosing M equal tqQ three and P
eQual to ten, implies the first three cgntfol outputs

m, can change but the remaining seven must be one



ii.

iii.

<5

12

constant value. As demonstrated in Appendix D, any NMP
process can be stabilized by choosing M sufficiently
small and P sufficiently large; Reducing M will reduée
the extreme excursiong of the manipulated variables
giving, in general, a more aesirable ;esponse.
Input penalty parameter (B): i
This‘ penalty or weighting parameter influences the
manipulations of the controller  output. It is
demonst;ated in Appendix D, that by choosing B
sufficiently large, any NMP process can be stablized.:
Increasing the magnitude of B; will decrease the action

P

taken by the manipulated variables making the system

‘more sluggish. Also using a B; # 0 will lead to offset

since

Nc(1)/De (1) # 1/H{(1) d
This 'is corrected by the use of an offset compensator
shown in'Figure 2.3.
Output penalty parameter (y;): |
The output penalty or weighting parameter affects the
gxcursions of the process outpu£. Since the IMC
costing function uses onl? two weighting parameters, it
is the ratio of B;/y; that determines which vafiable'is
penalized the greatest. Increasing the magnitude of vy

for constant B; will reduce the excursions of the

control variable.

\
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iv. Sampling time (T): /
By making the sampling> ﬁime large enough the NMP
characteristics of the system model can be eliminated.
V. Optimization horizon (Piﬁ
As mentioned in the section on the input suppression
parameter, any NMP process can be stabilized by
‘choosing P sufficiently large and M sufficiently small.
For the , minimum phase process the length 'of the
optimization hofiion has no effect on the control

L4
~performance.

(s

2.6 Tuning the prediéti;e controller

In this section guidelines will be presented‘
illustrating the 1IMC tuning procedure. The first sfep in
this procedure is to build a mathematical ‘model of the

process. In most cases sufficient information about the

- process can be derived from analysis of the open loop

'response to a step input. Although the true process may be

nonlinear and of high order, it is common to approximate the
process by a linear first or second order function with dead
time. Tuning guidelines will be presented for a minimum

phase process, a nonminimum phase process and an unstable

process.

i. Tuning the IMC controller when the transfer function is
T £
minimum phase:
In this example the process is described by the analog

transfer function



y(s)=.1e **uls)/[(s+.1)(s+1)] 2.6.1
The open loop response to a step in input is shown in
Figure 2.4. A minimum phase process has all poles and
zeros inside the unit circle. If equation 2.3.3 1is

used to calculate Gc(z) (where 6(z)=G(z)), it has been

demonstrated this controller will be stable (see
Appendix C). From the open loop response shown in .
Figure 2.4, qualitatively it is reasonable to

approximate this process by a second order transfer
function and a time delay of four minutes. For the
minimum phase case, the sampling rate has little effect
on control performance but it 1s convenient to choose a
sampling rate that gives an integer number of time
delays. For many recursive or batch identification
routines([9], this is all the information the routine
requires to find an_autoregressive moving average (ARMA)
model of the pr0cess. ~In this example the sampling
rate was chosen as 4.minutes and the parameterg'of the
second order transfer function determined using a
récursi;e idéntification routine{IO]. The resulting
discrete brpcess model and the continuous process model
are given in Appendix E. If ah identification
algorithm '1is not avaliable, simple graphical

analysis[11] should provide a reasonable second order

"ARMA model. ~The ARMA model is converted to an impulse

response model by dividing the model's denominator into

the numerator.
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Since the process is minimum phase, the perfect
controller or what is commonly calied a deadbeat
controller, is realizable. To achieve the . perfect
cpntroller, the tuning parameters are as follows
P=N=M=10, 8,=0 for j=1,M, y;=1 for j=1,P.

These "~ parameters plus the process model parameters are
inputs to the IMC algorithm. For this ‘and sdbsequent
illustrations, FORTRAN programs are developed'thatluée
linear and nonlinear differeﬁtial equations to simulate
the prOcesses.‘ An example that 1illustrates »the
operation of these programs, 1is provided with the
FORTRAN coae iﬁ Appendix O. The response of the closed
loop system to a unit step in setpoint is plotted in
‘Figure 2.5. ‘Empiridal measuges of the control
performance are given for both the control and
manipulated variables. Output Error is the integral of
the absolute errog between pro;ess output and setpoinf.
Control effort is the i&fégral of the abSoluté
difference between the control ;;;iable at sucsessive
sampling intervals. Although the response is stablex
oscillations in process 'Butput and contfdl _action
océur. Also hote the Dbounce _in the output. and
subsequently the input after N sampling intervals due
to truncation error in the’impuise response series. In
Figure 2.6 the number of terms in the impulse' fesponse

series has been increased to 15. The truncation error

in this figure has been reduced and postponed another 5
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\ ' .20
L0 : : ‘
samplé steps or equivalently 20 minutes. By reducing
o .0 meL L
the input suppression parameter, M, to 3 and penalizing

.control inputs for 3 steps the excursions of the

manipulated variable are reduced, as shown in Figure

2.7. That is

N=P=10; M=3; B,=3 for.j=1,M;. y,=1 for j=1,P"

\Theovalue of 3 for B; 1is chosen afbitrarily. In

general a larger B; will cause a morehsluggiSh response
and reduce the-impact of truncati;n error on the output
résponse because the magnitude of the initial control
step is reduced.. In Appendix F it 1is demonstrated,
that for an nth order process, the time series ofy
inputs cannot drive process states ‘to the setpoint
until *'n time intervals have occﬁ}réd. The second set
of tuning parameteré are chosen fof this reason. The
inputs. to the process are allowed to’vary for n+1 tiﬁe
intervals but after arébheld constant. The secohd set
of tuning pafameters have‘sécrificed setpoint tracking
to, provide better control dynamics, they also'mgke tﬁe
closed loop system more robﬁst since the closeduloop
poles‘are shifted closer to the:origin, |

o

Tuning the IMC controller when the process has NMP
behavior: '
The NMP process 1s described by |

y(s)=—1e‘°‘(s-.1)u(s)/f(s+.1)(s+1)] - 2.6.2

'The ®dpen loop response to a step in input is shown in

Figure 2.8. The continuous process has a zero in the
L] . : . .
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right half plane of tQS~ Laplace domain. For the
controller to be stable this zero must be compensated.
Choosing a sampling interval that avoids -the NMP

behavior is one method of achiey&pg this end.

 Factorizations of the NMP process zero often leads  to

undesirable oscillation 1in the closed loop reéponse.
Alternatively, a stable controller will result if
sufficient penalties are applied to the control law
formulation. 1In Fiqure 2.9 the discrete open 1loop
respdnse for the NMP continuous process sampled at
eight minutes is shown. Since the discrete process
model is minimum phase, the closed lc: D system can be
tuned as if the process were minimum phase.

In Figure 2.10 the discrete open loop respohse for
the ‘process sampled at four minutes 1is illustrated.
The 'sampling interval was chosen to give an integer
number of time delays. The discrete model -is still
nonminimum phase at fhis sampling rate. Figﬁre 2.11
shows the closed loop response for the well tuﬁed NMP
process sampled at four minutes.- The controller

parameters for this response are

'P=4 min . P=N=10 M=3 B;=0 for j=1,N y;=1 for j=1,P

The value for the input suppression parameter, M, was
chosen arbitrarily. Decreasing, M, Eeduces exqursioné
of both the manipulated and controlled variables and
ihé?eases the closed loop stability.

Tuping the IMC controller wheh the process is unstable:



24

0.5

|

¢

RESPONSE

0.0

o
-t

T | T T T I T 1
0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0
TIME(MIN)

Figure 2.9 Discrete opeh loop response :for the continuous

NMP system, sample interval of eight minutes

J



25

0.5
L

RESPONSE

0.0

-0.5
L

o
-l

T T T T T T
0.0 10.0 -20.0 30.0 40.0 50.0 60.0 7

TIME(MIN)

T —]
0.0 80.0

Figure 2.10 Discrete open loop response for the continuous

" NMP system, sample interval of four minutes



y

26

1.0

}

0.5
1

RESPONSE
qo

Q
o
I
Q
ne
\ Output error= 28.7
. | Control effort= 6.7
Z . ’ . .
= -L'.‘*m\
= o
O 7
<
—
O
M
o
pd
@)
O
<
© T T T T T T T 1
0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0
. TIME(MIN)
%
Figure 2.11 . Response of the NMP system to =~ positi&e

setpoint change under IMC control



27

_ ¥

The 'unstable process is illustrated in Figuré’2.12 and
described by

y(s)=.2e "*u(s)/[(s-.1)(s+2)] 2.6.3
~For the closed loop response to be stabie; all the
roots of equation 2.2.5 must be inside the unit circlé.
If the process is characterized by’ poles outside the
unit circle, then some other control scheme must be
used to stabilize the process before IMC - 1is
implemented. One approach stabilizes the~brocess using

.analog or digital proportibnal feedback control.

Luyben[11] provides guidelineé for turiing the analog

;ontroller using root locus technigues. In the root
locus  routine a 2nd order Pade polynomial
representation of the dead time is used. A

proportional gain of 2.0 was sufficient to stabilize
the process.. In Figure 2.13 the stabilized closed loop
response tb a unit step in setpdint 1s shown.r

" The analog controller is caséaded to the IMC
system to optimize the séqueﬁce of control steps.. The
process deel provided to the IMC routine, corresponds
to the analog controlled, closed loop sjséem.- A block
_diagfam of how the system links together 1is .shown in
Figure 2.14. The analog controller has stabilized the
process so it can be tuned 'via the minimum bhase tuning
procedures. In Figure 2.15.the IMC—anélog cascaded

system response is shown for the IMC parameters of

T=4min P=N=10; M=2; B8,;=20 for j=1,M; y;=1 for j=1,P
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These controller parameter choices heavily penalize any
excursions of the manipulated variable. The large
value of B; and small value for M, are indicative of a

marginally stable process.

2.7 The Filter, F(z)

The final form of the control law . includes én
exponenfial filter in the feedforward path as shown in
Figure 2.16. An exponential filter is included in the work
of Richalet, Rault, Testud and Papon[12]. Devélobment of
this control theofy and how it relates to IMC is included in
the chapter devoted to the literature review, but for the
moment it is sufficient to state the filter structure and to
explain how it effects the response dynamics.

F(z)=1-a .  O<a<1
1-az !

The closed loop response dynamics imprqveAsince the filter
effects the .speed at which the output reacts to changes in
setpoint. To illustrate this point,  consider the closed
loop: transfer function for y(z) when the process mode] ig
~correct-and for no disturbances, that is G(z)=G(z) and
d(z)=0

y(z)=(1-a ) (s(z)~(y(z)~ym(z)))

1-az"~" : .

(1—az"-")y(z)=(1-a)s(z)

Expressing y(z) as. a difference equation in terms of k, it

follows that
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Figure 2.16 Block diagram illustrating the position of the

filter i
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y(k)=ay(k-1)+(1-a)s(k) 3
As a. is 1increased &%rom zeré.to one, the response of the
process to a change 1in setpoint becomes increasingly
sluggish. The effect of « can be related to conventional
controller design procedures, increasing «a rmproves . he
robustness = of the -~ IMC controller, decreasing thé gain

improves the robustness of the conventional controller. In

.both control schemes the changes essentially detune the

respective controllers. Detuning in many examples will
improve the output - error and controller effort measures

because it reduces undesirable oscillatory responses.



3. INTERNAL MODEL CONTROL FOR MIMO SYSTEMS

3.1 “introduction
The concept of SISO internal model control 1is ensil§‘
extended to embrace MIMO control épplicatibnS[2,3]. In the
single variable case the process output was related to the
process input by equation 2.2.1
y(z) = G(z)m(z) + d(z) | 2.2.1
This equation can also describe the multivariable input
outbut relgtionphip if the notation ‘ish embellishéd to
differentiate between scalar, vector and matrix quantities.
‘By denoting’ vecfors with a single underscore and matrices
with a double underscore, _equatipn‘ 2.2.1. writtén fdr a

A
multivariable system is \

y(z) = GlzIm(z) + alz) 3.1.1
Because the 'structure of IMC suggests that the Dbest
controlier for the multivapzable- process is a realizable
inversé of the “érobéés transfer. function aatrix G(z), the
design procedure for the MIMO system is very similar to that
for the SISO system.

Time delay compensation technigues for multivariable
control applications require greater sophistication than
their single variable counterparts.- The ‘multivariable
self-tuning .contrdller[13] only compensa;eé for time deléys
gn the diagonal elements of the transfer function matrix.
Ogunnaike and.'Ra¥[14] have proposed. a MIMO time delay

compensator, that 1s - esséntially a multivariable Smith

ro ; 35
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4 predictor. Garcia and Morari[2] depart from these, and

other simdiar £ime delay compensation  techniques by
proposingvfa; factorization of the time deiays, from G(z)
using a diagonal precompensator.

The single variable filter briefly diécussed in Section
2.7, plays a more important role in the multivariable
system. The multivariable filter is a diagonal matri: of
SISO filters. The weighting parameter «;, becomes the most
cdnvenient tuning parameter to eliminate undesirable control
dynamics and to compensate for plant/model mismatch. In
essence. the filter may be thought of as a robustness knob.
Design and use. of the filter, 1like the time delay
compénsator, are developed 1in - this chapter. The MIMO
.discussion concludes with several examples illustrating the
multivariable IMC tuning brocedure.
'3.ﬁ The Optg@gl Time Delay Compensafor N

Due to_'tﬁe nature of the IMC design policy the MIMO
process transfer function matrix should be open loop stable.
If an unstable transfer fﬁnction exists 1t must be

stabilized, using conventional control 'as in " Section 2.6,

B

before IMC is implemented.

As in L1~ SISO case, the MIMO design requires that the

contrffier ¢ - Dbe based upon‘a factorization of G(z)

Ge 70 4 otz) ) 3.2.1
where

G(z) = 6..(2)6.2( -_(2) 3.2.2

Y

&
~x
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with 6.,(z) selected to make 3.2.1 realizable, so it may
contain time delays and caﬁ contain NMP characteristics. If
the time delays are not compensated the controller, Gg(z) .
will be noncausal. If the NMP characteristics are left in
G.(z) the inverse will be unstable due to zeros outside the
unit circle in the brocéss model. The design procedure also.
requires that G..(z) be selected to make Q-(z)“‘g‘z(z)
stable. To avoid the aaditional factorization necessary to
find G..(z), the predictive least sguares control law with
weighting matrices, 1is used to find a stable‘approximat{on
of 6.(z). Additional stability/robustness 1is provided by
the filter F(z).

The time delay compensator, G.,(z), is restricted to a
diagonal matrix, this ;mplies the compensator will be
optimal in terms of settling time if the minimum delay
occurs on the diagonal elements of gkz). Inclusion of
off-diagonal elements-in G.,(z) would cause the formulation
to become unnecessarily complicated. The optimal diagonal
factorization is found by the relation

75 = max(7,;) ‘ : 3.2.3
]

~where r,; are the units of delay in the 'ij'th eiement of
the matrix ¢(z)-'. The variable rj will become the j th
diagonal element of the inverse time delay compensator
matrix G..(z) '. To clarify how equation 3.2.3 is wused to

find 6.,(z) an example is presented.
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Example 3.2.1 Designing the time delay compensator for a

minimum phase transfer function.

In this example a two by two transfer function

describes the input-output relationship

6(z) = 1.0 22" 3 R '3,2.4
© (7-0.5z" ") z"? z7

The inverse transfer function is given by

' G(z) ' = 0.5 z? -z 3.2.5
_24 ) 223

‘Using equation 3.2.3 the inverse precompensator can be

determined

G*1(Z)_1 =

z? 0 ' 3.2.6
0 o z*
After taking the inverse of eguation 3.2.6 the

precompensator is found

P i
G. (z) = PARIEE 0 3.2.7

0 ‘ z ?
In example 3.2.1 the minimum time delay occurs at

off-diagonal element 2,1 thus the diagonal factor;zation is
not optimal in terms éf settling or response timet; For the
factorization £o be optimafiit would be hecesséry Zo include
terms in the off-diagonal .elements of the precompensztor

matrix. This consequenée will be discussed later in this

chapter. ,
The diagonal precompensator or large sampling interval,
can be used to ‘remove any NMP characteriStics from the

process model. An example of how G.,(z) can be used to
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remove NMP behavior from 6.(z) is demonstrated in Appendix

G.

3.3 The multivariable predictive control problem

The basic IMC, multivariable closed loop structure 1is
illustrated in Figure 3.1. From this diagram the closed
loop transfer function can bé established. The control
signal vector m(z) is determined from

m(z)=[l+Gg(z)E(z)(Q(z)—g(z))]"Gg(z)E(z)(E(z)—g(z)) 3.3.1

and the process output vector y(z) from

z(z)=§(z5[1+Gg(z)E(z)(G(z)-G(z))]f‘Gg(z)E(z)(§(z)-g(z))+g(z)

3.3.2
The nexﬁ section will look at one specific choice for Ggc(z),
the completely decoupling controller. ~ The single.variable
analogy to this multivariable controller is the deadbeat or

-

perfect controller. \

3.3.1 The décéupling controller \

After G‘1(25 is factored from G(z), it should be
possible to find the controller Gc(z), given by equation
3.2.1 which  results in a completely decoupled respohse.

This is demonstrated in the following example.

Example 3.3.1 The decoupling controller

In this example the IMC controller is. designed on the
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basis of equation 3.2.1. In addition the process
model, G(z) is a correct description of the true
process and the filter 1is sét to unity. That 1is
G(z)=§(z), F(z)=1. Given these conditions the closed
loop 1input output relationship, ‘based on equation
3.3.2, can be developed in the following manner

Because G(z)-G(z)=0

y(z)=G(z)Gc(z)(s(z)-d(z)) +d(z) | ©3.3.3
Because Gc(z)=6_(z) ', ecuation 3.3.3 can be further

reduced to

y(z)=G6.,(z)(s(z)-d(z)) + d(z) P 3.3.4
The input-output relationship,in equation 3.3.4, will
remain stable for bounded s(z) and d(z). Furthermore,
as a consequence of the choice for the controller, the
input-output relationship  has beéome completely
decoupled. ?

In practice the‘contfoller specified by equation '3.2.1 will

be undesirable "for several reasons. Fifst, because this

EOntrOIIer drives the process very hard, it is sensitive to

“modelling errors. Secondly process zeros on. or neér the

unit circle will cause undesirable oscillatory behavior.

Finally because this controller minimizes the proéess output

without éonsidering the othef proceSs | states,  severe

intersample ripple oécur;. This will always be the case
when the process model order is secénd or higher.
The problems associated with the éontroller given by

equation 3.2.1 also occurred in the development of the SISO

{
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IMC controller. Analogous to the SISO case-the IMC design
procedure for MIMO systems introducés the multi&ariable
predictiyé control law to compensate for problems in the
bresent design policy. As demonstrated in Appendix H, one
special case of the predictive control law, "'results 1in a
decoupiingﬁ »conﬁroller; but in general the resulting
controller wiil only approximate thel completely decoupled
controller. How closely the controller found Dby the
predictive control law resembles the total decoupling
controller is influenced by the choice of tuning parameters
and time delay éompensator. Before éxamining the predictive
control law, the model used to describe the process musf be
~redefined.i The multivariable.inpuf—output relationship is
given by' |

y(z)=6.,(2)6. (z)m(z)+d(z) | 3.3.5
Let y*(z) denote the éutput from the time delay compensated
pfocess, that is »

v (2)=¢_(z)m(z)+d(z) - | 3.3.6
The process description is further modified by>replacing the

transfer’ function matrix G.(z) with the impulse response

matrix H{(z) to give

y*(z)=H(z)m(z)+d(z) 3.3.7
Garcia and Morari[1] hypothesize because  the impulse
response model is a nonparametric or nonparsimonuous

description of the process, it contains more information
about possible nonlinearities in underlying process, than an

ARMA'representatioh. This possibility will be discussed in
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Chapter 4. For the moment it is important to note, this
representation, unlike an ARMA model, facilitates prediction
of future outputs based entirely on the time series of

inputs, eliminating the need to store past output history.

3.3.2 ‘"Balance" in the context of the multivariable

transfér function

It has been mentioned that 6.,(z) is only optimal if
the minimum ;imé delay occursibn the diagonal elements of
ﬁhé transfer function matrix G6(z). A system that meets this
requirement is denoted by Garcia and Morari as 'balanced’.
Converéely, a system that fails to meet this requirement 1is
termed 'unbalanced'. The measure of 'imbalance’ is‘found.as
follows. If 71 is the delay in the'ii th elemenf of the
precompensator matrix, and 7 is‘the minimum time delay in
each row of the transfer function matrix, then "the measure
of imbaiance To is found from

To= max [77-7,;;] | o : 3.3.8
for all 1 '

' The -example that follows will help illustrate this concept
of balanée. ;
Example 3.3.2 bgterﬁining the measure of imbalance in a
process tranéfer'function.

For the same process model as used in example 3.3.1,

from G(z) it follows that the minimum time.delay per -

T1=3v, . ’ 7'2:2

. From~G.:(z), it can be seen that the diagonal element
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time delays are

T1=4, ' T§=%

so using this‘ information with - eguation 3;3.8; the

measure of imbalance 1is calculéted as

ro=max[(4-3); (3-2)]=1
By calculating the resulting H(z) from G.(z), the
implication of 7,#0 is apparent. The rea;izable process
transfer fun;tion matrix in example 3.2.1 is given by

G.(z)= 1 ‘ 2z A ‘

1=0.5z z | 1

After carrying out long division on each element of G.(z),

the equivalent impulse.response model is determined to be

.5 1 z"'+... 3.3.9

H(z)=} 2 0
.25 .5

—
o

Which for simplicity is written using the following notation

H(z)=H z'+Hoz°+H.q 2 '*... 3.3.10
To

If the' decoupling controller; given by equation 3.2.1, is
used to calculate the control siénal m(z), eqﬁation' 3.3.6
can‘be rewritten to give the deadbeét control signai
m(z)=H(z) '(s(z)-d(z)) , 3.3.11
whérel s(z) has replaced y*(z). Because the  matrix
corresponding to 7, is singular, inverting this matrix 1is
not poésiblel Although it 1is oniy illustrated for 75=1,‘in
general all matrices H;, where j>0 will be singular. Thus
To determines the number of singular matrices in the impulse

response model.
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~

In order - to obtai:r the complétely decoupled responée it
is nécessary to set all singular matrices to zero. If the .
decoupling restraint is relaxed by the wuse of iﬁput- and
output weightings, it is possible to find an approximation
of H(z) ' that is nonsingular.

At this point two of the four steps necessary to design

the multivariable controller have  been compléted. . These
steps are _ - ' ' S/
i. The process ' model .has. been factored, via eguation

3.2.3, to femove" koys and, if desired, NMP
R :
characteristics.

ot

oy
o

ii. e -pﬁan§fef function G.(z) has

been tnanséd}med‘igtb the. imgﬁlse response model and
. singular ‘matrices ~ .are removed if the decoupling
controller is desired.

The hex£ two steps,"formulation of the predictive control

‘law and use of the multivariable filter, will noQ be

considered. Thé bredictive,control law is used to design a

coupled multivariable controller in'those cases' where . the

decdupling éontroller is: |

- i, nop,realiéable or TQ#O

ii. not desirable due to severe intersample rippfe

It will be “shown‘ that the filter with its exponential

weighting can bé' used not oﬁly to compensate, for some of

the undesirable aspects of the decoupling controller but

also add, robustness to the cldsed loop system.
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3.3.3 The multivariable control law

Due to’ the similarities between the single variable and
multivariable control  problem  the IMC mult1var1able
predictive control law is almost identical to its SISO
counterpart. The matrix of control in?uts u(z) is
calculated o?er the horizon P+r, to minimize the Wéighted
error betweeg the setpoint anﬁ the process output

+To

o= min ZOT18GH[1* + [1¥()]]7] 3.3.12
m(k) j=1 :

subject to
A(§)=[s* (k+j=70) -y  (k+j=7o|k) Ix]
V(3)=m(k+3) 8]
y* (k1o k) =y (k+j=10)+@" (k*j-rolk) =
N+7o
=L Him(k-1) + d*(k+j- To|3)
i=1
where
lx]lr=xtx |
The  prediction df d*(k+j—r°lj) is given by the
dlfference between the process output, X(kj,iand the output
from the process model, zm(k)  The control law that results
from the solution to this minimizatipn is given in Appendix
H. | | |
The tuning péfameters T, B, v, P and M, effect the MIMO
closed ldob pfoperties in ' a manner analogous to the SISO
closed loop properties (cf SecE1on 2.5). The closed 1loop

stablllty propertles of the multlvarlable predlctlve control

law are demonstrated in Appendix I.
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-

3.4 The multivariable filter, F(z)

The multivariable, diagonal, exponential filter, F(z)

1"(11
1“&12_‘
T—ay
F(z)=]|" 1T-x,z" "

1—(13
1'—&‘27‘ b

' can be used as a tuningbparameter tdrshape the closed loop
response of both the cohtro; and outpuf variables[zl.

The filter aetunes the pOntroller,' Gec(z), to dampen
input fluctuations leading to a more desirable résponse.
Like the SISO filter, describéd in Section 2.7, the
multivériable filter weiéhtiqg parameters, «;, can vary
between 0 and 1'with'further detuning of the controller for
larger values qf o . Garcia ?and Morari[3] encourage a
desigp procedure that utiiizes only the “deéoupling
cohtroller, giyen by equation 3.,2.1 and the'filter; The
othef parameters B8, y, M, P and’¥‘éfe only utilizeé when the
inverse process model .is unstzple. |

The other raspect of the; filter, 1is 1its ability to
stabilizewthe closed loop response when plant/model mismatch
oc&urs. Garcia and Morari demdnstrated} this stébilizing

feature for one specialized case . which is presented in

. - Appendix J. In general the stabilizing effect of an

" exponential filter will not be exclusive to IMC, any control
'algorithm/~will‘ldemonstrate* greater rébustness, at the

expense of control performance, by increasing «;. The next
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section will illustrate the effect of the‘ filter on
multivariable closed, loop performance.
3.5 Tuning the Multivariable Predictive Controller

In Section 2.6 the performance of IMC for different
.systemS. was studied-by‘simulation. Theithree systems were .
represented by discrete second orderciflinear" transfer °
fUﬂCthnS. In this séction. multivariable‘IMC"is uSed to
control simulated multivariable systems when ‘a unit step ih
“the setpoint of’y, occurs. Like the systems 1n'Sect10n 2.6,
the multivariable system is represented by dlscrete linedr
first and second order transfer“functlons. To illustrate
the‘ performance of multivariable IMC, three different

systems are studiéd by simulation.

f"'fr_

?ﬁ
3.5.1' Tuning a balanced minimum phase transfer function

¢ !, \\a ‘i' 2
matrix -

Theumodel used is a simplification of that presented

for a. blnary ethanol- water, dlstlllatlon column model[15].
v

To, represent a balanced m1n1mum phase system, only 3 ‘two by-'
two matrix- *ls us%d From the complete d1st111at10n column‘

model given in Appendlx K, 51mp11f1catlon’1s @arrled out, to
arrive at a two by two matrix B

\
! ‘

E _ : , .
yi(s) 0.66e72 ** ' -0.61e"? *° u;(s)
! | |7(6.7s+1) T (8.64s+1) .
li =. . : ) ‘ . : ' ,\i’
y2(s) 1.11e-¢-5¢ -2.36e" %' °" uz(s)|
J |3 Zss+ 1) . . (5.0s+T) | .
Y::overhead ethanol molepﬁraction 'ﬁ ‘
: N ”’ s
= ® “4

Do . v
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y.=side stream ethanol mole.ffaction
u,ﬁreflux fiow réte, gpm o
~uz=side stream product flow rate, gpm

The transfer function matrix is classified. as "balanced"
because the minimum time delays ~occur on the diggonal
elements of the matrix.  Had a transfer function description
noﬁ been gVailable;correlation analysis could be carried out
to identify thejimpulsé {gsponée series erm which the t'ime
delays could be deterﬁined;

To begin the controiler ‘design procédure, the time
delays .are’factored from the transfer function matrix using
equatiSh 3.2.3. Because an impulse re ~on-. model 1is psed
in .the controlllawwand Yet equation 3.2.3f;equires an ARMA
modél_to'represent G(é), some simblificaticn must - be madéiin
the ¢t ue delay factorizgtion pfocedure to accommodate those
 casés where an ARMA model is not qvailable. One sQlution

uses only the time deipgé"‘to represent the ARMA process

X

o

transfer function matrix. With this simplification .and a -7
sampling rate of. 0.5 minutéq,‘the transger function shown . .
N N . — ~{J Lo

above is represented by

.

. .
=13 >~ & B
z5! z : J

me delay in element 1,1 of the matrix has.been rounded

1 i

x?i‘:?éggﬁ-fo?%ﬁ ?h£eg¢fInum5er pf. samples. ThE%;_ébproximation
'ii§6YdS 1»§ﬁé éxtra- algebra associatﬁﬁ‘i Qith mod}fied
| \z—t;dnéﬁggﬁsaf‘The inverse transfer ﬁuﬂéfion;maérix of this
""T“‘ G(Z)’és“£fﬁ. ] . .
T : - S

SG
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M, N, B“ and.:y, are those values that. result in the.
, decoupling gontroller. 'As demonstrated. in Appendix H, a
'} . X © o, .

/N ‘ e 50
G(z) '=| z* -z
_Z'Z z‘
1-z7° ' .

Aprlying equation 3.2.3 reveals the inverse time delay

" compensator

JC_’U 1‘(2)' ';’Zs

stable and realizable ;controller‘is possible for a syvstem

"described by a’balanced minimum phase transfer function. By

v

choosing the above precompensator and’'the following tuning

pafametefs B
 P=M=1 NiBQ‘ §=b_”[¥1. a;=0.0 for all i

the depghpling‘controller result;.”'TheDEIO§ed loop response

for- gheLadécouplihg conﬁroller is shown vin Figufe 3.2.

Absolute méésures of 'Control E#fé:t"aﬁéii'“'Outpugi ngég}

are . includéd“- in the figure to _qUa§£ify-'the' control

performancg.: Tﬁééé measures aré‘cqmputed from thelfollowihg

equations = . a&ﬁ‘ . » . B “ 5 |
Cantrol Effort=2lg(k+i)fm(k+i;1)l%; . -
ﬁutput Error=Z|y(k+i)-s(k+i)|T,

where T, is the time betwegn changes in the control signal

K

L T‘_ze?'wi S O . 2T 1. L - a
A&":p
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'In Figure 3.2 the time delay for element 1,1 was
underestimated as 5 units of delay, in Figure 3.3 the time
delay is overestimated as 6 units of delay. It 1is evident
by comparison of »the responses in these two figures that

overestimation of the time delay has reduced the undesirable

1

oscillatory behavior in the manipulated variable. However

undesirable spikes occur 1in both trajectories due to the

mismatch between fhe estimate and actual tdme delay and the

truncation error associated with the impulse response

series. These two figuresvalso show how extremely sensitive

the decoupling controller is to this form of plant/model f?

mismatching. To affirm the ab111ty of IMC to completely

decouple the output response when no time delay mismatch}

oecurs, Figdre 3.4 shows the closed loop response for the
distillation column model when the delay in element 1,4: is
reduced  to 2.5 minutes. Now the time delay compens@ﬁbr has
been able to completely factor the delay giving a ﬁﬁﬁiecr
deadbeat response for the first N samples. After this time
o a large departure from the setpeint occurs due to the
‘ "
truncatlon error 'Truhcatidn error _occurs because the
serles length, N, does not.encompass a suff1c1ent number of
terms.  For example, The feedback 51gnal at t1me k+N, lili

be zero for a correct model and no-disturbance

v (K+N) -y m (k+N) =0

however at time k+N+1, the input occurrimngat ‘time m(k) 1is-

no longer included in the vectorof past inputs. If the

el

impulse response series coefficient corresponding to N+1 is

<,
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nonzero, then at time k+N+1

y(k+N+1)-yo(k+N+1)= h  m(k)
' N+1

Since the feedback signal is no longer zero, the cdltroiler
begins to take action on what appears to be an unmeasured
disturbance, which in turn 1leads to the bhounce in the
process output,fA Theoretically by 1increasing the seties
length, N, this error can be reduced. However the large
S

storage requitements ~of the multivariable system model,
place a bound_ on the maximum size of N. As a tesult,
significant truncetion error must . be tolerated 1in meny
cases. =

- Cdubling effects ceueed by reducing " the input

suppressnon“ parameter or 1ncre351ng ‘the ratio of B/T, are
_ : &

‘p‘f

1llustr ted by the responseslin Flgutes' 3.5 and 3.6.:3“In
W
Flgure .5, the input suppression para;eter, M, is reduced
from 30 tbﬁ?. In Figure 3.6, the ratio of .input weighting
toa;dutput~ weighting-is changed from 0 tov.5. Relaxing the
vdecoupling constraint has reduced the extreme excursions‘ of
the f manlpulated variable énd reduced the effect of
'truncatlon error on the process output In Figure 3.7, the
decoupling controllerv from Figu;e 3.3 is used again except

1
A

this time the filter weighting pafameters a; are thh set to
.S instead of 0. The response and control dgdeuics have
imuroved as a result of the nonzero ;. This result affirms*
the design ‘procedure based solely on the deeoupling

contfoller and fllter extolled by Garc1a and Morar1
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Figure 3.6 Response of column to a positive setpoint change

of 1.0 1in overhead composition, y,, under IMC control with

- B,;=d1a(0.5,0.5) for j=1,M
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N
Returning to th(?.prqblemﬂ-“

runcatién'erfér in the
impulse response model the digt{llation column model‘awhen
sampled at 0.5 .minutes, needed all 30 terms to achieve
satisfactory control.. If 30 was ingufficient, a slower_
sampliftg rate would have been necessary. The performance of
the controller when the ‘sampling rate is one minute is
illustrated in Figure 3.8. The performaﬁce is .comparable to
the respohse in Figure 3.7 hpwever tﬁé overshoot evident in
Figure 3.7 does not appear in this figure because the time
series horiéon of H(z) is doubled. That 1is NT=30 min in
Figure 3.8 versus NT=15 min in Figure 3.7. Incfeasing the
timgihorizon, NT, has on;y postponed, not “eliminated the

"‘y.‘

Y R
- truncation error.

-
! hd - !

3.5.2 Tuniﬁd%the IMC controller for a process‘deséri
a balanced NMP trangfer function matfix
Nonminimum phase chatactéristics or ‘inverse. response
behavior{%aré freqdently Todelled by a secondrégdér transfer
function with a préceés zéro od%sjde the ‘unit 'cifcle., As
e#plaihed in Sectibns 2!3 aha~3.2; the NMP zeros must be
coqpeﬁsatéd to achieve“a:reéliéable approximation. of G(z).
Appendix G 'contéins an example of héw NMP characteriétics
can be factored frém Q-(z)’ ihto G;,(z). Thi's méthéd‘ of
handling NMPacharactefistics is undesifable because .
i. - The'factorizéfion requiresAah ARMA model of the process

and in most cases an. ARMA model will not be available.

ii. A multivariable factorization is an analytical
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Figure. 3.8 Response of column to a positive setpoint change

. of 1}0 inloverhead composition, Y1, under IMC decoupliﬁg

control for a one minute sample rate
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technique not easily programmed into the computer.

iii. The closed-loop response becomes very oscillatory.

Instead of removing the NMP =zeros from G.(z) two other

.approaches are suggested. It 1is demonstrated in Section
52'6; that NMP behavior can be removed from the discrete
:process representation by 'choosing a sampling rate that
avoids any inverse response behavior in the oien 1loop
response; |
If the sampling rate cannot be adjusted to avoid the
NMP 'region due. to time delay or hardware restrictions,
penalties upon the inpmts‘can be applied in the control law

v

formuiefion to achieve a stable Gglz). -

Sl

The latter method is used in'this’example to control a
nonminimum phase distillation column model when a unit step
C
1n the setp01nt of y, occurs. Wlth three exceptions, ‘the
Jﬁg%el is’ taken dlrectly from the model’ glveg in Appendlx K.
One exceptlon ”is-*the SISO transfer function used ,.to
represent the resoonse of tray #19‘temperature‘to’a change

in reboiler steam pressure. This‘second order minimum phase

relatlon is replaced by a second order NMP relation found by

Luyben[16]. The other changes effect the time delays in the
felememts‘relatlng.steam pressure to overhead composition and
steam pressure .to side stream composition. These time
delaYs are 1ncreased from one to foﬁr minutes and 1.2 to
‘four minutes respectively to- make the overall transfer
functiom maﬁrix balanced. With these changes$ the transfer

function matrix ‘in:Appendix K becomes
: ) ‘ ’ : %2



0.66e-2 ¢*y -0.61e"2:*% -0.0049e-* °*
(6.7s+1) (8.64s+1) (9.06s5+1)
1.11e-¢-%* ' -2.36e-2-°* -0.012e"* °"
G(s)=|"(3. 255+1) . (5.0s+1) - (7.09s+1)
o ~34.68e" " 46.2e° 7 ** -1.0(-2.50s+1)e"*
(8.155+1) (10.9s+1) - Te+1)(12.55+1) .

The

.
~ >

'Y1=overhead ethanol mole fraction

y2=5ide‘stream ethanol mole fraction

, y3~tray #19 temperature, °C o

(correspondlng to bottoms comp051 1on)
u,—reflux flow rate, gpm }
u;=side stream product flow(rate, gpm

u,=reboiler steam pressure, psig.
4 .

process 1is sampled every minute. The precompensator

G.1(z)=diag(3,3,1) is found using equation 3.2.3.. Time

delays that are not integer multiples of the sampling rate

are overestimated because overestimation has demonstrated

better control performance. Beforefproceeding any further?

the many different factors that combined to make

‘the IMC

rcontroller very dlfflCUlt to ‘tune should be mentloned :

i.

Cii.

/

The multlvarlable transfer functlon matrlx has a w1de'

Pange of element gains. ., The SISO trar fer

R
e

fufunctlon -

gatni"in velements 3,1 -and - 3,2 are a féctor’of'ten

J
4,

gredter than the other matrix gains..

The off'set compensator was needed to bfing'tneg

A

Vi - back to its’ setp01nt. be&eGer"due

5.

LU

3 P
e

output,

to the .

mathematlcal operations requ1red to compute the offset'

compensator, . large numericel errors were

«}A

npticed.

These errors became.intolerable once the model series

. - 5
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FE

length, N, becameﬁgreater‘than 30." To understand how

\

these errors _propagate“‘as N -increases consider the
multivariable control .law

s ,L: ' m(k) =b‘K-'[A'r'r(§—gy)] o " H.4

SR where K=[A'L" FAfB Bl . . o -

For a 3 by 3 transfer matrix, a Serles length N of 30

o an optimizatjon horizon, P of 10, and an, 1nput

,f”~ : suppresion parameter ‘M ‘of 10, the matrlx jhha5‘2700

- B elements} the matrlx A has 900“ eléments. fth huge

matrices like these 901ng through multiplication,.

addition -and. inversion operations, round-o” error 1is

.t

u

. make R oy
tq(-ﬁi"t L

e
&
2

- '\V‘\ ( . . . (o)
) rormulatlon‘of'Gg(z) akewgﬁmmed 1nto . :

s ‘\“,-.

.igi.433cause the‘idiagonal element time delays are not ..

integer' multlples \of 'the sampllng, rate a é‘rtain

r

amount of plant/model>mlsmatch must be tolerated in the

T o,

Y, Y 3

- i closed loop response.

‘ Keeplng these p01nts in m1nd the number 4//f6rmi N in the

"impulse 'response model was chosen as 30 to'mlnlmize.the

truncation _ error ,butu'still pérmit- use. of, the offset -

\/ .

compensatar. - - The opt1mlzatlon horizon p, "~ was 10... -

A
‘Increa51ng P prov1ded negllglble galn 1n control performance

but 1ncreased.the computatlon tlme.' From.Appendlx-I,llt is’

T

inevitable. *. The offsetvcompensator,'b - 77 Jted to &

i H(1)Gc(1)O 1 o ;Qggf -
- - - ’ -:{ g . .‘_ .
or  BRLH( 1)Gc(1)]- e -"ib e R S SNV

S & calculatlng 0, ' all ng the errors present in the.

&

&
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. R o
known the NMP process can be stabilized by choosing M/P

uff1c1ently small or B/T suff1c1ently large. In this case

r,{«

W& , . .
,closed loop sYsteﬂﬁ-was only stable for M<5. ‘The beést’
g A o? E 4 N
ch01ces for'fg ogiggi 4 were their default values of 0 and L

respettlvely Othergfse the presence of B>0 or F>I caused

the offset,qo%ggpsator, 0, to have unacceptably latge error.,
_Flgure 3.9 1lld§%rates the response of the p;écess for B
N=30 - P=10 M=3 To=f . .
g,-(o 0,0.0,0.0) jfor 3-1 wo TR

RN

*
1,—(3 .0) for 3—1 P

f‘a.—O 8 for, 1—1 2 a3—0 0 o S

5The fllter »welghtlng parameters, a,, were chosenwto detune

J!
3krslowdown ‘the responses of yi and yqubut keep Ya. the
Al

.dlfflcult output to tune, respondlng as fast "as p0551ble'to'ﬁj

s ey
anf setpolnt changes or- disturbance s -

LG
4 Dol s 5N R

fBr al& ,pf %he a,,? would have oﬂly f'311ght detrlmental-

. -

N Yde \‘:‘,J'

:effecg{ However, decrea51ng Wy - O ®aey would causg 'thr‘
% A L
respggse to deterlorate yery qu1ckly.? Sampllng the process ,

at a faster rate was 1mp0551ble because the truﬂcatlon error’

caused an unacdeptable plant/model mbsmatch g?mpfing the
r

process at a slower rate m1n1mlzes the truacatlon error

v

- problems but has the dlsadvantaqe of 1ntroducang tlme delay

mismatching that‘eventually w1ll,cause an unstable response.
. N ) . RN ." -4_.. R ) R

e .
! - 4

o

_the = choiswe of ‘M/P was the crucial stablllty factor. Th%

S hs '
.ls., Increasxng ohe
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‘ " 3.5.3 'Tuning“an unbalanced, minimum phase transfer function

matrix o
’ . . Ty L . ) )
e A  transfer function matrix is termed unbalanced, when
theeminimum ti : delays are locatgd»{if the off*diagonal .
‘ : o ¥ . .‘4_ v "' § ly.v\h :I:'\i ' o
‘positions. v, a consequence o '”nflance the decoupling

controller ..l ke nonreallzable due to singplarities_in the

impulse' response serles. 'SeveraICAmethods IMC uses to ,

4 5 ‘ . . . -
control unbalanced process transfer functions, discussed 1n

©

" Section 3.3 are’

A

L1 Perform Guassian ‘elinination- on the elementé of the

s

control law to e11m1nate the rank def1c1enc1es of TA.

. After tﬁe= 51ngular1t1es “are remogqg, the decoupllng
39 ) “ " ) ' o 0 ISR 8 ‘
] e . . . S N N : . .
controllér will be reallzaﬁler- e @? N

'

e

Simply remove the first 7, singular matrices 'from the o

" impulse response series. ?xAlthough" this provides a - R
S r’ e
ﬂ“decoupllng controller the control dynamics. can be poor

4"
oy

or unstable due to plant/model mismatch. 4
.r % -

iii.-ReIax the decoupling- constralnt to allow inputwand

- vggfput "weichting.s By sufficiently penalizing the I
- . o

, control law a stable conkroller results. e -

The £irst approachw w1ll not” be ‘considered because it

reguirés'~a¥.ch51derable amount of extra programming and
7. -
prov1des°only marglnally better performance than the coupled -

*nem

controller. The ‘second method is also not con51dered'°'..

N
¢ .

"because of the undesirable performance,/“character1st1cs_ N R

v - already-stated.
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A two by two matrix with the minimum time delay in

position 1,2 is chosen from the distillation column model

‘given in Appendix -K so that it represents an unbalanced

process transfer function. The two by two transfer function

. wo
matrix =~ sefe~ted for study -is
, y.(s) Osooe 2 ¢¢ ~0.004%9e" ' °® u, (s)
, T ' (9.06s+1)
yals) ~0.0i2e"" "i !uz(s) .
(7%09s+1) |
y1¥§§erhead ethanol mole fraction | E "ﬁ
e y.=side steam product flow rate, gpm
o u,=reflux flow rate, gpm
U,=reboiler steam pressure, psig ' . . a
e ‘Qyﬂézidn the prev1ous two exame&es, an impulse response model .
] . . "\, ' ." iy S
//?:QYH correct1 descrlbes e rocess is prov1ded to the IMC
Yy p
cohtrolle; *pﬁor, a mgamplﬂiﬁ@ ‘Fdte of one mlnume, the tlmehanjfo

/"

delay factorlzat1on glves §.1—(32 %)% with thev measuge oﬂ
imbalance To found from equatlon 3.3.8 to be two. The IMC~.
controller is usedlto control the unbalanced process when a

un1t step in the setp01nt of(%1 is de51red Agaln the IMC'\"
( .

controller was very difficult to tune and provided very poor

‘ wl,‘ i . .
W
o 1"1. " :

control The rease®s ror the poor performance are

i. The process model his time delays that are not integer
P .
multipleg of ‘the sampllng., rate.' - This causes ,
;e T S ‘ : N :
plant/modelw/mismatching to occur. :The effect of this, P

mismatch is reducé% not ‘eliminated, by overestimating

NN \Wv, l'» Y L .
— .

'i‘the time delays. ‘*i;wymsﬁﬁ’wﬁ>

ii, The SfSO elements that make up' G(z), have very"

different steady state gaine. Elements 1,1 and 2,1
. . A )
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have gains approximately 100 times greater than the
\gaLns in elements 1,2 and 2,2.

iii. The f1rst r, matrices of the 1mpulse response series

descrlblng this process w1ll be- 51ngular To stablllze

1

the response input’ wglghtlng on at least these f1rst -

two . matrices will be necessary to ‘eliminate the .. 4.

singularities.
iv. To reduce the steady state offset caused by the 1npUt

~weighting, the offset compensator is u@ed Assoc1ated

with the offset compensator, 0, awe nunerlcal errors,

]

) arlslng from r@ppd -of £ error ang plant/model mlsmatch'

’due to'the truncatlon erroﬁ‘ LA K i

Simulatlon results fromv'tv%A trials ;are ' presentedi:'to
1llustrate the' effeit o | '
'response‘> In Figure .é3JQi'the ‘majn. .@b]ect1ve'<was.‘.to
f"e11m1nate. the steadvffs%ate offset.); Because the offset

and T ?ba the .closed loop

compensator., was very‘ prone to .rror for E#OW it was e

important to keep the 1nput weighting small. Futhermore, 0,
was also suscept1ble to large values of L. Bound by these
11m1tatlons, the steady state of fset was minimizeé for
=30 p-8 M3a,—08for‘1—‘1ﬂ2 o [
g,-diag (0. 0, 0.05) for j=1,M |
1,—d1a(1 1) for ]—1 2 and y;=dia(1, O) for j=3,P

The value for N, was the max1mum p0551b1e before the offset

4

e M

compensator beéame uzj}ess It ‘was found the value for P

: g
‘ maae -very llttle»‘ 1fference foéfgiﬁ ‘ Belng the smallest,

"eight minimlzes the,computatlon time.. Reducing.M, increases

) r
g N
kR 3

¢

%E\\ f\\

SN
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dia(1,1) for j=1,2 and

N=30 y;=

pP=8

M=3

.
’

with

IMC

=dia(1;0)

for ¥
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dia(Q.0,0.05) for j=1,M

3'IP Qj



70
. e

the closed loop stability, but 1t also, inw effect,  detunes
the closed loop system. Everytime the controller is further. mﬁ
detuned, the job of tﬁe offset compensator becomes‘ more
vvital. In this. exaﬁple, M, was.set to its maximum value.
Jﬁllncreasing M further would cause the system to- become

unstable. The filter weighting parametersg;«, were set Qery

high)'to~prevent oscillation as much as possible. Using the

max imum posslble value for M; meansdthe closed.loop response
~is only marginellyvstaple. 'Applingllarge a;, enhances the
_gfotustness. The input weidntings, @,; were chosen to ensure
all singulerities were'removed,‘Yet pénalize the response as
little as possible. - Whether, @j.Ves_0.0,C.QS or10.0,0.91

made very little dlfference_ and furthermore’~there i's no

1nputu welghtlng on u,ng‘

“were I for the first two“" Vgon steps. The remaining . six, 4T

~steps only penallzed excur51ons of v, not yz. Because: the
1nput and éutput welghtlng are only meanlngful relatlve' to

each other, the first two output weightings are unlty. 1f
the penalty on y, was ‘zero. for all P steps, the -input

. 'penalty of 0.05 would be meaningless and the system would
'\‘;'D' :

7oA :
become upstable. If y;=1.0,0. D*for f% 2 P, the system 1%

unstable. - A balance  was struck between Stabilityf and”

setpoint tracﬁ%@ﬁ?when y;=1 fbrﬂ j=1,2-.and 11=1.O,0.0' for Nr
j=3, P. By setting X E? 1.0,0.0 for j=3,P, éq infintely

4 :
greater welghtlng is placed upon %xcur51ons of y1, than V2.

This sacrifices the quallty of the side streaﬁ product Y2,

' but it provides better control -on. the . ‘overhead vproduct-
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,composition, y,. The response in Figure 3.10 is undesirable

M

Qﬁecause of insufficient penalties on process inputs. Closed

loop robustness has been sacrificed to provide reasonable
setpoint tracking.

In Figure 3.11 the Input and output penalties have been

“increased to ensure a robust response. The tuning

7,

parametérs used in Figure 3.11 arel
N=30 P=8 M=3 «,=0.8 for i=1,2

8,=dia(0.1,1.0) for j=1,M

and y;=dia(1,1) for j=1,P

The chénges "have eliminated most of  the undesirable

‘noticeable.

oscillatipns found in Figure ,3.10. ﬁowever, because the
- . ‘»'W ) . K““ " - . '
input and output penalties fhave further detuned the IMC

é&ntrollern the,offset.éompensator‘s deficiencesfpecome more

W

[ ]
s B

VO
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frlablllty of the controller to prov1de 'optlmal performanoa*\

J e
compensatlon, technlque. When the process model %s correct,
the closed loop characterlstlc equatlon reduces to the delay. ‘ j@
free characteristic equation. When the plant mbdel rs :
incorrect,,the difference between;y(k*r)’and.1m1k~r) is used
to compenSateyforﬁerrors in the model; . J

The algorithm of Garc1a and Morari departs from the SP

pollcy_ with regards tb design and’ 1mp1ementatlon of the

controller. The IMC philOSOphy encourages ~ the ‘use of a

mlnimum variance controller. _Robustness - i's added to the
closed loop system by the use of a. flrst order fllter in the .

; forward 'path. ' The fllter\locatlon is shown in Figure 3.1,

.p;'.

.,
N

ﬂgedly leads to the best tradeoff between ‘
by SO RN i
robustness and p‘tlmal performance. SR o B

ThlS approach ﬁu

&y
v..,/ %

Conversely‘fthe SP- technlque relles upon dlscrete forms

a7 tra

of thef tradltlonal three umode, PID feedback controller.‘nh'l

The PID structure limits, the .ability of the controller' to

R4
i A

|
cancel prQQess zeros and pores Wthh;ln turn, llmltS the

Suboptnmal performance the SP algorlthm- is further

| encouraged by the use of tunlhg procedures like Zlegler

\ —

NlChOlS Aor Coon Cohen, whlch 1mp11c1tly sacrlfzce setp01nt

I N

tracklng and dlsturbance rejectron for the sake Jof closedh”'

/
a / o
- - PR - ‘“, i

"loop robustness.v: SR {{,fu o ;o S (
f.'
: The relatlve merlts of IMC and a. Smlth predlctor wlth a
"pI lcontroller ‘are" hlghllghted in two example 51mulat10ns.7

/

vanf'therrfirst, exémple, the }m;nlmﬁmr phase second order‘

transfer: ’function, used - to 1illustrate the IMC .tunlng”
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procedure in Section 2.6, is used to éémonstrate the ability
of IMC and the SP-PI" combination. to provide regulatory
control when anAunmeasured disturbance occurs.

Thé continuous process is sampled every four minutes,
resulting in the discfete ~transfer function given by
"equation ‘ﬁ.1.2 in Appendix E. Both control laws are
_provided with perfect process models. A disturbance of unit‘
magnitude occurs when tﬁe process 1s operating at stéady
state, that is y(07)=0, u(07)=0, d(0-)=0 but a(0*)=1 giving
a y(0*)=1. The IMC controller is tuned to provide deadbeat
response, with a filter constant « of .2 to prevent
intersample ripple. The deadbeat coﬁtréller is used because
it will rejeét-the unmeasured load disturabance féster than
othe£ IMC controllers and because its design, Gc(z)=G.(z)" ',
makes it easy to compare to other gtrategies., The deadbeat
controlle; parameters are |

N=30 M=P=1 B;=0.0 for j=1,M vy;=1.0. for j=1,P
The IMC closed loop response is shown in Figure 4.3.

The SP-PI combination is tuned to best approxiﬁate the
deadbeat response of the IMC controller. A velocity form of
the PI structure given by |

u(k);u(k-1)+Kce(k);3c¢e(k—1)
is implemented to prevent saturation of the angrol'siéﬁal.
To choose the Kc}and p values the second order process model
is abproximated by a first order model. Once the first
order approximation is found, the PI tuning parameters, Kc

and @ .can be chosen so that the first order pole and gain
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are cancelled. This type of PI controller, will closely
resemble the minimum variance or deadbeat controller. The

discrete second order transfer function is given by

y(k)=(.1092-*+.0729z" *))u(k) +d(k) ~ E.1.2

1-1.12z- '+.301z °
The poles of this transfer function, found from the roots of
the denominator polynomiel, are located at .448 and .672.
To tune the PI controller the dominant pole, .67é is chosen
fo;.¢. The controller gain Kc, is chosen such that

1 =b,*by+... to give Kc=3.03
Re 1-.672

The SP-PI response for these Kc and ¢ values is ilIustfated
in Fiqure 4.4 and is almost identical to the IMC deadbeat
controller.

The second example looks. at the ability of the two
control strategies to perform regulatory control on a
nonminimum  phase(NMP)  process. : The single variable
continuous NMP transfer function, given by equation 2.6.2,
is used to repqesent\the process. The continuous process is
sampled evgry; four minutes to give the di#crete
representatioﬁ

y(k)=(-.467z"°+.791z~ *)u(k) +d(k) E.2.2

1-.689z"'+0.01232"?

As in the previous example the process is at steady state

when the unit step in d(k) occurs. That is, y(0-)=0,
. [ ]

u(0-)=0, d(07)=0 and then d(0")=1 giving y(O‘)=}. The IMC

deadbeat controller will be unstable due to t‘e presence of
a process zero which is outside the unit circle. However,

from the tuning gquidelines presented . in Section 2.6 by

il
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selecting the input suppression parameter. M, to be less
than the the optimization horizon, P, a stable controller
will result. The IMC cdntroller performed Ehe‘besf when
P=10 M=8 N=30 vy;=1 for all j
;B,=0.0 for all j «=0.6 . -
Figure 4.5 shows the -closed loop response for this system.
The SP-PI system wé% tuned to best approximate the
deaébeat closed loop response. The cOﬁtroller ‘constants, Kc

and "¢, were chosen using the same method as for the minimum

phase example. The resulting Kc and ¢ were 3.03 and .67

\
y
. “

respectively. However these parameters resulted ~in an
unstable closed loop response. To stabilize the closed loop
system the controller gain was reduced until the least
output error oécurred. “This corresponded to a gain of .6.
The closed -loqp .fesponse for Kc=0.6 and ¢=.67 is shown in
gigure 4.6. Surprisingly the SP-PI combination shows better
.regulatory‘behavior than the IMC technique. This result can
be related to the fact that IMC 1is essentially a “proéeés
pole-zero cancelling contrbller. In this example, the IMC
controller was penalized until a stable approximation of the
pole-zero cancelling controller resulted.» The method used
to .tune the PI controllef,did not .attempt to cancel the NMP
process zero and as a result this controller peffdrmed
better.

The IMC controller showed better dlsturbance rejectlon

than the Srith predlctor w1th a PI controller in the case

where the deadbeat controller was stable. However when the '
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deadbeat controller 1is not realizable, it is difficult to

achieve a desirable response trajectory with IMC.

4.3 IMC vs the Inferential Smith Predictor

In Chapter 2 the IMC control law was defined through a
two phase derivation. In the first phase the concept of the
perfect controller was “tntroduced. It was shown this
contro;ler was given‘ by‘ the realizable 1inverse of the
process transfer function.  Theory predicts the perfect
-controller should provide high performance servo and
regulatory control. In practice this type of controller has
poor robustness because it 1s susceptible to modelling
errors and process zeros near the unit circle. Another more
sérious drawback of this first design concept concerned the
implementation of the penfect controller when the process
exhibited NMP behavior. As a ‘result a second method, the
‘predictive control strategy, diven by -equation 2.4.2 .was
introduced.

The predictive. controller contained many of the
desirable features of the perfect cqﬁtroller, and many
others not included in the first phase. Shaping of the
closed loop dynamics to meet operating constraints or to
enhance robustness, was not possible with the first design
method.

On the basis of an examination of control theorf
articles published over the last few years IMC can be

considered to be a hybrid of the control philosophies, of
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perfect control and predictive control.. The <concept of a
perfect controller was discussed in 1579 by Brosilo: .+] in
connection with his development of the inferential Smith
predictor (ISP). Developments similar to the IMC predictive
controller can be found in the MAC and DMC algorithms
discussed in the next section.

- The block diagram for the ISP of Bfosilo@ is shown 1in
Figure 4.7. If the.Gi is replaqed by Gc, only the~di;crete
representaion of Garcial and Morari[1] differentiates IMC
from ISP. Brosilow, as, do Garcia and Morari, selects G;
based upon a realizable inverse of. the -process model, G.
Similarly, F(s) 1is wused to enhance the robustness of the
closed loop system. Both authors emphasis the importanée of
phe‘ closed 1loop ,strucﬁure because it ensures closed loop
stability when the process, process model and controller are

.

all stable and all 1inputs are bounded. Bros#ow did not;

consider an application of the perfect controller to a

nonminimum phase process.

4.4 IMC vs Dynamic Matrix Control and Modél Algorithmic
Control . o
A strong similarity exists between dynamic matrix
“control[5], model predicEive heuristic control[12] and the
predictiye IMC controller. ' Dynamic matrix control(DMC) was
developed by Cutler and Ramaker in the late seventies. At

the same time Richalet, Rault, Testud and Papon as well as

Rouhani and Mehra[18] were developing model predictive .
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« .
heuristic control or as it has now been designated model

algorithmic control (MAC). y

All three strategies attempt ,te design a higﬁ
performance linear optimel controller that alsq achieves
significant closed loop robustness. The important uniinng

feature of these techniques 1is the use of nonparametric

models to describe the process dynamics. Rouhani and Mehra

- emphasize = the’ impdftancey of the redundancy found in the

nonminimal process description because it ensuref accurate

mode%ling‘ of any nonlinearities in the process. The
overparameterization also reduces the need for recursive on
line identification. The dlsadvantages of the nonparametrlc
descr1pt10n w1lf/;e\éon51dered later in this chapter. '

The MAC polid§, like IMC, uses an impulsé'response'
‘Qescriptioh of the process dynamics. In DMC,'the open loop
responsei to a wunit step input. is used to ;epresenf the
dynamics. Because all three algorithms approach controller
deéign through- least squares minimization of the weighted
error between predicted oﬁtput and setpo%né tbeAcontrol léws
are very similar. From equation L.5, in Appendix L, the DMC
control law can be expressed as ' -

Am(k)=-[100...0][A'A*aA’ - 'A'E T Ls
and the equivaient‘IMC control law from eqeétion C.6 is

m(k)Z[1 0 0...0,][A'T TA+B Bl AT T[E-4vV] c.6
The dlfferences in these two equatlons are: |

i. = The pos1tlonal form of the IMC control law versus the
N

~

'~ incremental form of the DMC control law. In IMC the

| . =
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series the two strategies would be identical.

AN ) 88
AN
signal sent to the controller is calculatééxﬁ;om
m = m(k) + m(0) | |
whefé m(0) is the steady s%ate,contrbl signal
In DMC thé equivalent control signal is given by
m = Am(k) +-m(k—i) + m(0) |
‘The positipnal form of IMC accounts for the presencelof
the wvvtefm'in équation C.6. \ ' . L
ii. The method of constraining the contrbl signal.
~ Both algorithms constrain the-controlxﬁghaVior through
" an ad hoc “application  ‘of  scalar weighting iﬁ the
coﬁtrol laws. The DMC poliﬁy .weights- the diagoﬁal
,Aelemengs of A'A by a ﬁgnzero weighting factor, «. In
équatién L.5 the diagonal elements of A'A are denoted
bj A'. . In IMC, the ratio‘of B/y-is used t; inf;uence
the control.and\outpuﬁ trajectories. .Removal of the
constraints from each formulation yields the minimum
Qariance' controller. | The reSulﬁing expressions
corresponding to DMC and IMC are
A_m(k)=—[100:'..O][AY‘A]"A‘E o 4.3.1
and |
‘ m(l;)=[10...0]l[A‘-A]"A‘[E—4’V] o 4.3.2
These differences are very -superficial since if DMC were to

use an impulse response series instead of the step response

e

i

The IMC technique‘ differs significantly. from DMC
’ : .

because of 1its comprehensive approach to process control.

The IMC technique is applicable to not only minimum phase
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systemg but”élso systems with time delay, with NMP behavior

and with unstable dynamics. In addition, procedures are

developed to handle all of the complexities accompanying the

' muitivariable control- problem. For example Garcia and
Morari[Z] Ciearly outiine - the procédure “té control a
multivariable process Qhen the- time delays are unbalanced.
The authors of DMC have yef to develop policies to cope with

— time delay or NMP behavior, ‘The multivariable DMC
developmént considers only the trivial control problem of a
minimum phase-delay free multivariable process.

| Although; the- examination .of DMC has shown many
¢ . similargﬁié;h exist between DMC and IMC, the next material
.will show an even greater resemblance exisps between yAC and
IMC.‘ The MAC control.iéw, as derived in Appendix L, is |
m(k)=[100...01[A*A}- A" [E-¥V] | L.
where A, &m;and \Y% afe as defiﬁed for IMC and
E=|C(1-a?i ") - (y(k) (1-a)=ym(k)) |
With the éxception of the (1-a?i-') factor that appears in
the definition‘for E, this equation is identical to the IMC
control law given by equation 4.3.2, For MAC, with « equal
to zero the 'two equations are identical.
The MAC we?ghting parameter a shapes the closed loop

response in a manner similar to the IMC_ filter,' F(z). A

difference however exists because the « weighting, of MAC is’

explicitly included in the\control law minimization but for

IMC' the «a weighting is applied to the controller after

minimization occurs.
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In Chapters 2 and 3 in applying the IMC technigue ' use
of B and y to shape the closed loop response for minimum
phase systems was discouraged. Instqaa, the combination of
, minimum. variaﬁce éontgol or perfect cor.trol, with
exponential filtering in the feedforward path, was promoted
as the best design approach. This‘is virtually the same
policy as MAC.

To contréi a- process with NMP behavior, Rouhani and
ﬁehra have incorporated linear quadratic control(LQC) theory
into the MAC design. The control law for the NMP process,
as derived in Appendix L, uses the LQC‘ performance
criterion, equation L.13, to ~choose a minimﬁm phase
approximation bf the dynamics. This procedure 1s unique
among the fhree nonparametric g%gorithms. The disadvantage
associated with a larger, more demanding MAC-LQC computer
ralgorithm is weighed against the advantage of a stable
épntroller,that provides optimal control.

A simple , NMP sjstem, under either MAC-LQC control 6r
IMC control, is simﬁlated to compare .he ability of each
qontrollef to reject an unmeasu:2d disturbancé. The
continuous process represented by the t.=ns’er function

y(s)==T(s-.1)u(s) +d(s) _ , 4.3.3
(s+.1)(s+1)

-

when sampled every four minutes gives the following discrete
NMP model with a process zero at 1.69

y(k)=(-.467z"'+.791 *)udk) "~ +d(k) : 4.3.4
1-.689z-'+.0123z"°2

Like the previous éxamples of this chapter, the closed loop

Y
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response t6 an unmeasurea,disturbance, d(k*)=1, is examined.
In Figure 4.8 the regulatory performance of the well tuned
IMC confroller is shown. The tuning parametgrs are
N=30 P=10 M=8 «=0.6 TI=1.0 B=0.0

Figure 4.9 shows the response for the MAC-LQC controlled NMP
system. To tune the MAC-LQC controller values for the
scalar gquanties, «, Q; and N are specified. The value for
N, as in the IMC case, should be sufficient to minimize the
truncation error. Increasing either a or Q, will reduce the
speed at which the controller responds to setpoint changes:

or unmeasured disturbances.: Correspondingly the dynamics of

the manipulated variable usually improve as o or Q are

increased. In ‘this situation, the closest, - stable
approximation to the ninimum variance controller was
desired. To realize this controller only a small value of

Q, was used. The~final choices were
 N=25 «=0.0 Q,=0.02

The value for ¢ was zerp to minimize the output error
measure. slhen Q. was reduced to 0.01 the closed loop
'response rrmained stable but tﬁe output error was dreater.
For this simple system the MAC—LQC strategy provides
significantly better regulatory control with an output error
measure of 23.7 than IMC with an output error measure of
28.1.

However, IMC unlike MAC, can be applied to the control
of systems with time delays or to multivariable systems.

Application of MAC to control multivariable systems has not
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been considered, nor has the additional complexity that time
delay introduces to the formulation of single or

multivariable LQC controllers.

4.5 IMC vs single variable self-tuning control l
A considerable amount of study has been devoted to the
control of systems using self-tuning controllers(STC).
Although' the adaptive nature of the self-tuning algorithm
would suggest such controllers would have little in common
h IMC, closer examiniation reveals many similarities.
‘erent variations of STC are'breSent in‘the literatu;e =Ye)
for ease of comparison the work of Clarkev;nd Gawthrop{ 19]
will be used to exemplify the SISO self ‘tuning controll;r.
A block diagram of thié control strategy is illustrated in
Figure-4.10.

The comparison of IMC to STC will focus on the design

approach, model representation and performance criteria.

4.5.1 Design Approach

The self-tuning controller is designed to function. in
an adaptive manner. It has a simple control law to ensure
compact computer implementation. Conversely, IMC is
de;igned to operate as a model ré;erence controller. Its
control law can reguire extensive \matrix operations not
suited tovthe.fecursive structure of\an adaptive algorithm,

Both algorithms design feedforward controllers with some

.
form- of feedback to compensate for modelling errors and/or
. \ .
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disturbances.

4.5.2 The Process Model \

The method  of representation oé the process dynamics
differs siéqifiéantly in these two algo%ithms. In IMC an
impulse respoﬁse series 1s used to'\model‘ the process
dynamics while‘the‘STC' technigue wuses an- ARMA model to
represent the process dynamics. ARMA models are minimal
représentations, requiring few parametets to model the
input—outﬁut relationship. The process moéel is giveh by

A(zL‘5y(k+r)=B(z")u(k)+C(z“)E(k+r) , 4.4.1
Thev-poles of the process transfer function are given by the.
roéfs of polynémial A(z). The zeros of the deterministic
transfer function are givén by the roéts of"polyhomial_B(z).
The -polynomial C(z) is used to represent any ¢olouring'_of
the process noise. When the noise is unbiased or white[
C(z) is set to unityl For the parameter ‘identification to
work C(z) must have all roots ingide the unit circle. 1In
Chapter 2, it was noted that IMC considers noise ‘modelling

to be of secondary impor:tance and as as result, no

provisions are made to model these stochastic effects.

4.5.3 The Performance Criteria

The STC control law formul: -ic very different from
the algorithms presented so far, L-~c >f this the control "
law derivation will be included in t. - “zion rather than

being relegated to the appendi:.
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To incorporate output, control and setpéint dynamics
into the controller design the cost function 1is chosen to
minimize the variance in an auxiliary output g¢(k), given by

g(k)=P(z" ")y(k)+Q(z- " )m(k-7)-R(z~ " )w(k-71) 4.4.2
where the P, Q, and R are weighting transfer functions used
to modify the ouﬁput and setpoint trajectories. The (z°')
notation will  now be dfopped for convenience. At time

interval k-7, Om(k-7) and Rw(k-7) are known . However at

e

"time k, Py(k) must be_predicted.' By definihg/éy(k)=Py(k)
and ¢.(k]k-7) as the prediction of ¢y(k). based  upon
information known at time k-7, the problem is reduced to
finding the prediction of g5. Because the self4tuning
controller uses both past inputs énd past outputs in this
prediction some extensive substitution operations are
required to arrive at : o .

- Cp; (k|k-7)=F_y(k-7)+Gm(k-1)" . 4.4.3

F_
Py

It should be noted that this equation does not include any
stochastic effects in the prediction'of gy. As a result the
actual value of g, differs from gy by‘ a nbise correctién.
term |

oy (k)=g5 (k|k-17)+E£ (k) 4.4.4
Tqipredict thg output based upon past inputs and oﬁtputs the

following identities have been used

CP,=E+z ¥F__ | - ' 4.4.5
APy APg4 ’ ) ’
G=EB- | ; N 4.4.6

The polynomials E, F and G are found vfrom equations 4.4.5

-3

[
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and 4.4.6. Substituting equation 4.4.3 into equation 4.4.2
allows the wvalue of ¢, to be predicted in terms of known’

quantities

p* (k)=_F y(k-7)+Gm(k-7)+Qm(k-7)~Rw(k-1) 4.4.7
CPy C : ’

The control law is found by choosing the control signal m(k)
to set the 7 step ahead predictiohﬁrof ¢* (k+7|k) to =zero.
That 1is

m(k)==Fy (k)+CRw (k) | 4.4.8
Py '

G+CQ
This control algorithm 1is implicit in nature because only
the parameters of the control law polynomials F, G and C are

recursfvely identified. An explicit algorithm would

identify the parameters of the ARMA model given by egquation

4.4.1 and then solve the identities found in equations 4.4.5
and 4.4.6 to arrive at the F and G polynomials. By
identifying the control 1law parameters the number of
computations at each sample inferval is reduced.

Several simulatioh results are now presented to
illustrate the aanntages and _disadvantages ‘of each
algorithm, The results in, Figures 4.11 and 4.12, show the
MP process response when ﬁhe deadbeat = IMC and STC
controllers are used to control the minimum phase process
described by eqguation E.1.2 iﬁ Appendix E. These results
are for IMC tuning parameters of

M=P=10 N=10 B=0.0 TI=1.0
and deadbeat STC tuning parameters of

p=1 R=1 0=0.0
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Both controllers are provided with an exact description of
the procéss. The twofrésponses are almost identical because
both congfollers haVe placed their poles and zeros to cancel
the poles and zeros of the process. Unlike the STC
fesponse, a slight bounce occurs in the IMC response dué to
the tfuncation error.

The stability or robustness of such an adaptive
algorithm may be difficult to ensure because the parameter
estimation scheme may estimate unreliable pafameter values
due to an insufficiently exciting input signal. To preQent
parametef blow-up, idéntification‘routines may be turned off
whernr the output prediction agrees closely with the actual
output. Use of a model reference controller stfategy like
IMC, removes the need for oh—iine parameter adaption as well
as the extra coding required to° ensﬁrg tStability ~of . the
adaptive algorithm. The next results illustrate fhe
disturbance rejection feature of the STC algorithm for the
same MP system when an pnmeasured“diéturbance, d(o+*)=1.0,
occurs giving, y(O*)=1.0; In Figuré, 4.13°  because
identification . was turned off prior to the distufbance, the
algérithm is unable to pfévent offset. In the next figure,
Figure 4.14, indentification is on .when the disturbanée
occurs. The resultihg respénse showé some initial
oscillation while the disturbance is identified, after which
the disturbance is cdmpletely' eliminated. Cohpare Figure
4,14 where the output error ié 22.5 and control effort 43.8

'to Figure 4.3 where the feedback structure of IMC has

L)
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A Y

resulted in an output error of 10.6 and a control effort of

23.8.

Simulation of the-NMgfprocess, givén by equation E.2.2,
in Appendix E, demoagtrates the advantage of the STC
weighting tecﬁnique“ over IMC. Figure 4.15 traces the
response of the-system'to a unit step in setpoint usihg the
STC éontroller with |

P=i R=2 Q=1
The process zero outside the unit circle is compensated by
the Q weighting of 1.0. To prevent offéet, the setpoint
weighting, normaliy at ohe“isﬂgncreaSed by an amount equal
to Q. Increasing R by a scalar amount in effect increases
£hé value of the setpoint by a factor R. Trial and‘ error
sﬁowed; the best value . for R, was 1+Q. Because IMC uses
only B and y to weight the control law the three parametér
STC tuning procedure is not applicable. Figure 4.16 shows
 the responeé of the well tuned NMP system to a positive sfep
in setpoint wusing the IMC controllef Qith the following
param ters

M- P=13 B=0.0 -F=1.0
The ratio M/P was used. to compehsate the process zero
outside the ‘unit éircle because it proved to be a‘%etter
tuning combination'than B/y. As in the previous simulations
where IMC has been applied to the NMP system, the controller

'was'difficult to tune and provided 'questionable 'optimal’

performance.
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All the process simulation  results so far have used
linear deterministic sysfems described by perféct models.
To examine the effect of noise and plant/model mismatch on
the IMC and STC controllers a nonlinear stochastic process
simulator. 1is used. A Dblock diagram of the blending tank

shown in Fidqure 4.17, and described in Appendix M, has

-

nonlinear dynamics and a variable time delay. White noise

of variance 0.01 is added to the process output to give a

noise to signal ratio of roughly ten percent. A cross

correlation procedure as outlined in Box and Jenkins{20] is
used to develop an impulse response model of the

relationship between inlet valve position and product

concentration. The STC routine uses the recursive least
squares(RLS), upper-diagonal factoization routine of
’ ‘ o

L&

Bierman[10] to identify the contro%ler parameters.
The first set of results are for control of . solute
concentration using the IMC and STC algorithms when the tank

steady state level is in the conical portion of the tank.

Figures 4.18 and 4.19 show the response of the nonlinear

process to a unit step in setpoint using the deadbeat IMC
-and STC controller respectively. Before the’ step, the
solute concéntrationf is 30.1 kg/m*® and the height of
solution in the tank is 0.4m but when the concentration has
reached 31.1 kg/m?®, the solution level 1is 0.44m. These
results were achieved using the IMC controller parameters of

M=P=1 N=20 «=0.0 y=1 B=0
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Figure 4.17 Block diagram of the nonlinear blending tank
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and the STC tuning parameters of

P=R=1" Q=0 ’
Both algorithms eﬁhibited ehe best performance when the
transport'delay was ignored even though the actual deley
varied between .36 and .44 of a sampling unit. Also the
self-tuning controller identified the control parameters on
‘the basis of a first'order linear medel. The output error
'measure'was‘almost the same for the two control algorithhs,
however control using the STC .technique- showed less
oscillation,in the manipulated variable, consequently the
control ‘effort measure for STC was much lees than- the
corresponding IMC measure. For this small change in
operating conditions the cross correlation procedure has
identified a linear model "of the nonlinear process that
allows the 1MC algorithm to control the blending tank as
well as the STC aléorithm. |

When a large positive change in operating conditions
.occurs the IMC controlied process shows better transient
dynamics than the STC controlled procese. The responses in
Figures 4.20 énd_§.21 result ﬁor'the same initial process
conditions and cohtroller parameters as in‘the previous
example except.that'the process is responding to a change. in
setpoint- of 470kg/m® rather than 1.0kg/m®. The response of
the adaptive yéTC ~controller shows overshoot prbmptl%
followed by fiéht regulatory control about the new setpoint.

The IMC algorithm moves the process " to the new setpoint

using . a stationary model to predict the process output and
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as a result the undesirable overshoot caused by parameter
identification in the STC algorithm is gone, resulting 1in
lower output error and control effort measures.

To further substantiate these observations, negative
steps in process operating conditions are simulated when the
initial steady stéte liquid level ‘is 0.6m and the product
concentfétibn is 33.8 kg/m*. These initial conéitions
correspond to the final conditions for the positive step of
4.0 kg/m®> 1in setpoint. The controllers are tuned to the
same se£ting as above. Cross correlation ig carried out to
identify an impulse response model for the IMC program at
these operating conditions. Figﬁres 4.22 and 4.23 show the
process response to a sétpoint change from 33.7 kg/m’ to
32.7kg/m? using the IMC and STC controlfers respectivelys
This magnitude of 'setpoint change brings the tank liquid
level to the very bottom of the cylindrical section. The
response of the nonlinear process to-a setpoint change from
33.7—kg/mJ to 29.8 kg/m® using the IMC and STC controllers
is shown 1in Figures 4.24 and 4.25. The negative steps in
operafing conditions have affected the ability of IMC to
control the noﬁlinear process. For the small negatiQe steﬁ,
the dynamics of the manipulated variable under IMC control
are very undesirablé. The closed loop response of the IMC
cdhtrolled process becomes unstablé f&r the case where a
large negative step 1in operating conditions occufs. The
larger error between the process and the model for the

negative changes in operating conditions is responsible for
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‘the poor responses.
It should be noted that the performance of \the IMC
controller did not deteriorate due .. stochastic effects.

Futhermore, application of the cross correlation procedure

" lead to the identification of an “unbiased linear model

approximation of the underlying deterministic process.

4.6 IMC vs The multivariable Smith prediétors.

Many multivariable process -operations,_h such as
distillation, cannot be satisfactorily conﬁrolled by use of
multiple,' single variable control loops. For these
processes it is desirable to use multivariable controllérs
“to achieve‘gooa regulatory and servo controi.

" Analogous to the single variable controi problem;
mulgivarigble time delay compensation schemes are desirable
because such strafegies remove time delay from the closed
loop characteristic equation facilitafing higher controller
‘gains. In 1973 Alevisakis and Seborg[21] introduced a
multivariable single delay Smith predictor to eliminate"a
éingle ' delay from  the multivariableA closed loop
characteristic equation. Like the ofiginal Smith predictor,
the Alevisakis and Seborg predictor combines the time delay
compensator with Eqnventional “two and three mode
controllers.

In 1979 Ogunnaike.ahd Ray[14] designed a multivariable,
multidelay, Smith pfedictor.- This predictor extended the

work of Alevisakis and Seborg from a single delay to a
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mulﬁiple delay compensator. A\%dpck diagram representation
of the Ogunnaike and Ray(OR) compensator is shown in Figure
4.26. From this figure the bR compensator closed ioop
trahsfer function is

¥ (k) /s(k)=G(2)C(2) [1+C(2) (G(z)+G" (2)-G(z)) 1" 4.5.1
The characteristic roots are found from the determinant of
the return difference operator

det |1+C(2)[G(2)+6" (z)-6(z)1]=0 4.5.2
For a €d%rect process model eguation 4.5.2 reduces to

det|I1+C(z)6*(z) =0 : ©4.5.3
Multivariable contfoller design‘techniques that require a
‘delay free process description, can now be applied. A
controller C(z) could be designed by assuming the closed
loop tranéfer-function was given by |

y(2)/s(2)=6"C(2) [1+6" (2)C(z) ]~ 4.5.4

Garcia and Morari[2] show that this form of time delay
" compensation is nonoptimal. It was méntioned in_Section 3.2
tgét the optimal multivariable controller ‘or the
mdlti?a:iable controller thét minimizes the least-sguare
error was equivalent to the inverse of the realizable
process transfer function matrix. As a result the IMC
algorithm does not  remove all the delays from “the
characteristic equation unless the delays in each row of the
transfer function matrix are equal. By basing the
controlié; design upon limits set by G, (z), optimal

performance can be achieved when G.,(z) is optimal.
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To demonstréte the performance of IMC compared to the

OR compensator with diagonal PI  controllers(OR-PI) results
from the simulation of two different examples are given.
Both examples use the'distillation éolumn model of Wood and
Berry[22], as given in Appendix'N. Ogunnaike ana Ray[T4]
have demonstrated:the superior performance of this hodél
under OR-PI control relative to .the column model under
multiple, single variable PI controllers without any time
delay cémpensation. In the IMC and OR-PI experiments, the
techniques are evaluated'wi£h respe;t to servo control for a
step in the, setpoint of the overﬂéad product from 96.25 to
97.6 mass percent methanol when the column is initially
operating at steady state conditions, The distillation
column transfer function model when‘sambied at one minute

gives rise to the following discrete representation

0.7442z"? -0.879z"*
1-.942z "' 1-.954z "
G(z)= '
' 0.579z"* -1.301=z" ¢
1-.912z°" 1-.933z""

Since G(z) 1is a balanced minimum phase transfer function
matrix, the IMC time delay compensator will be optimal. The
controller parameters, " chosen to give complete decoupling,
without filtering are
N=30 P=M=1 G.,(z)=diag(z"',z°*) y;=0.0 for j=1,P
B,;=0.0 for j=1,M «=0.0 0.0 | E
The control performance of the columﬁ using this controller.
is shown in Figure 4.27. The perfect process model yith0ut

time delay mismatch gives complete decoupling with deadbeat
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response over the first N sampling but theh truncation error
causes some oscillation in both output variables.

The 'velocity' form of the PI controller expressed as

m(k)=m(k-1)+Kce (k)-Kcpe (k-1) | 4.5.5
was implemented in evaluation of the OR cohpensatof in order
to eliminate the need to use reset windup protection. This
controller was used for each of the PI\ controllers on the
diagonal eiements of C(z). These controllers were tuned. for
the delay free proceés to provide deadbeat response of the
diagonal elements of the open loop transfer function
Q(z)g(z); Following the guidelines given by Ogunnaike and
Ray[14] the déadbeat tuning parameters were reduced in
magnitude to compensate‘for the efféct of time. delay and
off-diagonal element interaction. It was found, reducing
the deadbeat gain by a factor of .5, ~produced the least

output error. The final choices for Kc and ¢ were

element| Kc | ¢ .
T, 1 0.670| 0.942
2,2 | 0.385| 0.933

It should be ndted that the OR compensator also 1includes
provisions for a multivariéble steady sEate offset
compensator. This compensator G;(1), is designed to satisfy
G(1)G, (1)=I. When thié compensator was implemented it had
no observable effect on the simulation result. VThe column
response for the OR-PI combination is shown in Figure 4.28.
The obvious difference between the control pé;formance under

IMC and with the OR-PI control strategies is the inability
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of the latter technique to provide complete 'decoupling
because it 1is .unable to completely cancel the process
dynamics with PI controllers.

To further :invéstigate controller performance, the
distillation column transfer function is modified to put the
minimum time délay, in the first row at element 1,2 rather

than 1,1. The process simulator is sampled at one minute to

give
0,744z * -0.879z"?
1-.942z"" 1-.954z""
G(z)= "
0.579z-* -1.,301z"*
1-.912z°" 1-,933z""

Because the transfer ‘funégion delays are now unbalanced,
tuning the IMC cpntfoller to find “the Dbest f;sponse is
vtedious. The time dglay compehsator hith the’ offset
compensator operative was found to be

§.1(z)=diag(z",z“5)‘ |
and the coﬁtrol law tuning parameters adjusted to

N=30 P=20 M=5 a=0.8 0.8 71o=2 |

y;=1.0, 1.0 for j=1,P g;=.01, 101 for j=1,2
} 0.0, 0.0 for j=3,M
These Qeigbtinq chdices prevent singularities in the “irst
To impulse ~"response matrices and ;at‘ the same time
sufficiently penélize the output error, to acHieve good
setpoint tracking.  The perforhance of this controller is
~shown in Figure 4.29. Complete decoupling is not achieved,:

but the trajectory of the manipulated variables, u,.and ug,

show less oscillatory behavior due to the relaxation of the
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unbalanced time delays, to a setpoint change of 0.75 in
[¢] :

- overhead composition, y;, under coupled IMC control
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wl}

decoupling constraint. ! ' o
In contrast to operation under IMC thch required
parameter tuning, the OR compensator with PI controllers,
uses the samé Pl parameters in both simulations. A  slight
~deterioration in' the setpoint tracking has 6ccurred, bdt the
response, shown in Figure 4.30, has a trajectoﬁy very

similar to the balanced pfocess response in Figure 4.28,

Oon thg basis of these simulation results, compafing IMC
to the multivariable Smith predictor of. Ogunnaike and Ray
with PI controllers, two observations are appropriate
i. The IMC controller, via its incorporatidn of . process

dynamics into the control law design, plus the

feedforward nature of the controller, provides bettér
setpoint tracking when the time delay factorization is
optrimal. However it is difficult to tune éhe IMC
controlfer when the time delay ‘factorization 1is
nonoptimal due to singular matrices appearing in the

process model impulse response series. .

ii. The OR-PI combination is unable to achieve high
performance control due to the inherent limitations
imposed by PI controllers. The advanﬁage of this
combinatioq is a simple tuning procedure that provides

a robust closed loop system.



129

1.0

RESPONSE.
0.5

0.0

l

0.5

0.0

CONTROL ACTION

..............................................................
Y]
e
.
N
o
.
o

Output error= 8.2
Control effort= 1.1

-0.5

0.0

' 2j0.0 36.0‘
TIME(MIN)

10.0

Figure 4.30 Response of both product compositions, with

unbalanqed time

overhead composition, y,, under OR-PI contfol

delays, to a setpoint change of 0.75 in




{ hdd

i 130

4.7 1ldentification of nonparametric process models
A significant ommision in the development of IMC, is a

satisfactory procedure to identify sihgye and multivariable

_impulse response models. It 1is always assumed a perfect

J

model of the single or multivériq@le system exists, when the
theory and implementation of IMC is developed by Ggrciakgnd
Morari. A feview ‘of DMC iand MAC, wﬁich, also use
nonparametric or nonparsimonious models, shows these methods
like IMC'treat the identificatién problem inadequately.

One identification procedure is developed by Richalet
et al[12] to identify the impul;e response series used by
model predictive heuristic c&htrol. This identification
method udes a~5ecursive least squares algorithm to identify
tﬁe ﬁhirty to fiffy parameters of the model series. The

feasibility of such a scheme has to be questioned because

the computational'effort to determine such a large number of

_parameters is enormous. For example, to identify Jjust “one

SISO weighting function would require'a covariance matrix of
at least 2500 elements. Add to this the number of
observations necessary t- achieve convergence, the

possibility of multiple SISO weighting functions and a

colossal programming- problem is created.

In Section 4.5 the SISO impulse response model.fqr the
blending tank was identifiéd 'using a cross correlation
procedure outlihéd by Box and Jenkins[20]. Box and .Jenkins
explain"that for direct identification by cross correlation

of a nonparémetric weighting function to be sucsessful, the

R
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noise to signal ratio must be small. If this ratio 1s not
small, direct identiff;ation becomes unsatisfactory. An
idéntification procedure that is endorsed by Box and Jenkins
" and more recently Ey Inouye[23], makes initial estimates of
the weighting function through éfoss correlation, after
which an- autoregressive model is used to‘obtain an accurate
prdcess model. From an examination of the initial weighting
function and the éovariance of each term,in phié function, a
good estimate of the .system time delay and the dapproximate
linear model order can be determined. With the time delay
and model order éstimated, aﬁ ARMA model can be 'used to
accurately identify the best linear model ofathe system. By
carring"opt long aivision on the ARMA model parameters, the
final form of the impulse response model is found.

In all o? the fcontrbl theories, using nonparametric
desc;ipﬁions of ®he procéés dynamics, it has been suggested
the imphlse response. dr, step fesponse ‘series improves
robustness because it better identifies any nonlinearities
in the underlying process. Wwith the procedufes suggested by
Inouye or By Box and Jenkins, the nonparametric description

cannot contain any more information about the process

dynamics than the equivalent ARMA model.



5. CONCLUSIONS

The previous « three chapters have 'scrutinized the
concept of internal model  control to evaluate its
appliéability to single and multivariable/gpocess control,
Chaptérs 2 and 3 examined the development and implementation
of IMC for single variable and multivariablé processes. In-
Chapter 4 other élgorithms were examined to highlight the
relative strehgths and weaknesses of IMC. From thé material
presented 1in these chapters the following problems
associated ' with appljing the IMC technique can be
iaentified:, }
i. Numerical errors arisihg from the- use of an  impulse

response seriés, was found to have a significant impact

on the control performance. The IMC technique wuses a

'noqparametric description of the process to formulate

the predictive controller. This type of description is

-

used because it allows a preaiction of the process

o w o
4

output basea”entirely upon:past inputsf However the
truhcatf%n error due to the finite approximation of an
infinite serieg"_causes control performance to
deter&orate. This characteristic although minor for
single variable control, can still be noticed. For

example _the responses shown in Figures 2.5 and 2.6,
exhibit an obvious bounce ih the output response due to
truncation error. The problem becomes exacerbated . in
the multivariable éontrol problem becahse the storage

reguirements for a nonparametric description are far

132
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greater. To meet the storage limitations, truncation

error beCome{f“en intrinsic problem. The responses in
2T
1ct

Figure 3.4 de how serious the truncation error can

become with a multivariable process model.

A second problem caused by the process model 1is

‘the large errors present in the calculation of the

mul;ivariable offset compensator. It was found these
errors became unacceptable for a model Qith a series
length of N>30. In Figures 3.9, 3.10 and 3.11 the
offset compensétor was necessary.to achieve even the
limited succéss shown in these figures. As a
consequence, the truncation error associated with a

series length, N=30, had to be tolerated.

N

The IMC controller is difficult to tune for those

processes where the time delay compensated inverse
process model 1is not realizable. An equivalent
categdfization woui@h be any process for which the
deadbeat (single variable), or completely Hecodpling

(multivariable) IMC controller was unstable. In

/Chapters 2 and 3,  this ’category of process was

controlled using IMC with only limited success. In

Chapter 4, IMC demonstrated superior. performancé

whenever the dewur,heat or multivariable ¢ decoupling

controllers W = -~ .- 2. Otherwise the IMC controller
did not comp:r: avoural "th the other control
algorithms. Figure 4.6 s. - disturbance rejection

behavior of a NMP‘'single ve.iable system under Smith

Y

g
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predictor control. The IMC'controlled response for the
same system 1is shown 1in Fiqure 4.5. Furthermore,
comparison of  Figure 4.30 and 4.31 shows that the
muitivariable IMC controller 1is wunable to provide
better setpoint t;acking than the multivariable OR
compensator with diaéonal PI controllers when the
simulated multivariable process has unbalanced time
delays. |

Equivalently, the IMC controller is difficult to
tune whenever the default tuning‘parameter‘choices

B=0 [=I M=Ps<N.

result in an unsatisfactory closed loop response. The

trial and error procedufe suggested by Garcia and

Moraril1,3] is inadequate bécause of the large. number

of parameters involved.

Xlthough problems do exist in the implementation of" IMC,

there

i.

are many attractive'features that deserve note:
Whénever Ehe deadbeat. or decoupling controller{was_
realizable, ‘the IMC tuning policy of 1implementing the
perféct controller followed by exponential filtering
compared favourably to the SP or OR compensator
alébrithmé. This is illustrated'for the SISO minimum
phase process in Figure 4.3 where th; IMC controlied
disturbance rejection is bettq;( than the rejection
using the SP with PI control, shown in Figure 4.4. The

multivariable IMC decoupling controller, .even with

truncation error present in the model representation,
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provides better setpoint tracking on the Wood-Berry

distillation column model in Figure 4.27, than the OR

‘compensator with diagonal PI controllers as shown in

Figure 4.28.

The IMC = multivariable time delay compensator 1is
develgped to provide optimal control.given a diagonal
precbmpensator structure. The discussion in section

3.2 argued the diagonal IMC time delay compensator is

. not optimal when the time delays are unbalanced but

this drawback was Jjustified by Garcia and Morari
because the ~diagonal precompensator 1is easier to
formulate. Given the diagonal restriction, Garcia and
Morari provide procedures to optimélly factor the
unbalanced time delays. Other multivariable control
policies[13] continue to factor the diagonal element
time delays when this 1is noho?timal.

It has been demonstratea-fof small changes in operating
conditions, IMC can perform as well as the adaptive STC
algorithm -on = a stochastic, nonlinear control
application. Figures 4.18 anda4.19 show the responsé;
of the concentration and inlet flow rate to a positivs
step 1in setpoint}for the nonlinear blending tank with
measurement noise, undep'IMC and STC respectively. The
output error measures are almost identical in these two
figures. .In addition these figures also 1illustrate
that IMC .is not biased by the presence of white

measurement noise.
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To conclude, Garcia and Morari have suggested an innoyative
and thought provoking approach to process control. Their
use of a nonparametric process model is a recent innovation
that is receiving considerable attention. The mﬁltivariable
IMC development is comprehensive and contains featureé, like
their method of timeldelay factbrization, that -are unique.
It has 'been pointed out thét problems exist with the
implementation of IMC, however the fundamental properties of
IMC ére still very attractive-and it is likely that further

work will be carried out to improve the performance of IMC.

<}



6. RECOMMENDATIONS ;

The " results of .this study have not only shown where

faults exist in the implementation of 1IMC, . but have also

indicated directions that future 1investigations might

follow. Suggested studies recommended to improve IMC or

aspects of IMC that deserve further investigation are:

i.

ii.

The trial and error tuning procedure suggeéted by
Garcia and Morari is unsatisfactory because a large
number of :Lning parameters are involved. One avenue
that may offer a solution to this tuning problem, is to
incorporate LQC theory into the IMC controller design
for those cases where  the default ‘tuning parameter
choices result in an unstable coptroller; The success
of such a scheme is shown in Figure 4.9 where the MAC
algorithm has used LQC theory to choose a.minimum phase

approximation of the underlying NMP process transfer

function. With the minimum phase approximation it is

 possible to apply the default tuning parameters.

Whenever the,SISO or MIMO procéss model is minimum
phase and the input suppresssion parameter, M¥P, the
iength of the optimizatioﬁ horizon, P,lwill not effect
control performance. An optimization horizon of 1,
which is equivalent to a single’ step ahead predictor'
versus the multistep ahead predictor when P>1, is used
for the results in Figures 4.3 and 4.27. Although an
ARMA modelw makes the multistep predictor difficult to

formulate relative to an impulse response model, the

137



1ii.

~138

ARMA formulation eliminafes the problem of truncation
error and is simple to formulate for the single step
predictor. The recent SISO control work of Defaye,
et al.[24] relates closely to the work of Garcia
and Morari but the former use -an ARMA model for
both the single step"and multistep prediction pfqblem.
Although this procedure is attractive for the minimum
phase SISO control .problem, its applicability to. ghe
more compléx problem where NMP characteristics exist
needs to be investigapéd.

Garcia and Morari have developed a diagonal time delay
precompensator that is straight forward to implement
and is optimal for those caéesﬂthre the”'meé vdeléys

are . balanced. This form of time delay compensationbis

not optimal when the transfer function matrix is

unbalanced, however the authors arque designing. the
optimal time delay factorization for the unbalanced

case 1s difficult. The position of Garcia and Morari

should be examined by comparing the performance of the
CIMC  time delay precompensatorlto<techniques that allow

‘a precompensator with off-diagonal elements. Here at

the UniQersity of Alberta, Rao Sripada, is
investigating the possibilities of a less restrictive
time delay compensator using the work of Wolovich and

Falb[25].

[
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8. APPENDICES

A. Zero offset results for any model that satiéfies

6(1)=G(1) |

Offset is defined as the difference between the output
and the setpoint, that 1is ¢

e(z) = s(z) - y(z) ' . AL
1f y(1) 1is calculated from 2.2.4, when G(1)=G(1), it 1is
vfound thét

¥ .
y(1) = s(1)-d(1)+d(1) | ’ | A.2

so substitution of this result into eqguation A.1 gives

e(1) =0 : ‘ o _ ‘ A.3

B. Factorization to remove NMP characteristics &rom the

- process model

Suppose a discrete NMP second order transfer function

is given by

G(z)= z—-1.2
(z-.4)(z-.5)

Choose G.(z) so that the process zero is removed from G.(z)

and yet G.(1)=1. One possible factorization is

S Go(z)=—z+1.2
1.2z-1
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With this factorization G.(z) becomes

G.(z)= -(1.22—1)
{z-.4)(z-.5)

"'so that the NMP characteristic has been removed. to provide a

minimum phase G.(z). )

2
“~

}C; Solution to thé performance‘index mini@ization;

The control-objective is minimizatioﬁ to reduce the
error between the setpoint and the process outéut. Defining
the.error bet&een'the setpoint and feedback‘signal as

e = yalktr+3) = (y(k)-ym(k)) | C.1
By the use of equation C.1 and the  impu1se. rgsponse model

for ym it is possible to write the set of linear eguations
: i

that give the error between the setpoint and output, in

terms of future and past control actions as

yolk+r+1)- Y(k+7+1|k)—5k¢l [hym(k)] Jd
=[h,m(k-1)+hsm(k-2)...+h m(k-N+1)]
N
yd(k+T+2) y(k+7+2|k)—ek.z [hym(k+1) +h,m(k)] "
—=[hym(k-1)+...+h m(k-N+2)]
. N
yoel(k+r+3)-y(k+7+3|k)=€y.3 [h,m(k+2)+ h,m(k+1)+hsm(k)]
' A ham(k=1)+. . .*h m{k-N+3)]
. N ‘

o
'z (k+T+P) y(k+T+P) -
. P
[h1m(k+P—1)+hzm(k+P 2)+...+h m(k)]
p .
-[h  m(k-1)+...+h m(k-N+P)]
P+1 N

This set of P linear equations can be written in matrix form

>

by‘defining the following.matriées:




o

fl

Yalk+r+1)-
yalk+r+2)-
Yd (k+7'+3)

h; hz h;
hy hs h:
hm hyg hi
he hs h,

dia[71,Y2r---

dia[ﬂ1,82,...

mik)
m(k+1)
m(k+3).

m(k=-1)
m(k-2)
m(kj3)

<\£ﬂy‘M)

;d(k+T+P)_

m(k+M-1) ,

m(koN+1)

(y(k)-ym(k))
(y(k)-ym(k))
(y(k)~ym(k))

(y(k)=ym(K))

h, h,

h3 h2+h1

'Y \r"f ]
P~ 1J’P
B ,ﬁ i

M 1&@ M

y
.

[

@?
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- With these matrices equation 2.4.2 can be written as:

— - 146

w hz h3 . . . h
N

hi hy h

. N ”
hu h

P = N

h

N

1

- J=min(FE-FAU-T#V) * (FE-TAU-T%V) + (BU) * (BU) C.4
4J/dU=0=2(-TA) * (TE-FAU-T®V)+2(BU).* (BU) c.5

The above equation is solved for Ulbut‘because the control

*vlaw is solved at every control interval, only the «control

input, m(k), is used Therefore:

- m‘(’k)'=[1 0 0. .0 JIA'T'TA+B! B]"A re F[E ¥V] C.6

'eThe?perfect controller will result from C.6 when the
tuning parameters ire :

’ P MSN\ﬁj—O for 3-1,M; y;=1 for j=1,P Y
;so 1t follows that
g 3

r=I B0

0 ][A A]"A [E-¥v] B N oY

S o M - :
m(k)=[ 1.0 .0 ,.‘rQ,]A"[E—¢V] S P o
- : KRS » M R
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m(k)={ 1/hy 0 0 ... 0 J[E-¥v] o C.9
M .

homik)=[ye(ktr+1)=(y(k)=ym(k))- . ’
' (hzm(k=1)+ham(k-2)+...+h m(k-N+1))] ~ C.10
; N ;
h,m(k)+h2m(k—1)+...+h m(k=-N+1)=[y4(k+r+1)=-d(k)] C.11
N o

If the feedback signal 4 is zero,]IWHioh"oornespondé to a

R 3
,) e ‘ﬂ\

corre§? moﬂel and no dlsturbanceq d(k), takingiﬁthe

-\1 ’

z- tran&form of equatlonlg.‘ clearly shows “the delay f}ee

4\-({1 ) » ; ) {3“ | . | ‘
process model to- be'_ B | f“ N
me)?*%—Tz.y“@z) S N c.12
' H(z e A

;wa: qutehiiitf propertieéhof the SISO cohtrolief"f
.The SISO stability properties, are based on the

following impoftant restrictions, .

&.. "The ptooess. input output reiatioqship;’fgiven by
equation‘2.2.ﬁ'is‘stéhle for»bo‘ 2ed input5“ahd bounded
disturhaqce97 This implies G(z) must be stable.

i1, ;Thé prooees..model uéedvin the control law oalculation
is correct. -wfhét-is G(z)=G(z). | , |

iii. Because of these restrlctlons and the oatd?éﬁ of the -

closed loop characterlstlc equation (cf equation

2.2.5), to prove stablllty of the closed - loop sYstem{

it is suff1c1ent to demonstrate that the roots of thel

controller Gc(z) =Nc (z)/Dc(z) are 1n51de the unit

circle. When the backward shlft operator z-' 1s used,

all roots of the polynomlal Dc(z“) must lie outside

c e O

“
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the wunit circle for closed 1loop stability. From
equation C.6, it can be shown that Dc(z~') is given by

A

Dc(z-")=1+[1 0...0][A'T'TA+='8] "A'T'T¥Z D.1

-N+1
where Z'=[z"' 2% z°?* ... z ]

Any minimum phase, or nonminimum phase system can be
stabilized by making the ratio of‘”M/P sufficiently
small

For the (purposes of  illustration consider the case

where B;=0 for j=1,M and y;=1 for j=1,P. In addition let

M=1 and P>>M. With _these Q%implifications' equaf&on D.1

becomes

Dc(z-')=1+[A'Al-'A'¥Z . ' D.2

Jury[ZE]j'has demonstrated that all of the roots of the

Now for M=1 A' becomes

polynomial Dc(z~') will lie Sutside the unit circle\gfovided
the following exp: >ssion is satisfied
N— 1 . o . ‘ v
1>ZI6;I . 1% . i ‘D.3
i= 1 . A . ’ } . Q)

N-1

.yhere [51;62 .« « 0 ]?tA‘A]At¢

bo=1

A'=la; a; ... a a ... a ]

N N N.-
« .. P - '.9

T

where the vec:=or elements, a; are calculated from

h

1

=2
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a|=thb .
k=1
N—-1 P
SO A*A=Za, *+La,?’ .
i= 1 i=N R N ‘.’LH
Be \ \/
thus, the roots of Dc(z~ ') are given by _ an‘“ ;
N- 1 “ )
Dc(z-')=0=1+[Za;* + (P-N)a *]1 'A'¥Z D.4
i=1 N
N-1 N-2 2
A“P=[Za,h..1 §a,h;,2 . e .jZaih ) a,h ] "
i=1 i=1 i=1 N¥i-2 N-1  #°
With these definitions the criterion for stability is
% N-1 N-1 k ‘
» |Za;*+(P-N)a *|>Z |Za;h ] : D.5
i=1 N k=1 i=1 N+i-k
So it follows that by selecting P to be éufficiehtly large,
equation D.5, wild be satisfied. ,
D.2 Any minimum phase, or nonminimum phase system can be
stabilized by choosing a finite B*>0 T La-

N
"ﬁ}

"For a B°>0 such that 8,28 (j=1,2,...,M) the control S

law given by equation B.6 can be shown to be stable for all

‘M21, P21 and y;>0. To simplify the derivation g will be -

cénsidered to be constant over the optimzation horizon P.°
That is | | |
- B=B; for all j | o R . L .%g’
The characteristic roots of the'éontroller transfer function
are the roots of the polynomial Dc(z), that is
Qc(z)=6°+51z"+...+6,z“ - ' o " D.6°
the pglynomial Dc(z) is of order N-1 | |
, . ,

§,=b[A*A+pI] 'AtY | . D.7
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where

b={10 0...0 ]

A=TA

~As noted previously, for the controller to be stable all of

the roots of Dc(z-') must be outside the unit circle. This

condition exists if equation D.3 1is satisified. From
equation D.7 it is possible to write

= 2 t t -1

Ascl=<i/n (IbL] [1atl] | ata/Bm 1150l o

v Bk )

where the norm is defined as

la]|=va%s . . - .
By approximation of the norm of |[[A‘A/ﬂ’+1]"||. with the

binomial expansion .

|1 [AtA/B2+11- " ||=| |1-AtA/B2+(A'A/B*) 2~ (A*A/B*) *+. .. ||
it follows that if B* is chosen such that B*>|[A'A||, the
binomial series wili ?gonverge. Therefore it should be
possible to find a B, such fhat the Sefies converges and
satisfée? the requirement | ‘

1>Z]6; |
i=1

E. The.continuous and discrete transfer functions used 1in

Section'z.ﬁ;tQ illustrate'the ;MC_tuning procedure.

The paramgtéééf{df thga.frahsﬁer functions used “in
Section -2;6 weréMéﬁdsénhbé%agég-%ﬂe steady stéte gains aﬁd‘
! ' vaigﬁéét ~of . the IMC tuning

-

parameters.
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The minimum phase process.
The continuous transfer function is given by
y(s)=.te"**uls)/[(s+.1) (s+1)] -
Transform of equation E.1.1 from the continuous domain
to the discfete domain by the inclusion of a 20H and a
sampling rate of fouf minutes yields
y(z)=z-2[0.109+0.0729z" ' Ju(z) /[ 1-1.122"'+0.301z"*]
' E.1.2
Tﬁe nonminimum phase process.

The process will exhibit nonminimum phase behavior

because a process zero 1is located at -.1 in the

continuous model . ' _— .

, o . .

y(s)=-1e ®*(s-.1)u(s)/[(s+.1)(s+1)] E.2.1
When this transfer function is combinéd with a ZOH and

sampled at an interval of eight minutes, a discrete
Ny

representation that does not exhibit N behavior

Qe
results ‘ : =

y(z)=2-2£0.00190+0.549z" ' Ju(z)/[1-0.4502""+0.000152"*]

¢
- E.2.2

K
A

When the sampling rate is reduced from eight® to four

‘minutes, the disctete fep:esentafion includes the NMP

behavior‘of the underlying continuous process
.y(z)=z"[4.467+.791z"]u(z)/[1—.6892“+0.01232'2]
| ' E.2.3
The unstable-process

The process 1is unstable ;due to a pole at .1 in the

EAe -



y(s)=.2e " u(s)/[(s-.1)(s+2)] E.3.1
This unstable process is - stabilized using a
‘proportional feedback controller with a gain of 2.0. 1
The discrete rgpresentation of the stabilized process,
'.sampled at one minute is |
y(z)=z“f[0.059+0.03202"]u(z)/f1-1.2402"+.150z‘;]

E.3.2

F. Why most nth order linear prpcessgs;require n sampling
intervals to arrive at steady state

Consider a spcond order linear process (n=2) with constant

coefficients. '

y(k)=fly,u) - =
“dy (k) /at=F(ay/dt,u)

s
Bk

The 'variabie” dy(k)/dt represents the first deré?g%ive of y
with respect to time. The iniEial conditions are:

y(0)=0 ©
dy (0) /dt=0
:“lfor a;change ih»setpoint from 0 to 1, the“gystem will arrive
at the.ngﬁ steady.stafe when:

y(k+j)=1

dy(k+j)}dt=0 g
The ‘gyétem"has two . initial conditions and two boundar;xw
conditions. Theréforé jt will__requfre foﬁr - equations to
determine the - seQuence QfA céﬁtrqli inputs.: The fo?r
equations are: ‘

<

y<§41>=f(y,u>

e TN
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dy (k+1)/dt=Ff (dy/dt,u)

éy(k+2)=f(y,u)

dy (k+2)/dt=f (dy/dt,u)

Two sémpling périods are required to bring all process
states to the new steady state conditions. 1If the control
variable 1is adde%gto‘the initial and boundary conditions, it
will require six eguations or n+1 sampling intervals because
there are nov. three initial conditions and three boundary
conditions to satisfy; |
G. FactoriZationito remove NMP. characteristics from thé;)
process model ‘

Té  demonstrate the ability of -the. " diagonal
factorization to remove,NMP characteristics from the process
model, consider a tws input, two oﬁtput linear process
aessribed by equation 3.1.1, where the.transfer function

&(z) is given by the following relation

G(z) =

0.6 0.5 G.1
2-0.4. z-0.5

0.6
z-0.5

~ The process zeros of thlS transfer function are found from

the denomlnator roots of the matrlx determlnant. That 1s

|6(2) |=_0.06(z2-22+0.7) =0 | .
(z-0.4)*(2-0.5)" : o -

From the denominator roots, therystem zeros arewlocated at
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z = 1+/0.3.
Because a Zero occurs at z-(1+/0.3) the inverse .process
model will be unstable. A preCohpenSator, §;1(z), ié chosen
to cancel the gnstaple zero and because, .G.,(z) is diagonal,
each diagonal element mdst,containlthe Zero outsiﬁe the uniti
circle and to énsure zerg, offset, the factorizatioh mﬁst
sa£isfy G.,(1)=I. »Kﬁakernaak and  Sivan[27] have
demonstrated one form of factorization that éatigfies. the
decoppling ‘qonstraint and miniﬁiiés the sum of sdﬁared
errors in the contfol'law is | |
G..(z)= -z+1.547 0 - s
: 1.547z-1 .

o - -z+1.547
1.547z-1

Because this factorization leads . to severe  closed loop
inverse response behavior, or NMP behavior, in both {nput
and outpg& some other less restrictiverﬁactorizatioh should
.be"used w?é factor NMP . characteristics. However a
| precpmpensatbf with of £ 'diagonal terms 1is mathematicélly
‘cumbersome to manipulate;:so a sampling rate  that -removis

w&pe?NMP behavior from the process model is reéémmended.

H. Solution ta fhe multivariable predictive -coﬁtrol law -
minimization. | | |

The matrix of control inputs, U(z), is chosen to

Jninimize the qosting function gi;enbby eqhétiqﬁ 3.3.12. :The

multivariable solution is élmost identical fo the single

variable’ solution,ﬁ shown in Appéndix C. The mditivariable

N
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costing function is

P+71y ' _
J= min Z[||A(j)||’ + v ]]2] .. 3.3.12
m(k) ]— '

Subject to
é(j)=[§*(k+j‘To)—z‘(k+j“To|k)]1}
V(§)=m(k+j)B '
¥’ (k+3 To k) xm(k+j To)+d* (k+j-14|k)
N+To
=L H; m(k i) + a* (k+] Tolf])
i=1

where-

x| | 2=x"x

By defining the following additional matrices, the

minimization_can be rewritten entirely in matrix notation.

_ . )
Define E(k-7,) to be the matrix of differences. between the
vectors of setpoints and disturbance estimates over the

horizon of P+7r,. That is

LA

s* (k+1-70)=d" (k+1-70 k)

s* (k+2-70)-d* (k+2-71o|k)

-

"E(k-7o)=| s*(k+P-7,)-d" (k+P-7,|k)

s* (k+P+1-74)-d" (k+P+1-7;, | k) _

s* (k+P)-d* (k+P|k)

The series of llnear e%L 1ations descrlblng the output from'

4

DA ‘ y
o

: o

a

PN

; . . L)

2 0 .
. . .
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the process mddel, Ym(k+j-7o) for j=1fP+?o, can be written
in terms of future and past control actions
Inlk=7o) = AU + ¥V - | H. 1

Where Ym, A; U, ¥%,and V are defined as follows

Ym(k+1—70)
Ym(k+2_70)
gm(k—70)= : . \
Ym(k+P—To)
Y (k+P) , ‘ )
H, T
X
H: v Hy
H, "H, H,
Hn 53 *Q?Z H,
Hs Hy Hs H.+H,
A= [ 2 ’ P+To : ‘
H . Hu+-cl+31 ’
N -
E e, ~ . H,+.¢Q+H1
N+po _ ‘ ‘ N
. H +...+H,|
. ' N+7o-
« - - M . -»

The matrix, A, has (P+T°)x(numbér of outputs) rows and

Mx(number of inputs) columns.




I
1t

L=
i
ja

Is1818
——
<KX

!
WA —
¢ N e

1<
"

m(k-N-7o)
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“"Using the definitions for Y¥m(k-7o) and E(k-7o), equation

3.3

%

-::J =

.12 can be rewritten a

U(k)

where . :

In.

h I_“=dla(~x1 Y2 - .. Y

-B?dia(ﬁj Ei Bs .«

the following st

S

)

p

.. 8)
M

eps;

2

equation

H.2

min | |C(E(k-7o)~¥m(k-7o)) || * | |IBU(k) 1]

is

expanded,

differentiated with respect .to U(k), and then solved to find

\,
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0= g
dy

0 = [ 2(TE-TCAU-T®¥V)*(-CA) + 2(BU)"B]

0 = -(CE)*(TCA) + (E/_\LJ)‘([}/_\) + (Cev) *(CA) + (BU) B

(A E LA+B'BIU = tEfEE-A‘E‘ETY

KU = A'C'C(E-%V) H.3

S AR -

As in the SISO case, only the vector of inputs dti time k,
m(k), 1is 1implemented before the problem is refdrmulated at
the next sampling interval, k+1. Therefofe inverting K. and

solving ﬁ%rtmvk)'éives the multivariable control law

with Q_defined{py the following matrix

100 ....0

010 ..-0

001 ...0 : .

b=|. . . ... 0] M(number of outputs)

000 ... 1

000...0 |

e o « «.. 0

0 . 0

O < number of inputs -

For the case  where 7,#0, the matrix K will be rank

deficient for some values of ', B and M so - inversion is
impéssible due to" 51ngulaL1t1es. The IMC technigue
compensates for the rank def1c1ency by either changing the

tunlng parameters or augmenting the elements of the control

S
\5 Yoo

g(k)*‘gb'x '[A'C*L(E- w)] o K ; H.4

«f
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law until a nonsingular matrix results[3].

For the case where I's1, B=0, M=PsN-and 1,0=0, equation

- -
ta

H.4 ,simplifies to the decoupling controller. This can be
G demonstrated,as follows. Since A bhecomes a lower triangular

. . + W ’ ' . :

matrix equetion H.4 reduces to

[Hi* 00 ... 01 (E-¥V)

m(k) = .
, o N+ro o
m(k) = Hi'[s*(k)-d* (k) - Z Him(k~1)] : - H.5
\4\,, ‘ i=2

By mulpiplying both sides of H.5 by H, and then takiﬁg the z
transform“of the resulting difference eguation, the result
is the decoupling controller

H(z)m(z) = §°(2)-d° (2)

m(z) ='E(z)'?(§:(z)—g‘(zf) - , o o H.6
1. " Closed loop properties of the multivariable predictive*f~'
>" . controller - , _ , o
S The multlvarlable stabllltv propertles are based on the

follOW1ng 1mportant restrlctlons.-

i, The process .1nput output relationship, given by

equation m3;1.1, : *Jj;;ble for. bounded inputc and -
bounded dlsturbances his implies G(z) is stable. h

| S
ii. The process model used in the control law cq}chiatibh'ﬁ‘

- is correct, that is G(z)=G(z). Lol 4 jf —'ffie:‘,

'ii1ii. Because of these’ restrictiéns and the nature of the

o
-

" closed loop system given by equatlon~ 3.3:2, ‘to prov%,,
‘ . . A
‘stability of the closed loop system it‘is‘sufficientﬁto

‘prove that the roots of the determ@nant det{D(z)} are

inSide'the'ud}t circle[3] where D(z) is calculated from

o -
1 . - ‘

o,
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 €hé7 closed loop . transfer. function by the following

functlon é‘ives : S e o Q
‘ S L - : g .

v : s . - B

* Gc(z) —[D(z)]" z) e RS O P %

B : <
.

b M:Q-ﬁ,1- . Effect of the ratlo of 1nput utput pena1$§‘hon

oy
Sy

. closqg lodp stab1l1ty¢ o 2 : e
Fiee . : 5 W )
. This. proof will demq&strate there ex1sts»a flnlte B= 0 B
o such that if ||B B||>B* the controller glven by equatlon I.3
o is stable ., i
* From equatlon 1.3 stability is determlned fromq/gdts of
o
the determlnant ,of the return dlfference operator
’ N+To_1 N
det{I+b K—’[A1Z +Azz z""A3Z_J"" m+AJZ_J]}‘1+Zf Z-J"O i .’.”I.4 '
‘ ’ = V"'To‘j . . - 3_1 . - B
R, : . . . R ' .\\ P’ ) ' -
Q"nv : ! :
. where A'T''T¥=[2, &, . Al . .
« N+7o-1— . e o
e .o, C.

_Because the. backward shift operator is ' uséd all roots ' of
s " -' . . , - - : '

‘method. ’_, T,
. 'Iﬁ equatlon H.4 1is ‘expressed with all control terms on one:
7 side” of thé equallty 51gn and all error terms on .the other
‘L, '51de,‘the equatlon can be rewgltten as' . : h. -
. - N+TO:‘ 4 P+To ‘ ) ) ‘ N X . e
‘ m(k)+z D;m(k- j) = £ E, (s (k+J 7o) -d* (k+j-70)) . e ‘
A 3=1 A S ey
: e . L o
By . comparlng this form, 'to .the matrix notation form of
ﬂjﬁguatlon He 4, it‘cannbe shown that
[1D;Ds ... D;J=[1'b'K-"A'C'T¥] - . SO S
o« T ‘o
. [By Bz ... Bj] =p'K-A'CC. Lo 2
B, TR “. L e |
- Using equations I.1 and I.2-t0 write thevcontrollef transfe. .,
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‘@:'bequatiep I.4 must gz'outside’the¥unit‘gifcle for 'stabiiipy.
Using gchur's formula[28] enables eqguation I.4 to{be—written
" in the é%re'conveqientfform @ﬁ, : : .
1oL B
dety - . - I.5
~bf5 ' .
Tf K- 1s‘expressed as B . ‘ . , ' ,ﬂ»mb‘
K- =[(B'B) 'T'AACIERg B ';;ﬂw e
ana-if Bx is selected sufficiently large o L. | ,
| HBNPHFAMH | )4’% = |
@

[N

o .

‘ Srnce B—dﬁé[B* é; ;;

then, eguatlonj

binomial series
{ . .

“

*wa&?

-_. } " . . . .A }f‘ | '
T(B B)"||+||FAAI‘||‘||(B B)-tl"‘l ) »:p : N ol
fe +|4r A" AF[[’ll(Eig)"|l°.... e 1Y .

w"

cén be reduced to S "-~g o 'HQ

&‘4‘# . . ,,-' . ‘ - - ) ‘: .. . ' ‘. ‘ ' , - ;“!"

"
\E
v

TIK s
- 1/B*+|rc‘4‘ac‘l}(ﬁ/ﬁ*xz' e | 5?['%’

+|II‘AAFII2(1/B*),;+ -» ,. - ﬂIS

It follows from the serles expan51on, that as B**m ||K rHe-»O

.~ and because K is nonslngular, “the matrix. must vanlsh §s

¥

; 1.4 is evaluated from the expression

Bx+=. With this knowledge the«determinaq;fgiven by eqq@t1on"

W
P e

LI
o e . e
L FTys
P, £ 5 .
. A i
. » »
PEe)
>, .
i
» , o .
\"
‘ >
~ 7
PR .

%
el
LA
o

r
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“ N+'r o~ 1 u .. ’ ] .
1+ijz"-0 oo § R . I.9
=1 . o o ‘ A Y
’ B '»( ; _,f ‘ .
For fa Bx*: suff1c1ent1y large, the sum Zf,<1. This satisfies
;uﬂ‘theWstabiligy criterion as demonstrated by Juryl[26].
..,l: T o o .
o 1.2 The stab111z1ng effect of the ratio M/P
Tf it can be assumed’ that ng B 0‘ thén for a
gﬁ!l ' suff1c1ently small M, . ahd”ﬁ”{ suff1c1ently large P>N, the
rontrol law glven by equatlon H“4 is st ble*“‘The p{aof for»
- L ’[‘ N X . .' ‘.,
51mp11c1ty is d%rrled out for M2 1 and(g*ﬂpﬁfl" or
e, " \}7 I o - N
%?Lﬂm thlS ch01ce of tunlng parametersJ equatlon H. 4 is reduced to
. - 2 .
m(k)-(A A)“Q [E- ¢V]4@ v A I P N
. < N+To N+T° - - t{ji\‘!,',u;hb, 2 4
where A‘-[H1_H +a ‘ZH....ZH v - s e
L MR Hege BB ST
ana‘the”produét’éff,is T G B o P
S f] I P - oo L, * :
Ate=[2 _..."”‘Tm] AT R AR e |
. ) N+To_1"——” S e Lo ‘ - . o
\" v ‘N+7°—.b: ] ., . Ty Ce . a o
I_ki=2: (ZH&)HJ;, - P '
) ‘JJ=1 k=1 . ,;‘.‘A_ e . L )
With thesg va;iable' _f1n1t1oﬁs; the ibf the.
. - T e : ' coe : ) .
- characterlstlc equationyw quatlon I. 4, tan be written ‘as-
L det{I+(A N)"[A,z“+ézz H...+éjz‘J]} , I.11
*Using Schur' S'ﬁormulé, equation I.11 canm b& written as
v ‘ - . : I_ i -512—‘*’...'*'&]'2—]. .
), det S B S S
kol stata L o ‘ -'
The  determinant . given by ,equation 1,5, was evaluated by,
@emonstrating that the element -b'(K)-' converged .to the
' zero matrix. Similarly, the determinant given by 1.12 is
& f/

[y
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C o o
i Ny .
Yot

: e o N : 0 . . o
evaluatgd by showing that the element -(A'A)" becomes the

‘nyll matrix as the horizon ? is increased
v .y

A

o= ‘:“\\h B Pl
« 7 v N+T;—1 N+74o=1 N+74 N+71, Y
A'A=HiH.+.. +ZH] IH;+' -N)IH|ZIH, 1.13
| j=1"3=1 j=13=1 :
Equatlon I. 13 is equ1\ ant to
N+T°—1 N+'ro—1 ’ ' y :
"AA=HH,*...+IM] IH +(P- N)G (1)G( ) o 1.14
< J—] 3—1 Pl

Because the process transfer functlon is -assumed to . be

stable, the steady state transfer functlon G(1),‘will be of

~full rank, Therefore‘thp inverse of eguation 1I.14+ can _be

o . S )
. . I

. ) o . A '.
‘written as - : S L 'f7wﬂsk

i( .QAQA)- |‘=‘ ’.

e, ' v ' N+%o—1 N+71o-1 - -~ .
ol LQ*L1)G(1))"{H Hy+...+LH} ZIH, ]+I]“ ‘
N . 3 1 j=1 , o
. R coo 1 (G (1)G(1))-' I.15
I P-N : 2
' R - v : .
From equation f}TS}‘ as Pox, - (A'A)"'-0. It shogld e

possible to flnd a P>>M to satisfy the stabkllty condltlon»-

_ established for.equation I.3. b
. Loy -
A} . - . n v }
%

‘ L T ' : I o ™~
'J. - Aability ~of the filter to provide robustness to the
N . . ) - ) .

closed loop transfeféfunction : :

'the plant/model mlsmatch satlsfles -

This stabili'fy proof is restrieted to situations where

% : . §

Ref), [G(1)G(1)"]} >0 =10 - g

.where_RI{A] denotes the jth eigehvalue of A, The filter

.will be used to stabilize the-closed loop transfer function

w
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when plant/model mismatch occurs. The proof uses a G.(z),

based upon equation 3.2.1. From Figure 3.1, the open loop

transfer function is given .by

z(z)=§(z)§;(z)“[l-E(z)G.‘]';E(z)g(z) | J.?2

Let’ X denote the open 1c »p transfer function and w(X) denote
»the open loop characterlstlc polynomlal containing all the
'poles of X. Slmrlarly> let w(z) denote the closed loop

‘characteristic’polx%gmial. "For the closed loop;system to be

stable, all ' the roots of y(X) ,mustw‘be inside the unit

bY S

‘circle. 'the closed loop transfer _tunctioh is-»calculated‘

from ' ' . ‘ g
(z) X( ){I+X(z)]"s(z) ) B - J.3
:From 9@ i g@ne 3, the closed loop characterlstlc roots are
-"w:t«.(o B - .
calculated from . '.;A. o @g;.z, 1§§ e o
w(x)-o(x) det(i +X) =0 . S P

A

Slnce the proof requ1res that the process_ be stable,

G(z) and G(z) will have all poles inside the unit c1rcle

For a stable process and process model, all ‘roots);of w(X)

(3 : )

are insgide the un1t c1rcle with the exception of poles

1ntroduced at the unit c1rcle qg the integral controller.

Because stab111ty 1s determ1ned by the unstable poles -of the
closed loop transfer functlon;l tgh prove stability 1; is
xJ . ‘ . A -

sufficient to demonstrate*/that the . zeros " of the return

dlfference operator are stable. gGiven that the filter

;tuh1ng parameterVgﬁdy¢mfor all Jr.@twi§399§ii9$§;t° write

cow
[

-



Xﬂ?

3

det{1+X}= .
=det l+§§"3%+

¥
o

In the steps that

produce a relation with a numerator and denpminator

3

expression. First,

\

~multiplied by the

e 1-a*z "’

T-a*z "'
glv1ng

]

—det{I+GG"G.

In the next step,

subjected to the 3
2

‘=det| L1rge! G‘

‘The first element,

the  inversion operation to,give .

=det [{I+1-a*(
‘ z-1

The common (1-a*)L

C=det|[(1-a¥)1

e

"It is .now p0551ble

‘difference operato

R X4

165

v {1- 1-a* G+1};' T-a* I
' 179*2_' 1-a*xz"

follow, this- equation is 'modified to

the second term i& ‘the determinant is

factor
12[(2_1)I+(1_a*)(1 ZG‘1)] _a*)l}
’ {/ .
(z-1) is. fag¢ored from the. group ofi terms
A
\m~ » 5 . c(}

nversion operatlon to yleld

V(1-a%) @ [I+ 1zg* o <1~zg;1>.3~4
. z—1 e RERE . L
R ' ﬁ%\g B ‘.
1, is multlplled by the ter”“

e \

IFzG,,)+GG"G,1(1 ax) z }
. _‘] .
{I1+1-a*(I- zG.,)}"] n

Tz-1

is removed, resulting 'in
7

‘ : _ e
M_1 ¢+ {<14zg+1>+tg='g;,z Y111
T-a* z-1 ’
[1+1-ax(I- zG*1)]“I' o

‘z- 1

*to wr1te the determlnant of the return

[

r as_ the quot1 t of two determlnants

‘9”} A;_.__‘ s -\ “{?0

ENIEN

2

-3

>

-7
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‘, .
det 1 I+[(1-2G,)+GG 'G. ¢} 1 1
1-a* z-1
R =0 J.5
¢ Coo
) _ ‘ det I+1 a*I(I zG.,)
. ﬂw‘“ = . AT L a
p & e L - .
so the denomfnatbrvdeterminanb’is éalculated entirer from.
diagonal matrices. The resultlng pdiYhomlal w1il be f1n1te
i i@ 24 : ,
everywhere exceﬁ% p0551b1y at z=1., . However, ‘§ (1) Ip so
* u51ng'L‘$op1tals rule . v oL e $;f,
. ]S e 4 . ¥ ' .' . : o <8 g (RN
A . ’ ' v UL” RIS L v B e "
: , © lim (1- zG,,)/(z—1 is ﬁin;te , S M
, . . vzi? z_’.] A 1\ ‘ - - . 3 l- kY P . v ‘ ' a N .
Rl LAY Yy ¢ - ‘\.':.;7_. [N ,,1 L e g - . L & - C e e
There éhgglnator of equatlon J 5° has ne roogs. .“Tq
dete a Lllty of«’thlsJ‘HgdaﬁiOn 1t is: 5uff1c1ent to
s . '.9 ¢ N . Lot o
.. examine e roots of the numerator‘ polynom1a1 Us;ng the*-
-Nyquié€ stablllty crlterzon and‘the characterlstlc loc1(CL)
35
techleue[29] the elgenvalues of ST
[ 1 1+{(1-26.,)+G6 "6, }_1.11., e
. L-a% ) i z= 1 -&
L e must» not enc1rcle the orlgln as z traverses the exterior of
the unlt circle. ‘,AnJ’equ1valent crltdrla‘ requires the
- . : . -
' eigenvalues -of
[{(;-zgr,)+g§-‘§.,} 11) J.6
, . oz-1 : | :

. ’ ~

“" must not encircle -1/(1-a*) as z traverses the -exterior of
the wunit circles Because’ % and G are both stable, the
matrices will be finite over this contour. The only

singularity of equation J.6 occurs at z=1. To examine the
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N

13,.<tab111%y of Lhe e1qenvalues at z=1, the‘é&ntqpr“1s 1ndenfed Y

i
i -m<b<m Q v
z=1+tee , °? z &
x!- Thus as e*O
(I ZG+1)-’O .
",‘{3’"
\iGG“G*1) (G(1)G(1)") o
so the elgenvalues of. equatlon J.6 can now be written as.
L —16
A {G(1G(D) e | | A
€ - Co-
If RJ=|xﬁ{eXp(—i¢,) then equation'diﬁ is equivélent to
ig; -if o | .
IX,;le 1 e ' ' o
€ I ‘9‘ ‘
or’ ~i(p;=6)
- AML o >
€ - !

e so prov1ded equatlon J.1 is satisfied, ihé'eigénvalues Aot

as 2*1. To summarlée all elgenvalues, A, of equatlon J.6,

are f1n1te or tend to +o as z-1, " Thus an' a% exists such
. f. "9\7 .

“that the characterlstlc loci do not Cross the real axis to

the left of 1/(1-a*). ¥ .
. | | gk
4
s < ( ) ¥
- .
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K. A Ejpary Ethanol Water D1st111at10n Column Model

The model for a 19 .plate, 12 inch diameter column,
relating outputs to inputs and disturbahces‘ was determined
;hrough pulse testing. Thg cole@n had variable‘feed and
'side/steam_dréw 6ffv10ca£ions. ~Fur£her details are given by
Ogunnaike et al[15]. vae equation relating(@%qu‘tp outputs
was presentéd as ' ‘ k' «

ym(s)=6(s)m(s)+Gq(s3d(s) R o S
where - L | ' — 4

Ym 1% a vector of outputs

m is a vector of controi inputs . o R

d.is a vector of measured distunpances

fmﬁ%th the transfer functions G, gdtgiéen as

Ly

0o |0s66e 7 ¢t =0.61e72 %t =-0.0049e"':°* "’
g [ (6.7s41) (8.64s+1) (9.06s+1) .
L |f.tterecsr Z2.36e0 -0t -0.072e7-2t. K /
. Gls)=| (3.255%1) (5.0s+1) . (7.09s+1)
| -34.68e°° %% 46.2e°-**  0.87(11. 61s+1)e“ o,
-1 (8.16s+1)  (10.9s+1) (3.89s+1)(18. 8s+1) .
0.14e"'2*  =0,0011(26.325+1)e % ¢** .
(6.2s5+1) (7.85s+1).(14,635+1) ‘
. {0.53s'°3* " -0.0032(19.625+1)e 2 +4t|
Ge(s)=|T(6.95%1) (7.295+1) (8.94s+1). .
-11.54e-° ¢+ 0.32e-2 ¢¢
, 1 (7.01s+1) », (7.76s+71)
for N

. yi=overh=ac c¢trinol mole fraction
y2=side stream ethanol mole' fraction

n . ’ .S
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ys=tray #19 temperature, °C (corresponding to bottoms

. ] W *“v
composition) ‘ S . ‘ N
L R ' S S
U, =rg;f.%€é flow rate, gpm . o
A da e ) i . R

2 2L : AL ]
u2=sfﬁé,stream product flow rate, gpm
Us=reboiler steam pressure, psig

d,=féeaﬁflOW'rate, gpm

. [ . : 9.
-d,=feed temperature, °C
) - = .

>3
Vs
e
B E
in
£
@ t -



R

) ¢

.,»»
A a . ,
wxs .

R

" change .in input i bef&een’ the 1ntegﬁ§}s

- control. on.the dlsturbance 1npu
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L. Formulat1oq oi the DMC and MAC control Lﬁws
:\“ 4 . _Qn

Dyriéqu sﬂatr' ix Control

The dynamic mat%lx control techniqué is applicable to any

LI
i

“Stable system that can be described by or approximated by a
serieg of linear differential equations. The DMC control
law will be - formulated for a two input, single output

system. (et the inputs to this process be denoted I, and

- I,. The output response, ¢, generated by unit steps in

these inputs is
P o L o . ' N ;
. a, az . .oaj for a step in I, ) o

Y

. by b, ; . b, for a step.in I, . ;

"By defining &8¢, as the change . in butput'

Ainitial value and the value at-interval i

ébmputed 6¢i'can ‘be wrltten as_,V ' S - '5
T bpyma ALy HRLAL

50.=a,Al |+a,Ali+b,Al 3+b,AT3 e

If input‘ one is: con51dered theé%mnlpulated 1nput and 1nput

: two con51dered¢a measurabie -dlsturbance, DMC refo;mulates

1y _
Che 1nput output relatlonship to provide for feedforward

~

P ar \

S The dlsturbance input ‘now appears on the left hand 51de'
“of the equallty sign. Because a' gopd estlmatew of future

. . s o : Voo .
‘disturbance'lnputs 1s;the presens disturbance value, all AI,

= ‘ . LR
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[N

‘for intervals after one,.‘are set to zero. The set of

equations, L.1, can now be writteh as- »

3
5¢1+b1A£z=afAI¥,‘ .
56 ,+b,Al ;=a,Al {+a,AI%"
. L.2
. .\.

= ,g{,ﬁ

‘ Note the 51gn of the b series has been sw1tched arbltrarlly
J« A ‘vector I of optlmal future control 1nputs are determined

1}5? to minimize . the error between the desired ,and predlctedt
.ﬁ% outputs. That is ‘ SRR - S f

N “3(E~AI) *(E- AI) =0 S T La3
in equation'L.3,'E,‘I,.and A are defined by « )
. . B ) l’ . ,1-n>»,. n!_.i’fu i :
T dg41+b AL | e I N
- ‘.:;; - . ;8¢42+b2qu ¥ : R . . } . .
. "E= o R .a ) . ] P B
: . S ; ) B oy : R
- R y - SR
It=|AI} AIF A% v . . |, ' , |
N .0 : . . . “(: . RSN \ C e
R R4
a; a, 1 - : o .
A=la; a2 a, . ] ‘ ‘ . o L .
) . M . : ‘. B ‘ i ‘. .
. The solution to eqguation L.3 gives ’ L NG,
P . , ; e L
I= “(a'A)"'A'E . ; CTVLL4

i

; v{f; Implementlng this control law, . leads to mffhe.”
SOTLO % unconstralned minimum varlance controller." By multlplylng
’“‘thej dlagonal element% of the. square matrlx A'A by a scallng

r

”?factor greater than one, constralnts are placed upon future
. '(:J “m? A . AY

[

&
e

e
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control moves. And to minimize the error due to plant/model

‘mismatch . only the' first element in.. the wvector 1 |is

implemented before .the control problem is reformulated.

With these changes L.4 becomes

AT,==[1 0 0 ...]1*(A*A+aA’)-'A'E

P
A'= diala,? a,*+ta,? +...+Za,;?*] .
e o io1

AN

Note, the diagonal matrix A" contains théhdiagQQ§1’

of the matrix product, A‘A.. SN S -
. . . : o . N .
- ) o e : T . -
bt T ‘/\‘,:‘?4 ‘ ' - . 0 ]
< 0 . o
A ‘ ' . —_’_/—/‘ .
. . 4 m 7 -
4« [ o s .

L.5 .

elements
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jtrajectory is defined by

»3
T eeDw
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Formulat ién of' the MAC control .law “

The MAC technique is appiicable to any stable: process that

can be described. or ' approximated .'by ‘a series'of linear -

. , . . S 3 . - N J
differential equations. The process behavior 1is modelle

an impulse response deries. A block dlagram representatlo

of tHe MAC conflguratlon 1s shown in-_ Figure L 1. -For‘ a

/ .
correct process model thlS algorlthm is optlmal because it

dininizes the least'_square, error between' the ‘predlcted.

odtputgfnd‘the setpoint‘referenceftrajectory.‘ The reference”

}

“*yr(k+J) =a yr(k)+(1m?ﬁ e '_ e © L.6 B

where C= change in setp01r

Al
r

.u,' J %
k=t ime* 1ngerval whett the change in setpoint occurs

5 .
A . s

a= tunlng parameter betwéen’ 0 and 4° . % g E \V{'

A

. The reference trajectory glves “the. control englneer the‘

’Vablllty to shape thetelosed loop process response.p In{ thlS

-

N

..case af flrst order path to Jthe . new: setp01nt has been

oy

vselected ThlS path could be offhlgher order 1f deslred e~ 5o

P
The predlcted process output 1s calculated from

v

ypUkes)- ym(k+j)+y(k)(1 ma)ga (k) L7

e

5Equat10n L 7 1ncludes the feedback slgnaI y(k)(1 a) ym(k)

/‘)

to. prewent steady state offset , when ~an unmeasured\ ",

dlsturabnce or mode}llng error occurs. Agaln the p7rameterf

o, 1s used to welght the feedback 51gnal’ L ST

o CEo T ~

BN . . . S
\ .
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C(k)

>
I . EDICTION | | COMPUTE
: PRED
m®) | pLany | YN o] YW S
T ) oF m(k+])
] h — yp(k+]) >
’ 7 & j=0,....P
yr(k+]) |\
PLANT
MODEL I m(k+1)
<$ h '

Figure L.1 Block diagram of the MAC feedback structure



O

175
2
The controller is' formulated through leést squares
minimization of the cost function, J, defined by
P
J=minZ[yp(k+j)-yr(k+j)]? L.8
3= 1 ~

In this algorithm, like IMC, é is the optimization horizon.
For P=N, the solution to the minimization 6f equation
L.8 is
m(k)=[1 0 0 0 ...1[A*A]-'A*[E-¥V] . L.9¥
The definitions fér A, ¥, and V are the same as fhe IMC
definitions for these symbols. The exception, E, is given
by | |
E=|C(1-a’ ')~ (y (k) (1=a)=vn(k)) |
When the horizon. length 1is one, the minimizaiion

results in

N N N .
OfZﬁ;m(k—i)+Zhi(1—a)m(k—1—i)-2ﬁ;m(k—1—i)—(1—a)C

i=0 i=0 i=0
Solving for m(k), gives . - <
R N N \
m(k)= 1 {Zh,m(k-1-1i)-Zh;m(k-1) .
i;o 1=O 1=1
. N ‘
+(1-a)[C-Zh;m(k-1-1)]} ' L.10
i=0 :

t
\

By consideratidn of this formiof ceqtrol law, it can Dbe
\/ N

noted that: \\;\

i. The speed with which the controller responds to changes
in disturbances or setpoints is iqﬁ}uencéd by the
choice of «. Furthermore, Rouhani and Mehra[ﬁé] have
demonstrated that increasing a, increases  the

robustness of the closed'loop system.
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N

ii. Constraining of the input signal m(k)‘ will lead to
steady statg/offset. ‘

iii. This formulation is unable to handle processes
éxhibiting NMP behavior because the transfer function
zero, outside the unit cifcle, will cause the
controller to become unstal .« 4
For the minimum phase proccss, the MAC controller was

designed based upon a model that besﬁ deécribes"the true -

process dynamics. Optimal control, in the least square
sense, occurs when h=h. When the process exhibits NMP
behavior, using h=h, with équation L.9 or L.10, will result
in an unstable controller. For the NMP case, h 'mustv be

chosen to ensure stable minimization of the least square

error. - By redefining the cost function and vector of

-control inputs} linearfquadratic control(LQC) theory can be

applied to find the best h. The vector of control inputs is

-

defined in terms of a recursive state equation

M(k)=UM(k~1)+b,[L* 0IM(k-1) . L.11

where M(k)=[m(kfﬁm(k—1)-.., m(k-N-1)1]

00 ... 0 1
10 ... 0O} 0
u=|0 1 ... 0| N+2 bi=|0| N+2
001 ... .
0 ... 10} 4. ol e
v‘ /
L‘= 1 [ﬁo_ﬁ1+(c_ho)(1'a), . s e
ho '
B 1-ha+(C-h,_,) (1=a), R,+(C-h,)] 212
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Selecting the cost function, J, to conform to

J=1_EM'Q M +m(3)Q.m(j)
2 =1

permits = the wuse of LQC algorithms; The new Mac’cost

L »

function is given by

J=1_ Z{y(i)=-yr(i)]1*+m(3)Q.m(3) Y13
7 =1
=1 L (Zh;m(j-i)-{aZh,m(j-1-1)+(1-a)C} +m(3)Q,m(§) ]
2 3=1 =0 i=0 L.14

This cost function can be written in terms of the input

vector M(k)

J=1_ zM(k)gg*'M* (k)+(1-a)C+m(3)Q:m(]) - L.15
2 j=1 . ‘
where q'=[ho,hi=aho, ..., ho=ah,_4,~ah,] L.16

Q, is a scalar control weighting factor

m(j) is the optimal control input at interval k+j.
Thé LOC problem is now completely defined. U;ing eguations
L;15 and L.16, the matrix Ricatti equations or Hamiltoh's
'equgtions ma be solved to find the steady state optimal
éontrqi/yeffgi, L. Using the computed Values for L, and
equation L.12, the optimal, minimum phase impulse response
series, h;, can be calculated. An aléorithm, outlinéd in
Franklin and Powell[30], was wused to solve the matrix

Ricatti equations. ' -
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| M. Descriptio? of the Solute Blending Tank

A solute blénding\tank, shown in Figqure M.1, is used to
represent a process with nonlinear dynamics. "The blending
“tank has a total volume of 0.506m®(approximately 134
Gs.gal.{. The tank was sized to ensure the bulk flow rate
of the exit stream never exceeded 2m/s.
A Product concentration, Cs, is controlled by
maﬂipuléting the flow rate of the second input Stream, Q.
The first stream is considered to have a constant flow raté,
qs, andgsolute concentration, cy. ) L

On the ;3;35 ofs . this information, aséﬁﬁing perfect

mixing, the tank dynamics can be represented by ‘the

'followiﬁg differential egquations

Overall mass balance

Q1P1+Q2PZ=Q3pa+d_(Pav) . M. 1
» dt : ’
Component balance
’ C1q1+C2q2=C3Q3+g_(C3V) M.2
: at

Beéause the solute ‘concentrations are. small, the‘firét
equation can be further simplified by assuming all stream
densities are equal

q +gz=qs+d V 3. ' T M.3

adt . » .

The felationship between the volumé of solution in the tank
and the exit _floQ rate ‘causes the nonlinear process
dynamics. To relate exit flow rate to. tank. volume, the
mechanical energy balance equ§tioh[31] is appiied to a

differential element of solution, flowing between the tank

and the point of pipe discharge. The mechanical energy
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\
]
c1 Q i
‘— D MEASUPREMENT
ELEMENT |
e L
[
Figure M. rBlodk diagram of blendihg tank. Measurement

planes are indicated.
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balance equation describes the pressure, kinetic, potential
and frictional fdrces acting ypon this differential mass.

vdP+UdU+gdz+dluE=D . M.4
Through integration, this equation is expanded to include
all the forces acting‘on\a unit mass of solution as it flows
from the blending tank to Epe pipeﬁexit to yield

V(PZ_P|)+U22"U]1+g(ZZ;Z1)+1Wf12=0 ’ . vM.S
-2 2

Where the subscripts 1 and 2 denote process variables at the
tank and point of discharge respectively. Equation M.5 is
further simplified by requirings

i. Atmospheric pressure at the blending tank and at the
S

point of discharge. !

ii. The bulk flowrate, U, is negligible compared to U;.

iii. The vertical distance between the point of discharge
"and- the solution level, is equivalent to the height of
éolution in the blending tank.

With these assumptions, equation M.5 becomes

Uz’—gh+IWf1z=0 ' ' ‘ M.6
-2

The Fanning friction factor, f, is used in the empirical
equation ‘ ‘ , .

le12=fU22ng
R B

to determine the lost work due td friction. With an
estimate of the Reynolds humber, Re, a Moody diagram[31] can
be used to specify a value for, f. Below 1is a table of
parametefs that specify thé size .and initial operation

conditions for the blending tank
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parameter value [units]

Radius of discharge pipe 0.02m

Radius of cylindrical tank L 0.35m

Height cf cone section . ' 0.5m

Distance of measuring element from tank 8.0m

Slope of cone=radius/height A 0.7 .

Average fluid density" 1000.kg/m?

Eqpivalent,length of pipe , 18.m

Flow rate stream 1 : | 0.0005m>/s

Flow rate stream 3 10.0008 -
,0.0009m’/s

Concentration stream 1 20.kg/m?

Concentration stream 2 | . 50.kg/m?

Concentration stream 3 A 30.- 34.kg/m?

Buik velocity of stream 3 0.60 - 0.73m/s

Sampling rate ) | 0.5min/sample

The operating conditions for this tank correspond:to a
Re=8000, giviné a f=0.008.

Because eguation M.7 only computes lost work due to
straight length of pipe, an additional pipe length or
'equivalent' 1length, Leq, is added to the actual length of
pipe, Li, to account for the additionai friction losses’
arising as the fluia enters the'pipe’entrance{ Equation M.?_

can be written as

1Wf12=fU22(Leq+L12) | ’ ‘\ M.8
R

Equation M.8 is substituted into M.6 to give
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U,=v/ghR - : - M.9
R+f(Leq+L1z)

which is used to solve for U:.

A FORTRAN\ subroutine was written ﬁo compute the tank
response to changes in input flow rate. The differential
equations, M.2 and M.3 wére solved using finite
differencing. The relgtionship between tank volume, V and

" output flow rate, g, was found using equation M.9.

.~

N. The Wood-Berry Distillatiom Column Model -
Based upon ' open loop pulse tésting[22] a linear model

was developed for a nine inch diameter, eight fray,

methanol-water distillation'column. The continuous transfer

function model is reported as

yi(s) 12.8e-'* -18.9e-°" xy(s)
16.7s+1 21.0s+1

y2(s) 6.6e" 7" -19.4e- " X, (8s) °
10.9s+1 14.4s+1 *

where y,=weight percent methanol in overhead product
y.=weight percent methanol in bottoms product
x,=reflux flow rate (lb/min)

x,=steam flowrate (lb/min)
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0. Computer programs

This section contains thé FPRTRAN code f?r the process
simulator and the control aIgorithms. A‘ copy of the
terminal liéting produced by the simulation results shown &n
Figure 2.5 is included to assist the reeder in understanding
the operation of the suite of proggams.‘

The function of the different parts of the code as’well

as the definitions of the variables is provided by comments ?m

contained within the source code of each routined  Im

addition v.erever possible, appropriate references have begﬁx:

2

included -to facilitate uriderstanding of program‘fund£¥ons. -
At present, the simulator is set up to operate on the
University of Alberta, -Amdahl 5860 computer with 1ts MTS
operating system. However with the exception of the free .
read statements, all proéramming is carried out in FORTRAN
1V coding. '

The proggéms have been arranged such that the main’
program abpears first followed by the wvarious éubroutines.
orderéd alphabetically. ‘

The first section_of this appendix is. tﬁé terminal
listing for the simulétion,study thaﬁ produced- the response
curves'in Figure 2.5. .To acbieve theée results, the .command
file MRUN1 was séurced twicé. on the first pass, the"pulse
generating routine was used to prepare ﬁhe impulse response
series from the ARMA model and on the second pass, the IMC

programs were used to generate the response curves. The

same results could havgi been prepared by sourcing the
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command file MRUN1 just:- once but this, for reasons left

uhsaid, makes the output file -9 very long. Thfoughout the

listing, annotations have been added to help the reader.

These notes are provided in_italics to differentiate them

from the terminal output, or user input.

9

INDEX

Item

. File name

Page

Copy of terminal session

Mainline program, MULTI.FOR

Subrout'ine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subro&tine
Subroutine
Subroutine
Subréutine

Subroutine

CROSS, MCROSS.FOR
DATA, MDAT.FOR
IMC1, MIMC1.FOR
IMC2, MIMC2.FOR
INIT, MINIT.FBR
MACCL, MMACCL.FOR
MACNMP, MMACNMP.FOR
NLSS, MNLSS.FOR
PULSE, MPUL.FOR
ORC, MORC.FOR

STEP, MOL . FOR

ZTRANS, MZITR.FOR

185 > - .
192
200
202
207
213
215
218
219

222

223

224 .
. {
226

227
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The file MIMC.DAT7 is edited to ensure the beta and gamma

weightings are correct. The format for this file can be
found @ the source code llstlng for MIMCT. FOR
#ed .dat7 ) :
< :p1 20 S - TN
: 1 0.0 1.0 ' . ' ’
2 © 0.0 1.0
3 0.0 1.0
4 . 0.0 1.0 .
95 . 0.0 1.0
6 0.0 1.0,
7 0.0 1.0
8 0.0 1.0
9 0.0 1.0
10 0.0 1.0 !
1 0.0 1.0 )
12 0.0 1.0
13 0.0 1.0
14 . 0.0 1.0 v >
15 0.0 1.0 4 .
16 0.0 1.0
17 0.0 1.0
18 0.0 1.0
19 0.0 1.0
: 20 " 0.0 1.0
:st
#  $.05, $.05T

The command. file MRUNT - is sourced to determine the
‘impulse response series. The sampling rate, the number of
rows, <olumns and highest_ ondén of tne‘tnansfen fungtion
jmatnrx along wrth the humbier of lntegen time delays and
analog mode] panametens must be pn@vrded v
‘ Two time delays are required, one fon the control
sampling nate, T(1), and.-one fon fhe intensample sanpling
nate T(2)- 2T(1). For éxample if the analog déad time is
6 mln T(1)=10min, giving T(2)=2min, then the dead trme as
observed by a sampling rate of T(1) can be appnox:mated as
elthen O- or 1. I? 0, is chosen then tha/numben of integer ‘

delays corresponding to T(2) wilV be 3. dn\jhe other hand,
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iF thesﬂumbén of integer delays corresp>nding to T(1) were
chdsen as 1, then the number of ipteger delays corresponding

to T(2) would be, -2.
#so mrunl
$.00, $.06T
$em -9 i
"-g" does not exist.
$.03, $.009T

tem -11 7/

"-11" does not exist., 8
$.03,  $.12T

$em -1

"-L" does not exist.
$.03, §.16T |

$copy multi.obj to ‘-1(*L+1)
$.10, $.26T

$copy mztr.obj to -1(xL+1)
$.01, ~ $.27T

$copy mol.obj to ~1(*L+1)
$@015:", §.28T

$copy mpul.obj to -1(*L+1)
o $.o01, $.29T
$copy mdat.obj to -1l(*L+1)

- $.01, $.30T >
$copy mimc1.0bj to —1l(*L+1)
w$-16’ $-46T i

$r -1+*imsllib+minit.obj+mimc2.0obj+morc.obj+...
22:47:34& - ' ‘

CU%e T 3 I I e I W 3 I I T e T e T T W e T Ik I I I

~enter the sampling rate, T
?24.0 ‘ .

enter the simulation type ,linear=1, nonlinear=2
?21 “

enter the number of rows, IR where IR<4

enter the number of columns, IC where IC<4

enter the highest model order, IO where IO =1 or 2
enter these three values on the next line -

if ISIM=2 IR=IC=I0=1

?1,1,2 R
below are the eight transfer function types
1. G(s) = K/s . . ,
2. G(s) = K/(s+r) ‘ T
3. G(s) = Kxomega**2/( s*s + 2xzetaxomega*s +omega**2)
4. G(s) =2K/( (s+r)(s+p) ) :
5. G(s) = K/( s(s+r) ) ' ‘ ,
6. G(s) = K (s+q)/( (s+r)(s+p) ) .
7. G(s) = K (s+q)/(s(s+r)) * ’
8. G(s) = K (s+q)/(s+r)

enter the element time delay for rate T(1)
the extra delay required for for rate T(2)

~ T
\
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and the transfer function type(1-8)

element 1 1.
1,0,4
enter: K, R, P

20.1,.1,1. - ) o

menu of program optlons| ’ ‘ : .
block 1-open loop response for step response
.block 2- open loop response to a pulse test
block 3- IMC control law
. block 4- RC control law, delay free case
0 block 5- ORC control law, delay included
block 6 - ORC - control law, delay free and delayed
block 7 - MAC -NMP control law:
block 8 - cross-corrrelation
block 15 - exit program
enter block number on next line.
?2 '

input the pulse size for input 1
?2. '

menu of program options

block 1—open loop.response for step response

block 2- open loop.response to a pulse test -

block 3- IMC control law

block 4- ORC control law, delay free case

block 5- ORC control 'law, delay included:

block 6 - ORC - control law, delay free and délayed -
block 7- - MAC -NMP control law

block 8 - cross corrrelation

block 15 - exit program . N
.enter block number on next line S
715
* 4 22:48:25 T=0.73 RC=0
# $.28, §.74T

File MIMC.DAT10 is viewed to démcnstnate‘fohmat of fhe
impulse ﬁesponse' series coefficients. Details . on the
structure of this file can be found in the source code .
listing for MULTI.FOR. | |

#ed mimc.dat10
:pl 20

.
0~ T W —
[cYololololoale!

o

o>

N

t

.
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.0223

9 0
10 0.0149
11 0.0100 ‘
12 0.0067 L
13 .0.0045 ‘
14 ©0.0030
15 0.0020
16 . 0.0014
17 .0.0009
18 0.0006
19 0.0004
: 20 0.0003
1St ’ :
# $.01, $.75T

A
The file -11 is viewed to illustrate the structure.

Additional information on the stnucfuné of this filé can be

found in the source code for MULTI.FOR and MZTR.FOR.
© #ed -1 ' :

:p/f
: .00000

—_

2
1 0 4
.10000. 0.10000  1.00000
2 -
2.0000
15

~
\

O~JO U WN —
o

st
#  $.01,  §.75T

The command file MRUNT1 is sourced again to evaluate the
- performance of the IMC algorithm. The control parameters
M=P=N=1O are required along with setpoints, time delay

estimates and filter parameters.
‘#so mrun k -

# $.00, $.75T

# $em -9

# Done. '

# $.00, $.76T

# $em -11

‘# Done. ‘

# $.00, $.76T

# $em -1 '

# Done.

# $.00, '~ $.76T

# $copy multi.obj to -1(*L+1)
# $.05, $.82T7

# $copy mztr.obj to -1(*L+1)
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# $.01, $.83T
4 $copy mol.obj to -1(xL+1)
# $.01, $.84T
# $copy mpul obj to -1(xL+1)
# $.01, $.84T o
# $copy mdat.ob] to -1(*L+1)
# $.01, $.85T
# $copy mimcl.obj to -1(*L+1)
# $.14, $.99T
# $r -1+*1mslllb+m1n1t obj+mimc2.obj+morc.obj+.
# 22:49:25
enter the sampling rate, T
?4.
enter the simulation type ,linear=1, nonlinear=2
?1
. enter the number of rows, IR where IR<4
enter the number of. columns, IC where IC<4
enter the hlgﬁest model order, 10 where IO =1 or 2
enter these three values on the next line
if ISIM=2 IR=IC=10=1
?1,1,2 :
below are the eight transfer function types
1. G(s) = K/s
2. G(s) = K/(s+r)
3. G(s) = -Kxomega**2/( s*s + 2*zeta*omega*s +omega**2)
4. G(s) = K/( (s+r)(s+p) )
5: G(s) = K/( s(s+r) )
6. G(s) = K (s+q)/( (s+r)(s+p) )
7. G(s) = K (s+g)/(s(s+r))
8. G(s) = K (s+q)/(s+r)
enter the element time delay for rate T(1)
the extra delay required for for rate T(2)
and the transfer function type(1-8) ’
element 1 1
?21,0,4 .
enter: K, R, P
?.1,.1,1. ‘
menu of program options
block 1-open loop response for step response
block 2- open loop response to a pulse test
block 3- IMC control law
block 4- ORC control law, delay free case
block 5- ORC control law, delay included -
block 6 - ORC - control law, delay free and delayed
block 7 - MAC -NMP control law
block 8 - cross corrrelation
block 15 - exit program
enter block number on next line i
7?3 : ' \

enter the setpoints, one per line
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?21.
enter IMC tuning parameters
P- optimization horizon
where P<or=N and (P+T0)*outputs<90
M- input suppression parameter Mxinputs<or=P<90
N- number of terms in impulse response model
where N+Tdelay<70 and (N+T0)*inputs<120
TO- measure of imbalance in TF
enter these four integer values on the next line
?210,10,10,0
enter the time delay diagonal‘eleméqfs, 1 per line
71
enter filter coefficients, one per line
?0.0 < :
do you want offset compensation yes(1), no(2)
?2 : .

menu of program options
‘block 1-open loop response for step response
block 2- open loop response to a* pulse test
block 3- IMC control law '
block 4- ORC control law, delay free case’
block 5- ORC control law, delay included
block 6 - ORC - control law, delay free and delayed
block 7 - MAC -NMP control law
block 8 - cross corrrelation
block 15 - exit program
enter block number on next line

?15

# 22:50:29 T=0.827 RC=0

# $.29, $1.28T

The file -11 is viewed to illustrate the structure.
The response shown in Figure 2.6 could be generated by
editing this file and changing the third 10 in line 8 to a

15, after which command file MRUNZ2 is'sounced.

#ed - 11
:p/f
: 1 4,00000
2 - 1
3 1 1 2
4 1 0 4 .
5 0.,10000 0.10000 1.00000
6 3 »
7 1.0000
8 10 10 10 0
9 1 p ‘
10 0.0 -
: 11 2
: 12 15

:st
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) -

# $.01, $1.297 \
Finally, the file -9, |is viewed 1O i1lustrate the

structure of the output data.

#ed -9

:pl 20

: 1 0.0 . 0.0 3.89
2 0.80 0.0 3.89 J
3 1.60 0.0 3.89 -
4 2.40 0.0 3.89
5 3:20 0.0 3.89

6 4.00 0.0 3.89 4.00 15.55
7 4.00 0.0 0.21
8 4.80 0.09 0.21
9 5.60 0.29 0.21
10 6.40 0.53 0.21
11 17,20 0.77 0.21
12 8.00 1.00 0.21 5.85 30.28
13 8.00 1.00 1.20
14 8.80 1.13 1.20
15 9.60 1,14 1.20
16 10.40 1.1 1.20
17 11.20 1.06 1.20
18 12.00 1.00 1.20 6.20  34.26

19 12.00 . 1,00 0.95

: 20 12.80 0.97 0.95

:st '

$.01, $1.30T
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CCCCCCCCCCCCCCCCCCCeeeeceeecceeececeeeccecceecccecececcecce

Mainline program for multivariable simulator
MULTI .FOR
Subroutines Note: in most cases the
title of the subroutine file name, will be the
name of the subroutine as it is called in the
main program, prefaced by the letter M. For
example the mainline program calls subroutine
IMC1. The title given to this subprogram file
A is MIMC1.FOR. There are exceptions.
ZTRANS - program MZTR.FOR, converts analog model
to discrete model
STEP - program MOL.FOR, initializes input vector
: for a step response
PULSE - program MPUL.FOR, initializeds input vector
for a pulse test ‘
DATA - program MDAT.FOR, computes the process
output given the inputs
For ISIM=1 a linear function is assumed,
and a three by three transfer function %E

permissible : &
For ISIM=2 the SISO blending tank is .7
assumed, therfore only a 1 input 1 output

relationship is possible ‘
IMC1 - program MIMC1.FOR, computes the return
difference operator RDO, in-the IMC cﬁntrol
law. !
IMC2 - program MIMC2.FOR, computes the contﬁol
signal u(k) . %

ORC - program MORC.FOR, computes the control signal
for the Ogunnaike and Ray compensator
INIT-MINIT.FOR initializes the control parameters

for the IMC, ORC and MAC algorithms
CROSS-MCROSS.FOR carries out the cross correlation
MACNMP - MMACNMP.FOR computes the best stable,
minimum phase approximation of the NMP
impulse response series using LQC
theory N , )
MACCL - MMACCL.FOR computes the control signal for
the MAC algdrithm (SISO only) -
NLSS - MNLSS.FOR computes the steady state
. operating conditions for the blending tank
The IMSL routines include;
"LINVIF- carries out matrix inversion (in IMC1)
 GGNML- generates . a normally distributed,
{(variance=mean=1) signal.(in DATA)

Operation of Program .
All of the programs included in this package are
written in FORTRAN IV with the exception of free
‘read statements used to iLnput data from the

operator's console. In addition the IMSL library

of subroutines 1s :accessed to carry out some

OO0 NONONONO0NONNOON00N0N00O00O0O0O0NOOO0OOO0O0O00O000000000

OOOOOOOOOOOOOOOOOOOOO(‘)(’)OOOOOOOOOOJOOOOGOO‘OOOOOOOOOOOOO
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linear algebra operations.

To run the program
SO MRUN1 ‘ _

This file contains commands that 1initialize the
the various resources needed by the main
program. Since the programs are all menu driven
the operator will be requested to énter the
required parameters. Note: all inputs are
written into the temporary file —1T\attached to
LU 11 .
All of the calculated output values 'are written
to the temporary file -9 attached to' LU 9.
The operators terminal is LU 5 and LU 6 for read
and writes respectvely
After the first run is completed, make changes

to ~-11 which will be used by another 'command
file MRUN2 for subseguent runs. ‘
SO MRUN2

Use MRUN2 for all runs following the

first run. It is easier to make any changes in

the run parameters, by editing file -11 than

going through the tedious task of reentering all
. parameters interactively. :

READ or WRITE files that must be available

MIMC.DAT7-contains the beta and gamma weightings

see MIMC1.FOR for explaination of stru-

’ ture.

MIMC.DAT10- contains the output from either step,
pulse, or cross correlation testing.
le it contains the nonparametric modelC

MIMC.DAT13- contains the initial steady state C
operating conditions for the blending C
tank as well as the other computed
initial steady state conditions. See
MNLSS.FOR for the structure of this
file. :

-9 - contains the calculated output and input. See

MDAT.FOR for the structure of this file
-12,-11 -contains the paramet~2rs entered by the
process operator. See ZTRANS.FOR and
MULTI .FOR for the structure of this file

OO0 0O00O0N0O0N00O00000OO0n

Variable ID
T(n) - vector of sampling rates
T(1) - control sampling rat
T(2) - .2T(1) records in =rc behavior
GN(n,i,j,k) - matrix containing nc -or ARMA
coefficents _
n - corresponds to sampling rz.
i - corresponds to row
j - corresponds to column
k - corresponds to SISC pare: 2tz

OO0 00000000
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GD(n,i,j,k) - matrix containing denominator ARMA
coefficients
indices are same as above :
GP(j) - vector containing diagonal elements of
optimal time delay compensator :
Y(i,1l) - matrix of process outputs
- refers to 1 of 5 intersample times
U(j,m) - matrix of control inputs
m - refers to 1 of 30 possible inputs
- where 1 is the present input
ITD(i,j) - matrix of time delays
H(i,j,k) - impulse reponse matrix
k - corresponds to term in response series
subroutine OL

IR - number of rows in TF

I'C - number of columns in TF

10 - order of ARMA model _

ISIM -.determines whether the simulation is linear
or nonlinear 2. Note if ISIM=2, IR=1, IC=1,
10=1, otherwise the program will not execute
properly

ICASE - determines the transfer of control through

the main program as well as the
initialization program INIT.

Additional information about any of the
subroutines called by the main program can be foundC
in the source code listings for those subprograms C

. C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

DIMENSION GN(2,3,3,2), GD(2,3,3,2), T(2

, GAMMA(180), CONST(90,90), GP(3),
, FILTER(3), ITD2(3,3)
. IOR(3,3), IDF(3,3), CK(3,3), CI(3,3)
, GI(3,3), HK(50),A(7),¥YD(3)

INTEGER P, GP :

REAL PSI

e W -

initialization ‘

DATA GN/36%*0.0/, GD/36x0.0/, T/2%0.0/, ITD/9*0/,
U/210%x0.0/, ¥/15%0.0/, USTEP/3%0.0/, .
H/630%0.0/, GAMMA/180%0.0/, CONST/8100%0.0/

pS1/7200%0.0/, FILTER/3%0.0/,GP/3%0/ &\
I1TD2/9%0/, OFF/1.0,3%0.0,1.0,3%¥0.0,1.0/
IDF/9%0/, CK/9%0.0/, CI/9%0.0/, IOR/9%0/
G1/9%0.0/, ITEST/0/, HK/50%0.0/
a/1.0,-1.0,1.0,1.0,1.0,-1.0,-1.0/, ISIM/0/
YD/3%0.0/ ‘ '

O -JOoO N> WN —
~ ~ ~ N ~ =~

call subroutine ZTRANS to determine discrete

representation
&

o000 0O00000000n0n

), 1TD(3,3),
u(3,70), Y(3,5), USTEP(3), H(3,3,70), OFF(3,3)
PSIﬂ60,120)

194
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CALL ZTRANS(IR,IC,IO,ITD,GN,GD,T, ITD2,ISIM)
C
5 CONTINUE
C determine which function the program is to perform
WRITE(6,100)
CALL FREAD(5,'(1):', ICASE)
WRITE(11,101)ICASE
IF(ICASE .EQ. 15) GOTO. 99
C
C transfer control via the implied goto
GOTO(20,20,27,39,39,39,50,60), ICASE
C e
20 CONTINUE

C . Block 1 and Block 2 .
C . this block calculates the open loop response

' po 25 J=1, IC :
' F(ICASE .EQ. 1) CALL STEP(J,U)
F(ICASE .EQ. 2) CALL PULSE(J,U)
DO 24 K=1, 70
CALL DATA(IR 1c,10,1TD,GN,GD,U,T,Y,K, ITD2 ISIM, YD)
DO 21 M=1, IR ;
H(M,J,K)=Y(M,5)/U(J,K)
21 * CONTINUE
22 CONTINUE
\ DO 23 L=1, 69
U(Jg,71-L)=0(J,70-L)
23 CONTINUE
_ IF(ICASE .EQ. 2) U(J,1)=0.0
24 CONTINUE :
25 CONTINUE
C write step or impulse model ro LU 10
DO 26 K=1, 70
DO 26 I=1, IR
WRITE(10,102) (H(I,J,K),J=1, IC)
26 CONTINUE '
GOTO 5
27 CONTINUE

Block 3

call INIT to initial the IMC tuning parameters
CALL INIT(ICASE 1C,P,M,N,TO,GP, FILTER, IOFF,
1 IO0R,CK,CI,IR, GI YD)
C initialize U and Y to Zero
DO 29 I=1, IR
DO 28 J-1, 5
Y(1,J3)=0.0
28 CONTINUE
29 CONTINUE

s v



196

DO 30 I=1, IC
DO 30 J-1,70
U(1,3)=0.0
30 CONTINUE
C read the 1mpulse response coefficents from
C logical unit 10(MIMC.DAT10)
REWIND10
REWINDS :
NPTO=N+TO . ' o
DO 32 K=1, NPTO
DO 31 I~1 IR
.. READ(1 102)(H(I J,K),Jd=1,1C)
31 CONTTNUE
32 CONTINUE >
C call IMC1 to calculate CONST, PSI and GAMMA
CALL IMCI1(IR,IC,N,M,P,TO,H, GP CONST,GAMMA,
1 pPS1, OFF, IOFF)
C calculate the IMC control performance
DO 37 L=1, 100
C compute u(k)
CALL IMC2(IR,IC,N,M,P,TO, CONST,GAMMA,PSI,Y,U,
1 H, OFF, FILTER YD)
C call data to calculate y(k+1)
» CALL pATA(IR,IC,I10,ITD,GN,GD,U,T,Y,L, 1TD2,I1SIM, YD)
37 .CONTINUE
GOTO 5

39 CONTINUE

C e
c . Block 4,5 and 6 .
C . This block computes the ORC control 51gnal
cC
C

C call. INIT to compute the ORC tunlng parameters
CALL INIT(ICASE,IC,P,M,N,TO,GP,FILTER, IOFF,
1 IOR,CK,CI,IR,GI,YD)
40 CONTINUE , ‘ :
C initialize U and Y to zero
DO 42 I=1, IR
DO 41 J=1,5
¥Y(1,3)=0.0
41 CONTINUE
42 CONTINUE
DO 44 1=1,1IC
DO 43 J=1,70
u(1,J)=0.0
43 CONTINUE
44 CONTINUE
C compute the performance of controller ' 'ning parameters
C if ICASE equals 4 - delay free case :
IF(ICASE-5)45,47,45 ‘
C delay free case :
45 CONTINUE
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DO 46 L=1, 50 .

compute u(k) " :
CALL ORC(IR,IC,I10,IDF,GN, GD,Y,U,CK,CI,IDF,GI,L,¥YD)
call DATA to calculate y(k+1)
CALL DATA(IR,IC,I10,IDF,GN,GD,U,T,Y,L, I1DF, ISIM YD)
46 CONTINUE
IF(ICASE .EQ. 4) GOTO 5
ICASE=5 ‘
GOTO 40
response for delayed process
47 CONTINUE '
DO 48 L=1, 50
compute u(k)
CALL ORC(IR 1c,10,1TD,GN,GD,Y,U,CK,CI, IOR,GI,L, YD)
compute y(k+1).
CALL DATA(IR,IC,IO,ITD,GN, GD,U,T,Y,L,ITDR,ISIM, YD)
48 CONTINUE
GOTO 5

50 CONTINUE
Bloéi Gereeeee e
This block computes the MAC control S1gnal for

a NMP system

call INIT to determlne the MAC contol parameters
CALL INIT( ICASE 1C,P,M,N,TO,GP,FILTER, IOFF,
1 IOR,CK,CI,IR, GI, YD)
initialize U and Y to zZero
DO 54 I=1, IR
DO 53 J=1, 5
¥(1,J)=0.0
53 CONTINUE
54 CONTINUE -
DO 56 I=1, IC
o 55 J=1,70
: U(1,J)=0.0
55 CONTINUE
56 CONTINUE
read the impulse response coefficents from logical
‘unit 10(MIMC.DAT10)
* REWIND10
DO 58 K=1,.60"
DO 57 I=1, IR
READ(10,102)(H(I,J,K),J:J,IC)
57 CONTINUE - - ‘*“V\ii
58 CONTINUE .
call MACNMP to compute the MAC contoller galn "HK =~
CALL MACNMP(N,FILTER,H,GP,HK) = '
calculate the MAC-NMP control performance
DO 59 L=1, 50
compute u(k)
CALL MACCL(N,HK,U,Y,FILTER,GP, YD)

197
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call DATA to calculate, y(k+1)
CALL DATA(IR,IC,IO0,ITD,GN,GD,U,T,Y, L ITD2,ISIM, YD)
59 CONTINUE
GOTO 5
60 CONTINUE

Block 8
This block identifies the process model
. through cross correlation .
REWIND1O
DO 69 J=1,IC
begin by 1n1t1a11z1ng the output vector to zero
DO 62 1I=1, ’
A(1)=1.0
A(2)=-1.0
A(3)=1.0
A(4)=1.0
A(5)=1.0
A(6)=-1.0
A(7)=-1.0
: DO 61 IJ=1,5
' ¥(I1,1J)=0.0
61 CONTINUE
62 CONTINUE ' !
initialize the input vector te zero ‘
DO 64 L=1, 70
DO 63 IJ=1,IC
U(13J,L)=0.0
63 CONTINUE
64 CONTINUE ' o
" DO 68 L=1,400

T

u(Jd, 1)=A(1)
store u(k), y(k) in loglcal unit 10 attached to MIMC. DAT10
DO 65 I=1, . i
WRITE(1O 103)A(1),‘Y(I,5),I=1,IR)
65 CONTINUE

call DATA to generate y(k+1) ‘ .
CALL DATA(IR,IC,IO,ITP,GN, GD,U,T,Y,L,ITD2,ISIM,YD)
update the maximum length function ‘
TEMP=A(6)*A(7)
DO 66 1I=1,6
. A(8—1)=A(7—I)
66 CONTINUE ‘
A(1)=TEMP
update the control vector
DO 67 1J=1,69
U(J,71- 1J)= u(J,70-1J)
67 CONTINUE
68 CONTINUE'
69 CONTINUE
call CROSS to calculate the cross correlation fUﬂCthﬂ
and the best estimate of H
CALL CROSS(IR,IC,T)



_ *GOTO 5

terminate program

99 CONTINUE
' STOP

C

C format lines’
100 FORMAT(/'

' block

' block
' block
' delaye
' block
' block
' block
' enter
101 FORMAT(2X
102 FORMAT(2X
103 FORMAT(2X
"END ‘

|
1.
2
3
4
5
5
6
7
8
9

\
‘menu of program options ',/, = '
1-open loop response for step response

3- IMC control law ',/,
4- ORC control law, delay free case ',/
5- ORC ‘control law, delay included ',/,
6 -/ORC - control law, delay free and',
da',/, .

7 - MAC -NMP control law',/,

8 - cross corrrelation ',/,

15 - exit program ',/,

block number on next line')

,214) :

4 (2X,F8.4)) ‘

,4(2X,F10.6)) - k

’

199
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2- open loop response to a pulse test ',/
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C CROSS , C .
C Subroutine MCROSS.FOR, May 7 1984 c -
C - subroutine calculates the cross correlation . C
C function and the corresponding best estimate of C
C < the impulse response series v C
C Reference: Box, G.E.P., Jenkins, G.M.; 'Time SeriesC
C Analysis forecasting and control' Rev EQ4. C
C Holden Day ,3]]—387,(1976) o c -
C o C
C C
C Variable ID : - C
C U-matrix of inputs, present and past C
C . H- matrix of impulse reSponse series coefficents C
C PHI-matrix of cross covariance coefficierts’ C
C T- the sampling rate C
C H1 - mean of process output C
C U1 - mean of process input 1 - S,
C PHIX - cross covariance of the input u C
C PHIY - cross covariance of the output y C
C RXY - cross correlation coefficient estimate C
C ' \ s » C
C IR -number of rows in transfer func#®ion matrix oF
¢’ 1C - number of columns in transfer function matrix C
C ‘ C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE CROSS(IR,IC,T) .
DIMENSION T(3) , ; ’
. REAL %8 PHI(3,3,50),H(3,3,400),U(400) ° T~
1 . RXY(3,3,50),H1(3,3),PHIY¥(3,3),01,PHIX
DATA PHI/457 ".0D0/,RXY/450%0.0D0/,U1/0.0D0/ °
1 ,U/40 . ‘.ODO/,H/3600*0.0DO/,PHIX/0.0DO/
2 . PHIY/9%0.0D0/, H1/9%0.0D0/ o .
C calculate the coefficents of U and read the process -
C outputs from logical unit 10 ‘attached to MIMC.DAT10
REWIND 10 , S . :
DO 13 J=1,1IC : T
U1=0.0D0
DO 12 L=1,400 ‘ :
READ(10,100)U(L), (H(I,J,L),I=1,IR)
U1=01+U0(L) ~
Do 11 I=1,IR .
‘H1{1,J)=H1(1,J3)+H(I,J,L)
CONTINUE o
CONTINUE - ™
U1=01/400.0D0
po 13 I=1,IR .
H1(I,J)=H1(1,J)/400.0D0
13 CONTINUE '
REWIND 10 -
C calculate the cross covariance dgefficent
po 25 I=1,IR '
‘DO 24 J=1,IC 9
DO 18 K=1,50
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NMK=400-K
DO 17 L=1,NMK
CPHI(I,J,K)=PHI(I,J,K)+(U(L)-U1)*(H(I,J,L+K)-

1 H1(1,J)) 5.
17 CONTINUE :
PHI (1,J,K)=PHI(I,J,K)/400.0D0
18 CONTINUE

24 CONTINUE
25 CONTINUE
C calculate the variance of the input
DO 26 L=1,400 :
PHIX=PHIX+(U(L)-U1)*(U(L)-U1)
26 CONTINUE
. PHIX=PHIX/400.0D0
C calculate the vairiance of the output
DO 30 I=1, IR~
DO 29 J=1,1C
" DO 28 L=1,400 —

PHIY(I,J)=PHIY(I,J)+(H(I,J,L)*(H(I,J,L)-H1(I,J))
1 -H1(1,J)) -
28 CONTINUE
PHIY(I,J)= PHIY J)/400.0D0

29 CONTINUE
30 CONTINUE
C calculate the cross correlation coefficent estimate
DO 35 I=1, ,
DO 34 J=1,IC
DO 33 L=1,50
RXY(I,J,L)=PHI(I,J,L)/(DSQRT(PHIX)*

1 DSQRT (PHIY(I,J)))
H(I,J,L)=RXY(I,J, L)*DSQRT(PHIY(I J)) /¢
1 o DSQRT(PHIX))
33 CONTINUE
34 CONTINUE
35 CON"  E -
C writ- im, '~z response series coeffacents to. LU 10
C LU -~ -(MIMC.: AT10) _
Y L»l,SO 4
o I=1,1IK

. WRITE(10,100)(H(1,J,L),J=1,1C) .
36 = CONTINUE .
37 CONTINUE

RETURN :
1100 FORMAT(2X,3(2X,F10.6))

END

€
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DATA .
MDAT.FOR process simulator
" Inputs consist of
- history of past"inputs
- transfer functions and time delays
Calculates new process output

T(n) < vector of sampling rates
T(1) - control sampling rate
T(2) - .2T(1) records intersample behavior
GN(n,i,j,k) - matrix containing numerator ARMA
coefficents
n - corresponds to sampling rate
i - qorresponds to row
j - corresponds to column
k - corresponds to SISO parameter
GD(n,i,j,k) - matrix containing denominator ARMA
coefficients
indices are same as above
v(i,1) - matyix of process outputs
1 - refers to 1 of 5 intersample times
U(j,m) - matrix of control inputs
m - refers to 1 of 30 possible inputs
. - where 1 is the present input ’
ITD(i,j) - matrix of time delays
X(i,j,k) - matrix of SISO process outputs
- refers to time of output
- 1, present 2, one past 3, two past
XNOISE(i,j, k) - matrix of past SISO. noise inputs
Cc(i,j,k) - coefficients of noise polynomial ~
TIME - counter used to keep track of elapsed time
YERR - integral output error
UERR - integral control effort
IR - number of rows in TF °
IC - number of columns in TF
I0 - order of ARMA model
ISIM - ISIM determines transfer of control ISIM=1
for linear simulations

k

OO0 000O00000N

Variable ID for the Non Linear simulator

The nonlinear simulator is a blending tank made up
of a cylinder and a cone

The radius of the tank 1is glven by R=R1+Sx*H.

The tank has three streams denoted 1,2,3.

The measuring element is situated a dlstance D from
the exit of the blending tank, on stream 3.

The flow rate of stream 2 is controlled via a zero
order valve.

QS-vector of steady state flow rates

Cs-vector of steady state concentrations

Q1,02,Q03 - flow rates of respective streams
c1,C2,C3 ~ concentratlonsaof respective streams

R1 —radlus of blending tank at exit

OO(’)OOO(’)O(’)(‘)OOOO(’)OO(')OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
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S-slope of line relating height to radius
VS-steady state volume of blending tank

UB-bulk velocity of fluid leaving tank
RHO-density of fluid in tank, all steams are
assumed dilute . '
DELV-time derivative of tank volume
DELC-time derivative of C3

outputs

tank exit to measuring element

HCONE - maximum height of cone section
A-difference in HS-HCONE for HS .GT. HCONE
when HS ~LT. HCONE A=0.0

VCONE=maximum volume of cone

ACYL=cross sectional area of cylinder

ISIM -ISIM=1 linear simulator,ISIM=2 nonlinear

OOOOOOOOOOOO‘_OOOOOJOOOOO

2
HS-steady state height of tank 1
D-distance of measuring element from exit of ta

CONC-vector containg present and past process .

TDELAY-used to estimate the transport delay from

s

A

-

[

nk

- 4
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sim.
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SUBROUTINE DATA(IR,IC,IO,ITD,GN,GD,U,T,Y,IN,ITD2

203

1 , ISIM, YD) : :
DIMENSION ITD(3,3), GN(2,3,3,2), GD(2,3,3,2), u(3,70),
1 "~ 7(2), %(3,3,3), EKNOISE(3,3,2), ¥(3,5), 1TD2(3,3)
2 Cc(3,3,2), YOLD(3), ¥YD(3), U1(3,3,20)

3 , CONC(20), €S(3),08(3) .

REAL NOISE

REAL *8 DSEED
C explicit functions
‘F1(E,GG)=PI*(R1**2+S*R1*E+S**2*E**2/3.0)*E—G
, F2(E)=PI*(R1%%2+2,0*¥S*R1*E+S**x2+E**2) '
C initialization’ :
DATA 'C/0.0,17%0.0/, YERR/0.0/, UERR/0.0/,
X/27%0.0/, XNOISE/18%0.0/, TIME/0.0/,

1
) INDEX/0/, NOISE/0.0/, DSEED/9999./, YOLD/3%0.0/
3 , U1/180%0.0/, UB/0.0/
4 ., Vs/0.0/, HS/0.0/, RHO/0.0/, R1/0.0/,
5 , TDELAY/0.0/, D/0.0/, DELV/0.0/, DELC/0.0/
6 _, CONC/20%0.0/, CS/3%0.0/, Qs/3*%0.0/, PI/3.1415/
7 , ACYL/0.0/, VCONE/0.0/, A/0.0/
C _
IF(IN-1)5,5,10 -
C .
5 CONTINUE _ _
" IF(ISIM .EQ. 2) CALL NLSS(CS,QS,RHO,R1,S,VS,HS,D
1 ,EQL,FRIC,HCONE)
. TIME=0.0
"INDEX=0
YERR=9.0
UERR=0.0
NOISE=0.0

DSEED=9899.

S/0.0/
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A=0.0

IF(HS .GT. HCONE)' A=HS-HCONE
ACYL=PI*(R1+S*HCONE) **2

VCONE=PI* (R1%¥R1+S*R1*HCONE+S*S*HCONE**2/3.0) *HCONE
V=VS T

H=HS

DO 6 L=1,I0
XNOISE(I,J,L)=0.0
6 CONTINUE
DO 7 L=1, 3
X(1,J,L)=0.0
7 CONTINUE
YOLD(I)=0.0
8 CONTINUE
DO 9 1=1, 20
~ CALL GGNML(DSEED, 1,NOISE)
CONC(I)=CS(3)+NOISE*C(IR,IC,IO)
9 CONTINUE
C
10 CONTINUE
C jump to the nonlinear simulator if ISIM=2
IF(ISIM .EQ.2) GOTO 50

C . linear simulator .
C vt e eevasassssossssssssassnssssassnsossoesss 'Y R
C update the intersample control vector U1
DO 14 I=1,IR
‘DO 13 J=1, IC
DO 12 K=1,5
DO 11 L=1,3 '
U1(I,J,(L)*5+K)=U(J,ITD(I,J)+L—1)
11 CONTINUE
CONTINUE
DO 13 K=1,6 :
U1(I,J,K)=U1(I,J,ITDZ(I,J)+10+K)
13 CONTINUE
14 CONTINUE

C
C begin calculations
c
DO 30 I=1, IR
DO 25 K=1, 5
¥(1,K)=0.0

DO 20 J=1, IC
X(1,J3,1)=0.0
/ CALL GGNML (DSEED, 1,NOISE)
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XNOISE(I,J, 1)=NOISE
DO 15 L=1, IO
X(1,J,1)=X(1,J,1)+GN(2,1,J,L)*
. U1(1,J,5+L-K)
2 +GD(2,1,J,L)*X(1,J,L+1)+C(I,J,L)*XNOISE(I,J,L)
15 . CONTINUE '
X(1,J,3)=X(1,J,2)
X(1,3,2)=X(1,J,1)
XNOISE(1,J,2)=XNOISE(I,J, 1)
. Y(I,K)=Y(L,K)+X(1,J,1)
20 CONTINUE _ \
Note if a disturabance were to be simulated, the magnitude
would be added to the right hand side of the next line
and the program recompiled ’
Y(I,K)=Y(I,K)
25 CONTINUE
30 CONTINUE

—_

compute control effort and output error
DO 31 J=1, IC |
UERR=UERR+ABS(U(J, 1)-U(J,2))*T(1)
31 CONTINUE
DO 33 I=1, IR
DO 32 J=1, 5 '
YERR=YERR+ABS(Y(I,J)-YD(I))*T(2)
32 CONTINUE :
33 CONTINUE
output - logical unit 9
WRITE(9, 100){TIME, (YOLD(I),I=1,IR),(U(J,1),d=1, IC))
DO 35 K=1, 4
TIME=TIME + T(2)
WRITE(9,100) (TIME, (Y(I,K), =1,IR),(U(J,1),d=1,IC))
35 CONTINUE
TIME=TIME+T(2) ‘ ’
WRITE(9,100) (TIME, (Y(1,5),I=1,IR),(U(J,1),d=1,IC))
1, YERR, UERR .
DO 40 I=1,IR .
YOLD(I)=Y(I,5)
40 CONTINUE
RETURN

50 CONTINUE

start by adding the control signal pertubation U(1)1)
to Q2 . :
Q2=0S(2)+U(1,1)*.2%QS(2) %
TDELAY=0.0
begin loop to calculate C3 and Q3 over the intersample
DO 60 I=1,5
CALL GGNML(DSEED, 1,NOISE)
DELV=Q1+Q2-0Q3
V=T(2)*60.,*DELV+V
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DELC=(C1*%Q1+C2%Q2-C3*Q3~C3*DELV) /V
C3=T(2)*60.*DELC+C3
CONC(6-1)=C3+NOISE*C(IR,IC,I0) .
IF(V .GT. VCONE) H=HCONE+(V-VCONE)/ACYL .
IF(V .GT. VCONE) GOTO 56
C use Newtons method,to solve the cubic relatlonshlp
C between V and H "
DO 55 J=1,5
TEMP1=F1(H,V)
TEMP2=F2 (H) ‘
H=H-TEMP1/TEMP2 y
55 CONTINUE
56 CONTINUE
UB=SQRT((2.0%9. 81*H*R1)/(R1+2 O*FRIC*(EQL+D)))
Q3=PI*R1%*2%UB
60 CONTINUE
C store the delayed pertubation C3 s in YOUT
TDELAYzD/ UB*xT(1)*60.)
F(TDELAY .GT. 15) WRITE(6,102)
DO 65 I=1,5
Y(i )-(CONC(G I+IFIX(TDELAY))-CS(3))’
65 CONTINUE
C update the vector of past histories
DO 66 I=1,15
CONC(21-1)=CONC(16-1)
66 CONTINUE

C compute control effort and-output error
DO 67 J=1, IC
UERR=UERR+ABS(U(J, 1)-0(J,2))*T(1) N
€7 CONTINUE .
DO 69 I=1, IR
DO 68 J=1, 5
YERR=YERR+ABS (Y (I,J)-¥YD(I))*T(2)
68  CONTINUE
69 CONTINUE
C output - logical unit 9 '
WRITE(9,100) (TIME, (YOLD(I),I=1,IR),(U(J,1),J=1,IC))
DO 71 K=1, 4
TIME= TIME .+ T(2)
WRITE(9,100) (TIME, (Y (I, K),1=1,IR),(U(J,1),J=1,1C))
71 CONTINUE
TIME=TIME+T(2),
WRITE(9,100) (TIME, (¥(1,5),I=1,IR), (U(J,1),J=1,1IC))
1 , YERR, UERR,H ‘
DO 72 I=1,IR
YOLD(I)=Y(I,5)
72 CONTINUE
RETURN
C format lines
100 FORMAT(2X,F6.2,2X,8(F8.2,2X))
102 FORMAT(' trouble , the varlable time delay exceeds
1 ' the dimensions of CONC ')
END
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C IMC1
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Subroutine MIMC1.FOR February 2 1984

- program builds the LAMDA, GAMMA, BETA, EPSILOM

and PSI matrices required by the contreol law

Reference: Garcia and Morari; ' Internal Model
Control. 3. Multivariable Control Law

Computation and Tuning Guidelines ', Submitted

I &EC Proc. Des. and Dev. (April' 1983)

Inputs - N, M, P, TO, IR, IC, H and the optimal
t1me delay compensator

- must read input -and output welghtlng from

logical unit 7(MIMC.DAT7)
The beta and gamma weighting are wrltten

so that all the input weightings at time K

and all the output weightings at time K

.occur on the same line. For each new time

* interval a new line of input and output
weightings are recorded. Further infor-

mation can be found from the read statement

Variable ID
H(i,j, k) - impulse response matrix
- i,j identifies position of series- in
transfer function matrix
-~ k denotes term.in impulse response
series
GP(j) - optimal time delay compenstaor
GAMMA - matrix of output costing
LAMDA -~ matrix of future impulse response coeff
LAMDAT - matrix equivalent to transpose of LAMDA
PSI - matrix of past impulse response coeff.
BETA - matrix of input costing
RDO - matrix containing the inverted return
difference operator
CONST - matrix equal to the product of RDO and

LAMDAT
NC1 - matrix= sum of controller numerator
coefficents
H1 - matrix= sum of impulse response series
coefficients
DC1 - matrix= sum of controller denominator

coefficents
OFF - matrix offset compensator

N - number of terms in impulse response series
M - input suppression parameter
F -.optimization horizon

IC - number of columns in transfer function matrix

IR - number of rows®in transfer function matrix
TO - measure of 1mbalance in process transfer
functlon

QOO0 00O 00O00000000000nn
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IOFF - determines whether the offset compensator C
is operative. 1If IOFF=1, compensator is C
operative. If IOFF=2, compensator is not C
operative. C

) C
C

CCCCCCCCeeeeccceeceeeccceccceeeeececececceceeeeceecceeeccece
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SUBROUTINE IMC1(IR,IC,N,M,P,TO,H,GP,CONST, GAMMA,

1 PS1, OFF,IOFF)

DIMENSION GP(3), GAMMA(180),BETA(180), LAMDA(90,90),
pSI (60,120), LAMDAT(90,90), WKARE1(30,90)
, WKARE2(91), H(3,3,70), CONST(90,90)

, OFF(3,3), NC1(3,3), DC1(3,3), WKARE3(3,3),
WKARE4 (3,3),H1(3,3),WKARE5(3,3) ,WKARE&(-60, 120)
, RDO(90,90) ‘

REAL PSI, LAMDA, LAMDAT, NC1, NCMAX

INTEGER P, TO, PPTO, PPTOP1, PIR, MIC, GP

W —

C
C initialization )
DATA BETA/180%0.0/, LAMDA/8100*0.0/,RDO/8100*0.0/

1 , WKARE1/8100%0.0/,LAMDAT/8100%0.0/, NCMAX/0.0/
2 ., WKARE3/9%0.0/, WKARE4/9%0.0/, NC1/9%0.0/,

3 DC1/9%0.0/, H1/9%0.0/, WKARE5/9%0.0/,

4 WKARE6,/7200%0.0/

C read in values for BETA and GAMMA from logical unit 7
PPTO=P+TO '
IF(1C-2)1,3,5

1 CONTINUE -

DO 2 I=1, PPTO .
n CALL FREAD(7,'(2R):',BETA(I),GAMMA(I))
2 CONTINUE ~ .

GOTO 6
3 CONTINUE

DO 4 I=1, PPTO _

CALL FREAD(7,'(4R):',BETA((I-1)*IC+1),

1 BETA((I-1)%IC+2)

2 ,GAMMA ( (I-1)*IR+1) ,GAMMA((I-1)*IR+2))
4 CONTINUE '

. GOTO 6
5 CONTINUE

DO 6 I=1, PPTO ‘ \

CALL FREAD(7,'(6R):',BETA((I-1)*IC+1),

1. BETA((I-1)*IC+2),BETA((I-1)*IC+3)

2 UGAMMA((I—1)*IR+1),GAMMA((I—1)*IR+2),
L3 /GAMMA( (I-1)*IR+3))
6 CONTINBE

C build the LAMDA matrix

NPTO=N+TO

NPTOP 1=N+TO+1 |

MIC=M*1IC g

PIR=PPTO*IR

NPTOM 1=N+TO- 1

DO 10 K=1, PPTO

¥



DO 9 L=1, K

IM=(K-1)*IR

IN=(L-1)*IC

DO 8 J=1, IC

po 7 I=1, IR
IMI=IM+1
INJ=IN+J
IF(INJ .GT. MIC) INJ=MIC
LAMDA (IMI, INJ)=LAMDA(IMI,INJ)+ .
1 H(I,J,GP(I)+K+1—TOfL)*GAMMA((K~1)*IR+I)

7 CONTINUE
8 CONTINUE
9 CONTINUE
10 CONTINUE
C
IF(P-N)25,25,15
C

15 CONTINUE .
C N
DO 24 K=NPTOP1, PPTO
DO 23 L=1, NPTO

IL=K-NPTO+L

IM=(K-1)#*IR

IN=(IL-1)%*IC

DO 22 J=1, IC

DO 21 1I=1, IR

IMI=IM+1
INJ=IN+J
IF(INJ .GT. MIC) INJ=MIC
LAMDA ( IMI , INJ)=LAMDA (IMI,INJ)+H(I,J,GP(1)-TO

1 +NPTOP 1~L) *GAMMA ( (K- 1) *IR+I)
21 CONTINUE ‘
22 CONTINUE

23 CONTINUE
24 CONTINUE
.C )
C build the PSI matrix
C a , .
25 CONTINUE ' - ",
DO 30 K=1,PPTO
DO 29 I=1,IR
IEND=NPTO-K
DO 28 L=1, IEND

¢ DO 27 J=1,1IC
" PSI((K-1)%IR+I,(L-1)*IC+J)=H{(I,J,GP(I)+L+K)*
1 GAMMA ( (K-1)%IR+1)
27 . CONTINUE
28 CONTINUE -

29 CONTINUE
30 CONTINUE
DO 31 I=1,6
31 CONTINUE
C build the return difference operator
CALL TRANS(LAMDA,S0,90,PIR, MIC, LAMDAT, 390,90)
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CALL MULT ( LAMDAT, 90, 90,MIC,PIR,LAMDA,80,90,MIC,WKARET,
1 90,90)
DO 40 I=1, MIC
DO 39 J=1, M
DO 38 JJ=1, IC
JJJ=(J-1)*I1C+JJ .
WKARE1(I,JJJ)=WKARE1(I,JJJ)+BETA(JJJ)*BETA(JJJ)
38 CONTINUE
39 CONTINUE
40 CONTINUE
CALL LINV1F (WKARE1,MIC,90,RDO,0,WKARE2, IER)

compute RDO*LAMDAT
CALL MUL?(RDO;90,90,MIC,MIC,LAMDAT,90,90,PIR,CONST,90,
1 90 .
if offset compensation is not required RETURN
if IOFF=1 offset, if IOFF=2 no offset
IF(IOFF.GT.1)RETURN
compute the NCI
DO 45 K=1, PPTO
DO 44 I=1, IR
DO 43 J=1, IR
NC1(I,J)=NC1(I,J)+CONST(I,(K-1)*IC+J)
43 CONTINUE
44 CONTINUE
45 CONTINUE
compute H1
DO 50 K=1, NPTO
DO 49 I=1, IR

DO 48 J=1, IC N
H1(1,J)=H1(I,J)+H(I,J,K+GP(I)~TO)
48 CONTINUE ‘ _

49 CONTINUE
50 CONTINUE
compute DC1 . . . :
CALL MULT(CONST,90,90,MIC,PIR,PSI,60,120,NPTOM1,WKARE6
1 ,60,120)
DO 55 K=1, NPTOMI
DC54 I=1, IR
DO 53 J=1, IR
DC1(1,J)=DC1(1,J)+WKARE6(I, (K=1)*IC+J)
53 CONTINUE
54 CONTINUE
55 CONTINUE
DO 57 I=1,IR )
DC1(I,I)=DC1(I,I)+1.0
57 CONTINUE
compute DC1 inverse store inverse -in WKARE3
CALL LINV1F(DC1,IR,3,WKARE3,0,WKARE2,IER)
multiply NC1 by WKARE3 store result in WKARE4
CALL MULT(WKARE3,3,3,IR,IR,NC1,3,3,IR,WKARE4,3,3)
multiply WKARE4 by H1 store the result in WKAREDS
cALL MULT(H1,3,3,IR,IR,WKARE4,3,3,IR,WKARES,3,3)
compute the inverse of NC 1*WKARE3%*H1 and store in OFF

3
1

-



CALL LINV1F(WKARE5,IR,3,0FF,O,WKARE2,IER)

100 FORMAT(6F10.4)
RETURN
END
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C SUBROUTINE MULT

O

MULTIPLIES TWO MATRICES TOGETHER

C

C

C EX. Y = A#*B

C DIMENSION OF A IN
C DIMENSION OF B IN
C DIMENSION OF Y IN
C THE ACTUAL NUMBER
C IN MATRIX A ARE
C THE ACTUAL NUMBER
C

C

THE CALLING PROGRAM IS IA,IB
THE CALLING PROGRAM 1S IC,ID
THE CALLING PROGRAM IS IE,IF
OF ROWS AND COLUMNS IN USE
N,M ‘

OF COLUMNS IN B ARE L

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE MULT(A,

‘IA,IB,N,M,B,IC,ID,L,Y,IE,IF)

DIMENSION A(IA,IB), B(IC,ID), Y(IE,IF)

C INITIALIZATION
‘ DO 51 =1, IE

DO 5J =1, IF
Y(1,J) = 0.0
5 CONTINUE
C MULTIPLY THE MATRICES
DO 10 I =1, N
DO 10 J = 1, L
DO 10 K =1, M
Y(1,d
10 CONTINUE
RETURN
END

CCCCCCCCCCCCCCCCCCCCCCCeeecceecceeccceecceccceeceecceeccecceee

SUBROUTINE TRANS
TRANSPOSES A MATRIX

EX. YT(I,J) = Y(J,I)

) = ¥(1,J) + A(I,K)*B{K,J)

DIMENSION OF Y IN CALLING PROGRAM IS IA,IB

DIMENSION OF YT IN

CALLING PROGRAM IS IC,ID

THE ROWS AND COLUMNS IN USE IN Y ARE N,M

C
C
C
C
C
C
C WHERE:
C
C
C
C
C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCtCCCCCCCCC
SUBROUTINE TRANS(Y

, IA, IB, N, M, YT, IC, ID)

DIMENSION Y(IA,IB), YT(IC,ID)

C INITIALIZATION
DO 10 I = 1, IC

-

C
C
C
C
C
C
C
C
C
C
C
C
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DO 10 J = 1, ID
| YT(I,J) = 0.0
10 CONTINUE

C FIND THE TRANSPOSE OF Y
DO 151 = 1, N
DO 15 J =1, M
YT(J,I) = ¥(1,J)
15 CONTINUE

RETURN
END

212
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C IMC2

-C ~ Subroutine MIMC2.FOR February 12 1984

- programs computes the IMC control signal u(k)
on the basis of y(k) and information calculated
from MIMC1.POR ©

Reference: Garcia and Morari; ' Internal Model
Control. 3. Multivariable Control Law
Computation and Tuning Guidelines ', Submitted
I &EC Proc. Des. and Dev. (April 1983)

C

C

C

C

C

C

C

C

C

C Variable ID

C YM - vector containing model prediction of ym(k)
C Y - vector containing true y(k) ,

C E -,vector containing difference between setpoint -
o and feedback signal y(k)-ym(k)
C DIFF - difference of E-PSIU '

C .UNEW - prediction of future control inputs
C U - matrix of control history

C CONST ~ product of RDO*LAMDAT

C GAMMA - vector of input weightings

C PSI - matrix of historical response coefficents
C PSIU- product of PSI#*U

C H - matrix containing impulse response coefficents
C v ) -

C N - order of truncation

C M - input suppression parameter

C P - optimization horizon

C IR - number of rows in TF matrix

C IC - number of columns in TF matrix

C TO - measure of imbalance in TF matrix
C

C

OO0 0OOAN OO0 000N0A0NA0ON0N00000N

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
SUBROUTINE IMC2(IR,IC,N,M,P,TO,CONST,GAMMA,PSI,Y,U,H

1 , OFF, FILTER,YD) .
DIMENSION CONST(90,90), GAMMA(180), PSI(60,120) -
1 -, ¥(3,5), U(3,70); H(3,3,70), E(90,2)
, ¥M(3), PSIU(90), ¥YD(3), DIFF(90,1), UNEW(90,1)
3 , FILTER(3), OFF(3,3), WK1(3,1), WK2(3,1)

REAL PSI, PSIU - _ |
INTEGER P, TO, PPTO, PIR - '
C initialization .
DATA .E/180%0.0/, ¥M/3%0.0/

1 , WK1/3%0,0/, WK2/3%0.0/
NPTO=N+TO.

PPTO=P+TO ‘
MIC=M*1C . s

PIR=PPTO#*IR

NIR=NPTO*IR

DO 2 K=1, PIR
PSIU(K)=0.0 , :
E(K,1)=0.0 ‘ '
"DIFF(K,1)=0.0 :
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o .
UNEW(K, 1)=0.0 :
2 CONTINUE
calculate the predicted output ym(k)
© Do 5 T=1, IR '
YM(1)=0.0
DO 4-Jd=1, IC
DO 3 K=1, NPTO
U yM(1)=YM(I)+H(I,J,K)*U(J,K)
3 CONTINUE : :
4 CONTINUE
5 CONTINUE
calculate the offset compensated feedback signal and
setpoint
DO 6 I=1, IR |
WK1(1,1)=¥YD(1)-(¥(1,5)-¥M(I))
6 CONTINUE :
CALL MULT(OFF,B,B,IR,IR,WK1,3,1,1,WK2,3,1)
calculate E(k) over the horizon P
DO 8 K=1, PPTO
- DO 7 I=1, IR '
IK=(K~1)*IR+I '
E(IK,1)=FILTER(I)*E(IK,2)+(1—FILTER(I))*WK2(I,1
1 GAMMA ( (K-1) *TR+1)
E(IK,2)=E(IK,1) ‘ o -
7 CONTINUE
8 CONTINUE - -
compute the product of PSI*U store this result in PSIU
DO 12 K=1, PIR ‘
- PSIU(K)=0.0
DO 11 L=1,NPTO
po 10 J=1, IC
IL=(L-1)*IC+J
PSIU(K)=PSIU(K)+PSI(K,IL)*U(J,L)
10° CONTINUE ‘ b
11 QQNTINUE' '
12 CONTINUE ’
compute the difference between E and PSIU
DO 14 I=1, PIR = -
_ " DIFF(I,1)=E(I,1)-PSIU(I)
14 CONTINUE
compute the horizon of new control actions :
' CALL MULT(CONST,90,90,MIC,PIR,DIFF,90,1,1,UNEW,90,1
implement only the first IC terms in UNEW
DO 16 K=1, 69 '
DO 15 J=1, IC
_ u(J,71-K)=0(J,70-K) "~
15  CONTINUE ~ !
16 CONTINUE
Do 17 J=1, IC .
U(J, 19=UNEW(J, 1)
17 CONTINUE .

BV

~return

RETURN
END
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) *

) P



CCCCCCCCCCCCCCeeeeeccceeececcceeeceececceccceccccceecceeccce
C INIT '

Subroutine MINIT.FOR February 11 1984

- program initializes the various control laws

Inputs - enter the control law case number.ie ICASE

~Variable ID .
- IMC _
P - optimization horizon
M - input supppre551on parameter
N - number of terms in truncation model
TO - measure of imbalance in process transfer

function ;
GP - diagonal elements of optlmal time delay
compensator
IC - number of inputs in transfer function matrix

FILTER -~ vector containing IMC filter parameters
IOFF - determines whether or not offset
‘1s desired

ORC

IOR - ORC time delay estimates

CK - matrix of controller gains

CI - matric. of controller reset values

GI - multivariable steady state decoupler

MAC-NMP

FILTER -alpha weighting in setp01nt trajectory
GP- optimal time delay compensator

N - number of terms in impulse response series

OOOOOOOOOOOOOOOOOOOOXOOO\OOO:OOOOO
QOO0 O0000000n0n

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
SUBROUTINE INIT4{JICASE, IC, P, M, N, TO, GP, FILTER

1 "IOFF,IOR,CK,CI,IR,GI, vD) _
DIMENSION GP(3) vILTER(3) IOR(3 3),CK(3,3),CI1(3,3)
1 o ,GI(3,3), ¥YD(3), ~

INTEGER GP, P, TO '* : S
REAL GI : o

C enter the desired setpoint
WRITE(6, 112)
DO 5 I=1,IR ,
"CALL FREAD(5,'(1R):',¥YD(I))
 WRITE(11,104)YD(I) § ,
5 CONTINUE
"C transfer control via ICASE o
GoTo(10,10,10,21,21,21,25), ICASE
10 CONTINUE
C initialize IMC control law
C enter P, M, N, TO i
WRITE(6,100) '
CALL FREAD(5, '(4I):', P, M, N, TO)
WRITE(11,101)P,M,N,TO



216

C enter the optimal time compensator diagonal elemenbs
WRITE(6,102)
DO 15 I=1, IC
CALL FREAD(5,'(I):',GP(I))
WRITE(11,101)GP(I)
15 CONTINUE )
C enter the filter coefficent values ;
WRITE(6,103)
DO 20 I=1, IC —
CALL FREAD(5,'(R):',FILTER(I))
WRITE(11,104)FILTER(I)
20 CONTINUE
C ask for offset compensation
WRITE(6,105) '
CALL FREAD(5,'(I):',10FF)
WRITE(11,101)I0OFF

I
(

)

RETURN
21 CONTINUE
initialize the ORC tuning parameters
enter the time delay compensator estimates for each
element
WRITE(6,106)
DO 22 ‘I=1, IR
DO 22 J=1, 1IC
. WRITE(6,107)I,J
- CALL FREAD(5,'(I,3R):',IOR(I,J),CK(1,J),CI(I,J),
1 GI(I,J))
WRITE(11,108)I0R(I,J),CK(I,J),CI(1,J),GI(I,J)
22 CONTINUE .
RETURN
25 'CONTINUE
C initialize MAC control law
WRITE(6,109) ’
CALL FREAD(5,'(2I,2R):',N,GP(1),FILTER(1),FILTER(2))
WRITE(11,110)N,GP(1),FILTER(1),FILTER(2)
RETURN .
C format lines
100 FORMAT(' enter IMC tuning parameters',/,
' pP- optimization horizon',/,4%X,' where P<or=N'
' and (P+T0)*outputs<90',/,
M- input suppression parameter’',
M*inputs<or=pP<S80',/, :

aOnn

- e a~

'/,3X%,' where N+Tdelay<70 and (N+T0)#*inputs<120'
,/,' TO- measure of imbalance in TF',/,
' enter these four integer values on the',
' next line’)
101 FORMAT(2X,4(I3,2X))
102 FORMAT(' enter the optimal time delay diagonal',
1 ' elements, one per line .") .
103 FORMAT(' enter filter coefficients, one per line ')
104 FORMAT(2X,F10.4)

NN WWRNN = —

N- number of terms in impulse response model',

i
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105 FORMAT(' do you want offgetucompensation yes(1),"'

1. ,' no(2)")
106 FORMAT(' ORC control law ',/,
1 ' enter the time delay estimate, controller',
2 ' gain, controller reset value and multivariable',
3 "' §.S. decoupler')

107 FORMAT(' element ',2X,I14,2X,14)
108 FORMAT(2X,I14,2X,4(F10.4,2X))
109 FORMAT(' enter the number of terms in the ‘impulse',
' response series, N<=50',/,
' the time delay estimate GP(1)',/,
" the.alpha weighting, FILTER(1), 0<=FILTER<1'
,/,' and the input weighting R(FILTER(2) ',/,
.+ enter these four values on the next line ')
110 FORMAT(2X,2(14,2X),2(F10.4,2X))
112 FORMAT(' enter the setpoints, one per line ')

- END '

= WN = -
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MACCL
Subroutine MMACCL.FOR, April 28 1984
MAC control law, used in conjunction with MACNMP
This control law is developed using an optimization
horizon P of 1. Also subroutine MACNMP must be
called first to generate HK

Variable 1ID
U - matrix of past control inputs
HK- matrix of model coefficents

C
C
C
C
C
C
C
C The MAC paper is Rouhani and Mehra 1982, Automatica
C
C
C
C
C
C N number of terms in HK series

C

C

C
C

C

C

C

C

C

C
Vol. 18, No. 4, 401-414(1982) : C
C

C

C

C

c

C

C

CCCCCCCCCCCCCeceecceeceeecceeecceeeccecceccececeecceccece
SUBROUTINE MACCL(N,HK,U,Y,FILTER,GP, YD)
DIMENSION HK(50),U(3,70),FILTER(3),GP(3),¥(3,5)
1 ,YD(3) .
NM1=N-1
UNEW=0.0
DO 10 I=1,NMI1
UNEW=UNEW+ (HK (I)-HK(I+1))xu(1,1)/HK(1)
10 CONTINUE
UNEW=UNEW+HK (N)*U (1,N) /HK(1)-(1,0-FILTER(1))*¥(1,5)
1 /HK(1)+(1.0-FILTER(1))*YD(1)/HK(1)
C update the input vector with unew
DO 15 I=1,69
U(1,71-1)=0(1,70-1)
15 CONTINUE
U(1,1)=UNEW
RETURN '
END

\

218
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CCCCCCCCCCCCCECCCCCCeeeceeeceececeeceeeeceececcecceeceeccece
C MACNMP C
Subroutine MMACNMP.for April 28 1984 . C

- subroutine : >lves the matrix Ricatti equations C
to find the optimum gain K in. the MAC control C
law when the process is NMP phase C

The MAC paper is Rouhani and Mehra 1982, Automatica

The matrix Ricatti equations are taken from
Franklin and Powell, Digital Control of
Dynamic Systems, Addison-Wesley 1980 p254

Inputs - N, FILTER, H and GP
Outputs - K the optimum gain for the controller

C

C

C

C

C

C

C

C

C

Variable ID C

H - a matrix (must be 1,1,N) containing impulse C

" response series coefficents C

HA - the minimum phase approximation of the NMP C

_ transfer function. C

GP - optimal time delay compensator (must be 1 by C

1 for this program to work) ‘ C
FILTER - vector containing alpha weighting (must beC
of dimension 1 for this program to work) c ,

GAMMA - matrix of dimension (N,1) contains a 1 and C

the rest are zeros , ‘ ' C

GAMMA corresponds to b in the' MAC formulation C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

QO - matrix of dimension N,N. Contains the norm of
: the vector h0, hi-alpha*h0, h2-alpha#*hi,...
PHI - matrix of dimension N,N. Contains all zeros

except for the lower diagonal of ones.
Corresponds to U in the MAC formulation

M - used to solve the matrix Ricatti eguations
dimension of N,N

S - used to solve the matrix Ricatti equations
dimension N,N _

TEMP - is- a temporary workspace of dimension N,N

N is the number of terms in the impulse response
.in the impulse response series =

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

eXeoleoXoXekeleleleiexeRokeeXekekeNekekeRo ke e ke Ro ke ke NeRe ke loNoRe ks Ee Ko Ao RO RO RO R Q!

SUBROUTINE MACNMP(N,FILTER,H,GP,HA)
DIMENSION Q(50,50), PHI(50,50), GAMMA(50), K(50)

1 , s{50,50), M(50,50), H(3,3,70), FILTER(3),
2 GP(3), TEMP(50,50), HA(50), PHIT(50,50)
REAL M, K ' .

INTEGER GP

C initialization »
DATA Q/2500%0.0/, PHI/2500%0.0/, GAMMA/50%0.0/,
1 $/2500%0.0/, M/2500%0.0/; TEMP/2500%0.0/
2 ,K/50%0.0/, SUMK/0.0/, SUMH/0.0/, PHIT/2500%0.0/
3 ,R/0.000/ : '
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C begin by building the Q matrix, use G as temporary storage
R=FILTER(2) '
NM1=N-1
NM2=N-2
NP1=N+1
GAMMA (1)=H(1,1,GP(1)+1)
DO 10 I=2,N

GAMMA (1)=
10 CONTINUE
GAMMA (NP1)=-FILTER(1)*H(1,1,GP(1)+N)
DO 15 I=1,NP1 ‘
DO 14 J=1,NP1
0(1,J)=GAMMA (I)*GAMMA(J)
S(1,J3)=0Q(1,J)
14 CONTINUE
15 CONTINUE

C build the PHI matrix

DO 17 I=2,NP1
PHI(I,I-1)=1.0
PHIT(L-1,I)=1.0

17 CONTINUE
C begin the recursive calculations
DO 30 L=1, 30
DO 20 I=1,N ‘
TEMP(1,I)=-S(1,I1+1)/(s(1,1)+R)
K(I1)=-8(1,1+1)/(S(1,1)+R)
20 CONTINUE
© + TEMP(1,NP1)=0.0
K(NP1)=0.0
DO 25 1=2,NP1
DO 23 J=1,NP1
TEMP(I,J)=PHI(I,J)
23 CONTINUE
25 CONTINUE , -
CALL MULT(S,SO,SO,NP1,NPf,TEMP,SO,SO,NP1,M,50,50)
CALL MULT(PHIT,SO,SO,NP1,NP1,M,50,50,NP1,S,50,50)
DO 29 I=1,NP1 .
DO 27 J=1,NP1
s(1,3)=8(1,J3)+Q(1,J)

H(1,1,GP(1)+I)-FILTER(1)*H(1,1,GP(1)+I-1)

27 CONTINUE
29  CONTINUE
30 CONTINUE - i : ,

C calculate the optimum impulse response series
C from K
DO 35 I=1,N \
SUMH=SUMH+H (1, 1,GP(1)+I)
SUMK=SUMK+K (1)

35 CONTINUE
HA(1)=-(1.0-FILTER(1))*SUMH/(SUMK-1.0)
HA(N)=(1.o—FILTER(1))*H(1,1,GP(1)+N)+K(N)*HA(1)
DO 40 I=1,NM2

HA(N—I)=K(N-I)*HA(N—I)+(1.0-FILTER(1))*
1 H(1,1,GP(1)+N-1)+HA(N-I+1)
40 CONTINUE
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RETURN
100 FORMAT(2X,7(F8.4,2X))
END
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CCCCCCCCCCCCCCCCCCCeeeeceeeeceeeceeeceececeecececececececececceeccec
C NLSS T

Subroutine MNLSS.FOR, May 10 1984

.- subroutine calculates the steady state

operating conditions for the blending tank

@]

C
C
C C
C C
C C
C Variable ID C
C - CS-vector containing the concentrations of solute C
C in each stream , C
C QS-vector containing the steady state flow rates C
C in each stream C
C VS-steady state volume of solution in tank C
C HS-steady state height of solution in tank C
C Ri-radius of bottom outlet from blending tank C
C FRIC-friction factor C
C EQL-equivalent lenth of friction loss due to elbow C
C S-slope of line relating height to tank radius C
C Radius=R1+S*H where H is measured from the bottom C
C RHO-density of fluid, it is assumed all solutions C
C are dilute so stream densities are equal C
C D-distance of measuring element from outlet of C
C tank C
C = HCONE-maximum height of cone shape C
C A-for HS .LE. HCONE A=0.0" C
C - for HS .GT. HCONE- A=HS-HCONE C
CCCCCCCCCCCCCCCCCeeeceeecececeeeceeececececeececcecececeeccececcec
SUBROUTINE NLSS(CS,QS,RHO,R1,S,VS,HS,D,EQL,FRIC
1 , HCONE) . :
DIMENSION /CS(3),QS(3)
REWIND13 :
C read initial conditions set by the operator from logical
C unit 13 attached to MIMC.DAT13 ' .
CALL FREAD(13,'(12R):',R1,S,RHO,QS(1),HS,CS(1),cs(2) ®
1 ,D,EQL,FRIC,HCONE)
C begin calculations
UB=SQORT( (2.0%9.81*HS*R1)/(R1+2.0*FRIC*(EQL+D)))
0S(3)=3.1416%R1*%2xUB
QS (2)=0S(3)-Qs(1)
CS(3)=(QS(1)*CS(1)+QS(2)%CS(2))/QS(3)
A=0.0 .
IF(HS .GT. HCONE) A=HS-HCONE < :
VS=3.141*(Rﬂ**2+S*R1*(HS-A)+S*S*(HS-A7*tHS—A)/3.0)
1 * (HS-A) N
VS=VS+3.141%(R1+S*HCONE) **2%A
C write the steady state values to LU 13
WRITE(13,100)Qs(3),Cs(3),VS,UB
RETURN
100 FORMAT(2X,4(F10.4,2X))
END '
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCC%CCCCCCCCCCCCCCCCCCCCCCCCCCCCC

PULSE
Subroutine: MPUL.FOR Jan 31 1984
initializes the pulse vector U for a pulse response

C
C
C
, C
Variable ID C
U initial value of input matrix C

C

C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

HeleXeXelelele e ke

SUBROUTINE PULSE(N, U)
DIMENSION U(3,70)
C initialization |
IN=N-1
IF(IN .,LT. 1) IN=1
DO 10 J=IN, ‘N
DO & K=1, 50
U(J,K)=0.0
9 CONTINUE
10 CONTINUE

C input initial values
WRITE(6,100) N

CALL FREAD(5,'(R):', U(N,1))
WRITE(11,101)U(N, 1) ‘
RETURN ‘ »

C format lines
100 FORMAT(/' input the pulse size for input ',2X,I4)
101 FORMAT(2X,F10.4)

END
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
ORC. ’

Subroutine MORC.FOR, April 13 1984

This subroutine calculates the control action

using the multivariable control law of

Ogunnaike and Ray AIChE Journal (Vvol 25, No.6,
1043-1057, 1979)

C
C
C
C
C
C
C
Variable ID C
GN matrix of SISO ARMA numerator coefficents . C
GD matrix of SISO ARMA denominator coeeficents C
Y - matrix of current output 51gnals C
U - matrix of past control actions C
CK - matrix of PI controller gains [«
CI - matrix of PI controller reset values C
YF - predicted delay free output
YDE - predlcted delayed output
E - matix of present and past errors between the
setpoint - actual output - YF + ¥D
M - vector of calculated control inputs
MD - vector of decoupled control inputs
YD - vector of setpoints

C
C
C
C
C
C
C
C
IOR - time delay estlmates for the transfer functionC
matrix C

ITD - actual time delays for the transfer function C
elements C

IC ‘- number of columns in transfer function matrix C
IR - number of rows in transfer function matrix C
10 - order of highest SISO transfer function | C
C

C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

OO0 0000NOC00000000n

SUBROUTINE ORC(IR,IC;I10,ITD,GN,GD,Y,U,CK,CI,IOR,
1 GI1,L,YD)
DIMENSION ITD(3,3), GN{
1 , Y(3,5), CK(3 3),
2 , E(3,2), M(3) ¥D(
-3 , YDE(3 3 3) YF(3,
- REAL M, MD
C initlalization
DATA E/6%x0.0/, M/3%0.0/
1 , MD/3%0.0/, YDE/27%0. 0/, YF/27%0.0/
C if+1 equals one set M,E,YDE,YF to zero
IF(L .GT. 1) GOTO 3
DO 2 J=1,1C
E(J,2)=0.0
M(J)=0.0
DO 1 I=1, I
YDE(I,J,2
YDE(I,J,3
)
)=

2,3,3,2), GD(2,3,3,2), U(3,70)
c1(3 3), IOR(3,3)
3), GI(3
3

,3), MD(3)

3

,3)

YF(I,J,3
1 CONTINUE
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2 CONTINUE 9
3 CONTINUE ’

C compute E(I,1)
DO 6 I=1

GN(1,I,J,K)*U(J,ITD(I,J)-IOR(I,J)+K)+
)*YF(I,J,K+1)

(9]
lw]

* )

N(1,I,J,K)*U(J,ITD(I,J)+K)+,
YDE(I,J,K+1) ,

—_
2]
lw]
—_—
—_
-
b~ o~
GG~ -
~ ~

4 ' CONTINUE
~ YF(1,J,3)=YF(I,J,2)
YF(1,J,2)=YF(I,J,1)
YDE(I,J,3)=YDE(I,J,2)
YDE(I,J,2)=YDE(I,J, 1)
E(I,1)=YF(I,J,1)-YDE(I,J, 1)+E(I,1)
5  CONTINUE
E(I,1)=YD(I)~Y(I,5)-E(I,1)
6 CONTINUE
C compute the new control signal m(k)
DO 10 J=1, IC
DO 9 I=1, IR ’ .
M(J)=CK(J,I)*E(I,1)-CK(J,I1)*CL(J,I)*E(I,2)+M(J)
9 CONTINUE :
10 CONTINUE |
C compute the steady state decoupled control output
DO 13 J=1,1C
MD(J)=0.0
DO 12 I=1,IR
MD(J)=GI(J,I)*M(I)+MD(J)
12 .CONTINUE
13 CONTINUE
C update the error matrix
DO 14 I=1, IR
- E(1,2)=E(I,1)
14 CONTINUE
C upde . e the control vector
DO 16 K=1, 69
DO 15 J=1, IC
: U(J,71-K)=U0(J,70-K)
15  CONTINUE
16 CONTINUE
pH 17 J=1,1IC
Jl0J,1)=M(J)
17 CZWNTINUE
" RETIRN
END
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CCCéCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

OO0 0On

STEP ‘ .
Subroutine: MOL.FOR Jan 31 1984

initializes the step vector U for a step response

Variable ID
U initial value of input matrix

SUBROUTINE STEP(N, U)
DIMENSION U(3,70)
initialization
IN=N-1
IF(IN .LT. 1) IN=1
DO 10 J=IN, N
DO 9 K=1, 70

U(J,K)=0.0
9 CONTINUE
10 CONTINUE

input initial values
WRITE(6,100) N '
CALL FREAD(5,'(R):", U(N,1))

WRITE(11,101)U(N, 1)
RETURN x

format lines :
100 FORMAT(/' inplt the step size for input
101 FORMAT(2X,F10.4) o

END

CCCCCCCCCCCCCCCCCCCCCCCCecceeececcceececeeccceececceeccececcce

',2X,14)

C
C
C
C
C
C
C
C
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CCCCCCCCCCCCCCCCCCCCeCecceeeecceeccecececccecececeececeececccecce
C ZTRANS |

OOOOOOOOOOOOOhOOOOOOOOOOOOOGOOOOOOOO'OOO!OOOOO

~ Subroutine: MZTR.FOR Jan 31 1984

C
c

digital difference eqguations (z domain) are derlvedC

from the analog (Laplace domain mpdels)

Ref: Neuman and Baradello IEEE Transactions
Vol SMC 9 No 12 1979

Program Requirements:

This. is an interactive program. The user is

requ1red to enter
- the type of transfer functlon
- sampling rate
. - pertinent analog model parameters
- time delay

Variable ID #*x

ICON(1,J) - type of transfer function
analog model parameters:

G(s) - transfer function

K - steady state gain

r,p,q - model parameters

zeta - damping factor
omega-—'frequency \

discrete model parameters

GD(1,1,J,K) - parameters corresponding to model with
the sampllng rate equal to the control action rate
GN(1,1,J,K)- parameters corresponding to the control

model
T(1) - sampling rate for the control model -

GD(2,1,J,K) - parameters corresponding to the outputs
from the systems where the sampling rate T(2)

“is L2T(1)

GN(2,1,J,K) - parameters correspondlng to the inputs

where the sampling rate is T(2)
T(2) - .2T(1)

NOTE: two sampling r. ¢s are used to record the

sample ‘behavior

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE ZTRANS(IR,IC,IO,ITD,GN,GD,T,ITD2,ISIM)
DIMENSION GN(2,3,3,2), GD(2,3,3,2), T(2), 1TD(3,3),

1 ICON(3, 3) ITD2(3,3)
REAL K .

C initialization

DATA K/0.0/, OMEGA/0.0/
1 , R/0.0/, P/0.0/, Q/0.0/

OOO()OO(')O(")O_O(')00OO(')O(")dOOOOOOOOOO0.00000000.000
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2 . ICON/Q*O/,CIREP/2/

input sampling rate, T(1) ‘ v C
WRITE(6,98)
CALL FREAD(S,'( Y:',T(1))
WRITE(11,109)T(1)

T(2) = .20*T(1)

determine if the simultaion is for a llnear or
nonlinear system
WRITE(6,116)
CALL FREAD(5," (1):',ISIM) -
WRITE(11,110)ISIM v : .
input number of rows, IR, number of columns, IC and order
of highest model
WRITE(6,97) ' ,
CALL FREAD(5,'(31):', IR, IC, IO)
WRITE(11,110) IR, IC, IO '

IF(ISIM .EQ. 2)RETURN

_input model type and time delay in each loop. C
WRITE (6, 100) -
DO 50 L=1, IR
DO 49 M=1 1C
WRITE(6,114)L,M -
CALL FREAD(S '3(1)-' ITD(L,M), ITD2(L M),ICON(L,M))
WRITE(11, 115)ITD(L M)~ ITD2(L M), ICON(L M)
transfer control to appropriate block . : C

IFUNC=ICON(L,M)
GOTO (5,10, 19 20,25,30,35,40), IFUNC

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

oNeoNoNe N RO RS

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCGCCCCCCCCCCCCCCCCCCCCCC

STSPSTAERLLE EEEEEEEERRECE I G eee e
: G(s) = K/s ’ , -

a0 nn

input K, the gain
5 CONTINUE
WRITE(6, 102) -
CALL FREAD(5,'(R):',K)
WRITE(11,109)K ~ )

DO 6 I = 1, IREP
GD(I,L,M,1)= 1.0
GN(I,L,M,1)= K*T(I)

6 CONTINUE
 GOTO 48

C
...C

------ .vo-ao.q-u-oa-o..lc.o..lo.o..t.l...n.oouoO.n..-

¢ . o
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C block 2 ) c
C . G(s) = K/( s+ 1) C
C ittt eeoseisnssessonnsnssoscssasacnsns G ee st ss e e e e C
C , C
C input K, the gain and R ' C

10 CONTINUE

11

WRITE(6,103)
‘CALL FREAD(S5,'2(R):', K, R)
WRITE(11,109)K,R

DO 11 I = 1, IREP
GD(I,L,M,1) = EXP(-R*T(I))
GN(I,L,M,1) = K/R¥(1.0 - EXP(-R*T(I1)))
CONTINUE
GOTO 48
cccccccccccccctccccccccccccccCccccccccccccccccccccccccccccc
‘ C
..... R
block 3 C
G(s)= omega**2 / (s*s + 2xzetaxomega*s + omega*xz C
..................................................... C
C

QOO0 n

input zeta, the damping coefficent, omega ‘and the gain, K

15 CONTINUE

g =0

WRITE(6,104)
CALL FREAD(S,'B(R):', ZETA, OMEGA, K)
WRITE(11,109)ZETA,OMEGA, K ‘
'CHECK= ZETA-1.0

I=0 ' /

IF( CHECK )16,17,18

C zeta :1t. 1 ( underdamped system ) s C
16 CONTINUE

1 =1+ 1

- DEL = ZETA*OMEGA .

* OMEGA 1=OMEGA*SQRT( 1-ZETA*ZETA)
GAMMA = ZETA/SQRT(1-ZETA*ZETA)

GD(I,L,M,1)
GD(I,L,M,2)
GN(I,L,M,1)

2.0%EXP (-DEL#*T(I))*COS(OMEGA1*T(I))
—EXP(—Z*DEL*T(I)) ' S :
.0 - EXP(-DEL*T(I))#*(COS(OMEGA1*T(I))

nnon

L1 +GAMMA*SIN(OMEGA1*T(I)))
GN(I,L,Ms/2) = EXP( -DEL*T(1))#(EXP(-DEL*T(I))-COS(
1 "OMEGA1#T(I1))+ GAMMA*SIN(OMEGA1*T(I)))
IF(I-IREP)16,19,19
‘C zeta .eqg. 1 (crf%icélly damped system ) C

17 CONTINUE

I =1 + 1
GD(I,L,M,1)
GD(I,L,M,2)

2.0%EXP(-OMEGA*T (1))
-EXP(-2.0*OMEGA*T (1))
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= 1.0—EXP(—OMEGA*T(I))*(1.0+OMEGA*T(I))
\EXP§-OMEGA*T(I))*(EXP(—OMEGA*T(I))
- 1.0)

GN(I ,L,'M,-]m) o
GN(I,L,M,%;W
1 +OMEGEAT

1IF(I - 1)17,19,19

C zeta .gt. 1 (overdamped system ) C
18 CONTINUE . :
I =1 + 1
OMEGA1 = MEGA*SQRT (ZETA*ZETA -1.0)

0
GAMMA = ZETA/SQRT (ZETA*ZETA - 1.0)

GD(I,L,M, 1) =~2*EXP(—DEL*T(I))*COSH(OMEGA1*T(I))

GD(I,L,M,2) = —EXP(-2.0%DEL*T(I)) :
~ GN(I,L,M,1) =1.0 - EXP(—DEL*T(I))*(COSH(OMEGA1*T(I))
1 + GAMMA*SINH(OMEGA1*T(I)))

GN(I,L,M,2) = EXP(-DEL*T(I))*(EXP(-DEL*T(I)) - COSH(
1 OMEGA1xT(1)) + GAMMA*SINH(OMEGA1*T(I)))

\

IF(I - IREP)18,19,19

19 CONTINUE
J=J+ 1 | N

GN(J,L,M,1) K*GN(J,L,M, 1)
GN(J,L,M,2) K*GN(J,L,M,2)
IF(J - IREP)19,40,40

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

c C
P R ereeanes C
C block 4 S C
o G(s) = K/( (s+r) *(s+p) ) C
S R LR R Ceeeaen C
C _ C
C inpyt K, r, P
20 CONTINUE
WRITE(6,105) o
cALL FREAD(5,'3(R):', K, R, P)
WRITE(11,109)K,R,P
po 21 1 = 1, IREP _ . i
" GD(I,L,M,1) = EXP(-R*T(1))+ EXP(-P*T(1))
GD(I,L,M,2) - —EXP(- (R+P)*T(I)) ' ,
GN(I,L,M,1>—(K/(R*P*(R—P)))*((R-P)—R*EX (-pxT(I))+
1. @=sExn 2=T(1))) : {
GN(I,L. M, f\i'(R*P*(R-P)))*((R—P)*EXP(—(R+P)*T(I))
1 ' ~ps . (-P*T(I"" ~%EXP(-R*T(I)))

21 CONTINUE
GOTO 48 \ -
ccccccccccccccCccccccccccpccccccccccccccccccccccccccccccccc
C | C

<

%
*
'S



C i teevoesecscesssssseenesaossssssscssansosnacsas Jeooases C
c block 5 . C
C G(s) = K/(s(s+r)) C
o I R C
C C
C input K and r , ' C

25 CONTINUE
WRITE(6,106)
CALL FREAD(5,'2(R):', K, R)
WRITE(11,109)K,R :

DO 26 I = 1, IREP

GD(I,L,M,1) = 1 + EXP(-R*T(I1))
GD(I,L,M,2) = -EXP(-Rx*T(I)) .
GN(I,L,M,1) = (K/(R*R))*(1-R*T(I)-EXP(-RxT(I)))
GN(I,L,M,2) = (K/(R*R))*(1-EXP(-R*T(I))-R*T(I)*
1 . EXP(-RxT(I)))
26 CONTINUE
~GOTO 48
CCCCCCCCCCCCCCCCCCCCeeeeeecceeeceececececeeecececeeceeceeccec
C C
[of et eereeae e e C
C . block 6 : C
C G(s) = Kx(s+q)/( (s+r)*x(s+p) C
o e et e eaeeteeee et e C
c. C
C,input K, g, r, p ' _ ‘ c

30 CONTINUE
WRITE(6,107) -
CALL FREAD(5,'4(R):', K, @, R, P)
WRITE(11,109)K,Q,R,P

DO 31 I = 1, IREP

GD(I,L,M,1) = EXP(-P*T(I)) + EXP(-R#T(I))
GD(I,L,M,2) = ~EXP(-(R+P)*T(I))
GN(I,L,M,1) =-K/(P-R)#*(EXP(-P*T(I))-EXP(-R*T(I))
1 +(0/P)*(1-EXP(-P*T(1))) - (Q/R)*(1-EXP(-R*T(I))))
GN(I,L,M,2) = Kx(Q/(R*P)*EXP(-(R+P)*T(I))+((P-Q)/
1 (Px(R-P)))=*
- EXP(-R*T(I))+((Q-R)/(R*( R-P)))*EXP(-P*T(I)))
31 CONTINUE
GOTO 48 v
CCCCCCCCCCCCCCCCCCCCCCCCeeceeceeeeceeeeeececececececeecceccec
C C
C e e e seae s e et ettt ee et C
C . block 7 C
C . G(s) = K%(s+q)/(s*(s+r)) C
oA @ittt eer e e C
cC - ‘ (o
C input K, g, r C
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35 CONTINUE.
WRITE(6,108) .
CALL FREAD(5,'3(R):', K, Q, R)
| WRITE(11,109)K,Q,R

GD(I,L,M,?) = 1.0 + EXP(-R*T(I))

GD(I,L,M,2) = -EXP(-R*T(I1))

GN(IS%,M,1) = -K/R*(Q*T(I)+((R-Q)/R)*(1-EXP(-R*T(I
1 )) :

GN(I,L,M,2) = -K/R*(Q*T(I)*EXP(-R*T(I)) + ((R-Q)/R)
1 © % (1-EXP(-R*xT(I))))
GOTO 48

36 CONTINUE
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC'

C C
C it e eeeeessasssscssasassssosne che et e e s nes e e ce s ee e C
. C block 8 : C
C . G(s) = Kx(s+q)/(s+r) C
C & iiennenns T T . .C
C ' C
C input K,Q,R
40 CONTINUE
WRITE(6,108)
CALL FREAD(5,'3(R):', K, Q, R)
DO 46 1=1,3 o
GD(I,L,M,1) = EXP(~RxT(I))
GN(I,L,M,1)= K
GN(I,L,M,2) = -K*(1+Q/R*(GD(I,L,M,1)-1))
46 CONTINUE
48 CONTINUE
4
49 CONTINCE . ,
50 CONTINUE L ’ . O
RETURN
C FORMAT LINE” *% - C
97 FORMAT(/ enter the number of rows, IR where IR<4',/
- 1 enter the number of columns, IC where IC<4&',/,
2 enter the highest model order, IO where IC =1 or'
2! /I
3 enter these three values on the next line',/,
Co 4" if ISIM=2 IR=IC=IO=1 ')
R .98 FORMAT(/' enter the sampling rate, T ')

100 FORMAT(/' below are the elght transfer function types'
,/," 1. G(s) = R/s ',/, .

T2, G(s) = K/(s+r) ',/,

' 3. G(s) = Kiomega**2/( s*s + 2*zeta*omega*s

' +omega**2)'

/" 4. G(s) = K/(~ (s+r)(s+p) )",/

' 5. G(s) = K/( s(s+r) ) ',/,

DT W Wk =
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6 "' 6. G(s) = K (s+g)/( (s+r)(s+p) ) ',/,
"7 "' 7. G(s) = K (s+g)/(s(s+r))',/,
8 - " 8. G(s) = K (s+qg)/(s+r)',/,
9 ' enter the element time delay for~rate T(1)',/,
1 ' the extra delay required for for rate T(2)',/,
2 ' and the transfer function type(1-8)")
102 FORMAT(' enter: K') .
103 FORMAT(' enter: K and R')
104 FORMAT(' enter: zeta, omega and K ')
105 FORMAT(' enter: K, R, P")
106 FORMAT(' enter: K, R')
107. FORMAT(' enter: K, Q, R P")
108 FORMAT(' enter: K, Q, R') :
109 FORMAT(4F10.5)
110 FORMAT(414) 4
11 FORMAT(//' TRUE PARAMETERS ')
112 FORMAT(6X,4(F10.5,3X)) =«
113 BORMAT(//' PARAMETER ESTIMATES ',/,2X,' ITER ',4X,
1 ' THETA(I)')
114 FORMAT(5X,' element ',3X,I14,2X,14)
115 FORMAT(ZX 14,3X,14,3X%, 14)
116 FORMAT(' enter the 51mulatlon type ,linear=1,"
1 ;' nonlinear=2"')
END

3



