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Abstract

A bound muon in the presence of a nucleus can decay into an electron, which belongs
to either continuous or discrete (bound) energy spectrum. The underlying physics of both
cases differ a lot, and so does their importance. The Standard Model decay of a bound
muon into an outgoing energetic electron provides a background in the experimental searches
for the lepton-flavor-violating 1 — e conversions in the field of nucleus, whereas the decay
into a bound electron for large value of Z has its analogy with the QCD due to the strong
electromagnetic interaction. The present thesis focuses on the study of the latter case, i.e.,
the exclusive weak decay (Zu) — (Ze)v,v.. This decay proceeds through the muon decay
@ — e+ v, + U, in the presence of a spinless nucleus. We consider the setup where all the
electrons were removed from the atom and there is only a muon in 1.5 state. The decay rates
for Z = 10 and Z = 80 are calculated in two different approaches, namely, an Atomic Alchemy
formalism developed by C. Greub et al., Phys. Rev. D52, 4028 (1995) and by modifying the
one developed by A. Czarnecki et al., Phys. Rev. D84, 013006 (2011) for the decay of a bound
muon into an outgoing energetic electron. We consider the interaction between electron and
nucleus to be a Coulomb one and the spin of the nucleus is neglected. Point nucleus wave
functions are used for numerical calculations of the decay rate and for the second formalism
the case of a finite nucleus with the Fermi charge distribution is considered as well. Tt is
found that the results for these approaches match for the small value of Z«a, however, they
are different by 41 % in the large Za limit. In order to see if the two approaches coincide
in certain approximations, we have considered two limiting cases: the muon and electron
masses being almost equal and the small Z« limit. Again, in these limiting cases a good

agreement, both analytical and numerical, is found between the two formalisms.
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Preface

Chapter 3 of this dissertation adapts the formalism from [1|. It contains corrections
of errors made in the derivation of a bound muon to a bound electron decay rate. These
mistakes were found and corrected by G. Zhang and me. The idea to compare these results via
calculations of the same decay by modifying the formalism of ref. |2] belongs to A. Czarnecki.
The program for these calculations was written by A. Czarnecki, X. Garcia Tormo and M.
J. Aslam and was modified for our purposes by G. Zhang and M. J. Aslam.

The idea of studying the limiting cases presented in Chapter 4 belongs to A. Czarnecki.
All the analytical and numerical calculations in this study were performed separately by G.
Zhang, M. J. Aslam and me.

Appendix D contains a description for a program written by A. Volotka. My contribution
consists in writing documentation for the program which can be used as a user guide for
running and understanding its functionality. I also adjusted it for more precise calculations

for the case of muonic wave functions. The program is available at ref. [3].
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Chapter 1

Introduction

When bombarded by a high energy muon beam, the atom captures muons which, in turn,
cascade rapidly to the 15 state, ejecting almost all the electrons in the atom [1]. The resulting
exotic atom is called a muonic atom and is formed within 1071° seconds after the penetration
of the muonic beam inside the atom. Since muon and electron are both negatively charged

leptons, their behavior is similar, apart from the following differences:

1. The mass of a muon is roughly 207 that of an electron, which results in the smaller
Bohr radius (since it is inversely proportional to the mass r ~ % ) and, therefore, the
energy levels for a muon are more affected by the nucleus. This makes in turn the
QED effects more substantial since the electromagnetic force becomes stronger as the

distance between charged particles decreases;
2. Finite lifetime of a muon.

The lifetime of a free muon is about 2.2 us, but it is significantly different from the lifetime
of a bound one. In the latter case, the muon in its initial state has a different momentum
distribution and less available energy, and the electron produced by the decay undergoes a
strong Coulomb interaction with the nucleus. Also, for the large Z the finite size of the
nucleus should be accounted for. All these factors contribute to the lifetime of a bound muon
to differ from the free muon lifetime, which was first shown by Porter and Primakoff in ref. [4].
Later it was studied by Gilinski and Mathews in ref. |5 with the point nucleus approximation
for the muon wave function and in [6] the electron energy spectrum is calculated accounting
for the finite size of the heavy nucleus for the bound muon.

According to the Standard Model, a muon decays into an electron, muon neutrino and
electron antineutrino:

W= e+ v, + Ve

Nevertheless, the Standard Model is not complete so far. The experiments for finding the
physics beyond it in muon decays are currently conducted at Fermilab [7] and COMET
[8], both of which mainly focus on studying the Mu2e (muon-to-electron) conversion in the
Coulomb field without the emission of neutrinos [2].

This dissertation focuses on studying the decay rate of a bound muon into a bound
electron: (Zp) — (Ze)v,v.. Here, the parenthesis signifies a bound state (Z being the

atomic number). This transition proceeds by a weak decay By — By + v, + e, where B;



and By are bound states that consist of (Zu) and (Ze), respectively. We consider the setup
when all the electrons were removed from the atom and there is only a muon in 15 state.
The energy for a resulting bound electron is fixed since it is also in 15 state. If 1.5 state is not
available for a bound electron produced in the decay it will occupy the L shell. The decay
rate is then suppressed by a factor of 1/n®, where n is the principal quantum number. In
comparison, in case of a decay into an outgoing electron, its energy spectrum is continuous
and running from 0 to the muon mass.

In order to estimate the decay rate of a bound muon into a bound electron, we need to
solve the Dirac equation in the presence of a central potential. This equation is solvable
analytically only for the Coulomb potential. These exact solutions for a bound muon and
electron are discussed in Chapter 2.

When calculating properties of weak decays of one electromagnetically bound state into
another, it is important to take into account the relativistic corrections, which modify the
decay rate of hydrogen-like systems. Also, the level shift scales like Z*4, which makes them
significant for high-Z ions.

The calculations for the bound decay rate accounting for the relativistic corrections were
performed in [1] both for point and finite nucleus wave functions in cases of Z = 10 and Z = 80
by accounting for the Coulomb interaction between the electron and the spinless nucleus. It
is named “Atomic Alchemy” because in the process considered here the atomic species are
changed from a muon to electron. In carrying out the calculations for (Zu) — (Ze)v,v.
transition, the first step is to solve the Dirac equation for the bound particle wave function

® (k) with a point nucleus using the following expansion by frequencies

. u, (k) “(_ v, (—k)
o (k)= {Ar (k) Nors + B (-k) T | (1.0.1)

where r is the spin state. The terms proportional to B} are neglected, since according to the

r

normalization condition
d’k 2 2

the second term in Eq. (1.0.1) that corresponds to an antiparticle is estimated to contribute
only 0.002 fraction of 1 and, hence, is ignored. Thus, the wave function in this approximation
is defined as ¢ (k) = A, (k) and the states are considered to be in 15

Chapter 3 presents detailed calculations of (Zp) — (Ze) v, in Atomic Alchemy’s for-
malism [1]. After reviewing the derivation of the factorization formula, a detailed calculation

of FF’s is given. It is found that the sign of some terms of the FF’s are not correct. The



numerical values of decay branching ratios F(Z“f)}(jef)”‘”e with the corrected FF’s are then
calculated for the cases of Z = 10 and Z = 80. Section 3.2 presents the calculations of the
same decay rate by modifying the formalism developed for the bound muon decay into an
outgoing electron in the presence of a nucleus [2]. In ref. [2]| there is no such approximation
as (1.0.1) in ref. [1], therefore, we find it illuminating to compare the numerical results given
by these two approaches.

The formalism [2] treats both cases of the Coulomb interaction and a nucleus of finite size
characterized by the Fermi distribution. The numerical values for decay ratios for Z = 10
and Z = 80 in formalisms of [1] and [2| show that the difference in values is as insignificant
as few percents for small Za and greater for larger values, where for Z = 80 the discrepancy
is of about 41%.

In order to see if the two approaches are consistent we study two limiting cases in Chapter
4, namely, equal muon and electron masses (m, ~ m,.) and small Za with original masses
retained. For the latter case it is convenient to redefine the decay ratios in terms of new FF’s
A;. Also, both approaches [1, 2| are compared for the nearly equal mass limit in Table 4.7.1
which shows that they are in complete agreement. Finally, the dissertation is concluded in
Chapter 5.

It is then followed by several Appendices, which discuss some properties of Dirac gamma
matrices and the Dirac equation. Appendix D presents a detailed description for the software,
which performs numerical calculations of self-energy shifts of a bound muon and bound
electron. The inclusion of such corrections to the calculations of the bound muon rate is the

next step in our research.



Chapter 2

External Field Dirac Equation

In order to solve the muon decay in the orbit one needs to know the relativistic wave
functions of an initial state of the muon and final state of the electron in a relativistic theory.
To obtain these wave functions it is needed to solve the Dirac equation in the central field.
This equation can only be solved analytically for the case of the Coulomb potential. In the
current Chapter we summarize the derivation of the Dirac wave functions for the Coulomb
potential, the details of which can be found in [9-12].

2.1 Relativistic Electron in the Central Field

For an electron moving in a spherically symmetric field, the total angular momentum is
given by
J=L+S§, (2.1.1)

where
L=rxp, (2.1.2)

is the orbital momentum whose eigenfunctions are spherical harmonics Y™ (r):

LY, (8) =1 (1+ 1) Y™ (¢), (2.1.3)
LY () =mY™ (r). (2.1.4)
The operator
1
S = EU’ (2.1.5)

is the spin momentum with the two-component spinors 7, as its eigenfunctions
1/1 3
2
Sn, = 5 (5 + 1) Ma = s (2.1.6)

Sl = Wil (2.1.7)

where p = i%.

In the presence of an electromagnetic field the stationary Dirac equation is given by

(V" (P — €A,) —m] @ = 0. (2.1.8)



From this equation the corresponding Dirac-Coulomb Hamiltonian which satisfies
Hpe (r) @ (r) = EP (r)

is derived to be
e?7

Hpe (r):a-p—m%—mﬁ, (2.1.9)

(see Appendix B for a more detailed derivation and properties of this Hamiltonian). The

wave function ® in the component form is

& (r) = ( o (r) ) _ ( 9t (1) Xjim (T) ) (2.1.10)
P (r) ifej (1) X (T) 7

where the quantum number [ defines the orbital angular momentum and [ will be defined
below. The functions ggj (r) and fg; (r) are the radial wave functions corresponding to
upper and lower components, respectively, and the two-component functions x ;s (¥) have
only the angular dependence. Since Hpc commutes with both operators J? and J,, the wave
functions @ (r), or more specifically their angular parts x ;s (f), must be their eigenvectors

as well:

Moo (), 7 =0 _ [ Fo@m) =G+ o)
Hpe (r),J.] =0 J.® (r) = M® (r)

Knowing the eigenfunctions of orbital and spin momentum operators, the functions x ;i ()

can be constructed explicitly out of them. x;s (T) satisfy the set of relations (2.1.11):

JszlM (f‘) = MleM (f‘)

Therefore, the functions x ;s (T) can be constructed as linear combinations of the spherical

e : .
harmonics Y, (¢) and two-component spinors 7,,:

X (F Z Coy Y () 1 (2.1.13)

where CJJIZH jom, are the Clebsch-Gordan for which the following identities are satisfied:
g1 = Jol <7 < g1+ Jo, (2.1.14)
m = my + ms. (2.1.15)



The spherical spinors form a complete set of orthonormalized functions
/ A9 (xun0) X = 0550w Onsnr, (2.1.16)
and using Eq. (2.1.13) in Egs. (2.1.3) and (2.1.6):
L X (F) = Z Clo, [L2Y)™ ()]

= z+1 ZCJM Y™ (8)me =1+ 1) xjr (B), (2.1.17)

mu
S*Xjum (¢ ZC%\?# [S*Y,™ (2)]

3 m (% 3 N
- chl]njy T () = X (T). (2.1.18)

mp

As mentioned earlier, the quantum number [ appearing in Eq. (2.1.10) defines the orbital
momentum of the particle along with its parity. Consider the space inversion P : r — —r in
the Dirac equation (2.1.8). Such transformation will act on the position space on which the

wave function (2.1.10) is defined in the following way
P (t,r) = @' (t,Pr) = PP (t,1), (2.1.19)

where P is the linear operator which is to be determined and which should preserve the

invariance of the Dirac equation:
P [y (pu —eAu) —m] ¥ (t,Pr) =0 (2.1.20)
Thus,

P (p, —eA,) —m]P®(t,r)
= [P {’YO (po — eV)} —P{y-(p—ecA)— m}] PO (t,r)
=" (o —eV) + - (p— eA) —m] P& (t,r) = 0. (2.1.21)

Since the last expression should reduce to [y* (p, — eA,) —m] ® (t,r) = 0 it follows that

VP =Py, vP = —Pr, (2.1.22)



which can be satisfied by the choice of
P =, (2.1.23)

where ¢, is some c-number which depends on the particle’s intrinsic parity. Now,

Po (t,Pr) = c,)°® (t,—r) = ¢, ?Eﬂ (r) X (_P>A : (2.1.24)
—ifju (r) Xjinr (—T)
The space inversion in the spherical coordinates affects only the spherical harmonics Y, (r') =

Y™ (0, ¢) in the following way

P { T P01V 0.0, (2.1.25)

Therefore,

i (—8) = C{éﬂﬁm (=8)m = (=)' C{;ﬁé” () Y™ (8) 10 = (=1)" X (E) -
my mpu

(2.1.26)
Substituting this result in Eq. (2.1.24)

ge (r) (1) Xgur (B) ) (2.1.27)

PO (t7 PI‘) =6 ( iijl (7’) (—1)1_ X5Im (f‘)

whose components should have the same parity just as they have in (2.1.10). Therefore, it
follows that
l=1+1. (2.1.28)

From the set of equations for the upper and lower components of the bispinor (for more
details see Appendix B, Eq. (5.8.79)) it follows

(E +m)®* (p) =(o-p)2“(p), (2.1.29)
(B —m)®"(p) =(o-p) 2 (p). (2.1.30)

Upon substitution of the explicit form of upper and lower components given in Eq. (2.1.10),
the Eq. (2.1.29) can be rewritten as

(E+m)ifg(r) XM () =p(o-1)gmu(r) X (). (2.1.31)



Since under the spatial rotations the operator (o - p) acts in the same way as (o - T), therefore,

(U : f“) XGIM (f“) = CXjim (f) ) (2-1-32)

where ¢ is some c-number. In order to find it let’s multiply both sides of Eq. (2.1.32) by the
Hermitian conjugate of x,;, (f) on the left and perform the angular integration. Using the

orthonormality of the spherical spinors (2.1.16) it results in:

c= / Xing (B) (0 - ) xjur (£) dO. (2.1.33)

To evaluate this integral, it is useful to express the unit vector components in terms of the

spherical harmonics

2
7, =iy /g (Y7 + v, (2.1.34)
7, :2\/3/10,

3

and then use the formula for integration of three spherical harmonics

/ dQY, "y y I — \/ D) i Clio- (2.1.35)

Also, the Pauli matrices act on the two-component spinors in the following way

MO My =6 = (2.1.36)

n/TuO-ynuz = (_1)1—lt1 5#1,7#27 (2.1.37)
1

M e = (=127 Gy (2.1.38)

Putting everything together in Eq. (2.1.33) and after some algebra the coeflicient ¢ is found
to be —1. Next, multiplying Eq. (2.1.32) by (o - r) and using the fact that

(o-1)xjm (T) = —XjiM (T), (2.1.39)
=X (B) = (- 7) Xjins () - (2.1.40)

Substituting these results into the set of equations analogous to Egs. (2.1.30) with the



Coulomb potential

(E—eV —m)®(p) — (o p) ¥ (p) ig (2.1.41)

(E—eV +m)d(p)— (o-p) 2" (p)

we get the following equation for the lower component of the Dirac bispinor
(0-p)® (p) =i(o-P) fej(r) xjiu () = —i(o-p) (0 -1T) feu(r)xum (£).  (2.1.42)
Using (o -p)(o-r)=(p-r)+io-[p xr]in the Eq. (2.1.42) leads to

(0-p)®b(p)=—{i(p-r)—a-[pxr]}%mxym(f)

:_{(V-r)fE+(r)—a~[p><1"]fE+(r)}XﬂM(f“)
_ {rV (fEf';W) + 120 g () 4 (01 f’“T(”} X (), (2.1.43)

r

where we used Eq. (2.1.2). As div(r) =3 and (rV) (1) = —1, Eq. (2.1.43) results in

dfgiq (r 2 1 R
o9 () =~ { P2 2 )4 0T ) o (). (2149
Next, consider the operator identity
P =(L+S)°’=L>+28 ' L+8*=28 - L=0-L=J2-12-82 (2.1.45)

which upon acting on a spherical spinor y s (T) gives

(L) xauns (5) = (72 = 12 = 8%) n () = |5 G4 1) = L0+1) = 5| e ()

— (14 K51) xjunr () (2.1.46)

where the quantum number £ is defined as

1
If j = 1 — 1 then
B 1 N 1, , 11
Ky =1(+1) (z 2)(z+2) ;=UH-Pr - =0 (2.1.48)



andifj:H—%

1 3 1 3 1
mﬂ:l(l+1)—(l+§> <l+§)—Z:l2+l—l2—21—1—zz—(1+1). (2.1.49)

To sum up

l, ifj=1-1 4 1 ifi=1—1
Kj = _ ]._ f , OF Kj = J 2 . .‘7._ 21 , (2.1.50)
—(+1),ifj=1+3 —(]+§),lfj—l+§

and

Kji = — K, (2.1.51)
[=l—1. (2.1.52)
Now Eq. (2.1.44) can be written in terms of the newly defined quantum number x;

(0-p) @ (p) = — {deé;(r) 41 _T“ﬂ

ijl (T)} leM (f‘) . (2153)
Similarly, for the upper component of the Dirac bispinor

g (r)

(o-p)®"(p) = (0-P)gej(r)xum (E)=—(o-p)(o-r) Xjim (T)

C{Li(Vr) tio - [p x ]y 250

N daggqg (r 1+ k; R
—l{ gEé;( )+ . 2 ;1 (T)}ijM (7). (2.1.54)

After the substitution of the expressions (2.1.53) and (2.1.54) into (2.1.41) and canceling
spherical spinors and a factor of ¢ on both sides the set of equations for the radial wave
functions is obtained to be

A+ ) gy (r) = (B — eV +m) fa (r) =

T

4 I8 i (1) + (B — eV —m) g (r) =

T

Y

" ( )
2.1.55
0

2.2 Electron in Coulomb Field

We want to derive the wave functions in the point nucleus approximation, which is valid

only for Za < 1. Consider the Coulomb potential V (1) = —<Z for the set of the equations

10



(2.1.55). In the limit of » — 0 these equations take the following form

(425G~ 21 (r) =0 o)
(&5 F )+ 2G0) =0 *

where the indices were dropped for brevity and the following change of variables was made
G(r)=rgu(r), F(r)=rfea(r). (2.2.2)

In Eq. (2.2.1) the terms proportional to E + m were neglected. Let’s assume that the
solutions of Eqs. (2.2.1) are of the form

G (r)=Gor?, F(r) = Fyr, (2.2.3)
that upon substitution in Eq. (2.2.1) give

Gg (’}/+l€) —F()ZOé:O,

(2.2.4)
GoZa+ Fy(y— k) =0.
This system has non-trivial solutions only when
—7Z
(7 + &) “l=0= v =k? = (Za)’. (2.2.5)
Za (v —K)

Let the solutions for the radial wave functions in Eq. (2.1.55) be of the form

g(z) = Vm+ Ee 2%z [Wy (z) + W, (2)], 2.2.6

f(x)=—vVm— Ee 30! (Wi () — Wy (2)], (2.2.7)
where the indices Ejl were dropped and the following change of variables was made
x =2\, A\ =+vm? — E2% (2.2.8)

Upon substituting Eq. (2.2.6) into Eq. (2.1.55), the first equation becomes:

27\

22 (%+ 1;“) g(z) — (E+m) f (x) F=o0. (2.2.9)

Using the radial functions from Eq. (2.2.6) in the above equation results in

11



VAP

}M(Wl—m)}

d 1+ 1
x{(—+ ”) m+E(W1+W2)+ﬁ[E+m+
1
>

d

“‘B_%xl"y 1% (Wl + WQ) + (1 + K,) 6_%961['7_2 (W1 + Wg)}

1
+ X (E+m)vm — Ee 277! (W1 — Wa) + Zavm — Ee 2737 (W1 —Ws) =0.

(2.2.10)
After canceling the extra powers of x and the exponent, the rearrangement gives
1 d x
— §$(W1+W2)—|—(’}/— 1) (Wl—{—WQ)—F.%’%(Wl—FWz)—Fi(Wl —WQ)
4 Zay) "R (W S W)+ (L4 k) (W1 4+ W) = 0 (2.2.11)
« mLE 1 2 K 1 2) = U. L.

This results in

m—F
m+ E

d
(Wl +W2) +(’7+/€) (Wl +W2) —ZEW2+ZOz

Y

(W —Wa) =0.  (2.2.12)

Treating the second equation of Eq. (2.1.55) in the same way gives

m+ F
m—F

d
x— (Wh = Wo) + (v — k) (Wh — Wa) + aWs — Za

Wi+ Wy) =0. 2.2.13
. (Wi +W2) (2213

Adding and subtracting Eqs. (2.2.12) and (2.2.13) leads to

dW; ZoFE Zom
(5w (= 5 = -

dW, YA Zam
T +<7—|——/\ —:z:) Wg—i-(/i—i- \ ) Wi =0. (2.2.15)

From the first equation Wj is given by

ZaE d Zam] ™!
Wy = | (295 _ Y wy — 0|, - Zom) (2.2.16)
A dx

12



and differentiating it with respect to = gives

AW, KZ@E )dm dQI/Vl][ Zozm}_l
= —v—1 x K — .

dz A de ~ da? A

Using these expressions in Eq. (2.2.19) gives

YA 1 dWl_ d>W, n +ZaE_ZaE ZaE_ W
S A dr " da TN ) N )

7 2
I<L2—< im)lwl—o,

Noting that

2 2
K2_(Zosz>2_72+(¥) _,g_(%) (m? — E?) — 42,

and using v and A from Egs. (2.2.5) and (2.2.8), respectively, we can see that
Zam\” ZaE\?
2 2
- - 297 —o.

d2W1 dWl YA D)
1— - - — |\ W, =0.
X 2 + (2’}/4— {L‘) " <’7 b\ ) 1 0

Thus,

From the second equation of the system (2.2.6), W can be expressed as

dW. ZoE Zam]™*
W, =— |z 2+ 7+L—x Wol |k + am .
dx A A

and after differentiating it with respect to x gives

AWy _ W EW, (0 ZaB N dW, T Zam] T
de ~  de "Tar T\UT N ) Tde T ’

13

(2.2.17)

dW,
dx

(2.2.18)

(2.2.19)

(2.2.20)

(2.2.21)

(2.2.22)

(2.2.23)

(2.2.24)



that upon substituting these values for W, and % in Eq. (2.2.15) leads to

|:dW2 d2W2 ( ZakE ) dW2
- x + {7+ -

dr e X\ 4z

B _ZaE dW2+ +ZaE_ wol 4
TN ) e T\ T T T

After rearranging the terms, we have

-

K2 — (Zimf] Wy =0. (2.2.25)

d*W, dW- ZaF
2 1-— — 11 ——— | Wy =0. 2.2.26
T +(2y+1—12) T ( +7 h\ ) 2 ( )

Each of the Egs. (2.2.22) and (2.2.26) is of a form of the Kummer’s equation

d*w dw
s +(b—2) 5, Taw= 0 (2.2.27)

which has a confluent hypergeometric function

az af(a+1)2?
Fa,bz) =1+ ——+———7F—+ ... 2.2.28
(@b =1+ 30 * (22.28)

as its solution. Therefore, the functions W7 and W5 can be expressed in the form of confluent

hypergeometric functions

ZaE
W, () = apF (7 - % 2y +1; x) , (2.2.29)
ZaE
Ws (z) = BoF (1 Fy— %,27 n 1;1’) . (2.2.30)

Using them in Eqs. (2.2.15) and (2.2.19) and setting x = 0 gives the condition for

coefficients g and fy:
Z ZoFE
(l{ _ im> By = — (7 _ %) . (2.2.31)

From the explicit form of the hypergeometric functions given in Eq. (2.2.28) it follows that

in the limit x — oo the functions W; and W, will also go to infinity. Therefore, the following

condition for the series to terminate should be imposed:

Z 0.1.2...if k<0
Y ., nrz{ S R (2.2.32)

TN T 1,2,3, ik >0
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From the continuity equation (5.8.70) derived in Appendix B:

aju (X) _
o, =0, (2.2.33)

the normalization for the stationary bound states follows as

/p (r) d’r = /CIDT (r) @ (r)d’r = 1, (2.2.34)

and the radial functions g(r) and f (r) are,therefore, normalized as follows

/dr r? g (r)+ f2(r)] = 1. (2.2.35)

Using this condition together with (2.2.31) gives explicit expression for radial wave functions.

To sum up, the Dirac-Coulomb wave function is given by

o (r) = ( Gt (1) X321 (F) ) 7 (2.2.36)

ifnlj(r)ijN[(f.)

where [ = 2j — [ =1+ 1 and the radial wave functions

N[

() = @2M\)? [(1+22)T (29, + 0, +1)
I\ = (9, 1 1) AN, (N, — kp) 1,

(2)\7“)7"_1 e

X {(Ny, — 6n) F (—np, 29, + 1;20,7) — 0 F (1 — 0y, 29, + 1520,7) 3 (2.2.37)

1

—@2\)? [(1=E) T (2 40, +1)]°
['(2y, +1) AN, (N, — kn)n,!

(2)\7’)“’"71 e~ MnT

frij(r) =

X {(Np — En) F (=, 29, + 1;20,7) + 0. F (1 =y, 29, + 1;20,7) 1 (2.2.38)

where n is the principle quantum number and the energy levels are found from the Sommer-

feld’s formula

1 1
E,=\m?—=X, X\, = N O o T =1k (2.2.39)

N, = /12 =20, (|Fn] — ), = \/K2 — (Za)>. (2.2.40)

The quantum number k,, is defined by

l =1
Ko = { ’ J 2 (2.2.41)
_( — 3



and the spherical spinors

) = X L, 0

= (-1) MR TY < y

jw ) Y (81, (2.2.42)

= NI~

2.3 15 Wave Functions

In the forthcoming study only the wave functions in the state 1S are of interest to us.
They can be obtained from Eq. (2.2.37) and Eq. (2.2.38) by setting the following values of

the quantum numbers ton=1,1=0, j = % Thus,

g, (1) =g(r) = (g) ' %exp (—2) P (2.3.1)
fis, (1) = () = - 1;1915% (r). (2.3.2)

N—= DN
[T
o=
N—
3
—~
>
N—
VR
o =
N——
I
5~
3
—
DO
w
w
S—

'\‘”%‘ | DN
o [N
2 ~—
>
o
G
VRS
o =
N——
+
VN
—_ =
| wim
[
I o
[
N——
o
—~
=
VRS
e )
N——
—

B 1 cos (2.3.4)
B Var \ sinfe¢ | o

Therefore, the ground state wave function for the bound state in position space can be written

as
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@ (I') = gls% %0% .
ifis, (r)x 13 (F)
2
1
(2mZoz)7+% L+~ 0
r’ exp (—mZar . 2.3.5
Vir s o0 : “;7) cos (235)
’(12 7 gin fet®
The function in the momentum space is given by the Fourier transform:
B (k) = / P () exp (—ik - 1) | (2.3.6)

It is useful to discuss the Fourier transformation of ® (r) by considering one component at a

time. For the zeroth component of the wave function one can write

/d3r exp (—ik - 1) 77t exp (—mZar)

27r/drr r7 1/ cos ) exp (—mZar) exp (—ikr cos )
0 “1
0/

2sin (kr)

=27 [ drr*r" Lexp (—mZar) ’ (2.3.7)
r
After changing the variables r — —~— and using the integral
a—1 _; o —a/2 .
/ds exp (—s) s 'sin (ps) =T (a) (1 + p?) sin (a arctanp) , (2.3.8)
0
Eq. (2.3.7) becomes
At f
m; /dr rOtD =L exp (—r) sin (akr)
0
Ara¥tt _
_ T p (147) (1+ k) 72 6in [(1+ ) arctan (ak)] . (2.3.9)

k

17



Making use of the following trigonometric identities

_ x
arctan x = arcsin ——— (2.3.10)

Nipare
arctan r = arccos Nt (2.3.11)
sin (a + b) = sin (a) cos (b) + sin (b) cos (a) , (2.3.12)

Eq. (2.3.9) becomes

4Tt _
m]i L'(1+7)(1+ a’k?) T2 gin [(1+ ) arctan (ak)]

4rar Tt /2
= WC]; I'(1+7) (14 d’k?) vt (sinp + ak cos p), (2.3.13)

1

where p = yarctan (ak) and a = ——.

Thus, the zeroth component becomes
(2mZa)/? 147
kEy=T(1+
9k) =T +7) ==\ lar i 27
N

= TEETELC (sin p + ak cos p) , (2.3.14)

1 4—7Ta7+1 sin p + ak cos p
k (1 +a2k2)1+7/2

(2mZa)”

where N = 2771 (1 + ) ?El(fg;’g as defined in [1]. It is worth mentioning that the notations

for the upper and lower radial components of radial functions defined here with the use of a

different convention in comparison with [1].

The 2" component is proportional to
/ d*r exp (—ikr cos ) 1" exp (—mZar) cos . (2.3.15)

The integration over the angle 6 gives

1

2 [sinh (ikr) — ikr cosh (ik
I= /d (cos ) exp (—ikr cos ) cos ) = [sinh (ikr) : ! ;COS (i T)], (2.3.16)
(ikr)
~1
and since sinh y = —isin (iy) and cosh y = cos (iy) the term in the square parenthesis becomes
4mi in(kr) —k k
—%/drrzexp(—mZozr) r1 (sm( ) TQTCOS< T)> (2.3.17)

18



Thus, the first part of this expression is

/ drr?exp (—mZar)sin (kr)r" ™ = a7 / dr " exp (—r) sin (kr)

=a'T' () (1+ a2k2)77/2 sin (y arctan (ak)) , (2.3.18)
and the second part
/dr r7exp (—mZar) cos (kr) — alﬂ/dr exp (—r) cos (akr) 7. (2.3.19)
Doing the the integration by parts

/dr exp (—r) cos (akr) 7

a1+'y

=0 /dr sin (akr)e ™" (77”’1 — r”)
a'y
=7 dr [7 sin (akr) e "r?""! — sin (akr) e_rr(lﬂ)_l}

== {ar () (1 +a®k2) 7 sinp = D (149) (1 + k) 7" sin [(1 4 ) arctan (ak)] |

_ o ; k
=7 {VF(’Y) (1+a%2) ™ sinp — D (14 7) (14 a2?) /27 2L COSP}

Vit @k
(2.3.20)

Putting Eqs. (2.3.18) and (2.3.20) together one gets

4 - _
I= —% {aVF (v) (1 + a®k?) " gin (p) +a'T (14 7) (1 + a’k?) "2 Sin (p)
—a' T (1+7) (14 a2/<:2)_7/2_1 (sin p + ak cos p)}
4mi 9, ov—v/2 [sinp . sin p ak cos p
=~z T A+ (1+ k) T T I e T T ke

_ Ami @T(1+49)

K2 o (14 a2k2) 772 [1+ (1 +7)a®k?] sinp — vak cos p} . (2.3.21)

The 4th component in (2.3.6) is identically zero since

2w

/dqb exp (i¢) = 0. (2.3.22)

0
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Figure 2.3.1: The Dirac wave functions for the point nucleus for muon (to the left) and
electron (to the right). The electronic wave function has the same shape as the muonic one.
But due to the proportionality of the larger spinor component to the Bohr radius (a*2) which
is almost 200 times greater than that of a muon the electronic wave function has a sharper
peak near the lower momentum region.

Thus, the lower component is proportional to

_ Nm(1-9)
f (k)= V2 (1 + a2k2)1+v/2

([1+ (1 +7)a’k?] sinp — yak cos p) . (2.3.23)

Next, the wave function ® (k) can expanded in terms of free spinors u, (k) and v, (—k) by

projecting it onto plane waves with positive and negative energies

21 =Y" {Ar 1) ) e ) (2.3.24)

V2KO VKO |

Here the integral [ ((ging)(SZr |B, (k)|> corresponds to the probability of existing the state

(e“ee™) in the atom. And since for Z = 80

r

/ (;il){g > 1A, (k)] = 0.998, (2.3.25)

which almost equals to identity, the terms with the coefficient B can be neglected. Thus, the
Dirac wave function v (k) is defined as ¢ (k) = A, (k) and the states are considered to be in
1.5 with the spin up: r = +%.

The final expression for the bound Dirac wave function for the spin up state ¢ (k) = A

(k)

1
2

in terms of g (k) and f (k) becomes:
kO k
609 =\ (90 + s ) (2.3.26)
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s 1o (017 | [ s s (k
Z =10 0.99999980 0.99999980
Z =380 0.99840433 0.99840433

Table 2.3.1: The normalization for the muon and electron for Z = 10 and Z = 80.

The wave functions ki (k) and ki (k) for muon and electron, respectively, are plotted
in Fig. (2.3.1). Numerical results for the normalization of the wave function (2.3.26) are
presented in the Tab. 2.3.1 for the cases of Z =10 and Z = 80
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Chapter 3

Muon Decay

In this Chapter we consider the bound state transition (Zp) — (Ze)v,v. (from here
onward the parentheses for (Zu) and (Ze) stand for the corresponding bound states) to
proceed through the the weak decay i — ev, 7, in the presence of a nucleus charge Z, which
is considered to be spinless. In two different formalisms developed in refs. [1] and [2]. The

corresponding free muon decay is discussed in Appendix C.

3.4 Bound Muon Decay in the Atomic Alchemy Formal-
ism
The formalism for the transition By — By + X, where B; and B, are bound states, is

developed in [1|. The Lagrangian describing the Fermi interaction for the standard muon to

electron decay in the Fierz rearranged form is

Lr=2V2Gr (2.4°L2,) (®,,7,LP;,) + h.c. (3.4.1)

The wave function for the bound state By, which in our case is (Zy) in its rest frame, is

Pk oy (k T
Bup, = 0) = /o, [ CE TR (el () 0 342

where bL and aTZ are the creation operators for the muon and the nucleus, respectively, that

act on the vacuum state |0), and

1/k1 + m2 ko vV k3 + MZ, k3 = —k1 (343)

are the corresponding energies and momenta of these particles. In this form the wave function

is normalized in a covariant way
(B1,0 |By,0) = 2mp, (21)° 6 (0). (3.4.4)

The probability amplitude ) (k;) to find a muon with momentum k; in the atom is given

by Eq. (2.3.26) and according to the approximation made in Eq. (2.3.25) it is taken to be
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normalized to unity:

/ ék) [y (k)2 = 1. (3.4.5)

The wave function of the final bound state in its center-of-mass frame is

By, pr, = 0) = /2m / ks \dfw b (ky) i, (k) [0) (3.4.6)

where b] is the electron’s creation operator, k9 = \/ky + m2 is its energy and k9 = /k, + M2
is the energy of the nucleus. The masses used above are defined as

=M+ my, MM =my, — Ebind,la (3 4 7)
=M +my, mo=me— Epinao. o

After the decay of a muonic atom, in the center of mass frame of By the particle By is
moving with a momentum ppg, = —q. Thus, the boost A (v) along the direction of q should

be performed, and the corresponding boosted wave function for By becomes

’BQasz = _q> = ( ) ’3271)32 = _O>

d? ko ¢2 -1 1 -1
‘_VF__i/ vﬁﬁg(A@(b)A ) (Mal () A [0y, (3.48)

stands for non-relativistic velocities. With the assumption that the axis of

where v = -4
mp

2
spin quantization is parallel to the boost, the transformation of fields is given by [13]:

ABF (ko) A V/3iT- Akg)zz\/%%bl(kg>, (3.4.9)
Adl, (ky) A~ ::x/;_ <k4> (3.4.10)

ko = ko —

where

.- M
Me 4 ky=ky— ——q. (3.4.11)
m32 m32

Substituting expressions (3.4.9) and (3.4.10) in Eq. (3.4.8) the bound wave function is
obtained to be

|Ba, Pi,) = v/2m Bz/dk2 j&iﬁﬁb (k2) af, (k1) 10). (3.4.12)
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3.4.1 Factorization Formula

The S-matrix for the decay can be constructed in the following way:

S =i (2m)" 6 (p1 — p2 — ) (B, PBa; v (o) Ze (Do)

L., (0)] By,0), (3.4.13)
where L, is the four-fermion interaction which obeys translational invariance:
L, (x)=eT*L, (0)e " (3.4.14)

Substituting Eqs. (3.4.2) and (3.4.12) into the S-matrix, we get

d3k1 Y1 (ki) d3k‘2 V3 (ks)
VAR S 2 L

be (122> az (124> L. (0) b, (ki) al, (kg)( 0> . (3.4.15)

S =i(2m)" oW ( q) \/4mp,mp, /

X <V# (pu,.) e (P5.)

Applying the commutation relation [aZ (124) ,aTZ (kg)] = (271')3 2k953) (kg — l~<4> and the
fact that az|0) = 0 to the second line in (3.4.15), it becomes

(2m)° 4RI (ks = Kt ) (v (b)) 7 ()

be (122) L. (0)b} (kl)) 0> , (3.4.16)

where the delta-function §¢) <k3 - R4> is given by

(5(3) <k3 — l~{4) = 5(3) (kg — mredgvre]’g) s (3417)
and myeq 2 = A%rm" is the reduced mass of By, Vi 2 = mkldg — m% is the relative velocity of

the final state particles. With the use of Eq. (3.4.17) the integration over ky can be carried
out in Eq. (3.4.15) which gives

S 4 () d3k1 Y1 (ki) Mred,2
=i(2m)" ¢ q) \/4mp,mg, - 0¢2 k; — " q
\/4k k5 ¢

(v (o) 7 (0a) e (K ) L <>m<kl>>. (3.4.18)

Thus, the invariant amplitude can be written in terms of the amplitude for the free muon

decay invariant amplitude M, _..,, 5 as
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d3k1 Y1 (ki)

\/ 4k0k0

Misev,oe = (Vi (P,) Ze (Ps,) € (ki — a) [ Lo (0)] e (ka)) (3.4.20)

¢2 (kl ) M,u—muﬂﬁeg (3419)

MB1—>BQ \/ 4mBlmB2 /

red 2

—22q =k; —q+ O (1/M) is used.
The formulas (3.4.19) and (3.4.20) can be rewritten in the notation of [1]

where the approximation k; —

4G
.M&ﬁ&EA@ﬁ::é%Mm&m&Mﬁg (3.4.21)

where the neutrino current N, is

N, =1t (py,) vpLv (ps.), (3.4.22)

and the matrix elements S”. that correspond to to (uZ) — (eZ) transition is

d’ki 1 (ki) 95 (ki — q)
%:/ 2 i, (e;ky — q) v Lu, (p; k) . 3.4.23
(27T)3 /Qk(l] /21{(2]- ( 1 q) ’Y (/J’ 1) ( )
Here the indices s and r stand for spins of electron and muon, respectively, and L = 2 2 s

the left projection operator.

3.4.2 Form Factors
3.4.2.1 Normalization for Bound Spinors

In order to find the normalized form of the bound spinors, it is useful to express them in

terms of the Kronecker delta functions. This can be achieved in the following way

Uy (k1) up (B1;0) =
:MQ+WL%%(@QT§%HVV><2>

= \/2m, (K + )b, (3.4.24)

This gives
Ups (,LL, kl) Uy (Blu 0)

57”7”’ == .
\/2m31 (k(l) + mu)

(3.4.25)
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Similarly, for states with spins s and s’ we find

ts (Ba; PB,) us (e;ky — q) =

s

o o X
= kg —f—me< (XS)T ;Bzif;gz (Xs)T ) VEp, + mp, ( ,U.(kl,q)xsx )

~ 2, (8 +m,) (1 - gg;fgg ; (fgl;ﬂjg) »

= \/2ma, (K + m). + O (1/M), (3.4.26)

and the relations for the Kronecker .y is extracted to be

5., — Us (Ba; PB,) us (e5k1 — q)
* V2mg, (k3 + m.)

where an approximation Ep, =~ mp, was made for non-relativistic velocities after the decay.

(3.4.27)

3.4.2.2 The Matrix Element

With the use of the normalization conditions (3.4.25) and (3.4.27), the Eq.(3.4.23) can

be rewritten into a convenient form
SP = 5SS/S§T,6T/T, (3.4.28)

where the summation over s’ and 7’ is implicit. Writing

ﬂ's (B27 sz) ( 1= Q + me)

i (e;k; —q) = Z Sewily (e;k1 — q) == NNCET R (3.4.29)
will lead to
o :/ *ky P (ki) 93 (ki — q) U (Ba; Pa,) us (e;k1 — q)
o (2m)? \/2_k(1) \/Z_kg V2mp, (K +m,)
<ty (esky — )y Luy (1 kr) 22 iky) tr (5;0) (3.4.30)

\/2m31 (k(l) + mu) .

Thus, the matrix element (3.4.23) becomes:
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g :/ ’ky Yy (k1) 5 (ki — q)
Y2 G vl o
s (Ba; PB,)
\/2m32 (k9 +me)

Uy (Blu 0)
\/2m31 (k(l) + mu) '

Ky = g+ me) "L (K +my,) (3.4.31)

The expression (3.4.31) can be further simplified with the repeated usage of the Dirac equa-

tions
7, (By1;0) = u, (By;0), (3.4.32)

1
tis (Ba; pB,) 7" = 1s (By; pB,) + O (M) . (3.4.33)

3.4.2.3 Derivation of Form Factors F;

For brevity the expression (3.4.31) will be written in the following form
Sspr ~ /dgklﬂs (Bg, p32> ( 1 —g—F me) ")/’OL (kl -+ mu) Uy (Bl, 0) s (3434)

where the functions ¢ and the factors in the denominator dropped, which will be restored at
the end of the simplification of the expression for S?
The term proportional to (K; — ¢) can be rewritten as v° (k; — Q) — - (k; — q). Also,
using
k) =%k — ¢, (3.4.35)

the expression (3.4.34) for S?. becomes
St ~ /d3k1us (B2ipa,) (ke — v+ (ki — @) +me] y"L [k =y - ko +my ] up (Bi;0).

(3.4.36)

Let’s simplify this expression term by term. First, consider the term proportional to v-q =

,yOqO _52(7 i'e'7
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U (Ba; pg,) (v - ) v L (K + my,) u, (By;0)
0

= s (Bay; Piy) (774" — ¢) L (k) + my,) u, (By;0)

= Uy (Ba; P,) (a° — ¢) 7L (k{ +m,) u, (By;0)

= @5 (Ba; P,) 7" L (k1 + my) up (B3 0) — G (Ba; pi,) 47 L (K + my,) u, (By;0) (3.4.37)
= U, (By; pB,) {d*7"L (ki +my) — (20” — 7"q) L (kY +my) } u, (B1;0). (3.4.38)

where in the second line the identity (3.4.32) is used and the anticommutation relation for
gamma matrices {7”,~77} = 21”7 is applied to the last term in (3.4.37). The term proportional

to g” gives zero after being contracted with the neutrino tensor:
A’ Ve Ly = VegLv, = Ue (1 + po) Lv, = 0. (3.4.39)

Therefore, we always drop the term proportional to g” from now on. With this simplification
Eq. (3.4.38) becomes

Us (B2 Pg,) (v - @) 7L (k] + my) up (Bi;0) = s (Ba; pi,) "L (k] + my,) u, (By; 0)
+ s (Ba; p,) (Vo) L (k) + my,) u, (By;0). (3.4.40)

Substituting Eq. (3.4.40) in Eq. (3.4.36) and dropping u, and g further for brevity, we

can write

~ [k9 (ki — Q) +me] VL[] — v - ki +my)
(ko + me) L (ko +my) — (v - k)7L (K +my) + (v - )L (k] +my,)

— (k3 +me) L (v ki) + (v k) YL (v ki) — (v @) 7L (v - kq)
= { (& +my) (k2 +me) +q” (k] +my) p "L+ (K +my) 774l — (v - ki) L [K) +my,]
— (k§+me) YL (v ki) + (v k)7L (v - ki) = (v- @)L (v - k). (3.4.41)

Now consider the terms proportional to k;. Since both functions 1; and 3 are scalar

functions, from the rotational invariance it follows

/ Pl (ky) 3 (ks — @) K = A (q) g (3.4.42)
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Multiplying both parts of (3.4.42) by ¢;, the coefficient A, is obtained to be

Avla) = 5 [ Pl ) 65 (ki - a) (ki@
_ / By (k) 5 (ky — q) C, (3.4.43)
where C = <kq—q> Thus,
(v k)YL=C(y-a)7"L=C(d" = ¢) 7L = Cq"y"L + Cy¢L, (3.4.44)
VL(v k) =CyL(y-q) = Cy"L(q" — ¢) = Cq’y*L — Cy 4R. (3.4.45)

Here R = H% is the right projection operator which obeys Ry” = ~”L. After substituting
Eqgs. (3.4.44) and (3.4.45) in Eq. (3.4.41), it gives

S~
{(k? + m#) (kg + me) +q°(1-0) (kﬁJ + m#) —Cq° (kg + me)}pr
+C (k3 +me) YR+ (1 — C) (K +my) v°aLl + (v - k) VL (v - ki) — (v- @)y L (v - ki)

(3.4.46)
It is useful to simplify the last term of Eq. (3.4.46) as
(v-a)y"L (v ki) = C(d" = ¢) "L (d" — 4)
= C{(a")" "L — d+ L — 3" L + "R}
=C { (qO)2 ~PL — qofypgR + qofyng — qQPyPR} , (3.4.47)

which leads to

$ L 08 + my) (8 4+ me) + @ (1= C) (K +my.) = Ca® (1 +me) = C ()} 7L
+{C (k) +m.) + O} v*gR+ {(1 = C) (k} + m,) — Cq"} v 4L
+ CPY R+ (v - k) VL (v - k). (3.4.48)

Again, for the term proportional to k? the rotational invariance gives:
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/dgkﬂh (k1) ¥ (ki — q) (k1); (k1); = A5 (@) 03 + As (a) qigy

1
where both terms in the last line are orthogonal and therefore the corresponding coefficients
Ay and Aj can be obtained by consecutive contraction of the Eq. (3.4.49) with (qi q — %&jqz)
and 0“q?, respectively. This gives

= s [ Pl (k) i (= ) |G- = e’
= [ @ (k) w3 (ks - q) B (3.4.50)

and 2
&z/fhm®WWM—®£@ (3.451)

2
where the coefficient Ay was written in terms of B = % defined in |1]. Then, the

last term in Eq. (3.4.48) can be expressed as

o 1
(v k)Y L (v - k) =99 Ly {B (%‘Qj - §5ijq2) + A35ijq2}

=By -q(y’L)y-a— 57" Ly'q* + Asq’y'y Ly

3
, A B
=B (q’ —¢) (L) (" — g) +7"*+'R {A3q2 - qu} . (3.4.52)
where
PP i 0.p 0 i.p 7 0.p 0
VALY = =y AP Ly + P Ly + P Ly
= — (V"7 Lo — " Lyi) +~°4"LA°
— 29"R++"L. (3.4.53)

Here we have dropped the v%’s due to the Dirac equations (3.4.32) and (3.4.33). Thus,

expression (3.4.52) becomes

(v ki)Y L(y ki) =

B
(27v"R 4+ ~*L) (A3q2 — §q2) + B {(q0)2 YL — "v"¢R + "v"qL — qQWPR} (3.4.54)
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Also,

Asq? — qu _ kiq’® _Q_23(k1'Q)2 - kiq® _ kia® — (ki 'Q)2
! 32 3 2(q) 2q?

A, (3.4.55)

where A is a quantity defined in [1]. Putting everything together, the final expression for S?.
is
Ser ~
@w+mg@%m@+¢@_oﬂw+mg_amg+mg+w_cm¢f+ﬂw%
+{(C=B)qg® +24} "R+ {(1 - C) (k{ + m,) + (B—C) "} 4L
+{C (k3 +m.) — (B—C)q"} v"4R. (3.4.56)

This expression of the S-matrix can be written in a more convenient form as follows [1]:

Ty (Bo; sz) TPu, (Bl; 0)

o _
5p, = PR D (3.4.57)
where
T? = Fy () 1L+ Fy () 1R + Fy () 72 L+ F (@) 2R, (3.4.58)
[ I

In the expression (3.4.58) we have put back everything that was dropped in writing Eq.
(3.4.34). The FF’s are given by

dSkl hz

Fi(a®) = / (amp ) ) )

(3.4.59)

with

hy = (ki +my) (K +me) +q” [(1=C) (K +my) = C (ky +me)]
+(B=0) (") + A, (3.4.60)
= (C = B)q* + 24, (3.4.61)
hs = [(1=C) () +my) + (B = C) "] my,, (3.4.62)
[C (k3 +me) — (B~ C)q"] my. (3.4.63)

It is worth noting that in ref. [1| the expressions for h; and hy include the terms of A

with the opposite sign. The Tables 3.4.1 and 3.4.2 present numerical comparison between F;
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la] (MeV) 3! Fy Fy Fy
10 0.00479743 | 0.00502886 | 0.00018832 | 0.00065119
20 0.00430349 | 0.00451858 | 0.00013482 | 0.00056500
30 0.00365043 | 0.00384268 | 0.00007005 | 0.00045455
40 0.00298111 | 0.00314818 | 0.00001213 | 0.00034628
50 0.00238271 | 0.00252534 | -0.00003053 | 0.00025473
60 0.00188767 | 0.00200827 | -0.00005735 | 0.00018374
70 0.00149515 | 0.00159676 | -0.00007188 | 0.00013136
80 0.00119033 | 0.00127599 | -0.00007760 | 0.00009373
Table 3.4.1: The FF F; are calculated according to [1]. F] represent the corresponding

corrected FF with the correct sign in front of the coefficient A. The values of the pa-

rameters used for numerical calculations are Z = 80, m, =

105.658375 £ 0.000002 MeV,

me = 0.510998946 + 0.000000003 MeV and o = 1/137 & 0.00729735257.

lq|(MeV) F Fy F, F}
10 0.0002029 0.00020454 3.8015062-10° | 3.8866117-10~°
20 3.0509518-10~° | 3.0537957-10~° | 3.1366506-107% | 3.3410198-10~°
30 5.4156085-107% | 3.5115656-1076 | 5.4680428-10~7 | 6.0649955-10~7
40 1.3494489-107% | 1.2862501-107° | 1.4164301-10~" | 1.7638670-10~"
50 5.9038607-10~7 | 5.9913763-10~7 | 1.1037297-10~% | 2.6913015-1073
60 3.0022005-10~7 | 3.0539554-10~7 | 5.4042601-10~ " | 8.6634225-10~°
70 1.7108758-10~7 | 1.7428102-10~7 | 6.1553051-10~° | 6.0009907-10~1°
80 1.0984531-10~7 | 1.1206792-10~7 | 6.1962072-10~° | 4.2160059-10~°

Table 3.4.2: The FF F; are calculated according to [1]. F] represent the corresponding
corrected FF with the correct sign in front of the coefficient A. The values of the pa-
rameters used for numerical calculations are Z = 10, m, = 105.658375 £ 0.000002 MeV,
me = 0.510998946 + 0.000000003 MeV and o = 1/137 & 0.00729735257.

and F! for cases of Z = 80 and Z = 10, respectively. Here: F} ~ hy, with —A and Fy ~ hy,
with —2A in their respective last terms for the form factors derived in [1], and F| and F} are
with corrected sign of A terms in the FF’s. The values for F; and F are of the same order

for Z = 10, but for Z = 80 the difference is up to an order of magnitude.

3.4.3 The Decay Rate into the Bound Electron

The differential decay rate formula is given by [13]:

d3pf
2Ef 27’(’

dl = dd | M, |*, dd = H (2m)* 69 (p; — py), (3.4.64)

QmBI

where d® is the phase space and the invariant amplitude is given by Eq. (3.4.21). From this
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expression the decay rate of (Zu) — (Ze) is

1 / d*p2 d*py, pa,
(

- 3 3 3 M |?.
2mB1 277) 2E2 (277) 2EI/H (27T) 2E175

2m)" 0™ (p1 — P2 — Pu, — D)

(3.4.65)

The last expression can be rewritten as the integral over 4-momentum q with the use of the

extra delta function as

1 / P’py  d’py, *py,
2mp, J (27)°2E, (27)°2E,, (27)° 2E,,

x /d4q(27r)45(4) (a=pu, = Pr) 0 (p1 — P2 — q) M |* (3.4.66)

Substituting the expression for M, from Eq. (3.4.21) it becomes

B o RO
= vy Ve d4 o 5(4) Dy — D
2mp, / (27)* 2B, (27)° 2E,, (27)° 2E,, q(2m) (94— pv, — p)

4G 2
x 6™ (py — pa — q) (75\/4m31m32) > (NS0T (N,ST,) . (3.4.67)

rs

3.4.3.1 Integration over Neutrino Phase Space

The decay rate (3.4.67) should be first integrated over neutrino phase space. The integral
is given by

d’p a’p 4 AGF
N,, = ve e 2m) 6™ (q = py. — pa ( ) NIN,, — (3.4.68
g / (2m)° 2E,, (27r)32E,,H( ) (4= Pu, = v 2 ( )

o
where N, = i (py, ) ,Lv (py,) . The summation over the spins gives
STNING = 3 [ (p,) v Lo ()] (1) Y0 L (D5,
o e
= @ (pn) Lo (py,) @ (P,) Yo Lv (Dr)
e
= T [pb, 3y L L) = 5T [P i 20+ 206 0, (3.4.69)

The term containing the antisymmetric tensor €,,.3 vanishes after the integration over the
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phase space and Eq. (3.4.69) becomes

> NN, =2 [(ppe)p (Pu)y + (Po.)y (), = (P~ Puy) npa] : (3.4.70)

spins

Next, the following integral should be evaluated

o / ’py, d’py,
. (2n)* 2B, (27)° 2E,,

- Dl (q277.0‘7 + Qqug) + DQ (q27]p0 - quqa) ) (3471)

(2m)* 6™ (a = pu, — i) (Pn),, (Pr.),

where the expected result has been written in the most general form as the sum of two
orthogonal terms and it is understood that D; and D, are both functions of ¢2. To find the
coefficient D, contract both parts of (3.4.71) with (q*n* — 2q°q”):

4q4D2 =

/ TPe TP o150 (g~ py, — o) {G (br. D) — 2 0s ) (b, 1))
2r)* 2F,, (27)° 2E,, e e e Fn

(
— 0, (3.4.72)

since in the massless neutrino limit

i -4 =Dy - (Po. + D) = Dir * Puys (3.4.73)
Pv, 4= Pr. * Puy» (3.4.74)

2
> = (Po. +Pv,)" = 2Ds,  Pu,- (3.4.75)

Contracting (3.4.71) with (¢*n?” + 2q°q°):

12q*D,
d’py, *p,, .
- / (2n) 2E,, (27)° 2E (2m)* 6 (a = py, —pr.) {4 (P~ Pu.) +2 (05 - @) (Do, - 1) }
— q4 / dgpl’e dspl’u
(27)* 2E;, (27)°2E,,

(2m)* 6™ (4 = pu, — ps.) - (3.4.76)

The phase space integration in the last line is given by
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3 3
/ ( Tor_ APu(o0i5) (g —p,, —py) 8 («° — By, — Fn)

21)° 2B, (27)° 2E,,

:4%/%225((1 — 2w ):/2&;)25@—%{)) :8%.

(3.4.77)

Where in the last line the two neutrinos are considered in their center of mass frame, and

thus, p,, = —ps. and their energy is w = E,, = Ej, . Therefore, the coefficient D; =

and the integral I,, is
1
Lo = —— (*1ps + 2q,q5) -
p 287r<q77p+ qﬂq)

Also, taking into account that

&*p,,  d’py, "
/ @r) 2E,. (@n) 2E (2m)* 6™ (4 = pu, — i) (Pn), (Pr.),

d*p d*p B
- = - 2 6(4) - Pv, — Pp, 17 v .
/ (27r)3 2L, (277)3 2E,, (2m) (q Py, =P e) (Pe) (p “)p

Finally, the integral over the neutrino phase space is

&°p, d’p,
Npa' = 16G%‘/ Pv. p £ (277')4 5(4) (q - pyu - pﬁe) 2 (pﬂe)p (pl’u)a'

(27) 2E;, (27)°2E,,

q2 2 GQ
TI,UO— - 3

> E (apdo — &*Npo) -

112
= 16G%8W {12 (@*1po + 20,00) —

3.4.3.2 Derivation of Decay Rate into Bound Electron

Substituting the result for the integral over neutrino phase space

2G3,

Npa = 3 (qPQU q2npa')

1
12 87

(3.4.78)

(3.4.79)

(3.4.81)

in Eq. (3.4.67) and performing the integration over the 3-momentum py and q° gives

1 d3
— / p2 / / dq0<5 mB1 qo)
2mp,

x 6@ (py — py — q) (4mp,mp,) > (S6)' (SN

rs

11 d3qmm o\t o [ dq o\t (a0
[ s mama) 3282 (52 Mo = [ S8 S (581 (52) N,

~ 2mp, 2mp, | (2n) — (2m)” <
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where Ey = mp, was used and it is understood that mp, = mp, —q". The decay rate formula,

after averaging over the spin, becomes

—1 dgq p\T (qo
r-;/ s 2 (51 (S5) Vo (3.4.83)

where the matrix element S? is defined in terms of 7% given by Eq. (3.4.58). Therefore,

S (S50 (85) = g D (0 (02) T2 () (0 0) T2, (). (3489

Thus, differential decay rate is given by

dr_|a’Gy 1
d|q] 2473 mp,mp,

D (i (02) Tuy (01)) (115 (02) T (01)' (dptr = %) - (3.4.85)
Using the expressions for 7% and 77 from (3.4.58) in Eq. (3.4.85), we get the terms
corresponding to FF’s F} (q*). They can be disscussed one by one.

First consider the term proportional to F? (¢?):

TermT = (0,85 — @pr) 3 (02) (L) ur ()t (1) (L) s (p2) . (3.4.86)

rs

After summations over rs in (3.4.86) we get the trace which is not zero only for the even

number of gamma matrices

TermI =

= (quU - q277p<7) Tr [(pQ + mBz) ,pr (]?1 + mBl) VUL]
1

= 7 (94s — a’p0)

X {Tr [py" (1 =7")p7” (1 = )] + mpmp,Tr [v7 (1 =7°) 77 (1 =7°)]}.  (3.4.87)

The second trace identity is

Tr [y (1=7°) pin” (1 =7°)] = Tr[v*4°] 4+ Tr [4*7°77°]
=Tr [y*77] = Tr [v°7°1°77] = Tr [y*97] = Tr [4*77] = 0, (3.4.88)

where the facts that 7° anticommutes with all 4 and (7°)° = I were used. And the first
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trace identity is

Tr [py” (1= 7°) p7° (1 = 7°)] = 2Tx [py*p17°] + 8ie”” P prapas. (3.4.89)

The term containing £7°*% symbol disappears after contracting with the neutrino tensor N o
Thus, the only term that is left

Term I =

1 1
=3 (49 — @*1pe) Tr [Py’ py°] = 3 (99 — 9*1pe) 4 [P7PS + P5P] — (p1 - P2) 7]
=2{2(q"p1) (q-p2) + @ (p1P2)} - (3.4.90)

Since P1 = (mBl7 O) y P2 = (mB27 _Q)7 therefore,

TermI = 2{2 (¢°mgp,) (¢"mp, + a*) + o* (mp,mp,)} . (3.4.91)

The term proportional to F3 gives the same expression, since Tr gy Rp;7° R] = Tr [p,y* Lp, 77 L).
2
The term proportional to (%) is

m

Term I = (q,90 — 9*7ps) Z s (p2) (V" 4L) ur (p1) [Us (P2) (Y7 4L) u, (p1)]'

rSs

= (4 — o) D (02) (FP4L) iy (01) T (1) (Rer") s (p2) . (3.4.92)

rSs

The summation in (3.4.92) gives

Tr [(]”2 + mBz) Vng (pl + mBl) Rgva] =Tr [perpgpngfya] + mBlmBzTr [7ngRg’yU}
= Tr [p7"qp  Lg77] (3.4.93)

since LR =0, L?> = L and Ly” = "R, Ry = L. The first trace in Eq. (3.4.93) gives

g a 1 — ")/5 oK
Tr [py*dap1 Lg°] = P15P22dsda Tt [VWPV o (T) vy } : (3.4.94)

The trace which includes % matrix is given by
Tr [v* 9777y ] = 0" Tr [7797" ] = 0 Tr [y*977"*°]
+ 0T [YP77 ] + i€ T (17777 (3.4.95)
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where was used the following identity from [14]
VPP = PP — PP 4 PP 4 PPy, (3.4.96)

Applying to each term in (3.4.95) the identities

Tr [V*77 P ] = —dieP, (3.4.97)
and
Tr [y ] = 4 (690" — 850> + 62n07") (3.4.98)
to the last term in Eq. (3.4.95)
Tr (Y7 vy’ =
— 4 {npaeﬁanA . npﬂeam@)\ 4 naﬁepmi)\ 4 ,',/nkepozﬂo - nakepaﬁn 4 nanepaﬂ)\} ’ (3499)

which completely disappears after contracting with the neutrino tensor. What left is then

1

Term IT = 2 (dpls = A*7pr) P1aP2AGda Tr [177777777"7]
1
= 5 (QPQK - qznpn) P1sP2A4oYa {UpaTr [’yﬁﬂy"fy“r}/\} _ ﬁp’BTI‘ [,ya,ya,yn,y)\}
+77PUTI' [fya,yﬁ,yn,y/\] . UPKTI“ [,Ya,yﬁfya,}/)\} + T]’O/\Tl" [”)/a’}/ﬁ’)/a’}/n} } . (3.4.100)

Applying to each term of the last expression the trace identity
Tr [v*777 7] = 4 (770 — 00 + ) (3.4.101)
2
and after some algebra, the overall coefficient for (Ti—i) is given by
Term T =2¢° {4q°mp, (¢"ms, + q°) — ¢*mp,mp, } . (3.4.102)
2
The term proportional to (i—t) is given by Tr [(p, + ma2) v*4R (p; + m1) Lg?] and the same

coeflicient is obtained as in Eq. (3.4.102)

Now evaluate the cross terms: first, the one proportional to F}F
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Term I1] = 2 (qpqCr — qznpg) Z us (p2) (VL) uy (p1) 4y (p1) (V7 R) us (p2)

rSs

=2 (qpd0 — &°Npo) T [(py + mp,) VL (p; + mp,) 7’ R
= (4pGo — o) mp,mp, Tr [v777 (1 4+7°)] = —12¢°mp,ma,, (3.4.103)

where in the last line we used
Tr [v"77 (1 +7°)] = Tr [7"77] = Tr [v*777°] = 49 (3.4.104)

The coefficient in Eq. (3.4.103) will be doubled since the term proportional to FyF} gives the

same contribution.

Next, consider the term proportional to %
"

Term IV =2 (qpqg — q27]pg) Z s (p2) (Y°dL) ur (p1) [Us (P2) (V7 AR) U, (Pl)]T

s

=2 (40 — &’Npo) T [(py + mp,) 4L (P, + mp,) Lay”]
= —12q*mp,mp,. (3.4.105)

FiF5 .

The term proportional to ==
i

TermV =2 (q,,qa — qznpg) Z us (p2) (VL) u, (p1) [us (p2) (WU%L) Uy (pl)]T

rs

=2 (dpdo — o) > Us (p2) (VL) tty (p1) U (p1) (77 4L) tr (p2)

TS

=2 (4pdo — 4°Npe) Tr [(py + mp,) VL (py + mp,) Ly

TermV = 2 (qpqg — q277pg) Z us (p2) (VL) u, (p1) [us (p2) (VU%L) Uy (131)]T

rs

=2 (qpqa - q27]00’) Z Us (pQ) (71)[/) Uy (pl) Uy (p1> (,ycf/qL) Uy (pQ)

rs

(QpQJ - q277pa) Tr [(1”2 + mBz) '7pL (?1 + mB1) LVU,@I]
(qu(I - q277p0) mp, Tr [Z”Q’YPLVU}ZI]
= —12mp,q* (q - p2) = —12mp,q* ("ms, + q?) . (3.4.106)

=2
=2
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For the term proportional to Fé—f‘* the trace is given by

Tr [(py + mp,) V'R (p, + mp,) Ry d] = dap2sTr [777°777°]
= —12mp,q* (¢"mgp, + q°) . (3.4.107)

F1Fy is

The term proportional to ==
i

Term VI = 2 (qua' - q277pa) Tr [(po +mp,) V'L (py +mp,) R
= mp, (4oe — Ap0) Tr [v* (1= 9°) p1774]
= 12mp,q> (q - p1), (3.4.108)

And the one proportional to FSA%F has the same coefficient as in Eq. (3.4.108) by the same
n
argument as in (3.4.106).
Collecting all the terms gives the differential decay rate

ar o G%
d|q]  24n3 mp,Mmp,

A2 2o mi) (P, + o) + o (mpymi,)] (F2 + F)

2 2
+ % [4¢°mp, ("mp, + q*) — °mp,mp,] (F5 + F})

o
2 4 F3F}
— 12q mBlm32F1F2 — 12q TI’LBITTLBZ—2
.
12mp q° 12mp, q°
—m—qu (®mp, + @®) (F1Fs + FyFy) + m—qu (F\Fy + FQFg)} . (3.4.109)
1 1

Dropping in all the terms of the order (1/M) and substituting q° = (m; —my) in Eq.
(3.4.109), the differential rate becomes

dl |C1|2Gfv
= K + M 411

where

K (la]) = [o® +2 (m1 —mo)°] (Ff + F) + % [4 (m1 —my)* = @] (F§ + FY)

2 mi —m
— 607 | P Fy + —FyFy 4 T2
m# mu

F— F)(Fy—F)|. (3.4.111)
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3.4.4 Decay Rate into the Free Electron

For the decay rate of a bound muon to a free electron: (Zp) — Zev,v., the S-matrix

element in the rest frame of By for such a process is

S =(Ze, VM7V5|i/d4X£ (x) |B1,p1 =0)

=i (21)* 6™ (p1 — pz — Pe — A) (Z, €, v, De| L (0) | By, py = 0, (3.4.112)

where pyz is the final momentum of the nucleus and q = p,, + pg,. The invariant amplitude

of the decay is then

d°k
M =/2mp, / \/Tklom (k1) 1/2k90® (pz — k3) (e, v, 7 | £ (0)| 1) (3.4.113)
1

and the total decay rate is therefore given by

d3k1 2m
Uz zev,m. = /W (1 (ko) 2k?u
1 = _
X {Qm /d(ID (2m)* 6@ (P1 — Pz — Pe — Pu, — Pi) (€, v, 76 | L (0)] wl*|, (3.4.114)
m

where p, = p; — pz = p1 — ks, and the phase integral after the integration over py is

dgpe dgpuu d3p17€

1 = a8 (2m) 200 (@) 2L
)% 2p0 (27)° 2p9, (2)° 2pY,

(3.4.115)

In the formula (3.4.114) the momentum of the muon is ki, so the following approximation
is made | (k1)) = |p(py)) for the expression in the square parenthesis to be equal to the

total decay rate of the muon. Also, for the bound muon
P = (ymu)* = ki + O (1/M) # m, (3.4.116)

where ym,, = m, — Fyina1 and

v=1/1-(Za)*. (3.4.117)

Therefore, this approximation makes the matrix element off-shell, but retains the conservation

of momentum. In the rest frame of Bj: pg = ym,, and p, = k;. Thus, the expression in the
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| | a7 |
Z =10 | 0.99735012
7 =80 | 0.84619822

Table 3.4.3: The mean inverse Lorentz factor for the muon and electron for 7 = 10 and
7 = &0.

square parenthesis in (3.4.114) becomes

1 ~
Gy /d<1> (2m)" 6 (D = Pe — Do — D) (€, 0, 7 |£ (0)] 2 () (3.4.118)
n
1 ~ 4
= o /dq’ (2m)* 0 (vmu — Do — Dy, — pgc) 5@ (pe + Py, + Ps.) (3.4.119)
< e v 7 1£ O 1 (o) (3.4.120)

where in Eq. (3.4.118) the muon momentum is taken p? = (ym,,)* and k? is neglected. The
Eq. (3.4.120) is the decay rate for the free muon with the effective mass ym,, and can be
related to the real muon decay by a scale transformation p — «p for momenta of the electron

and neutrinos. Performing this scale transformation for the parts of this integral gives

d® — ~5dd, (3.4.121)

0 (Ww —DPe =Dy, — p%) 8P (pe + P, + Pr) —

7' (mu —DPd — Dy, — pge) 0® (pe + Py, + Pr.) - (3.4.122)

Making use of Eqgs. (3.4.120) - (3.4.122) gives

T (zp)szevne = LoV (L7, v = /1= (Za)?, (3.4.123)

where
1 ~ _
To=o— /dq)a (mu —pl—p), — p&) 0% (Pe + P, + Pa) (e, vyr Ve |£(0)] 1 (P)) |
“w
(3.4.124)
is the free muon decay rate and
d3k1 2 2m
L™= [ ——(k L 3.4.125

is the mean inverse Lorentz factor. Numerical results for the mean inverse Lorentz factor
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(3.4.125) are presented in the Table 3.4.3 for the cases of Z = 10 and Z = 80.

It is worth pointing out that when Za — 0, the muon wave function is spread over all
of space uniformly. Then the probability of it to decay within the screened Coulomb field
of the nucleus is zero. Thus, in this limit, we expect the decay rate I' — ['y. But for larger

value of Z such approximation is no longer valid.

3.5 Bound Muon Decay Rate to an Outgoing Energetic

Electron: Another Formalism

For the case when the decay of a bound muon results into a highly energetic outgoing
electron a formalism was developed in ref. [2|. This approach can be modified to calculate
the decay rate of a bound muon into a bound electron. But before suggesting this possible
modification, a short summary of the approach developed [2] is presented below.

The Lagrangian describing the Fermi interaction for the muon decay is given by (3.4.1).
The neutrino part of the phase space W, is given by the expression similar to (3.4.80) with

some differences in constant coeflicients:

m
W = ————— (*1pe — dp40 ) , 3.5.1
) Yo (4*Npo — 4pdo) (3.5.1)
and the bound muon decay rate is then
r - _ 26k > /dqzdg—q@ (2m)6 (Ey — E. — ") JPJTTW, (3.5.2)
(Zp)—Zev,ve (27_‘_)6 =~ Eq Ee2 o e po s 0.
Jr = { / d’re P A LD, | (3.5.3)

which is the

solution of the Dirac equation for the muon and ®, for the electron. The 4-momentum

where the average over the muon spin is incorporated in the definition &,

transferred to the neutrinos is q = (q", q), pe is the electron 3-momentum, £, and E, being
the muon and electron energies, respectively. The integration over q? and the angular parts

of the currents J* gives
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1 dr 4 Eu—Ee )
— — 27, +1 d
I. dE. KEK — 5 (2t )/0 | |al

S N |Sral” Skl
x {KE“_EG) ~laf] [K(K+1) TKeKk+D) T (K+DQEE+1)
Sicw (Sl + SEL)" 2 [ |Sih + Skl )
+ (B, — Ee) IQHQIHI[ 2K 1 ] + |q [WHSKK’ ]}7
(3.5.4)
where the amplitudes are
o { =ik = 1) G (lal 1) (G + 90 F)) (355)
(k+1) Uk (la 7) (9:G + [ F))
oo { i () (6= K = 09,6 = (et K= DAF) 0
—i (Jr-1(lalr) [(s+ K+ 1) foG + (k = K + 1) g F])
G { Gicer (jal ) (5 + ) 9:G o+ (K —w +2) o)) (357)
—i (w1 (lal ) [(k — K) fuG + (5 + K +2) g F])
S - { i G (Jal ) (£G = 9eF) (358)
(U (lal ) (9:G + fuF))

and jg stands for the spherical Bessel function of order K g, f. and G, F are the upper
and lower components of the radial part of the solution of the Dirac equation in the Coulomb
potential for the bound electron and muon, respectively. They are defined by (2.3.6) and
(2.3.7). For the amplitudes S the following notation is used

{a) = /O h ardr, (3.5.9)

and the ﬁrst (second) row in each entry corresponds to odd (even) values of [, + K, where
le = ju + 2| - These quantum numbers are defined in 2] In this case j, = || — 5 and for
the given value of K, k # 0 can only take values £K and 4+ (K + 1). Now K can have all
the values from 0 to oo, but K can not be zero in S?(’;l.

Note that in the decay rate Eq. (3.5.4) the outgoing electron can have energy from 0 to
m,, and is normalized in its final state as

(B4, 3:1E', §', j2) = 0 (E = E') 00,5, = 216 (E — E') ;510,51 (3.5.10)

1
p(E)
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T, Erw—
e v Z =10 Z =80
Alchemy’s Result [1] 2.46-1077 2.01-107°
Alchemy’s Result [1]: Corrected 1.42-1078 3.10-107°
Coulomb |2] 1.32-10°% 1.83-107°
Fermi [2] 1.31-1078 2.63-107°
Nuclear parameters for Fermi potential | ro = 2.78, a = 0.55 | 7o = 6.38, a = 0.54

Ty s
Table 3.6.1: Numerical values for 2 )HF(OZE Jeute for 7 = 10 and Z = 80 using the formalism
of |1] and [2]. The first row presents results given in [1|. The last row gives the parameters

used to perform calculations in the Fermi potential presented in the fourth row.

since the density of the states is p (F) = 5. If we want to modify (3.5.4) for the case when an
electron electron stays bound, we should take into account that it can be only in the ground

state (with the discrete energy ym.). Therefore,
dEp(E) — 1. (3.5.11)

Also the values of the quantum numbers for the ground state of muon and electron in Eqgs.
(3.5.5)-(3.5.8) are taken to be K =0, 1 and x = —1.

3.6 Numerical Results

F(Z;L)%(Ze)uuﬂe
To !

where I'z,)—(Zeyv, . 1 the decay rate of a bound muon to a bound electron and I'y is the free

It is convenient to present the numerical results for the decay rates as ratios

muon decay rate, i. e.
Gim?
Iy = 1927r§ . (3.6.1)

The calculations in the formalism |2] are performed by considering two kind of potentials:

Coulomb and Fermi, where for the latter case the charge density is defined as

pr) = — P it / drp(r) = Ze. (3.6.2)
trow (52)

It is worth emphasizing that in the case of the Fermi charge distribution, the Dirac
equation for the muon and electron wave functions has to be solved numerically. To do this
part, we used the mechanism developed in [2]. Now we can compare the numerical values
presented in [1] with the values we get after correcting the signs in the expressions for the
form factors hy and hy given in Eqs. (3.4.60) and (3.4.61) with the ones obtained from the

modified formalism of [2]. The results are given in the Table. 3.6.1 we can conclude that
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changing FF as F; — F! affects the decay rates only for as large Z as 80. Also, the differences
in the numbers for these two approaches [1, 2| are as small as few percents for small Za and
are more significant for larger values of Za: for Z = 80 the discrepancy is of about 41% if

the numbers are compared for the Coulomb potential.
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Chapter 4

Some Limiting Cases

In order to see if the results in two approaches are consistent with each other it is useful

to discuss the following limiting cases:

1. Nearly equal muon and electron masses;

2. Small Z« limit.

4.7 Nearly Equal Masses

4.7.1 Atomic Alchemy’s Formalism [1]

Consider the case where the masses of muon and electron are almost equal, i.e.,
my, — Me = €my,, (4.7.1)

where € is a small parameter. Under the limit ¢ — 0, we have for the decay rate of a bound

muon into the bound electron to be

r- [ ald 4k ga)
GZm? 9

Since under such a limit the electron mass is almost that of the muon, its momentum is very
small and it can not leave the atom. The momentum transferred to the neutrinos is q — 0,
therefore, the FE’s Fy and Fy in Eq. (4.7.2) are evaluated at |q| =0 :

A’k 2k? ., 2 1, _

OBy i ) v (k) P = 2 20, (173)
d’k k9 — 11

£ (0) = /(27;31/)1 (ki) 5 (ki) 13T§n“ =373 (L7, (4.7.4)

where ki = | /k} + m2. Thus, the decay rate

(4.7.5)




. r Zu Ze)v, b
The numerical results for %

4.7.1.

Thus, as the mass of the electron approaches that of the muon the electron does not have

in this limiting case are presented in the Table

enough energy to escape the atom, and the total decay rate of the the bound muon tends to
the decay rate into the bound electron: I'iora — [(z4)—(z¢)- Once € = 0 and m. = m,, the

phase space for the neutrinos reduces to zero and, therefore, no decay can occur at all.

4.7.2 Another Approach

The decay rate for the bound final state of an electron according to (3.4.83) is

d3
= /—q M2, (4.7.6)
(2m)
where in the invariant amplitude
1
IM|* = 5 > T Nag, (4.7.7)

N,z is the integral over neutrino phase space and the tensor J* is created from particle

currents in the following way
JoP = Je (J”B)T, JO = /d?’r(f)e (r)y*L®, (r) e 9™ (4.7.8)

In the case of nearly equal masses the neutrino momentum q ~ 0, therefore, the exponent in

Eq. (4.7.8) is e7'9" ~ 1 and the current becomes
JY = /dqu)e (r)y*L®, (r), (4.7.9)

The ground state wave function for the bound state in the position space ® (r) with the spin

up is given in Eq. (2.3.5) and can be written in an alternative form as
Q4 (r) =G (r)uy (1), (4.7.10)

where )
(2mZa) "2 147y

G(r) Jir  \2r(a+29)

" texp (—mZar), (4.7.11)
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and the bispinor part is

ur(B) = | o
Za
2(1 'y

cos 6

sin fet®

Since in the spherical coordinates

cosf  sinfe?

(o -1T) =0,sinfcosp + o, sinfsinp + o0, cosf = o
sinfe’¥  —cosf

)

(4.7.12)

(4.7.13)

the spinor u, can be written in terms of this scalar product of the Pauli matrices, unit vector

and the eigenvectors of o, as follows

A . :
U+(r):<i(12_fy)(a_.f.)¢+>7¢+:<0>.

Or, in terms of the Dirac matrices

O 2 N1 et APy (U RO TR € kel SN
(5 e ) () e

P+ i(1—7) - v\ _ " oy | P+
:(0>_—Za (7~r)<0):c)w(0>—2(0>,

The hermitian conjugate of u, is then

é T
L@ = ()] = (ot 0)en

and the Dirac adjoint

ﬂ+(f’)=(¢i 0>QMVM’YD_<¢1 0)70957 —(szﬁi 0)/@’*7

where

@ = (e ) = (1),

(4.7.14)

s

(4.7.15)
(4.7.16)

(4.7.17)

(4.7.18)

(4.7.19)



This gives the expression

100 0
s Oy « 00 00
uy (t)uy (') = ( f O) = * 4.7.20
+(P) uy (1) E(O by () =g 0000 7 ( )
0000
For the wave function with the spin down we get in the similar way
2,() = G () u (), u (§) . o= (17.21)
r)=G(ru_(t),u_(r)=1 .,_ , O = , 7.
! W) (g §) ¢ 1
which is of the same form as for u,. Thus, following the same steps we get
0000
0100
u_ (t)u_ (') = " 4.7.22
®a-E = oo ¥ (4.7.22
00 00
and the summation over spins yields
1000
B B B 0100 I +70>
Ul = U Uy +U_U_ = = * 4.7.23
szinzs +Uy 4 0000 7 g( 5 4 ( )
00 00
The current is then
JY = /d3r Ge (1) G, (1) Ue (£) v* Ly, (T) . (4.7.24)

Multiplying it with (Jﬁ )T and keeping the radial part separately gives

“ (%) ~—Zue )Y Ly, (#) @y () 77 Lue ()

spins

= T e () ()9 L (), () 7L

— 4G Ty { ( T )/g'* 3 g(l+7 )gwﬁL]. (4.7.25)

This trace can be split into four terms each of which can be evaluated separately:
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Tr [0 v Lg g+’ L] =0, (4.7.26)
Tr g Lgy o+’ L] =0, (4.7.27)
since traces with odd number of gamma matrices equal to zero. Also,

Tr [g* v Lg 0"’ L] = Tr [gd*v* ¢ #*"RL] = 0, (4.7.28)

where the property RL = 0 was used. Thus, the only non-zero trace is
Te [0y Ly 07 L] = Tr [0+ L] (4.7.29)

and is evaluated with the help of Mathematica.

Contracting the neutrino tensor

2G>
Nap = 37rF

(4ats — 4*7agp) (4.7.30)

with the angular part of J%° leads to
G2 2 [8 /1=\" 16 /1—7)\? 1—7\"
JPNog ~ —L NN =L ) — = == 64 P+ 24
g 487?{(01) S(Za) B(Za)jL (Za)rrﬂL

8(1—x 4 1—7 2 1—7 2
— | = 1 — 64 —— ) 7T — 4.7.31
Q(Za) +6(Za> 6 (Za)nrz 8]}, (4.7.31)

where the following property was used

+q

N
(]

i
PR = Py = ?j (4.7.32)

Using the expression for Za and the fact that after the angular integration over d) and d§’

the terms proportional to 7;7; disappear. Finally, we have
G2 (1 A=0\" 2/ T=7\°
JPN, 5 ~ =L 0= = — )y == S 3
o 67r{(q) s\Wi+y) 3Witqy) ©

_é( %)4”( %)2_1”. (4.7.33)

Now the invariant amplitude becomes

+q?
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2 1 af
|M| :Eg(] Nag,
G2 1/ T=7\" 2/ T=7\°
6T 3 147 3 1+~
4 2 2
1 1—7 1—x 3
—— —_— 2 — ) -1 d’r G, : 4.7.34
9< 1+7) ! < 1+7) ” [/ i (r)g“m} 47:34)
Finally, the decay rate becomes

M’
C L
/d\q!q 57
G2 1/ T=\" 2/ 17\
=S 3 (i2) -3 (Vi) -
127 3 14+~ 3 I+~
4 2 2
1 1-— 1-—
S () A emon] s
Which after the integration over the 3-momentum |q|, takes the form
_ G [ [ T2 J=2 i
1273 3 3 1+~ 3 1+~
4 2 2
1 1— 1—
R T A

5
In the nearly equal masses limit the components of the neutrino 4-momentum are ¢° = |q| =

+q?

+q?

eym,, , therefore,

F—G% 5.5 5 1_742 1_72 &Prg G ?
e e | \(VT ) T 1+~ /re(r) u(r)

G 29% + 4y + 3 2
=~ T30 1 [W} { / d’rGe (r) Gy (7“)] : (4.7.37)

Next, evaluating integral over the position space gives
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(2Zoz)2wr1 (7716771“)7+2 1+~

/d3r Ge (r) G, (r) = = T2 / r7 2 exp [— (me +m,) Zar]

1+7

= (2204)27“ (memu)W% (1T 2) drr* exp me + mﬂ) Zozr]
1 1 + 7 1+ 2y)
= (2Za)> (mem,,) "2
K 2T (1 + 29) [(me—{—mu) Zoszrl
2 2v+1 il 1+ ~
= —— e 2l — . 4.7.38
() e (52 (4.7.35)

Upon substituting into the last expression the electron mass in the limit m. = (1 —€)m,,

/d3rge( 7 G, (r) = (142rv> (1— )3 ] N (H_V) (4.7.39)

(1 _ 6/2)2’y+1 2
If we do not drop the terms O (€?), the expression for the Eq. (4.7.39) would still remains

the same. Consider the normalization condition for the radial wave functions Eqs. (2.3.1)
and (2.3.2)

/dr ) +g(r)] =1, (4.7.40)
where
F) = =), (4.7.41)
therefore,

<1+ L—D /drr2g2 (r=1= /drr2g2 (r) = (HTV) : (4.7.42)

Note that the function G (r) is defined as

(r

~—

<

G,(r)= (4.7.43)

g

Substituting Eq. (4.7.39) into the decay rate formula and dividing over I'y gives the ratio

r 166 ’y 9
— 2 4v + 3] . 4.7.44
AT [27% + 47 + 3] ( )
The numerical values found from this formula are compared to the calculations performed
using the Atomic Alchemy’s formalism [1] in the same limit and those are presented in the
Table 4.7.1. We can consider that two approaches are fully consistent in this nearly equal

masses limit.
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| Z | Alchemy [1] | Eq. (4.7.5) | Eq. 4.7.44
10 1.25-107° | 1.26-10° | 1.26-10~°
80 3.85-107"° [3.83-107"° [ 3.80- 10~

Table 4.7.1: Numerical values for F(Z”}# in cases of 7 = 10 and Z = 80 for the

parameter € = 0.01. The second column correspond to the calculations in formalisms of
[1] and the third and fourth correspond to calculations according to formulas (4.7.5) and
(4.7.44), derived for this formalism.

4.8 Small Za Limit

The purpose of this section is to calculate the decay rate for small Z« limit in approaches
[1, 2] without considering equal muon and electron masses.
The matrix element (3.4.23) can be rewritten if we define the wave function in the mo-

mentum space in the following way

®, (k)zG(k;)( o ) (4.8.1)

ko-l-mXT
where 0 "
+m
= — . 4.8.2
G0 =" 5" (900 + i ) (182)
Then
d®k; -
St = / ﬁ@s (e;ky —q) 7 LP, (u; k). (4.8.3)
7r

The sudden approximation works well for small values of Za since the muon is weakly bound
in this case. To study for which magnitudes of q the matrix element S?. (q) gives the biggest

contribution it can be first rewritten as the Fourier Transform of (4.8.3):

‘ Pk Pk, _
SP (q) = / dPre taT / s / 2 etk P (e ko) VP LD, (115 k) - (4.8.4)
(2m) (27)

Taking the limit of small Z« sets v =~ 1 which makes the spin dependent part of the Dirac
wave function negligible and Eq. (4.8.2) then becomes

Nk0+m

G k)~ —5 59 k), (4.8.5)
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and

kO +m Xr
@, (k) =~ g (F) ( o~ > . (4.8.6)
kO4+m AT

The corresponding decay rate is given by

d*q 1 "
_ / Gy 2 (55 S Nor (4.8.7)

After contracting the matrix elements S? with N,, it becomes

_ G_%/ ’q
37 (27T)3
X Z{ r Ser + |q| [‘Sgr i

ST

a- Sul*| — 20 ol Re ((5%) a5, ) |-
(4.8.8)

Each of the terms in the last expression can be written in terms of form factors A;, that

result from the rotational invariance of the following integrals

[k [ &k
/ d3relq'r/ (27r)13/ (27r)2 TG (ek) G (k) = Ao () (4.8.9)

d3k1 d3k2‘ k:l .
—igqr zr(k1—k2)G k)G (u: k A S A 2) 4 4.8.10
o [ B [ e sccim s o

(2m)° k) +me

/e
/d?’re_“”/ dsk)l / Ko vt k2) (3 (e; k) G (u: k )k—izA2 (a?) ¢, (4.8.11)
/

d3k d3k ki K’
d3r eflqr / 1 / 2 “‘(kl kQ)G (6, k2) G (,u’ kl) - 1 - 2
or)® ) (27)° K 4 m,, k9 4 m,

=745 (d°) + (q”ijj - %5%‘]‘) Ay (q?) . (4.8.12)

Thus, the explicit form of A; is

3 3
A (q?) = /d3r@—iqr/ : k13/ : k236ir'(k1_k2)G(€; ko) G (p; ki) a; (ki ko), (4.8.13)
(2m) (2m)
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where

(9 - k1) (9 - ko)

CL():l a1 = —(—, Ay =
’ kY +m,’ kY +m,’

(ki1 - ko) " _3(a-ki) (4 k) — 3 (ki - ko)
30 +m) (G +me)” 2 (1 +m,) (1 +me)

(4.8.14)

az =
Now, consider the zeroth component of S%

o [k [Pk
S (q>:/ dgre_zq’r/ (27r)13/ Gt G k) G k)

)
Xs 0 0 Xr
X < (ok2) ) T L ( (ok1) )
ngrm Xs k(ll+m Xr

1 o [Pk [ Py
:_/ Pre / (27?)13/ (zn)zge R G (e;ks) G (k1)

ki) (o-ky) (0 - ki) (o - ko)
wrip_lok) 4 N 1.8.15
Xs{ K Fm, Km0 ) (g S (48.13)

The last line can be rewritten using the following property of the Pauli Matrices o
(c-k)=(a-k)(a o), (4.8.16)

which gives
1 .
S (@) = 5 {(Ao +345) xlxr = (A + Ao)xl (@ o) o} (4.8.17)

where A; can be obtained from Eq. (4.8.13). The 3-vector component of S% :

1 , d’k d’ky
Sk = —/dgre’q'r/ ! / 2 eir(a—ka) g e; ko) G (13 k
sr (q) 92 (27_‘_)3 (271_)3 ( 2) (:u 1)

T
Xs Xr
X ( (o-ks) ) VOVkL< (ok1) )7
kg—&—m Xs kﬁl +m Xr

which after the multiplication of the bispinors becomes

1 , d’k d’ky
Sk = —/d?’re_’q'r/ ! / 2 eirla—ka) g e; ko) G (13 k
sr (q) 2 (27’(')3 (271')3 ( 2) (,U 1)

(0 q)ki-q)  (0-4)(Kq) (0 - ko) o" (0 ki) }
k(l)"‘mu kg"‘me (k(2)+me> (k(l)"‘mu) '

X Xl {—ak + "
I 1 k k .

:§XS —A0+A3—§A4 g +A10 (Uq)

+45(0-q) 0" — (o-q) 0" (o q) As} X, (4.8.18)
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Now all the amplitudes in Eq. (4.8.8) can be evaluated one by one. Consider

SIS @] =D (85 (@) S5 (@)

ST

_ iz {(Ao +343)" xIxs — (A1 + A2)" Xt (- @) X}

x {(Ao + 343) xIxr — (A1 + A2) Xl (- @) x» }

1
— Z{2|AO+3Ag,ﬁ+2\Al+AQF}, (4.8.19)

where in the second line we used > x,x! = I and

Likewise,

S8l 8. =20 (5h)' 8%

{( A0+A3——A4> ok—i-A’{(a'-(i)ak—FA;Jk(a'-(i)—(a-d)ak(é-cj)AZ}

2

I
{( +A3——A4) ak—i—Alak(a-Q)—l—Ag(a-Q)ak—(U'él)Uk(U'él)A4}X
i

— Ag— As+ - A4 + Ay |+ |As]* + |44 | — 4Re KAO — As + %A4)* Ay + A’{Ag} } :
(4.8.21)
The cross terms are calculated in the following way
q*- St = %Xi { (—AO + As — §A4) (0-q)+ A+ Ag} Xrs (4.8.22)
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after squaring and summing over s, r

1 4 |
Z|q.ssr|2:z{2 AO—A3+§A4 +2|A1+A2|2}, (4.8.23)
and the last amplitude in Eq. (4.8.8) gives
Y Re[q-80,5%] = ZRe [’f 50]
I N, )
:ZZXr —Ao+ A3 — A (o-a)+ AT+ A5 p {(Ao + 343) — (A1 + A2) (0 - @)} x»
1 . 4

To sum up, the obtained decay rate is

-5 [ S {8 ol ISt 88+ a-S, ]
24" |a| Re ( ( sr)*q-ssr)}, (4.8.25)

where the amplitudes are

2
ZSST. o= {6 AO—A3+3A4 AL+ Ao+ AP
1 *
KAO e ba) ) (1826)
4 | )
Z|q Sor/’ _Z 0= As+ Al +2|A+ A (4.8.27)
50T 1 i 4
ZRG q Sersr _Z 2RQ(A1—|—A2) 2A0+2A3—|—§A4 s (4828)
1
STIse = {2|A0+3A3| +2]A, 4+ A} (4.8.29)

To evaluate which values of q give the most significant contributions to amplitudes we

evaluate the matrix element S.. For [2] its form is the following

S8 (a0 s = . [ 555 ) £ ) (48.30)
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and the corresponding expression for ref. [1] is

Ser () = % {(Ao +343) xIx» — (A1 + A) X[ (- @) xo } - (4.8.31)

In order to compare these two expressions numerically set s =r = % and q = ¢gz:

543 (@) s = 5 | 590 k) s () (18.32)
7, (a) = 2 {(Av+ 340) — (4 + A)}. (4.8.33)

The numerical values for Z = 1 are presented in the Table 4.8.1. Tt can be seen that the
main contribution comes from small values of q and also that the results match each other
very well in that region. Thus, the form factors A; = 0, for ¢ = 1, ..., 4 since their integrants

are proportional to k; or k. The decay rate then becomes

0

q
T 16 2 2 0)2 2
& = g A1l a4 3(d)" ~ lal’|, Za 0. (4.8.34)

0

The FF Ay in Eq. (4.8.34) can be transformed in the following way

) 3k 3k,
AO:/dSI,e—zq-r/ d’k; / d 2eun(kl—kz)G(e;kQ)G(M;kl)

(2m)* J (2m)°
; d3k1 d3k2 : ko +m kO +m
~ d31‘ e tar / / ezr-(klfkg) 1 |2 : k 2 e e; k
/ (2m)* ) (2m)? k) I (i) k) 7 (6 k2)
. A’k Pk,
- /dsr e_zq'r/ (27r)13 / (27r)23 e g (1 k) g (€5 ko)
= [t g k) g ek, (4.8.35)

0

where in the last line we used the plane wave expansion of the exponent e*9*. This analytical

result can be compared to [2| by setting the smaller components of wave function to zero:

0

q
r 16 ) 2
= — [ dlal lal’ (ogeg,)” [3 (@)~ !(ﬂ , Za =0, (4.8.36)
o my
0
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lq| (MeV) Sgé(q) SQ;(QHfull

0.0 1.33-107% | 1.33-1073
0.5 7.16-1077 | 7.17-1077
1.0 4.62-107% | 4.64-1078

5.0 7481071 | 7.51 1071
100 4.03-1071 | 4.70- 1071

Table 4.8.1: Numerical values for SU, (q) for Z = 1. The second column presents results

22
calculated according to formalism in |1], the third - calculations according to |2].

(JogeGu) /dT‘T Jo (1) ge (1) gy (1) - (4.8.37)
0

Thus, under the small Za limit, the approaches considered in [1] and [2] give the same result

for the decay rate.
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Chapter 5

Conclusion

We have calculated the decay rate of a bound muon to a bound electron using Dirac wave
functions for different values of Z in two different formalisms developed in [1] and [2]. For
the latter we performed calculations both for the Coulomb potential and Fermi distribution.

While reproducing the calculation presented in Atomic Alchemy [1], we got different signs
of the A term’s in the expressions for hy; and hy given by (3.4.60) and (3.4.61), respectively.
After making the corresponding corrections and modifying the approach developed for the
case of bound muon to an outgoing electron in presence of a nucleus [2|, we compared the
numerical results of the ratio of bound to free muon decay rate in both approaches. The
two limiting cases of nearly equal masses and small Z« are considered as well. We conclude
that for small Za the differences in the values of branching ratio for both approaches are
insignificant. However, the values start to differ considerably with increasing values of Za
and we find that for Z = 80 the difference is about 41%. As the formalism developed in [1]
is missing the part of wave function that corresponds to possibility of creation of particle-
antiparticle pair, we consider the approach developed in [2] to be more suitable for all values
of Za.

These calculations are going to serve as a base to add the radiative corrections, which
are to be performed according to the formalism developed in ref. [15]. To evaluate them
one can use a code in Fortran whose documentation is provided in Appendix D. A detailed
description of numerical calculations of various Feynman diagrams required to incorporate

these radiative corrections is also given in the same Appendix.
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Appendix A: Pauli and Dirac Matrices
From the commutation and anticommutation relations for the Pauli matrices,
[Uj, O'k] = 2i€jklal, {O'j, O'k;} = 25jk:7 (5838)

it follows

00 = Ojk + i€jk101. (5839)

Multiplying Eq. (5.8.39) by a; and a; in turn,

0j (akak) .: Q; + igjklakal ' ’ (5840)
(ajaj) Or = ai + EjkIA;0] = Qf + 1€k1; 01045

or in the vector form

o(o-a)=a+tilaxal (5.8.41)

(0-a)o=a+ilo x a
Thus, from Eq. (5.8.41) it follows that

(c-a)(oc-b)=(a-b)+iflocxal-b
=(a-b)+io-[axb]. (5.8.42)

Properties of Dirac Gamma Matrices in D-dimensional Space

Here are some properties of v-matrices in D-dimensional space, where D = 4 — 2¢, € — 0.

The commutation algebra is y#~y7 4+ v7y* = 2nH7.
Yt =4—-2e=2(2—¢), (5.8.43)

WYV = (20— A7) = 2(e — 1)1, (5.8.44)
WA = @0 = A7) = 297+ 2(2 = )T =4 = 2097 (5.8.45)

VP VTP =295 — (A7 — 2ev797) o = =298 + 2evr7P. (5.8.46)
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Different Representations of Gamma Matrices

Weyl representation:

0 I 0 oF -7 0
0 k 5
: ’ = , 5.8.47
7 ( I 0 ) 7 ( —agF 0 ) 7 ( 0 I > ( )

0 I —of 0
B=y ( I o ) 7y 0 o ( )
A transformation from the Weyl representation to the Dirac representation is a unitary
transformation
1 -1 1
U=— , (5.8.49)
V2 \ I I
which gives:
) 1 Op— O
op= ()= Upw =U| " === "% "], (5.8.50)
g dr \/§ br + Pp,

where the index D stands for the Dirac representation and W for the Weyl.

The transformation of v matrices:

o =UywU™ (5.8.51)

I 0 0 oF 0 1
0 k 0.k 5
—= s = —_= 5 = . 5852
K ( 0 —I > e ( —ok 0 > 7 ( I 0 > ( )

The Dirac a and S matrices:

. (T o0 s [0 o
5_7_<0 _I>,a_<0k 0). (5.8.53)

The chiral projections are defined as:
I -1
. (5.8.54)
-1 I

L=1(1-7)=

N | —
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Appendix B: Dirac Equation for Particle

in Electromagnetic Field

The following Appendix summarizes some properties of the free Dirac equation. A useful
reference for this part is [9].

The Dirac Equation for a free electron (in natural units h = ¢ = 1)

.0
ZE@ (t,r) =H(r)P(t,r), (5.8.55)
Ho (r) = (- p) + Bm, (5.8.56)

where a and [ are 4 X 4 matrices in the Dirac-Pauli representation

0 o I 0
e=(2 )01 2) .

with o = (0,,0,,0,) being the Pauli matrices

01 0 —i 1 0
Oy = o= o= , (5.8.58)
10 i 0 0 —1

and [ is a 2 x 2 identity matrix. a and [ satisfy the following properties

a2 = B2 - ]Ia {ai7 Oé]} = 2513]17 {aia 6} = 07 (5859)

1

Oé;r = oy, BT = 57 (5860)

where I is the 4 x 4 identity matrix and J;; is the Kroneker delta symbol. In terms of the

conventional gamma matrices

= (") = (B,8a), {1*,7"} =2n""1L (5.8.61)

In Eq. (5.8.56) p = —iV is the momentum operator, which is the spatial part of the 4-
gradient 0¥ = (%, —V)

pt =i0" = (p°,p) = (i%, —N) , (5.8.62)
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and @ (¢,r) is a 4-component bispinor

O (t,r) = ( g ((::; ) : (5.8.63)

where ®“ (¢,r) and ®* (¢,r) are the upper and lower components, respectively. Multiplying
both parts of the Dirac equation (5.8.55) by [

i (1,x) = 3 (e p) + ] @ (1,x) = (7 ) +m] 8 (1.7). (5.8.64)

0 0
= |ifo —(y-p)—m| ®(t,x) = |’ +i(y- V) —m| P (tr)=0,
ot ot
[id —m]® (t,r) =0, (5.8.65)
where J = 4#0,, and Eq. (5.8.65) is the Dirac equation for a free particle. Its conjugate gives

O (t,r) [iv"0, +m] =0, (5.8.66)

where the Dirac conjugate ® (,r) is defined as

d(t,r) = d (¢,1)7°, (5.8.67)

o' (tr) = (@ (1r) B (1) ). (5.8.68)
After multiplying Eq. (5.8.65) by ® on the right and Eq. (5.8.66) by ® on the left and then
adding them together, we have
B[id —m]®+ D [id +m]® =0, (5.8.69)
or
Py (p, @) + (puP) 1P = 0. (5.8.70)

Defining the probability current density as
ju(t,r) =i® (t,x)Y*P (t, 1), (5.8.71)

Eq. (5.8.70) can be rewritten as

in (¥) _ (5.8.72)

0x,,

that is just the continuity equation. The zeroth component of Eq. (5.8.71) can be used to
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define the probability density for p (1), which is the charge density divided by the charge of

the field, and it can be written as
—ijo (t,x) = p(t,r) = ®T (t,¥) D (t,1). (5.8.73)

The Dirac equation in the momentum representation

0.0 (1.p) = Ho (p) (1.p). (5.8.74)

where H (p) is defined in Eq. (5.8.56). Substituting expressions (5.8.57) and (5.8.63) for «,
S and @, respectively, in Eq. (5.8.74) leads to

0 (e(tp)\ (0 o dv (t,p) I 0 o (t,p)
"ot ( ® (¢, p) ) B ( o 0 )p( ®* (¢, p) >+ ( 0 —1> ( ® (¢, p) )m (5.8.75)

which splits into a system of two equations

zﬁq)ua—(tt’p) = (o -p) P (t,p) + md" (t,p), (5.8.76)
z% = (o -p)d“(t,p) —mP* (t,p). (5.8.77)

When the states are stationary @ (t,p) = @ (p) exp (—iEst) each of them can be labeled

with the index s and the Dirac equation is then
Ho (p) @5 () = Es®; () - (5.8.78)
Equations (5.8.76) and (5.8.77) for such cases become

(E—m)®"(p) - (o-p)®(p) =0,

(E+m)® (p)— (o -p)d*(p) =0, (5.8.79)

where the indices s, which however are understood, were dropped for brevity. In order to

have non-zero solutions for (5.8.79), the following condition has to be satisfied

(E—m) —(o-p)

Cep) (Bam) | T E M ol@pep) =0 (G850

The last term in Eq. (5.8.80) is (o - p) (o - p) = p? according to the Pauli matrices’ property
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(5.8.42):
(o0-a)(o-b)=(a-b)+iolaxb], (5.8.81)

and the whole expression for the energy is

E =++/p? +m?. (5.8.82)

Thus, the Dirac equation (5.8.55) has both positive and negative solutions.
The Dirac equation for an electron in electromagnetic field can be obtained from Eq.
(5.8.65) by the following substitution for the 4-gradient

O" — DF = 0" + ieA”, (5.8.83)

or by
p* — pt — eAX, (5.8.84)

in the momentum representation, where A, is a 4-vector potential
A* = (V A), (5.8.85)

with V' being the electric potential and A being the magnetic potential. Equation (5.8.65)

then becomes

V" (p, — eA,) —m] @ = 0. (5.8.86)

Multiplying the last expression by 5 and remembering that v*3 = (I, ), we get

i3 4 _
{(I,a)(_p)—e([,a)(_A>—mﬂ}<D—O, (5.8.87)

which can be rewritten in terms of the Hamiltonian for the electromagnetic field Hgj, (r)

0P
ot
Heyv (r) =a- (p—eA)+eV +mp. (5.8.89)
The Coulomb field at the point located by |r| away from a nucleus with a charge Z is
given by
Z
A=0, V()= % (5.8.90)
r
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and the Dirac-Coulomb Hamiltonian is therefore

e2Z
Hpe(r)=a-p— It +mp. (5.8.91)
The solutions for the stationary equation (5.8.78) with Hpc (r) are given by continuous
spectrum of energy E € (—oo,m| U [m, +0o0) for free electron states. The solutions corre-
sponding to a bound electron (finite motion) are given by the discrete spectrum in the range
E € (—m,m).
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Appendix C: Free Muon Decay

The invariant amplitude for the Feynman diagram (5.8.1) is given according to Feynman
rules from [13] (Section 4.7) by

M =LL° D, (p1 — Py,) (5.8.92)

where L” is the vertex between the incoming muon and outgoing muon neutrino:

L = (1, k) [—i%’yﬂl _271 w(py,), (5.8.93)

and L? is the vertex between the outgoing electron and electron antineutrino

1— 5
L7 = (e, ko) [_i%VU 27 } v (pPz.)

The propagator of the mediating W~ boson is

_inpg —koky inpe

Do 0 = =032 ~ 2pg,

(5.8.94)

where was used an approximation which follows from the fact that the boson’s mass My, ~
80.4 GeV is much greater than that of a muon m, ~ 0.106 GeV. Substitution of the corre-

sponding expressions into the invariant amplitude gives

2
M = gJ\ZZ‘Tﬂ (1, 51) 7 (1= 7°) w (pu,) @ (e, ka) 77 (1= %) v (py,) (5.8.95)
w

Also, the Fermi coupling constant Gz can be used

Gr 9’
L =7 5.8.96
N (5.8.96)
to bring the amplitude to the form
Gp _ _
M = " (k)7 (1 =) u (py,) @ (e, ka) 7, (1 =) v (ps) (5.8.97)

V2

where the gamma matrices were contracted with the metric 7,,. The squared amplitude is

IM|* = MM, (5.8.98)
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Figure 5.8.1: Feynman diagram for muon decay in the Standard Model.

where the hermitian conjugate is derived to be

M= [?/g (1, k1) v (1 =) u (py,) @ (e, ka) 7, (1 = 7°) v (ps.)

r
- 3% o (pe) (1= (7)) 9 (e k)l (p,) (1= (7)) (7)1 2w e be) . (5.8.99)

Using the following properties of gamma matrices
f t
(") =" {7" 7 =7 4% =0, ()" =", (5.8.100)

brings the invariant amplitude to the form

M= %v (pr.) (L4 7°) vpu (e, ko) @ (po, ) (L4 9°) v u (1, k1) - (5.8.101)
Next, the squared amplitude should be averaged over the initial states and summed over the
final ones:
M[* = Z ) (1+7°) vou (e, ko) @ (py,) (1+7°) 7w (i, ky)
spins
X (k)7 (L =7") u(py,) (e, ko) 7o (1 =7°) v (ps.) - (5.8.102)
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The inner part of the last expression can be considered separately:

> i (py,) (1+9°) v u (k) @ (1 ke) 77 (1= °) w (py,)

spins
= u(py,) @ (pr,) (147°) Yu (k) a (k)77 (1=77)
spins
=Tr [p,, (1+97) 7" K +m,) 77 (1=97)] (5.8.103)

where was used the completeness relation for Dirac spinors

> u(p)a(p) =p+m. (5.8.104)

spins

Since the trace is just a number it can be taken out from the middle of the expression
(5.8.102):

MP = S, (1+ )2 (s +1m,) 7 (1= 7))

x Y o(ps.) ) ypu (e, ko) @ (e, ko) o (1—7°) v (pa,) (5.8.105)

spins

and the same method can be applied to the sum that is left

MP = SR [, (144%) 97 06+ m,) 37 (1= 79)]
X Tr [y, (1+7°) 7, Kz +me) 76 (1 —7°)] . (5.8.106)

The terms in the traces proportional to the masses disappear since they contain the odd

number of gamma matrices. Thus, the last expression simplifies to

Gt iy (1= 77) Ko (1 )]

x Tr (.7, (1 —7°) Koo (1 —7°)] - (5.8.107)

IMJ* =

where was used the fact that (1+7°)y* = 4*(1 —~%). The rules from [19] p. 263 for
evaluation of such traces give
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G2 o
M ==F 2T (44077, ) + 8677 (b)), (K1),
x [2Tr (%Kz%pve) + 8iépmk§’pi]
R T

x |(02), (bw.), + <k2>g (n) = (k2 D) o + i2mesk3S, | (5.5.108)

Both expressions in the square brackets in two last lines contain three terms of symmetric
tensors and the forth antisymmetric term. Thus, noting that the product of an antisymmetric

and symmetric tensor yields zero, the invariant amplitude becomes

IM|? =16G% {2 [(ki ko) (o, - D) + (k1 - i) (ko - Dy, ]
—er 5 (b)), (k1) , KIS, } . (5.8.109)

Applying the following identity
€770 s = —20205 + 20505 (5.8.110)

and putting together all the terms finally gives

IM|* = 64G% (ki - py,) (k2 - Do) - (5.8.111)

The general formula for the differential decay rate is given in [13] p. 107 in Eq. (4.83).

According to it the differential rate for the free muon decay is

al' =

1 [
IM|*d, (5.8.112)
2m,,

where d® is the phase space of the outgoing particles

d3ks py, d*py,

d® = (2m)* 6@ (ky — ko — Py, — Do 5.8.113
(2m)7 0% (la = ke = py, = pu) (27)° 2E, (27)° 2E,, (27)°2E,, ( )
Next, the integration over the neutrino momenta is easily performed
d’p d’p 4
o8 — / Ve v (2m)" 6 (q = py, — P ) PDS
(27r)3 2F;, (27?)3 2E,, (2m) (q P =P e) Pr.Pr,
11 N o

= e (a®n*” +2q°q") (5.8.114)
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since it is of the same form as in Eq. (3.4.71).

Since it it is assumed that the electron is massless |ky| = E. and then the differential
decay rate is
262 )
dl' = —L = [(ls - k) " + 2(ki - q) (ks - q)| EcdE. (5.8.115)
3m,, (2m)

In the rest frame of the muon k; = (m,, 0), the kinematic relations are

(ki - ko) ¢° = myE, (m? — 2m, E.) (5.8.116)
(kl . q)(kg . q) = (k% — k1 . kg) (kl . kg - kg) = (mi - m“Ee) muEe, (58117)
G%m
r=—f£* — 4AE.| E*dE.. 8.11
d 5 [B .| E2dE, (5.8.118)

Next, consider the energy of the muon neutrino

By, = |pu| = [Ps. + ko| = /B2 + E2 + 2E,, E, cos . (5.8.119)

It follows, that depending on values of the angle 6 the muon neutrino’s energy is in the

following range
|Ey. — Eo| < E,, < Ep, +E., (5.8.120)

or, after applying the conservation of energy

my

|Bp. = Ee| <my — Ee = By, < By + E. = B < =~ (5.8.121)

The last expression gives the limits for integration over E, in Eq. (5.8.118). After performing
the integration, the free muon decay rate is obtained:
g?m G2’

= L = £, 5.8.122
614473 My, 19273 ( )

Lo
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Appendix D: Documentation of Fortran

Code for Bound Muon Decay

When measuring properties of atoms, it is important to take into account effects of quan-
tum electrodynamics (QED). Of those effects the most important one is the radiative self-
energy. For hydrogen-like systems, the level shift scales like Z* which makes it significant
for high-Z ions. For aZ < 1 this effect has been usually calculated as a series expansion of
aZ. But for Z > 10 this method is no longer valid since the terms of higher order are not
sufficiently small any more. Hence, aZ should not be treated as a perturbative expansion

parameter any more.

Basic Formalism

The following section briefly summarizes results presented in ref. [15]. The energy shift

of a particle in a bound state a to the first order in « is:
AE, = 2ia / dw/dr'dr@l(r’)apG(E —w;r', 1) D,y (w, " —1)a P, ()

—om / dr®,(r)®,(r), (5.8.123)

where @, (r) are the bound state solutions of the Dirac equation for the Dirac-Coulomb

Hamiltonian (5.8.91) given by Eq. (2.1.10) and dm is a mass counterterm. The Dirac-
1

Coulomb Green’s function G (w;r/,r) = can be expanded as series in the free Green’s

w—Hpc
function G° (w;r' —r) = —L ! using the identity first introduced in [17].
1 1 1 1 1 1 1
= + V + V V . (H.8.124
w—Hpe w—Ho w—Hyg (r>w—7-[0 w — Ho (r)w—’H <r)w—Ho ( )

Here H, is the free Dirac Hamiltonian defined in (5.8.56). Inserting expansion (5.8.124) into
(5.8.123) we get the three more terms which we label to be zero-potential, one-potential, and

many-potential terms respectively:

AEC(LD = Aszero + AEjone + AEﬁmany - 5m / dréa(r)q)a (I‘) (58125)

1Since it does not contain the interaction with the nucleus it has the translation symmetry.
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Figure 5.8.2: The self-energy shift expanded as the sum of zero-, one- and many potential
terms, respectively. The double line corresponds to the bound propagator and dotted ones
to interactions with the nucleous.

Figure (5.8.2) depicted the Feynman diagrams corresponding to this expansion. The
expression for the zero-potential term follows immediately from (5.8.123) by substituting the

free Green’s function in place of a bound one.
AE,e0 = 2icx / dw/dr’dr@l(r’)apGo(E —w;t' —1)a’ Dy (wir’ —1)P,(r).  (5.8.126)

The one-potential term corresponds to one interaction with the nucleus, so the expression

for it in terms of the free Green’s functions is
AFogpe = 2ia / dw / dr"dr'dr(I)Z (") o’G° (B, —w,r’ —1")

xV (|r") GU(E, — w,t" —1)a’ D,y (w;t’ — 1) &, (r). (5.8.127)

It is convenient to convert the zero-potential and one-potential terms into the momentum

space and the energy shift (5.8.123) becomes
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MBS :/ (2m)3 Pa (p) (=*(p) — 6m) @ (p)
dp’ dp - 0 ,
+/ (27)3 (27) ;20 (P) (0, p)V (Ip = P|) a (P) + A Ermany, (5.8.128)
where

d*k 1 p—K+m
0 . o
20 (p) = —4ma/ R Ty (5.8.129)

is the self-energy correction, and

. dk 1 p—K+m p—K+m
FM / :—4 T o K
(¥, p) ma/ (27 ) K2 le (p/_k)2—m?’y (p—k)z—mQ%

(5.8.130)
is the vertex correction,
AEByany = 2ia/dw/dr’dr@l(r’)aPG%(E —w;r’ —1)a’D,yp(w;r’ —1)P,(r).  (5.8.131)

Both zero-potential and one-potential term should be dimensionaly regularized. These
energy shifts are solved by using the program, which functioning is described in the following

section.

General Structure of the Program

This program is developed by A. Volotka. The purpose of this section is to explain its
main functional. The general structure of the program is shown in the block-diagram (5.8.3)

and the different parts of the program are explained below.

Gaussian Quadrature and B-Splines

The directory bsplines contains files in which solutions of the Dirac equation in a cavity of
radius xcav are approximated with piecewise polynomials. For that purpose file de _boor.f
contains a subroutine BSPLV which generates values of the B-splines B ;. (z) of order k at

x for the knot sequence {t;},i=1,2,....

Buyr)={ DS <ln (5.8.132)
" 0, otherwise ’ o
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bsplines

bsplines9.f
Generates values for B-
splines

generate.f
Generates grid for
numerical calculations for
electronic states

generatem.f
Generates a more compact
grid for numerical
calculations for muonic
states

common.inc

Contains some parameters
used throughout the
program

Contains the main body of
the program

worksheet.f
Used for some numerical
calculations of wave
functions

zp_irr.f

Calculates zero-potential term

op_irr.f

Calculates one-potential term

mp_irr.f

Calculates many-potential term

v v

v

py_irr.f poles_irr.f
Principle Sum of all
value the poles
v
pole_irr.f
The half-pole

mpcore_irr.f
Performs
integration
for PV and
Poles

re_zp.f

Reducible zero-potential term

mp.f

Reducible many-potential term

v v

v

.Pv'.f poles.f
Principle Sum of all
value the poles
v
pole.f
The half-pole

mpcore.f
Performs
integration
for PV and
Poles

Figure 5.8.3: Directories and files contained in them.
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r—1t;
Bip(x) = ——B; 1 (z) +
# (@) Livk—1 — 1 -1 () Livk — tit1

kT g (@), (5.8.133)
where k = 2,3... .

The file bsplines9.f stores grids for integration for given parameter na which is the
number of internal knots of the grid. The files generate.f and generatem.f both generate
the necessary basis sets with the difference that the first one does it for electronic states
and the second one - for muonic. As a result, whenever the integration is done with the
help of the Gaussian Quadrature two choices of grid are possible: grid - a more sparse
one or gridm - a denser one, but defined over a smaller region. The latter grid is needed
to be introduced due to the following fact: the wave function of a muon is localized over
smaller position space than that of an electron, therefore, the grid fit for electronic wave
function does not have enough knots to make integration as precise. The relative difference
in the intervals between the consecutive knot of these two grids can be described be the
relation: grid (i) — grid (¢ — 1) = amass_a|[gridm (i) — gridm (¢ — 1)], where amass a
is the muon mass.

The Gaussian Quadrature rules which are used by the splines later for integration:

0 Tmax Na Tii4+1
/f (r)dr — /f (r)dr ~ Z / f(r)dr, (5.8.134)
0 0 w=0 ..
then in the last integral the following substitution is made r = ry; + (ry.1 — 73;) T
Na Tii4-1 Na 1 N
3 / Fydr =Y / Fyde =S wif (). (5.8.135)
=0 7 ii=0 ", ii=0 jj

Here w;; are the weights which are stored in the program in cc(jj,iNstor/iNstme),
the values of z;; are stored in xx(jj,iNstor/iNstme) and jj = 1, Nstor(iNstme). Both
cc(jj, iNstor /iNstme) and xx(jj, iNstor/iNstme) are generated by the subroutine DO1BAZ
contained in the file with the same name in the directory intagration. And values for
both iNstor and iNstme are stored in the Block Data at the end of the file main.f in
the directory main. Variables r; and 7,41 are given in the program by r0 = grid(ii) and
rl = grid(ii + 1), where ii runs from 0 to na. The parameter xcav = 1/(amas_a/b) de-
fines the extent of the cavity over which the grid for the numerical integration is stretched. It
is also defined in main.f and amas_a/b correspond to the muon/electron mass, respectively.

The file generate.f contains the following useful functions:

1. getgf(gg, ff, ix, kax, i _ab, ib, r) gives g(r) and f(r) as the output gg and ff, re-
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1 2 3 4 < firstinput

e

second input

Figure 5.8.4: The structure of the stored data for the Gaussian Quadrature integration.

spectively. The input parameters: r is a variable defining position, kax is x, given in

(2.1.47), ix is the number in the spline basis nn_a/b which is given by nr2nn,

2.
) 0, formuon
i ab= ,
- 1, forelectron
3.
0, free state
ib=<¢ 1, boundstate

2, perturbed state

4. getenn(ix, kax, i _ab,ib). Gives the energy of the state corresponding to the parameter

ix, which is the principle quantum number n.

5. getern(nr, kax, i _ab). Gives the energy of the state corresponding to the parameter

n,, which is the radial quantum number.

The file generatem.f contains the functions getgfm, getennm, geternm which do the
same thing as the functions listed above only on the muonic grid gridm.
The file bsplines9.f contains a function nr2nn(nr, kax) which generates principal quan-

tum numbers from the radial quantum number n, and the number k,,.

Calculation of Self-Energy Corrections

The self-energy correction amplitude A can be written as the sum of the the zeroth-order

80



Figure 5.8.5: The zeroth order correction amplitude A©),

and first-order correction amplitudes:
A=A 4 AW (5.8.136)

where AWM = A(irred) 4 A(Lred) 1 A(Lvertex) ig the sum of irreducible, reducible and vertex

contributions. The expression (5.8.136) can be rewritten:
A=AO (1 + 95“)) , (5.8.137)
m

where 6(1) = %g. The program calculates numerical values for these ¢’s in the modules

irred and vr.

The Zeroth Order Correction

The amplitude for the bound muon decay (5.8.5) into the bound electron to the zeroth

order:
A© = (e ||6Vi]| p) = (1) / dr ji (wr) [GeG LGy (Ke, k) + FoEF,Gr (—ke, —k,)],  (5.8.138)

where [ is the orbital quantum number, j; is the Spherical Bessel Function, w = E, — E, is
the difference between the muon’s and electron’s energies, respectively, 0V is the interaction

with the nucleus

1
Tyo#), (5.8.139)

Vi =gilwr) ) o 7%

where (e ||6Vj|| p) is a reduced matrix element, which doesn’t depend on the projections of

angular quantum numbers and follows from the Wigner-Eckart theorem:

<e||5vl|m>:[<—1>je—me< Jeo b )] (e Vil ). (5.8.140)

—Me ™M My,
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S S

Figure 5.8.6: Irreducible correction amplitudes. The double line corresponds to the bound
state, the dashed part of the diagram is the muonic state.

where functions G, /. and F}, . are defined in Eq. (2.2.2), and the function G; (k1, K2) is

Gi (1, k2) = (—1)7**% /(21 + 1) (2 + 1) (24 + 1) (25 + 1)

Lol g
N B R S (5.8.141)
000)| 5L L

This quantity is calculated in the main.f in the module Matrix element: <b | | j_1(wr)
sqrt(4\pi/(214-1)) Y 1| | a>. Later this value is assigned to the variable pvalue red for

calculations of 6,

Irreducible Parts

Altimed) _ J § e X (o)) {nloVi ) 3 <6!5W\n}>ge<n_|%;(f7u)lu>

n#ne n#ny
x[(—l)je‘%< e f)j)] = (eI%. ()l o) + (e IS, )l ), (5.8.142)

where

Sejp (Bepp) = 2vi / dwy,G (Eejp — w) ¥ DM (w) (5.8.143)

The expression (5.8.142) gives the irreducible contributions of the sum of the diagrams
(5.8.6) (or so-called wave function corrections). In the program they are calculated and
located in the directory irred and start in the file main.f in the modules called < b |
SIGMA | da > and < db | SIGMA | a >, respectively. To both terms of Eq. (5.8.142) the
potential expansion as in (5.8.2) is applied and the calculations of the corresponding zero-
and one-potential parts are done in the files zp _irr.f and op_irr.f with the only difference

in the starting parameters.
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Zero-Potential Term

File zp_irr.f in the directory irred.
For < b | SIGMA | da > the amplitude A4 is given by function dE_zp_irr in the

program and has the following form

o0

; o
A(l,lrred,l) :E/dep

0

< {ape) (i — ToFon) + 0o Be (5 + Fefin) + » (5o — Tedon) }

(5.8.144)
where the integral is given by the function zp func_irr (p), and
2p
a(p) =2m 1+ 1 Inp |, (5.8.145)
b(p) = —2=L (14 L) (5.8.146)
1—p 1—p ’

where p = 1—;—22.

For the part < db | SIGMA | a >

o)

: «Q
A(l,lrred,?) :E/dep

X {a(pp) (@ség} - .ﬁeﬁ) + b(pp) B <§ée§u + ﬁieﬁ) TP (%6}; - ﬁse%)} '
(5.8.147)

The integration from 0 to oo in the momentum space is calculated with the employment

of the following substitution of variables and splitting of the interval by py = aZmg:

%) Po 00
p = pot? / p="5
d = + ¢ d
s \/LWA%MJ [@:_%2 pf (o)
0 0 po
1 1
- /ngt + /% dt f (1), (5.8.148)
0 0

where f stands for some function.

The radial functions g and f are converted to the momentum space with the use of the
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Spherical Bessel Transformation (SBT):

47T/d7’7‘ g(r)g(pr), (5.8.149)
F(p) = 4r / drr? f(r) i (pr). (5.8.150)

0
In the program this is done with the use of the function ftr wf(p,lkey,f (r)) contained in
the file ftr.f in the directory integration. It performs SBT j; (z) of order [ for the function

f (z) into the momentum space p:

/f () 1 (z)dz = /f (z) [A (x)sin (wzx) + B (z) cos (wx)] dx,

ey ( 01 2 3 )
g f 95 Js
The coefficients A (z) and B (x) are defined in the program as sph_jl sf and sph_jl cf,
respectively, and contained in the file sph_j.f in the directory bessels. And the function
anf wf a/b(r) gives GT/Fjl (pr) rz\/gp. They both use the subroutine d0lanf (f, a, b, w,
KEY, EPSABS, EPSREL, RESULT, ABSERR, 1 W, LW, IW, LIW, TFAIL) which is located
in the directory integration and it calculates an approximation to the sine or the cosine
transform of a function f over the interval [a, b]:

KEY=1: ,

RESULT = /f (x) cos (wz) dx,

KEY=2: ,

RESULT = /f (x) sin (wz) dx.

One-Potential Term

File op_irr.f in the directory irred.
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For < b | SIGMA | da >

. dp1d
(Lirred3) _ / (‘;T)m@ (P1) TR (p1,p2)V (IP1 — Pal) ®sp (P2)

//dpldp2/d£ 2 {F (01,92, €) PL(E) + T (1,02, €) B (E)}

(5.8.151)
and for the part < db | SIGMA | a >
ALirred,4) :/ dp1__dp> @5 (p1) T°(p1,2)V ([P1 — P2|) Dy (P2) (5.8.152)
(2m) % (27)? ’ S

which are given by
2

Q@
dE_op_ irr = ——op_int_irr ().
_op_ 2 (2 Pt ()

The program gives results in the form
Abred) B op_irr
AO o pvalue red

s = X pi x acl

To perform the double integration in the momentum space the following change of vari-

ALY Ay o
7f<r>dr—7[f<—r>+f<r>]dr.

—p 0

ables is made:

pP1 =

P2 =

S-S

and

For the integration in the momentum space p the substitution of variables is done accord-

ing to (5.8.148):
Po o]
op_int_irr() = /+/ dpop_p irr(),
0 Po

where py = 2aZm,, and
op_int_irr () / op_pr_irr (r) + op_pr_irr (—r)] dr,
0
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Figure 5.8.7: Irreducible correction amplitudes for many potential terms.
where the substitution r = pt?, dr = 2ptdt is done. Now

op_pr_irr () =op_pp_irr () X p1 X pa
1

op_pp_irr() = /op_ppz_irr() dz,
1

where z = 1 — 2¢? is the cosine of the angle £ in (5.8.151), and
op_ppz_irr() = (F_l xP 1+F 2x P_T) xV_pl p2()

with P_1 being the Legendre polynomials defined up to [ = 2, and V_pl p2() is the

potential contained in the file potential.f.

Many-Potential Term
Files mp irr.f, mpcore irr.f, pv_irr.f, poles irr.f, pole irr.f, in the directory

irred.
For < b | SIGMA | da >

(1,irred,mp, 666 |I )‘ ae(s:u> <CY€ ‘V| Z.€> <i€ ‘V‘ 6@)
AT ! 27r/ Z E.—w—FEp)(Ee—w—E,)(E.—w—E;) (5.8.153)

Qe,fe e

(1,irred,mp,2) __ L (6eBu |1 (W)] ) v [V ] 3) (i V| Bu)
4 T LV iy ey Y e

exp(i\/ w? +i§)r12

T12

where I (w) = e?a’a’D,, (w) =a(l —a- a)
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After the Wick’s rotation each expression can be split into the sum of three terms

A(Lirred,mp) _ A(l,irred,PV) + %A(l,irred,pole) + Z A(l,irred,poles)’ (58155)

te/u

Ei<E€/N

which are the principle value, half-pole on the the imaginary axis and sum of the remaining

poles.

Important Notes

In the file main.f after the 424th line, the calculation of the wave functions perturbed
by the decay begins. In this case, the perturbed muon wave function (da) corresponds to
the wave function of the virtual electron with angular quantum numbers j b, 1 b, and
conversely, the perturbed electron wave function (db) corresponds to the virtual wave func-
tion of the muon. The spline decomposition coefficients are stored in the array gfcoef(-,-
~nn_bka b1,2) for da (430-433 lines) and in gfcoef(--,-,nn_aka a,0,2) for db (443-446
lines). These wave functions are calculated in the momentum space by the function ftr wf
which takes (p, 1 a/2, 2, anf wf a) as its arguments for the state db. This can be seen if
refer to the file ftr.f where in this case the function getgf ( gga, ffa, nn_a, ka _a, 0, 2, r )

is called, for which the parameters 0 and 2 are the parameters of the function db.

Make File

Here are listed some important inputs and outputs of the program.
1. Directory main:

(a) File main.f:

i. subroutine inp data () calls for initial values of some parameters;

ii. subroutine rad init () calls for generation of the grid and potential values
for corresponding grid knots;

ili. subroutine ext init () checks normalization of wave functions in the coordi-
nate and momentum spaces, calculates the zeroth order of amplitude (5.8.138).
It calculates and stores values for perturbed wave functions |da> and <db|;

iv. Calculates the irreducible parts for < db | SIGMA | a > and < b | SIGMA |
da > by calling subroutines ZP_IRR (), OP_IRR () and MP_IRR();

v. Block data stores vales for Nstor, iNst, iNstm and iNstv.
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(b) File worksheet.f:
i. subroutine worksheet 1 () calculates energies and wave functions of a and
b states;
ii. subroutine worksheet 2 () calculates matrix elements \/{a [r2[a) , (a|[r x @]_| a)
and (a |G (g,r1,r2)|a);
ili. subroutine worksheet 3 () calculates the zeroth order of amplitude (5.8.138),

calculates and stores values for perturbed wave functions |da> and <db|.
2. Directory bsplines:

(a) File bsplines9.f:
i. subroutine bs_grid () generates a grid inside the nucleous, exponential and
non-exponential grid;
ii. function nr2nn(nr, kax) which generates principal quantum numbers from the
radial quantum number nr = n, and the number kax = k,,.

(b) File generate.f:
i. getgf(gg, ff, ix, kax, i _ab, ib, r) gives g(r) and f(r) as the output gg and

ff, respectively. The input parameters: r is a variable defining position, kax
is K, given in (2.1.47), ix is the number in the spline basis nn_a/b which is

given by nr2nn,

0 f
i ab— { , or muon

1, forelectron

0, free state
ib = 1, bound state  ;
2, perturbed state
ii. getenn(ix, kax, i _ab,ib). Gives the energy of the state corresponding to the
parameter ix, which is the principle quantum number n;
iii. getern(nr, kax, i_ab). Gives the energy of the state corresponding to the
parameter n,, which is the radial quantum number.
(c) File generatem.f (do the same calculations as generate.f only for muonic grid):
i. getgfim(gg, ff, ix, kax, i_ab, ib, r);
ii. getennm(ix, kax, i _ab,ib);
iii. geternm(nr, kax, i_ab).

(d) File de boor.f generates values of the B-splines.
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3. Directory irred:

(a) File zp_irred.f contains subroutine ZP _IRR () which calculates self-enegy cor-
rections (5.8.129) for < db | SIGMA | a > and < b | SIGMA | da >;

(b) File op_irred.f contains subroutine OP _IRR () which calculates vertex correc-
tions (5.8.130) for < db | SIGMA | a > and < b | SIGMA | da >;

(c) File mp_irred.f contains subroutine MP _IRR () which calculates corrections
for many-potential interactions (5.8.131) for < db | SIGMA | a > and < b | SIGMA
| da >;

(d) File pv_irred.f contains subroutine PV _IRR () which calculates the principle
value of the integral (5.8.131) and is called in the file mp_irred.f;

(e) File poles irred.f contains subroutine POLES IRR () which calculates the
integral (5.8.131) for poles not lying on the imaginary axis after the Wick’s rotation
and is called in the file mp _irred.f;

(f) File pole_irred.f contains subroutine POLE_IRR () which calculates the inte-
gral (5.8.131) for a half-pole lying on the imaginary axis after the Wick’s rotation
and is called in the file mp _irred.f.

4. Directory integration:

(a) File ftr.f calculates Fourier Transforms into momentum space;

(b) File dOlanf.f contains subroutine dOlanf (f, a, b, w, KEY, EPSABS, EPSREL,
RESULT, ABSERR, 1 W, LW, IW, LIW, IFAIL) which calculates an approxima-

tion to the sine or the cosine transform of a function.
5. Directory bessels:

(a) File sph_j.f contains coefficient for the Spherical Bessel Transformation.
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