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Abstract

A bound muon in the presence of a nucleus can decay into an electron, which belongs

to either continuous or discrete (bound) energy spectrum. The underlying physics of both

cases di�er a lot, and so does their importance. The Standard Model decay of a bound

muon into an outgoing energetic electron provides a background in the experimental searches

for the lepton-�avor-violating µ → e conversions in the �eld of nucleus, whereas the decay

into a bound electron for large value of Z has its analogy with the QCD due to the strong

electromagnetic interaction. The present thesis focuses on the study of the latter case, i.e.,

the exclusive weak decay (Zµ) → (Ze) νµν̄e. This decay proceeds through the muon decay

µ → e + νµ + ν̄e in the presence of a spinless nucleus. We consider the setup where all the

electrons were removed from the atom and there is only a muon in 1S state. The decay rates

for Z = 10 and Z = 80 are calculated in two di�erent approaches, namely, an Atomic Alchemy

formalism developed by C. Greub et al., Phys. Rev. D52, 4028 (1995) and by modifying the

one developed by A. Czarnecki et al., Phys. Rev. D84, 013006 (2011) for the decay of a bound

muon into an outgoing energetic electron. We consider the interaction between electron and

nucleus to be a Coulomb one and the spin of the nucleus is neglected. Point nucleus wave

functions are used for numerical calculations of the decay rate and for the second formalism

the case of a �nite nucleus with the Fermi charge distribution is considered as well. It is

found that the results for these approaches match for the small value of Zα, however, they

are di�erent by 41 % in the large Zα limit. In order to see if the two approaches coincide

in certain approximations, we have considered two limiting cases: the muon and electron

masses being almost equal and the small Zα limit. Again, in these limiting cases a good

agreement, both analytical and numerical, is found between the two formalisms.
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Preface

Chapter 3 of this dissertation adapts the formalism from [1]. It contains corrections

of errors made in the derivation of a bound muon to a bound electron decay rate. These

mistakes were found and corrected by G. Zhang and me. The idea to compare these results via

calculations of the same decay by modifying the formalism of ref. [2] belongs to A. Czarnecki.

The program for these calculations was written by A. Czarnecki, X. Garcia Tormo and M.

J. Aslam and was modi�ed for our purposes by G. Zhang and M. J. Aslam.

The idea of studying the limiting cases presented in Chapter 4 belongs to A. Czarnecki.

All the analytical and numerical calculations in this study were performed separately by G.

Zhang, M. J. Aslam and me.

Appendix D contains a description for a program written by A. Volotka. My contribution

consists in writing documentation for the program which can be used as a user guide for

running and understanding its functionality. I also adjusted it for more precise calculations

for the case of muonic wave functions. The program is available at ref. [3].
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Chapter 1

Introduction

When bombarded by a high energy muon beam, the atom captures muons which, in turn,

cascade rapidly to the 1S state, ejecting almost all the electrons in the atom [1]. The resulting

exotic atom is called a muonic atom and is formed within 10−10 seconds after the penetration

of the muonic beam inside the atom. Since muon and electron are both negatively charged

leptons, their behavior is similar, apart from the following di�erences:

1. The mass of a muon is roughly 207 that of an electron, which results in the smaller

Bohr radius (since it is inversely proportional to the mass r ∼ 1
m
) and, therefore, the

energy levels for a muon are more a�ected by the nucleus. This makes in turn the

QED e�ects more substantial since the electromagnetic force becomes stronger as the

distance between charged particles decreases;

2. Finite lifetime of a muon.

The lifetime of a free muon is about 2.2 µs, but it is signi�cantly di�erent from the lifetime

of a bound one. In the latter case, the muon in its initial state has a di�erent momentum

distribution and less available energy, and the electron produced by the decay undergoes a

strong Coulomb interaction with the nucleus. Also, for the large Z the �nite size of the

nucleus should be accounted for. All these factors contribute to the lifetime of a bound muon

to di�er from the free muon lifetime, which was �rst shown by Porter and Primako� in ref. [4].

Later it was studied by Gilinski and Mathews in ref. [5] with the point nucleus approximation

for the muon wave function and in [6] the electron energy spectrum is calculated accounting

for the �nite size of the heavy nucleus for the bound muon.

According to the Standard Model, a muon decays into an electron, muon neutrino and

electron antineutrino:

µ→ e+ νµ + ν̄e.

Nevertheless, the Standard Model is not complete so far. The experiments for �nding the

physics beyond it in muon decays are currently conducted at Fermilab [7] and COMET

[8], both of which mainly focus on studying the Mu2e (muon-to-electron) conversion in the

Coulomb �eld without the emission of neutrinos [2].

This dissertation focuses on studying the decay rate of a bound muon into a bound

electron: (Zµ) → (Ze) νµν̄e. Here, the parenthesis signi�es a bound state (Z being the

atomic number). This transition proceeds by a weak decay B1 −→ B2 + νµ + ν̄e, where B1
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and B2 are bound states that consist of (Zµ) and (Ze), respectively. We consider the setup

when all the electrons were removed from the atom and there is only a muon in 1S state.

The energy for a resulting bound electron is �xed since it is also in 1S state. If 1S state is not

available for a bound electron produced in the decay it will occupy the L shell. The decay

rate is then suppressed by a factor of 1/n3, where n is the principal quantum number. In

comparison, in case of a decay into an outgoing electron, its energy spectrum is continuous

and running from 0 to the muon mass.

In order to estimate the decay rate of a bound muon into a bound electron, we need to

solve the Dirac equation in the presence of a central potential. This equation is solvable

analytically only for the Coulomb potential. These exact solutions for a bound muon and

electron are discussed in Chapter 2.

When calculating properties of weak decays of one electromagnetically bound state into

another, it is important to take into account the relativistic corrections, which modify the

decay rate of hydrogen-like systems. Also, the level shift scales like Z4, which makes them

signi�cant for high-Z ions.

The calculations for the bound decay rate accounting for the relativistic corrections were

performed in [1] both for point and �nite nucleus wave functions in cases of Z = 10 and Z = 80

by accounting for the Coulomb interaction between the electron and the spinless nucleus. It

is named �Atomic Alchemy� because in the process considered here the atomic species are

changed from a muon to electron. In carrying out the calculations for (Zµ) → (Ze) νµν̄e

transition, the �rst step is to solve the Dirac equation for the bound particle wave function

Φ (k) with a point nucleus using the following expansion by frequencies

Φ (k) =
∑
r

[
Ar (k)

ur (k)√
2k0

+B∗r (−k)
vr (−k)√

2k0

]
, (1.0.1)

where r is the spin state. The terms proportional to B∗r are neglected, since according to the

normalization condition

ˆ
d3k

(2π)3

∑
r

{
|Ar (k)|2 + |Br (k)|2

}
= 1, (1.0.2)

the second term in Eq. (1.0.1) that corresponds to an antiparticle is estimated to contribute

only 0.002 fraction of 1 and, hence, is ignored. Thus, the wave function in this approximation

is de�ned as ψ (k) ≡ Ar (k) and the states are considered to be in 1S.

Chapter 3 presents detailed calculations of (Zµ) → (Ze) νµν̄e in Atomic Alchemy's for-

malism [1]. After reviewing the derivation of the factorization formula, a detailed calculation

of FF's is given. It is found that the sign of some terms of the FF's are not correct. The
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numerical values of decay branching ratios
Γ(Zµ−)→(Ze−)νµν̄e

Γ0
with the corrected FF's are then

calculated for the cases of Z = 10 and Z = 80. Section 3.2 presents the calculations of the

same decay rate by modifying the formalism developed for the bound muon decay into an

outgoing electron in the presence of a nucleus [2]. In ref. [2] there is no such approximation

as (1.0.1) in ref. [1], therefore, we �nd it illuminating to compare the numerical results given

by these two approaches.

The formalism [2] treats both cases of the Coulomb interaction and a nucleus of �nite size

characterized by the Fermi distribution. The numerical values for decay ratios for Z = 10

and Z = 80 in formalisms of [1] and [2] show that the di�erence in values is as insigni�cant

as few percents for small Zα and greater for larger values, where for Z = 80 the discrepancy

is of about 41%.

In order to see if the two approaches are consistent we study two limiting cases in Chapter

4, namely, equal muon and electron masses (mµ ≈ me) and small Zα with original masses

retained. For the latter case it is convenient to rede�ne the decay ratios in terms of new FF's

Ai. Also, both approaches [1, 2] are compared for the nearly equal mass limit in Table 4.7.1

which shows that they are in complete agreement. Finally, the dissertation is concluded in

Chapter 5.

It is then followed by several Appendices, which discuss some properties of Dirac gamma

matrices and the Dirac equation. Appendix D presents a detailed description for the software,

which performs numerical calculations of self-energy shifts of a bound muon and bound

electron. The inclusion of such corrections to the calculations of the bound muon rate is the

next step in our research.
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Chapter 2

External Field Dirac Equation

In order to solve the muon decay in the orbit one needs to know the relativistic wave

functions of an initial state of the muon and �nal state of the electron in a relativistic theory.

To obtain these wave functions it is needed to solve the Dirac equation in the central �eld.

This equation can only be solved analytically for the case of the Coulomb potential. In the

current Chapter we summarize the derivation of the Dirac wave functions for the Coulomb

potential, the details of which can be found in [9-12].

2.1 Relativistic Electron in the Central Field

For an electron moving in a spherically symmetric �eld, the total angular momentum is

given by

J = L + S, (2.1.1)

where

L = r× p, (2.1.2)

is the orbital momentum whose eigenfunctions are spherical harmonics Y m
l (r̂):

L2Y m
l (r̂) = l (l + 1)Y m

l (r̂) , (2.1.3)

LzY
m
l (r̂) = mY m

l (r̂) . (2.1.4)

The operator

S =
1

2
σ, (2.1.5)

is the spin momentum with the two-component spinors ηµ as its eigenfunctions

S2ηµ =
1

2

(
1

2
+ 1

)
ηµ =

3

4
ηµ, (2.1.6)

Szηµ = µηµ, (2.1.7)

where µ = ±1
2
.

In the presence of an electromagnetic �eld the stationary Dirac equation is given by

[γµ (pµ − eAµ)−m] Φ = 0. (2.1.8)
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From this equation the corresponding Dirac-Coulomb Hamiltonian which satis�es

HDC (r) Φ (r) = EΦ (r)

is derived to be

HDC (r) = α · p− e2Z

|r|
+mβ, (2.1.9)

(see Appendix B for a more detailed derivation and properties of this Hamiltonian). The

wave function Φ in the component form is

Φ (r) =

(
Φu (r)

Φι (r)

)
=

(
gEjl (r)χjlM (r̂)

ifEjl (r)χjl̄M (r̂)

)
, (2.1.10)

where the quantum number l de�nes the orbital angular momentum and l̄ will be de�ned

below. The functions gEjl (r) and fEjl (r) are the radial wave functions corresponding to

upper and lower components, respectively, and the two-component functions χjlM (r̂) have

only the angular dependence. Since HDC commutes with both operators J2 and Jz, the wave

functions Φ (r), or more speci�cally their angular parts χjlM (r̂) , must be their eigenvectors

as well: {
[HDC (r) ,J2] = 0

[HDC (r) , Jz] = 0
⇒

{
J2Φ (r) = j (j + 1) Φ (r)

JzΦ (r) = MΦ (r)
. (2.1.11)

Knowing the eigenfunctions of orbital and spin momentum operators, the functions χjlM (r̂)

can be constructed explicitly out of them. χjlM (r̂) satisfy the set of relations (2.1.11):{
J2χjlM (r̂) = j (j + 1)χjlM (r̂)

JzχjlM (r̂) = MχjlM (r̂)
. (2.1.12)

Therefore, the functions χjlM (r̂) can be constructed as linear combinations of the spherical

harmonics Y m
l (r̂) and two-component spinors ηµ:

χjlM (r̂) =
∑
mµ

CjM

lm 1
2
µ
Y m
l (r̂) ηµ, (2.1.13)

where Cjm
j1m1j2m2

are the Clebsch-Gordan for which the following identities are satis�ed:

|j1 − j2| ≤ j ≤ j1 + j2, (2.1.14)

m = m1 +m2. (2.1.15)
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The spherical spinors form a complete set of orthonormalized functions

ˆ
dΩ (χjlM)† χj′l′M ′ = δjj′δll′δMM ′ , (2.1.16)

and using Eq. (2.1.13) in Eqs. (2.1.3) and (2.1.6):

L2χjlM (r̂) =
∑
mµ

CjM

lm 1
2
µ

[
L2Y m

l (r̂)
]
ηµ

= l (l + 1)
∑
mµ

CjM

lm 1
2
µ
Y m
l (r̂) ηµ = l (l + 1)χjlM (r̂) , (2.1.17)

S2χjlM (r̂) =
∑
mµ

CjM

lm 1
2
µ

[
S2Y m

l (r̂)
]
ηµ

=
3

4

∑
mµ

CjM

lm 1
2
µ
Y m
l (r̂) ηµ =

3

4
χjlM (r̂) . (2.1.18)

As mentioned earlier, the quantum number l appearing in Eq. (2.1.10) de�nes the orbital

momentum of the particle along with its parity. Consider the space inversion P : r→ −r in

the Dirac equation (2.1.8). Such transformation will act on the position space on which the

wave function (2.1.10) is de�ned in the following way

Φ (t, r)→ Φ′ (t,Pr) = PΦ (t, r) , (2.1.19)

where P is the linear operator which is to be determined and which should preserve the

invariance of the Dirac equation:

P [γµ (pµ − eAµ)−m] Φ′ (t,Pr) = 0 (2.1.20)

Thus,

P [γµ (pµ − eAµ)−m]PΦ (t, r)

=
[
P
{
γ0 (p0 − eV )

}
−P {γ · (p− eA)−m}

]
PΦ (t, r)

=
[
γ0 (p0 − eV ) + γ · (p− eA)−m

]
PΦ (t, r) = 0. (2.1.21)

Since the last expression should reduce to [γµ (pµ − eAµ)−m] Φ (t, r) = 0 it follows that

γ0P = Pγ0, γP = −Pγ, (2.1.22)
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which can be satis�ed by the choice of

P = cpγ
0, (2.1.23)

where cp is some c-number which depends on the particle's intrinsic parity. Now,

PΦ (t,Pr) = cpγ
0Φ (t,−r) = cp

(
gEjl (r)χjlM (−r̂)

−ifEjl (r)χjl̄M (−r̂)

)
. (2.1.24)

The space inversion in the spherical coordinates a�ects only the spherical harmonics Y m
l (r̂) =

Y m
l (θ, φ) in the following way

P :

{
θ → π − θ
φ→ π + φ

⇒ PY m
l (θ, φ) = (−1)l Y m

l (θ, φ) . (2.1.25)

Therefore,

χjlM (−r̂) =
∑
mµ

CjM

lm 1
2
µ
Y m
l (−r̂) ηµ = (−1)l

∑
mµ

CjM

lm 1
2
µ

(mµ)Y m
l (r̂) ηµ = (−1)l χjlM (r̂) .

(2.1.26)

Substituting this result in Eq. (2.1.24)

PΦ (t,Pr) = cp

(
gEjl (r) (−1)l χjlM (r̂)

ifEjl (r) (−1)l̄+1 χjl̄M (r̂)

)
, (2.1.27)

whose components should have the same parity just as they have in (2.1.10). Therefore, it

follows that

l = l̄ + 1. (2.1.28)

From the set of equations for the upper and lower components of the bispinor (for more

details see Appendix B, Eq. (5.8.79)) it follows

(E +m) Φι (p) = (σ · p) Φu (p) , (2.1.29)

(E −m) Φu (p) = (σ · p) Φι (p) . (2.1.30)

Upon substitution of the explicit form of upper and lower components given in Eq. (2.1.10),

the Eq. (2.1.29) can be rewritten as

(E +m) ifEjl (r)χjl̄M (r̂) = p (σ · r̂) gEjl (r)χjlM (r̂) . (2.1.31)

7



Since under the spatial rotations the operator (σ · p̂) acts in the same way as (σ · r̂), therefore,

(σ · r̂)χjlM (r̂) = cχjl̄M (r̂) , (2.1.32)

where c is some c-number. In order to �nd it let's multiply both sides of Eq. (2.1.32) by the

Hermitian conjugate of χjl̄M (r̂) on the left and perform the angular integration. Using the

orthonormality of the spherical spinors (2.1.16) it results in:

c =

ˆ
χ†
jl̄M

(r̂) (σ · r̂)χjlM (r̂) dΩ. (2.1.33)

To evaluate this integral, it is useful to express the unit vector components in terms of the

spherical harmonics

r̂x =

√
2π

3

(
Y −1

1 − Y 1
1

)
,

r̂y =i

√
2π

3

(
Y −1

1 + Y 1
1

)
, (2.1.34)

r̂z =2

√
π

3
Y 0

1 ,

and then use the formula for integration of three spherical harmonics

ˆ
dΩY m1∗

l1
Y m2
l2
Y m3
l3

=

√
(2l2 + 1) (2l3 + 1)

4π (2l1 + 1)
C l1m1
l2m2l3m3

C l10
l20l30. (2.1.35)

Also, the Pauli matrices act on the two-component spinors in the following way

η†µ1
σxηµ2 =δµ1,−µ2 , (2.1.36)

η†µ1
σyηµ2 = (−1)1−µ1 δµ1,−µ2 , (2.1.37)

η†µ1
σzηµ2 = (−1)

1
2
−µ1 δµ1,µ2 . (2.1.38)

Putting everything together in Eq. (2.1.33) and after some algebra the coe�cient c is found

to be −1. Next, multiplying Eq. (2.1.32) by (σ · r̂) and using the fact that

(σ · r̂)χjlM (r̂) = −χjl̄M (r̂) , (2.1.39)

−χjlM (r̂) = (σ · r̂)χjl̄M (r̂) . (2.1.40)

Substituting these results into the set of equations analogous to Eqs. (2.1.30) with the
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Coulomb potential

(E − eV −m) Φu (p)− (σ · p) Φι (p) = 0,

(E − eV +m) Φι (p)− (σ · p) Φu (p) = 0.
(2.1.41)

we get the following equation for the lower component of the Dirac bispinor

(σ · p) Φι (p) = i (σ · p) fEjl (r)χjl̄M (r̂) = −i (σ · p) (σ · r̂) fEjl (r)χjlM (r̂) . (2.1.42)

Using (σ · p) (σ · r) = (p · r) + iσ · [p× r] in the Eq. (2.1.42) leads to

(σ · p) Φι (p) = −{i (p · r)− σ · [p× r]} fEjl (r)
r

χjlM (r̂)

= −
{

(∇ · r)
fEjl (r)

r
− σ · [p× r]

fEjl (r)

r

}
χjlM (r̂)

= −
{

r∇
(
fEjl (r)

r

)
+
fEjl (r)

r
div (r) + (σ · L)

fEjl (r)

r

}
χjlM (r̂) , (2.1.43)

where we used Eq. (2.1.2). As div (r) = 3 and (r∇)
(

1
r

)
= −1

r
, Eq. (2.1.43) results in

(σ · p) Φι (p) = −
{
dfEjl (r)

dr
+

2

r
fEjl (r) +

1

r
(σ · L) fEjl (r)

}
χjlM (r̂) . (2.1.44)

Next, consider the operator identity

J2 = (L + S)2 = L2 + 2S · L + S2 ⇒ 2S · L = σ · L = J2 − L2 − S2, (2.1.45)

which upon acting on a spherical spinor χjlM (r̂) gives

(σ · L)χjlM (r̂) =
(
J2 − L2 − S2

)
χjlM (r̂) =

[
j (j + 1)− l (l + 1)− 3

4

]
χjlM (r̂)

≡ − (1 + κjl)χjlM (r̂) , (2.1.46)

where the quantum number κjl is de�ned as

κjl = l (l + 1)− j (j + 1)− 1

4
. (2.1.47)

If j = l − 1
2
then

κjl = l (l + 1)−
(
l − 1

2

)(
l +

1

2

)
− 1

4
= l2 + l − l2 +

1

4
− 1

4
= l, (2.1.48)
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and if j = l + 1
2

κjl = l (l + 1)−
(
l +

1

2

)(
l +

3

2

)
− 1

4
= l2 + l − l2 − 2l − 3

4
− 1

4
= − (l + 1) . (2.1.49)

To sum up

κjl =

{
l, if j = l − 1

2

− (l + 1) , if j = l + 1
2

, or κjl =

{
j + 1

2
, if j = l − 1

2

−
(
j + 1

2

)
, if j = l + 1

2

, (2.1.50)

and

κjl =− κjl̄, (2.1.51)

l̄ =l − 1. (2.1.52)

Now Eq. (2.1.44) can be written in terms of the newly de�ned quantum number κjl

(σ · p) Φι (p) = −
{
dfEjl (r)

dr
+

1− κjl
r

fEjl (r)

}
χjlM (r̂) . (2.1.53)

Similarly, for the upper component of the Dirac bispinor

(σ · p) Φu (p) = (σ · p) gEjl (r)χjlM (r̂) = − (σ · p) (σ · r)
gEjl (r)

r
χjl̄M (r̂)

= −{−i (∇ · r) + iσ · [p× r]} gEjl (r)
r

χjl̄M (r̂)

= i

{
dgEjl (r)

dr
+

1 + κjl
r

gEjl (r)

}
χjl̄M (r̂) . (2.1.54)

After the substitution of the expressions (2.1.53) and (2.1.54) into (2.1.41) and canceling

spherical spinors and a factor of i on both sides the set of equations for the radial wave

functions is obtained to be(
d
dr

+
1+κjl
r

)
gEjl (r)− (E − eV +m) fEjl (r) = 0,(

d
dr

+
1−κjl
r

)
fEjl (r) + (E − eV −m) gEjl (r) = 0.

(2.1.55)

2.2 Electron in Coulomb Field

We want to derive the wave functions in the point nucleus approximation, which is valid

only for Zα � 1. Consider the Coulomb potential V (r) = − eZ
r
for the set of the equations
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(2.1.55). In the limit of r → 0 these equations take the following form(
d
dr

+ κ
r

)
G (r)− Zα

r
F (r) = 0(

d
dr
− κ

r

)
F (r) + Zα

r
G (r) = 0

, (2.2.1)

where the indices were dropped for brevity and the following change of variables was made

G (r) ≡ rgEjl (r) , F (r) ≡ rfEjl (r) . (2.2.2)

In Eq. (2.2.1) the terms proportional to E ± m were neglected. Let's assume that the

solutions of Eqs. (2.2.1) are of the form

G (r) = G0r
γ, F (r) = F0r

γ, (2.2.3)

that upon substitution in Eq. (2.2.1) give

G0 (γ + κ)− F0Zα = 0,

G0Zα + F0 (γ − κ) = 0.
(2.2.4)

This system has non-trivial solutions only when∣∣∣∣∣ (γ + κ) −Zα
Zα (γ − κ)

∣∣∣∣∣ = 0⇒ γ2 = κ2 − (Zα)2 . (2.2.5)

Let the solutions for the radial wave functions in Eq. (2.1.55) be of the form

g (x) =
√
m+ Ee−

1
2
xxγ−1 [W1 (x) +W2 (x)] , (2.2.6)

f (x) = −
√
m− Ee−

1
2
xxγ−1 [W1 (x)−W2 (x)] , (2.2.7)

where the indices Ejl were dropped and the following change of variables was made

x = 2λr, λ =
√
m2 − E2. (2.2.8)

Upon substituting Eq. (2.2.6) into Eq. (2.1.55), the �rst equation becomes:

2λ

(
d

dx
+

1 + κ

x

)
g (x)− (E +m) f (x)− 2Zαλ

x
f = 0. (2.2.9)

Using the radial functions from Eq. (2.2.6) in the above equation results in

11



e−
1
2
xxγ−1

×
{(

d

dx
+

1 + κ

x

)√
m+ E (W1 +W2) +

1

2λ

[
E +m+

2Zαλ

x

]√
m− E (W1 −W2)

}
=
√
m+ E

{
−1

2
e−

1
2
xxγ−1 (W1 +W 2) + e−

1
2
x (γ − 1)xγ−2 (W1 +W2)

+e−
1
2
xxγ−1 d

dx
(W1 +W2) + (1 + κ) e−

1
2
xxγ−2 (W1 +W2)

}
+

1

2λ
(E +m)

√
m− Ee−

1
2
xxγ−1 (W1 −W2) + Zα

√
m− Ee−

1
2
xxγ−2 (W1 −W2) = 0.

(2.2.10)

After canceling the extra powers of x and the exponent, the rearrangement gives

− 1

2
x (W1 +W2) + (γ − 1) (W1 +W2) + x

d

dx
(W1 +W2) +

x

2
(W1 −W2)

+ Zα

√
m− E
m+ E

(W1 −W2) + (1 + κ) (W1 +W2) = 0. (2.2.11)

This results in

x
d

dx
(W1 +W2) + (γ + κ) (W1 +W2)− xW2 + Zα

√
m− E
m+ E

(W1 −W2) = 0. (2.2.12)

Treating the second equation of Eq. (2.1.55) in the same way gives

x
d

dx
(W1 −W2) + (γ − κ) (W1 −W2) + xW2 − Zα

√
m+ E

m− E
(W1 +W2) = 0. (2.2.13)

Adding and subtracting Eqs. (2.2.12) and (2.2.13) leads to

x
dW1

dx
+

(
γ − ZαE

λ

)
W1 +

(
κ− Zαm

λ

)
W2 = 0 (2.2.14)

x
dW2

dx
+

(
γ +

ZαE

λ
− x
)
W2 +

(
κ+

Zαm

λ

)
W1 = 0. (2.2.15)

From the �rst equation W2 is given by

W2 =

[(
ZαE

λ
− γ
)
W1 − x

dW1

dx

] [
κ− Zαm

λ

]−1

, (2.2.16)
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and di�erentiating it with respect to x gives

dW2

dx
=

[(
ZαE

λ
− γ − 1

)
dW1

dx
− xd

2W1

dx2

] [
κ− Zαm

λ

]−1

. (2.2.17)

Using these expressions in Eq. (2.2.19) gives

x

[(
ZαE

λ
− γ − 1

)
dW1

dx
− xd

2W1

dx2

]
+

(
γ +

ZαE

λ
− ZαE

λ

)[(
ZαE

λ
− γ
)
W1 − x

dW1

dx

]
+

[
κ2 −

(
Zαm

λ

)2
]
W1 = 0, (2.2.18)

or equivalently

x
d2W1

dx2
+ (2γ + 1− x)

dW1

dx

−

[
κ2 −

(
Zαm

λ

)2

− γ2 +

(
ZαE

λ

)2

− x
(
ZαE

λ
− γ
)]

W1

x
= 0. (2.2.19)

Noting that

κ2 −
(
Zαm

λ

)2

− γ2 +

(
ZαE

λ

)2

= κ2 −
(
Zα

λ

)2 (
m2 − E2

)
− γ2, (2.2.20)

and using γ and λ from Eqs. (2.2.5) and (2.2.8), respectively, we can see that

κ2 −
(
Zαm

λ

)2

− γ2 +

(
ZαE

λ

)2

= 0. (2.2.21)

Thus,

x
d2W1

dx2
+ (2γ + 1− x)

dW1

dx
−
(
γ − ZαE

λ

)
W1 = 0. (2.2.22)

From the second equation of the system (2.2.6), W1 can be expressed as

W1 = −
[
x
dW2

dx
+

(
γ +

ZαE

λ
− x
)
W2

] [
κ+

Zαm

λ

]−1

. (2.2.23)

and after di�erentiating it with respect to x gives

dW1

dx
= −

[
dW2

dx
+ x

d2W2

dx2
+

(
γ +

ZαE

λ
− x
)
dW2

dx
−W2

] [
κ+

Zαm

λ

]−1

, (2.2.24)
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that upon substituting these values for W1 and
dW1

dx
in Eq. (2.2.15) leads to

−x
[
dW2

dx
+ x

d2W2

dx2
+

(
γ +

ZαE

λ
− x
)
dW2

dx
−W2

]
−
(
γ − ZαE

λ

)[
x
dW2

dx
+

(
γ +

ZαE

λ
− x
)
W2

]
+

[
κ2 −

(
Zαm

λ

)2
]
W2 = 0. (2.2.25)

After rearranging the terms, we have

x
d2W2

dx2
+ (2γ + 1− x)

dW2

dx
−
(

1 + γ − ZαE

λ

)
W2 = 0. (2.2.26)

Each of the Eqs. (2.2.22) and (2.2.26) is of a form of the Kummer's equation

z
d2w

dz2
+ (b− z)

dw

dz
− aw = 0 (2.2.27)

which has a con�uent hypergeometric function

F (a, b; z) = 1 +
a

b

z

1!
+
a (a+ 1)

b (b+ 1)

z2

2!
+ ... (2.2.28)

as its solution. Therefore, the functionsW1 andW2 can be expressed in the form of con�uent

hypergeometric functions

W1 (x) = α0F

(
γ − ZαE

λ
, 2γ + 1;x

)
, (2.2.29)

W2 (x) = β0F

(
1 + γ − ZαE

λ
, 2γ + 1;x

)
. (2.2.30)

Using them in Eqs. (2.2.15) and (2.2.19) and setting x = 0 gives the condition for

coe�cients α0 and β0: (
κ− Zαm

λ

)
β0 = −

(
γ − ZαE

λ

)
α0. (2.2.31)

From the explicit form of the hypergeometric functions given in Eq. (2.2.28) it follows that

in the limit x→∞ the functions W1 and W2 will also go to in�nity. Therefore, the following

condition for the series to terminate should be imposed:

γ − Zα

λ
= −nr, nr =

{
0, 1, 2, ... if κ < 0

1, 2, 3, ... if κ > 0
. (2.2.32)
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From the continuity equation (5.8.70) derived in Appendix B:

∂jµ (x)

∂xµ
= 0, (2.2.33)

the normalization for the stationary bound states follows as

ˆ
ρ (r) d3r =

ˆ
Φ† (r) Φ (r) d3r = 1, (2.2.34)

and the radial functions g(r) and f (r) are,therefore, normalized as follows

ˆ
dr r2

[
g2 (r) + f 2 (r)

]
= 1. (2.2.35)

Using this condition together with (2.2.31) gives explicit expression for radial wave functions.

To sum up, the Dirac-Coulomb wave function is given by

Φ (r) =

(
gnlj(r)χljM(r̂)

ifnlj(r)χl̄jM(r̂)

)
, (2.2.36)

where l̄ = 2j − l = l ± 1 and the radial wave functions

gnlj(r) =
(2λn)

3
2

Γ (2γn + 1)

[(
1 + En

m

)
Γ (2γn + nr + 1)

4Nn (Nn − κn)nr!

] 1
2

(2λr)γn−1 e−λnr

×{(Nn − κn)F (−nr, 2γn + 1; 2λnr)− nrF (1− nr, 2γn + 1; 2λnr)} , (2.2.37)

fnlj(r) =
− (2λn)

3
2

Γ (2γn + 1)

[(
1− En

m

)
Γ (2γn + nr + 1)

4Nn (Nn − κn)nr!

] 1
2

(2λr)γn−1 e−λnr

×{(Nn − κn)F (−nr, 2γn + 1; 2λnr) + nrF (1− nr, 2γn + 1; 2λnr)} , (2.2.38)

where n is the principle quantum number and the energy levels are found from the Sommer-

feld's formula

En =
√
m2 − λ2

n, λn =
1

aNn

, a =
1

Zαm
, nr = n− κn, (2.2.39)

Nn =
√
n2 − 2nr (|κn| − γn), γn =

√
κ2
n − (Zα)2. (2.2.40)

The quantum number κn is de�ned by

κn =

{
l,

− (l + 1) ,

j = l − 1
2

j = l + 1
2

. (2.2.41)
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and the spherical spinors

χjlM(r̂) =
∑
mµ

CjM

lm 1
2
µ
Y m
l (r̂) ηµ

= (−1) −l+
1
2
−M
√

2j + 1
∑
mµ

(
l 1

2
j

m µ −M

)
Y m
l (r̂)ηµ. (2.2.42)

2.3 1S Wave Functions

In the forthcoming study only the wave functions in the state 1S are of interest to us.

They can be obtained from Eq. (2.2.37) and Eq. (2.2.38) by setting the following values of

the quantum numbers to n = 1, l = 0, j = 1
2
. Thus,

g1S 1
2

(r) ≡ g (r) =

(
2

a

)γ+ 1
2

√
1 + γ

2Γ (2γ + 1)
exp

(
−r
a

)
rγ−1, (2.3.1)

f1S 1
2

(r) ≡ f (r) = −
√

1− γ
1 + γ

g1S 1
2

(r) . (2.3.2)

The spherical spinors with the spin-up
(
M = 1

2

)
are

χ 1
2

0 1
2

(r̂) = (−1)
1
2
− 1

2

√
2

(
0 1

2
1
2

0 1
2
−1

2

)
Y 0

0 (r̂)

(
1

0

)
=

1√
4π
, (2.3.3)

χ 1
2

1 1
2

(r̂) = −
√

2

{(
1 1

2
1
2

0 1
2
−1

2

)
Y 0

1 (r̂)

(
1

0

)
+

(
1 1

2
1
2

1 −1
2
−1

2

)
Y 1

1 (r̂)

(
0

1

)}

= −
√

2

{
1√
6

[
1

2

√
3

π
cos θ

](
1

0

)
+

1√
3

[
1

2

√
3

2π
sin θeiφ

](
0

1

)}

= − 1√
4π

(
cos θ

sin θeiφ

)
. (2.3.4)

Therefore, the ground state wave function for the bound state in position space can be written

as
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Φ (r) =

 g1S 1
2

(r)χ 1
2

0 1
2
(r̂)

if1S 1
2

(r)χ 1
2

1 1
2
(r̂)



=
(2mZα)γ+ 1

2

√
4π

√
1 + γ

2Γ (1 + 2γ)
rγ−1 exp (−mZαr)


1

0
i(1−γ)
Zα

cos θ
i(1−γ)
Zα

sin θeiφ

 . (2.3.5)

The function in the momentum space is given by the Fourier transform:

Φ (k) =

ˆ
d3r Φ (r) exp (−ik · r) . (2.3.6)

It is useful to discuss the Fourier transformation of Φ (r) by considering one component at a

time. For the zeroth component of the wave function one can write

ˆ
d3r exp (−ik · r) rγ−1 exp (−mZαr)

= 2π

∞̂

0

dr r2rγ−1

1̂

−1

d (cos θ) exp (−mZαr) exp (−ikr cos θ)

= 2π

∞̂

0

dr r2rγ−1 exp (−mZαr) 2 sin (kr)

kr
. (2.3.7)

After changing the variables r → r
mZα

and using the integral

∞̂

0

ds exp (−s) sa−1 sin (ps) = Γ (a)
(
1 + p2

)−a/2
sin (a arctan p) , (2.3.8)

Eq. (2.3.7) becomes

4πaγ+1

k

∞̂

0

dr r(γ+1)−1 exp (−r) sin (akr)

=
4πaγ+1

k
Γ (1 + γ)

(
1 + a2k2

)−(1+γ)/2
sin [(1 + γ) arctan (ak)] . (2.3.9)
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Making use of the following trigonometric identities

arctanx = arcsin
x√

1 + x2
, (2.3.10)

arctanx = arccos
1√

1 + x2
, (2.3.11)

sin (a+ b) = sin (a) cos (b) + sin (b) cos (a) , (2.3.12)

Eq. (2.3.9) becomes

4πaγ+1

k
Γ (1 + γ)

(
1 + a2k2

)−(1+γ)/2
sin [(1 + γ) arctan (ak)]

=
4πaγ+1

k
Γ (1 + γ)

(
1 + a2k2

)−γ/2−1
(sin ρ+ ak cos ρ) , (2.3.13)

where ρ ≡ γ arctan (ak) and a = 1
mZα

. Thus, the zeroth component becomes

g (k) = Γ (1 + γ)
(2mZα)3/2

√
4π

√
1 + γ

2Γ (1 + 2γ)
(2mZα)γ−1 4π

k
aγ+1 sin ρ+ ak cos ρ

(1 + a2k2)1+γ/2

=
N

k (1 + a2k2)1+γ/2
(sin ρ+ ak cos ρ) , (2.3.14)

where N ≡ 2γ+1Γ (1 + γ)
√

aπ(1+γ)
Γ(1+2γ)

as de�ned in [1]. It is worth mentioning that the notations

for the upper and lower radial components of radial functions de�ned here with the use of a

di�erent convention in comparison with [1].

The 2nd component is proportional to

ˆ
d3r exp (−ikr cos θ) rγ−1 exp (−mZαr) cos θ. (2.3.15)

The integration over the angle θ gives

I ≡
1̂

−1

d (cos θ) exp (−ikr cos θ) cos θ =
2 [sinh (ikr)− ikr cosh (ikr)]

(ikr)2 , (2.3.16)

and since sinh y = −i sin (iy) and cosh y = cos (iy) the term in the square parenthesis becomes

−4πi

k2

ˆ
dr r2 exp (−mZαr) rγ−1

(
sin (kr)− kr cos (kr)

r2

)
. (2.3.17)
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Thus, the �rst part of this expression is

ˆ
dr r2 exp (−mZαr) sin (kr) rγ−3 = aγ

ˆ
dr rγ−1 exp (−r) sin (kr)

= aγΓ (γ)
(
1 + a2k2

)−γ/2
sin (γ arctan (ak)) , (2.3.18)

and the second part

ˆ
dr rγ exp (−mZαr) cos (kr)→ a1+γ

ˆ
dr exp (−r) cos (akr) rγ. (2.3.19)

Doing the the integration by parts

ˆ
dr exp (−r) cos (akr) rγ

= −a
1+γ

ak

ˆ
dr sin (akr) e−r

(
γrγ−1 − rγ

)
= −a

γ

k

ˆ
dr
[
γ sin (akr) e−rrγ−1 − sin (akr) e−rr(1+γ)−1

]
= −a

γ

k

{
γΓ (γ)

(
1 + a2k2

)−γ/2
sin ρ− Γ (1 + γ)

(
1 + a2k2

)−γ/2−1/2
sin [(1 + γ) arctan (ak)]

}
= −a

γ

k

{
γΓ (γ)

(
1 + a2k2

)−γ/2
sin ρ− Γ (1 + γ)

(
1 + a2k2

)−γ/2−1/2 sin ρ+ ak cos ρ√
1 + a2k2

}
.

(2.3.20)

Putting Eqs. (2.3.18) and (2.3.20) together one gets

I = −4πi

k2

{
aγΓ (γ)

(
1 + a2k2

)−γ/2
sin (ρ) + aγΓ (1 + γ)

(
1 + a2k2

)−γ/2
sin (ρ)

−aγΓ (1 + γ)
(
1 + a2k2

)−γ/2−1
(sin ρ+ ak cos ρ)

}
= −4πi

k2
aγΓ (1 + γ)

(
1 + a2k2

)−γ/2{sin ρ

γ
+ sin ρ− sin ρ

1 + a2k2
− ak cos ρ

1 + a2k2

}
= −4πi

k2

aγΓ (1 + γ)

γ (1 + a2k2)1+γ/2

{[
1 + (1 + γ) a2k2

]
sin ρ− γak cos ρ

}
. (2.3.21)

The 4th component in (2.3.6) is identically zero since

2π̂

0

dφ exp (iφ) = 0. (2.3.22)
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Figure 2.3.1: The Dirac wave functions for the point nucleus for muon (to the left) and
electron (to the right). The electronic wave function has the same shape as the muonic one.
But due to the proportionality of the larger spinor component to the Bohr radius (a3/2) which
is almost 200 times greater than that of a muon the electronic wave function has a sharper
peak near the lower momentum region.

Thus, the lower component is proportional to

f (k) =
Nm (1− γ)

γk2 (1 + a2k2)1+γ/2

([
1 + (1 + γ) a2k2

]
sin ρ− γak cos ρ

)
. (2.3.23)

Next, the wave function Φ (k) can expanded in terms of free spinors ur (k) and vr (−k) by

projecting it onto plane waves with positive and negative energies

Φ (k) =
∑
r

[
Ar (k)

ur (k)√
2k0

+B∗r (−k)
vr (−k)√

2k0

]
. (2.3.24)

Here the integral
´

d3k
(2π)3

∑
r |Br (k)|2 corresponds to the probability of existing the state

(e−e−e+) in the atom. And since for Z = 80

ˆ
d3k

(2π)3

∑
r

|Ar (k)|2 = 0.998, (2.3.25)

which almost equals to identity, the terms with the coe�cient B∗rcan be neglected. Thus, the

Dirac wave function ψ (k) is de�ned as ψ (k) ≡ Ar (k) and the states are considered to be in

1S with the spin up: r = +1
2
.

The �nal expression for the bound Dirac wave function for the spin up state ψ (k) = A 1
2

(k)

in terms of g (k) and f (k) becomes:

ψ (k) =

√
k0 +m

2k0

(
g (k) +

k

k0 +m
f (k)

)
. (2.3.26)
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´
d3k

(2π)3 |ψ1 (k)|2
´

d3k
(2π)3 |ψ2 (k)|2

Z = 10 0.99999980 0.99999980
Z = 80 0.99840433 0.99840433

Table 2.3.1: The normalization for the muon and electron for Z = 10 and Z = 80.

The wave functions kψ1 (k) and kψ2 (k) for muon and electron, respectively, are plotted

in Fig. (2.3.1). Numerical results for the normalization of the wave function (2.3.26) are

presented in the Tab. 2.3.1 for the cases of Z = 10 and Z = 80
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Chapter 3

Muon Decay

In this Chapter we consider the bound state transition (Zµ) → (Ze) νµν̄e (from here

onward the parentheses for (Zµ) and (Ze) stand for the corresponding bound states) to

proceed through the the weak decay µ→ eνµν̄e in the presence of a nucleus charge Z, which

is considered to be spinless. In two di�erent formalisms developed in refs. [1] and [2]. The

corresponding free muon decay is discussed in Appendix C.

3.4 Bound Muon Decay in the Atomic Alchemy Formal-

ism

The formalism for the transition B1 → B2 + X, where B1 and B2 are bound states, is

developed in [1]. The Lagrangian describing the Fermi interaction for the standard muon to

electron decay in the Fierz rearranged form is

LF = 2
√

2GF

(
Φ̄eγ

ρLΦµ

) (
Φ̄νµγρLΦν̄e

)
+ h.c. (3.4.1)

The wave function for the bound state B1, which in our case is (Zµ) in its rest frame, is

|B1,pB1 = 0〉 =
√

2mB1

ˆ
d3k1

(2π)3

ψ1 (k1)√
4k0

1k0
3

b†µ (k1) a†Z (k3) |0〉 , (3.4.2)

where b†µ and a†Z are the creation operators for the muon and the nucleus, respectively, that

act on the vacuum state |0〉, and

k0
1 =

√
k1 +m2

µ, k0
3 =

√
k3 +M2, k3 = −k1 (3.4.3)

are the corresponding energies and momenta of these particles. In this form the wave function

is normalized in a covariant way

〈B1,0 |B1,0〉 = 2mB1 (2π)3 δ(3) (0) . (3.4.4)

The probability amplitude ψ1 (k1) to �nd a muon with momentum k1 in the atom is given

by Eq. (2.3.26) and according to the approximation made in Eq. (2.3.25) it is taken to be
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normalized to unity: ˆ
d3k1

(2π)3 |ψ1 (k1)|2 = 1. (3.4.5)

The wave function of the �nal bound state in its center-of-mass frame is

|B2,pB2 = 0〉 =
√

2mB2

ˆ
d3k2

(2π)3

ψ2 (k2)√
4k0

2k0
4

b†e (k2) a†Z (k4) |0〉 , (3.4.6)

where b†e is the electron's creation operator, k0
2 =

√
k2 +m2

e is its energy and k0
4 =
√

k4 +M2

is the energy of the nucleus. The masses used above are de�ned as

mB1 = M +m1, m1 = mµ − Ebind,1,

mB2 = M +m2, m2 = me − Ebind,2.
(3.4.7)

After the decay of a muonic atom, in the center of mass frame of B1 the particle B2 is

moving with a momentum pB2 = −q. Thus, the boost Λ (v) along the direction of q should

be performed, and the corresponding boosted wave function for B2 becomes

|B2,pB2 = −q〉 = Λ (v) |B2,pB2 = −0〉

=
√

2mB2

ˆ
d3k2

(2π)3

ψ2 (k2)√
4k0

2k0
4

(
Λb†e (k2) Λ−1

) (
Λa†Z (k4) Λ−1

)
|0〉 , (3.4.8)

where v = q
mB2

stands for non-relativistic velocities. With the assumption that the axis of

spin quantization is parallel to the boost, the transformation of �elds is given by [13]:

Λb†e (k2) Λ−1 =

√
k0

2

Λk0
2

b†e (Λk2) ≡

√
k0

2

k̃0
2

b†e

(
k̃2

)
, (3.4.9)

Λa†Z (k4) Λ−1 =

√
k0

4

k̃0
4

a†Z

(
k̃4

)
, (3.4.10)

where

k̃2 = k2 −
me

mB2

q, k̃4 = k4 −
M

mB2

q. (3.4.11)

Substituting expressions (3.4.9) and (3.4.10) in Eq. (3.4.8) the bound wave function is

obtained to be

|B2,pB2〉 =
√

2mB2

ˆ
d3k2

(2π)3

ψ2 (k2)√
4k̃0

2k̃0
4

b†e

(
k̃2

)
a†Z

(
k̃4

)
|0〉 . (3.4.12)
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3.4.1 Factorization Formula

The S-matrix for the decay can be constructed in the following way:

S = i (2π)4 δ(4) (p1 − p2 − q)
〈
B2,pB2 ; νµ

(
pνµ
)
ν̄e (pν̄e) |Lω (0)|B1,0

〉
, (3.4.13)

where Lω is the four-fermion interaction which obeys translational invariance:

Lω (x) = eiP·xLω (0) e−iP·x. (3.4.14)

Substituting Eqs. (3.4.2) and (3.4.12) into the S-matrix, we get

S = i (2π)4 δ(4) (p1 − p2 − q)
√

4mB1mB2

ˆ
d3k1

(2π)3

ψ1 (k1)√
4k0

1k0
3

ˆ
d3k2

(2π)3

ψ∗2 (k2)√
4k̃0

2k̃0
4

×
〈
νµ
(
pνµ
)
ν̄e (pν̄e)

∣∣∣be (k̃2

)
aZ

(
k̃4

)
Lω (0) b†µ (k1) a†Z (k3)

∣∣∣ 0〉 . (3.4.15)

Applying the commutation relation
[
aZ

(
k̃4

)
, a†Z (k3)

]
= (2π)3 2k0

3δ
(3)
(
k3 − k̃4

)
and the

fact that aZ |0〉 = 0 to the second line in (3.4.15), it becomes

(2π)3
√

4k0
3k̃0

4δ
(3)
(
k3 − k̃4

)〈
νµ
(
pνµ
)
ν̄e (pν̄e)

∣∣∣be (k̃2

)
Lω (0) b†µ (k1)

∣∣∣ 0〉 , (3.4.16)

where the delta-function δ(3)
(
k3 − k̃4

)
is given by

δ(3)
(
k3 − k̃4

)
= δ(3) (k2 −mred,2vrel,2) , (3.4.17)

and mred,2 ≡ Mme
M+me

is the reduced mass of B2, vrel,2 ≡ k1

mred,2
− q

me
is the relative velocity of

the �nal state particles. With the use of Eq. (3.4.17) the integration over k2 can be carried

out in Eq. (3.4.15) which gives

S = i (2π)4 δ(4) (p1 − p2 − q)
√

4mB1mB2

ˆ
d3k1

(2π)3

ψ1 (k1)√
4k0

1k̃0
2

ψ∗2

(
k1 −

mred,2

me

q

)
×
〈
νµ
(
pνµ
)
ν̄e (pν̄e) e

(
k̃2

)
|Lω (0)|µ (k1)

〉
. (3.4.18)

Thus, the invariant amplitude can be written in terms of the amplitude for the free muon

decay invariant amplitudeMµ→eνµν̄e as
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MB1→B2 =
√

4mB1mB2

ˆ
d3k1

(2π)3

ψ1 (k1)√
4k0

1k̃0
2

ψ∗2 (k1 − q)Mµ→eνµν̄e , (3.4.19)

Mµ→eνµν̄e =
〈
νµ
(
pνµ
)
ν̄e (pν̄e) e (k1 − q) |Lω (0)|µ (k1)

〉
, (3.4.20)

where the approximation k1 − mred,2

me
q = k1 − q +O (1/M) is used.

The formulas (3.4.19) and (3.4.20) can be rewritten in the notation of [1]

MB1→B2 ≡Msr =
4GF√

2

√
4mB1mB2NρS

ρ
sr, (3.4.21)

where the neutrino current Nρ is

Nρ = ū
(
pνµ
)
γρLυ (pν̄e) , (3.4.22)

and the matrix elements Sρsr that correspond to to (µZ)→ (eZ) transition is

Sρsr =

ˆ
d3k1

(2π)3

ψ1 (k1)√
2k0

1

ψ∗2 (k1 − q)√
2k0

2

ūs (e; k1 − q) γρLur (µ; k1) . (3.4.23)

Here the indices s and r stand for spins of electron and muon, respectively, and L = 1−γ5

2
is

the left projection operator.

3.4.2 Form Factors

3.4.2.1 Normalization for Bound Spinors

In order to �nd the normalized form of the bound spinors, it is useful to express them in

terms of the Kronecker delta functions. This can be achieved in the following way

ūr′ (µ; k1)ur (B1; 0) =

=
√

k0
1 +mµ

√
2mB1

( (
χr
′)† (σ·k1)

k0
1+mµ

(
χr
′)† )( χr

0

)
=
√

2mB1 (k0
1 +mµ)δrr′ . (3.4.24)

This gives

δrr′ =
ūr′ (µ; k1)ur (B1; 0)√

2mB1 (k0
1 +mµ)

. (3.4.25)
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Similarly, for states with spins s and s′ we �nd

ūs (B2; pB2)us′ (e; k1 − q) =

=
√

k0
2 +me

(
(χs)†

(σ·pB2)
EB2

+mB2
(χs)†

)√
EB2 +mB2

(
χs
′

−σ·(k1−q)

k0
2+me

χs
′

)

≈
√

2mB2 (k0
2 +me)

(
1− (σ · pB2) (σ · (k1 − q))

(EB2 +mB2) (k0
2 +me)

)
δss′

=
√

2mB2 (k0
2 +me)δss′ +O (1/M) , (3.4.26)

and the relations for the Kronecker δss′ is extracted to be

δss′ =
ūs (B2; pB2)us′ (e; k1 − q)√

2mB2 (k0
2 +me)

, (3.4.27)

where an approximation EB2 ≈ mB2 was made for non-relativistic velocities after the decay.

3.4.2.2 The Matrix Element

With the use of the normalization conditions (3.4.25) and (3.4.27), the Eq.(3.4.23) can

be rewritten into a convenient form

Sρsr = δss′S
ρ
s′r′δr′r, (3.4.28)

where the summation over s′ and r′ is implicit. Writing

ūs (e; k1 − q) =
∑
s′

δss′ūs′ (e; k1 − q) ==
ūs (B2; pB2) (��k1 − �q +me)√

2mB2 (k0
2 +me)

, (3.4.29)

will lead to

Sρsr =

ˆ
d3k1

(2π)3

ψ1 (k1)√
2k0

1

ψ∗2 (k1 − q)√
2k0

2

ūs (B2; pB2)us′ (e; k1 − q)√
2mB2 (k0

2 +me)

×ūs′ (e; k1 − q) γρLur′ (µ; k1)
ūr′ (µ; k1)ur (B1; 0)√

2mB1 (k0
1 +mµ)

. (3.4.30)

Thus, the matrix element (3.4.23) becomes:
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Sρsr =

ˆ
d3k1

(2π)3

ψ1 (k1)√
2k0

1

ψ∗2 (k1 − q)√
2k0

2

× ūs (B2; pB2)√
2mB2 (k0

2 +me)
(��k1 −�q +me) γ

ρL (��k1 +mµ)
ur (B1; 0)√

2mB1 (k0
1 +mµ)

. (3.4.31)

The expression (3.4.31) can be further simpli�ed with the repeated usage of the Dirac equa-

tions

γ0ur (B1; 0) = ur (B1; 0) , (3.4.32)

ūs (B2; pB2) γ0 = ūs (B2; pB2) +O

(
1

M

)
. (3.4.33)

3.4.2.3 Derivation of Form Factors Fi

For brevity the expression (3.4.31) will be written in the following form

Sρsr ∼
ˆ
d3k1ūs (B2; pB2) (��k1 −�q +me) γ

ρL (��k1 +mµ)ur (B1; 0) , (3.4.34)

where the functions ψ and the factors in the denominator dropped, which will be restored at

the end of the simpli�cation of the expression for Sρsr
The term proportional to (��k1 −�q) can be rewritten as γ0 (k1 − q)0 − γ · (k1 − q). Also,

using

k0
2 = k0

1 − q0, (3.4.35)

the expression (3.4.34) for Sρsr becomes

Sρsr ∼
ˆ
d3k1ūs (B2; pB2) [k2 − γ · (k1 − q) +me] γ

ρL
[
k0

1 − γ · k1 +mµ

]
ur (B1; 0) .

(3.4.36)

Let's simplify this expression term by term. First, consider the term proportional to γ · q =

γ0q0 −�q, i.e.,
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ūs (B2; pB2) (γ · q) γρL
(
k0

1 +mµ

)
ur (B1; 0)

= ūs (B2; pB2)
(
γ0q0 − �q

)
γρL

(
k0

1 +mµ

)
ur (B1; 0)

= ūs (B2; pB2)
(
q0 − �q

)
γρL

(
k0

1 +mµ

)
ur (B1; 0)

= ūs (B2; pB2) q0γρL (k1 +mµ)ur (B1; 0)− ūs (B2; pB2) �qγ
ρL
(
k0

1 +mµ

)
ur (B1; 0) (3.4.37)

= ūs (B2; pB2)
{

q0γρL (k1 +mµ)− (2qρ − γρ�q)L
(
k0

1 +mµ

)}
ur (B1; 0) . (3.4.38)

where in the second line the identity (3.4.32) is used and the anticommutation relation for

gamma matrices {γρ, γσ} = 2ηρσ is applied to the last term in (3.4.37). The term proportional

to qρ gives zero after being contracted with the neutrino tensor:

qρν̄eγρLνµ = ν̄e�qLνµ = ν̄e (�p1 + �p2)Lνµ = 0. (3.4.39)

Therefore, we always drop the term proportional to qρ from now on. With this simpli�cation

Eq. (3.4.38) becomes

ūs (B2; pB2) (γ · q) γρL
(
k0

1 +mµ

)
ur (B1; 0) = ūs (B2; pB2) q0γρL

(
k0

1 +mµ

)
ur (B1; 0)

+ ūs (B2; pB2) (γρ�q)L
(
k0

1 +mµ

)
ur (B1; 0) . (3.4.40)

Substituting Eq. (3.4.40) in Eq. (3.4.36) and dropping ur and ūs further for brevity, we

can write

Sρsr ∼
[
k0

2 − γ · (k1 − q) +me

]
γρL

[
k0

1 − γ · k1 +mµ

]
=
(
k0

2 +me

)
γρL

(
k0

1 +mµ

)
− (γ · k1) γρL

(
k0

1 +mµ

)
+ (γ · q) γρL

(
k0

1 +mµ

)
−
(
k0

2 +me

)
γρL (γ · k1) + (γ · k1) γρL (γ · k1)− (γ · q) γρL (γ · k1)

=
{(

k0
1 +mµ

) (
k0

2 +me

)
+ q0

(
k0

1 +mµ

)}
γρL+

(
k0

1 +mµ

)
γρ�qL− (γ · k1) γρL

[
k0

1 +mµ

]
−
(
k0

2 +me

)
γρL (γ · k1) + (γ · k1) γρL (γ · k1)− (γ · q) γρL (γ · k1) . (3.4.41)

Now consider the terms proportional to k1. Since both functions ψ1 and ψ∗2 are scalar

functions, from the rotational invariance it follows

ˆ
d3k1ψ1 (k1)ψ∗2 (k1 − q) ki1 = A1 (q) qi. (3.4.42)
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Multiplying both parts of (3.4.42) by qi, the coe�cient A1 is obtained to be

A1 (q) =
1

q2

ˆ
d3k1ψ1 (k1)ψ∗2 (k1 − q) (k1 · q)

≡
ˆ
d3k1ψ1 (k1)ψ∗2 (k1 − q)C, (3.4.43)

where C = (k1·q)
q2 . Thus,

(γ · k1) γρL = C (γ · q) γρL = C
(
q0 − �q

)
γρL = Cq0γρL+ Cγρ�qL, (3.4.44)

γρL (γ · k1) = CγρL (γ · q) = CγρL
(
q0 − �q

)
= Cq0γρL− Cγρ�qR. (3.4.45)

Here R = 1+γ5

2
is the right projection operator which obeys Rγρ = γρL. After substituting

Eqs. (3.4.44) and (3.4.45) in Eq. (3.4.41), it gives

Sρsr ∼{(
k0

1 +mµ

) (
k0

2 +me

)
+ q0 (1− C)

(
k0

1 +mµ

)
− Cq0

(
k0

2 +me

)}
γρL

+ C
(
k0

2 +me

)
γρ�qR + (1− C)

(
k0

1 +mµ

)
γρ�qL+ (γ · k1) γρL (γ · k1)− (γ · q) γρL (γ · k1) .

(3.4.46)

It is useful to simplify the last term of Eq. (3.4.46) as

(γ · q) γρL (γ · k1) = C
(
q0 − �q

)
γρL

(
q0 − �q

)
= C

{(
q0
)2
γρL− q0γρL�q− q0

�qγ
ρL+ �qγ

ρ
�qR
}

= C
{(

q0
)2
γρL− q0γρ�qR + q0γρ�qL− q2γρR

}
, (3.4.47)

which leads to

Sρsr ∼
{(

k0
1 +mµ

) (
k0

2 +me

)
+ q0 (1− C)

(
k0

1 +mµ

)
− Cq0

(
k0

2 +me

)
− C

(
q0
)2
}
γρL

+
{
C
(
k0

2 +me

)
+ Cq0

}
γρ�qR +

{
(1− C)

(
k0

1 +mµ

)
− Cq0

}
γρ�qL

+ Cq2γρR + (γ · k1) γρL (γ · k1) . (3.4.48)

Again, for the term proportional to k2
1 the rotational invariance gives:
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ˆ
d3k1ψ1 (k1)ψ∗2 (k1 − q) (k1)i (k1)j = A′2 (q) δij + A′3 (q) qiqj

= A2 (q)

(
qiqj −

1

3
δijq

2

)
+ A3 (q) δijq

2, (3.4.49)

where both terms in the last line are orthogonal and therefore the corresponding coe�cients

A2 and A3 can be obtained by consecutive contraction of the Eq. (3.4.49) with
(
qiqj − 1

3
δijq

2
)

and δijq2, respectively. This gives

A2 =
3

2 (q2)2

ˆ
d3k1ψ1 (k1)ψ∗2 (k1 − q)

[
(k1 · q)2 − 1

3
k2

1q
2

]
≡
ˆ
d3k1ψ1 (k1)ψ∗2 (k1 − q)B, (3.4.50)

and

A3 =

ˆ
d3k1ψ1 (k1)ψ∗2 (k1 − q)

k2
1

3q2
, (3.4.51)

where the coe�cient A2 was written in terms of B =
3(k1·q)2−k2

1q
2

2(q2)2 de�ned in [1]. Then, the

last term in Eq. (3.4.48) can be expressed as

(γ · k1) γρL (γ · k1) = γiγρLγj
{
B

(
qiqj −

1

3
δijq

2

)
+ A3δijq

2

}
= Bγ · q (γρL)γ · q− B

3
γiγρLγiq2 + A3q

2γiγρLγi

= B
(
q0 − �q

)
(γρL)

(
q0 − �q

)
+ γiγργiR

{
A3q

2 − B

3
q2

}
, (3.4.52)

where

γiγρLγi = −γ0γρLγ0 + γiγρLγi + γ0γρLγ0

= −
(
γ0γρLγ0 − γiγρLγi

)
+ γ0γρLγ0

→ 2γρR + γρL. (3.4.53)

Here we have dropped the γ0's due to the Dirac equations (3.4.32) and (3.4.33). Thus,

expression (3.4.52) becomes

(γ · k1) γρL (γ · k1) =

(2γρR + γρL)

(
A3q

2 − B

3
q2

)
+B

{(
q0
)2
γρL− q0γρ�qR + q0γρ�qL− q2γρR

}
(3.4.54)
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Also,

A3q
2 − B

3
q2 =

k2
1q

2

3q2
− q2

3

3 (k1 · q)2 − k2
1q

2

2 (q2)2 =
k2

1q
2 − (k1 · q)2

2q2
≡ A, (3.4.55)

where A is a quantity de�ned in [1]. Putting everything together, the �nal expression for Sρsr
is

Sρsr ∼{(
k0

1 +mµ

) (
k0

2 +me

)
+ q0 (1− C)

(
k0

1 +mµ

)
− Cq0

(
k0

2 +me

)
+ (B − C)

(
q0
)2

+ A
}
γρL

+
{

(C −B) q2 + 2A
}
γµR +

{
(1− C)

(
k0

1 +mµ

)
+ (B − C) q0

}
γρ�qL

+
{
C
(
k0

2 +me

)
− (B − C) q0

}
γρ�qR. (3.4.56)

This expression of the S-matrix can be written in a more convenient form as follows [1]:

Sρsr =
ūs (B2; pB2)T ρur (B1; 0)√

4mB1mB2

. (3.4.57)

where

T ρ = F1

(
q2
)
γρL+ F2

(
q2
)
γρR + F3

(
q2
)
γρ �q

mµ

L+ F4

(
q2
)
γρ �q

mµ

R. (3.4.58)

In the expression (3.4.58) we have put back everything that was dropped in writing Eq.

(3.4.34). The FF's are given by

Fi
(
q2
)

=

ˆ
d3k1

(2π)3ψ1 (k1)ψ∗2 (k1 − q)
hi√

4k0
1k0

2 (k0
1 +mµ) (k0

2 +me)
, (3.4.59)

with

h1 =
(
k0

1 +mµ

) (
k0

2 +me

)
+ q0

[
(1− C)

(
k0

1 +mµ

)
− C

(
k0

2 +me

)]
+ (B − C)

(
q0
)2

+ A, (3.4.60)

h2 = (C −B) q2 + 2A, (3.4.61)

h3 =
[
(1− C)

(
k0

1 +mµ

)
+ (B − C) q0

]
mµ, (3.4.62)

h4 =
[
C
(
k0

2 +me

)
− (B − C) q0

]
mµ. (3.4.63)

It is worth noting that in ref. [1] the expressions for h1 and h2 include the terms of A

with the opposite sign. The Tables 3.4.1 and 3.4.2 present numerical comparison between Fi
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|q| (MeV) F1 F ′1 F2 F ′2
10 0.00479743 0.00502886 0.00018832 0.00065119
20 0.00430349 0.00451858 0.00013482 0.00056500
30 0.00365043 0.00384268 0.00007005 0.00045455
40 0.00298111 0.00314818 0.00001213 0.00034628
50 0.00238271 0.00252534 -0.00003053 0.00025473
60 0.00188767 0.00200827 -0.00005735 0.00018374
70 0.00149515 0.00159676 -0.00007188 0.00013136
80 0.00119033 0.00127599 -0.00007760 0.00009373

Table 3.4.1: The FF Fi are calculated according to [1]. F ′i represent the corresponding
corrected FF with the correct sign in front of the coe�cient A. The values of the pa-
rameters used for numerical calculations are Z = 80, mµ = 105.658375 ± 0.000002 MeV,
me = 0.510998946± 0.000000003 MeV and α = 1/137 ≈ 0.00729735257.

|q|(MeV) F1 F ′1 F2 F ′2
10 0.0002029 0.00020454 3.8015062·10−5 3.8866117·10−5

20 3.0509518·10−5 3.0537957·10−5 3.1366506·10−6 3.3410198·10−6

30 5.4156085·10−6 3.5115656·10−6 5.4680428·10−7 6.0649955·10−7

40 1.3494489·10−6 1.2862501·10−6 1.4164301·10−7 1.7638670·10−7

50 5.9038607·10−7 5.9913763·10−7 1.1037297·10−8 2.6913015·10−8

60 3.0022005·10−7 3.0539554·10−7 5.4042601·10−11 8.6634225·10−9

70 1.7108758·10−7 1.7428102·10−7 6.1553051·10−9 6.0009907·10−10

80 1.0984531·10−7 1.1206792·10−7 6.1962072·10−9 4.2160059·10−9

Table 3.4.2: The FF Fi are calculated according to [1]. F ′i represent the corresponding
corrected FF with the correct sign in front of the coe�cient A. The values of the pa-
rameters used for numerical calculations are Z = 10, mµ = 105.658375 ± 0.000002 MeV,
me = 0.510998946± 0.000000003 MeV and α = 1/137 ≈ 0.00729735257.

and F ′i for cases of Z = 80 and Z = 10, respectively. Here: F1 ∼ h1, with −A and F2 ∼ h2,

with −2A in their respective last terms for the form factors derived in [1], and F ′1 and F
′
2 are

with corrected sign of A terms in the FF's. The values for Fi and F
′
i are of the same order

for Z = 10, but for Z = 80 the di�erence is up to an order of magnitude.

3.4.3 The Decay Rate into the Bound Electron

The di�erential decay rate formula is given by [13]:

dΓ =
1

2mB1

dΦ |Msr|2 , dΦ =
∏
f

d3pf

2Ef (2π)3 (2π)4 δ(4) (pi − pf ) , (3.4.64)

where dΦ is the phase space and the invariant amplitude is given by Eq. (3.4.21). From this
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expression the decay rate of (Zµ)→ (Ze) is

Γ =
1

2mB1

ˆ
d3p2

(2π)3 2E2

d3pνµ

(2π)3 2Eνµ

d3pν̄e
(2π)3 2Eν̄e

(2π)4 δ(4)
(
p1 − p2 − pνµ − pν̄e

)
|Msr|2 .

(3.4.65)

The last expression can be rewritten as the integral over 4-momentum q with the use of the

extra delta function as

Γ =
1

2mB1

ˆ
d3p2

(2π)3 2E2

d3pνµ

(2π)3 2Eνµ

d3pν̄e
(2π)3 2Eν̄e

×
ˆ
d4q (2π)4 δ(4)

(
q− pνµ − pν̄e

)
δ(4) (p1 − p2 − q) |Msr|2 . (3.4.66)

Substituting the expression forMsr from Eq. (3.4.21) it becomes

Γ =
1

2mB1

ˆ
d3p2

(2π)3 2E2

d3pνµ

(2π)3 2Eνµ

d3pν̄e
(2π)3 2Eν̄e

ˆ
d4q (2π)4 δ(4)

(
q− pνµ − pν̄e

)
× δ(4) (p1 − p2 − q)

(
4GF√

2

√
4mB1mB2

)2∑
rs

(NρS
ρ
sr)
† (NσS

σ
sr) . (3.4.67)

3.4.3.1 Integration over Neutrino Phase Space

The decay rate (3.4.67) should be �rst integrated over neutrino phase space. The integral

is given by

Nρσ ≡
ˆ

d3pνe
(2π)3 2Eν̄e

d3pνµ

(2π)3 2Eνµ
(2π)4 δ(4)

(
q− pνµ − pν̄e

)(4GF√
2

)2 ∑
spins

N †ρNσ, (3.4.68)

where Nρ = ū
(
pνµ
)
γρLv (pν̄e) . The summation over the spins gives∑

spins

N †ρNσ =
∑
spins

[
ū
(
pνµ
)
γρLv (pν̄e)

]†
ū
(
pνµ
)
γσLv (pν̄e)

=
∑
spins

ū (pν̄e) γρLv
(
pνµ
)
ū
(
pνµ
)
γσLv (pν̄e)

= Tr
[
�pν̄eγρL�pνµγσL

]
=

1

2
Tr
[
�pν̄eγρ�pνµγσ

]
+ 2iερσαβpαν̄ep

β
νµ . (3.4.69)

The term containing the antisymmetric tensor ερσαβ vanishes after the integration over the
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phase space and Eq. (3.4.69) becomes∑
spins

N †ρNσ = 2
[
(pν̄e)ρ

(
pνµ
)
σ

+ (pν̄e)σ
(
pνµ
)
ρ
−
(
pν̄e · pνµ

)
ηρσ

]
. (3.4.70)

Next, the following integral should be evaluated

Iρσ =

ˆ
d3pνe

(2π)3 2Eν̄e

d3pνµ

(2π)3 2Eνµ
(2π)4 δ(4)

(
q− pνµ − pν̄e

)
(pν̄e)ρ

(
pνµ
)
σ

= D1

(
q2ηρσ + 2qρqσ

)
+D2

(
q2ηρσ − 2qρqσ

)
, (3.4.71)

where the expected result has been written in the most general form as the sum of two

orthogonal terms and it is understood that D1 and D2 are both functions of q2. To �nd the

coe�cient D2 contract both parts of (3.4.71) with (q2ηρσ − 2qρqσ):

4q4D2 =ˆ
d3pνe

(2π)3 2Eν̄e

d3pνµ

(2π)3 2Eνµ
(2π)4 δ(4)

(
q− pνµ − pν̄e

) {
q2
(
pν̄e · pνµ

)
− 2 (pν̄e · q)

(
pνµ · q

)}
= 0, (3.4.72)

since in the massless neutrino limit

pν̄e · q = pν̄e ·
(
pν̄e + pνµ

)
= pν̄e · pνµ , (3.4.73)

pνµ · q = pν̄e · pνµ , (3.4.74)

q2 =
(
pν̄e + pνµ

)2
= 2pν̄e · pνµ . (3.4.75)

Contracting (3.4.71) with (q2ηρσ + 2qρqσ):

12q4D1

=

ˆ
d3pνe

(2π)3 2Eν̄e

d3pνµ

(2π)3 2Eνµ
(2π)4 δ(4)

(
q− pνµ − pν̄e

) {
q2
(
pν̄e · pνµ

)
+ 2 (pν̄e · q)

(
pνµ · q

)}
= q4

ˆ
d3pνe

(2π)3 2Eν̄e

d3pνµ

(2π)3 2Eνµ
(2π)4 δ(4)

(
q− pνµ − pν̄e

)
. (3.4.76)

The phase space integration in the last line is given by
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ˆ
d3pνe

(2π)3 2Eν̄e

d3pνµ

(2π)3 2Eνµ
(2π)4 δ(3)

(
q− pνµ − pν̄e

)
δ
(
q0 − Eνµ − Eν̄e

)
= 4π

ˆ
dω ω2

(2π)2 2ω

1

2ω
δ
(
q0 − 2ω

)
=

ˆ
dω

2 (2π)2 δ

(
ω − q0

2

)
=

1

8π
. (3.4.77)

Where in the last line the two neutrinos are considered in their center of mass frame, and

thus, pνµ = −pν̄e and their energy is ω = Eνµ = Eν̄e . Therefore, the coe�cient D1 = 1
12

1
8π

and the integral Iρσ is

Iρσ =
1

12

1

8π

(
q2ηρσ + 2qρqσ

)
. (3.4.78)

Also, taking into account that

ˆ
d3pνe

(2π)3 2Eν̄e

d3pνµ

(2π)3 2Eνµ
(2π)4 δ(4)

(
q− pνµ − pν̄e

)
(pν̄e)ρ

(
pνµ
)
σ

=

ˆ
d3pνe

(2π)3 2Eν̄e

d3pνµ

(2π)3 2Eνµ
(2π)4 δ(4)

(
q− pνµ − pν̄e

)
(pν̄e)σ

(
pνµ
)
ρ
. (3.4.79)

Finally, the integral over the neutrino phase space is

Nρσ ≡ 16G2
F

ˆ
d3pνe

(2π)3 2Eν̄e

d3pνµ

(2π)3 2Eνµ
(2π)4 δ(4)

(
q− pνµ − pν̄e

) [
2 (pν̄e)ρ

(
pνµ
)
σ
− q2

2
ηρσ

]
= 16G2

F

1

8π

[
2

12

(
q2ηρσ + 2qρqσ

)
− q2

2
ηρσ

]
=

2G2
F

3π

(
qρqσ − q2ηρσ

)
. (3.4.80)

3.4.3.2 Derivation of Decay Rate into Bound Electron

Substituting the result for the integral over neutrino phase space

Nρσ =
2G2

F

3π

(
qρqσ − q2ηρσ

)
(3.4.81)

in Eq. (3.4.67) and performing the integration over the 3-momentum p2 and q0 gives

Γ =
1

2mB1

ˆ
d3p2

(2π)3 2E2

ˆ
d3q

ˆ
dq0δ

(
mB1 −mB2 − q0

)
× δ(3) (p1 − p2 − q) (4mB1mB2)

∑
rs

(Sρsr)
† (Sσsr)Nρσ.

=
1

2mB1

1

2mB2

ˆ
d3q

(2π)3 (4mB1mB2)
∑
rs

(Sρsr)
† (Sσsr)Nρσ =

ˆ
d3q

(2π)3

∑
rs

(Sρsr)
† (Sσsr)Nρσ,

(3.4.82)
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where E2 = mB2 was used and it is understood thatmB2 = mB1−q0. The decay rate formula,

after averaging over the spin, becomes

Γ =
1

2

ˆ
d3q

(2π)3

∑
rs

(Sρsr)
† (Sσsr)Nρσ, (3.4.83)

where the matrix element Sρsr is de�ned in terms of T ρ given by Eq. (3.4.58). Therefore,

∑
rs

(Sρsr)
† (Sσsr) =

1

4mB1mB2

∑
rs

(ūs (p2)T ρur (p1)) (ūs (p2)T σur (p1))† , (3.4.84)

Thus, di�erential decay rate is given by

dΓ

d |q|
=
|q|2G2

F

24π3

1

mB1mB2

∑
rs

(ūs (p2)T ρur (p1)) (ūs (p2)T σur (p1))†
(
qρqσ − q2ηρσ

)
. (3.4.85)

Using the expressions for T ρ and T σ from (3.4.58) in Eq. (3.4.85), we get the terms

corresponding to FF's Fi (q
2) . They can be disscussed one by one.

First consider the term proportional to F 2
1 (q2):

Term I =
(
qρqσ − q2ηρσ

)∑
rs

ūs (p2) (γρL)ur (p1) ūr (p1) (γσL)us (p2) . (3.4.86)

After summations over rs in (3.4.86) we get the trace which is not zero only for the even

number of gamma matrices

Term I =

=
(
qρqσ − q2ηρσ

)
Tr [(�p2 +mB2) γρL (�p1 +mB1) γσL]

=
1

4

(
qρqσ − q2ηρσ

)
×
{

Tr
[
�p2γ

ρ
(
1− γ5

)
�p1γ

σ
(
1− γ5

)]
+mB1mB2Tr

[
γρ
(
1− γ5

)
γσ
(
1− γ5

)]}
. (3.4.87)

The second trace identity is

Tr
[
γρ
(
1− γ5

)
�p1γ

σ
(
1− γ5

)]
= Tr [γργσ] + Tr

[
γργ5γσγ5

]
=Tr [γργσ]− Tr

[
γργ5γ5γσ

]
= Tr [γργσ]− Tr [γργσ] = 0, (3.4.88)

where the facts that γ5 anticommutes with all γρ and (γ5)
2

= I were used. And the �rst
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trace identity is

Tr
[
�p2γ

ρ
(
1− γ5

)
�p1γ

σ
(
1− γ5

)]
= 2Tr [�p2γ

ρ
�p1γ

σ] + 8iερσνβp1αp2β. (3.4.89)

The term containing ερσνβ symbol disappears after contracting with the neutrino tensor Nρσ.

Thus, the only term that is left

Term I =

=
1

2

(
qρqσ − q2ηρσ

)
Tr [�p2γ

ρ
�p1γ

σ] =
1

2

(
qρqσ − q2ηρσ

)
4 [pρ1pσ2 + pρ2pσ1 − (p1 · p2) ηρσ]

= 2
{

2(q · p1) (q · p2) + q2 (p1 · p2)
}
. (3.4.90)

Since p1 = (mB1 , 0) , p2 = (mB2 ,−q), therefore,

Term I = 2
{

2
(
q0mB1

) (
q0mB2 + q2

)
+ q2 (mB1mB2)

}
. (3.4.91)

The term proportional to F 2
2 gives the same expression, since Tr [�p2γ

ρR�p1γ
σR] = Tr [�p2γ

ρL�p1γ
σL].

The term proportional to
(
F3

mµ

)2

is

Term II =
(
qρqσ − q2ηρσ

)∑
rs

ūs (p2) (γρ�qL)ur (p1) [ūs (p2) (γσ�qL)ur (p1)]†

=
(
qρqσ − q2ηρσ

)∑
rs

ūs (p2) (γρ���qL)ur (p1) ūr (p1) (R�qγ
σ)us (p2) . (3.4.92)

The summation in (3.4.92) gives

Tr [(�p2 +mB2) γρ���qL (�p1 +mB1)R�qγ
σ] = Tr [�p2γ

ρ
�q�p1L�qγ

σ] +mB1mB2Tr [γρ�qLR�qγ
σ]

= Tr [�p2γ
ρ
�q�p1L�qγ

σ] , (3.4.93)

since LR = 0, L2 = L and Lγρ = γρR, Rγρ = γρL. The �rst trace in Eq. (3.4.93) gives

Tr [�p2γ
ρ
�q�p1L���qγ

σ] = p1βp2λqκqαTr

[
γλγργαγβ

(
1− γ5

2

)
γσγκ

]
. (3.4.94)

The trace which includes γ5 matrix is given by

Tr
[
γργαγβγσγκγλγ5

]
= ηραTr

[
γβγσγκγλγ5

]
− ηρβTr

[
γαγσγκγλγ5

]
+ ηαβTr

[
γργσγκγλγ5

]
+ iεραβτTr

[
γτγ

5γσγκγλγ5
]
, (3.4.95)
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where was used the following identity from [14]

γργαγβ = ηραγβ − ηρβγα + ηαβγρ + iεραβτγτγ
5. (3.4.96)

Applying to each term in (3.4.95) the identities

Tr
[
γβγσγκγλγ5

]
= −4iελκσβ, (3.4.97)

and

Tr
[
γτγ

σγκγλ
]

= 4
(
δστ η

κλ − δκτ ησλ + δλτ η
σκ
)
, (3.4.98)

to the last term in Eq. (3.4.95)

Tr
[
γργαγβγσγκγλγ5

]
=

= −4i
{
ηραεβσκλ − ηρβεασκλ + ηαβερσκλ + ηκλεραβσ − ησλεραβκ + ησκεραβλ

}
, (3.4.99)

which completely disappears after contracting with the neutrino tensor. What left is then

Term II =
1

2

(
qρqκ − q2ηρκ

)
p1βp2λqσqαTr

[
γργαγβγσγκγλ

]
=

1

2

(
qρqκ − q2ηρκ

)
p1βp2λqσqα

{
ηραTr

[
γβγσγκγλ

]
− ηρβTr

[
γαγσγκγλ

]
+ηρσTr

[
γαγβγκγλ

]
− ηρκTr

[
γαγβγσγλ

]
+ ηρλTr

[
γαγβγσγκ

]}
. (3.4.100)

Applying to each term of the last expression the trace identity

Tr
[
γργσγαγβ

]
= 4

(
ηρσηαβ − ηραησβ + ηρβησα

)
(3.4.101)

and after some algebra, the overall coe�cient for
(
F3

mµ

)2

is given by

Term II =2q2
{

4q0mB1

(
q0mB2 + q2

)
− q2mB1mB2

}
. (3.4.102)

The term proportional to
(
F4

mµ

)2

is given by Tr [(�p2 +m2) γρ�qR (�p1 +m1)L�qγ
σ] and the same

coe�cient is obtained as in Eq. (3.4.102)

Now evaluate the cross terms: �rst, the one proportional to F1F2
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Term III = 2
(
qρqσ − q2ηρσ

)∑
rs

ūs (p2) (γρL)ur (p1) ūr (p1) (γσR)us (p2)

= 2
(
qρqσ − q2ηρσ

)
Tr [(�p2 +mB2) γρL (�p1 +mB1) γσR]

=
(
qρqσ − q2ηρσ

)
mB1mB2Tr

[
γργσ

(
1 + γ5

)]
= −12q2mB1mB2 , (3.4.103)

where in the last line we used

Tr
[
γργσ

(
1 + γ5

)]
= Tr [γργσ]− Tr

[
γργσγ5

]
= 4ηρσ. (3.4.104)

The coe�cient in Eq. (3.4.103) will be doubled since the term proportional to F2F1 gives the

same contribution.

Next, consider the term proportional to F3F4

m2
µ

Term IV = 2
(
qρqσ − q2ηρσ

)∑
rs

ūs (p2) (γρ�qL)ur (p1) [ūs (p2) (γσ�qR)ur (p1)]†

= 2
(
qρqσ − q2ηρσ

)
Tr [(�p2 +mB2) γρ�qL (�p1 +mB1)L�qγ

σ]

= −12q4mB1mB2 . (3.4.105)

The term proportional to F1F3

mµ
:

Term V =2
(
qρqσ − q2ηρσ

)∑
rs

ūs (p2) (γρL)ur (p1) [ūs (p2) (γσ���qL)ur (p1)]†

=2
(
qρqσ − q2ηρσ

)∑
rs

ūs (p2) (γρL)ur (p1) ūr (p1) (γσ�qL)ur (p2)

=2
(
qρqσ − q2ηρσ

)
Tr [(�p2 +mB2) γρL (�p1 +mB1)Lγσ�q]

Term V = 2
(
qρqσ − q2ηρσ

)∑
rs

ūs (p2) (γρL)ur (p1) [ūs (p2) (γσ���qL)ur (p1)]†

= 2
(
qρqσ − q2ηρσ

)∑
rs

ūs (p2) (γρL)ur (p1) ūr (p1) (γσ�qL)ur (p2)

= 2
(
qρqσ − q2ηρσ

)
Tr [(�p2 +mB2) γρL (�p1 +mB1)Lγσ�q]

= 2
(
qρqσ − q2ηρσ

)
mB1Tr [�p2γ

ρLγσ�q]

= −12mB1q2 (q · p2) = −12mB1q2
(
q0mB2 + q2

)
. (3.4.106)
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For the term proportional to F2F4

mµ
the trace is given by

Tr [(�p2 +mB2) γρR (�p1 +mB1)Rγσ�q] = qαp2βTr
[
γβγργσγα

]
= −12mB1q2

(
q0mB2 + q2

)
. (3.4.107)

The term proportional to F1F4

mµ
is

Term VI = 2
(
qρqσ − q2ηρσ

)
Tr [(�p2 +mB2) γρL (�p1 +mB1)Rγσ�q]

= mB2

(
qρqσ − q2ηρσ

)
Tr
[
γρ
(
1− γ5

)
�p1γ

σ
�q
]

= 12mB2q2 (q · p1), (3.4.108)

And the one proportional to F2F3

mµ
has the same coe�cient as in Eq. (3.4.108) by the same

argument as in (3.4.106).

Collecting all the terms gives the di�erential decay rate

dΓ

d |q|
=
|q|2

24π3

G2
F

mB1mB2

×
{

2
[
2
(
q0mB1

) (
q0mB2 + q2

)
+ q2 (mB1mB2)

] (
F 2

1 + F 2
2

)
+

2q2

m2
µ

[
4q0mB1

(
q0mB2 + q2

)
− q2mB1mB2

] (
F 2

3 + F 2
4

)
− 12q2mB1mB2F1F2 − 12q4mB1mB2

F3F4

m2
µ

−12mB1q2

mµ

(
q0mB2 + q2

)
(F1F3 + F2F4) +

12mB1q2

mµ

(F1F4 + F2F3)

}
. (3.4.109)

Dropping in all the terms of the order (1/M) and substituting q0 = (m1 −m2) in Eq.

(3.4.109), the di�erential rate becomes

dΓ

d |q|
=
|q|2G2

F

12π3
K (|q|) +O (1/M) , (3.4.110)

where

K (|q|) =
[
q2 + 2 (m1 −m2)2] (F 2

1 + F 2
2

)
+

q2

m2
µ

[
4 (m1 −m2)2 − q2

] (
F 2

3 + F 2
4

)
− 6q2

[
F1F2 +

q2

m2
µ

F3F4 +
m1 −m2

mµ

(F1 − F2) (F3 − F4)

]
. (3.4.111)
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3.4.4 Decay Rate into the Free Electron

For the decay rate of a bound muon to a free electron: (Zµ) → Zeνµν̄e, the S-matrix

element in the rest frame of B1 for such a process is

S = 〈Z, e, νµ, ν̄e| i
ˆ
d4xL (x) |B1,p1 = 0〉

= i (2π)4 δ(4) (p1 − pZ − pe − q) 〈Z, e, νµ, ν̄e| L (0) |B1,p1 = 0〉 , (3.4.112)

where pZ is the �nal momentum of the nucleus and q = pνµ + pν̄e . The invariant amplitude

of the decay is then

M =
√

2mB1

ˆ
d3k1√

2k0
1

ψ1 (k1)
√

2k0
3δ

(3) (pZ − k3) 〈e, νµ, ν̄e |L (0)|µ〉 , (3.4.113)

and the total decay rate is therefore given by

Γ(Zµ)→Zeνµν̄e =

ˆ
d3k1

(2π)3 |ψ1 (k1)|2 2mµ

2k0
1

×
[

1

2mµ

ˆ
dΦ̃ (2π)4 δ(4)

(
p1 − pZ − pe − pνµ − pν̄e

)
|〈e, νµ, ν̄e |L (0)|µ〉|2

]
, (3.4.114)

where pµ = p1 − pZ = p1 − k3, and the phase integral after the integration over pZ is

dΦ̃ =
d3pe

(2π)3 2p0
e

d3pνµ

(2π)3 2p0
νµ

d3pν̄e
(2π)3 2p0

ν̄e

. (3.4.115)

In the formula (3.4.114) the momentum of the muon is k1, so the following approximation

is made |µ (k1)〉 ≈ |µ (pµ)〉 for the expression in the square parenthesis to be equal to the

total decay rate of the muon. Also, for the bound muon

p2
µ = (γmµ)2 − k2

1 +O (1/M) 6= m2
µ, (3.4.116)

where γmµ ≡ mµ − Ebind,1 and

γ =

√
1− (Zα)2. (3.4.117)

Therefore, this approximation makes the matrix element o�-shell, but retains the conservation

of momentum. In the rest frame of B1: p0
µ = γmµ and pµ = k1. Thus, the expression in the
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〈L−1〉
Z = 10 0.99735612
Z = 80 0.84619822

Table 3.4.3: The mean inverse Lorentz factor for the muon and electron for Z = 10 and
Z = 80.

square parenthesis in (3.4.114) becomes

1

2mµ

ˆ
dΦ̃ (2π)4 δ(4)

(
pµ − pe − pνµ − pν̄e

)
|〈e, νµ, ν̄e |L (0)|µ (pµ)〉|2 (3.4.118)

=
1

2mµ

ˆ
dΦ̃ (2π)4 δ

(
γmµ − p0

e − p0
νµ − p0

ν̄e

)
δ(3)

(
pe + pνµ + pν̄e

)
(3.4.119)

× |〈e, νµ, ν̄e |L (0)|µ (pµ)〉|2 , (3.4.120)

where in Eq. (3.4.118) the muon momentum is taken p2
µ = (γmµ)2 and k2

1 is neglected. The

Eq. (3.4.120) is the decay rate for the free muon with the e�ective mass γmµ and can be

related to the real muon decay by a scale transformation p→ γp for momenta of the electron

and neutrinos. Performing this scale transformation for the parts of this integral gives

dΦ̃→ γ6dΦ̃, (3.4.121)

δ
(
γmµ − p0

e − p0
νµ − p0

ν̄e

)
δ(3)

(
pe + pνµ + pν̄e

)
→

γ−4δ
(
mµ − p0

e − p0
νµ − p0

ν̄e

)
δ(3)

(
pe + pνµ + pν̄e

)
. (3.4.122)

Making use of Eqs. (3.4.120) - (3.4.122) gives

Γ(Zµ)→Zeνµν̄e ≡ Γ0γ
2
〈
L−1

〉
, γ =

√
1− (Zα)2, (3.4.123)

where

Γ0 =
1

2mµ

ˆ
dΦ̃δ

(
mµ − p0

e − p0
νµ − p0

ν̄e

)
δ(3)

(
pe + pνµ + pν̄e

)
|〈e, νµ, ν̄e |L (0)|µ (pµ)〉|2

(3.4.124)

is the free muon decay rate and

〈
L−1

〉
=

ˆ
d3k1

(2π)3 |ψ1 (k1)|2 2mµ

2k0
1

, (3.4.125)

is the mean inverse Lorentz factor. Numerical results for the mean inverse Lorentz factor
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(3.4.125) are presented in the Table 3.4.3 for the cases of Z = 10 and Z = 80.

It is worth pointing out that when Zα → 0, the muon wave function is spread over all

of space uniformly. Then the probability of it to decay within the screened Coulomb �eld

of the nucleus is zero. Thus, in this limit, we expect the decay rate Γ → Γ0. But for larger

value of Z such approximation is no longer valid.

3.5 Bound Muon Decay Rate to an Outgoing Energetic

Electron: Another Formalism

For the case when the decay of a bound muon results into a highly energetic outgoing

electron a formalism was developed in ref. [2]. This approach can be modi�ed to calculate

the decay rate of a bound muon into a bound electron. But before suggesting this possible

modi�cation, a short summary of the approach developed [2] is presented below.

The Lagrangian describing the Fermi interaction for the muon decay is given by (3.4.1).

The neutrino part of the phase space Wρσ is given by the expression similar to (3.4.80) with

some di�erences in constant coe�cients:

Wρσ = − π

3 (2π)3

(
q2ηρσ − qρqσ

)
, (3.5.1)

and the bound muon decay rate is then

Γ(Zµ)→Zeνµν̄e =
2G2

F

(2π)6

∑
e spin

ˆ
dq2d

3q

Eq

d3pe
E2
e

(2π) δ
(
Eµ − Ee − q0

)
JρJσ†Wρσ, (3.5.2)

Jρ ≡
[ˆ

d3re−iq·rΦ̄eγ
ρLΦµ

]
, (3.5.3)

where the average over the muon spin is incorporated in the de�nition Φµ, which is the

solution of the Dirac equation for the muon and Φe for the electron. The 4-momentum

transferred to the neutrinos is q = (q0,q), pe is the electron 3-momentum, Eµ and Ee being

the muon and electron energies, respectively. The integration over q2 and the angular parts

of the currents Jρ gives
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1

Γ0

dΓ

dEe
=
∑
Kκ

4

πm5
µ

(2jκ + 1)

ˆ Eµ−Ee

0

d |q| |q|2

×

{[
(Eµ − Ee)2 − |q|2

] [ |S0
Kκ|

2

K (K + 1)
+

∣∣S−1
Kκ

∣∣2
K (2K + 1)

+

∣∣S+1
Kκ

∣∣2
(K + 1) (2K + 1)

]

+ [(Eµ − Ee) |q|] 2Im

[
SKκ

(
S−1
Kκ + S+1

Kκ

)∗
2K + 1

]
+ |q|2

[∣∣S−1
Kκ + S+1

Kκ

∣∣2
(2K + 1)2 + |SKκ|2

]}
,

(3.5.4)

where the amplitudes are

S0
Kκ =

{
−i (κ− 1) 〈jK (|q| r) (fκG+ gκF )〉

(κ+ 1) 〈jK (|q| r) (gκG+ fκF )〉
, (3.5.5)

S−1
Kκ =

{
〈jK−1 (|q| r) [(κ−K − 1) gκG− (κ+K − 1) fκF ]〉
−i 〈jK−1 (|q| r) [(κ+K + 1) fκG+ (κ−K + 1) gκF ]〉

, (3.5.6)

S+1
Kκ =

{
〈jK+1 (|q| r) [(κ+K) gκG+ (K − κ+ 2) fκF ]〉
−i 〈jK+1 (|q| r) [(κ−K) fκG+ (κ+K + 2) gκF ]〉

, (3.5.7)

SKκ =

{
i 〈jK (|q| r) (fκG− gκF )〉
〈jK (|q| r) (gκG+ fκF )〉

, (3.5.8)

and jK stands for the spherical Bessel function of order K; gκ, fκ and G, F are the upper

and lower components of the radial part of the solution of the Dirac equation in the Coulomb

potential for the bound electron and muon, respectively. They are de�ned by (2.3.6) and

(2.3.7). For the amplitudes S the following notation is used

〈a〉 ≡
ˆ ∞

0

ar2dr, (3.5.9)

and the �rst (second) row in each entry corresponds to odd (even) values of lκ + K, where

lκ = jκ + 1
2
κ
|κ| . These quantum numbers are de�ned in [2]. In this case jκ = |κ| − 1

2
and for

the given value of K, κ 6= 0 can only take values ±K and ± (K + 1). Now K can have all

the values from 0 to ∞, but K can not be zero in S0,−1
Kκ .

Note that in the decay rate Eq. (3.5.4) the outgoing electron can have energy from 0 to

mµ and is normalized in its �nal state as

〈E, j, jz|E ′, j′, j′z〉 =
1

ρ (E)
δ (E − E ′) δjj′δjzj′z = 2πδ (E − E ′) δjj′δjzj′z , (3.5.10)
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Γ(Zµ−)→(Ze−)νµν̄e
Γ0

Z = 10 Z = 80

Alchemy's Result [1] 2.46 · 10−9 2.01 · 10−5

Alchemy's Result [1]: Corrected 1.42 · 10−8 3.10 · 10−5

Coulomb [2] 1.32 · 10−8 1.83 · 10−5

Fermi [2] 1.31 · 10−8 2.63 · 10−5

Nuclear parameters for Fermi potential r0 = 2.78, a = 0.55 r0 = 6.38, a = 0.54

Table 3.6.1: Numerical values for
Γ(Zµ−)→(Ze−)νµν̄e

Γ0
for Z = 10 and Z = 80 using the formalism

of [1] and [2]. The �rst row presents results given in [1]. The last row gives the parameters
used to perform calculations in the Fermi potential presented in the fourth row.

since the density of the states is ρ (E) = 1
2π
. If we want to modify (3.5.4) for the case when an

electron electron stays bound, we should take into account that it can be only in the ground

state (with the discrete energy γme). Therefore,

dEρ (E)→ 1. (3.5.11)

Also the values of the quantum numbers for the ground state of muon and electron in Eqs.

(3.5.5)-(3.5.8) are taken to be K = 0, 1 and κ = −1.

3.6 Numerical Results

It is convenient to present the numerical results for the decay rates as ratios
Γ(Zµ)→(Ze)νµν̄e

Γ0
,

where Γ(Zµ)→(Ze)νµν̄e is the decay rate of a bound muon to a bound electron and Γ0 is the free

muon decay rate, i. e.

Γ0 =
G2
Fm

5
µ

192π3
. (3.6.1)

The calculations in the formalism [2] are performed by considering two kind of potentials:

Coulomb and Fermi, where for the latter case the charge density is de�ned as

ρ (r) =
ρ0

1 + exp
(
r−r0
a0

) , with

ˆ
d3r ρ (r) = Ze. (3.6.2)

It is worth emphasizing that in the case of the Fermi charge distribution, the Dirac

equation for the muon and electron wave functions has to be solved numerically. To do this

part, we used the mechanism developed in [2]. Now we can compare the numerical values

presented in [1] with the values we get after correcting the signs in the expressions for the

form factors h1 and h2 given in Eqs. (3.4.60) and (3.4.61) with the ones obtained from the

modi�ed formalism of [2]. The results are given in the Table. 3.6.1 we can conclude that
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changing FF as Fi → F ′i a�ects the decay rates only for as large Z as 80. Also, the di�erences

in the numbers for these two approaches [1, 2] are as small as few percents for small Zα and

are more signi�cant for larger values of Zα: for Z = 80 the discrepancy is of about 41% if

the numbers are compared for the Coulomb potential.
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Chapter 4

Some Limiting Cases

In order to see if the results in two approaches are consistent with each other it is useful

to discuss the following limiting cases:

1. Nearly equal muon and electron masses;

2. Small Zα limit.

4.7 Nearly Equal Masses

4.7.1 Atomic Alchemy's Formalism [1]

Consider the case where the masses of muon and electron are almost equal, i.e.,

mµ −me = εmµ, (4.7.1)

where ε is a small parameter. Under the limit ε→ 0, we have for the decay rate of a bound

muon into the bound electron to be

Γ =

m1−m2ˆ

0

d |q| G
2
F |q|

12π3
K (|q|)

= γ5ε5
G2
Fm

5
µ

15π3

[
(F1 (0)− F2 (0))2 + F1 (0)F2 (0)

]
. (4.7.2)

Since under such a limit the electron mass is almost that of the muon, its momentum is very

small and it can not leave the atom. The momentum transferred to the neutrinos is q→ 0,

therefore, the FF's F1 and F2 in Eq. (4.7.2) are evaluated at |q| = 0 :

F1 (0) =

ˆ
d3k1

(2π)3ψ1 (k1)ψ∗2 (k1)
2k0

1 +mµ

3k0
1

=
2

3
+

1

3

〈
L−1

〉
, (4.7.3)

F2 (0) =

ˆ
d3k1

(2π)3ψ1 (k1)ψ∗2 (k1)
k0

1 −mµ

3k0
1

=
1

3
− 1

3

〈
L−1

〉
, (4.7.4)

where k0
1 =

√
k2

1 +m2
µ. Thus, the decay rate

Γ =
64

5
ε5γ5Γ0

[
1 + 〈L−1〉+ 〈L−1〉2

3

]
. (4.7.5)
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The numerical results for
Γ(Zµ)→(Ze)νµν̄e

Γ0
in this limiting case are presented in the Table

4.7.1.

Thus, as the mass of the electron approaches that of the muon the electron does not have

enough energy to escape the atom, and the total decay rate of the the bound muon tends to

the decay rate into the bound electron: Γtotal → Γ(Zµ)→(Ze). Once ε = 0 and me = mµ the

phase space for the neutrinos reduces to zero and, therefore, no decay can occur at all.

4.7.2 Another Approach

The decay rate for the bound �nal state of an electron according to (3.4.83) is

Γ =

ˆ
d3q

(2π)3 |M|
2 , (4.7.6)

where in the invariant amplitude

|M|2 =
1

2

∑
rs

JαβNαβ, (4.7.7)

Nαβ is the integral over neutrino phase space and the tensor Jαβ is created from particle

currents in the following way

Jαβ = Jα
(
Jβ
)†
, Jα ≡

ˆ
d3rΦ̄e (r) γαLΦµ (r) e−iq·r. (4.7.8)

In the case of nearly equal masses the neutrino momentum q ≈ 0, therefore, the exponent in

Eq. (4.7.8) is e−iq·r ≈ 1 and the current becomes

Jα ≡
ˆ
d3rΦ̄e (r) γαLΦµ (r) , (4.7.9)

The ground state wave function for the bound state in the position space Φ (r) with the spin

up is given in Eq. (2.3.5) and can be written in an alternative form as

Φ↑ (r) ≡ G (r)u+ (r̂) , (4.7.10)

where

G (r) ≡ (2mZα)γ+ 1
2

√
4π

√
1 + γ

2Γ (1 + 2γ)
rγ−1 exp (−mZαr) , (4.7.11)
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and the bispinor part is

u+ (r̂) ≡


1

0
i(1−γ)
Zα

cos θ
i(1−γ)
Zα

sin θeiφ

 . (4.7.12)

Since in the spherical coordinates

(σ · r̂) = σx sin θ cosϕ+ σy sin θ sinϕ+ σz cos θ =

(
cos θ sin θe−iϕ

sin θeiϕ − cos θ

)
, (4.7.13)

the spinor u+ can be written in terms of this scalar product of the Pauli matrices, unit vector

and the eigenvectors of σz as follows

u+ (r̂) =

(
φ+

i(1−γ)
Zα

(σ · r̂)φ+

)
, φ+ =

(
1

0

)
. (4.7.14)

Or, in terms of the Dirac matrices

u+ (r̂) =

(
φ+

0

)
+
i (1− γ)

Zα
(σ · r̂)

(
0

φ+

)
=

(
φ+

0

)
− i (1− γ)

Zα
(σ · r̂)

(
0 1

−1 0

)(
φ+

0

)

=

(
φ+

0

)
− i (1− γ)

Zα
(γ · r̂)

(
φ+

0

)
≡ %µγ

µ

(
φ+

0

)
= �%

(
φ+

0

)
, (4.7.15)

where the operator %µ is de�ned as

%µ = %µ (r̂) =

(
1,
i (1− γ)

Zα
r̂

)
. (4.7.16)

The hermitian conjugate of u+ is then

u†+ (r̂′) =

[
�%
′

(
φ+

0

)]†
=
(
φ†+ 0

)
�%
′†, (4.7.17)

and the Dirac adjoint

ū+ (r̂′) =
(
φ†+ 0

)
%′∗µ γ

µ†γ0 =
(
φ†+ 0

)
γ0%′∗µ γ

µ =
(
φ†+ 0

)
�%
′∗, (4.7.18)

where

(%′µ)
∗

= (%µ)∗ (r̂′) =

(
1,−i (1− γ)

Zα
r̂′
)
. (4.7.19)
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This gives the expression

u+ (r̂) ū+ (r̂′) = �%

(
φ+

0

)(
φ†+ 0

)
(�%
′)
∗

= �%


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

�%
′∗. (4.7.20)

For the wave function with the spin down we get in the similar way

Φ↓ (r) ≡ G (r)u− (r̂) , u− (r̂) =

(
φ−

i(1−γ)
Zα

(σ · r̂)φ−

)
, φ− =

(
0

1

)
, (4.7.21)

which is of the same form as for u+. Thus, following the same steps we get

u− (r̂) ū− (r̂′) = �%


0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

�%
′∗, (4.7.22)

and the summation over spins yields

∑
spins

uū = u+ū+ + u−ū− = �%


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

�%
′∗ = �%

(
I + γ0

2

)
�%
′∗. (4.7.23)

The current is then

Jα ≡
ˆ
d3rGe (r)Gµ (r) ūe (r̂) γαLuµ (r̂) . (4.7.24)

Multiplying it with
(
Jβ
)†

and keeping the radial part separately gives

Jα
(
Jβ
)† ∼ 1

2

∑
spins

ūe (r̂) γαLuµ (r̂) ūµ (r̂′) γσLue (r̂′)

=
1

2
Tr [ue (r̂′) ūe (r̂) γαLuµ (r̂) ūµ (r̂′) γσL]

= 4G2
FTr

[
�%

(
I + γ0

2

)
�%
′∗γαL�%

′
(
I + γ0

2

)
�%
∗γβL

]
. (4.7.25)

This trace can be split into four terms each of which can be evaluated separately:
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Tr
[
�%γ

0
�%
′∗γαL�%

′
�%
∗γβL

]
= 0, (4.7.26)

Tr
[
�%�%
′∗γαL�%

′γ0
�%
∗γβL

]
= 0, (4.7.27)

since traces with odd number of gamma matrices equal to zero. Also,

Tr
[
�%�%
′∗γαL�%

′
�%
∗γβL

]
= Tr

[
�%�%
′∗γα�%

′
�%
∗γβRL

]
= 0, (4.7.28)

where the property RL = 0 was used. Thus, the only non-zero trace is

Tr
[
�%γ

0
�%
′∗γαL�%

′γ0
�%
∗γβL

]
= Tr

[
�%γ

0
�%
′∗γα�%

′γ0
�%
∗γβL

]
, (4.7.29)

and is evaluated with the help of Mathematica.

Contracting the neutrino tensor

Nαβ =
2G2

F

3π

(
qαqβ − q2ηαβ

)
(4.7.30)

with the angular part of Jαβ leads to

JαβNαβ ∼
G2
F

48π

{(
q0
)2

[
8

3

(
1− γ
Zα

)4

− 16

3

(
1− γ
Zα

)2

+ 64

(
1− γ
Zα

)2

r̂ir̂
′
i + 24

]

+q2

[
−8

9

(
1− γ
Zα

)4

+ 16

(
1− γ
Zα

)2

− 64

(
1− γ
Zα

)2

r̂ir̂
′
i − 8

]}
, (4.7.31)

where the following property was used

r̂′ir̂
′
j = r̂ir̂j =

δij
3
. (4.7.32)

Using the expression for Zα and the fact that after the angular integration over dΩ and dΩ′

the terms proportional to r̂ir̂
′
i disappear. Finally, we have

JαβNαβ ∼
G2
F

6π

{(
q0
)2

[
1

3

(√
1− γ
1 + γ

)4

− 2

3

(√
1− γ
1 + γ

)2

+ 3

]

+q2

[
−1

9

(√
1− γ
1 + γ

)4

+ 2

(√
1− γ
1 + γ

)2

− 1

]}
. (4.7.33)

Now the invariant amplitude becomes
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|M|2 =
1

2

∑
rs

JαβNαβ,

=
G2
F

6π

{(
q0
)2

[
1

3

(√
1− γ
1 + γ

)4

− 2

3

(√
1− γ
1 + γ

)2

+ 3

]

+q2

[
−1

9

(√
1− γ
1 + γ

)4

+ 2

(√
1− γ
1 + γ

)2

− 1

]}[ˆ
d3rGe (r)Gµ (r)

]2

. (4.7.34)

Finally, the decay rate becomes

Γ =

ˆ
d |q|q2 |M|

2

2π2

=
G2
Fq2

12π3

{(
q0
)2

[
1

3

(√
1− γ
1 + γ

)4

− 2

3

(√
1− γ
1 + γ

)2

+ 3

]

+q2

[
−1

9

(√
1− γ
1 + γ

)4

+ 2

(√
1− γ
1 + γ

)2

− 1

]}[ˆ
d3rGe (r)Gµ (r)

]2

. (4.7.35)

Which after the integration over the 3-momentum |q|, takes the form

Γ =
G2
F

12π3

{
q3(q0)

2

3

[
1

3

(√
1− γ
1 + γ

)4

− 2

3

(√
1− γ
1 + γ

)2

+ 3

]

= +
q5

5

[
−1

9

(√
1− γ
1 + γ

)4

+ 2

(√
1− γ
1 + γ

)2

− 1

]}[ˆ
d3rGe (r)Gµ (r)

]2

. (4.7.36)

In the nearly equal masses limit the components of the neutrino 4-momentum are q0 = |q| =
εγmµ , therefore,

Γ =
G2
F

135π3
ε5γ5m5

µ

[(√
1− γ
1 + γ

)4

+ 2

(√
1− γ
1 + γ

)2
][ˆ

d3rGe (r)Gµ (r)

]2

=
G2
F

135π3
ε5γ5m5

µ

[
2γ2 + 4γ + 3

(1 + γ)2

] [ˆ
d3rGe (r)Gµ (r)

]2

. (4.7.37)

Next, evaluating integral over the position space gives
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ˆ
d3rGe (r)Gµ (r) =

(2Zα)2γ+1 (memµ)γ+ 1
2

4π

1 + γ

2Γ (1 + 2γ)

ˆ
d3r r2γ−2 exp

[
−
(
me +mµ

)
Zαr

]
= (2Zα)2γ+1 (memµ)γ+ 1

2
1 + γ

2Γ (1 + 2γ)

ˆ
dr r2γ exp

[
−
(
me +mµ

)
Zαr

]
= (2Zα)2γ+1 (memµ)γ+ 1

2
1 + γ

2Γ (1 + 2γ)

Γ (1 + 2γ)[(
me +mµ

)
Zα
]2γ+1

=

(
2

me +mµ

)2γ+1

(memµ)γ+ 1
2

(
1 + γ

2

)
. (4.7.38)

Upon substituting into the last expression the electron mass in the limit me = (1− ε)mµ

ˆ
d3rGe (r)Gµ (r) =

(
1 + γ

2

)[
(1− ε)γ+ 1

2

(1− ε/2)2γ+1

]
≈
(

1 + γ

2

)
. (4.7.39)

If we do not drop the terms O (ε2), the expression for the Eq. (4.7.39) would still remains

the same. Consider the normalization condition for the radial wave functions Eqs. (2.3.1)

and (2.3.2) ˆ
dr r2

[
f 2 (r) + g2 (r)

]
= 1, (4.7.40)

where

f (r) = −
√

1− γ
1 + γ

g (r) , (4.7.41)

therefore, (
1 +

1− γ
1 + γ

) ˆ
dr r2g2 (r) = 1⇒

ˆ
dr r2g2 (r) =

(
1 + γ

2

)
. (4.7.42)

Note that the function G (r) is de�ned as

Gµ (r) ≡ g (r)√
4π
. (4.7.43)

Substituting Eq. (4.7.39) into the decay rate formula and dividing over Γ0 gives the ratio

Γ

Γ0

=
16ε5γ5

45

[
2γ2 + 4γ + 3

]
. (4.7.44)

The numerical values found from this formula are compared to the calculations performed

using the Atomic Alchemy's formalism [1] in the same limit and those are presented in the

Table 4.7.1. We can consider that two approaches are fully consistent in this nearly equal

masses limit.
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Z Alchemy [1] Eq. (4.7.5) Eq. 4.7.44

10 1.25 · 10−9 1.26 · 10−9 1.26 · 10−9

80 3.85 · 10−10 3.83 · 10−10 3.80 · 10−10

Table 4.7.1: Numerical values for
Γ(Zµ)→(Ze)νµν̄e

Γ0
in cases of Z = 10 and Z = 80 for the

parameter ε = 0.01. The second column correspond to the calculations in formalisms of
[1] and the third and fourth correspond to calculations according to formulas (4.7.5) and
(4.7.44), derived for this formalism.

4.8 Small Zα Limit

The purpose of this section is to calculate the decay rate for small Zα limit in approaches

[1, 2] without considering equal muon and electron masses.

The matrix element (3.4.23) can be rewritten if we de�ne the wave function in the mo-

mentum space in the following way

Φr (k) ≡ G (k)

(
χr

(σ·k)
k0+m

χr

)
, (4.8.1)

where

G (k) ≡ k0 +m

2k0

(
g (k) +

k

k0 +m
f (k)

)
. (4.8.2)

Then

Sρsr =

ˆ
d3k1

(2π)3 Φ̄s (e; k1 − q) γρLΦr (µ; k1) . (4.8.3)

The sudden approximation works well for small values of Zα since the muon is weakly bound

in this case. To study for which magnitudes of q the matrix element Sρsr (q) gives the biggest

contribution it can be �rst rewritten as the Fourier Transform of (4.8.3):

Sρsr (q) =

ˆ
d3r e−iq·r

ˆ
d3k1

(2π)3

ˆ
d3k2

(2π)3 e
ir(k1−k2)Φ̄s (e; k2) γρLΦr (µ; k1) . (4.8.4)

Taking the limit of small Zα sets γ ≈ 1 which makes the spin dependent part of the Dirac

wave function negligible and Eq. (4.8.2) then becomes

G (k) ≈ k0 +m

2k0
g (k) , (4.8.5)

54



and

Φr (k) ≈ k0 +m

2k0
g (k)

(
χr

(σ·k)
k0+m

χr

)
. (4.8.6)

The corresponding decay rate is given by

Γ =

ˆ
d3q

(2π)3

1

2

∑
sr

(Sρsr)
† SσsrNρσ. (4.8.7)

After contracting the matrix elements Sρsr with Nρσ it becomes

Γ =
G2
F

3π

ˆ
d3q

(2π)3

×
∑
sr

{(
q0
)2
S̄†sr · S̄sr + |q|2

[∣∣S0
sr

∣∣2 − S̄†sr · S̄sr +
∣∣q̂ · S̄sr∣∣2]− 2q0 |q|Re

((
S0
sr

)†
q̂ · S̄sr

)}
.

(4.8.8)

Each of the terms in the last expression can be written in terms of form factors Ai, that

result from the rotational invariance of the following integrals

ˆ
d3r e−iq·r

ˆ
d3k1

(2π)3

ˆ
d3k2

(2π)3 e
ir(k1−k2)G (e; k2)G (µ; k1) ≡ A0

(
q2
)
, (4.8.9)

ˆ
d3r e−iq·r

ˆ
d3k1

(2π)3

ˆ
d3k2

(2π)3 e
ir(k1−k2)G (e; k2)G (µ; k1)

ki1
k0

1 +mµ

≡ A1

(
q2
)
q̂i, (4.8.10)

ˆ
d3r e−iq·r

ˆ
d3k1

(2π)3

ˆ
d3k2

(2π)3 e
ir(k1−k2)G (e; k2)G (µ; k1)

ki2
k0

2 +me

≡ A2

(
q2
)
q̂i, (4.8.11)

ˆ
d3r e−iq·r

ˆ
d3k1

(2π)3

ˆ
d3k2

(2π)3 e
ir(k1−k2)G (e; k2)G (µ; k1)

ki1
k0

1 +mµ

kj2
k0

2 +me

≡ δijA3

(
q2
)

+

(
q̂iq̂j − 1

3
δij
)
A4

(
q2
)
. (4.8.12)

Thus, the explicit form of Ai is

Ai
(
q2
)
≡
ˆ
d3r e−iq·r

ˆ
d3k1

(2π)3

ˆ
d3k2

(2π)3 e
ir·(k1−k2)G (e; k2)G (µ; k1) ai (k1,k2) , (4.8.13)
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where

a0 = 1, a1 =
(q̂ · k1)

k0
1 +mµ

, a2 =
(q̂ · k2)

k0
2 +me

,

a3 =
(k1 · k2)

3 (k0
1 +mµ) (k0

2 +me)
, a4 =

3

2

(q̂ · k1) (q̂ · k2)− 1
3

(k1 · k2)

(k0
1 +mµ) (k0

2 +me)
. (4.8.14)

Now, consider the zeroth component of Sµsr

S0
sr (q) =

ˆ
d3r e−iq·r

ˆ
d3k1

(2π)3

ˆ
d3k2

(2π)3 e
ir(k1−k2)G (e; k2)G (µ; k1)

×

(
χs

(σ·k2)

k0
2+m

χs

)†
γ0γ0L

(
χr

(σ·k1)

k0
1+m

χr

)

=
1

2

ˆ
d3r e−iq·r

ˆ
d3k1

(2π)3

ˆ
d3k2

(2π)3 e
ir(k1−k2)G (e; k2)G (µ; k1)

× χ†s
{

1− (σ · k1)

k0
1 +mµ

− (σ · k2)

k0
2 +me

+
(σ · k1) (σ · k2)

(k0
1 +mµ) (k0

2 +me)

}
χr. (4.8.15)

The last line can be rewritten using the following property of the Pauli Matrices σ

(σ · k) = (q̂ · k) (q̂ · σ) , (4.8.16)

which gives

S0
sr (q) =

1

2

{
(A0 + 3A3)χ†sχr − (A1 + A2)χ†s (q̂ · σ)χr

}
, (4.8.17)

where Ai can be obtained from Eq. (4.8.13). The 3-vector component of Sµsr:

Sksr (q) =
1

2

ˆ
d3r e−iq·r

ˆ
d3k1

(2π)3

ˆ
d3k2

(2π)3 e
ir(k1−k2)G (e; k2)G (µ; k1)

×

(
χs

(σ·k2)

k0
2+m

χs

)†
γ0γkL

(
χr

(σ·k1)

k0
1+m

χr

)
,

which after the multiplication of the bispinors becomes

Sksr (q) =
1

2

ˆ
d3r e−iq·r

ˆ
d3k1

(2π)3

ˆ
d3k2

(2π)3 e
ir(k1−k2)G (e; k2)G (µ; k1)

× χ†s
{
−σk + σk

(σ · q̂) (k1 · q̂)

k0
1 +mµ

+
(σ · q̂) (k2 · q̂)

k0
2 +me

σk − (σ · k2)σk (σ · k1)

(k0
2 +me) (k0

1 +mµ)

}
χr

=
1

2
χ†s

{(
−A0 + A3 −

1

3
A4

)
σk + A1σ

k (σ · q̂)

+A2 (σ · q̂)σk − (σ · q̂)σk (σ · q̂)A4

}
χr. (4.8.18)
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Now all the amplitudes in Eq. (4.8.8) can be evaluated one by one. Consider∑
sr

∣∣S0
sr (q)

∣∣2 =
∑
sr

(
S0
sr (q)

)†
S0
sr (q)

=
1

4

∑
sr

{
(A0 + 3A3)∗ χ†rχs − (A1 + A2)∗ χ†r (σ · q̂)χs

}
×
{

(A0 + 3A3)χ†sχr − (A1 + A2)χ†s (σ · q̂)χr
}

=
1

4

{
2 |A0 + 3A3|2 + 2 |A1 + A2|2

}
, (4.8.19)

where in the second line we used
∑

r χrχ
†
r = I and∑

s

χ†s (σ · q̂)χs

=
∑
s

χ†s

(
q̂3 q̂1 − iq̂2

q̂1 + iq̂2 −q̂3

)
χs

=
(

1 0
)( q̂3 q̂1 − iq̂2

q̂1 + iq̂2 −q̂3

)(
1

0

)
+
(

0 1
)( q̂3 q̂1 − iq̂2

q̂1 + iq̂2 −q̂3

)(
0

1

)

=
(

1 0
)( q̂3

q̂1 + iq̂2

)
+
(

0 1
)( q̂1 − iq̂2

−q̂3

)
= q̂3 +

(
−q̂3

)
= 0. (4.8.20)

Likewise,∑
sr

S†sr · Ssr =
∑
sr

(
Sksr
)† · Sksr

=
1

4

∑
r

χ†r

{(
−A0 + A3 −

1

3
A4

)∗
σk + A∗1 (σ · q̂)σk + A∗2σ

k (σ · q̂)− (σ · q̂)σk (σ̄ · q̂)A∗4
}

×
{(
−A0 + A3 −

1

3
A4

)
σk + A1σ

k (σ · q̂) + A2 (σ · q̂)σk − (σ · q̂)σk (σ · q̂)A4

}
χr.

=
1

4

{
6

[∣∣∣∣A0 − A3 +
1

3
A4

∣∣∣∣2 + |A1|+ |A2|2 + |A4|2
]
− 4Re

[(
A0 − A3 +

1

3
A4

)∗
A4 + A∗1A2

]}
.

(4.8.21)

The cross terms are calculated in the following way

q̂k · Sksr =
1

2
χ†s

{(
−A0 + A3 −

4

3
A4

)
(σ · q̂) + A1 + A2

}
χr, (4.8.22)
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after squaring and summing over s, r

∑
sr

|q̂ · Ssr|2 =
1

4

{
2

∣∣∣∣A0 − A3 +
4

3
A4

∣∣∣∣2 + 2 |A1 + A2|2
}
, (4.8.23)

and the last amplitude in Eq. (4.8.8) gives∑
sr

Re
[
q̂ · S†srS0

sr

]
=
∑
sr

Re
[
q̂k ·

(
Sksr
)†
S0
sr

]
=

1

4

∑
r

χ†r

{(
−A0 + A3 −

4

3
A4

)∗
(σ · q̂) + A∗1 + A∗2

}
{(A0 + 3A3)− (A1 + A2) (σ · q̂)}χr

=
1

4

{
2Re (A1 + A2)∗

(
2A0 + 2A3 +

4

3
A4

)}
. (4.8.24)

To sum up, the obtained decay rate is

Γ =
G2
F

3π

ˆ
d3q

(2π)3

∑
sr

{(
q0
)2

S†sr · Ssr + |q|2
[∣∣S0

sr

∣∣2 − S†sr · Ssr + |q̂ · Ssr|2
]

−2q0 |q|Re
((
S0
sr

)†
q̂ · Ssr

)}
, (4.8.25)

where the amplitudes are

∑
sr

S†sr · Ssr =
1

4

{
6

[∣∣∣∣A0 − A3 +
1

3
A4

∣∣∣∣2 + |A1|+ |A2|2 + |A4|2
]
,

−4Re

[(
A0 − A3 +

1

3
A4

)∗
A4 + A∗1A2

]}
, (4.8.26)

∑
sr

|q̂ · Ssr|2 =
1

4

{
2

∣∣∣∣A0 − A3 +
4

3
A4

∣∣∣∣2 + 2 |A1 + A2|2
}
, (4.8.27)

∑
sr

Re
[
q̂ · S†srS0

sr

]
=

1

4

{
2Re (A1 + A2)∗

(
2A0 + 2A3 +

4

3
A4

)}
, (4.8.28)

∑
sr

∣∣S0
sr

∣∣2 =
1

4

{
2 |A0 + 3A3|2 + 2 |A1 + A2|2

}
. (4.8.29)

To evaluate which values of q give the most signi�cant contributions to amplitudes we

evaluate the matrix element S0
sr. For [2] its form is the following

S0
sr (q) |full =

1

2

ˆ
d3k2

(2π)3fe (k2) fµ (k1)χ†sχr, (4.8.30)
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and the corresponding expression for ref. [1] is

S0
sr (q) =

1

2

{
(A0 + 3A3)χ†sχr − (A1 + A2)χ†s (σ · q̂)χr

}
. (4.8.31)

In order to compare these two expressions numerically set s = r = 1
2
and q = qẑ:

S0
1
2

1
2

(q) |full =
1

2

ˆ
d3k2

(2π)3 ge (k2) gµ (k1) , (4.8.32)

S0
1
2

1
2

(q) =
1

2
{(A0 + 3A3)− (A1 + A2)} . (4.8.33)

The numerical values for Z = 1 are presented in the Table 4.8.1. It can be seen that the

main contribution comes from small values of q and also that the results match each other

very well in that region. Thus, the form factors Ai = 0, for i = 1, ..., 4 since their integrants

are proportional to k1 or k2. The decay rate then becomes

Γ

Γ0

=
16

m5
µ

q0ˆ

0

d |q| |q|2 |A0|2
[
3
(
q0
)2 − |q|2

]
, Zα→ 0. (4.8.34)

The FF A0 in Eq. (4.8.34) can be transformed in the following way

A0 =

ˆ
d3r e−iq·r

ˆ
d3k1

(2π)3

ˆ
d3k2

(2π)3 e
ir·(k1−k2)G (e; k2)G (µ; k1)

'
ˆ
d3r e−iq·r

ˆ
d3k1

(2π)3

ˆ
d3k2

(2π)3 e
ir·(k1−k2) k0

1 +mµ

2k0
1

g (µ; k1)
k0

2 +me

2k0
2

g (e; k2)

'
ˆ
d3r e−iq·r

ˆ
d3k1

(2π)3

ˆ
d3k2

(2π)3 e
ir·(k1−k2)g (µ; k1) g (e; k2)

=

∞̂

0

dr r2j0 (qr) g (µ; k1) g (e; k2) , (4.8.35)

where in the last line we used the plane wave expansion of the exponent e−iq·r. This analytical

result can be compared to [2] by setting the smaller components of wave function to zero:

Γ

Γ0

=
16

m5
µ

q0ˆ

0

d |q| |q|2 〈j0gegµ〉2
[
3
(
q0
)2 − |q|2

]
, Zα→ 0, (4.8.36)
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|q| (MeV) S0
1
2

1
2

(q) S0
1
2

1
2

(q) |full
0.0 1.33 · 10−3 1.33 · 10−3

0.5 7.16 · 10−7 7.17 · 10−7

1.0 4.62 · 10−8 4.64 · 10−8

5.0 7.48 · 10−11 7.51 · 10−11

100 4.03 · 10−16 4.70 · 10−16

Table 4.8.1: Numerical values for S0
1
2

1
2

(q) for Z = 1. The second column presents results

calculated according to formalism in [1], the third - calculations according to [2].

〈j0gegµ〉 =

∞̂

0

dr r2j0 (qr) ge (r) gµ (r) . (4.8.37)

Thus, under the small Zα limit, the approaches considered in [1] and [2] give the same result

for the decay rate.
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Chapter 5

Conclusion

We have calculated the decay rate of a bound muon to a bound electron using Dirac wave

functions for di�erent values of Z in two di�erent formalisms developed in [1] and [2]. For

the latter we performed calculations both for the Coulomb potential and Fermi distribution.

While reproducing the calculation presented in Atomic Alchemy [1], we got di�erent signs

of the A term's in the expressions for h1 and h2 given by (3.4.60) and (3.4.61), respectively.

After making the corresponding corrections and modifying the approach developed for the

case of bound muon to an outgoing electron in presence of a nucleus [2], we compared the

numerical results of the ratio of bound to free muon decay rate in both approaches. The

two limiting cases of nearly equal masses and small Zα are considered as well. We conclude

that for small Zα the di�erences in the values of branching ratio for both approaches are

insigni�cant. However, the values start to di�er considerably with increasing values of Zα

and we �nd that for Z = 80 the di�erence is about 41%. As the formalism developed in [1]

is missing the part of wave function that corresponds to possibility of creation of particle-

antiparticle pair, we consider the approach developed in [2] to be more suitable for all values

of Zα.

These calculations are going to serve as a base to add the radiative corrections, which

are to be performed according to the formalism developed in ref. [15]. To evaluate them

one can use a code in Fortran whose documentation is provided in Appendix D. A detailed

description of numerical calculations of various Feynman diagrams required to incorporate

these radiative corrections is also given in the same Appendix.
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Appendix A: Pauli and Dirac Matrices

From the commutation and anticommutation relations for the Pauli matrices,

[σj, σk] = 2iεjklσl, {σj, σk} = 2δjk, (5.8.38)

it follows

σjσk = δjk + iεjklσl. (5.8.39)

Multiplying Eq. (5.8.39) by ak and aj in turn,{
σj (σkak) = aj + iεjklakσl

(σjaj)σk = ak + iεjklajσl = ak + iεkljσlaj
, (5.8.40)

or in the vector form {
σ (σ · a) = a + i [a× σ]

(σ · a)σ = a + i [σ × a]
. (5.8.41)

Thus, from Eq. (5.8.41) it follows that

(σ · a) (σ · b) = (a · b) + i [σ × a] · b

= (a · b) + iσ · [a× b] . (5.8.42)

Properties of Dirac Gamma Matrices in D-dimensional Space

Here are some properties of γ-matrices in D-dimensional space, where D = 4− 2ε, ε→ 0.

The commutation algebra is γµγσ + γσγµ = 2ηµσ.

γµγ
µ = 4− 2ε = 2 (2− ε) , (5.8.43)

γµγ
σγµ = γµ(2ηµσ − γµγσ) = 2(ε− 1)γσ, (5.8.44)

γµγ
λγσγµ =γµγ

λ (2ηµσ − γµγσ) = 2γσγλ + 2 (2− ε) γλγσ = 4ηλσ − 2εγλγσ (5.8.45)

γµγ
λγσγβγµ =2γβγλγσ −

(
4ηλσ − 2εγλγσ

)
γβ = −2γβγσγλ + 2εγλγσγβ. (5.8.46)
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Di�erent Representations of Gamma Matrices

Weyl representation:

γ0 =

(
0 I

I 0

)
, γk =

(
0 σk

−σk 0

)
, γ5 =

(
−I 0

0 I

)
, (5.8.47)

β = γ0 =

(
0 I

I 0

)
, αk = γ0γk =

(
−σk 0

0 σk

)
. (5.8.48)

A transformation from the Weyl representation to the Dirac representation is a unitary

transformation

U =
1√
2

(
−I I

I I

)
, (5.8.49)

which gives:

ΦD =

(
f

g

)
= UψW = U

(
ΦL

ΦR

)
=

1√
2

(
ΦR − ΦL

ΦR + ΦL

)
, (5.8.50)

where the index D stands for the Dirac representation and W for the Weyl.

The transformation of γ matrices:

γD = UγWU
−1 (5.8.51)

γ0 =

(
I 0

0 −I

)
, γk = γ0γk =

(
0 σk

−σk 0

)
, γ5 =

(
0 I

I 0

)
. (5.8.52)

The Dirac α and β matrices:

β = γ0 =

(
I 0

0 −I

)
, αk =

(
0 σk

σk 0

)
. (5.8.53)

The chiral projections are de�ned as:

L =
1

2

(
1− γ5

)
=

1

2

(
I −I
−I I

)
. (5.8.54)
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Appendix B: Dirac Equation for Particle

in Electromagnetic Field

The following Appendix summarizes some properties of the free Dirac equation. A useful

reference for this part is [9].

The Dirac Equation for a free electron (in natural units ~ = c = 1)

i
∂

∂t
Φ (t, r) = H (r) Φ (t, r) , (5.8.55)

H0 (r) = (α · p) + βm, (5.8.56)

where α and β are 4× 4 matrices in the Dirac-Pauli representation

α =

(
0 σ

σ 0

)
, β =

(
I 0

0 −I

)
, (5.8.57)

with σ = (σx, σy, σz) being the Pauli matrices

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σx =

(
1 0

0 −1

)
, (5.8.58)

and I is a 2× 2 identity matrix. α and β satisfy the following properties

α2
i = β2 = I, {αi, αj} = 2δijI, {αi, β} = 0, (5.8.59)

α†i = αi, β
† = β, (5.8.60)

where I is the 4 × 4 identity matrix and δij is the Kroneker delta symbol. In terms of the

conventional gamma matrices

γµ =
(
γ0,γ

)
≡ (β, βα) , {γµ, γν} = 2ηµνI. (5.8.61)

In Eq. (5.8.56) p = −i∇ is the momentum operator, which is the spatial part of the 4-

gradient ∂µ =
(
∂
∂t
,−∇

)
pµ ≡ i∂µ =

(
p0,p

)
=

(
i
∂

∂t
,−i∇

)
, (5.8.62)
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and Φ (t, r) is a 4-component bispinor

Φ (t, r) =

(
Φu (t, r)

Φι (t, r)

)
, (5.8.63)

where Φu (t, r) and Φι (t, r) are the upper and lower components, respectively. Multiplying

both parts of the Dirac equation (5.8.55) by β

iβ
∂

∂t
Φ (t, r) = β [(α · p) + βm] Φ (t, r) = [(γ · p) +m] Φ (t, r) , (5.8.64)

⇒
[
iβ
∂

∂t
− (γ · p)−m

]
Φ (t, r) =

[
iγ0 ∂

∂t
+ i (γ · ∇)−m

]
Φ (t, r) = 0,

[i��∂ −m] Φ (t, r) = 0, (5.8.65)

where ��∂ ≡ γµ∂µ and Eq. (5.8.65) is the Dirac equation for a free particle. Its conjugate gives

Φ̄ (t, r) [iγµ∂µ +m] = 0, (5.8.66)

where the Dirac conjugate Φ̄ (t, r) is de�ned as

Φ̄ (t, r) = Φ† (t, r) γ0, (5.8.67)

Φ† (t, r) =
(

Φu† (t, r) Φι† (t, r)
)
. (5.8.68)

After multiplying Eq. (5.8.65) by Φ̄ on the right and Eq. (5.8.66) by Φ on the left and then

adding them together, we have

Φ̄ [i��∂ −m] Φ + Φ̄ [i��∂ +m] Φ = 0, (5.8.69)

or

Φ̄γµ (�pµΦ) +
(
�pµΦ̄

)
γµΦ = 0. (5.8.70)

De�ning the probability current density as

jµ (t, r) ≡ iΦ̄ (t, r) γµΦ (t, r) , (5.8.71)

Eq. (5.8.70) can be rewritten as
∂jµ (x)

∂xµ
= 0, (5.8.72)

that is just the continuity equation. The zeroth component of Eq. (5.8.71) can be used to
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de�ne the probability density for ρ (r) , which is the charge density divided by the charge of

the �eld, and it can be written as

−ij0 (t, r) = ρ (t, r) = Φ† (t, r) Φ (t, r) . (5.8.73)

The Dirac equation in the momentum representation

i
∂

∂t
Φ (t,p) = H0 (p) Φ (t,p) , (5.8.74)

where H0 (p) is de�ned in Eq. (5.8.56). Substituting expressions (5.8.57) and (5.8.63) for α,

β and Φ, respectively, in Eq. (5.8.74) leads to

i
∂

∂t

(
Φu (t,p)

Φι (t,p)

)
=

(
0 σ

σ 0

)
p

(
Φu (t,p)

Φι (t,p)

)
+

(
I 0

0 −I

)(
Φu (t,p)

Φι (t,p)

)
m, (5.8.75)

which splits into a system of two equations

i
∂Φu (t,p)

∂t
= (σ · p) Φι (t,p) +mΦu (t,p) , (5.8.76)

i
∂Φι (t,p)

∂t
= (σ · p) Φu (t,p)−mΦι (t,p) . (5.8.77)

When the states are stationary Φs (t,p) = Φs (p) exp (−iEst) each of them can be labeled

with the index s and the Dirac equation is then

H0 (p) Φs (p) = EsΦs (p) . (5.8.78)

Equations (5.8.76) and (5.8.77) for such cases become

(E −m) Φu (p)− (σ · p) Φι (p) = 0,

(E +m) Φι (p)− (σ · p) Φu (p) = 0,
(5.8.79)

where the indices s, which however are understood, were dropped for brevity. In order to

have non-zero solutions for (5.8.79), the following condition has to be satis�ed∣∣∣∣∣ (E −m) − (σ · p)

− (σ · p) (E +m)

∣∣∣∣∣ = 0⇒ E2 −m2 − (σ · p) (σ · p) = 0. (5.8.80)

The last term in Eq. (5.8.80) is (σ · p) (σ · p) = p2 according to the Pauli matrices' property
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(5.8.42):

(σ · a) (σ · b) = (a · b) + iσ [a× b] , (5.8.81)

and the whole expression for the energy is

E = ±
√

p2 +m2. (5.8.82)

Thus, the Dirac equation (5.8.55) has both positive and negative solutions.

The Dirac equation for an electron in electromagnetic �eld can be obtained from Eq.

(5.8.65) by the following substitution for the 4-gradient

∂µ → Dµ = ∂µ + ieAµ, (5.8.83)

or by

pµ → pµ − eAµ, (5.8.84)

in the momentum representation, where Aµ is a 4-vector potential

Aµ = (V,A) , (5.8.85)

with V being the electric potential and A being the magnetic potential. Equation (5.8.65)

then becomes

[γµ (pµ − eAµ)−m] Φ = 0. (5.8.86)

Multiplying the last expression by β and remembering that γµβ = (I,α), we get{
(I,α)

(
i ∂
∂t

−p

)
− e (I,α)

(
V

−A

)
−mβ

}
Φ = 0, (5.8.87)

which can be rewritten in terms of the Hamiltonian for the electromagnetic �eld HEM (r)

i
∂Φ

∂t
= HEM (r) Φ, (5.8.88)

HEM (r) = α · (p− eA) + eV +mβ. (5.8.89)

The Coulomb �eld at the point located by |r| away from a nucleus with a charge Z is

given by

A = 0, V (r) = −eZ
|r|
, (5.8.90)
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and the Dirac-Coulomb Hamiltonian is therefore

HDC (r) = α · p− e2Z

|r|
+mβ. (5.8.91)

The solutions for the stationary equation (5.8.78) with HDC (r) are given by continuous

spectrum of energy E ∈ (−∞,m] ∪ [m,+∞) for free electron states. The solutions corre-

sponding to a bound electron (�nite motion) are given by the discrete spectrum in the range

E ∈ (−m,m).
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Appendix C: Free Muon Decay

The invariant amplitude for the Feynman diagram (5.8.1) is given according to Feynman

rules from [13] (Section 4.7) by

M = LρLσDρσ

(
p1 − pνµ

)
, (5.8.92)

where Lρ is the vertex between the incoming muon and outgoing muon neutrino:

Lρ = ū (µ, k1)

[
−i g√

2
γρ

1− γ5

2

]
u
(
pνµ
)
, (5.8.93)

and Lσ is the vertex between the outgoing electron and electron antineutrino

Lσ = ū (e, k2)

[
−i g√

2
γσ

1− γ5

2

]
v (pν̄e) ,

The propagator of the mediating W− boson is

Dρσ (k) = −iηρσ − kρkσ
k2 −M2

W

≈ iηρσ
M2

W

, (5.8.94)

where was used an approximation which follows from the fact that the boson's mass MW '
80.4 GeV is much greater than that of a muon mµ ' 0.106 GeV. Substitution of the corre-

sponding expressions into the invariant amplitude gives

M =
g2ηρσ
8M2

W

ū (µ, k1) γρ
(
1− γ5

)
u
(
pνµ
)
ū (e, k2) γσ

(
1− γ5

)
v (pν̄e) . (5.8.95)

Also, the Fermi coupling constant GF can be used

GF√
2

=
g2

8M2
W

(5.8.96)

to bring the amplitude to the form

M =
GF√

2
ū (µ, k1) γρ

(
1− γ5

)
u
(
pνµ
)
ū (e, k2) γρ

(
1− γ5

)
v (pν̄e) , (5.8.97)

where the gamma matrices were contracted with the metric ηρσ. The squared amplitude is

|M|2 =MM†, (5.8.98)
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Figure 5.8.1: Feynman diagram for muon decay in the Standard Model.

where the hermitian conjugate is derived to be

M† =

[
GF√

2
ū (µ, k1) γρ

(
1− γ5

)
u
(
pνµ
)
ū (e, k2) γρ

(
1− γ5

)
v (pν̄e)

]†
=
GF√

2
v† (pν̄e)

(
1−

(
γ5
)†)

γ†ργ
0u† (e, k2)u†

(
pνµ
) (

1−
(
γ5
)†)

(γρ)† γ0u (µ, k1) . (5.8.99)

Using the following properties of gamma matrices

(
γ5
)†

= γ5,
{
γ5, γ0

}
= γ5γ0 + γ0γ5 = 0,

(
γλ
)†
γ0 = γ0γλ, (5.8.100)

brings the invariant amplitude to the form

M† =
GF√

2
v̄ (pν̄e)

(
1 + γ5

)
γρu (e, k2) ū

(
pνµ
) (

1 + γ5
)
γρu (µ, k1) . (5.8.101)

Next, the squared amplitude should be averaged over the initial states and summed over the

�nal ones:

|M|2 =
G2
F

4

∑
spins

v̄ (pν̄e)
(
1 + γ5

)
γρu (e, k2) ū

(
pνµ
) (

1 + γ5
)
γρu (µ, k1)

× ū (µ, k1) γσ
(
1− γ5

)
u
(
pνµ
)
ū (e, k2) γσ

(
1− γ5

)
v (pν̄e) . (5.8.102)
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The inner part of the last expression can be considered separately:∑
spins

ū
(
pνµ
) (

1 + γ5
)
γρu (µ, k1) ū (µ, k1) γσ

(
1− γ5

)
u
(
pνµ
)

=
∑
spins

u
(
pνµ
)
ū
(
pνµ
) (

1 + γ5
)
γρu (µ, k1) ū (µ, k1) γσ

(
1− γ5

)
= Tr

[
�pνµ
(
1 + γ5

)
γρ (��k1 +mµ) γσ

(
1− γ5

)]
, (5.8.103)

where was used the completeness relation for Dirac spinors∑
spins

u (p) ū (p) = �p +m. (5.8.104)

Since the trace is just a number it can be taken out from the middle of the expression

(5.8.102):

|M|2 =
G2
F

4
Tr
[
�pνµ
(
1 + γ5

)
γρ (��k1 +mµ) γσ

(
1− γ5

)]
×
∑
spins

v̄ (pν̄e)
(
1 + γ5

)
γρu (e, k2) ū (e, k2) γσ

(
1− γ5

)
v (pν̄e) , (5.8.105)

and the same method can be applied to the sum that is left

|M|2 =
G2
F

4
Tr
[
�pνµ
(
1 + γ5

)
γρ (��k1 +mµ) γσ

(
1− γ5

)]
× Tr

[
�pν̄e
(
1 + γ5

)
γρ (��k2 +me) γσ

(
1− γ5

)]
. (5.8.106)

The terms in the traces proportional to the masses disappear since they contain the odd

number of gamma matrices. Thus, the last expression simpli�es to

|M|2 =
G2
F

4
Tr
[
�pνµγ

ρ
(
1− γ5

)
��k1γ

σ
(
1− γ5

)]
× Tr

[
�pν̄eγρ

(
1− γ5

)
��k2γσ

(
1− γ5

)]
. (5.8.107)

where was used the fact that (1 + γ5) γλ = γλ (1− γ5) . The rules from [19] p. 263 for

evaluation of such traces give
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|M|2 =
G2
F

4

[
2Tr

(
γρ��k1γ

σ
�pνµ
)

+ 8iερασβ
(
pνµ
)
α

(k1)β

]
×
[
2Tr (γρ��k2γσ�pν̄e) + 8iεργσδk

γ
2pδν̄e

]
= 16G2

F

[
kρ1pσνµ + kσ1pρνµ −

(
k1 · pνµ

)
ηρσ + iερασβ

(
pνµ
)
α

(k1)β

]
×
[
(k2)ρ (pν̄e)σ + (k2)σ (pν̄e)ρ −

(
k2 · pνµ

)
ηρσ + iεργσδk

γ
2pδν̄e

]
. (5.8.108)

Both expressions in the square brackets in two last lines contain three terms of symmetric

tensors and the forth antisymmetric term. Thus, noting that the product of an antisymmetric

and symmetric tensor yields zero, the invariant amplitude becomes

|M|2 = 16G2
F

{
2
[
(k1 · k2)

(
pνµ · pν̄e

)
+ (k1 · pν̄e)

(
k2 · pνµ

)]
−ερσαβερσγδ

(
pνµ
)
α

(k1)β kγ2pδν̄e

}
. (5.8.109)

Applying the following identity

ερσαβερσγδ = −2δαγ δ
β
δ + 2δαδ δ

β
γ , (5.8.110)

and putting together all the terms �nally gives

|M|2 = 64G2
F (k1 · pν̄e)

(
k2 · pνµ

)
. (5.8.111)

The general formula for the di�erential decay rate is given in [13] p. 107 in Eq. (4.83).

According to it the di�erential rate for the free muon decay is

dΓ =
1

2mµ

|M|2dΦ, (5.8.112)

where dΦ is the phase space of the outgoing particles

dΦ = (2π)4 δ(4)
(
k1 − k2 − pνµ − pν̄e

) d3k2

(2π)3 2Ee

d3pν̄e
(2π)3 2Eν̄e

d3pνµ

(2π)3 2Eνµ
. (5.8.113)

Next, the integration over the neutrino momenta is easily performed

Iαβ =

ˆ
d3pνe

(2π)3 2Eν̄e

d3pνµ

(2π)3 2Eνµ
(2π)4 δ(4)

(
q− pνµ − pν̄e

)
pαν̄ep

β
νµ

=
1

12

1

8π

(
q2ηαβ + 2qαqβ

)
, (5.8.114)
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since it is of the same form as in Eq. (3.4.71).

Since it it is assumed that the electron is massless |k2| = Ee and then the di�erential

decay rate is

dΓ =
2G2

F

3mµ (2π)3

[
(k1 · k2) q2 + 2(k1 · q)(k2 · q)

]
EedEe. (5.8.115)

In the rest frame of the muon k1 = (mµ,0), the kinematic relations are

(k1 · k2) q2 = mµEe
(
m2
µ − 2mµEe

)
, (5.8.116)

(k1 · q)(k2 · q) =
(
k2

1 − k1 · k2

) (
k1 · k2 − k2

2

)
=
(
m2
µ −mµEe

)
mµEe, (5.8.117)

dΓ =
G2
Fmµ

12π3
[3mµ − 4Ee]E

2
edEe. (5.8.118)

Next, consider the energy of the muon neutrino

Eνµ =
∣∣pνµ∣∣ = |pν̄e + k2| =

√
E2
ν̄e + E2

e + 2Eν̄eEe cos θ. (5.8.119)

It follows, that depending on values of the angle θ the muon neutrino's energy is in the

following range

|Eν̄e − Ee| ≤ Eνµ ≤ Eν̄e + Ee, (5.8.120)

or, after applying the conservation of energy

|Eν̄e − Ee| ≤ mµ − Ee − Eν̄e ≤ Eν̄e + Ee ⇒ Ee ≤
mµ

2
. (5.8.121)

The last expression gives the limits for integration over Ee in Eq. (5.8.118). After performing

the integration, the free muon decay rate is obtained:

Γ0 =
g2m5

µ

6144π3M4
W

=
G2
Fm

5
µ

192π3
. (5.8.122)
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Appendix D: Documentation of Fortran

Code for Bound Muon Decay

When measuring properties of atoms, it is important to take into account e�ects of quan-

tum electrodynamics (QED). Of those e�ects the most important one is the radiative self-

energy. For hydrogen-like systems, the level shift scales like Z4 which makes it signi�cant

for high-Z ions. For αZ � 1 this e�ect has been usually calculated as a series expansion of

αZ. But for Z > 10 this method is no longer valid since the terms of higher order are not

su�ciently small any more. Hence, αZ should not be treated as a perturbative expansion

parameter any more.

Basic Formalism

The following section brie�y summarizes results presented in ref. [15]. The energy shift

of a particle in a bound state a to the �rst order in α is:

4Ea = 2iα

∞̂

−∞

dω

ˆ
dr′drΦ†a(r

′)αρG(E − ω; r′, r)Dρσ(ω, r′ − r)ασΦa(r)

−δm
ˆ
drΦ̄a(r)Φa(r), (5.8.123)

where Φa (r) are the bound state solutions of the Dirac equation for the Dirac-Coulomb

Hamiltonian (5.8.91) given by Eq. (2.1.10) and δm is a mass counterterm. The Dirac-

Coulomb Green's function G (ω; r′, r) = 1
ω−HDC

can be expanded as series in the free Green's

function G0 (ω; r′ − r) = 1
ω−H

1 using the identity �rst introduced in [17].

1

ω −HDC

=
1

ω −H0

+
1

ω −H0

V (r)
1

ω −H0

+
1

ω −H0

V (r)
1

ω −H
V (r)

1

ω −H0

. (5.8.124)

Here H0 is the free Dirac Hamiltonian de�ned in (5.8.56). Inserting expansion (5.8.124) into

(5.8.123) we get the three more terms which we label to be zero-potential, one-potential, and

many-potential terms respectively:

4E(1)
a = 4Ezero +4Eone +4Emany − δm

ˆ
drΦ̄a(r)Φa(r). (5.8.125)

1Since it does not contain the interaction with the nucleus it has the translation symmetry.
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Figure 5.8.2: The self-energy shift expanded as the sum of zero-, one- and many potential
terms, respectively. The double line corresponds to the bound propagator and dotted ones
to interactions with the nucleous.

Figure (5.8.2) depicted the Feynman diagrams corresponding to this expansion. The

expression for the zero-potential term follows immediately from (5.8.123) by substituting the

free Green's function in place of a bound one.

4Ezero = 2iα

∞̂

−∞

dω

ˆ
dr′drΦ†a(r

′)αρG0(E − ω; r′ − r)ασDρσ(ω; r′ − r)Φa(r). (5.8.126)

The one-potential term corresponds to one interaction with the nucleus, so the expression

for it in terms of the free Green's functions is

4Eone = 2iα

∞̂

−∞

dω

ˆ
dr′′dr′drΦ†a (r′)αρG0 (Ea − ω, r′ − r′′)

×V (|r′′|)G0(Ea − ω, r′′ − r)ασDρσ (ω; r′ − r) Φa (r) . (5.8.127)

It is convenient to convert the zero-potential and one-potential terms into the momentum

space and the energy shift (5.8.123) becomes
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4E(1)
a =

ˆ
dp

(2π) 3
Φ̄a (p)

(
Σ0(p)− δm

)
Φa (p)

+

ˆ
dp′

(2π) 3

dp

(2π) 3
Φ̄a (p′) Γ0(p′, p)V (|p− p′|) Φa (p) +4Emany, (5.8.128)

where

Σ(0) (p) = −4πiα

ˆ
d4k

(2π) 4

1

k2
γσ

�p−��k +m

(p− k)2 −m2
γσ (5.8.129)

is the self-energy correction, and

Γµ(p′, p) = −4πiα

ˆ
d4k

(2π)4

1

k2
γσ

�p
′ −��k +m

(p′ − k)2 −m2
γµ �p−��k +m

(p− k)2 −m2
γσ (5.8.130)

is the vertex correction,

4Emany = 2iα

ˆ
dω

ˆ
dr′drΦ†a(r

′)αρG2+(E − ω; r′ − r)ασDρσ(ω; r′ − r)Φa(r). (5.8.131)

Both zero-potential and one-potential term should be dimensionaly regularized. These

energy shifts are solved by using the program, which functioning is described in the following

section.

General Structure of the Program

This program is developed by A. Volotka. The purpose of this section is to explain its

main functional. The general structure of the program is shown in the block-diagram (5.8.3)

and the di�erent parts of the program are explained below.

Gaussian Quadrature and B-Splines

The directory bsplines contains �les in which solutions of the Dirac equation in a cavity of

radius xcav are approximated with piecewise polynomials. For that purpose �le de_boor.f

contains a subroutine BSPLV which generates values of the B-splines Bi,k (x) of order k at

x for the knot sequence {ti} , i = 1, 2, ... .

Bi,1 (x) =

{
1, if ti ≤ x < ti+1

0, otherwise
, (5.8.132)
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Figure 5.8.3: Directories and �les contained in them.
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Bi,k (x) =
x− ti

ti+k−1 − ti
Bi,k−1 (x) +

ti+k − x
ti+k − ti+1

Bi+1,k−1 (x) , (5.8.133)

where k = 2, 3... .

The �le bsplines9.f stores grids for integration for given parameter na which is the

number of internal knots of the grid. The �les generate.f and generatem.f both generate

the necessary basis sets with the di�erence that the �rst one does it for electronic states

and the second one - for muonic. As a result, whenever the integration is done with the

help of the Gaussian Quadrature two choices of grid are possible: grid - a more sparse

one or gridm - a denser one, but de�ned over a smaller region. The latter grid is needed

to be introduced due to the following fact: the wave function of a muon is localized over

smaller position space than that of an electron, therefore, the grid �t for electronic wave

function does not have enough knots to make integration as precise. The relative di�erence

in the intervals between the consecutive knot of these two grids can be described be the

relation: grid (i)− grid (i − 1) = amass_a [gridm (i)− gridm (i − 1)], where amass_a

is the muon mass.

The Gaussian Quadrature rules which are used by the splines later for integration:

∞̂

0

f (r) dr →
rmaxˆ

0

f (r) dr ≈
na∑
ii=0

rii+1ˆ

rii

f (r) dr, (5.8.134)

then in the last integral the following substitution is made r = rii + (rii+1 − rii)x:

na∑
ii=0

rii+1ˆ

rii

f (r) dr →
na∑
ii=0

1̂

0

f (x) dx ≈
na∑
ii=0

∑
jj

ωjjf (xjj) . (5.8.135)

Here ωjj are the weights which are stored in the program in cc(jj, iNstor/iNstme),

the values of xjj are stored in xx(jj, iNstor/iNstme) and jj = 1,Nstor(iNstme). Both

cc(jj, iNstor/iNstme) and xx(jj, iNstor/iNstme) are generated by the subroutine D01BAZ

contained in the �le with the same name in the directory intagration. And values for

both iNstor and iNstme are stored in the Block Data at the end of the �le main.f in

the directory main. Variables rii and rii+1 are given in the program by r0 = grid(ii) and

r1 = grid(ii + 1), where ii runs from 0 to na. The parameter xcav = 1/(amas_a/b) de-

�nes the extent of the cavity over which the grid for the numerical integration is stretched. It

is also de�ned in main.f and amas_a/b correspond to the muon/electron mass, respectively.

The �le generate.f contains the following useful functions:

1. getgf(gg, �, ix, kax, i_ab, ib, r) gives g(r) and f(r) as the output gg and ff , re-
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Figure 5.8.4: The structure of the stored data for the Gaussian Quadrature integration.

spectively. The input parameters: r is a variable de�ning position, kax is κn given in

(2.1.47), ix is the number in the spline basis nn_a/b which is given by nr2nn,

2.

i_ab =

{
0,

1,

for muon

for electron
,

3.

ib =


0,

1,

2,

free state

bound state

perturbed state

.

4. getenn(ix, kax, i_ab,ib). Gives the energy of the state corresponding to the parameter

ix, which is the principle quantum number n.

5. getern(nr, kax, i_ab). Gives the energy of the state corresponding to the parameter

nr, which is the radial quantum number.

The �le generatem.f contains the functions getgfm, getennm, geternm which do the

same thing as the functions listed above only on the muonic grid gridm.

The �le bsplines9.f contains a function nr2nn(nr, kax) which generates principal quan-

tum numbers from the radial quantum number nr and the number κn.

Calculation of Self-Energy Corrections

The self-energy correction amplitude A can be written as the sum of the the zeroth-order
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Figure 5.8.5: The zeroth order correction amplitude A(0).

and �rst-order correction amplitudes:

A = A(0) +A(1), (5.8.136)

where A(1) = A(1,irred) + A(1,red) + A(1,vertex) is the sum of irreducible, reducible and vertex

contributions. The expression (5.8.136) can be rewritten:

A = A(0)
(

1 +
α

π
δ(1)
)
, (5.8.137)

where δ(1) = A(1)

A(0)
π
α
. The program calculates numerical values for these δ's in the modules

irred and vr.

The Zeroth Order Correction

The amplitude for the bound muon decay (5.8.5) into the bound electron to the zeroth

order:

A(0) = 〈e ‖δVl‖µ〉 = (−1)l
ˆ
dr jl (ωr) [GeGµGl (κe, κµ) + FeFµGl (−κe,−κµ)] , (5.8.138)

where l is the orbital quantum number, jl is the Spherical Bessel Function, ω = Eµ − Ee is
the di�erence between the muon's and electron's energies, respectively, δVl is the interaction

with the nucleus

δVl = jl (ωr)

√
4π

2l + 1
Y 0
l (r̂) , (5.8.139)

where 〈e ‖δVl‖µ〉 is a reduced matrix element, which doesn't depend on the projections of

angular quantum numbers and follows from the Wigner-Eckart theorem:

〈e ‖δVl‖µ〉 =

[
(−1)je−me

(
je l jµ

−me m mµ

)]−1

〈e |δVl|µ〉 , (5.8.140)
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Figure 5.8.6: Irreducible correction amplitudes. The double line corresponds to the bound
state, the dashed part of the diagram is the muonic state.

where functions Gµ/e and Fµ/e are de�ned in Eq. (2.2.2), and the function Gl (κ1, κ2) is

Gl (κ1, κ2) = (−1)j2+ 1
2

√
(2j1 + 1) (2j2 + 1) (2l1 + 1) (2l2 + 1)

×

(
l1 l l2

0 0 0

){
j1 l j2

l2
1
2

l1

}
. (5.8.141)

This quantity is calculated in the main.f in the module Matrix element: <b | | j_l(wr)

sqrt(4\pi/(2l+1)) Y_l | | a>. Later this value is assigned to the variable pvalue_red for

calculations of δ(1).

Irreducible Parts

A(1,irred) =

∑
n6=ne

〈e |Σe (Ee)|n〉 〈n |δVl|µ〉
Ee − En

+
∑
n 6=nµ

〈e |δVl|n〉 〈n |Σµ (Eµ)|µ〉
Ee − En


×

[
(−1)je−

1
2

(
je l jµ

−1
2

0 1
2

)]−1

≡ 〈e ‖Σe (εe)‖ δµ〉+ 〈δe ‖Σµ (εµ)‖µ〉 , (5.8.142)

where

Σe/µ

(
Ee/µ

)
= 2αi

ˆ
dωγµG

(
Ee/µ − ω

)
γµDµν (ω) (5.8.143)

The expression (5.8.142) gives the irreducible contributions of the sum of the diagrams

(5.8.6) (or so-called wave function corrections). In the program they are calculated and

located in the directory irred and start in the �le main.f in the modules called < b |

SIGMA | da > and < db | SIGMA | a >, respectively. To both terms of Eq. (5.8.142) the

potential expansion as in (5.8.2) is applied and the calculations of the corresponding zero-

and one-potential parts are done in the �les zp_irr.f and op_irr.f with the only di�erence

in the starting parameters.
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Zero-Potential Term

File zp_irr.f in the directory irred.

For < b | SIGMA | da > the amplitude A(1,irred,1) is given by function dE_zp_irr in the

program and has the following form

A(1,irred,1) =
α

4π

∞̂

0

p2dp

×
{
a(ρe)

(
g̃eg̃δµ − f̃ef̃δµ

)
+ b(ρe)Ee

(
g̃eg̃δµ + f̃ef̃δµ

)
+ p

(
g̃ef̃δµ − f̃eg̃δµ

)}
,

(5.8.144)

where the integral is given by the function zp_func_irr (p), and

a(ρ) = 2m

(
1 +

2ρ

1− ρ
ln ρ

)
, (5.8.145)

b (ρ) = −2− ρ
1− ρ

(
1 +

ρ

1− ρ
ln ρ

)
, (5.8.146)

where ρ = 1− p2

m2 .

For the part < db | SIGMA | a >

A(1,irred,2) =
α

4π

∞̂

0

p2dp

×
{
a(ρµ)

(
g̃δeg̃µ − f̃δef̃µ

)
+ b(ρµ)Eµ

(
g̃δeg̃µ + f̃δef̃µ

)
+ p

(
g̃δef̃µ − f̃δeg̃µ

)}
.

(5.8.147)

The integration from 0 to ∞ in the momentum space is calculated with the employment

of the following substitution of variables and splitting of the interval by p0 = αZma/b:

∞̂

0

dp f (p) =

 p0̂

0

[
p→ p0t

2

dp→ 2p0tdt

]
+

∞̂

p0

[
p = p0

t

dp = −p0dt
t2

] dp f (p)

=

 1̂

0

2p0t+

1̂

0

p0

t2

 dt f (t) , (5.8.148)

where f stands for some function.

The radial functions g and f are converted to the momentum space with the use of the
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Spherical Bessel Transformation (SBT):

g̃(p) = 4π

∞̂

0

drr2g(r)jl(pr), (5.8.149)

f̃(p) = 4π

∞̂

0

drr2f(r)jl̄(pr). (5.8.150)

In the program this is done with the use of the function ftr_wf(p,l,key,f (r)) contained in

the �le ftr.f in the directory integration. It performs SBT jl (x) of order l for the function

f (x) into the momentum space p:

∞̂

0

f (x) jl (x) dx =

∞̂

0

f (x) [A (x) sin (ωx) +B (x) cos (ωx)] dx,

key =

(
0 1 2 3

g f gδ fδ

)
.

The coe�cients A (x) and B (x) are de�ned in the program as sph_jl_sf and sph_jl_cf ,

respectively, and contained in the �le sph_j.f in the directory bessels. And the function

anf_wf_a/b(r) gives G/F
r
jl (pr) r

2
√

2
π
p. They both use the subroutine d01anf (f , a, b, ω,

KEY, EPSABS, EPSREL, RESULT, ABSERR, 1 W, LW, IW, LIW, IFAIL) which is located

in the directory integration and it calculates an approximation to the sine or the cosine

transform of a function f over the interval [a, b]:

KEY=1:

RESULT =

b̂

a

f (x) cos (ωx) dx,

KEY=2:

RESULT =

b̂

a

f (x) sin (ωx) dx.

One-Potential Term

File op_irr.f in the directory irred.

84



For < b | SIGMA | da >

A(1,irred,3) =

ˆ
dp1dp2

(2π) 3
Φ̄e (p1) Γ0

R(p1, p2)V (|p1 − p2|) Φδµ (p2)

=
α2

2 (2π)3

∞̂

0

∞̂

0

dp1dp2

1̂

−1

dξ
p2

1p
2
2

q2
{F1 (p1, p2, ξ)Pl (ξ) + F2 (p1, p2, ξ)Pl̄ (ξ)} ,

(5.8.151)

and for the part < db | SIGMA | a >

A(1,irred,4) =

ˆ
dp1

(2π) 3

dp2

(2π) 3
Φ̄δe (p1) Γ0(p1, p2)V (|p1 − p2|) Φµ (p2) , (5.8.152)

which are given by

dE_op_irr =
α2

2 (2π)3 op_int_irr ().

The program gives results in the form

δ(1,1) =
A(1,irred)

A(0)

π

α
=

dE_op_irr

pvalue_red
× pi× acl

To perform the double integration in the momentum space the following change of vari-

ables is made: p1 ≡ 1√
2

(p+ r)

p2 ≡ 1√
2

(p− r)
⇒ ∂ (p1, p2)

∂ (p, r)
= 1⇒

∞̂

0

∞̂

0

dp1dp2 =

∞̂

0

dp

p̂

−p

dr,

and
p̂

−p

f (r) dr =

p̂

0

[f (−r) + f (r)] dr.

For the integration in the momentum space p the substitution of variables is done accord-

ing to (5.8.148):

op_int_irr () =

 p0̂

0

+

∞̂

p0

 dp op_p_irr () ,

where p0 = 2αZma/b and

op_int_irr () =

p̂

0

[op_pr_irr (r) + op_pr_irr (−r)] dr,
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Figure 5.8.7: Irreducible correction amplitudes for many potential terms.

where the substitution r = pt2, dr = 2ptdt is done. Now

op_pr_irr () = op_pp_irr ()× p1 × p2

op_pp_irr () =

1̂

−1

op_ppz_irr () dz,

where z = 1− 2t2 is the cosine of the angle ξ in (5.8.151), and

op_ppz_irr () =
(
F_1× P_l + F_2× P_l̄

)
× V_p1_p2 ()

with P_l being the Legendre polynomials de�ned up to l = 2, and V_p1_p2 () is the

potential contained in the �le potential.f .

Many-Potential Term

Files mp_irr.f , mpcore_irr.f , pv_irr.f , poles_irr.f , pole_irr.f , in the directory

irred.

For < b | SIGMA | da >

A(1,irred,mp,1) =
i

2π

∞̂

−∞

dω
∑

αe,βe,ie

〈eβe |I (ω)|αeδµ〉 〈αe |V | ie〉 〈ie |V | βe〉
(Ee − ω − Eβe) (Ee − ω − Eαe) (Ee − ω − Eie)

(5.8.153)

A(1,irred,mp,2) =
i

2π

∞̂

−∞

dω
∑

αµ,βµ,iµ

〈δeβµ |I (ω)|αµµ〉 〈αµ |V | iµ〉 〈iµ |V | βµ〉(
Eµ − ω − Eβµ

) (
Eµ − ω − Eαµ

) (
Eµ − ω − Eiµ

) , (5.8.154)

where I (ω) = e2αρασDρσ (ω) = α (1−α ·α)
exp(i

√
ω2+iδ)r12

r12
.
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After the Wick's rotation each expression can be split into the sum of three terms

A(1,irred,mp) = A(1,irred,PV) +
1

2
A(1,irred,pole) +

∑
ie/µ

Ei<Ee/µ

A(1,irred,poles), (5.8.155)

which are the principle value, half-pole on the the imaginary axis and sum of the remaining

poles.

Important Notes

In the �le main.f after the 424th line, the calculation of the wave functions perturbed

by the decay begins. In this case, the perturbed muon wave function (da) corresponds to

the wave function of the virtual electron with angular quantum numbers j_b, l_b, and

conversely, the perturbed electron wave function (db) corresponds to the virtual wave func-

tion of the muon. The spline decomposition coe�cients are stored in the array gfcoef(-,-

,-,nn_b,ka_b,1,2) for da (430-433 lines) and in gfcoef(-,-,-,nn_a,ka_a,0,2) for db (443-446

lines). These wave functions are calculated in the momentum space by the function ftr_wf

which takes (p, l_a/2, 2, anf_wf_a) as its arguments for the state db. This can be seen if

refer to the �le ftr.f where in this case the function getgf ( gga, �a, nn_a, ka_a, 0, 2, r )

is called, for which the parameters 0 and 2 are the parameters of the function db.

Make File

Here are listed some important inputs and outputs of the program.

1. Directory main:

(a) File main.f :

i. subroutine inp_data () calls for initial values of some parameters;

ii. subroutine rad_init () calls for generation of the grid and potential values

for corresponding grid knots;

iii. subroutine ext_init () checks normalization of wave functions in the coordi-

nate and momentum spaces, calculates the zeroth order of amplitude (5.8.138).

It calculates and stores values for perturbed wave functions |da> and <db|;

iv. Calculates the irreducible parts for < db | SIGMA | a > and < b | SIGMA |

da > by calling subroutines ZP_IRR (), OP_IRR () and MP_IRR ();

v. Block data stores vales for Nstor, iNst, iNstm and iNstv.
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(b) File worksheet.f :

i. subroutine worksheet_1 () calculates energies and wave functions of a and

b states;

ii. subroutine worksheet_2 () calculates matrix elements
√
〈a |r2| a〉 , 〈a |[r× ᾱ]z| a〉

and 〈a |G (ε, r1, r2)| a〉;

iii. subroutine worksheet_3 () calculates the zeroth order of amplitude (5.8.138),

calculates and stores values for perturbed wave functions |da> and <db|.

2. Directory bsplines:

(a) File bsplines9.f :

i. subroutine bs_grid () generates a grid inside the nucleous, exponential and

non-exponential grid;

ii. function nr2nn(nr, kax) which generates principal quantum numbers from the

radial quantum number nr ≡ nr and the number kax ≡ κn.

(b) File generate.f :

i. getgf(gg, �, ix, kax, i_ab, ib, r) gives g(r) and f(r) as the output gg and

ff , respectively. The input parameters: r is a variable de�ning position, kax

is κn given in (2.1.47), ix is the number in the spline basis nn_a/b which is

given by nr2nn,

i_ab =

{
0,

1,

for muon

for electron
,

ib =


0,

1,

2,

free state

bound state

perturbed state

;

ii. getenn(ix, kax, i_ab,ib). Gives the energy of the state corresponding to the

parameter ix, which is the principle quantum number n;

iii. getern(nr, kax, i_ab). Gives the energy of the state corresponding to the

parameter nr, which is the radial quantum number.

(c) File generatem.f (do the same calculations as generate.f only for muonic grid):

i. getgfm(gg, �, ix, kax, i_ab, ib, r);

ii. getennm(ix, kax, i_ab,ib);

iii. geternm(nr, kax, i_ab).

(d) File de_boor.f generates values of the B-splines.
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3. Directory irred:

(a) File zp_irred.f contains subroutine ZP_IRR () which calculates self-enegy cor-

rections (5.8.129) for < db | SIGMA | a > and < b | SIGMA | da >;

(b) File op_irred.f contains subroutine OP_IRR () which calculates vertex correc-

tions (5.8.130) for < db | SIGMA | a > and < b | SIGMA | da >;

(c) File mp_irred.f contains subroutine MP_IRR () which calculates corrections

for many-potential interactions (5.8.131) for < db | SIGMA | a > and < b | SIGMA

| da >;

(d) File pv_irred.f contains subroutine PV_IRR () which calculates the principle

value of the integral (5.8.131) and is called in the �le mp_irred.f ;

(e) File poles_irred.f contains subroutine POLES_IRR () which calculates the

integral (5.8.131) for poles not lying on the imaginary axis after the Wick's rotation

and is called in the �le mp_irred.f ;

(f) File pole_irred.f contains subroutine POLE_IRR () which calculates the inte-

gral (5.8.131) for a half-pole lying on the imaginary axis after the Wick's rotation

and is called in the �le mp_irred.f .

4. Directory integration:

(a) File ftr.f calculates Fourier Transforms into momentum space;

(b) File d01anf .f contains subroutine d01anf (f , a, b, ω, KEY, EPSABS, EPSREL,

RESULT, ABSERR, 1 W, LW, IW, LIW, IFAIL) which calculates an approxima-

tion to the sine or the cosine transform of a function.

5. Directory bessels:

(a) File sph_j.f contains coe�cient for the Spherical Bessel Transformation.
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