

Master of Science in Internetworking – Computing Science

MINT 709 Report

Implementation of Portable Security Analysis Tool

Submitted By – Gaganpreet Singh Sandhu

CCID – gsandhu1@ualberta.ca

mailto:gsandhu1@ualberta.ca

2

Table of Contents

1. Abstract ...4

2. Introduction ...5

3. Methods to perform security analysis ..6

3.1. Port Scanning ...6

3.2. Wireless Network Scanning ..6

3.3. Application Scanning ...6

3.4. Endpoint-Protection-Tool ...6

3.5. Network Scanning ..7

3.6. Other Methods ..7

4. Tools Used for Security Analysis/Auditing ..7

4.1. NMAP ..7

4.1.1. Nmap is flexible?...8

4.2. Metasploit Framework ..9

4.3. Libre NMS ...9

4.4. Wireshark ... 10

4.5. Other Tools .. 10

5. Introduction to Open Source and Proprietary Softwares/Applications 11

5.1. The idea behind open source... 11

5.2. Proprietary tools ... 11

6. Portable Applications vs Regular Applications .. 11

6.1. Regular applications ... 11

6.1.1. Benefits ... 12

6.1.2. General Trade-Offs .. 12

6.2. Portable Applications ... 12

6.2.1. Benefits of using Portable Applications ... 12

6.2.2. General Trade-Offs .. 12

7. Motivation For Creating Portable Package For Security Analysis .. 13

8. Why Nmap for portability? .. 14

9. Tools for Creating Standalone Nmap Package ... 15

9.1. Windows OS .. 15

3

9.1.1. Important files created by the Cameyo packager. [7].. 15

9.2. Linux OS .. 16

9.2.1. CDE Operation .. 17

9.2.2. CDE Operation with Nmap .. 17

9.2.3. Limitations: ... 19

9.3. Other Tools .. 19

9.3.1. VMware ThinApp ... 19

9.3.2. Docker Containers ... 19

9.3.3. Turbo.net ... 20

10. Using Cameyo For Creating Nmap Package on Windows OS .. 20

10.1. Usage and Trade-Offs of Standalone Executable on Windows 26

11. Using CDE For Creating Nmap Package on Linux .. 27

11.1. Usage and Trade-Offs of CDE Package on Linux (Ubuntu) .. 32

12. Other Use Cases .. 33

12.1. Audacity ... 33

12.2. Philips Hue ... 34

12.3. Use cases with Cameyo .. 34

12.4. Use cases with CDE ... 34

12.5. Other Methods .. 34

13. Risks of using Portable Application ... 35

13.1. Risk Management ... 35

14. Ethics for using Portable Applications ... 35

15. Future of Portability – Applications & Operating Systems ... 36

15.1. Future for portability w.r.t Security Appliances .. 37

16. References ... 38

4

Abstract

Transition to application virtualization is causing IT organizations to reconsider the methods it

uses for deployment of services like IT support, application usage, management, etc. It is becoming

important to have a vision for the application delivery methods for the future. Today the choice

of software used by various organizations depends on how protected the software code is and how

security is applied on top of the software code. This is the point where we define and compare

proprietary and open-source software. This report initially aims at discussing the significance of

both types – proprietary and open-source, focusing primarily on security analysis tools.

The network infrastructure of any organization composes of various threats and vulnerabilities and

hence the need for security analysis tools becomes handy. Provided the network can break and

outages can be caused, this should not become the reason for the failure of regular security scan

checks for the isolated/broken network. There is a need for a new deployment method other than

the legacy client-server method (one server scanning many networks/clients) to run scans even

without network connectivity. The portability of such security analysis tools becomes the need for

the hour in these situations, where, the tool can work from any machine or operating system and

provide the necessary results continuously. This report focuses on a brief discussion of the methods

and tools required for performing security analysis and deciding what tool can be converted into a

portable version.

This report then briefly discusses the tools available for creating portable applications and

describes the implementation process for creating the portable version for one of the security

analysis tools. Open-source and free software are targeted to create a portable version of the

security analysis tool. After creating such tools, its risk management becomes equally important

as its usage hence proper guidelines are required to be set up for using these tools. The report

finally discusses the future of application deployment methods and how it can lessen the

complexity of the current system.

5

Introduction

“In the context of IT security, businesses have two kinds of objectives: mission and compulsory.

A mission objective is directly related to producing revenue or enhancing profits. Compulsory

objectives are those that must be achieved as a matter of prudence or regulation. Endpoint or

Network security is a compulsory business objective.” [1]

The largest threat of organizational breach occurs at the endpoint level which also acts as an initial

attack vector. [2]. A vulnerability in any system is the attack vector used by hackers. The US

National Institute of Standards and Technology (NIST) defines vulnerability as “a weakness in an

information system, system security procedures, internal controls, or implementation that could be

exploited by a threat source.”

The existence of endpoint vulnerabilities attracts hackers which results in system compromise. It

is vital to detect vulnerabilities and fix them as soon as possible since business runs with the

connectivity of different systems/sites/people. These vulnerabilities are required to be detected

within seconds and minutes and hence the continuous assessment of business systems should be

part of the compliance policy of any organization.

With the advent in the increase of major data breaches, organizations realize that the financial

aspect and business continuity depends on risk management within the IT domain. Hence the

organizations majorly use vulnerability management techniques in order to make sure that the

systems, applications, communications between devices (including social engineering activities)

are compliant with respect to the industry security standards. Infrastructure security starts at

detecting vulnerabilities (or at the places which have no protection).

To be better prepared and face threats, security analysis is the first step towards better IT hygiene

for any organization.

“There is one simple countermeasure for existing vulnerabilities that will protect you, should a

hacker scan your machines with a [vulnerability assessment scanner] – scan your own systems

first. Make sure to address any problems reported by the scanner, and then a scan by a hacker will

give him no edge.” [3]

Programs that provide security analysis uses tools and techniques that help to detect a

past/present/future security compromise that has/could have happened by analyzing large volumes

of data. Analysis tools/techniques are made from a pre-defined set of policies and parameters that

the tool can poll and check from a device to be assessed. Next-generation analysis tools also can

work based on Machine Learning, Deep Learning and Artificial Intelligence which makes them

more complex and resource using tools.

This report is focused on network scanning/auditing based on user-defined parameters and defined

set of rules.

6

Methods to perform security analysis

There are multiple ways in which security analysis can be done, some of the methods are

mentioned below:

Port Scanning – It is the most used technique in order to find the exploit. Systems connected to a

network possess availability of open ports based on which an attacker or a tester can detect - what

ports are open, type of service that is available, support of anonymous services, authentication

requirement (login services), system and interface information, etc. Multiple port scanning

methods are available in order to detect vulnerabilities of a running system. The whole idea behind

these various methods includes sending multiple types of packets (initialization, reset or

finalization) in order to get a response from unknown/known endpoints to collect data and detect

various impactful areas that can be exploited. Some of the available methods include – TCP NULL,

TCP ACK, ICMP Ping Sweep, TCP Reverse Indent, TCP Half Open, TCP Fin, ARP scans, etc.

Every machine is open to port scanning vulnerability assessment. If an exploit is detected on the

endpoint, the hacker can use the exploit to open more ports on the machine and make the system

or network compromised.

Wireless Network Scanning – Primary focus of wireless scanning is to detect anomalies in

misconfiguration of the wireless network devices which are used to either provide authentication

services, connection services, access services or the type of encryption that the device provides for

communication with end devices who try to connect to the network via Wi-Fi. Enterprise wireless

networks can get compromised since the Guest network is also connected to the organizational

network. This type of scanning can also help in detecting the rogue access points which are used

to get access to different devices that try to initiate a wireless connection with it. This type of scan

can be implemented by just creating a list of available wireless access points with their MAC

addresses and then scanning the area for rogue access points that don’t comply with the list and

then remediating the network by applying restrictive policies in the organizational systems.

Application Scanning – The primary motive of this type of scanning is to scan the source code of

the application and inserting/injecting various code values/lines in order to parse the results and

observe the application behavior and find the exploit in the code. White box and black box are the

common methods to perform the scan. Whereas White Box is an exhaustive method in terms of

resource utilization since it uses source code to determine all possible paths the code can result to

detect the unwanted outcome, the Black Box method uses random requests to the application in

order to check if the results were successful. This is also called Penetration testing. Malformed

data is sent in order to check for response errors. Scanner also has a known list of vulnerabilities

(also called signatures) of web applications, server configuration which is used to execute many

available patterns in order to find the vulnerability. Various related vulnerabilities include – SQL

Injection (SQLi), Remote Code Execution, Cross-site Scripting (XSS), Vulnerable JavaScript

Libraries, Overflow vulnerability, DoS, etc.

Endpoint-Protection-Tool – Various virus scanning tools are hosted on local systems. The

vulnerability detection is based solely on signatures which it compares within the executable code

of an application or operating system. These kinds of vulnerability scanning techniques can also

7

work based on heuristics in which behaviors of the code is analyzed. This also takes more time

and is not as accurate as signature-based detection.

Network Scanning – Usually organizations implement network security at perimeter level but

due to recent advancements in the way network behaves due to variable data flow between

networks or sites due to access to critical data at various locations, it can be implemented inside

the network as well in order to expand the threat detection capability and performance. One type

of network scanning is performed basically by capturing the traversing data and creating cache for

the data flow to detect anomalies and to provide network visibility in terms of vulnerability

isolation, capacity planning and more. Network scanning can also be performed by implementing

a firewall solution between two networks or sites. A firewall can scan the traffic based on the Five-

Tuple parameters – Source and Destination IP Address and Ports, and the protocol used. This can

help in various ways to identify any unusual behavior in the communication between two

endpoints. Next-Generation firewalls can also scan the data traversing via the firewall in order to

scan for viruses and application threats that are signature-based or zero-day attacks. Upon

scanning, relevant policies or actions can be taken to remedy the issue.

Other Methods – These includes various deployments like cloud solutions that provide scanning

services to the communication between an organization’s internal resources and external network.

This type of scan can be deployed by introducing a cloud proxy solution where all the requests to

external network within an organization are redirected to a cloud proxy solution which scans for

the requested URL’s and scans them for access restriction or web reputation score in order to make

a decision whether to allow or block the requests. This helps to make compliance policies if the

organization has various sites from which it runs the business.

There can be more methods for finding the vulnerabilities and preventing them from changing

into exploits. The discussion of all those methods that are available is restricted to the above-

mentioned points for this report.

Tools Used for Security Analysis/Auditing

There are many tools available for security analysis and security auditing. Some of the majorly

used tools are briefly described below.

NMAP

Nmap (“Network Mapper”) is an open-source tool for network exploration and security auditing.

Nmap uses raw IP packets in novel ways to determine what hosts are available on the network,

what services (application name and version) those hosts are offering, what operating systems (and

OS versions) they are running, what type of packet filters/firewalls are in use, and dozens of other

characteristics. While Nmap is commonly used for security audits, many systems and network

administrators find it useful for routine tasks such as network inventory, managing service upgrade

schedules, and monitoring host or service uptime. The output from Nmap is a list of scanned

targets, with supplemental information on each depending on the options used. [4]

8

Nmap is flexible?

• Nmap can run on most of the operating systems including Windows, Mac OS, Berkeley

Software Distribution (BSD), Solaris, AIX, AmigaOS.

• As compared to other free or open-source products providing the same functions NMAP

documentation has been maintained by many developers, man pages, and white papers.

• It is easy to acquire, install/deploy and to work on.

• The scripting engine and different NSE scripts allow users to develop and implement

multiple types of network discovery methods.

A typical Nmap scan looks like this:

9

The scan was performed with the options: nmap -T4 -F 192.168.1.0/24

This type of scan is also known as a quick scan in nmap terms.

Metasploit Framework

It is a penetration testing solution that has the ability to simulate real-world attacks and posses one

of the largest exploit databases. Metasploit can perform multiple tasks including information

gathering, enumeration, access/privilege escalation, and tracing, which means it works as both

vulnerability detection as well as penetration testing tool. This open-source framework is based on

Ruby. It includes more than 1677 exploits along with 500 varied payloads acting as evasive

solutions to escalate the privileges, perform commands/scripts and control the target device. Even

though it is available for Ubuntu Linux, Windows and RHE Linux Servers, the recommended OS

on which it may run is Ubuntu Linux. Kali Linux comes with Metasploit’s pro version in the

bundle. The installation process requires you to disable antivirus and firewalls on the machine on

which Metasploit needs to be installed. The general process includes checking for any

vulnerabilities> developing/configuring an exploit> configuring/developing a code of execution

with the target> deploying the exploit.

Libre NMS

Libre NMS is a network monitoring solution that provides network discovery services by using

protocols such as CDP, FDP, LLDP, OSPF, BGP, SNMP, and ARP. [5] It helps in infrastructure

operations with respect to alerting systems based on network/device down incidents that need

immediate attention. It also has the capability to generate reports for network status continuously

to determine high/low traffic regions, port status, device inventory, etc. Event logs and System

logs can also be integrated with this tool for better forensics. Based on the searched network

components and their MAC address this tool can categorize them based on different vendors and

operating systems. Apart from these functions it can also monitor routing protocol status, health

status and can configure thresholds based on multiple parameters for generating alerts. This tool

is available only for RHEL CentOS 7 and Ubuntu OS. It is an open-source project with source

code available on https://github.com/librenms/librenms/blob/master/doc//Installation/index.md.

- “Monitoring tools have a lot of significance in maintaining and monitoring existing nodes

present in the network. Many tools are sold at a high price. Open-source projects allow

small size organizations to generate routine network statistics report and check for

anomalies in the network.”

Below is the screenshot acquired from https://www.librenms.org/#prettyPhoto[pp_gal]/0/ which

shows how node statistics can be represented in the tool.

https://github.com/librenms/librenms/blob/master/doc/Installation/index.md
https://www.librenms.org/#prettyPhoto[pp_gal]/0/

10

LibreNMS GUI

Based on the SNMP queries, the above picture shows how the devices are displayed based on DNS

name resolution, OS detection, and the uptime of the devices. Depending on the SNMP control

strings we can also control what information can be polled and when the poll happens.

Wireshark

Wireshark is a network & protocol analyzer that allows you to understand the data that is captured

from a network. The packet capture can be taken from any tool or technology eg – tcpdump, but

Wireshark allows the captured data to be represented in a structured sequence. The data is

represented as sections of layers in TCP/IP model with each layer data is presented in the context

of different protocol options like IP in layer 3, HDLC/Ethernet at layer 2, HTTPS at layer 7, etc.

When using Wireshark to capture data it places the interface into promiscuous mode so that the

data can be captured and replicated into GUI. It is a complex tool with respect to the functions that

it can perform in analyzing the data. It can be used to:

- Observe the protocol behavior with respect to a type of stream or communication between

two endpoints.

- To check what are the specific timing, flags, sequence numbers used in the data packet.

This information can be used to check for the latency in the whole network.

- Finding issues by checking the type of messages being shared between two endpoints.

- Capture data from Ethernet, IEEE 802.11, PPP/HDLC, ATM, Bluetooth, USB, Token

Ring, Frame Relay, FDDI. [4]

There are many more use cases for which Wireshark is beneficial. The tool is open source and is

available for Windows, Linux, macOS, Solaris, FreeBSD, NetBSD.

Other Tools

There are many other tools available for security analysis and auditing including Splunk, Solar

Winds, HP BMS, Nessus, Arachni, Aircrack ng, etc. The scope of this report is limited to the

introduction of such tools and not all.

11

Introduction to Open Source and Proprietary Softwares/Applications

The idea behind open source and proprietary applications is not the same. Though the

methodology to create any software can be the same the method of distribution is the polar

opposite. Open-source application can be either managed by a community of developers who work

together to create a program or they can be commercial open-source software, the copyright of

which is controlled by organizations. The organization maintains the ownership of the product and

only accepts any contributions if the contributor accepts to transfer the copyrights to the owner of

the product. This also acts as a business model for any organization where an open-source product

is provided for free for limited services only. If customers find it useful they can purchase the full

version of the product. The support for the open-source products is also free till the time the

ownership and contribution is from a community. The product is made from open standard

protocols having fewer bugs. Due to the fact that it is supported by the community, free support is

often considered not the fastest and hence it has a reduced business advantage for its distribution

in various industries.

Proprietary tools are created with an idea for creating a software that serves a specific feature to

attain the business advantage of multiple features. Usually, the product releases are stable. The

products are designed for a long run that can support future OS versions and at the same time is

backward compatible. The support for the proprietary products is deemed to be better as compared

to open source tools. Due to the limited scope of the product, specific tech support can be easily

assigned to solve the issue with the product. Though there are many advantages for commercial

products, customers are dependant on the organizations for the pricing structure and opacity of the

code that they use in their operating system.

Portable Applications vs Regular Applications

Regular applications are the files packaged without dependencies to be installed in a system. The

installation process might require the installer to place the application in a specific directory

usually under ‘Program Files’. The uninstaller is also placed in the memory. The application

installer can also change some registry entries and modify system configuration. For example –

Vmware creates new logical interfaces in the system configuration. In some cases, the application

also starts controlling the system with respect to system calls, role-based access privileges,

installation, and deletion of other software or programs. Antivirus is an example of such software.

It is beneficial because of the processing speed as compared to portable apps which are slower.

This type of installation can take advantage of many windows features such that multi-user

distinction. The installed program can be available to and can make changes to specific user

settings only via the AppData directory for a particular user and not affect others making sure that

the environment is isolated when required.

12

Benefits

- Natively installed applications are fully integrated with the system and have the ability to

communicate with other operating system features and applications.

There are some disadvantages as well for using this kind of applications:

General Trade-Offs

- They require more development time and money.

- Each platform might require a separate installer package to be installed.

Portable Applications – (also called Virtualized Applications) does not use any installer and

comes with all the dependencies packaged into a single standalone executable fine, hence the

physical installation is not required. This is also called application virtualization. This

methodology isolates applications by creating a virtual file system and virtual registry providing

resources pertaining to the original operating system during runtime. All files that are required to

run the portable program are present in a single file/folder. Typically it is a compressed file, and

to run it it just needs to be extracted or the executable runs the application (the significance of

using portable applications). Since the end-user only sees the function and not the resources that

are used to run the portable application, the portable application is isolated on the target platform.

Application virtualization methodology uses a virtualization layer that acts as an alternative to the

runtime environment provided by the operating system. The virtualization layer may intercept the

function calls to the operating system. Because of its isolation, the application thinks that it is the

only code running on the operating system. This prevents changes to the operating system

components. While running via a USB, these applications do not use memory on the system and

do not leave any footprint of using it. Portable applications comes with a lot of downsides as well.

Benefits of using Portable Applications

- Applications or software can be easily delivered across multiple systems.

- There is no more installation dependency.

- Application conflicts are minimalized.

- Stabilization of user-profiles because of lesser dependencies for running the application

since it creates a dynamic user environment while executing.

- Even though portability helps in maintaining isolation, they operate the same way as native

applications providing integration with operating system shell, IPC, etc.

General Trade-Offs

- Windows User Account Control configuration will not work with portable applications due

to packaged dependencies. [6]

- Multiple users need to have the same configuration setting to run the application in a

portable environment.

- Not all applications can be made portable. Limited functionality can be a downside of such

applications in some cases.

13

- The portable application cannot write to an OS file system or registry entries.

- New updated versions have to be made portable every time once the installer packager is

released.

- Portable applications cannot access any additional libraries from the operating system if

they want to use advanced features.

- The infrastructure security team in some organizations do not allow to use of portable

applications.

- Application performance is degraded.

- API (required for communication between the application and operating system files and

registries) has to be created again for the virtualized environment.

This report is focused on the security auditing/scanner tool NMAP (Network Mapper) in a portable

version.

Motivation For Creating Portable Package For Security Analysis

Different machines have different capabilities and might have different libraries required to run

any specific application or program. Working on an application on one machine doesn’t mean that

the same application can run on any other machine provided there is some dependency mismatch

which causes run-time errors. A software might require libraries that have dependencies on some

other libraries which are required to be installed on the machine if the software needs to be run.

The same is the case with tools and software created for security analysis.

Within an IT infrastructure domain, there are multiple domains that have their own functions or

operations. These can be security, networking, database/storage, servers, application, monitoring,

normal users, scientists, finance, HR. Different domains of work within an organization requires

different role-based access and different software to run. Software can update a number of files,

directories, and libraries making the use of any other software difficult. An example can be an

Anti-virus program that can block the installation of another program because of a false positive.

Hence running of any software can depend on any other installed software or present libraries,

access to those libraries, directories, etc. This can be a common problem in an IT space.

To overcome this dependency nightmare there is a need for a standalone executable that has all

the dependencies like scripts, libraries, files packaged together. Such files can be run from

anywhere, without access to libraries and act as self-contained software that has all the

dependencies linked together withing the executable. Portable packages do not change anything

on the machine it is run on. All the configuration settings and files are carried with the package

itself.

The main objective behind this report is to trace all the libraries that Nmap needs access to, to run

it seamlessly without any dependency and without any installation requirement.

14

Why Nmap for portability?

Creating a portable software comes with a lot of trade-offs. One of them is a memory. If a portable

software needs to be run via a USB, the amount of data and the level of details of the data it can

capture is limited. Depending on the functions of different software it requires access to memory

more significantly as compared to Nmap. Some of the software are mentioned below:-

Firewall – A firewall needs to have access to big amount of memory because of its related

functionality which can include – maintaining a record of state os a traffic flow which requires it

to maintain connection details for each and every connection in memory (Stateful firewalls),

maintain threat signatures based on various protocols, use data for sandboxing, storing backup files

and tech support files, storing logs for traffic analysis, etc. The functions are not limited to the

operations discussed above. All these operations require a lot of free memory space.

Antivirus Protection Tools – This kind of tool needs to maintain a huge database of virus signatures

offline in order to provide effective functionality. Antivirus tools scan the data in the machine and

might require it to sandbox it to analyze the issue which again requires fast memory requirements,

otherwise, it can be a very cumbersome process.

Monitoring Tools – As with firewalls, monitoring tools also require to store a lot of monitored data

and logs for many devices that send SNMP Traps to the monitoring system manager. The data

needs to be stored for at least 90 days for the forensic requirement.

Kali Linux – Kali Linux is an operating system that can be used to run many security analysis

tools, hence it requires a lot of memory requirements. Running a full operating system makes it

difficult for any field engineer to run it due to the complex operations. Hence there is a need to

have a standalone tool to perform the required functions and provide necessary analytics. The same

goes for trusted n-node security and network security tool kit.

Nmap is a small tool that requires very little memory for installation. It's completely open-source

and the source code can be found at https://github.com/nmap/nmap. It is also available for almost

every operating system. Since the tool is free it can be used by small to medium-sized organizations

as well.

Nmap is easy to use and does not require a complex understanding of the tool. Nmap can be used

in various scenarios for security auditing within an IT infrastructure environment.

- If a site loses connectivity over WAN link to another office location and network

scanning/auditing has been stopped, portable Nmap can be used on the existing machines

over that site to discover the devices and a report can be sent continuously to the main site

to maintain continuity.

- Even for a portable version, Nmap working requires easy commands and report generation.

It is not complex for general tasks.

- It is not attackable since the portable version is not loaded from the machine memory. It

only uses kernel and processing to function properly.

- If the server hosting the monitoring/scanning tool is down, a portable version of Nmap can

be used to continue the scanning and for reports.

https://github.com/nmap/nmap

15

Tools for Creating Standalone Nmap Package

Windows OS

Cameyo tool is used to create a portable version of Nmap. It itself is a portable application. Cameyo

is available for Windows OS and is used to capture or record an installation. Initially, Cameyo

takes a snapshot of the system. After taking a snapshot it waits for any additional installation to be

completed and once the new software is installed it takes another snapshot. During the installation,

the tool captures the changes to the system, files, folders, registry, scripts, etc. The time required

to take a snapshot depends on how powerful the system is in terms of memory management and

processing power. Once the new snapshot is taken it replicates all the changes to its own virtual

file system copying all the necessary files, binaries, libraries, etc. into a folder. It can be compared

to Linux chroot.

Cameyo offers agent-less mode implementation (Target system does not need to have Cameyo

agent). File readings are copied to a virtual package. It changes the process loader with a dummy

executable which acts as an alternative to OS process loading. This mode is also called an agent-

less RAM mode. Cameyo works in one more mode knows as Disk mode in which the virtual file

is extracted on the disk and the application loader redirects the file input-output operations to it.

We are using Cameyo in DISK mode where it is virtualizing the Nmap application environment

by substituting process loading and file reading and mapping and the operations work by extracting

the files necessary to launch the application.

A virtual package created by Cameyo is a self-contained executable having all the virtual modules,

application registries, and files.

Important files created by the Cameyo packager. [7]

- VirtApp.ini: This file contains the application properties from launching the application to

performing any operation.

- Virtual engine (AppVirtDll.dll, AppVirtDll64.dll): These dynamic link libraries virtualize

the application process and child processes by substituting the virtual environment similar

to the host environment.

- Loader (Loader.exe): the virtual application package is concatenated to the tail of this

executable file

- The virtual filesystem database (VirtFiles.db): This database holds the state of each of the

application s virtual files.

- VirtReg.dat: registry entries for the application are captured in this file.

- SandboxCfg.db: It is used to differentiate between different processes and their related

registry entries.

All DLL files that are packaged are kept in the location \PROG\%Program Files (x86)%\Nmap.

Some files are packaged in .pyo python format including - ScriptArgsParser.pyo,

ScriptInterface.pyo

16

It uses variablized operating system directory path naming. For example:

The path of the operating system:

C:\Program Files (x86)\Nmap\py2exe\lib

In a virtualized form will be represented as:

C:\%Program Files (x86)%\Nmap\py2exe\lib

By this conversion feature for the path system provided by Cameyo, the agreement of the path

system is accepted and works on other systems as well regardless of customized user path

definitions.

Linux OS

CDE (Code, Data and Environment) is an open-source utility that is used to create a portable

package for Nmap in Linux based operating system to run applications from x86-Linux to other

x86-Linux machines. The source code can be found at - git://github.com/pgbovine/CDE.git

It uses ptrace (process trace) system call to track and collect the code, files, libraries and other

variables required to run the application. CDE uses OKAPI (oh-copy) utility to copy the files,

directory, and symlinks. OKAPI copies the files or directories making sure that the file contents

or subdirectories are not changed. This is important because Nmap introspects and uses that

searched path to fetch standard libraries. CDE interface is cd: the CDE code simply copies the

directory with the path and utilizes the same directory/file structure as in localhost which is traced

while running any application. OKAPI rewrites the contents of symlinks (all relative paths) to

transform the absolute path (application dependencies file path) flow into a relative path within

the destination directory.

For example:

If these packages are read/fetched from the root during nmap operation:

• /usr/lib/x86_64-linux-gnu/

• /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.25

Then these will be packaged into a replica of host system directory but in cde-package directory

• cde-package/cde-root/usr/lib/x86_64-linux-gnu/

• cde-package/cde-root/usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.25

The complete path for the exact environment variables are copied.

-rwxr-xr-x > okapi installation assigned permissions.

17

CDE Operation

The below figure shows the Timeline of flow between the target program, kernel, and cde process

during an open system call.

Source: http://www.pgbovine.net/publications/CDE-create-portable-Linux-packages_LISA-

2011.pdf

The below-mentioned figure shows the timeline of flow between the target program, kernel, and

cde-exec during an open system call.

Source: http://www.pgbovine.net/publications/CDE-create-portable-Linux-packages_LISA-

2011.pdf

CDE Operation with Nmap

The below figure explains one of the Nmap functions with respect to the OKAPI utility used by

CDE to copy the environment variables.

Here while running Nmap with CDE, Nmap accesses one of its payloads/data. CDE with the

help of ptrace and OKAPI traces the paths to the relative files and OKAPI helps to store the data

in a replica operation system directories in cde-package/.

http://www.pgbovine.net/publications/CDE-create-portable-Linux-packages_LISA-2011.pdf
http://www.pgbovine.net/publications/CDE-create-portable-Linux-packages_LISA-2011.pdf
http://www.pgbovine.net/publications/CDE-create-portable-Linux-packages_LISA-2011.pdf
http://www.pgbovine.net/publications/CDE-create-portable-Linux-packages_LISA-2011.pdf

18

After the CDE packaging operation is done, the package can be transferred to a target machine

which does not have Nmap installed. The package can be extracted there and can be run with the

help of ‘cde-exec’ command. While running Nmap, dependencies(scripts, files, libraries) are run

from within the virtual/replica file system directory structure created in the initial process with

the help of OKAPI. In this way, the Nmap application does not check the local host file system

for the files required to run for Nmap.

Since only the files that were accessed during the execution of the program are captured, it can

only provide the functions on the executed program path. CDE memory also creates paths to file

19

system which has no files since some programs check for such paths/libraries while they are being

launched to do initial check. This way the virtualized package does not go into run-time errors.

Even though CDE works like chroot it does not require root access to run because of the

availability of the dependencies it needs to run.

Limitations:

- if the arguments used in Nmap operations require different dependency (file, library, script)

the cde-package will not work since it did not capture the exact file system required to run

that command.

- Apart from CDE, there are some limitation of ptrace as well - ptrace can cause subtle

differences in the semantics of traced processes, most notably that a process being

monitored by ptrace cannot itself ptrace another process [8]

Other Tools

VMware ThinApp

Its an application virtualization tool that enables packaging and managing an application within

one executable file. As with Cameyo ThinApp also capture the installation of the applications.

Hence it creates all the dependencies (files and registry settings) in an isolated environment. The

abstracted operating system resources are presented to the application as virtualized resources.

This virtual environment presented may contain all the dependencies like – environment variables,

ActiveX controls, registry keys, files, etc. ThinApp uses a build process to link the virtualized

environment with the compressed embedded file system and registry into a single executable.[33]

Since it runs in user mode where all the applications run, it cannot change the kernel settings or

the operating system files. ThinApp allows you to change the settings of the output executable.

The capture od the installation results in a text file (Project.ini). To modify the virtualized registry,

open the registry text file, make changes to the file, and recompile the code again to reflect the

changes. Changing the configuration of the portable executable is as simple as that with VMware

Thinapp. These features come at a very high price in regards to licensing.

Docker Containers

Containers are executable instances of an image. It is well isolated from other containers and the

host operating system as well. Due to this, they have an extremely small footprint on the host OS.

They contain all the bins and libraries needed to run the application. Containers are run on top of

docker engines that use Linux kernel features like namespaces and control groups. Docker helps

automate the application deployment on the container. Apart from this, containers can be used to

create portable applications as well.

20

Turbo.net

Turbo.net is also an application packager with some additional features. With Turbo.net

functioning, we can isolate the application dependencies for TCP/UDP named object calls as well.

The applications’ isolated network stack can work side by side the host operating system network

stack. It has the capability to run multiple applications with isolated network stack on the same

host operating system side by side.

The discussion of the tools that provide features that help in creating a standalone package is

limited to the above-mentioned tools. There can be many more tools that can help in virtualizing

any application and run them in an isolated environment.

This report focuses on the available open-source and free tools that can be used to create the

standalone package provided the functionality of the laid out policies and parameters runs w.r.t the

configuration that has been done.

Using Cameyo For Creating Nmap Package on Windows OS

Before starting the installation capture process make sure that the below-mentioned binaries or

libraries related to these binaries are not installed on the system.

nmap-7.80-setup.exe [4]

npcap-0.9987.exe [4]

The following operating system specification has been used to capture the installation process.

OS Name – Microsoft Windows 10 Home

Processor – Intel® Core™ i7-1065G7 with 4 cores

RAM – 16GB DDR4x

Higher processing power is recommended so that Cameyo can process taking the snapshot in less

time.

It is not mandatory to perform these steps with the above-mentioned configurations.

1. Open the packager file to initiate pre-configuration requirements. The Cameyo packager is

itself a portable standalone file and runs all its dependencies w.r.t a single executable file

as shown in the picture below.

https://nmap.org/dist/nmap-7.80-setup.exe
https://nmap.org/npcap/dist/npcap-0.9987.exe

21

2. To package the application select the “Capture an installation” option and click OK.

22

3. Cameyo will start taking a pre-installation snapshot. This is done to compare the current

configuration of the system and installed applications with the changed configuration after

installation of the Nmap is complete.

4. After the initial snapshot is taken, Cameyo will start recording all of the files and registry

entries required by the NMAP application during its installation process.

23

5. Start the Nmap installation process via its binaries.

6. Make sure to select the necessary installation components which include Npcap and

Zenmap. All components are chosen for this installation.

24

Zenmap component is required as Cameyo needs a shortcut executable file to interpret and

run the Nmap application based on the binary created during the installation process.

The Npcap installation is performed with respect to its compatibility with Windows 7, 8

and 10.

7. Accept the options for support for loopback traffic and installation of Npcap in Win

25

After the installation is complete, make sure to create shortcuts for Zenmap. This helps

Cameyo understand the primary application requirement for opening Nmap in a portable

format i.e. Zenmap GUI.

Make sure to not install any other application/software after this and only proceed to select

the Installation Done option on Cameyo GUI. This action will command Cameyo to start

a post-installation snapshot to check for the changes in the modification/creation of new

files so that all the files can be compiled together into a standalone package.

8. After taking post snapshot Cameyo will create a standalone file that you can run from

anywhere without needing its installation. This package will include all the files, libraries,

scripts, and other dependencies to run Nmap.

26

Usage and Trade-Offs of Standalone Executable on Windows

This standalone executable can be run on any other machine either via on the memory or via a

USB. The executable contains all the dependencies necessary to run Nmap without installation.

The Nmap is accessible only via its GUI interface i.e. Zenmap.

The executable has been tested on Windows 7, 8 and 10. The performance of the application gets

slower if it is run through an external device than compared to running it from its memory.

The standalone executable though having many advantages, it comes with trade-offs with the way

application functions.

- Application requires a lot of time to execute from an external memory bus. This is because,

during the launch of the application for the first time, the directory structure needs some

time to initialize.

- The application gets slower. Slower performance results in more time required for large

network scans.

- Some of the error or log files are not created – hence some error details can be found if

occurred.

Below is the screenshot showing the same in Nmap implementation and generation of

errors.

27

- You have to perform fresh installation and create a standalone package from the start if

any of the files are lost or replaced.

- For advanced features, there might be limited functionality available. If any new NSE

script has additional library dependency then the application won’t give necessary results.

Using CDE For Creating Nmap Package on Linux

Before the installation and using CDE, make sure that below-mentioned components are present

on the Linux machine:

- Nmap – Nmap can be installed on Ubuntu bu using the command – “Sudo apt install

nmap”. This will install three packages - libblas3, liblinear3, and nmap

- Git – It is used for version/revision control (VCS) of source code for software installation

and development. The local directory can act as git repository. It is basically used for source

code management. [9]

It can be installed by using the shell with command – “sudo apt install git”

- Make – This utility automatically determines the pieces of programs that need to be

recompiled and uses commands to recompile them. [10]

The following shell command is used to install this utility - “sudo apt install make”

- For running CDE there is a need for C compiler. If it is not installed, the CDE installation

stops with the error: “configure: error: no acceptable C compiler found in $PATH”

Installing the compiler can be done by using the utility – build-essential packages. This

package includes all the libraries and compilers used to compile a Debian Package.

28

It can be installed by using this command in shell in the root directory: “sudo apt-get install

build-essential”

1. Use the following commands to fetch the packages from the GitHub repository.

vm3@VM3:~$ git clone git://github.com/pgbovine/CDE.git

2. This will create a directory named CDE in the home directory. Move to the directory CDE

and issue the command “make”. Use the below commands in the same order to do that:

cd CDE

make

(This will compile the CDE code.)

3. Run any kind of Nmap script beginning with ./cde. Here quick scan command has been

used for the network in which the Linux machine resides. Nmap will run normally while

using CDE with it in the shell or command line. This will create a self-contained standalone

executable for the command Nmap. CDE will use process tracing in order to monitor the

files, scripts, and libraries that are being used nu Nmap.

Note- You can create your own package defined by the scripts as per the organizational

scanning requirements.

If there is a need to perform an intense scan then it is recommended to create a package

with that set of commands. This makes sure that all the dependencies required to run that

scan are packaged into a directory. (This is also a trade-off while creating packages with

CDE)

29

4. This will create a sub-directory named cde-package inside the CDE directory.

5. The package that has been created needs to be archived into a single file. To do that tar is

used with cvf options. The description is mentioned below: [11]

Tar – archiving utility

C – creating the archive

V – request for verbose operation

F – specifies the name of the archive on which tar operation can be done.

Nmap-package.tar has been used as a name for -f option.

30

The complete list of archived files that will be used to run Nmap on a remote machine

without installation is shown below. These files contain the snapshot of all the scripts, files,

and libraries that Nmap used to run its operation for a quick scan.

cde-package/

cde-package/cde.options

cde-package/cde.full-environment

cde-package/nmap.cde

cde-package/cde-exec

cde-package/cde.log

cde-package/cde.uname

cde-package/cde-root

cde-package/cde-root/lib64

cde-package/cde-root/lib64/ld-linux-x86-64.so.2

cde-package/cde-root/etc

cde-package/cde-root/etc/nsswitch.conf

cde-package/cde-root/etc/alternatives

cde-package/cde-root/etc/alternatives/libblas.so.3-x86_64-linux-gnu

cde-package/cde-root/etc/localtime

cde-package/cde-root/etc/ld.so.cache

cde-package/cde-root/etc/hosts

cde-package/cde-root/usr

cde-package/cde-root/usr/share

cde-package/cde-root/usr/share/nmap

cde-package/cde-root/usr/share/nmap/nmap.xsl

cde-package/cde-root/usr/share/nmap/nmap-payloads

cde-package/cde-root/usr/share/nmap/nmap-services

cde-package/cde-root/usr/share/zoneinfo

cde-package/cde-root/usr/share/zoneinfo/America

cde-package/cde-root/usr/share/zoneinfo/America/Edmonton

31

cde-package/cde-root/usr/bin

cde-package/cde-root/usr/bin/nmap

cde-package/cde-root/usr/lib

cde-package/cde-root/usr/lib/x86_64-linux-gnu

cde-package/cde-root/usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.25

cde-package/cde-root/usr/lib/x86_64-linux-gnu/liblua5.3.so.0.0.0

cde-package/cde-root/usr/lib/x86_64-linux-gnu/libstdc++.so.6

cde-package/cde-root/usr/lib/x86_64-linux-gnu/libssl.so.1.1

cde-package/cde-root/usr/lib/x86_64-linux-gnu/liblinear.so.3

cde-package/cde-root/usr/lib/x86_64-linux-gnu/libpcap.so.0.8

cde-package/cde-root/usr/lib/x86_64-linux-gnu/liblua5.3.so.0

cde-package/cde-root/usr/lib/x86_64-linux-gnu/libpcap.so.1.8.1

cde-package/cde-root/usr/lib/x86_64-linux-gnu/blas

cde-package/cde-root/usr/lib/x86_64-linux-gnu/blas/libblas.so.3.7.1

cde-package/cde-root/usr/lib/x86_64-linux-gnu/blas/libblas.so.3

cde-package/cde-root/usr/lib/x86_64-linux-gnu/liblinear.so.3.2.

cde-package/cde-root/usr/lib/x86_64-linux-gnu/libcrypto.so.1.1

cde-package/cde-root/usr/lib/x86_64-linux-gnu/libblas.so.3

cde-package/cde-root/home

cde-package/cde-root/home/vm3

cde-package/cde-root/home/vm3/CDE

cde-package/cde-root/home/vm3/CDE/nmap.cde

cde-package/cde-root/lib

cde-package/cde-root/lib/x86_64-linux-gnu

cde-package/cde-root/lib/x86_64-linux-gnu/ld-2.27.so

cde-package/cde-root/lib/x86_64-linux-gnu/libnss_files-2.27.so

cde-package/cde-root/lib/x86_64-linux-gnu/libpthread-2.27.so

cde-package/cde-root/lib/x86_64-linux-gnu/libpcre.so.3

cde-package/cde-root/lib/x86_64-linux-gnu/libnsl.so.1

cde-package/cde-root/lib/x86_64-linux-gnu/libnss_nis.so.2

cde-package/cde-root/lib/x86_64-linux-gnu/libpthread.so.0

cde-package/cde-root/lib/x86_64-linux-gnu/libnss_compat-2.27.so

cde-package/cde-root/lib/x86_64-linux-gnu/libgcc_s.so.1

cde-package/cde-root/lib/x86_64-linux-gnu/libm.so.6

cde-package/cde-root/lib/x86_64-linux-gnu/libc-2.27.so

cde-package/cde-root/lib/x86_64-linux-gnu/libnss_compat.so.2

cde-package/cde-root/lib/x86_64-linux-gnu/libc.so.6

cde-package/cde-root/lib/x86_64-linux-gnu/libm-2.27.so

cde-package/cde-root/lib/x86_64-linux-gnu/libdl-2.27.so

cde-package/cde-root/lib/x86_64-linux-gnu/libdl.so.2

cde-package/cde-root/lib/x86_64-linux-gnu/libnss_nis-2.27.so

cde-package/cde-root/lib/x86_64-linux-gnu/libpcre.so.3.13.3

cde-package/cde-root/lib/x86_64-linux-gnu/libz.so.1.2.11

32

cde-package/cde-root/lib/x86_64-linux-gnu/libnsl-2.27.so

cde-package/cde-root/lib/x86_64-linux-gnu/libz.so.1

cde-package/cde-root/lib/x86_64-linux-gnu/libnss_files.so.2

6. Gzip will be used to reduce the file size. gzip utility will automatically keep the name of

the file the same.

Usage and Trade-Offs of CDE Package on Linux (Ubuntu)

Once the package has been created you can transfer that file via TFTP, SCP, SFTP, or by any other

way into another machine. To check if Nmap is installed on that machine just enter the command

“nmap” and hit enter. If Nmap is not installed on the machine it will ask you to install it by using

the commands mentioned in the screenshot.

Once verified that Nmap is not installed you can move to the directory where Nmap package is

stored by using cd utility and unzip the file by using tar utility with -zxvf options. The sample

command is shown below:

tar -zxvf nmap-package.tar.gz

This will unzip all the files (same as step 5 in the last section)

To run the portable package just use the file nmap.cde created during the process mentioned in the

previous section.

cde-package/nmap.cde -T4 -F 10.0.2.0/24

33

Other Use Cases

Audacity

Audacity is a free and open-source software used for audio editing. Its portable version is created

by using a portable application packager – Enigma Virtual Box. Enigma virtual box uses a different

method to package an application binaries, directories, files into a single standalone executable.

Software needs to be installed in advance so that Enigma can retrieve the executable file along

with the folder that contains the executable files to collect all the directories and subdirectories

associated with its installation. Enigma Virtual box runs the Audacity executable along with its

special loader whose function is to run along with the main code of the executable/application and

34

intercept all the system calls (file read/write) made by the executable and collect and virtualize the

operations into a file on memory. [30]

Philips Hue

Philips Hue is a tool to connect light bulbs to the internet in order to create a usage data and use

the data for saving power, security, and automation. It is created with the help of google containers

which also works by isolating the environment in which the application can run along with its

packaged libraries and other dependencies. Usage of this tool can be often compared to a

lightweight portable application. [31]

Use cases with Cameyo

There are many packages that have been created with the help of Cameyo such as Youtube

Downloader [23], WinSnap [24], Opera [25] (The steps remain the same).

Use cases with CDE

Reporting Bugs: CDE can be used to report various issues with an application. CDE package can

be created while the bug occurs and the package can be sent to the developer team to evaluate the

issue and provide a fix.

Google Earth application package has been created with the use of CDE [26].

Packages are posted on GitHub for multiple use cases for example - downloading WFD related

data by using CDE packaged variables. [27]

More use cases can be found on http://www.pgbovine.net/cde/manual/use-cases.html.

Other Methods

Apart from using the tools for creating a standalone portable application package, other methods

are also used to isolate the environment in which the application runs. For example, a portable

version of Firefox is created by extracting the executable file into a USB drive and creating a file

with the name start.bat in the Core directory (directory created upon extracting the Mozilla

executable file). You can add the following code to the bat file[32]:

@echooff

startC:\Firefox\core\firefox.exe-Profile“Profile/”

exit

Then you can just run the bat file to execute firefox.

http://www.pgbovine.net/cde/manual/use-cases.html

35

Risks of using Portable Application

There are multiple instances where employees use IT resources – software or devices that are not

permitted by the IT department, also known as Shadow IT practices. Portable applications come

under shadow IT resources Devices containing software packages and USB itself are sources of

major breaches within an organization or for a personal device. TechAdvisory.org reports that 25

percent of malware (malicious programs) is spread today through USB devices. Malware can be

run through the autorun feature present in the PC. Once the malware has been injected in a device,

it can further spread to other devices.

Some of the potential risks associated with using portable devices is because of their small size

they can be carried anywhere and can be accessed or stolen by anyone. Hackers can inject viruses

into devices like USB and when you use it the machine gets affected. Portable applications can get

access to organizational data and becomes a reason for creating vulnerabilities. Since portable

applications do not leave any footprint on the device on which they are run, the auditing

applications often are not successful in detecting these applications or software.

Risk Management

• Keep the storage device containing portable software in a safe location which had limited

physical access and to trustworthy only.

• Use anti-virus software to scan the USB stick or any new portable software before using

it.

• Disable autorun feature on the PC.

• Use strong encryption while storing data on a USB.

• Protect the access of a portable device or software with the help of passwords.

• Proper implementation of tools that can detect and monitor every state of an operating

system either by polling/sending traps or data stored inside the device itself can be handy.

Services that these tools offer might not be limited to the detection of file creation,

execution, time, and the functions that the executable performed. Tools such as these can

help in forensics.

• There should be proper implementation of infrastructure security where only limited access

to different zones of the network is allowed. Different zones might include – LAN, WAN,

DMZ, Internet, Production, Mission Critical, etc.

Ethics for using Portable Applications

• Only those software should be made portable which is approved by the IT department.

• Application Packages should not be created with the malicious code that can affect some

other program running on the target machine.

• Portable application should be tested in an isolated environment before using it on

production servers.

36

• Portable application should not be used for any other purpose other than what is required

and tested.

• Practice response plan if the usage of the software goes wrong. Implement use cases for

the same.

Future of Portability – Applications & Operating Systems

With the development of virtualization of applications, and then operating systems we are moving

towards an era where the operating system resources are very well utilized and the cost of the

operations is becoming less day by day. But, with the creation of all these technologies make the

working environment complex with multiple types of operating systems, application resource

usage requirements, monitoring of those requirements at the same time causes operations to

become more complex and hence, as a result, we need more tools that can run in conjunction with

an application or portable application running on virtualized systems to make the best use of them.

Portability should not be only available for application packages, it can be used to make the

operating system portable as well. If the operating system is portable itself, it can just use the

resources like a processor to run the programs saved in the OS directories present either in an

external drive or on the cloud. Another perspective can be related to the building of applications

that run on one operating system which would make everything easy starting from deployment to

troubleshooting issues related to the combination of the two. This leads to using only one operating

system everywhere which can result in better and quick solutions to multiple problems related to

code. All portable applications can be designed made compatible in such a way that it runs on a

single operating system where the data related to a particular user can be saved within the

application profile itself and not the operating system. If the operating system is portable, the user

settings can be saved in the directories of the portable operating system. All these discussion points

will lead to multiple benefits:

• With portable programs and operating systems come isolation, and hence the mixup of

multiple services doesn’t happen resulting in better working of applications in their own

space.

• Applications or Operating systems can be stored in external memory drives like External

HDD, USB, CD/DVD, etc. and can be used when required. They become easy to carry.

• Even if an unnecessary portable application is present on the system, it won’t run unless it

is manually initiated by running its standalone executable. Eg. In regular cases, system-

wide application services or their upgrades are automatic i.e. the application checks for

additional data continuously making connection to the internet and utilizing resources in

the background even if you’re not using it, the portable applications do not run these

services unless executed and those same resources can be used for other important

application or services that one intends to run.

• Apart from operating system categories such as forensics and hacking/security portable

operating systems can also be used for desktop replacements.

37

Future for portability w.r.t Security Appliances

Today the security appliances are delivered as hardware models on business sites that require it

eg. Firewall, Proxy Server, Intrusion Prevention Systems, etc. It is a difficult task to recover from

a hardware failure – since the operating system and hardware is integrated, the RMA – return

merchandise authorization takes time for the delivery and till that time the operations are affected.

Portable versions of firewall and other services mentioned above can help in reducing the timeline

for business continuity. If portable versions of such products are available, organizations can

deploy these products on any operating system having the right physical resources and capable of

handling the tasks that the specific product offers. This kind of virtualization on top of another

operating system is already achieved with tools such as VMware and Oracle Virtual Box, but the

applications are limited to run an operating system on top of a different operating system. The

technology has not expanded to the point where security organizations can provide portable

versions of their products having the ability to run on any operating system. More open-source

projects with a involvement of larger community for developing such products is the future.

38

References

[1] P. Foreman, Vulnerability Management, 2nd ed., 2019.

[2] K. Murray, Top Threats To Endpoints And How To Stay Protected, 2019.

[3] B. Hatch, Linux Exposed.

[4] "NMAP," [Online]. Available: nmap.org.

[5] "LibreNMS," [Online]. Available: https://www.librenms.org/.

[6] "How User Account Control works," [Online]. Available: https://docs.microsoft.com/en-

us/windows/security/identity-protection/user-account-control/how-user-account-control-works.

[7] "Application Virtualization Technologies," [Online]. Available: https://docplayer.net/8114373-

Application-virtualization-technologies-whitepaper.html.

[8] P. J. G. a. D. Engler, "CDE: Using System Call Interposition to Automatically Create Portable Software

Packages," [Online]. Available: http://www.pgbovine.net/publications/CDE-create-portable-Linux-

packages-short-paper_USENIX-2011.pdf.

[9] J. Mays, "How To Install Git on Ubuntu 14.04," [Online]. Available:

https://www.liquidweb.com/kb/how-to-install-git-on-ubuntu-14-04/.

[10] R. S. a. R. McGrath, "make," [Online]. Available: http://man7.org/linux/man-

pages/man1/make.1.html.

[11] M. PAGE, " GNU TAR Manual," [Online]. Available: http://man7.org/linux/man-

pages/man1/tar.1.html.

[12] P. J. Guo, "CDE: Run Any Linux Application On-Demand Without Installation," [Online]. Available:

http://www.pgbovine.net/publications/CDE-create-portable-Linux-packages_LISA-2011.pdf.

[13] r. &. c. l. michaels, "Native mobile apps: The wrong choice for business?," [Online]. Available:

https://www.mrc-productivity.com/research/whitepapers/NativeAppsWrongChoice.pdf.

[14] P. Walters, "The Risks of Using Portable Devices," [Online]. Available: https://www.us-

cert.gov/sites/default/files/publications/RisksOfPortableDevices.pdf.

[15] J. F. Gantz. [Online]. Available: https://download.microsoft.com/documents/en-

us/sam/IDC%20Global%20Counterfeit%202013.pdf.

[16] Avecto, [Online]. Available: https://www.infosecurityeurope.com/__novadocuments/27597.

39

[17] Optimus Information, [Online]. Available:

https://www.infosecurityeurope.com/__novadocuments/27597.

[18] Various, "Cameyo," [Online]. Available: https://en.wikipedia.org/wiki/Cameyo.

[19] P. Shannon Vallor. [Online]. Available: https://www.scu.edu/media/ethics-center/technology-

ethics/IntroToCybersecurityEthics.pdf.

[20] Ashraf, "Virtualize applications with Cameyo," [Online]. Available:

https://dottech.org/17969/virtualize-applications-with-cameyo/.

[21] "Cameyo - Application virtualization for Windows," [Online]. Available:

https://www.techsupportalert.com/content/cameyo-application-virtualization-windows.htm.

[22] "Cameyo 3.0.1318," [Online]. Available: https://www.neowin.net/news/cameyo-301318-preview.

[23] "Portable Version," [Online]. Available: https://www.guidingtech.com/5493/portable-apps-

virtualization-cameyo/.

[24] "Create Portable Applications," [Online]. Available: https://www.howtogeek.com/186132/how-to-

create-portable-versions-of-applications-in-windows-8.1-using-cameyo/.

[25] "Cameyo Application Packager," [Online]. Available: https://lifehacker.com/cameyo-creates-a-

portable-version-of-just-about-any-pro-5635017.

[26] P. Guo, "Escape Dependency Hell," [Online]. Available: https://www.linux.com/tutorials/escape-

dependency-hell-automatically-create-portable-linux-software-using-cde/.

[27] robbriers, "cde package submission," [Online]. Available: https://github.com/ropensci/software-

review/issues/284.

[28] "CDE Use Cases," [Online]. Available: http://www.pgbovine.net/cde/manual/use-cases.html.

[29] J. v. L. R. M. Ruben Spruijt, "Application Virtualization Smackdown," [Online]. Available:

https://www.software2.com/downloads/16/Whitepaper_Application_Virtualization_smackdown.pd

f.

[30] S. Butler, "Create a Portable Version of Any Application in Windows," [Online]. Available:

https://helpdeskgeek.com/how-to/create-a-portable-version-of-any-application-in-windows/.

[31] "CASE STUDY - P H I L I P S H U E : L I G H T I N G T H E W A Y," Philips Lighting, [Online]. Available:

https://static.cbsileads.com/direct/whitepapers/GuidetoOpenAppDev_eBook_Compressed_110320

17.pdf.

[32] Trisha, "Creating Portable Version of Firefox," [Online]. Available:

https://www.trishtech.com/2013/09/how-to-create-portable-version-of-firefox/.

40

[33] VMware, "Introduction to VMware ThinApp," [Online]. Available:

https://www.vmware.com/pdf/thinapp_intro.pdf.

[34] B. M. K. a. B. Santhi, "Study on Features, Statistics, and Security Measures," [Online]. Available:

http://www.indjst.org/index.php/indjst/article/view/33920/27892.

