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Abstract 

Modeling spatial variables involves uncertainty.  Uncertainty is affected by 

the degree to which a spatial variable has been sampled: decreased spacing 

between samples leads to decreased uncertainty.  The reduction in 

uncertainty due to increased sampling is dependent on the properties of 

the variable being modeled.  A densely sampled erratic variable may have 

a level of uncertainty similar to a sparsely sampled continuous variable.  A 

simulation based approach is developed to quantify the relationship 

between uncertainty and data spacing.  Reference realizations are 

simulated and sampled at different spacings.  The samples are used to 

condition additional realizations from which uncertainty is quantified.  A 

number of factors complicate the relationship between uncertainty and 

data spacing including the proportional effect, nonstationary variogram, 

classification threshold, number of realizations, data quality and modeling 

scale.  A case study of the relationship between uncertainty and data 

density for bitumen thickness data from northern Alberta is presented. 
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Chapter 1  

Introduction 

Numerical models of geological deposits are often used to make highly 

consequential decisions.  These decisions could be whether to build a mine, 

whether to drill production wells, whether a site requires environmental 

remediation and so on.  These decisions involve a great deal of money.  

The numerical models must accurately represent the geologic site to ensure 

that the best decision is made.     

The numerical models are improved by collecting a large quantity of data 

by sampling.  Sampling aims to collect reliable information about a 

deposit.  The spacing between samples decreases as a project progresses 

through various stages of exploration.  Early stages of sampling involve 

drilling reconnaissance holes spaced at large distances.  If favorable results 

are found, additional holes are drilled at smaller spacings in successive 

sampling stages.   The pattern is adjusted until satisfactory coverage has 

been attained (Peters, 1978). 

There are various ways of determining sampling locations.  One method 

involves statistical pattern sampling on a regular or random stratified grid 

at predetermined spacings where a geologic model of the expected geology 

is the dominant consideration (Peters, 1978).  Another involves random 

sampling of a prerequisite quantity of samples (Lowrie, 2002).  A third 

method involves target-area sampling where more samples  are  collected  

in  areas  of  particular  geologic  interest (e.g. areas with a high grade) 
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and fewer samples are collected in areas of little geologic interest (Peters, 

1978). 

Sampling the full true distribution of the attribute of interest is not 

feasible and uncertainty is an inherent aspect of the modeling of geological 

deposits.  The ability to accurately represent the truth is improved as 

more data are collected.  Consider the schematic shown in Figure 1-1.  

This figure illustrates the ability of a model to represent the truth for 

different quantities of data.  The plot at the top of the figure is the truth 

(unknown in practice).  Three different sample quantities are shown below 

this plot on the left.  Sample quantity ranges from many at the top to few 

at the bottom.  The corresponding models built using the samples are 

shown on the right.  The model built with many data gives a much closer 

representation of the truth than the model built with few data. 

Consider the qualitative cost versus data quantity relationship shown in 

Figure 1-2.  The ability of a model to represent the truth could be 

summarized in terms of a cost due to modeling error where a good model 

has low cost and a bad model has high cost.  This relationship would be 

difficult to define explicitly.  The relationship between data quantity and 

sampling cost is linear unless there is a discount when many data are 

collected.  The total cost is the sum of the sampling cost and the cost due 

to modeling error.  The data quantity that minimizes cost could be 

considered as optimal.   

A number of authors have discussed the assessment of sampling schemes 

(McBratney et al. 1981; McBratney and Webster, 1981; Aspie and Barnes, 

1990; Bueso et al. 1999; Webster and Oliver, 2007), particularly with 

respect to groundwater monitoring (Carrera et al. 1984; Meyer and Brill, 

1988; Rouhani and Hall, 1988; Loaiciga, 1989; Andricevic, 1990; Meyer et 

al. 1994; Criminisi et al. 1997; Storck et al. 1997; Zhang, 2005).  Four 

works are of particular relevance to this one as they have employed similar 

methodologies for similar problems: Englund and Heravi (1992), Deutsch 
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Figure 1-1:  Relationship between data quantity and the ability of a model to represent the truth.  

As the quantity of data increases (top), the model more closely represents the truth. 

and Beardow (1999), Boucher et al. (2004), and Journel and Kyriakidis 

(2004). 

Englund and Heravi (1992) discuss a methodology for determining the 

quantity of samples that would result in the lowest total project cost for a  
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Figure 1-2:  Cost versus data quantity for data collection, modeling error and total cost. 

remediation project.  This methodology uses SGS to generate a simulated 

site model.  This site model is assumed to represent the truth and various 

quantities of data are sampled from it.  Block kriging is then performed 

using the samples and the total project cost determined.  The project cost 

considers sampling cost and remediation cost as well as the cost of residual 

contamination.  This process is repeated multiple times for different 

quantities of data resulting in a cost versus data quantity curve.  The data 

quantity that minimizes cost is taken as the optimal. 

Deutsch and Beardow (1999) propose a methodology for determining the 

optimum drillhole spacing in an oil sands deposit.  They propose using 

either block kriging or stochastic simulation to assess uncertainty at all 

locations within an area of interest for a given data spacing.  The expected 

value of the uncertainty over all locations is retained for the given data 

spacing.  This process is repeated for many data spacings allowing the 

relationship between uncertainty and data spacing to be discovered.  
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Accounting for the cost of drilling and the cost of uncertainty allows an 

optimal drillhole spacing to be determined.   

Boucher et al. (2004) propose a technique for assessing infill sampling.  

Their method uses available data to generate one stochastic realization of 

the geologic attribute.  This realization, called the actual deposit, is 

sampled with the different infill drilling schemes of interest.  For each 

sampling scheme, several realizations of the geologic attributes are 

generated conditional to the simulated samples.  These realizations, 

including the actual deposit, are block averaged to the desired scale.  

Economic indicators are used to classify the blocks.  The simulated 

classifications are compared to the actual for many different infill sampling 

schemes to assess sensitivity of the results.  This methodology quantifies 

the the tradeoff between the cost of misclassification and sampling.   

Journel and Kyriakidis (2004) describe a methodology for evaluating 

mineral reserves.  This methodology involves simulating point support 

realizations of the variable of interest.  These point support realizations 

play two roles in the methodology: 1) they are used as a basis for 

simulating future selection data, and 2) they are block averaged and called 

the actual grade of the variable of interest.  Future selection estimates are 

generated from each realization of simulated future data using block 

kriging.  The block kriged future selection estimates are combined with the 

simulated block grades to determine the profit of the realization.  This 

process is repeated for many realizations to determine the uncertainty in 

the profit.  They suggest that sensitivity analyses be performed by varying 

the quality and density of future selection data to assess the impact on 

profit.   

The methodology proposed herein is a combination of these approaches.  

The aim is to understand the relationship between data spacing (or 

density) and uncertainty.  Knowledge about a geological attribute is 

related to the quantity and quality of observations of the attribute.  
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Uncertainty exists because of a lack of knowledge and is not an inherent 

feature of the geological attribute.  Thus, uncertainty is reduced as 

knowledge increases when more and better quality data are collected.   

The manner in which uncertainty decreases with decreasing data density is 

controlled by the spatial variability of the attribute of interest (Deutsch 

and Beardow, 1999).  The variogram is a geostatistical tool that quantifies 

geological variability.  It is a measure of the average dissimilarity between 

values that are separated by vector distances h (Goovaerts, 1997).  If the 

geological attribute is highly continuous, the variability between samples is 

quite small over large distances and the attribute has a large range of 

correlation.  If the geological attribute is highly variable, the range of 

correlation is small.  An attribute with a long range of correlation will 

have less uncertainty for a given data density than an attribute with a 

shorter range of correlation. 

The proposed methodology could be used to determine an appropriate 

data spacing.  Doing so would require specifying an acceptable level of 

uncertainty.  The largest data spacing that meets the specified level of 

uncertainty could then be applied to the site.   

One way of quantifying uncertainty is by multiple high resolution 

geostatistical realizations.  These must be constructed with care, checked 

with cross validation and reconciled with any production data.  The 

uncertainty at the high resolution scale of the geostatistical model is rarely 

relevant for disclosure or expressing acceptable uncertainty.  The high 

resolution models are scaled to a larger scale relevant for technical and 

economic decision making.  Often, this larger scale represents a nominal 

time period for production such as a month, quarter or year.  Each 

nominal volume in the area of interest has a distribution of uncertainty in 

a variable of interest.  The variable of interest could be the mass fraction 

of an important component, a combined economic variable, or the material 

above a fixed economic threshold.  The outcomes of multiple realizations 
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describe the uncertainty for each nominal volume; however, it is necessary 

to summarize the uncertainty for comparison and reporting. 

An acceptable level of uncertainty is defined for a particular purpose.  

This purpose is some type of decision making or classification.  The 

decision whether some level of uncertainty is acceptable is made by a 

qualified person who deems the uncertainty to be reasonably small and 

suitable for the problem at hand. 

The domain for which an acceptable level of uncertainty is applicable must 

be defined.  Within some global site, G, there could be a number of areas, 

,
j

A j GÎ as shown in Figure 1-3.   Each area would be characterized by 

regular data spacing as shown for areas 3 and 4.  An acceptable level of 

uncertainty is defined for a given area.  Within an area there are a number 

of volumes, ,
i j

V i AÎ (area 1 in Figure 1-3).  Each volume has a 

distribution of uncertainty.  Establishing whether an area meets an 

acceptable level of uncertainty involves determining the proportion of 

volumes that meet a required level.  The required proportion of volumes is 

part of the specification of acceptable uncertainty.  The area can then be 

classified based on whether the acceptable level is met. There are a 

number of formats for expressing acceptable uncertainty.  The choice of 

format depends on the audience, local customs, the particular problem, 

transparency, and preferences of the practitioner.  It is common for 

probabilistic uncertainty specification to include: 

1. Identification of the population or sample being considered (the 

volume, V), 

2. A defined precision, 

3. The probability to be within the defined precision, and 

4. The proportion of volumes, Vi, within the area, Aj, required that 

meet the preceding criteria 

An example is the true grade of monthly production volumes will be within 
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Figure 1-3:  Illustration of the domains for which an acceptable level of uncertainty applies. 

 

15% of the predicted grade 19 times out of 20 for at least 90% of the 

volumes ,
i

V i AÎ .  (Deutsch et al., 2006).  This statement of acceptable 

uncertainty includes a volume (monthly production volumes), a defined 

precision (within 15%), a probability to be within the defined precision (19 

times out of 20, or 95%), and the proportion of volumes required to meet 

these criteria (90%).   The second and third parameters are illustrated for 

one volume, i
V , in Figure 1-4.  This is just one way of specifying 

uncertainty.  There is nothing special about monthly/15%/ 95%/90%, but 

values similar to these are commonly mentioned. 

Chapter 2 defines measures of spatial arrangement (data density, data 

spacing) and uncertainty (standard deviation, precision, …).  Chapter 3 

describes a new method for determining the relationship between data 

density/spacing and uncertainty.  This method is a combination of the 

methods previously reviewed.  It relies heavily on the sequential Gaussian 

simulation (SGS) algorithm described in numerous publications including 
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Figure 1-4:  Illustration of three of the parameters often used to specify uncertainty (from Deutsch 

et al., 2006). 

Isaaks (1990), Goovaerts (1997), and Deutsch and Journel (1998).  An 

implementation example is presented.  Chapter 4 considers the factors 

that confound the relationship between data density and uncertainty.  

Uncertainty is not a simple function of data density; it depends on a 

number of other factors including the histogram of the attribute, the 

proportional effect, nonstationarity and data quality.  This chapter 

explores these confounding factors.  Chapter 5 demonstrates an application 

of the proposed methodology to an oil sands deposit in northern Alberta.  

The results obtained using the proposed methodology are compared to 

results obtained by calculating data spacing directly from the data and 

determining uncertainty by simulation.   

1. Volume relevant for 
    technical and economic 
     evaluation

2. Predicted grade: z* 
    and chosen measure of 
    uncertainty:  +/- 15%

3. Probability to be within 
    measure of uncertainty

   Does probability     meet
    criteria?

-15% +15%  z*  
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Chapter 2  

Measures of Spatial Arrangement 

and Uncertainty 

This thesis discusses the relationship between various measures of spatial 

arrangement and uncertainty.  Data spacing and data density are defined 

in Section 2.1.  Measures of uncertainty include standard deviation, 

difference between percentiles, coefficient of variation, and probability of 

misclassification.  These are defined in Section 2.2. 

2.1 Measures of Spatial Arrangement  

2.1.1 Data Spacing 

Data spacing is the distance between adjacent data for a representative 

area.  A densely sampled area will have a small spacing relative to an area 

that is sparsely sampled.  Data spacing at a location, s(u), is determined 

by considering the number of nearby samples, nV(u), within some volume, 

V(u).  If V(u) is two-dimensional, the square root of V(u) divided by nV(u) 

gives data spacing as shown in Equation 2.1.  For the three dimensional 

case, the calculation of data spacing can be performed in two dimensions 

when the drillholes are all vertical.   
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Figure 2-1:  Ilustration of the determination of data spacing when data are irregularly spaced in 

three dimensions. 

When the drillholes are not all vertical, as shown in Figure 2-1, the data 

spacing calculation must consider a three-dimensional volume.  The along-

hole spacing, q, is included in the calculation as shown in Equation 2.2 

thus defining the equivalent regular drillhole spacing.   

 ( ) ( )
( )
u

u
u

1
2

V

V
s

n

æ ö÷ç ÷ç= ÷ç ÷ç ÷÷çè ø
 2.1 

 ( ) ( )
( )
u

u
u

1
2

V

V
s

q n

æ ö÷ç ÷ç= ÷ç ÷ç ÷⋅ ÷çè ø
 2.2 

To calculate data spacing at a location, either V(u) or nV(u) are normally 

fixed.  If nV(u) is fixed i.e. u u( ) ,
V V

n n A= " Î , the volume V(u) required 

to encompass the nV data is calculated and spacing is determined as 

defined previously.  If V(u) is fixed i.e.
 

u u( ) ,V V A= " Î , the number of 

observations nV(u) that fall within V is determined and spacing is 

determined as defined previously.  The choice of nV or V affects the 

results: too small of a volume or too few samples leads to noisy results; too 

large of a volume or too many samples leads to over smoothing.   

2.1.2  Data Density 

Data density is the number of data observations per unit volume, 

commonly reported as number of data per section or hectare.  Data 
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density at a location, d(u), is determined by considering the number of 

nearby samples, nV(u), within some volume, V(u).  Dividing the number of 

samples by their volume gives data density.  If the data are arranged such 

that many observations fall within a small volume, data density is high.  If 

a large volume contains few observations, data density is low.    

Data density at a location, d(u), is determined in the same manner as data 

spacing by fixing either V or nV and calculating the non-fixed parameter.  

This is illustrated for a fixed volume in Figure 2-2.  The units of density 

depend on the units of V.  For example, if V has units of m2, then density 

has units of samples/m2.  It may be desirable to convert the units of 

density to a more common measure such as samples/hectare or 

samples/section.  There are ten thousand square meters in a hectare and 

2,589,988.11 square meters in a section.  To convert density from data per 

square meter to more useful units, simply multiply density by the 

appropriate constant.  Consider an area with side length of 1600m where 

samples are regularly spaced every 400m.  There are 16 samples within the 

area of 16002=2.56x106 m2.  The data density is 16 samples/2.56x106 

m2=6.25x10-6 samples/m2; a very small number of samples per square 

meter.  This is equivalent to 
6 2

2

6.25 10 samples 10000m

ham

-´
´ =

0.0625 samples

ha
 and 

6 2

2

6.25 10 samples 16.2 samples2589988.11m

section sectionm

-´
´ = . 
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Figure 2-2:  Illustration of the calculation of data density for a fixed volume, V. 

2.2 Measures of Uncertainty 

Modeling earth sciences variables involves uncertainty due to our lack of 

knowledge.  It is infeasible to exhaustively sample an area of interest; 

therefore the uncertainty must be quantified and various measures have 

been developed to do this.  These uncertainty measures have proven useful 

for geostatistics and include: standard deviation, difference between 

percentiles, precision, and probability of misclassification (Goovaerts, 1997; 

Myers, 1997; Barabas et al., 2001; Duggan and Dimitrakopoulos, 2004).  

2.2.1 Standard Deviation 

A common measure of the spread of a probability distribution is the 

standard deviation (Figure 2-3).  The standard deviation is the square root 

of the variance and has the same units as the variable.  The variance of a 

distribution is the expected square deviation of the variable from its mean.  

Consider the random variable, X, with expected value, m .  The standard 

deviation, s , of X is: 

 { }( )
1
22( )E Xs m= -  2.3 
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Figure 2-3:  Illustration of the standard deviation and mean of a distribution. 

The standard deviation can be standardized by the mean to give a 

measure of uncertainty called the coefficient of variation, CV: 

 CV s m=  2.4 

This is a relative measure of variability.  The standard deviation is often 

understood in the context of the mean.  The coefficient of variation is 

dimensionless making it useful when comparing distributions with different 

units or different means (Anderson et al. 1994).  The coefficient of 

variation is sensitive to small changes in the mean when the mean is near 

zero. 

2.2.2 Difference between Percentiles 

Another measure of spread is the difference between percentiles.  

Percentiles are a specific form of quantiles.  Quantiles are values with 

probabilistic meaning taken at regular intervals from the cumulative 

distribution function (CDF) of a random variable.  Consider dividing an 

ordered distribution into q equally sized subsets.  The quantiles are the q-1 

values marking the boundaries between consecutive subsets.  When the 

distribution is divided into 100 subsets, the 99 quantiles are called 

percentiles.  Other quantiles have been given specific names.   
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Figure 2-4:  Illustration of the three percentiles commonly used to measure uncertainty. 

For instance, when q=2 the quantile is called the median and when q=4 

the three quantiles are called quartiles (Johnson and Bhattacharyya, 

1996).  Quantiles are denoted 
p

X  such that ( )p
F x p=  where F represents 

the cumulative distribution function of X.   

The difference between two symmetric percentiles provides a measure of 

spread, that is, the difference between percentile i (0<i<q) and percentile 

q-i.  One well known percentile difference is the inter-quartile range which 

is the difference between the first and third quartiles.  The difference 

between the 10th and 90th percentiles of a distribution could also be 

considered as a measure of uncertainty.  These are symmetric percentiles 

whose difference, D , is a measure of the spread of a distribution as defined 

in Equation 2.5.  These percentiles are illustrated in Figure 2-4.  The 

difference between percentiles has the units of the variable under 

consideration. 

 
0.9 0.1

X XD = -  2.5 
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The difference between percentiles can be standardized as in Equation 2.6 

to be a unitless measure, 
s

D , similar to the coefficient of variation.  This 

is done by dividing by the median, or 50th percentile (P50), of the 

distribution.  This standardization makes comparison between 

distributions with different units or means possible. 

2.2.3 Precision 

Precision is a measure of the narrowness of a distribution; that is, as a 

distribution narrows, precision increases.  Precision is determined by 

finding the proportion of a distribution that falls within a given distance 

from the mean.  Consider a distribution of the random variable, X, with 

mean, .  Also consider a distance from the mean, h, defined by a 

multiplicative constant, r, as in Equation 2.7.  Precision, p, is the 

probability to be within the specified tolerance as defined in Equation 2.8.    

 h r m= ⋅  2.7 

If the constant, r, chosen is too large, the precision values will all be near 

1.0; if the constant chosen is too small, the precision values will all be near 

0.0.  Using a reasonable constant provides the best measure of precision.  

 ( ) { }Probp r h X hm m= - £ < +  2.8 

A distribution with a large spread will have fewer values between -h and 

+h leading to a low value for p whereas a distribution with small spread 

will  have more values between -h and +h leading to a high value for p 

as illustrated in Figure 2-5 where p is proportional to the shaded area. 
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Figure 2-5:  Narrow distribution with high precision (left) versus a wide distribution with low 

precision (right). 

2.2.4 Probability of Misclassification 

Consider having m groups or classes.  The probability of misclassification 

refers to the probability of classifying an observation from class i as being 

from class j, i ≠ j.  Classification in the earth sciences is often binary 

(m=2): ore or waste, net or non-net, requires environmental remediation 

or does not.  In the binary case, misclassification errors have been termed 

Type I and Type II errors where Type I error is a false positive, or 

overestimation, and Type II error is a false negative, or underestimation 

(see Figure 2-6).  An example of a Type I error would be classifying waste 

as ore (dilution) while an example of a Type II error would be classifying 

ore as waste (lost ore).  These errors can have different consequences.  The 

symbols a  and b  have been adopted to represent the probability of 

making Type I and Type II errors respectively. 

 Classification requires m-1 thresholds, denoted ti, i=1,…,m-1.  Values 

greater than or equal to ti-1 and less than ti are classified as being from 

class i.  When m is two there is one threshold.  Values less than the 

threshold are classified as class 1 while values greater than or equal to the 

threshold are classified as class 2. 
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Figure 2-6:  Binary classification table. 

Myers (1997) describes an example where a site has been contaminated 

with PCB.  The true soil PCB concentration at a location is 22 ppm.  A 

threshold of 25 ppm is determined such that any locations with a PCB 

concentration greater than 25 ppm must be excavated and treated.  If the 

location is estimated to have a concentration greater than 25 ppm, two 

errors have been made: estimation error and misclassification error.  The 

misclassification error results in an inappropriate increase in remediation 

expense and is an example of Type I error.  If the location had been 

estimated to have a concentration less than 22 ppm there would still be 

estimation error, but no misclassification error. 

The true soil PCB concentration at another location is 28 ppm.  If the 

location is estimated to have a concentration less then 25 ppm it goes 

untreated.  This incorrect decision may lead to health risk liabilities the 

cost of which is difficult to quantify.  This example of Type II error has 

very different consequence from the Type I error.   

Figure 2-7 is a visual representation of the two types of misclassification 

known as a misclassification ellipse.  The estimated value is plotted on the 

x-axis and the true value is plotted on the y-axis.  The dashed line at 45° 

represents values with perfect estimation.  Perfect estimation rarely occurs 

leading to a scatter of points with a roughly elliptical shape (Myers, 1997).  

The threshold, t, is plotted perpendicular to both axes creating four 

distinct quadrants.  The quadrants labeled I and II represent situations of  
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Figure 2-7:  Misclassification ellipse. 

misclassification corresponding to Type I and Type II errors.  The lower 

right quadrant (Type I) is when the estimated value is greater than t and 

the true value is less than t. In the upper left quadrant (Type II), the 

estimated value is less than t but the true value is greater than t. 

2.3 Summary 

A choice must be made regarding the measures to use for analysis.  The 

choice between data spacing and data density is trivial: if one is known 

the other can be determined.  The choice of uncertainty measure has 

greater consequence.  The measure termed precision herein is common in 

many applications (Deutsch et al., 2006).  The choice of uncertainty 

measure will depend on the chosen format for expressing acceptable 

uncertainty.  The examples and illustrations provided herein make use of a 

variety of the measures.   
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Chapter 3  

Simulation Approach to the 

Determination of Uncertainty 

versus Data Spacing 

Spatial sampling design has been addressed by a number of authors 

(McBratney et al. 1981; Aspie and Barnes, 1990; Webster and Oliver, 

2007).  Many methodologies and objective functions have been applied to 

determine the optimum quantity and locations of samples.  Some work has 

focused on determining the optimum spacing between samples (Deutsch 

and Beardow, 1999; Boucher et al., 2004).  This has necessitated choosing 

an acceptable level of uncertainty.  This work presents a methodology for 

evaluating the relationship between data spacing and uncertainty.  This 

allows the practitioner to consider many data spacings and observe the 

effect of changing data spacing on uncertainty.  No effort is made to define 

an acceptable level of uncertainty.  The methodology could be applied at a 

greenfield stage to aid a decision regarding data spacing.  It could also be 

applied at a mature stage to assist the determination of an acceptable 

level of uncertainty. 

The methodology is based on sequential Gaussian simulation (SGS).  

Simulation is a popular method for characterizing uncertainty in earth 

sciences modeling.  It allows the generation of multiple equi-probable 
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realizations that each honor the input data, histogram, and variogram.  

Where and by how much the realizations differ provides a measure of 

uncertainty about the phenomenon being modeled (Journel and 

Kyriakidis, 2004).  The simulation methodology can be extended to 

evaluate how uncertainty is related to data spacing.  A methodology is 

proposed to evaluate uncertainty for different data spacings that can be 

applied to a variety of earth science variables.   

3.1 Proposed Methodology 

The methodology for determining uncertainty at different data spacings is 

discussed.  SGS is used to generate realizations of the spatial distribution 

of z(u), uÎA.  Sample data are drawn from these realizations and SGS is 

then used to generate realizations conditioned to these samples. The 

simulated values are assumed to have the same support as the sample 

data.  Uncertainty at this support is of little practical relevance; typically 

the assessment of uncertainty at some block scale is the goal (Journel and 

Huijbregts, 1978).  The conditional realizations are therefore block 

averaged to some scale of interest and measures of uncertainty are 

calculated from these block-averaged realizations.  Specifically, the 

methodology for determining uncertainty at a given data spacing consists 

of the following steps.  The procedure outlined assesses uncertainty for one 

data density dj. 

1. Simulate realizations of the true distribution 

2. Sample the simulated true distributions at a regular spacing and 

add sampling error 

3. Generate realizations conditioned to the simulated data and block 

average 

4. Calculate measures of uncertainty from the block-averaged 

realizations 

5. Summarize uncertainty measures for the given data density 
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Each of these steps is discussed in greater detail below. 

3.1.1 Simulate the Truth 

The first step in evaluating the relationship between uncertainty and data 

density is to generate realizations of the truth (step 1 in Figure 3-1), 

denoted ( ) ( ){ }u u, , 1,...
l

z A l LÎ = , where u represents a location and L is 

the number of truth realizations.  These realizations are characterized by a 

histogram and variogram that are reproduced within statistical 

fluctuations from one realization l to another l’ (Journel and Kyriakidis, 

2004).  These realizations can be conditioned to pre-existing spatial sample 

data (step 0 in Figure 3-1) when such data are available.  They can also 

be generated unconditionally when no sample data are available.  In this 

case, the practitioner would enter the input parameters (histogram, 

variogram) based on expert judgment or an analogue site.   

3.1.2 Simulate Data 

The next step is to simulate data, denoted as 

( ) ( ){ }u , 1,..., ; 1,...,
l

i D
z i n l L= =  with nD being the number of data 

simulated for each realization.  These data are drawn from the truth 

realizations at a specified spacing (step 2 in Figure 3-1).   

Random error is added to the samples by Monte-Carlo simulation.  This is 

done to replicate imperfect sampling.  Journel and Kyriakidis (2004) 

discuss the relationship between the error and the truth, noting that the 

oft-used assumption of homoscedasticity is “extremely congenial and 

highly unrealistic.”  In reality, it is likely that both the error variance and 

error distribution are related to the true value.  This work considers a 

Gaussian error distribution whose spread is proportional to the truth.  Let 

u
data

{ ( ), 1,..., }
i D

z i n=  represent the simulated data with error.  The error 

is randomly drawn from a Gaussian distribution with zero mean and 
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Figure 3-1:  Illustration of the proposed methodology:  1) realizations of the truth are generated by 

sequential Gaussian simulation;  2) the truth is sampled at the desired spacing;  3)  realizations are 

generated conditional to the samples;  4) local measures of uncertainty are calculated from the 

realizations;  5) the local measures of uncertainty are summarized for each data density. 
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spread specified by cs such that the simulated data are defined by 

Equation 3.1 where ( )0,1
Y  is a random value drawn from the standard 

normal distribution.   

 ( ) ( ) ( ) ( ) ( )
( ) ( )u u u

data 0,1
, 1,..., ; 1,...,

l l l

i i s i D
z z Y c z i n l L= + ⋅ ⋅ = =  3.1 

0
s

c =  indicates perfect sampling.  The mean of the error distribution is 

zero to prevent the introduction of a bias.  The magnitude of cs depends 

on the sampling method being imitated.  For instance, among the three 

most popular exploration drilling methods (diamond core, rotary, and 

percussion drilling)(Peters, 1978) there is significant variation in the 

precision of the samples obtained by each.  There can also be various 

sampling standards that will vary depending on the nature and stage of 

the project.  For example, a 15% sampling error is an accepted standard 

for exploration while 5% is typically required for compliance (Neufeld, 

2003).   

3.1.3 Conditionally Simulate and Block Average 

The next step is to build realizations of the variable of interest conditional 

to the simulated data (step 3 in Figure 3-1).  The pre-existing sample data 

could also be used to condition these realizations.  This would necessitate 

the calculation of local data spacing for all locations.     

For a given simulated data set, l, taken from a truth realization at a 

specified spacing (with or without pre-existing samples), a number, K, of 

conditional realizations ( ) ( ){ }u u, , 1,...,
l

k
z A k KÎ =  are generated by SGS.  

There are K conditional realizations generated for all L realizations of 

simulated data for a total of K L⋅  realizations of the variable of interest 

for one data spacing.  They all reproduce the input histogram and 

variogram within statistical fluctuations. 
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The K simulated realizations have the same support as the sample data 

when such data exist.  If no sample data are used, the realizations are 

assumed to be point scale.  Typically, it is the uncertainty in block grades 

that is of interest.  Journel (1978, 2004) suggests simulating point grades 

on a dense grid and then averaging the point grades to the required block 

dimension to arrive at simulated realizations at the block scale.  Local 

uncertainty may then be assessed at a relevant scale.  Consider the 

simulation of point support values done on a grid sufficiently dense to 

discretize a coarser grid of blocks of size v by nv points.  The simulated 

block value can be approximated by the arithmetic average of the nv 

simulated point values within v(u) given that z(u) scales arithmetically 

(Journel and Kyriakidis, 2004): 

 ( ) ( ) ( ) ( )
( )

( ) ( )
u

u u u u
1

1 1 vn
l l l

k k k jv
jv

z z d z
nv =

= åò   3.2 

The resulting block support realizations, 

( ) ( ){ }u u, , 1,..., ; 1,...
l

k
z A k K l LÎ = = , are used to calculate measures of 

uncertainty. 

Block kriging could be used as an alternative to simulation to assess 

uncertainty.  It “is computationally quicker and provides a reasonable first 

approximation to the uncertainty”.  Simulation, however, is more flexible 

and “provides a joint measure of uncertainty at all locations 

simultaneously” (Deutsch and Beardow, 1999). 

3.1.4 Calculate Measures of Uncertainty 

The uncertainty at location u for one set of simulated data, l, is 

characterized by a probability distribution discretely represented by the K 

simulated block values.  This distribution depends on both the volume 

being simulated and the set of sample information used for simulation.  

The probability distribution provides a full specification of the uncertainty 
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about the unknown quantity at location u (Deutsch and Beardow, 1999).  

These local distributions are illustrated in step 4 of Figure 3-1.  The 

probability distribution at an unsampled location has non-zero variance, 

increasing as the location gets farther away from samples.      

The set of probability distributions for all locations in the area of interest 

provides an assessment of uncertainty.  Various uncertainty measures are 

used to provide a summary.  These measures are defined in Chapter 2.  

The standard deviation, coefficient of variation, P90-P10, (P90-P10)/P50, 

precision, and probability of misclassification measures are calculated at 

each location u from the K conditional realizations for all L data 

realizations.  A single measure of uncertainty for a given truth realization, 
( )lU , can be calculated as the average of the local uncertainty measures 
( ) ( )u
l

U  over all locations as in Equation 3.3 where nu is the number of 

locations.  The measure can be averaged over all L data realizations to 

give a single summary measure, 
j

U , for a given data density as in 

Equation 3.4.  This is illustrated by step 5 in Figure 3-1.   

 ( ) ( )

u

u
u

1

1
( )

n
l l

i
i

U U
n =

= å  3.3 

 ( )

1

1 L
l

j
l

U U
L =

= å  3.4 

The measures of uncertainty depend on the volume being simulated.  

There is greater uncertainty associated with prediction of small volumes.  

Uncertainty decreases as more data become available. 

3.1.4.1 Standard Deviation and Coefficient of Variation 

Standard deviation was defined in Section 2.2.1 as a measure of the spread 

of a distribution.  It is calculated at every block location.  The standard 

deviation at a block location, ( ) ( )uˆ
ls ,  is determined by taking the square 

root of the variance of the K values comprising the distribution: 
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 ( ) ( ) ( ) ( ) ( ) ( )( )u u u

1
22

1

1
ˆˆ

K
l l l

k z
k

z
K

s m
=

æ ö÷ç ÷= -ç ÷ç ÷çè ø
å  3.5 

where ( ) ( )ˆ u
l

z
m  is the mean of the local distribution of block values: 

 ( ) ( ) ( ) ( )u u
1

1
ˆ

K
l l

z k
k

z
K

m
=

= å  3.6 

The spread of the block distribution is small near data and increases as 

the block gets further from data.  There are more blocks far from data 

than there are blocks close to data resulting in more locations with large 

spread than locations with small spread.  The distribution of standard 

deviations is therefore negatively skewed.   

The coefficient of variation of the distribution, ( ) ( )u
l

CV , is the standard 

deviation divided by the mean: 

 ( ) ( )
( ) ( )
( ) ( )

u
u

u

ˆ

ˆ

l

l

l

z

CV
s

m
=  3.7 

The average of standard deviation/coefficient of variation over all 

locations is low for low data spacings (high data densities) and increases 

for increased data spacings (decreased data densities).  The expected 

standard deviation, 
j

s , over all locations and data realizations for a given 

data density, dj, is determined by combining Equations 3.3 and 3.4 and 

substituting  for U to get Equation 3.8.  The expected coefficient of 

variation is determined in like manner by applying Equation 3.9. 

 ( ) ( )u
u

1 1u

1
ˆ

nL
l

j i
l in L

s s
= =

=
⋅ åå  3.8 

 ( ) ( )u
u

1 1u

1 nL
l

j i
l i

CV CV
n L = =

=
⋅ åå  3.9 
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3.1.4.2 Difference between Percentiles 

Percentiles were defined in Section 2.2.2.  The difference between 

percentiles is a measure of the spread of a probability distribution.  It is 

determined at a location by first ordering the K values from lowest to 

highest such that ( ) ( ) ( ) ( )u u
1

, 1,..., 1
l l

k k
z z k K

+
£ = - .  Percentiles of interest 

can then be located.  The difference between the 10th and 90th percentiles 

provides a reasonable measure of spread.  This difference can be 

standardized by dividing by the 50th percentile.  The 10th, 50th, and 90th 

percentiles at a location are denoted as ( ) ( )u
10

l

P
z , ( ) ( )u

50

l

P
z , and ( ) ( )u

90

l

P
z  

respectively. 

The difference between the 10th and 90th percentiles at a location, denoted 
( ) ( )lD u

 
and defined in Equation 3.10, is a measure of the spread of a 

distribution. The difference between percentiles is small for blocks near 

data and increases for blocks further from data.  There are typically more 

locations far from data than there are locations close to data causing the 

distribution of differences between percentiles to be negatively skewed. 

 ( ) ( ) ( ) ( ) ( ) ( )u u u
90 10

l l l

P P
z zD = -  3.10 

The standardized difference between the 10th and 90th percentiles, denoted      
( ) ( )u
l

s
D

 
and defined in Equation 3.11, is a unitless measure of the spread of 

a distribution.  It’s unitless nature makes it amenable for comparing 

distributions with different units or different means. 

 ( ) ( )
( ) ( )

( ) ( )
u

u
u

50

l

l

s l

P
z

D
D =  3.11 

The average of these measures over all locations is low for small data 

spacings (high data densities) and increases as data spacing increases (data 

density decreases).  The expected value of the difference between 

percentiles, jD , over all locations and data realizations for a given data 
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density, dj, is determined by combining Equations 3.3 and 3.4 and 

substituting D  for U as in Equation 3.12.  The determination of the 

expected value of the standardized difference between percentiles, j

s
D , over 

all locations and realizations is shown in Equation 3.13. 

 ( ) ( )
u

u
u

1 1

1 nL
lj

i
l in L = =

D = D
⋅ åå  3.12 

 ( ) ( )
u

u
u

1 1

1 nL
lj

s s i
l in L = =

D = D
⋅ åå  3.13 

3.1.4.3 Precision 

The precision of a distribution was defined in Section 2.2.3.   The precision 

at a location, ( ) ( )u
l

p , is the proportion of simulated block values, ( ) ( )u
l

k
z , 

that fall within a specified distance, ( ) ( )u
l

h , from the mean, ( ) ( )ˆ
l

z
m u , at 

location u.  If the spread of simulated block values is narrow, a large 

proportion of these values fall within the specified distance from the mean 

and the precision is high.  If the spread of simulated block values is large, 

a small proportion of these values fall within the specified distance from 

the mean and the precision is low.  The spread of simulated block values 

at a location increases farther from data, meaning fewer values fall within 

the specified distance from the mean leading to reduced precision.   

The tolerance, ( ) ( )u
l

h , is specified by a multiplicative constant, r : 

 ( ) ( ) ( ) ( )ˆ
l l

z i
h r m ¢= ⋅u u  3.14 

Let ( ) ( )u;
l

k
ht  be a binary indicator such that Equation 3.15 is satisfied.  

The precision at a location, ( ) ( )u
l

p , is defined in Equation 3.16.   

 ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ1, if

;
0, otherwise

l l l l l
l z k z

k

h z h
h

m m
t

ìï - £ £ +ïï= íïïïî

u u u u u
u  3.15 
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 ( ) ( ) ( ) ( )u u
1

1
;

K
l l

k
k

p h
K

t
=

= å  3.16 

The expected precision over all locations and data realizations, 
j

p , is 

obtained by combining Equations 3.3 and 3.4, substituting p for U as in 

Equation 3.17.  

 ( ) ( )
u

u
u

1 1

1 nL
l

j i
l i

p p
n L = =

=
⋅ åå  3.17 

Precision and data spacing are inversely related.  As data spacing 

increases, precision decreases since the spread of the local distributions 

becomes larger.  The rate at which precision decreases with increasing 

data spacing depends on the variogram and histogram of the variable of 

interest.   

3.1.4.4 Probability of Misclassification 

The probability of misclassification is defined in Section 2.2.4.  Two 

categories are considered requiring one threshold, t, to define them.  The 

only way to know whether an observation has been misclassified is to 

know the truth.  The block average of the realization simulated in the first 

step, ( ) ( )u u, , 1,...,
l

z A l LÎ = , is taken as the truth.   

The type of misclassification depends on the value of the truth relative to 

the threshold.  When the truth is greater than or equal to the threshold 

there is potential for Type I error, or a false positive.  For instance, if a 

block is truly ore, there is potential for it to be falsely classified as waste 

(lost ore).  When the truth is less than the threshold there is potential for 

Type II error, or a false negative.  If a block is truly waste, there is 

potential for it to be falsely classified as ore (dilution).   

Let ( ) ( )u
la represent the probability of making a Type I error at location 

u and let ( ) ( )u
lb  represent the probability of making a Type II error at 
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location u.  Consider first the case where the truth at a location, ( ) ( )u
l

z , is 

greater than or equal to the threshold, t.  The probability of a false 

positive, ( ) ( )u
la , is zero while the probability of a false negative, ( ) ( )u

lb , 

may be non-zero.  The probability of a false negative at this location is the 

number of simulated block values that are less than the threshold divided 

by K.  Let ( ) ( )u
l

k
f  be a binary indicator defined by Equation 3.18.  The 

probability of a false negative at this location is defined by Equation 3.19. 

 ( ) ( )
( ) ( )u

u
1, if

, 1,...,
0, otherwise

l
l k

k

z t
k Kf

ìï <ïï= =íïïïî
 3.18 

 ( ) ( ) ( ) ( )u u
1

1 K
l l

k
kK

b f
=

= å  3.19 

Next, consider the case where the truth at u, ( ) ( )u
l

z , is less than the 

threshold.  The probability of a false negative is zero while the probability 

of a false positive may be non-zero.  The probability of a false positive at 

this location is the number of simulated block values greater than or equal 

to the threshold divided by K.  Let ( ) ( )u
l

k
j  be a binary indicator defined 

by Equation 3.20.  The probability of a false positive at u is defined by 

Equation 3.21.   

 ( ) ( )
( ) ( )u

u
1, if

, 1,...
0, otherwise

l
l k

k

z t
k Kj

ìï ³ïï= =íïïïî
 3.20 

 ( ) ( ) ( ) ( )u u
1

1 K
l l

k
kK

a j
=

= å  3.21 

Probability of misclassification depends on the variability of the random 

variable.  A variable with high variability has a higher probability of 

misclassification than a variable with low variability.  It also depends on 

how near the local value is to the threshold.  Values near the threshold 
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have a higher probability of misclassification.  As the spacing between 

data increases, so will this measure of uncertainty.  

3.2 Implementation Example 

Consider the determination of uncertainty versus data density for a 

normally distributed variable with mean of 3.0 and variance of 1.0 and a 

one structure spherical variogram with no nugget effect and a range of 

100m.  To evaluate the relationship between uncertainty and data density 

for this variable the following parameters are used.  Point-scale values are 

simulated at a spacing of 10m within a 600m x 600m area.  This is a fairly 

coarse scale for an area of this size, but is useful for illustrative purposes.  

These values are averaged into blocks with size 20m x 20m.  There are 

L=10 unconditional data realizations each associated with K=100 

conditional realizations for data spacings of 50, 70, 90, 110, and 130m.  

For each data spacing, 10 unconditional realizations are generated in 

Gaussian space.  The samples drawn from these realizations are used to 

condition a set of 100 realizations.  These realizations are block averaged 

to the desired scale and uncertainty measures are calculated at every 

location.   

This process is illustrated in Figure 3-2.  The top left plot shows one of 

the 50 (10 truth realizations for each of the five spacings) truth 

realizations generated.  This truth realization is sampled at 90m spacing 

for a total of 36 samples (top middle).  100 realizations are generated that 

are conditioned to the 36 samples.  Two of these realizations are shown in 

the top right plot.  These point-scale realizations are arithmetically 

averaged to 20m square blocks (bottom right).  The block averaged 

realizations are used to calculate local uncertainty measures (bottom 

middle).  The distribution of local uncertainties is shown in the bottom 

left plot.  The uncertainty measure shown is the coefficient of variation.   
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Figure 3-2:  Illustration of the steps for the implementation example. 

 

This same process is repeated for each of the five spacings.  The result is 

five distributions of uncertainty.  The five distributions of the coefficient 

of variation are shown in Figure 3-3.  The uncertainty distribution for 50m 

spacing has the lowest expected uncertainty and is positively skewed; most 

of the locations have low uncertainty.  Two things happen to the 

distribution as data spacing increases.  The first is an increase in the mean 

of the uncertainty.  There is greater uncertainty associated with widely 

spaced data.  The second is a change in the shape of the distribution.  The 

shape changes from being positively skewed for spacings less than the 

variogram range to being negatively skewed for spacings greater than the 

variogram range.  For spacings less than the variogram range, the 

majority of locations are close enough to data to be well informed whereas 

for spacings greater than the variogram range, the majority of locations 

fall outside the range of correlation. 
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Figure 3-3:  Uncertainty distributions for data spacings of 50, 70, 90, 110, and 130m respectively. 

 

 

Figure 3-4:  Uncertainty distributions for different data spacings with a description of the various 

markings on the plot (red). 



35 

 

   

Another method for visualizing this relationship is shown in Figure 3-4.  

This is a plot of uncertainty versus data spacing and shows the same five 

distributions as Figure 3-3.  The relationship between uncertainty and 

data spacing is more easily discerned viewing the distributions in this 

manner.  The markings that summarize the distributions are described in 

the figure.  In addition to a vertical line representation of the histogram, 

an erased box plot (Tufte, 2001) shows the values of the 10th percentile, 

first quartile, mean, third quartile, and 90th percentile.  This plot is useful 

in the context of an acceptable level of uncertainty.  Assume that the 

acceptable level of uncertainty is specified as the coefficient of variation 

will be less than 0.3 for 90% of the volumes within A.  The plot shows that 

this level of uncertainty is met at a data spacing of 70m.   

The other measures of uncertainty that measure spread (standard 

deviation, P90-P10, and (P90-P10)/P50) exhibit a relationship with data 

spacing similar to the relationship between the coefficient of variation and 

data spacing (Figure 3-5).  In all four cases, the measure of spread 

increases more rapidly for spacings less than the variogram range than for 

spacings greater than the variogram range.  This mimics the variogram 

shape.   

One aspect to note is that the non-standardized measures (standard 

deviation and P90-P10) start to show a bimodal distribution for data 

spacings approximately twice the block size whereas the standardized 

measures do not.  Consider the plots in Figure 3-6.  The left plot is the 

non-standardized P90-P10 uncertainty measure and the right plot is the 

standardized (P90-P10)/P50 uncertainty measure; both for 50m data 

spacing.  The bimodal nature of the non-standardized measure can be 

seen.  The uncertainty is low near data and high far from data with few 

values in between.  The standardized measure varies smoothly due to its 

dependence on the local P50, eliminating this bimodal feature.  Recall that 
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Figure 3-5:  Relationships between standard deviation, P90-P10, (P90-P10)/P50, and data spacing. 
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Figure 3-6:  Non-standardized and standardized measure of uncertainty for 50m spacing. 

this example is for a data spacing of 50m and a block size of 20m.  The 

bimodal nature of the uncertainty distribution is most pronounced for a 

data spacing twice the block size.   

Precision and the two types of misclassification exhibit their own unique 

relationships with data spacing (Figure 3-7).  Precision is high when data 

are closely spaced and decreases as data spacing increases.  The decrease 

in precision slows as the spacing between data exceeds the variogram 

range.  Precision is very high for small data spacings resulting in a 

negatively skewed distribution with a large number of precision values at 

or near 1.0.  Various statements regarding the level of uncertainty 

associated with each data spacing can be made.  For example, at a spacing 

of 50m, 90% of the volumes have a greater than 77% probability of falling 

within 15% of the estimate. 

The two types of probability of misclassification exhibit a relationship 

with data spacing similar to the measures of spread previously discussed; 

that is, the probability of misclassification increases with increased data 

spacing.  These distributions are characterized by a large number of zero 

values creating a large spike in the histogram.  As such, the histogram is 

not shown for these measures in Figure 3-7; only the erased box plot is 

shown.  The line representing the 10th and 25th percentiles does not appear 
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Figure 3-7:  Relationships between precision, Type I error, Type II error, and data spacing. 
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as both values are zero.  Those summaries that are visible (mean, upper 

quartile, 90th percentile) show that the occurrence of each type of 

misclassification increases as data spacing increases.  The increase is more 

rapid for spacings less than the variogram range than for spacings greater 

than the variogram range.  A variety of statements can be made regarding 

the level of uncertainty associated with the various data spacings.  For 

example, at a spacing of 90m the expected probability of Type I error is 

18%.  Another example is, for a spacing of 70m, less than 10% of the 

volumes have a probability of Type II error greater than 50%.   

The relative occurrence of each type of misclassification error is controlled 

by the classification threshold and the reference distribution.  The 

threshold for this example is 3.0 which is the mean of the reference 

distribution.  Since the reference distribution is normally distributed, the 

occurrence of each type of misclassification is approximately equal.  A 

cutoff below the mean would lead to an increase in the occurrence of Type 

I errors and a decrease in the occurrence of Type II errors.  This threshold 

dependence is investigated further in Chapter 4.   

3.3 Limitations 

The proposed methodology is constrained by a number of limitations.  One 

of these limitations is the need for a sufficient quantity of data to allow 

the analysis to proceed.  Applying the methodology requires an 

understanding of the spatial distribution of the attribute which in turn 

requires an initial quantity of data.  It must be determined whether 

sufficient data is available to adequately characterize the attribute prior to 

performing the proposed methodology.  Parameters such as the histogram 

and variogram are required.  It is difficult to know if the attribute is 

sufficiently described by the existing data.       
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Another limitation of the methodology is its inability to evaluate 

uncertainty in the geology.  This SGS-based methodology is suitable for 

evaluating uncertainty due to the histogram and variogram of an 

attribute.  Assessing uncertainty in the geology would require 

implementing a similar methodology based on multiple-point statistics 

(MPS) or object-based modeling.  This would allow the relationship 

between data quantity and geological uncertainty to be assessed.   

Another limitation of the methodology is its applicability to settings where 

the calculation of data spacing cannot be easily reduced to two dimensions 

such as in an underground mining context.  In underground mining data 

are often collected from drillholes which are not parallel.  Determining a 

relationship between data spacing and uncertainty for such sampling 

schemes is not straightforward.   
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Chapter 4  

Confounding Factors 

Uncertainty and data density are closely related.  As data density 

increases, more is known about the variable of interest and uncertainty 

decreases.  When data density is low, less is known about the variable of 

interest and uncertainty is higher.  Data density is not the only factor 

controlling uncertainty.  A number of other confounding factors play a 

role in determining uncertainty for a given data spacing.  These factors 

include stationarity, parameter uncertainty, the proportional effect, 

nonstationarity in the variogram, classification thresholds, scale, number 

of realizations, and data quality.  The effect of each of these factors is 

discussed. 

4.1 Stationarity, Parameter Uncertainty and 

Model Uncertainty 

Prior to performing the methodology described herein, decisions must be 

made regarding the pooling of data and the input parameters.  In 

addition, various geostatistical assumptions must be made such as the 

adoption of the multivariate Gaussian model.  These decisions and 

assumptions can affect uncertainty.  

Stationarity refers to the decision made regarding pooling of the data.  

Any statistical analysis requires a decision of stationarity.  This decision 

allows inference.  It may be appropriate to subdivide data based on 
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geological facies; however, dividing data into too many categories can lead 

to unreliable statistics.  The decision of how to subdivide the data will 

affect uncertainty.   

Uncertainty in the input parameters such as the histogram and variogram 

will have an effect on uncertainty in the model.  It is common to consider 

these global statistical parameters as fixed with no uncertainty.  This can 

lead to underestimation of the uncertainty.  For example, it is common to 

consider the declustered histogram as known and fixed.  A bootstrap 

procedure could be implemented that would allow the uncertainty in the 

input distribution to be assessed.  This uncertainty could then be 

transferred to the geostatistical models.  It has been shown that 

considering parameter uncertainty can increase model uncertainty 

(Deutsch, et al., 2006).   

The spatial continuity parameters such as the nugget effect can also affect 

uncertainty.  It can be difficult to establish the short-scale variability for 

distances less than the smallest data spacing, yet the choice of the 

variograms’ behavior at the origin can greatly impact the geostatistical 

models (Dubrule, 1994), at times in a non-intuitive and non-transparent 

manner.  For example, an increase in the nugget effect could intuitively 

imply an increase in uncertainty.  It has been shown that an increase in 

the nugget effect can, in fact, decrease uncertainty (Deutsch et al., 2006), 

particularly at large scale. 

Various geostatistical assumptions such as the assumption of the 

multivariate Gaussian distribution in Gaussian simulation can impact 

uncertainty.  This is a common assumption in geostatistical modeling.  

Most geostatistical estimation and simulation techniques rely on a 

covariance model as the sole descriptor of the spatial distribution of the 

attribute being modeled and the multivariate Gaussian distribution for all 

high order distributions.  The methodology described herein is based on 

sequential Gaussian simulation.  One advantage of using this distribution 
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is that it maximizes entropy beyond the statistics that are considered 

known.  This minimizes unwarranted structural properties.  However, this 

does not lead to maximum entropy in response variables calculated from 

modeled variables.  As noted in Journel and Deutsch (1993), “maximum 

entropy of the random function model does not entail maximum entropy 

of the response distributions; in fact, the contrary is observed for most 

response variables.”  This could cause the space of response uncertainty to 

be too small.   

4.2 Proportional Effect 

The proportional effect is a well documented aspect of earth sciences 

modeling (Journel and Huijbregts, 1978; Goovaerts, 1997).  It refers to the 

phenomena of the spread of a distribution being related to the magnitude 

of the distribution center.  It occurs when a random variable has a skewed 

distribution.  The proportional effect increases uncertainty for positively 

skewed distributions when local estimates are high.  It increases 

uncertainty for negatively skewed distributions when local estimates are 

low.   

To examine the effect of the proportional effect on uncertainty, the 

proposed methodology is implemented using the same parameters as the 

implementation example in Section 3.2.  In addition to considering a 

symmetric reference distribution with mean=3.0 and standard 

deviation=1.0, a lognormal reference distribution with the same mean and 

standard deviation is considered.  These distributions are shown in Figure 

4-1.  The skewness of this lognormal distribution is small, but sufficient for 

this illustration.  Recall that the methodology implementation is within an 

area 600m x 600m and populated with point-scale simulated values at 10m 

x 10m spacing averaged into 20x20m blocks.  Data spacings of 50, 70, 90, 

110, and 130m are considered.  The variogram is single structure spherical 

with no nugget and 100m range.   
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Figure 4-1:  Symmetric and skewed reference distributions with mean=3.0 and variance = 1.0. 

  

 

Figure 4-2:  Standard deviation versus data spacing for different reference distributions.   

For the two cases, the truth realizations are generated unconditionally in 

Gaussian units and are back transformed according to the reference 

distribution.  These realizations are sampled at the desired spacing and 

these samples are used to generate conditional realizations.  The 

conditional realizations are then used to assess uncertainty for the given 

data spacings. 
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Figure 4-3:  Standard deviation versus mean for a symmetric reference distribution (left) and a 

skewed reference distribution (right). 

The pair of reference distributions produces the results shown in Figure 

4-2.  The spread of uncertainty for the skewed distribution is greater than 

the spread for the symmetric distribution while the expected uncertainty 

value is less for the skewed distribution than for the symmetric.  A 

positively skewed distribution with the same mean and variance as a 

symmetric distribution has a larger proportion of low values than the 

symmetric distribution.  For example, the symmetric distribution 

considered, exactly 50% of the values are less than the mean while 56.4% 

of the values in the lognormal distribution are less than the mean.  This 

increased proportion of low values means that most locations have low 

uncertainty.  This large proportion of low uncertainty reduces the 

expected uncertainty value for a skewed distribution.  There are some 

high-valued areas that are associated with large uncertainty.  These values 

of high uncertainty increase the spread of the uncertainty distribution.   

Consider the plots of standard deviation versus mean in Figure 4-3.  These 

plots correspond to the distributions shown in Figure 4-2 for a spacing of 

70m.  The spread in uncertainty due to the skewed reference distribution 

is more than the spread from a symmetric distribution.  The plots in 
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Figure 4-3 also illustrate the proportional effect.  The standard deviation 

is dependent on the mean for a skewed reference distribution. 

4.3 Nonstationarity in the Variogram 

The term stationarity refers to the decision to pool data together for 

subsequent analysis and the location-dependence of statistical parameters 

(Deutsch, 2002).  In geostatistics, the two statistics commonly assumed 

constant across a domain are the mean and the variogram.  This 

assumption may not always be valid.   Variations in these parameters can 

affect uncertainty.  Variations in the mean will lead to increased 

uncertainty if the distribution is skewed; see previous section on the 

proportional effect.  Variations in the variogram will also affect 

uncertainty.  Areas where the attribute is more continuous will have less 

uncertainty than areas where the attribute is less continuous.   

To examine nonstationarity in the variogram, the proposed methodology is 

implemented with three different variograms.  All three models are one 

structure spherical with no nugget.  The ranges of the variograms are 50, 

100, and 200m (top of Figure 4-4).  The realizations are built using the 

different variograms and used to calculate the measures of uncertainty.  

The bottom plot in Figure 4-4 shows the uncertainty distributions for the 

different variograms at different data spacings.  As expected, the short 

range variogram results in the greatest overall uncertainty.  Figure 4-4 

demonstrates that uncertainty decreases as continuity increases.  Note the 

similarity in the pattern of these distributions with the variogram models.   

The bottom plot in Figure 4-4 reveals an additional aspect of the 

uncertainty versus data spacing relationship: the spread in the 

distributions of uncertainty is related to the magnitude of the data spacing 

relative to the variogram range.  There is greater variability in uncertainty 

for data spacings near the variogram range and less variability in  
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Figure 4-4:  Three variogram models (top) used to examine the effect of a nonstationary variogram 

on uncertainty and the comparison of P90-P50 versus data spacing results for different data 

spacings (bottom). 
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uncertainty for spacings less than and greater than the range.  Consider 

first the uncertainty distributions resulting from a variogram with a range 

of 50m (red).  The spread in these distributions is greatest when the 

spacing is equal to the variogram range and decreases as the spacing 

becomes greater than the range.  Next consider the uncertainty 

distributions resulting from a variogram with range of 200m (blue).  The 

spread in these distributions is least when the spacing is much less than 

the variogram range and increases as the spacing approaches the 

variogram range. 

An example of nonstationarity in the variogram comes from bitumen 

thickness data of the McMurray formation in northern Alberta (Warren, 

2003).  Two areas are considered, one in the north and one in the south as 

shown in Figure 4-5.  Omnidirectional variograms are calculated from the 

data in these two areas.  The experimental and modeled variograms for 

these two areas are shown in Figure 4-6.  The south area has better 

correlation at the distances shown than the north area.  This increased 

correlation translates into reduced uncertainty as shown by the P90-P10 

versus data spacing plot in Figure 4-7.  For the four data spacings 

considered, uncertainty is lower for the south than for the north. 
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Figure 4-5:  Location map of bitumen thickness data showing the two areas considered for 

nonstationarity in the variogram. 

 

Figure 4-6:  Omnidirectional normal-score variograms of the north (black) and south (blue) areas 

shown in Figure 4-5. 
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Figure 4-7:  P90-P10 versus data spacing for the variogram models shown in Figure 4-6. 

4.4 Classification Threshold 

Estimates can be classified based on their value with respect to a 

classification threshold.  The value of the classification threshold has an 

effect on uncertainty.  Most of the uncertainty measures considered herein 

are unaffected by changes in the value of the classification threshold.  

Only the two probability of misclassification measures are affected.  The 

relationship between the classification threshold and these measures is 

discussed and illustrated. 

To know whether an estimate has been misclassified requires knowledge of 

the true classification.  The truth is, of course, inaccessible without 

exhaustive sampling.  The truth is assumed to be represented by the 

simulated point-scale realization from which the samples are taken.  At 

each location, a probability of misclassification can be determined.  The 

type of misclassification depends on the value of the truth with respect to 

the threshold while the probability of misclassification depends on the 

local distribution.  A high probability of making a Type I error signifies 
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that the truth is greater than the threshold while a large proportion of the 

simulated values falls below the threshold.  A high probability of making a 

Type II error signifies that the truth is less than the threshold while a 

large proportion of the simulated values are greater than the threshold.   

To illustrate, consider one slice from a 2-D simulation of normally 

distributed values with a mean of 3.0 units.  Values were simulated every 

10m within a 600m x 600m area.   The red line shown in the top left of 

Figure 4-8 represents the truth for the given slice.  The truth is sampled 

every 90m as represented by the black dots.  These samples are used to 

generate 100 conditional realizations shown in the top right of Figure 4-8.  

The probability of misclassification at each location is determined by 

considering the truth and the conditionally simulated values and applying 

a threshold (black) as shown in the middle plot of Figure 4-8.  When 

simulated values fall on the opposite side of the threshold than the truth, 

there is non-zero probability of misclassification.  The blue line in the 

bottom plot of Figure 4-8 represents the probability of Type I error for 

each location while the green line in the same plot represents the 

probability of Type II error for each location.  These probabilities are 

determined by counting the number of simulated values that fall on the 

opposite side of the threshold than the truth and dividing by the total 

number of simulated values. 

 The threshold for this example is the mean value of 3.0.  The relative 

occurrence of each type of misclassification is controlled by the value of 

the threshold relative to the distribution of true values.  In this case, the 

values are normally distributed and the threshold falls in the middle of the 

distribution.  This leads to an approximately equal number of Type I and 

Type II errors. 

As discussed, a different threshold leads to different possibilities of each 

type of misclassification error.  Consider the effect of reducing the 

threshold to a value of 2.0 as shown in Figure 4-9.  The truth at a 
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Figure 4-8:  One slice from a 2-D simulation example to demonstrate the factors that influence the 

probability of misclassification. 

majority of locations is greater than the threshold.  At each of these 

locations the possibility of Type I misclassification error exists.  However, 

the probability of Type I error is small as the number of simulated values 

falling below the threshold is small.  Conversely, there are few locations 

where the truth is less than the threshold and therefore a small possibility 
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Figure 4-9:  Truth (red), simulated values (yellow), and a threshold (black) of 2.0 leading to the 

probabilities of Type I (blue) and Type II (green) error. 

 

 

Figure 4-10:  Distributions of Type I error (left) and Type II error (right) for a threshold of 2.0 

relating to the blue and green lines in Figure 4-9 respectively. 

of Type II misclassification error.  However, when the truth does fall below 

the threshold, there are a large number of simulated values greater than 

the threshold and the probability of Type II error is high.  The 

distributions of Type I and Type II error for a threshold of 2.0 are shown 
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in Figure 4-10.  There are many low-valued Type I probabilities for this 

threshold while Type II has mostly zeros with a few high values. 

Increasing the threshold has the opposite effect.  Consider the result of 

increasing the threshold to a value of 4.0 as shown in Figure 4-11.  The 

truth at the majority of locations is less than the threshold leading to an 

increased possibility of Type II error and a decreased possibility of Type I 

error.  When the threshold is greater than the truth, there are typically 

few simulated values greater than the threshold leading to low 

probabilities of Type II error.  When the truth is greater than the 

threshold there are typically many simulated values less than the 

threshold leading to high probabilities of Type I error.  The distributions 

of Type I and Type II error for a threshold of 4.0 are shown in Figure 

4-12.  This figure is the reverse of Figure 4-10.  For Type I error the 

probabilities are mostly zero with a few high probabilities while for Type 

II error there are many low probabilities. 

The proposed methodology further validates these results.  The 

methodology is applied using the same parameters as the implementation 

example in Section 3.2 with classification thresholds of 2.0, 3.0, and 4.0.  

The relationship between Type I error and data spacing for the three 

thresholds is demonstrated in Figure 4-13.  The expected error 

probabilities are highest for a cutoff of 3.0 reflecting the fact that the 

probability of misclassification is highest for a threshold at the center of 

the global distribution.  The expected probabilities of Type I error are 

approximately equal for thresholds of 2.0 and 4.0 while the tails of these 

distributions are very different.  For a threshold of 2.0, there are many 

locations that have probability of Type I error, but these probabilities are 

low.  A threshold of 4.0, on the other hand, has few locations with 

probability of Type I error, but the probability is high.     
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Figure 4-11:  Truth (red), simulated values (yellow), and a threshold (black) of 4.0 leading to the 

probabilities of Type I (blue) and Type II (green) error. 

 

Figure 4-12:  Distributions of Type I error (left) and Type II error (right) for a threshold of 4.0 

relating to the blue and green lines in Figure 4-11 respectively. 

Figure 4-14 demonstrates the relationship between Type II error and data 

spacing for the three thresholds.  As with Type I error, the expected error 

probabilities are highest for a cutoff of 3.0 and the expected probabilities 

are approximately equal for thresholds of 2.0 and 4.0.  However, the 

behavior of the tails has been reversed.  There are few locations with 

probability of Type II error for a cutoff of 2.0, but these probabilities are 

high while the opposite holds true for a cutoff of 4.0. 
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Figure 4-13:  Probability of Type I error versus data spacing for thresholds of 2.0, 3.0, and 4.0. 

 

 

Figure 4-14:  Probability of Type II error versus data spacing for thresholds of 2.0, 3.0, and 4.0. 
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4.5 Modeling Scale 

Modeling scale is an important case-specific issue in the modeling of 

geological attributes.  It is not practical to base decision on attributes 

modeled at the scale of the data.  Some intermediate modeling scale must 

be chosen by the geostatistical practitioner.  The choice of scale must 

consider the goals of the modeling as well as strike a balance between 

computational efficiency and sufficient detail (Deutsch, 2002).   

The choice of modeling scale influences uncertainty.  Classic dispersion 

variance theory (covered in Journel and Huijbregts, 1978; Isaaks and 

Srivastava, 1989; Deutsch, 2002; and Wackernagel, 2003) defines the 

relationship between scale and variability.  Large blocks will show less 

variability than small blocks because the high and low values will be 

averaged out within the block. 

To investigate the effect of modeling scale on uncertainty, the same 

parameters used in the implementation example in Section 3.2 are used, 

changing the size of the blocks that the point-scale estimates are averaged 

into.  Recall that the point-scale spacing is 10m and that all previous work 

has considered averaging the simulated values to blocks of size 20x20m.  

The effect of scale is demonstrated by considering the point-scale values at 

10m spacing directly as well as averaging the values to blocks of size 

20x20m and 40x40m.  The results are shown in Figure 4-15.  Scale clearly 

has an impact and the well known results are verified here.  The smallest 

scale shows the largest uncertainty and uncertainty decreases with scale.  

Increasing the scale from 10x10m to 20x20m decreases the expected 

standard deviation by approximately 15% and increasing the scale from 

20x20m to 40x40m reduces the expected standard deviation again by 

approximately 15%.  High and low values are being averaged out resulting 

in reduced uncertainty for large blocks.   
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Figure 4-15:  Uncertainty versus data spacing results for block sizes of 10x10m, 20x20m, and 

40x40m. 

Changes in the spread of the uncertainty distributions are also of note.  

For data spacings greater than or equal to the variogram range the 

variability in uncertainty is approximately equal between scales.  The 

variability in uncertainty for 40m blocks is about the same as that for 20m 

and 10m blocks.  This is not the case for data spacings less than the 

variogram range.  The variability in uncertainty is reduced for large 

blocks.  The variability in uncertainty for 40m blocks is less than the 

variability in uncertainty for 20m and 10m blocks.   

4.6 Number of Realizations 

The proposed methodology requires the generation of L truth realizations.  

Each truth realization is sampled at the desired spacing and the samples 

are used to generate K conditional realizations for a total of L K⋅

realizations.  The choice for K and L affects uncertainty.  The analysis 
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Figure 4-16:  P90-P10 versus data spacing for L values of 1, 2, 4, 7, and 10. 

presented here deals with the effect on uncertainty of using different 

values for K and L. 

The same parameters used in the implementation example in Section 3.2 

are used here, varying K and L from their base case values of 100 and 10 

respectively.  The effect of varying L is investigated first.  The 

methodology is implemented using values for L of 1, 2, 4, 7, and 10 with K 

held constant at 50.  The results are shown in Figure 4-16.  For each data 

spacing the expected uncertainty as well as the spread of the uncertainty 

is constant over all values of L.   

The effect of varying K is examined by considering values of 10, 20, 50, 70, 

and 100 holding L constant at 4.  The results are shown in Figure 4-17.  

For each data spacing, the expected uncertainty is relatively constant 

while the spread in the uncertainty decreases with increasing K until K 

equals approximately 70 where the spread in uncertainty stabilizes.  This 

is consistent with the discussion in Deutsch (2002) where he shows that  
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Figure 4-17:  P90-P10 versus data spacing for K values of 10, 20, 50, 70, and 100. 

precision is proportional to the number of realizations.  The proposed 

methodology allows the sensitivity to the number of realizations to be 

assessed.  The number of realizations should be chosen sufficiently high 

such that the spread in uncertainty is stable.   

4.7 Data Quality 

Data is acquired by sampling.  Sampling is the process of measuring some 

geologic attribute using a representative portion of a larger mass.  A 

number of errors can be introduced during the various stages required for 

sampling.  These errors have been classified as fundamental, delimitation, 

extraction, and accidental (Pitard, 1993).  Fundamental error cannot be 

removed by modifying the sampling practice.  These errors are random 

with a mean of zero.  Fundamental errors arise due to differences between 

the compositions of fragments within the lot, or constitution heterogeneity, 

which is a function of the material being sampled.  The constitution 



61 

 

  

 

Figure 4-18:  Standard deviation versus data density for varying sampling error. 

heterogeneity of a material can be quantified allowing the quantification of 

fundamental error (Pitard, 1993).  Delimitation and extraction errors 

typically have non-zero mean introducing a bias to the sampling program.  

Accidental errors cannot be analyzed statistically since they are usually 

non-random events (Neufeld, 2003). 

This work considers only fundamental error as it introduces no bias.  As 

mentioned, unbiased sampling error is predominantly controlled by the 

nature of the material being sampled.  A heterogeneous material will have 

greater sampling error than a homogeneous material.   

The realizations of the truth are sampled at the desired spacing and those 

samples are used to generate conditional realizations from which 

uncertainty is determined.  When the truth is sampled, random error 

could be added to each sample.  The magnitude of these random errors is 

controlled by specifying the variance of the error distribution. 
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Figure 4-19:  Coefficient of variation versus data spacing for varying sampling error. 

The effect of data error on uncertainty can be isolated and analyzed.  This 

is done using the same parameters as the implementation example in 

Section 3.2, but varying the variance of the sampling errors from no 

sampling error to 25% sampling error. 

The degree of sampling error affects different measures of uncertainty in 

different ways.  The non-standardized measures of spread (standard 

deviation and P90-P10) are largely unaffected by changes in data quality, 

see Figure 4-18.  The errors are unbiased and cancel out quickly with 

averaging to a larger scale.   

The standardized measures (coefficient of variation and (P90-P10)/P50), 

on the other hand, are affected by changes in data quality as 

demonstrated by the coefficient of variation versus data spacing plot in 

Figure 4-19.  The expected uncertainty is approximately the same for no 

sampling error as for 25% sampling error.  The difference is in the spread 

of the distribution of uncertainty values for a given data spacing; the 

spread is greater when there is sampling error.  This is due to fluctuations 

in the center of the local distribution caused by sampling error.  Consider 
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a location close to, but not at, a data location.  This location will have the 

similar spread in the simulated values whether the data it is near has 

sampling error or not, but the mean (or median) of the simulated values 

will be different.  If the nearby sample has a value lower than the truth, 

then the mean of the simulated values is reduced increasing the value of 

the standardized measures of spread.  If the nearby sample has a value 

higher than the truth, then the mean of the simulated values is increased 

reducing the standardized measures.  Sampling error therefore increases 

the spread of the standardized uncertainty measures.   

Precision can also be affected by sampling error.  Recall that precision is 

determined by considering some distance, h, from the mean and that this 

distance can be proportional to the mean.  When this is the case, precision 

is affected by sampling error.  This effect is similar to that seen for the 

coefficient of variation and (P90-P10)/P50; sampling error leads to an 

increase in the spread of the distribution of precision values for a given 

data spacing.  This is caused by variations in the local mean.  A reduction 

in the local mean leads to a reduction in h which, for constant spread, 

leads to a reduction in precision.  An increase in the local mean leads to 

an increase in h which, for constant spread, leads to an increase in 

precision.  The presence of these higher and lower precision values 

increases the spread of the precision distribution.   

The probability of misclassification is relatively unaffected by sampling 

error as shown in Figure 4-20 and Figure 4-21 where the expected 

misclassification probabilities show little change when sampling error is 

introduced.  There is a slight increase in the P90 values of the 

distributions due to sampling error, but overall these results show that an 

increase in sampling error has little effect.  The spread in the uncertainty 

distributions shown in these figures is very large.  There are a number of 
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Figure 4-20:  Probability of Type I error versus data spacing for varying sampling error. 

 

 

Figure 4-21:  Probability of Type II error versus data spacing for varying sampling error. 
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locations where the majority of the local grade distribution falls on the 

opposite side of the threshold from the truth.  These locations lead to the 

instances of probability of misclassification greater than 0.5.  There are 

more of these locations when sampling error is present leading to an 

increase in the P90 uncertainty values. 

Locally, sampling error could either increase or decrease the probability of 

misclassification.  The areas where the probability of misclassification is 

increased will average with those areas where probability is decreased 

keeping the expected value the same.  Instances of these local effects are 

illustrated in Figure 4-22.  The red line in the plots in this figure 

represents the truth, the black dots represent a sample, and the yellow 

lines represent the simulated values conditioned to the samples.  The blue 

and green lines represent the probabilities of Type I and Type II error 

respectively.   

In Figure 4-22a, the sample with error falls below the threshold while the 

truth is greater than the threshold increasing the probability of Type I 

error locally.  Figure 4-22b shows a location where the sample with error 

falls further from the threshold than the truth reducing the local 

probability of Type I error.  In Figure 4-22c and Figure 4-22d the sample 

with error falls opposite the threshold than the truth leading to an 

increase and a decrease in the local probability of Type II error 

respectively. 

4.8 Summary 

This chapter has mentioned some of the ‘known unknowns’ (Maluf et al., 

2005), things that are known to be unknown.  It is known that the 

decisions of stationarity and input parameters as well as various 

geostatistical assumptions can affect uncertainty while the exact nature of 

their effect is unknown.  This chapter has also considered the ‘known 
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Figure 4-22:  Instances where sample error has a) increased local Type I probability, b) decreased 

local Type I probability, c) increased local Type II probability, and d) decreased local Type II 

probability. 

knowns’.  Factors such as the proportional effect, nonstationarity, and 

classification thresholds are known to affect uncertainty and the nature of 

these effects can be quantified, or made known.  It must also be 

acknowledged that there are ‘unknown unknowns’ when it comes to 

uncertainty, things that are not known to be unknown.  After all possible 

causes for the relationship between data spacing and uncertainty have 

been examined, it may have to be conceded that there are aspects of 

uncertainty that elude even the most detailed study.    
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Chapter 5  

Case Study 

The proposed methodology is implemented using oil sands data from the 

McMurray formation in northern Alberta (Warren, 2003).  The data is 

bitumen thickness data within an area 112 x 171 km in size (Figure 5-1).   

Within this area data density is highly variable ranging from very low (< 

1 well per section) to almost 20 wells per section in select areas.  There are 

2514 data with an equal-weighted average thickness of 20.8m; accounting 

for data clustering yields an average thickness of 16.1m (Figure 5-2).  

Bitumen thickness is laterally continuous; the horizontal omnidirectional 

variogram of the normal scores of the thickness data is shown in Figure 

5-3.  The variogram model is isotropic with three structures summarized 

in Table 5-1.  

 

Table 5-1:  Variogram model parameters for bitumen thickness normal scores. 

Structure Type Contribution Range 

1 Exponential .5 700 

2 Spherical .25 5000 

3 Spherical .25 15000 
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Figure 5-1:  Location of bitumen thickness data. (adapted from Alberta, 2000) 
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Figure 5-2:  Bitumen thickness distributions: left - equal weighted; right - declustered. 

 

Figure 5-3:  Variogram of the normal scores of the bitumen thickness. 

 

The relationship between uncertainty and data spacing/density is 

evaluated in two different ways.  The first method applies the 

methodology proposed herein.  Truth realizations are generated 

conditional to the bitumen thickness data that are then sampled at 

spacings from 400m to 4000m.  This range is much larger than would 

normally be considered in practice, but suffices for illustrative purposes.  

This range also does not consider spacings less than 400m that would also 

be considered in practice.  The samples are used to generate additional 

realizations from which measures of uncertainty are determined.  This 
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allows the establishment of the relationship between data spacing and 

uncertainty for this histogram and variogram.   

For the second method, measures of uncertainty are determined from 

simulated realizations generated conditional to the bitumen thickness data.   

Data spacing is determined on a regular grid using the constant n method 

described in Chapter 2.  The measures are then compared to their 

corresponding data spacing to arrive at the relationship between data 

spacing and uncertainty.  For both cases, data-scale values are simulated 

at a spacing of 100m which are then block averaged to 400m square 

blocks.   

5.1 Method One 

Reference realizations are generated conditional to the pre-existing 

thickness data.  Values are simulated every 100m.  This realization is then 

sampled at the desired spacing.  A 1% random sampling error is added to 

each sample and these samples are used to condition 100 realizations of 

thickness.  The point-scale values in these realizations are averaged into 

blocks 400m square.  There are about 120,000 400m blocks within the area 

of interest.  Uncertainty measures are calculated from the 100 realizations 

at each block location.  Data spacings from 400m to 4000m are evaluated. 

Results for standard deviation are shown in Figure 5-4.  Uncertainty is 

highest for the largest spacing.  The distribution shapes are primarily 

negatively skewed.  There is a hint of a bimodal distribution at a spacing 

of 800m confirming the earlier observation that the distributions of non-

standardized uncertainty measures tend to be bimodal for spacings 

approximately twice the block size. Uncertainty is reduced by reducing the 

distance between data.  The magnitude of this reduction is controlled by 

the variogram.  For the thickness variable, halving the data spacing from 

1600m to 800m decreases the expected standard deviation 
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Figure 5-4:  Standard deviation versus data spacing for the oil sand example for data spacings from 

400m to 8000m. 

from approximately 7.6m to 6.0m.  Halving the spacing again from 800m 

to 400m decreases the expected standard deviation from 6.0m to slightly 

less than 4.0m.  The variance of the nine expected standard deviation 

values is approximately 2.6 while the expected variance of the nine 

distributions of standard deviation is approximately 1.7.  This means that 

data spacing is responsible for about 60% of the uncertainty captured by 

the standard deviation while the other 40% is due to other factors. 

Figure 5-5 demonstrates the behavior of the difference between percentiles 

measure.  Its behavior is similar to the standard deviation.  The expected 

difference is lowest for a spacing of 400m at approximately 10m and 

increases to 24m at a spacing of 4000m.  The distributions are 

predominantly negatively skewed there are more locations far from data 

than close to data when samples are on a regular grid.  The variance of  
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Figure 5-5:  Difference between percentiles versus data spacing for spacings from 400m to 4000m. 

the nine expected difference between percentiles values is approximately 

17 while the expected variance of the nine distributions of difference 

between quantiles is approximately 14.  This means that data spacing is 

responsible for about 55% of the uncertainty captured by the difference 

between percentiles while the other 45% is due to other factors. 

The behavior of the coefficient of variation is shown in Figure 5-6.  Its 

expected value increases with increasing data spacing similar to the 

measures previously examined.  This increase is steep for small data 

spacings and flattens off at spacings greater than 700m.  This reflects the 

variogram model used which has a range of 700m for the first structure.  

The distributions are positively skewed as there are few instances where 

the standard deviation is high for a low-valued mean.  The variability 

between distributions is much lower than the variability within the 

distributions relative to the measures observed earlier.  The variance of  
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Figure 5-6:  Coefficient of variation versus data spacing for spacings from 400m to 4000m. 

the nine expected coefficient of variation values is approximately 0.006 

while the expected variance of the nine distributions of coefficient of 

variation is approximately 0.03.  This means that data spacing is 

responsible for only about 17% of the uncertainty captured by the 

coefficient of variation while the other 83% is due to other factors. 

The behavior of the standardized difference between percentiles, shown in 

Figure 5-7, is similar to the coefficient of variation.  It increases with 

increasing data spacing in approximately the same manner, increasing 

more at small spacings and flattening off beyond a spacing of 800m.  This 

reflects the influence of the variogram model used which has a range of 

700m for the first structure.  This measure is also positively skewed due to 

their being few instances of large spread for low median values.  Again, the 

variability between distributions is much lower than the variability within 

distributions.  The variance of the nine expected values is approximately 

0.06 while the expected variance of the nine distributions is approximately 
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Figure 5-7:  Standardized difference between percentiles versus data spacing for spacings from 

400m to 4000m. 

0.44.  This means that data spacing is responsible for about 12% of the 

uncertainty captured by the standardized difference between percentiles 

while the other 88% is due to other factors. 

Precision is a measure of the narrowness of a distribution and therefore 

decreases with increasing data spacing as shown in Figure 5-8.  Precision 

for this study is defined as the proportion of a distribution that falls 

within 15% of the mean of that distribution.  The expected precision for a 

spacing of 400m is approximately 0.68 and decreases to approximately 0.36 

for a spacing of 4000m.  For small spacings the distribution of precision 

values is negatively skewed with a large number of precision values near 

1.0.  As spacing increases, the distribution changes to being positively 

skewed reflecting the increase in the number of locations far from data.  

The variance of the nine expected precision values is approximately .008 
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Figure 5-8:  Precision versus data spacing for spacings from 400m to 4000m. 

while the expected variance of the nine distributions of precision is 

approximately .03.  This means that data spacing is responsible for about 

25% of the uncertainty captured by precision while the other 75% is due 

to other factors. 

The probabilities of the two types of misclassification error are shown in 

Figure 5-9 and Figure 5-10.  The classification threshold for this study is 

20m.  When the truth is greater than or equal to 20m there is potential for 

Type I misclassification to occur and when the truth is less than 20m there 

is potential for Type II misclassification error to occur.  For the nine data 

spacings considered many locations have 0% probability of being 

misclassified as is shown by both the 10th and 25th percentiles being zero.  

The expected probability of misclassification is the most useful summary 

here.  As is shown in both plots, the expected probability of 

misclassification increases with increasing data spacing.  The relative  
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Figure 5-9:  Probability of Type I error versus data spacing for spacings from 400m to 4000m. 

 

Figure 5-10:  Probability of Type II error versus data spacing for spacings from 400m to 4000m. 
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probability of each type of misclassification error is dependent on the 

value of the threshold with respect to the reference distribution.  The 

threshold of 20m is greater than both the mean and median of the 

reference distribution.  This means there are more locations where the 

truth is less than 20m increasing the possibility of Type II misclassification 

errors.  The possibility of Type I errors is reduced for this threshold, but 

when a Type I error is possible, it is more probable.  This increased 

probability is communicated by the higher P90 values in Figure 5-9 than 

in Figure 5-10.  The higher possibility of Type II error means that the 

expected probability of Type II error is greater than the expected 

probability of Type I error.  For a data spacing of 4000m the expected 

probability of Type I error is approximately 0.17 while the expected 

probability of Type II error is approximately 0.19.  The difference in 

probabilities is small due to the threshold being close to the center of the 

reference distribution.  The variability among the nine expected values for 

these two measures is very low relative to the variability within the 

distributions.  Data spacing accounts for only 2% of the variability while 

the remaining 98% is due to other factors. 

5.2 Method Two 

For the second method, the relationship between uncertainty and data 

spacing is determined by generating 100 realizations of thickness 

conditional to the thickness data.  These realizations are block averaged 

and uncertainty measures are calculated from the block averaged values.  

This method requires a measure of data spacing at all locations.  Data 

spacing is determined on a 400m grid by applying Equation 2.1 where nV 

is 20.  Once V has been determined it is a simple matter to calculate 

density and spacing.  Maps of data density and data spacing are shown in 

Figure 5-11.  The histograms associated with these maps are shown in 

Figure 5-12.  Data density is overall very low with a few small areas being 
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Figure 5-11:  Data density and data spacing on 400m grid. 

 

 

Figure 5-12:  Histograms of data density and data spacing. 

densely sampled.  The majority (>60%) of the data spacing values are less 

than 4000m.  The smallest spacing observed is just under 400m.  

Examination of the relationship between data spacing and uncertainty is 

restricted to data spacings in this range.   
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Figure 5-13:  Local mean and variance of the 100 simulated realizations at 400m scale. 

SGS is used to generate 100 conditional realizations of normal scored 

bitumen thickness.  Each realization has 1,915,200 simulated values (1120 

x 1710) spaced every 100m.  The normal score variogram in Figure 5-3 is 

used to define the spatial continuity.  The normal score values are back-

transformed to units of bitumen thickness according to the declustered 

distribution shown in Figure 5-2 right.  The back-transformed values are 

then block averaged to 400m square blocks.  Figure 5-13 shows the local 

mean and variance of these 400m blocks. 

Five of the seven previously utilized uncertainty measures are calculated 

for all 280 x 427 block locations.  The two probability of misclassification 

measures cannot be calculated in the absence of a realization of the truth.  

Figure 5-14 shows the relationship between the non-standardized measures 

of spread and data spacing.  The points are colored according to bitumen 

thickness and the line represents the mean uncertainty measure.  The 

direct relationship between these measures and data spacing is evident.  

The measures increase rapidly with increasing data spacing at first before 

leveling off at a spacing of approximately 700m, mimicking the variogram 
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Figure 5-14:  The relationship between the non-standardized measures of spread (standard 

deviation and P90-P10) and data spacing for spacings from 0 to 4000m. 

model.  The deposit has been densely sampled in areas where bitumen 

thickness is greatest as is evidenced by the low data spacings being 

dominated by high thickness values.  The proportional effect has an 
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influence on the results as the reference distribution is positively skewed.  

This is evidenced by a large spread in uncertainty for most data spacings 

where the uncertainty is clearly proportional to the bitumen thickness. 

The proportional effect has a markedly different impact on the 

standardized measures of spread shown in Figure 5-15.   The relationship 

between uncertainty and thickness is reversed with the thickest values 

having the smallest uncertainty and the thinnest values having the largest 

uncertainty.  This is due to the standardization step: dividing by a large 

thickness results in a small measure; dividing by a small thickness results 

in a large measure.  Standardizing also results in a more uniformly 

increasing relationship between these measures and data spacing. 

Precision has an indirect relationship with data spacing as shown in Figure 

5-16.  Precision drops dramatically for small data spacings before leveling 

off at a spacing of approximately 700m, mimicking the covariance.  For a 

given data spacing, precision is high where thickness is large and low 

where thickness is small.  The calculation of precision requires a distance 

from the mean, h, defined by a multiplicative constant as in Equation 2.7.  

The precision values shown in Figure 5-16 are determined using a 

multiplicative constant of 15%.  Using a relative measure like this leads to 

the relationship between precision and thickness exhibited in this figure. 
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Figure 5-15:  The relationship between the standardized measures of spread (coefficient of 

variation and (P90-P10)/P50) and data spacing for spacings from 0 to 4000m. 
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Figure 5-16:  The relationship between precision and data spacing for spacings from 0 to 4000m. 

5.3 Comparison of Methods 

A comparison of the uncertainty versus data spacing results is presented.  

The five measures are considered in Figure 5-17 through Figure 5-21.  The 

uncertainty determined by method one is represented by the black line 

histogram and erased box plot with the expected uncertainty being 

represented by the black dot.  The uncertainty determined by method two 

is represented by the five horizontal colored lines.  The dark blue, light 

blue, yellow, and red lines correspond to the 10th, 25th, 75th, and 90th 

percentiles and the expected uncertainty is represented by the black line.   

The non-standardized measures of spread shown in Figure 5-17 show 

reasonable agreement between the uncertainties determined using the two 

methods for most spacings.  For the spacings between 400m and 2500m, 

the uncertainty determined by method two is greater than the uncertainty  
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Figure 5-17:  A comparison of the relationship between standard deviation and P90-P10 versus 

data spacing for the two methods considered. 
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determined using method one.  The bitumen thickness data was 

preferentially sampled, that is, more samples were taken in areas where 

the bitumen layer is thick.  There are no thin values with small data 

spacings nor are there any thick values with large data spacings as is 

shown in Figure 5-18.  The absence of values in these ranges causes the 

uncertainty determined by the two methods to be different.  The 

proportional effect (increased uncertainty in areas of large thickness as 

shown in Figure 5-19) causes the uncertainty determined by method two 

to be higher for small data spacings where only thick values occur.  

Method one is not subject to effects caused by preferential sampling.  

There are thin values with small spacing and thick values with large 

spacing.  The uncertainty is low for the thin values, due to the 

proportional effect, reducing the expected uncertainty for small data 

spacings.  The overall trend of the uncertainty versus data spacing 

relationship is the same for the two methods.   

Preferential sampling and the proportional effect have a different effect on 

the standardized measures of spread shown in Figure 5-20.  For spacings 

less than 2500m the uncertainty determined by method one is 

substantially greater than that determined by method two while for 

spacings greater than 2500m the opposite is true.  As shown in Figure 5-

15, these measures are highest for small thickness values and lowest for 

large thicknesses.  The absence of any thin values at small spacings 

(<2500m) and the resulting absence of large uncertainty values for these 

spacings causes the uncertainty determined by method two to be less than 

that determined by method one.  Similarly, the absence of any thick 

values at large spacings (>2500m) and the resulting absence of small 

uncertainty for these spacings causes the uncertainty determined by 

method two to be greater than that determined by method one.  The 

overall trend of the uncertainty versus data spacing relationship is the 

same for the two methods.   
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Figure 5-18:  Bitumen thickness versus data spacing. 

 

 

 

Figure 5-19:  Bitumen thickness standard deviation versus bitumen thickness. 
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Figure 5-20:  A comparison of the relationship between the coefficient of variation and (P90-

P10)/P50 versus data spacing for the two methods considered. 
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Figure 5-21:  A comparison of the relationship between precision versus data spacing for the two 

methods considered. 

Precision is also affected by preferential sampling and the proportional 

effect as shown in Figure 5-21.  As shown in Figure 5-16, precision is 

highest for large thickness values and smallest for small thickness values.  

The lack of thin bitumen samples at small spacings (<2500m) and the 

resulting lack of low precision at these spacings results in the precision 

determined using method two being substantially higher than the precision 

determined using method one.  The lack of thick bitumen samples at large 

spacings (>2500m) and the resulting lack of high precision at these 

spacings leads to the precision determined by method two being lower 

than the precision determined by method one.  The overall trend of the 

precision versus data spacing relationship is the same for the two methods; 

precision decreases as data spacing increases. 
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The two methods generally show good agreement for the uncertainty 

versus data spacing relationships examined.  This serves to validate the 

proposed methodology.   
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Chapter 6  

Final Comments 

These closing comments provide a summary of the main points, highlight 

the contributions and discuss possible areas for future work. 

6.1 Summary 

One of the primary purposes of geological modeling is to aid and support 

decisions.  These decisions are best supported by models that meet some 

acceptable level of uncertainty.  Uncertainty is decreased as the spacing 

between data decreases.  This work has presented a methodology for 

evaluating the uncertainty as a function of data spacing.   

In order to quantify the relationship between data spacing and 

uncertainty, geometric measures for describing the spatial arrangement of 

data were defined.  These measures include data spacing and data density.  

Determining these measures at a location involves counting the number of 

samples that fall within some volume.  These measures are a function of 

the number of samples and the volume that encompasses them.   

It was also necessary to define measures of uncertainty.  Uncertainty can 

be communicated in a variety of ways.  The measures described herein 

have been found to be useful in a geostatistical context and include 

standard deviation, coefficient of variation, difference between specific 

percentiles, precision, and probability of misclassification.   
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The methodology for evaluating the relationship between uncertainty and 

data spacing involves simulating realizations of the truth, sampling these 

realizations at specified spacings, and simulating conditional to the chosen 

samples.  These conditional realizations are then block averaged to some 

relevant scale and local measures of uncertainty determined for each 

location.  This results in measures of uncertainty for the specified data 

spacings.  The data spacing at which an acceptable level of uncertainty is 

met can then be determined.   

Uncertainty depends on more than just data spacing.  A number of other 

factors include the decision of stationarity, uncertainty in the input 

parameters, the proportional effect, nonstationarity in the variogram, 

classification thresholds, number of realizations, and data quality.  The 

effect of each of these factors was discussed.   

6.2 Contributions 

This work provides three main contributions.  The first is an integrated 

approach for determining the relationship between data spacing and 

uncertainty.  A program called ADUDS, which stands for the Automatic 

Determination of Uncertainty versus Data Spacing, implements this 

methodology.  It takes the necessary input parameters, performs the 

evaluation, and outputs the distributions of uncertainty measures for the 

specified data spacings.  A process that previously would have necessitated 

running multiple programs with extensive file manipulation has been 

consolidated into one program.   

The second contribution is clear documentation and definition of various 

geometric and uncertainty measures.  The calculations of geometric 

measures presented herein are robust and applicable to any spatial data.  

The definitions of various measures of uncertainty are useful as they are 



92 

 

not well defined in the literature with respect to their calculation from 

multiple simulated realizations. 

The third contribution is an understanding of the confounding factors.  It 

is understood that uncertainty is not entirely controlled by data spacing.  

The proposed methodology allowed the influence of a number of these 

factors to be isolated and analyzed.   

6.3 Future Work 

The benefits of an integrated approach to determining the relationship 

between data spacing and uncertainty have been demonstrated.  The next 

step is to apply the methodology to a real problem as it relates to 

regulatory requirements.  Codes for public disclosure suggest that the error 

associated with estimation for classification be quantified.  The petroleum 

resource/reserve classification scheme presented in NI 51-101 (CSA, 2007) 

and the accompanying CIM guidelines mention specific probabilities.  This 

is less common in the mining industry.  Codes such as the JORC code 

(JORC, 2004), SAMREC code (SAMREC, 2000), SEC Industry Guide 7 

(USSEC, 2006) and NI 43-101 (CSA, 2005) make no mention of specific 

probabilities; however, there is an expectation that the uncertainty would 

be quantified and used to support the final classification decision.  The 

methodology has been applied to real data as demonstrated in Chapter 5, 

but no effort has been made to consider regulatory requirements.   

Another area of future work is the determination of an acceptable level of 

uncertainty, or a procedure for making this determination.  The format of 

the uncertainty statements could appear as universal and independent of 

the deposit type; however, the level must be customized for each deposit.  

There are no clear guidelines for choosing the parameters or thresholds of 

acceptable uncertainty.   



93 

 

The issues of uncertainty in the model and the input parameters were 

mentioned.  These decisions affect uncertainty; however their impact was 

not assessed.  Examining the influence of these decisions on uncertainty 

would be useful. 
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Chapter 8  

Appendix – Practical Guide 

The methodology proposed herein results in a quantification of the 

relationship between uncertainty and data spacing as exemplified in Figure 

A-1 where uncertainty is measured by the standard deviation.  Some 

direction regarding the interpretation of this plot is useful, particularly 

with respect to an acceptable level of uncertainty.   

Defining an acceptable level of uncertainty is not trivial.  It depends on 

the attribute being considered, the applicable stage of the project, and the 

motive for its definition.  Determining an acceptable level requires a great 

deal of analysis.  It involves choosing an appropriate measure and 

determining what level of this measure is acceptable.  This is done in the 

context of the decision to be made, considering the consequences of the 

possible choices for various levels of uncertainty.  The acceptable level of 

uncertainty is the level when enough is known be comfortable with the 

consequences of the decision.   

Assume that for the relationship shown in Figure A-1 an acceptable level 

of uncertainty has been determined at a standard deviation of 0.75.  This 

value could be in units of thickness or grade or any other variable, but 

specific units are omitted from this discussion without loss of applicability.  

The goal is to choose a data spacing that will meet the required level of 
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uncertainty.  Simply specifying 0.75 as the required level is insufficient.  

Must the expected uncertainty be 0.75?  Must 90% of the locations meet 

this level?  75%?  25%?  Each case yields dramatically different results.   

To illustrate, consider that the expected standard deviation must be 0.75.  

Interpolating between the expected standard deviation for a data spacing 

of 90m and the expected standard deviation for a spacing of 110m (green 

line in Figure A-2) shows that the data spacing that meets this criteria 

will be slightly less than 110m (blue arrow in Figure A-2).   

Next, consider that the acceptable level of uncertainty requires 90% of the 

locations to have a standard deviation less than 0.75.  Interpolating 

between the 90th percentile for a spacing of 70m and the 90th percentile for 

a spacing of 90m (green line in Figure A-3) reveals that a data spacing of 

~75m (blue arrow in Figure A-3) meets the acceptable level.   

Finally, consider an acceptable level of uncertainty where only 25% of the 

locations must have a standard deviation less than 0.75.  This requirement 

is met at a spacing of 130m (see green and blue lines in Figure A-4).    

These three examples illustrate the necessity of stipulating a probability as 

part of an acceptable level of uncertainty.  Stating only a desired level of 

uncertainty can lead to multiple interpretations, each with different results 

as shown by the large spread in data spacing values from ~75m to 130m. 
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Figure A-1:  An example of the relationship between uncertainty and data spacing. 

 

Figure A-2:  Determining data spacing when expected value of 0.75 is the acceptable level of 

uncertainty. 
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Figure A-3:  Determining data spacing when 90% of locations must have standard deviation less 

then 0.75.

 

Figure A-4:  Determining data spacing when 25% of locations must have standard deviation less 

than 0.75.




