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ABSTRACT

Let H be a real Hilbert space and B(H) be the
C*-algebra of bounded linear operators on H with the;usual
operator norm. This thesis is concerned with the self-adjoint

c*-valued Riccati differential equation

R(X](t) = X'(t) + AT (£)X(t) + X(t)A(t)

+ X(t)B(t)X(t) + C(t) = 0. (%)
We shall derive comparison theoremg for (+) under the
assumption that A, B and C are continuous functions from
some real interval J. into . S, the subspace of B(H) con-
sisting of self-adjoint operators. Our main motivation for
this study is the tremendous amount of research that has been
done on scalar and matrix Riccati differential equations which
occur not only in analysis but in control theory, dynamic

programﬁing and other fields in engineering.



PREFACE

Chapter I is devoted to background information and preliminary
results. In section 1.1 we present the basic terminology and a list
of symbols that will be used throughout the thesis. Section 1.2 deals
with integration and differentiation of B-valued functions. In sections

1.3 and 1.4 we state a few basic facts concerning Banach algebras and

/
/

self-adjoint operators in a Hilbert space, respectively. In section
1.5 we study the properties of positive operators. An example
illustrates the fact that some well known results about positive
operators in a finite dimensional Hilbert space no longer hold if H
is infinite dimensional. In section 1.6 we present theorems on th;
existence, uniqueness, and dependence on initial condiiions of solutions
of differential equations in Banach spaces. In section 1.7 we apply the
results oé section 1.6 to the Riccati differential equation (#). In
section 1.8 we study the initial value problem X' = A(t)X, x(to) = Xo,
whgre A is é continuous C*-valued function. If to ¢ (a,b), we show
that this IQ; has a unique solution X(t) throughout (a,b) and that
X{t) 1is non—singulér on Ja,b) iff ‘XO is non-singular. With the
eiception of some theorems and examples in sections 1.4, 1.5 and 1.8,
the rest of Chapter I is completely expository and can be found in the-
literature. \

The main results oﬁ this thesis are in Chapters II, III and IV.
In Chapter II we study solutions of the Riccati differential

equation R[X](t) = 0 and solutions of the Riccati differential

inequalities obtained by replacing the equality by some

- vi -



inequality. We generalize the standard comparison theorems that are
known for matrix Riccati differential equations to the c*-algebra case
without any additional assumptions.

In Chapter III we give comparison theorems for Riccati differential
equations of the form X' + x2 + Q0.t) = 0 where the comparisons are of
integral type. The proofs for the matrix case make use of the fact that
if X(t) is a continuous matrix function such that X(to) > 0, then
X(t) > 0 for all t wme nelghbourhood of to. This is not true
if H is infinite dimensional as demonstrated by an example iﬁ section
1.5. It is found, however, that these comparison theorems can be
generalized to the C'—algebra case by imposing a condition on the spec-
trum of the initial value. Other comparison theorems are also
presented where, through the use of limit arguments, this additional

assumption is not needed. '

In Chapter IV we give examples and combine the results of
o
Chapters II and III to obtain additional comparison theorems. Some of
the theorems of this chapter give conditions under which () has

solutions that are positive throughout an unbounded interval, and hence

they can be thought of as being non-oscillatiogn theorems.

- vii -
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§1.1 Definitions and List of Symbols

In this section we shall define the spaces that will be of
interest and prosent the basic terminolpgy used throughout the thesis.

Let F stand for either R or C, the field of real and
complex numbers, respectively. A complete normed space over the scalar
field F‘ is calle& a Banach space (B-space) over F. “A complete inner
product space over F is called a Hilbert space over F. The symbols

H H and (,) shall denote the norm and inner product, respectively.

Definition. An algebra over F 1is a vector space X over F in which
to each ordered pair (x,y) € X x X there corresponds an’ element xy'

("x times y") of X subject to the following axioms:

(i) (xy)z = x(yz)
v (1) (x+y)z = xz + yz, Xx(ytz) = xy + Xz

(iii)  (ax) (By) = (aB) (xy)
for all x,y,z: in X and a,8 ¢ F.

" pefinition. X is a Banach algebra over F if it is a B-space and an

algebra over F that contains a unit element e such that H eH = 1,

‘xe = ex = x for all x € X; and the inequality || xy]l:_ﬂ x“ IIyH is

satisfied for all x, y € X..

[N

Definition. If X is an algebra over F then an involution on X is

»

) 1



a mapping -~ x* of X into X which satisfies
(1)  x** = x
(i1)  (xy)} = y*x*
(ii1) (ax+By)* = ax* + By*
for all x, vy e X and «, 8 € F. Here a denotes the complex con-
jucate of a € F. . .

Definition. X is said to be a C*-algebra over F if it is a Banach

algebra over F in which || xx*|]| =|ix'|2 for all x € X.
»

It follows immediately from this definition that an element

x of a C*-algebra satisfies the inequality Hx H < H x*H i.” x'*H

= || x|| and hence we must have || x|| = || x* .

“e

If the word 'real' or 'complex' prefaces a space it indicates

the scalar field for that space.

We now present a few relevant and well known results from

functional analysis (s ¢ e... Rudin (24]). If X is a B-space thg: the

.space B(X) of boundec iinear operators on X with the usual operator

norm

I all = sup. | ax],

| x|} =1

is a Banach algebra. 1In addition, if H is a Hilbert space and

A ¢ B(H) then there exists a unique A* € B(H) (called the adjoint of
A) such that (Ax,y) = (x,A*y) for all x, y € H. The mapping A > A*
.is an involution on B(H) and B(H) is a C*-algebra relative to this

inveolution,



An element A of B(H) 1is said to be self-adjoint if A = A*.

It is clear that any closed self-adjoint subalgebra of B(H) is also a

'

C*-algebra. Every (C*-algebra ‘can, in fact, be shown to be isometrically

isombrphic to such an algebra (J. Dixmier (6), p. 45). 1t is in B(H),

the most representAtive example of a C*-algebra, that we shall study

Riccati differential equations.

p (B)

o (A)

Il
(.)
0

List of Symbols

Adjoint of A

Inverse of A

Identity operator B
An interval in R | -
The resolvent Qgt of A

3

T spectrum of = A

" Norm

Inner product
4

Denotes end of proof

Symbols for pafticular spaces. These symbols will be used throughout the

thesis to 'mean the following:

¢
R

B(x)

The empty set ‘ \\ {
The real field B

The complex field _ o
A real B-space

A real Hilbert space

The real Banach algebra of bounded linear operators on X.



B(H) The real C*-algebra of bounded linear operators on H.
S The closed subspace of B(H) consisting of self-adjuint

(symmetric, hermitian) operators

r

clu, V) The space of continuous functions from U into V
’ ™
The letter X will sometimes represent an operator. Tt will

be obvious from the context whether X 1is a bounded operator or a real
B-space.

' QL have taken the scalar field to be R throughout the thesis
since S then is a Banach space, a fact that we shall need in the
future. Nevertheless, all results of Chdbtér I (~.th the exception of
L Théorem l.%.l) ake valid even when the scalar field is complex. Also,

the reéﬁlts‘of section 1.2 hold ¢-en if X 1is just a normed space.

§1.2 1Integration and Differentiation in B-spaces

¥ J be a real interval and X a real B-space. Elements

(a1

;‘of the space C[J,xf A}e called abstract functions. The calculus o
abstra:t functions is the topic of this section. We shall present the
results‘th;t are of interest to us without any proofs. The p;oofs are
very straightforward generalizations of those for the scalar case. ?his
=tgpic has been extensively dealt with by a variety of authors. 1In this
regard we refer to the texts of J. Dieudonne (4], L.V. Kaﬁtorovich and
G.P. Akilov [15], G.E. Ladas and V. Lakshmikantham [17), J.T. Schwartz

K

[25], and G.E. Shilo¥ [26].

Contiﬁhity and Differentiability

“ The usual definitions of boundedness, continuity, differenti-

ability, and so on apply for abstract functions. For example, the



abstract function x:J + X 1s continuous at the point t +« J 1f
el

H x(t)-x(tO)H 0 as t *t and continuous on J if 1t 1s
)
continuous at each point of J. The c¢ornvergence here, as throughout

ive to the norm topology.

rr

the rest of the thesis, 1s rela

Abstract functions thave like ordinary functions in many
respects. For example, continuous abstract functions map compact sets
into compact sets and hence are boundad on cohpact sets. Also, a
continuous abstract functiop is uniformly continuous on a compact set.
For convenience the word abstract will be left out from now on.

x(t) 1is said to be differentiable at a point to € J 1if the

limit
x(t +h)—x(to)
x'(t ) = lim h ,
h-+o
called the derivative of x(t) at t = to, exists in X. If to- is an

endpoint of J then the appropflate one-sided limit is taken. x(t) i=r

differentiable on J 1if i+ differentiable at every point of J. The

following properties of d::ferer _ation are the exact analogues f those

for scalar functions:

1) If x(t) 1s differentiable at to then it is continuous

at t

2) If x ¢ C[[la,b],X] and H x'(t)H < K on [a,b] then

[| x(®)-x(a)|| < K(b-a).

3) If x(t) 1is differentiable on [a,b] then
4i<

x(b) - x(a) € (b-a) co {x'(t):tefa,bl]}



where co denotes the closed convex hull.

4) If x(t) and vy(t) aye differentiable on J then so is
ax(t) + y(t), a1 ¢ R, and [(ax(t)+y(t = oax'(t) + y'(t).
S} If X is a Banach algebra, x{t} and y{t) are

"y
differentiable on J, then so is x(t)y(t) and
) (x(t)y(t)]' = x(t)y'(t) + x'(t)y(t).

6) If x(s) is differentiable on J and s5(t) is a real

function with values in J and differentiable at tO then the composite

function vy(t) = x(s(t)) 1is differentiable at to and

y'(t ) = x'"(s(t ))s'(t ).
(] o o

7) If x(t) 1is differentiable, X' 1is also a B-space,and A

is a bounded linear operator from X into X' then

(Ax(t)]' = Ax"'(t).

Also, if A = A(t) 1is differentiable then

(A(t)x]' = A'(t)x, x € X.

8) If H 1is a Hilbert space and A ¢ C[J,B(H)] is

differentiable on J then

[(A(t_)X.y)] = (A'(t)x,y)

for all x, y € H.

The Riemann Integral |

7

7 -

Let x:[{a,b] - X be an abstract function. For any péitition

.



T fa =t Tt L S ¢ -t = b}

with diameter

fnl = max at,  (at =t -t )
i 1 1 1+ 1

we can form the RiemanY®sum

n-_l
S_ = 2 x{(1.)4¢t,
m _ 1 i
i=o

If there exists an element I of X such that STT + I for every
n
sequence of partitions {nn} for which |nn| > 0 we say that I is the

integral of x(t) over [a,b} and write
I =/ x(t)dt.

As in the scalar case we have the following properties of the

integral:

1) If x e C{[a,b],X] then f: x(t)dt exists.

2) fz x(t)at = - fg x(t)dt if at least one of the integrals

-

exist.
' b
3) {ﬁ x(t)dt = [~ x(t)de + [2 x(t)dt provided that the
&
integral on the left exists.
4) ; [ax(t)+y (t)]dt = a IZ x(t)dt + fz y(t)dt, a is real,
if( the integrals on the right exist.
"1 b b
5) llfa x(t)dtl| i.fa | x(t) |l at if x e clla,b],X].

& [P x dt = (b-p)x_



7) If x(t) 1is integrable on [a,b] then

!

b
l - .
> fa x(t)dt ¢ co (x(t):tefa,b]}

-

8) If X 1is a Banach algebra and x € Cf{(a,b],X] then

|
L

b b
[ x(t)yat = <f x(t)dt>y
a a
’ . .
for y € X and similarly for left multiplication.
9) If x e C{la,b],X], X' 1is also a B-space,and A is a
bounded linear operator from X into X' then

b b
[ ax(vat = A(f x(t)dt>.
a

a

Also, if Ae= A(t) 1is continuous on [a,b] then

. -

b b
/ A(t)xdt=<[ A(t)dt)x

a a

for x e X.

[y

10) If x ¢ Cl{a,b],X] then

t L] .
[f x(s)ds] = x(t) )

a

for all t e [a,b].
11) If x(t) 1is continyously differentiable on [a,b] then -
t

x(t) = x(a) + | x'(s)ds
a



for all t ¢ [a,b].

L2y If X 1is a Banach algebra and x(t) and vy(t) are
continuously differentiable on [a,b] then
b

b
[ xm)y'(vdt = x(t)yt)| - f
a a

b
x'(t)y(t)dt

a
13) If u(t) 1is a real, continuously differentiable func;ion'
on [a,b] and x 1is a continuous abstract function on {u(t):tela,b)?

then

u(b) b
/ x(s)ds = [ x(u(t))u'(t)dt.
u(a) a

Improper Integrals

Let x:[a,b}] - X be an abstract function not defined at

b <=, If x(t) 1is integrable on every interval [a,c] g [a,b) then

¥

the improper integral of x over [a,b) is defined a

b-¢
lim [ x(t)dat if b < ®
€0 a - o

and \
o

N N
lim [ x(t)dt if b=
Nre a :

provided that the limit exists.

Sequences and Series of Abstract Functions

4
Let xn(t) be a sequence of abstract functions. We say xn(t)



10

converges to x(t) on [a,b] if l%m H xn(t)-x(t)H = 0 for each
t ¢ {a,b]. Moreover, we say xn(t) converges uniformly to x{t) on
fa,b] if

lim  sup || x to)-x(o) ] =o.

n+ tefa,b]

B )
The following results from elementary analysis hold for

/

sequences of abstract functions:

1) The limit of a uniformly convergent sequence of continuous

e

functions is itself continuous.

2) 1If xn(t) is a sequence of functions integrable on [a,Db]

which converge uniformly on ' {a,b], to x(t) then x(t) 1is also
integrable and

y ' t t
v lim f 'xn(s)ds = f x(s)ds
Mo a . a

holds unifogmly for all t ¢ [a,b].

3) Let Xn(t) be a sequence of\continuously differentiable
functions on- {a,b] that converge for at least one point in [a,b].

Suppose that the sequence xé(t) converges uniformly on [a,b] to y(t).

Then the sequence xn(t) ‘converges uniformly on [a,b] to a continu-

ously differentiable function x(t) with derivative

xt(t) = lim xg(t) = y(t)
. - - N w .

I

+

We say Efif/}Le infinite series Z xn(t) converges on

n=1
[a,b] if the sequence of partial sums Sn(t) = g' xj(t) converges on ,
. =1
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(a,b]. The preceding two results give sufficient conditions for term-
by-term integration and differentiation of a series of abstract

functions.

The results of this section will be used implicitly in the

succeeding chapters.

§1.3 Non-singular Elements of a Banach Algebra.
We consider the Banach élgebra B(x) where X 1is a real

B-space. We say that A ¢ B(X) is non-singular if there exists an

element A—l in B(X), called the inverse of A, such that AA_l = A—lA

= I where I 1is the unit in B(X).
We show now that the unit ball about I consists ¢f non-

singular elements. 4 . J
\ ‘ ~—
\ -
T

THEOREM 1.3.1 If A e-B(X)\~and |All <1 then I - A is non-

singular.

n . .
Proof. Le® S = ) Al (with A°=I).

3T
From

om . m. J
I's_-s, Toall < I lal

’ a+l n+l
follows the fact that = ‘erges to an element S of B(X). Note
that (I-—A)Sn = San—A) B - ,-d hence (I-A)S = S(I-A) = I.
That is, I - A 1is non-sirgul- nverse S. 0

(]

COROLLARY 1.3.2- If A ¢ BX) un? A- <1 ¢tznen A 1is non-singular.

1

Proof. This follows immediately frcm the ar e theorem since
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A=1- (I-A) and || 1-a]] < 1. q

The following theorem shows that the set of non-singular

elements is open in B(X).

THEOREM 1.3.3 If A_ e B(X) is non-singular and i A—Ao” < | A;llr{

then A 1is non-singular also.

Proof. We have

"

A=A - (A-A) = A [1-A (A -a)].
o] o (o] o] o

-1 , . _ )
[1—Ao (AO-A)] 1s non-singular by Theorem 1.3.1 since IIAol(Ao—A)H < L

Thus A is non-singular being the product of two non-singular elements.

a

~

It is also easily shown (Rudin [24]) that the set of non-
singular elements of B(X) is a group and that the mapping. A - A-l

is a continuous map of %his group onto itself.

§1.4 Spectral Theory of Self-Adjoint Operators

-t H bg a real Hilbert space and S the subset of B(H)

consisting of self-adjoint operators. We«heve the following result
AN
concerning S. ‘ \
3 R
THEOREM 1.4.1 S is ch space (with the same norm as B(H)).

)

i

Proof. Since the &calar field is real it is easily verified that S is
a subspace of B(H). Now suppose that {An} is a sequence of self-
c s

adjoint operators that converge in B(H) to A. That A is also self-~
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adjoint follows from the facﬁ that

/
(Ax,y) = lim (A _x,y) = lim (x,A y) = (x,Ay)
n n n n R

for all x, y efH. Thus S 1is a closed subspace of B(H) and is

0

therefore a Brspace.

-

S is not a Banach algebra since the product of two arbitrary

- .
self-adjoint operators is not necessarily self-adjoint. We have the

i
following result however:

!

I

THEOREM l.A.2f If A and B are‘self-adjoint operators that commute

{

(i.e. AB = QA) then AB 1is also self-adjoint.

|

Proof. Follows immediately from
— |

o
/ (AB)* = B*A* = BA = AB. 0

{

If A e S then it can be shown (Plesner [21], p. 199) that

the norm of A can be written as

= su %) |
a0 = sue Lo

The greatest lower bound and the least upper bound of a self-adjoint

S

oberator A are defined by

m(A) = inf (Ax,x) and M(A) = sup (Ax,x),
Il x[] =1 | [ x| =1
N

respectively. It then follows that

|| All = max {|m(a) ], |M(a)][}.
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3
If A ¢ B(H) then we say that A 1is in the resolvent set

o{(A) of A if AI - A is a bijection. Note that by the open mapping
theorem AI - A is a bijection iff it has a bounded inverse. If
A ¢ p(A) then A 1is said to be in the spectrum o(A) of A.

A direct consequence of Theorem 1.3.3 is that p(A) is open
and hence ¢(A) is closed. From Theorem 1.3.1 it also follows that
g(A) c [—H AH ,||A|[]. Thus O(A) 1is a compact set. Since our scalar
field is real it is not necessarily true that every bounded operator has
a nonempty spectrum. However for self-adjoint operators we have the

following result: , o

~N-

THEOREM 1.4.3 If A € S then o(A) < [m(A),M(A)]. Furthermore, m(3)

and M(A) belong to o(A).

Proof. See Liusternik and Sobolgv [18}, p. 148. 0

Thus every self-adjoint operator has a non-empty spectrum. We

now show that m(A) and M(A) are continuous functions of A.

THEOREM 1.4.4 m and M belong to CI(S,R].

"® Proof. Let A and Ao be self-adjoint operators and" x an arbitrary

element of H with | «; = 1. Then
- (Ax,x) = (A x,x) + [(A-A )x,x
|
< (A x,x) + \ A-—AOH (1)
and hence m(A) < m(Ao) + ||A-Ao[|. Also,
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(A x,x) = (Ax,x) + ((A_~A)x,x)
o o —e_
< (Ax,x) + A (2)
e
and hence m(A ) < m(A) + |/ A -Al| . Therefore |m(A) -m(A Y| < || A-A I
o - o o' — o

and we conclude m is continuous on S.

Similarly, from equations (1) and (2) we obtain
M(B) < M@A) + || a-a_||
- o o
and

M(A)

+

M(a )
o

| A

Fa-all;

respectively. Thus IM(A)—M(AO)I [lA-AOH and M is also continuous

| A

on S. A 0

§1.5 Positive Operatofs

We now define a partial ordering on B(H).

Definition. A positive Operator, A > 0, is a self-adjoint operator that

satisfies (Ax,x) > 0 for all x € B, x # 0. If the strict inequality

is replaced by an inequality we say that A is non-negative, A > 0.

Non-negative operators have the following properties:

l) If A >0, B >0, and o is a non-negative real number

then oA + B > 0.

2) If Ai\and -A > 0 then A = 0.

That is, the set of non-negative operators is a strict positive
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N
cone in B(H).
Definition. For A, B¢ B(H) we say A >B (A >B) if A-B >0
(A - B >0). A self-adjoint operator C 1is said to be non-positive
(negative) if 0 > C (0 > C).
If A>B (A > B) then we also say B < A (B < A). From

the discussion above it is seen tha; ">" and "<" are partial orders
on B{(H). Note that‘by our definition, a non-negative operator is
required to be self-adjoint. This condition is not always imposed’but
we do so since otherwise ">" 1is no longer a partial order on B(H) .
For example, if H = R2 and A is_the operator representing rotation
by % then (Ax,x) =0 for all x & H. Thus A 1_9’ and A <0 but

A # 0 and hence ">" 1is not a partial order. Imposing the condition of

self~adjointness removes this problem.

" We now show that the set of non-negative operators is a closed
7

strict cone in B(H).

«
I

LEMMA 1.5.1 If x ¢ H then the function fx(A) = (Ax,x) belongs to

c(B(),R].

Proof. If A, Ao € B(H) then

#

[fx (A)-£ (A ) | = | ((A-2_)x,%) l

2

I A

I a1 xll
and hence f ¢ C[B(H),R]. | , 0

THEOREM 1.5.2 The set of non-negative operators is closed in B(H).
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Proof. Suppose Ao i 0. Then there exists a xo € H, xo #0 such

that £ (A)) < 0. Thus by our lemma, f_ (A) < 0 for all A in some

X (o]
o o i

neighbourhood of AQ. This shows that the set {A:A i 0} is open in

B(H) and hence the set {A:AN> 0 is closed in B(H). 0
*

COROLLARY 1.5.3 If A:R > B(H) is continuous at t_ and A(t)) } 0

then A(t) i 0 for all t in some neighbourhood of to.

COROLLARY 1.5.4 If A e C[[a,c},B(H)] and A(t) > 0 on [a,c) then

7.4
A
\

A(c) > O.

The corollaries follow immediately from Theorem 1.5.2. Riccati
differential equations involving abstract functions like those in the
above forollaries is the topic of this thesis. 1In particular, we shall
be dealing almost exclusively with abstract functions from R into S.
The following result gives a condition under -hich sﬁch an abstract

function is bounded.

THEOREM 1.5.5 If A, B e C[[a,c],S], X e C[la,c),S] andm

»

A(t) > X(t) > B(t)
;

.

for all t € [a,¢) then X(t) is bounded on [a,c).

Proof. For any x € H, |Ix[{¥ 1 and t e [a,c) we have )
(X()x,x) < (A(t)x,x) < sup [ a(t)| ; !
- [a,c]
and hence M(A(t)) < sup | act)|] for all t ¢ [a,c). Also,

[a,c]

a3
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(X(t)x,x) > (B(t)x,x) > - sup || B(t)]||
. {a,c]
and hence m(A(t)) > - sup ” B(t)H for all t e (&,c]. Thﬁs '
’ {a,c]
| x(t) || = max{|m(A(t)) ], |MA(t))]}
< max { sup lace) ||, sup || B(t) ]
[a,c] {a,c]
for all t ¢ [a,c). i.e. X(t) 1is bounded on [a,c). 0

It ¥s clear from the definition that A > 0 iff m(A) > O.
Also, if m(A) > 0 then A > 0 but not conversely as we will soon see.
Thus A > O, 'A + 0 implies that m(A) = 0. 1In fact, the next theorem
characterizes non-negative operators that are not positive as those

having zero as an eigenvalue.

THEOREM 1.5.6 If A >0 and A * 0 then there exists a x, € H,

x # 0 such that Ax = 0.
o \ o]
Proof. See A. Plesner [21], p. 20l. 0

From Corollary 1.5.4 and Theorem 1.5.6 we obtain the following

result.

COROLIARY 1.5.7 If A € C[(a,c],B(H)] A(t) >0 on [a,c) and

A(c) + 0 then there exists a xo € H, xo # 0, such that A(c)xo = Q.

"If H is finite dimensional and Ao > 0 then m(Ao) > 0 and

hence A > 0 for all A in some neighbourhood of R in S. Thus the
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set of positive operators is open in S. This is not true in an infinite

dimensional space as the following example shows.

Example. Let H = ¢,

»

j+1 1
a. (t) =6, (-7 kw21,
1) 1] ]
where Gij is the Kronecker delta, and A(t) = (aij(t)). That 1s, A(t)
. . .. . . . n+l 1 .
is the infinite diagonal matrix diag{ (-1) t+ ;}. Since

jzl ag @] < fel + 1, 4 =123,

and

Iaij(t)[ le] +1, 3 =1,2,3,..

| A

H~18

then, by a theorem of Schur (A. Taylor [27], p. 328), A(t) represents a
bounded linear operator on 22 for all t. Or more directly, if

2 2
x = (xn) e L“° and || H denotes the 1 norm then

2

I x|l = )

L[}
t
N
AN
o e,
b3
jo I N
\_/
+
N
= Mg
T‘x
v:!
[N}
SN

+
[\8]
ct
.’JC
T
'—l
o]
+
—
I.k
V:'J
[\S)
S——
A
8
Hh
O
[a]
[}
—
—
(ad
™
-~

and therefore A(t)x ¢ 12. Also, A(t) is self-adjoint for all t
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since it is a diagonal matrix. We now show A(t) 1is a bounded operator
for all t. The spectrum of A(t) 1is the closure of its diagonal

elements and hence we obtain

o[A(t)) = {-t,+t} v {(—1)n+lt+% :n=1,2,...} (1)
By inspection of (1) we find
m(A(t)) = —|t] (2)
and
M(A(t)) = max{l+t,%-t}
1+¢t, t>-X
;5 - tr t i - lx

From (2} and (3) we obtain

[}

[ ae)]] = max{|m(a(t)) ]|, |[Ma(t)) ]}

o]

M(A (L))
- t, t:—lx

li-tl ti_LK

This shows A(t) € § for all t. ©Now, for any real numbers t and t

+

we have

I [A(t)—A(tl)]xH 5

)n

| (diag((-1 +l(tl-tn)xll "

ety |l xll -
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Therefore || A(t)—A(tl)[’ = It—tll and A € CIR,S]. At t =0 we see
that
2
*n
(A(0)x,Xx) = ) —f 0
n
.
for all x # O and hence A(0) > 0. It is clear from (2) however
that A(t) i_O for all ¢t # O. -\\

In summary, A ¢ C[R,S] and A(t) > 0 iff t = 0. Therefore
the set of positive operators is not an open subset of S. However there
is a subset of the séE'of positive operators that is open in S as the

following theorem shows.

THEOREM 1.5.8 In any Hilbert space H, the set {A > 0:0 ¢ o(A)} is an

open subset of S.

Proof. If A 0 and O ¢ G(AO) then m(AO) > 0 and hence m(a) > 0
for all A in some neighbourhood of AO in S (by Theorem 1.4.4).
Clearly, A >0 and O # o(A) for all operators A in this

neighbourhood. . - 0

"y

COROLLARY 1.5.9 If A:R~+ S i:s_continuo‘us at to, A(to) > 0 and

‘ .t
0 k o(A(to)) then A(t) > 0 for all t in some neighbourhood of to.
Finally, we present two last results about positive operatbrs.

THEOREM 1.5.10 If A and B are positive (non-negative) operators that

commute then AB 1Is also a positive (non-negative) operator.

Proof. See A. Plesner (21}, p. 201. 0
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\
An application of Theorem 1.5.10 is the following:
COROLLARY 1.5.11 If A and B commute and B > A > O [B > A > 0]
then leAzio [}32>A2>O].
Proof. If A and B commute then so do B + A and B - A with
(B+A) (B-A) = (B-A) (B+A) = 82 - Az. The corollary now follows immediately
from Theorem 1.5.10. 0

§1.6 'Ordinary Differential Equations in Banach Spaces

A great amount of research has been done recgﬁtgy and several
texts published on the theory of ordinary differential equ%tions in
Banach spaces. In thié regard we refer to the texts of K. Deimling [3],
S.G. Krein [16], G.E. Ladas and V. Lakshmikantham (17}, and R.H. Martin
[19], and to the research papers of J. Dieudonne [5], G.J. Etgen and
R.T. Lewis (8], T.L. Hayden and H.C. Howard [11l], and E.S. Noussair [20].

Let J be a real interval, D a closed subset of a real Ban;ch

spgpe X, and f a function from J x D into X. We consider the

initial value problem (IVP)

x' = £(t,x), x(t) =x (1)
o] o .

where (to,xo) e J x D. 1In this section we shall quote several theorems
concerning the existence and uniqueness of solutions of (1) and their
dependency on initial conditionét' ) D,
In case X = R® it is well known (Péano's existence theorem)
that continuity of f in a neighbourhood of (to,xo) implies the

existence of a local solution of (1). Ladas and Lakshmikantham-[17,

"~
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p. 128] provide counterexamples that show this result cannot be general-
ized to infinite dimensional spaces. However a generalization of the

classical Picard-Lindelof theorem is possible.

THEOREM 1.6.1 Let B(c;r) denote the closed ball of radius r with

center c. Let R = B(to;a) x B(xo;b) and suppose that ||f(t,x)|| <M

on R. If f(t,x) 1is continuous In ¢t for each fixed x and

||f(t,x1)—f(t,x2)]| < K|l x2—xl“ for (t,x;), (t,x,) € R where M,
K > 0 then (l) has a unique solution x(t) on B(to;a) where
’
. b
a = min{a, " }.
“ Proof. See Ladas and Lakshmikantham [17], p. 129. : 0
Now suppose that J 1is a real interval and D closed
subset of X such that ‘*'xo) € J x D. Suppose also thpat

x:Jx + D and y:Jy + D are solutions of (1)  on Jx < J and

Jy « J, respectively. We say that y 1is a continuation of x Aif

Jy > Jx and y(t) = x(t) for all ¢t e Jx' We say the solution

of (1) 1is noncontinuable if it has no proper continuation. If

a

is defined to mean that y is,a continuation of x then "<" |is
partial order on sclutions of (l). By use of Zorn's lemma, the foll

result can be proved.

”
THEORﬁh*).G.Z If £ e C[JIxD,X] then every solution x(t) of (1) has

a noncontinuable continuation y({t). ) \
Proof. See R.H. Martin (19], p. 199. 0

’

S /
Note that if (1) has a unique solution then it has exactly <
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one noncontinuable solution. \\\
Let x(t) be a solution of (1) and y:jy + D be the
noncontinuable continuation of x(t). The interval Jy n [to,m) is

t . <
called the right maximal interval of existence of x(t). We say- that

y:JY n [to,m) + D 1is a solution of (1) that is noncontinuable to the
right. A local solution to the right is a solution to (1) of the forﬁ
u:[to,to+6] + D, for some & > 0. Analagodf definitions can be made for
solutions to the in an obvious manner. \

For the case [X = R" there is a "cok&inuation of solutions"
theorem that says if f ¢ C[[to,to+a]xx,x] 4&&93 any solution x‘t) of
(l)h exists either on [to,to+a] or~on“’T£;,6) with & ¢ (toyto+a) and
| xte)l] + = as t > 6. Ladas and Lakshmikantham ((17], p. 131) give
an illustrative counterexample to show that this result does not hold in
infinite dimensional spaces. It does hold howevér if additional conai—

tions are imposed.

THEOREM 1.6.3 Suépose that f e C{JIxD,X], and maps closed bounded sets

into bounded sets. Suppose also that (1) has a local solution to the
right for each (to,xo) € J XD with to not a right endpoint of J.
If x:J_+ D is a solution to the right of the IVP (l) that is non-

continuable to the right then either Jx =Jn [tof°) or Jx = [to,c),

for some c > t and || x(t)]] += as t +Ac-.
Proof. See Martin [19], p. 200. ‘ : 0

Theorem 1.6.3 with the obvious modifications also applies to

solutions to the left.

An example of Dieudonne [5] shows that the condition f map
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bounded sets into bounded sets is a necessary condition for Theorem 1.6.3
to hold. We now examine the effect that perturbing the initial condition
(and the differential equation itself) of (1) has on its solutions.

The theorem that follows is a weaker form of one given by Martin in his
text ((19], p. 222).

Al
THEOREM 1.6.4 Let (to,xo) € J X X with to not a right endpoint

of J and suppose the following conditions hold:

o
(i) {fn}o are continuous functions from J x X into X,
where f = f,
o)
(ii) The 1IVP (1) has the unique solution u(t) whose domain
contains [to,b] c J.
(iii) For each R > 0 there is a continuous function

p,:J,+ [0,2) such that

R

e eoxi-£ e || < opte) | x-yll

for all (t,;&\ (t,y) € 3 x X with le l], Ily]l < R and for all
AN
n > 0.

(iv) fn(t;x) + f(t,x) uniformly for (t,x) in each closed,

bounded subset of J x X.

Now suppose that (tn,xn) -+ (to,xo) in J x X and let un(t)

be a noncontinuable solution of the IVP

uﬂ = ﬁn(t,un), un(tn) =x v (2)

for n=1,2,3,... . Then there exists a n_ 2 1 such that the domain
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of un(t) contains [tn,b] for all n > no. Also, for any ¢ > 0
there exists a .n(e) 2 ng such Fhat Il un(t)—u(t)“ < e for all
te [to,b] n [tn,b] and all n > n(e).

Note that if t, =t for all n then the sequence

{un(t)}nzpo converges to u(t)“unlformly on [to,eg.

Proof. See Martin (19}, p. 222. i ' 0

A result identical to Theorem 1.6.4 holds if ul(t) .45 a
O

solution of (1) or an interval of the form [a,to]. Combining the

two results yield the following corollary:

COROLLARY 1.6.5 Under the same conditions as in Theorem 1.6.4, if u(t)

is.a unique solution of (l) whose domain contains [a,b] with

t e [a,b] < J, then there is a subsequence {un {t)} such that
i
u_ (t) = u(t) wuniformly on [a,b].

n
1

v

§1.7 Riccati Differential Equations -~ Uniqueness of Solutions and

Dependence on Initial Conditions

Let J be a real interval, H a real Hilbert space and $§
the subset of BkH) consisting of self-adjoint operators. We will

apply the results of the previous section to the general Riccati

differential equation

»

X' + A ()X + XA(t) + XB(£)X + C(t) = 0

¢
<

where A, B and C are functions from J into B(H).

THEOREM 1.7.1 Suppose J = [a,b] and A, B, C € C[J,B(H)]. Then the
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Ive

X' + AY(£)X + XA(t) + XB(t)X + C(t) =0
(1)

X(t) =X
o o

has a unique local solution for every (to,xo) e J x B(H).

Proof. This theorem follows directly from the Picard-Lindelof the -en

(Theorem 1.6.1). Let

£(t,X) = -[AY(£) X+XA (t) +XB(t) X+C(t)]. (2)

Clearly, for each fixed X e B(H), f(t,X) 1is continuous for all ¢t e J.
If to € (a,b), pick a, B > 0 such that R = B(to;u) X B(XO;B)

cJx B(H). Let K, =sup ||A(D)], K, = sup || B(e) || and
- t t

1
Ky = sup “ C(t)l,, where the suérqpum is taken over B(t ;a). We have
t . o}
4 / 1“
| £Ce,x) ]| = || A% (£) X+XA (£) +XB (£) x+C (t) |]
2
sl x| +8 + kdlx [l +8) 7 + K,
%for all (t,X) £ R. Also, »

[| £(t,x)~£(t,Y) ||

| (AY (£)X+XA () +XB(£) X+C(£)] = [A* (£)Y+YA(£)+YB(t) Y+C ()] ||

| A% (£) (x-Y) + (X-Y)A(t) + XB(t) (X-Y) + (X-Y)B(t)Y]]

i A

[2x +2 (|| Xo” +8) 1| x-v||

for all (t,X), (t,Y) € R. Thus by Theorem 1.6.1 (with B(H) as our

-

B-space) the IVP (1) has a unique local solution. Now if t, = a the

above statements still hold if we take R = [to,t°+a] x B(XO;B) and we
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conclude that (1) has a unique solution to the right. Similarly, if
to is the right endpoint of J then (1) has a unique soluticn to

the left. | 0

This next theorem explains why we have chosen the scalar field

for H to be R.
~

) )

THEOREM 1.7.2 If A € C[J3,B(H)) and B, C € C(J,S8], where J = [a,b],

then the 1IVP (1) has a unique local self-adjoint solution for every
(£ ,X } e J X“S.
o'"o

Proof. If (t,X) €.J x S then

£(£,X)* = —[A*(£) X+XA (£) +XB () X+C () 17

C[XA(£)+A" (£) X+XB (£) X+C (t) ] .

[N
L}

£(t.X).

Thus £(t,X) is a function from J X S into S. That f(t,X) 1is
continuous in t and Lipschizian in’ X is proved just as in the
b

previous theorem. Thus, by Theérem 1.6.1 (with S as our B-space now},

(1) has a unique local self-adjoint solution. 0

Theorem 1.7.2 holds only if H is a real Hilbert space. Note
that undérAthe conditions of this theorem a solution X(t) of (1) is
self adjoint on some interval Jl iff X(to) is self-adjoint for some

to € Jl.

We now consider the behaviour of a noncontinuable solution of

(1) .
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THEOREM 1.7.3 Suppose that X, € B(H), and A, B, C ¢ C[[to,b),B(ﬁ)].

If X{(t) is a solution of (1) such that its right maximal interval of

existence is [t ,a), with a < b, then H x(t)H +® as t > a

Proof. Let f(t,X) be as in equation (2). Clearly f ¢ C[[to,b)xB(H),
B(H)]. 1In the course of proving Theorem 1.7.1 we showed that f maps
bounded sets into bounded sets. Also, by Theorem 1.7.1, the IVP (1)
has a local solution to ;he right for each (to,xo) € [to,b) x BH).

Thé conditions of Theorem 1.6.3 are therefore met and this theorem

follows immediately from iS' 0

Finally we show that solutions of (1) depend "continuously"

on the initial data.

b

L

THEOREM 1.7.4 Suppose J 1is a real interval and A, B, C e C[J,B(H)].

‘Let to e [a,b] € J aqd suppose X(t) 1is a solution of the IVP (1)

whose domain contains [a,b]l. Suppose that (tn’xn’Pn) > (tO,XO,O)

in J x B(H) x B(H) as n - o, If Un(t) is the noncontinuable

solution of the 1IVP

U' + A%(t)U + U A(t) + UB(t)U + C(t) +P =0
n n n n n n

U (k) =X (3)
n' n n
for n=1,2,3,..., then there exists a subsequence {Un (t)} such that
i
Un.(t) + X(t) uniformly on [a,b]. pany
i
Proof. This theorem follows from Coroll . 1.6.5. We have to show

conditions (i) through (iv) of Theorem 1.6.4 hold:

(i) We have
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£ (%) = - (A% (£) X+XA(E) +XB (£) X+C (£) +P ]

v

for n=1,2,3,... and fo(t,x) = f(t,X). Clearly fn € C[JxB(H),B(H)]

\ -
L

for n=0,1,2,...
(ii) The solution X(t) is unique by Theorem 1.7.1.

(iii) £ || x|l . | Y]l <R then

|| £ (£, x)~£_(t, )|
n n
= || A% () (X=¥)+ (X~Y) A (£) 4XB (£) (X~Y) +(X-¥) B (£) Y]]

5_pR(t)H X-Y|| for all (t,X), (t,¥) € J x B(H) where

. p () = 2]l a) |l + 2Rl B(Y ]| .

N
Thus condition %Tii) of Theorem 1.6.4 is satisfied.

(iv) Clearly, fn(t,x) + f(t,X) uniformly on J x B(H).

IS

h
The conditions of Theorem 1.6.4 are met and hence this

&
theorem has been proved. : 0

§1.8 Linear Differential Equations - Fundamental Solutions
If B(t) = 0 in the Riccati egquation we get a linear
differential equation. Linear differential equations in Banach

algebras have been dealt with by, for exampie, E. Hille [13] and most of

a9
»

the results of this section can be found in his text.

Consider the following initial value problem for ﬁklinear

differential equation:
&

X' = A(t) + B(LX + XC(8), X(t) = X_ | (1)
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All theorems from section 1.7 also apply to this initial value problam.
For examj le, by Theorem 1.7.1, (1) has a upique local solution for every

(to,xo) e J xBH). However, a much stronger global result can be proved:

-

THEOREM 1.8.1 Let J = [a,b], to € J, and suppose that

A, B, C e C[J,B(H)}. Then the IVP (1) has a unique solution on

for every (to,xo)-c J x B(H).

.Proof. We proceed by the classical method of successive approximations:

Let
' 4
X (£) =X
o] [} )
N
and
t
X (£) = X+ ft [A(s)+B(S)X__ (s)+X__ (s)C(s)]ds N
o

for n > 1. By induction, it is easily seen that each Xn(t) is

differentiable on J. Let

®

K, = sup I Bcty|| + sup [ ceey ]
ted teJ

and

b
K, =[] || a(s) ds.
a

Y
Then for n > 2 and all t € J we have
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LX_ B =K (6) i

t
= || jto [a(s)(xn_l<s)—xn_2(s))+(xn_l(s)-xn_2(s))c(s)1dsH

t
< K fto I xn_l(s)—xn_z(s)||ds (2)

We first prove the following assertion:

n-1 n
| et |
n!

. n;l It-to n
Assertion: || X _(8)-X__, (t) | < KK Tt ||XO|| K

for all teJ and n > 1.

We prove the assertion by induction. The claim is true for n =1
since
t
X - t = + +
I x er=x_ (o) i = | fto (A(s)+B(S)X_ x C(s)1ds]|

<k, + | XOH Kllt-—tol )

2
Using (2} we now get

| xn+1(t"xn‘t)”

t n-1 ]s-tolnﬂl n |s-to|n
=5 ft P RN R Rt b
o g
1
-~ Je-e_|” o e [T
_ n n+l o]
= KK e rlxliy (n+1) !

thereby proving our assertion.

The sequence {Xn(t)' thus converges uniformly on J to a

- B}

‘necessarily continuous limit, say X(t). X(t) satisfies the equation



. t
X(0) = X+ [ [A(s)+B 51 7(s)+X(s)C(s))ds
o
and hence is a solution of (1) on J.

Now suppose that Y(t) 1is also a solution of (1) in a

neighbourhood of t = tO. Then

t
| x)-ve)|| = || [, [B(s) (X(s)-Y(s))
- O
+ (X(s)-Y(s))C(s)lds]||
t
< K fto | X(s)-y(s)]| as.

Applying Gronwall's lemma to the non-negative function
h(t) = || X(t)-¥(t)|| we see that h(t) = 0 and hence X(t) = Y(t)

wherever Y(t) exists. 0

COROLLARY 1.8.2  Theorem 1.8.1 holds on any interval J.

o,
Proof. Let a and b be the endpoints of J with a < b. The corollary
-

follows immediately upon applying the theorem to intervals of the form

[an'bn] where a (bn) approaghes a (b)) from the right (left). 0

Now let J be an open interval, (to,xo) e J x B(H), and
A ecC[J,B(H)]. Let x(t;to,Xo) denote the unique solution on J of the

Ivp

X' = A(DX,  X(£) =X_. /
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We will say x(t;to,xo) s a fundamental solution if XO 1s non-

singular. The main result of this section is to show that a
fundamental solution is non-singular throughout J. But first we prove

the following lemma:

LEMMA 1.8.3 Let J = {(a,b), A e C(J,B(H)] and J. = [a

1 l,bl] c J.

Then for any € > O and any o € Jl there exists a § > 0

independent of a such that 'fx(t;a;l)—IH < €

for all |t-al < 6.

Proof. Let J2 = (a2,b2) and J3 = [a3,b3] be intervals such that

. Then J, ¢ J, c.J, < J. For

< > > >
a a, < a, < a and b b3 b2 b 1 2 3

3 2 1 1

[| x(t;x, 1) -1]| + €

for all t € J n B(Xx; %)

where B(}; %) is the closed interval of radius %- and center A. The
theorem will be proved if we can show that Sn > J for some no.
‘ : °
Clearly,
Sn c Sn+l for n=1,2,3,... | (?)
and .
«
us. =4J,..
2
1 P
s F 1
Let K be a positive integer such that X > max 1 ’ .
2733 P3b,
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Claim: Sn is open for all n > K.

Proof of Claim. Let A € S for some k > K. Note that B(A; %) c J

k 3

by our choice of K. 1In fact, there exists a 61 > 0 such that
B(A; % +61) < J, also. Since A ¢ Sy then || X(t;A, I)-If| < ¢

whenever t ¢ B(AX; %0. But by the continuity of X(t;A,I) there exists

a 62 > 0 such that we also have H X(t;A,I)-I|| < € whenever
t e B(A;% +62). Let ¢, = sup H X(t;X,I)-I|| , where the supremum is
N .
¢
taken over B(A;% +§,). Nofe that c, < €. Let c,=¢€-c >0. Now

let {An} be a sequence of numbers converging to A. Pick Nl so that

IAn—AI < min{dl,dz} for all n > N. By Theorewr 1.7.4, there exists a
subsequence {Xn }  such that x(t;An ,I) converges uniformly on J3
i i
to X(t;A,I). Pick N, so that I X(e;2 1) - X(e:2,0) || < c, for
i .
all n, 2 Ny and all t e J,. Now suppose that n, > max{Nl,Nz} and

t € B(A ;lﬁ. Then t e J, n B(A;l-+6 ) and hence we obtain
ni k . 3 k 2 2

| xtesx ,0)-1]
i

< | X(tiA_ ,I) =X (52, 1) ||
i

+ H X(t;X,I)—I” <c, + c, =¢

‘for all t € B(A "l). Thus X €S for all n. > max{N_,N.}. This
‘ n n, i 1772

i'k k
proves Sk is opén for all k > K and establishes our claim.
{Sn}: is therefore an open covering of the compact set Jl and

hence, in view of (3), there exists a positive integer N such that
S 24 for all n > N. Therefore the theorem holds wiqe § = l.
n 1l - N

N
N
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We now prove the main result of this section.

THEOREM 1.8.4 If J = (a,b), A ¢ C[J,B(H)], and t, € J then X(t;to,I)

iIs non-singular throughout J.

Proof. Since X(t:to,I) is non-singular at t = to it is also
non-singular in a neighbourhood of to (by Theorem 1.3.3). Suppose that
x(t;to,I) fails to be non-singular for all t € J. Then there exists a
l,to+h) “of té such that x(t;to,I) is non-

singuiar throughout this neighbourhood but is singular at an endpoint,

neighbourhood (to-h

say at t = to + h e J. L)

For any a € [to,t0+h] it is possible, by Lemma 1.8.3, to pick a
§ > 0 independent of a such that H X(t;A,I)-I]] < %- for all
t € B(a;28). Then, by Corollary 1.3.2, X(t;a,I) is non-singular for all
t e Bka;ZG). Let a = to + h - §. Note that X(t;to,I) and
X(t;to+h-6,I)x(to+h—6;to,I)4 are both solutions of X' = A(t)X that are
equal when ¢t = to +h - §. By uniqueness of solutions (Corollary 1.8.2)

we therefore have

X(t;t ,I) = X(t;t +h-6,1)X(t +h-6;t ,I) (4)
o o o o

' for all t € J. Note that X(t;to4h-6,I)' is non-singqular for

t e [t°+h-36,to+h+6] and x(t°+h—6;t°,1) is non-singular. Therefore,
from (4), we see that x(t:to,I) is also non~singular for all

t e [t°+h—36,§°+h+6] cont;adiéﬁing the fact it is singular at

t = to + h. '

Therefore x(t;to,I) is non-singqular throughout J. ‘ 0
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COROLLARY 1.8.5 Under the same hypotheses as in Theorem 1.8.4,

X(t;to,xo) is non-singular throughout J iff xo i1s non-singular.
Proof. The proof follows immediately from Theorem 1.8.4 since

X(t;t ,X ) = X(t;t ,I)X .
o'"o o o



CHAPTER II

COMPARISON THEOREMS FOR SELF-ADJOINT,

C*—VALUED RICCATI DIFFERENTIAL EQUATIONS

§2.1 Properties of Solutions of Differenti.: Equations =nd Nifferential

Inequalities of Riccati Type

Let J be a real interval, H a real Hilbert space and S the
. ,
set of self-adjoint operators in the C -algebra B(H). Consider the

self-adjoint, C*-valued Riccati differential equation

X'(t) + AT (L)X(t) + X(t)A(t)

R[X] (t)

X(t)B(t)X(t) + C(t) =0 (1)

+

where A, B and C are functions from J into S. If H = R® then
(1) is a églf—adjoint matrix Riccati equation. In this chapter we
generalize to the C*—algebra case the basic propgrties of self-adjoint
matri; Biccati equations that are to be found in the texts of W.A. Coppel

({2]) and W.T. Reid ([23]).

The following assumption will hold throughout this section:

Assumption: A,B,C ¢ C{J,S)

In this section we shall study the properties of solutions of both the
Riccati differential equation R[X](t) = 0 and of the Riccati different-
ial inequalities obtained when the equality is replaced by some inequality.

We first study the relationship between two solutions of (1).

THEOREM 2.1.1 Let J = (a,b). If X, (t) and X, (t) are ‘self-adjoint

solutions of (1) on J such that X,(c) 2 X (c) [X5(c) > xl(c)l
38 '

1
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for some ¢ € J then X,(t) > Xl(t) [Xz(t)'> X (1))

throughout J.

X
Proof. lLet W(t) = Xz(t) - Xl(t) and Y(t) = 1

easily verified that W(t) solves the differenti

+ [A*(£)+Y(t)B(t)]W = O
on J. Also, if U(t) is the solution of
U' = [A(t)+B(t)Y(t)]uU, U(c) - .

3

then we have

(U (£)W(E)U(t)]' = U'*WU + U*W'U + U

U* (A+BY) *WU + U*[

= 0.

Sinqe U*(c)W(c)U(c) = W(c) and U(t) exists an

throughdut J (by Theorem 1.8.4) it follows that

W(t) = U"l(t)w(c)u'l(t)

for all t € J. Therefore, if” W(c) >0 [> 0]
throughout J. That is, if X, (c) 2 X e (X,(c

Xp(8) 2 X) (&) [X,(t) > X, (£)] throughout 3.

Now suppose that X(t) is a solution of

only satisfies a Riccati differential inequality.

W' + WIA(t)+B(t)Y(t)] AN

(£)+X_ (t)
2 It is
2
al equation

*WU'

~W(A+BY)

(A*+YB)W]U + U*W(A+BY)U

d is non-singular

then W(t)-> 0 [> 0]

) > Xl(c)] then

(1) but that Y(t)

A result similar to
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-

Theoyem 2.1.1 still holds but a condition on the spectrum of the initial

values of X(t) and Y(t) has to be added.
s
THEOREM 2.1.2 ._uppose that on J = [a,b] (or [a,b)) X(t) 1is a self-

adjoint solution of R(X](t) = 0 and Y(t) is a self-adjoint solutign
- of the differential inequality R([Y](t) > O [< O] such that Y(a) > X(a)
[(Y(a) < X(a)] and O ¢ ol[Y(a)-X(a)]. Then Y(t) > X(t) [Y(t) < X(t)]

throughout J.

Proof. Suppose that R[Y](t) >0 on J and Y(a) > X(a). Since

0 £ o(Y(a)-X(a)] then Y(t) > X(t) for all t in some right neighbpur-
hood of t = a(by Corollary 1.5.9). Suppose that the inequality

Y(t) > X(t) fails to hold throughout J. The%%there exists a number

c e (a,b] such that Y(t) > X(t) on. [a,c) and Y(c) % X(ec). It
follows from Corollary 1.5.7 that Y(c) 3_X(c). and there exists a

x € H, x # 0 such that Y(c)x = X(¢})x . Define g:J - R by
o o o )

3

g(t) = ([Y&F)-X(t)]xo,xo),

s
(R

Clearly g(t) >0 on [a,c) and _g(c) = 0. However, we have

o
A

(R{Y]) (c)x _,x )
o'"o

([3[1'] (vc)-R[X] (c) ]xo,xo-)

|

([¥' (e)-X" (c)+A% (c) (¥(c)=X(c)) =
+(Y(c)-X(c))A(c)+Y(c)B(c)¥(c)

-X(c)B(c)X(c)]x _,x )
S . o'"o

([Y'(c)~x'(c)]xo,xo)

. .
+ (A% () (¥(e)=X(e))x X )
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+ (A(C)x_, (Y(c)=X(c))x )
(o} o

+ ([Y(c)B(c)Y(c)-x(c)B(c)X(c)]xo,xo)

i

([Y'(c)=X'(c)]x_,x )
[o] (o]
+ (Y(c)B(c) [Y{c)-X(c) ]x_o,xo)

+ (B(O)X(c)x_, [Y(c)-X(c)Ix ) >
o] (@]

H

([Y'(e)=-X'(c))x_,x )
o Q
= g'(C)-_

Thus g'(c) > 0 which is a contradiction. Thus the inequality
Y(t) > X(t) must hold throughout J.°

The pother part of this theorem is similarly proved. (

By means of a limit argu!!nt and using the fact that thé solution
of a Riccati initial,value.problem depends continuously on the initial
data we 6btain the following stronger version of Theorem 2.1.2 where the
condition 0 # o[Y(a)-X(a)] has been eliminated and the condition that

R[Y}(t) > 0 on J has been weakened to RI[Y](t) > 0 on. J.

THEOREM 2.1.3 Suppose that on J = [a,b] (or [a,b)) X(t) is a self-

adjoint solution of R[X]t = 0, and th) is a self-adjoint solut_on of
the inequality R[Y]J(t) >0 [< 0] such that Y(a) > X(a)

[Y(a) < X(a)]. Then Y(t) > X(t) [¥(t) < X(t)] throughout J.

o

Proof. Suppose that RI[Y](t) > O throughout J and Y(a) >X(a). For

each k = 1,2,3,..., let X (t) be the self-adjoint solution of the

~

v

Riccati equation

Hr

RLXk](t) + %'I =0

ﬁk[xk1<t)
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satisfying the initial condition

i

X (a) = X(a) - % I.

Let a < ¢ € J. Then, by Theorem 1.7.4, there exists a subsequence

/

{xk (t)}i such that xk (t) - X(t) uniformly on [a,c]. Note that

i i
n
Rk (Y] (t) > 0 on {a,c] and Y(a) > Xk (a) ‘for i=1,2,3,... . Also, .
i i
since ,
!
0[Y(a)-xk (a)l = o(Y(a)-%(a)] + P
i . St
and
o(Y(a)-X(a)] < [0,=) )
we see that 0 k o[Y(a)—xk (a)] for i =1,2,3,... . Hence, by
i - /
»;j
Theorem 2.1.2, Y(t) > xk (¢} on f{a,c] for i =1,2,3,... and
i ' -~
therefore, by Theorem 1.5.2, Y(t) > X(t) on ([(a,c]. Since c was

arbitrary in J, we must have Y(t) > X(t) throughout J. The other

part of this corollary is similarly proved. - 0

Our next/result is a global existence theorem. It shows that if
X(t) 1is a solution of (1) such that Y(a) > X(a) > Z(a) where f(t)

and 2Z(t) satisfy certain differential inequalities then X(t) exists

and is "bounded" by Y(t) and Z(t) throughout J.

COROLLARY 2.1.4 Suppose that J = {[a,b] (or [a,b)) and the followjing

hold:

(1) Y(t) and 2(t) are self-adjoint solutions of the inequalities

1
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R[{¥](t) > 0 and R{Z](t) < 0, respectively, on J.
(ii) Y(a) > Z(a)

(ii1) . D is a self-adjoint operator such that Y(a) > D > z(a).

‘Then the self-adjoint solution X(t) of RI[X](t) = 0 satisfying
X(a) = D exists and satisfies Y(t) > X(t) > 2(t) throughout J.

\

\

giggg. Let (a,a) be the right maximal interval of existence

of X(t). By Theorem 2.1.3, the inequality Y(t) > X(t) > Z(t% holds
on [a,a). By Theorem 1.5.5, X(t) is bounded on [a,a). We must
therefore have a = b, by Theorem 1.7.3. Thus the inequality

Y(t) > X(t) > 2(t) holds on [a,b) and hence throughout J. 0

We ‘now show that Theorem 2.1.3 holds even if the inequality signs

are replaced by strict inequality signs.

THEOREM 2.1.5 Suppose that J = [a,b) and the following hold:)

(i) X(tv, is a self-adjoint solution of R[X](t) =0 om J.
(ii) Y(t) is a self-adjoint solufion of the inequality |

R[Y](t) > 0 [< 0] on J such that Y(a) > X(a) [Y(a) < X(a)].

Then Y (t) > X(t) [Y(t) < X(t)] throquPut J.
. Q

Proof. Suépose that R([Y](t) > 0 on J and Y(a) > X(a). Let 2(t)

be the self-adjoint solution of R[z](t)’= 0 that satisfies -Z(é) = Y(a).,
Since R(Yl(t) > 0 and RI[X](t) <0 on J thén, by Corollary 2.1.4,
2(t) exists and satisfies ,Y(t) > 2(t) > X(t) ”throughout J. By

Theorem 2.1.1 however we must have 2(t) > X(t) throughout J. Thus

Y{t) > x(é) throughout J. The other part of this corollary is
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similarly proved. ‘ . a

A corollary to Theorem 2.1.5 is the following resiit which shows
that Corollary 2.1.4 holds with the inequality signs replaced by strict

inequality signs.

COROLLARY 2.1.6 Suppose that J = [a,b) and condition (i) of
VA

Corollary 2.1.4 holds. 1In addition, if Y(a) > Z(a) and D is a self-
adjoint operator such that Y{(a) > D » Z(a) then the self2adjoint
solution X(t) :of R[(X](t) = 0 satisfying X(a) = D is5 defined and

satisfies Y(t) > X(t) > 2(t) throuc it J.

Proof. Let [a,a) _be the right maximal interval of existence of X(t).
By Theorem 2.15, the inequality Y(t) > X{(t) > Z(t) holds on [a,a).
By Theorem 1.5.5, X(t) 1is bounded on [a,a) and hence, by Theorem

1 3, we must have o = b. Thus Y(t) > X(t) > Z(t) throughout

-7,
S~

J = [a,b). ' 0

A

If B(t) 1is non-negativé or non-positive throughout J then the

hypotheses of Cgrollary 2.1.4 an§ Corollary 2.1.6 can be weakened.

THEOREM 2.1.7 /Suppose that J = [a,b] (or [a,b)) and the foilowing

'hold: : | ?:

w

(1) B(t) >0 [<0] on J.

(ii) Y(t) is a self-Mjoint solution of the in’@dality

R[Y](t) <0 (>0] on J.

Thenighg self-adjoint solution of R[X]tt) s 0 that satisfies
. O
X(a) > Y(a) [X(a) < Y(a)] is defined and satisfies X(t) > Y(t)

t
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(X(t) < Y(t)] throughout J. /

Proof. Suppose that B(t) >0 and R{Y](t) <0 on J and that
X(a) > Y(a). Let 2(t) be the self-adjoint solution of the lindar
Z ) o

. t
differential equation

ﬁ[z](t) T Z' + ZA(t) + A(t)Z

+Cc(t) - I =0
that satisfies
z(a) = X(a) + I.

Z(t) exists throughout J by Theorem 1.8.1. Also, for all t ¢ J,

Q@

Y
R{2] (t) = R[Z2](t) + 2(t)B(t)2(t) + I
.‘\& - =

Z(t)B(t)z(t) + I

O »

where the last inequality follows from the fact that I > 0 and
(?CE)B(t)Z(t) >0 on J. Since z(a) > X(a) > Y¥(a) then, by Corvllary
e .

2.1.4, X(t) is defined and satisfies 2(t) > X(t) > v(t) throughout 'J.

[ N
- The other part of this corollary is similarly proved. 0

THEOREM 2.1.8 Suppose that J = [a,b) and conditions (i) -and (ii)

of Theorem 2.1.7 hold. Then any self-adjoint solution X(t) of
R[X] (t) = O - that satisfies X(a) > Y(a) [X(a) < Y(a)] is defined and
) !

satisfies X(t) > Y(t) (X(t) < Y(t)] - throughout J.

) ‘ aQ : T
Proof. Suppose B(t) < 0 and R[Y](t) >0 on J and X(a) < ¥Y(a).

Let ' 2(t) be the self-adjoint solution of the linear differential
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equation
-y
A
R[Z)(t) = 2' + 2A(t) + A(t)Z + C(t) + I
= 0
that satisfies Z(a) = X(a) - I. 2(t) exists throughout by

Theorem 1.8.1. Also, for all ¢t ¢ J, we have

R[(Z} () = g[Z] (t) + 2(v)B(t)2(t) - I
= 2Z2(t)B(t)zZ(t) - I
<0 -~
A "\,__..\‘ A _ - %
where the iné&ﬂality follows from that fact that - I <“O and #%%QT

Z(t)B(t)Z(¢t) <0 on J. Since Y(a) > X(a) > Z(a) then, by Corollary

2.1.6, X(t) is defingd and satisfies Y(t) > X(t) > Z(t) throughout J.

o !
The other part jof this theorem is similarly proved. 0

o
SupﬁPse that X(t) is a solution of (1) such that X(a) >0

or X(a) 5}0. The following results give sufficient conditions for X(t)

to exist £nd be non-negative Oor’ non-positive throughout J.

»-

COROLLARY 2.1.9 Suppose that J = {a,b] (or ({a,b)) and the following

hold:

.4 B(&) 20 [<0] on.J. -

(i1) c(¢v)

| A

0 [>0] on J.

Then any self-adjoint solution " X(t) of R[X](t) = O that satisfies

X(a) > 0 (< 0] is defined and satisfies X(t) > 0 [< O] throughout J.
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Proof. This follows diréctly from Theorem 2.1.7 if we take Y(t) = O
on J. v D

]
COROLLARY 2.1.10 SQuppose that J = [a,b] and conditions (i) and [(ii)
\
of Corollary 2.1.9 hold. Then any self-adjoint solution X(t) of

R{X}(t) = 0 that satisfies X(a) > 0 [< 0] 1is defined and satisfies

X(t) >0 [< 0] throughout‘ J. 7

1
o

Proof. This follows directly from Theorem 2.1.8 if we take Y (t)

on J.
a

3

§2.2 Standard Comparison Theorems

Now consider the following pair of Riccati differential equations:

R,[X](t) = X' + A, (£)X + XA, (t)
1 1 1

+XB (B)X + C. () =0, i=1,2

]
With the aid of the results from the previous section we have ready

proofs of the following comparison theorems.

v

THEOREM 2.2.1 Suppose that J = [a,b] (or la,b)) and the following

hold:

.;\

(1) A (t), B,(t) and C, (t) belong to c(J,51 and i = 1,2.
¥ \ .

(ii) For each t e J, (Az(t)-Al(t)) [Al(t)-AZ(C)] is a non-
negative scalar operator. (A scalar operator is an element of the
closed subspace of B(H) that is generated by the identity operator 1I).

(1i1). B, (€) 2 B (t) > 0 [B,(£)<B;(t)<0] on J.

(1v) 0 2 C, () > C (t) [0<C (t)<C ()] on J.
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3% (v) xz(t) is a self-adjoint solution of R2[X] (t) =0 on J

NrgL .Y : .

such that X,(a) > 0 [2 O].

Then any self-adjoint solution Xl(t) of Rllx](t) = 0 such that
xl(a) z-XZfa) [xl(a) i'x2(a)] is defined and satisfies Xl(t) 3_x2(t)

[Xl(t) < Xz(t)] throughout J.

Proof. Suppose that the first set of hypotheses hold. Since Xz(a) >0
Qien, by Corollary 2.1.9, Xz(t) 3_0\ throughout J:. Also, for all

teJd,

R, [X,1(t) - Rl[le(t)

[Az(t)—Al(t)lxz(t) + Xz(t)[A2(t)-Al(t)]

+

Xj(t)[Bz(t)-Bl(t)lXZ(t)ﬁ+ [C2(t)-Cl(t)]

> 0
where thqﬁinequality follows from conditions (ii), (iii) and (iv).
Thus R1[X2](t) ﬁ'Rz[le(t) =0 on J. 'By Theorem 2.1.7 therefore,

Xl(t) is defined and satisfies Xl(t) > xz(t) throughout J.

The other part of the theorem is similarly proved. 0

COROLLARY 2.2.2 Suppose that J = [a,b) and conditions (i) throuc’
(v) of Theorem 2.2.1.hold. Then any self-adjoint solution .Xl(t) ol
i.{xj(t} = 0 such that xl(a) > xz(a) [xl(a) < Xz(a)] is defined and

sazisf -~ Xl(t) > x2(t) [xl(t) < Xz(t)] throughout J.

Proof. Suppose that the first set of hypotheses hold. As in Theorem

2.2;1. we again have Rl[le(t) <0 on J. Since xl(a) > xz(a) then,



49

by Tﬁeorem 2.1.8, we must have xl(t) > xz(t) throughout J.

The other part of the corollary is proved similarly. g

If Al(t) = Az(t) on J then we obtain the following stronger

versions of Theorem 2.2.1 and Corollary 2.2.2.

THEOREM 2.2.3 Suppose that J = [a,b] (or [a,b)) and the following

hold:

) (i) Ai(t), Bi(t) and Ci(t) belong to CI[J,8]1 for i =1,2
Hy'and Al(t) = Az(t) z A(t) on J.

(ii) B,(t) > By(t) > 0 [B,(t) < B (t) < O] on J.

(iii) ¢, (£)*- ¢ (£) >0 (<0} on J.

(iv) xz(t) is a self-adjoint solution of the.inequality

R,[X](t) <0 [> O] throughout J.

(@)

Then any self-adjoint solution xl(t) of Rl[X](t) = 0 that satisfies

Xl(a) > X,(a) [Xl(a) < Xz(a)l is defined and satisfies Xl(t) z_xz(t)

(X, (t) <'X,(t)] throughout J. <

Proof. Suppose that the first set of hypotheses hold. -Then for all

t e d,

R,[X,](t) - Rl[x2](t)

Xz(t)[%Q(t)-Bl(t)]xz(t) + [Cz(t)-Cl(t)]

> 0

where the inequality follows from conditions (ii) and (iii). Thus

R [X,](t) < R [X,](t) <0 on J. By Theorem 2.1.7 therefore, X, (t)
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is defined and satisfies 'Xl(t) > Xz(t) throughout J.

The other part of the theorem is proved similarly. 0

COROLLARY 2.2.4 Suppose that J = [a,b) and conditions (i) through

4

(iv) of Theorem 2.2.3 hold. Then any self-adjoint solution Xl(t) of

Rl[x](t) = 0 such that Xl(a) >,x2(a) [Xl(a) < Xz(a)] i1s defined and

satisfies xl(t) > x2(t) [xl(t) < Xz(t)] throughout J.

Proof. Suppose that the first set of hypotheses hold. As in Theorem
2.2.3, we again have Rl[le(t) < 0 throughout J. Thus, by Theorem
2.1.8, xl(t) is defined and satisfies Xl(t) > Xz(t) throughout J.

The other part of the corollary is proved similarly. ) 0



CHAPTER III

COMPARISON THEOREMS OF INTEGRAL TYPE

2
In this chapter we give comparison theorems for the following

pair of Riccati equations:

(1)

[]
(@]

, 2
X' + X° + Ql(t)

2

Y' + Y + Q(t) (2)

]
o

where @ and Q are functions from some real interval. J into S.

1

The g?mparison theorems in the previous chapter were those in which the
coefficienté of the differential equations (i.e. Ai(t), Bi(t) -and
Ci(t)) satisfied some simple inequalities. In the comparison theorems
of this chapter, it will be the integrals of Ql(t) and Q(t) that
sa& fy an inequality.

It will be necessary for us to assume that Ql(t) is a scalar
operator and that (1) has a scalar operator solution for all ¢t ¢ J.

Thé following assumptions wiil hold throughout thisAchapter:

Assumptions:

(1) Ql(t) = ql(t)I ‘and Q(t) belong to cC[J,9].
(2) The Riccati differenti~l equation (1) has a scalar

operator solution X(t) = x(t)I on J.

The comparison theorems in this chapter are generalizations oﬁ
comparison theorems given by R.A. Jones ([14]) for matrix Riccati

equations. 1In attempting to generalize these theorems, an immediate
51
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difficulty ariseé. The proofs for the matrix case make use of the fact
that if A(t) 4is continuous in t and A(tof >0 then A(t) >0 for
all t in some neighbourhood of to. This of course is not true if H
is infinite dimensional unless we have the additional dssumption that
0 ¢ g (A(t)).

In this next theorem we overcome this difficulty by first proving
an’ assertion with the additional condition that 0 ¢ O(A(to)) and then
using a limit argument similar to that used in the proéf of Theorem

2.1.3 to eliminate this additional condition.

THEOREM 3.1 Suppose that J = [a,b] (or [a,b)) and the following

hold:
(i) uw is an element of CI[J,(0,»)] such that
u'(e)I > p(t)x(t)
and
2" ()T + —2— [u' (£) I-p (£) X(t) ]
u n(t) U M
+ u(t) [Ql(t).+Q(t)] >0
’
on J.

t 2 t
11) [ wS(s)Q (s)as > [ wi(s)Q(s)ds
a . a

for all t ¢ J.

Then (2) has a self-adjoint solution Y(t) defined and

satisfying
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< 2u'(£)

X(t) < Y(t) < s I - Xx(t)

throughout J.
Proof. Under the transformatIOns

ult) = u(ox(e)
and

V(t) = p(t)Y(t),

equations (1) and (2) become’

L]

/l-l)(t)U'
-

Loy - v - uz(t)Ql(t) (3)

and

WOV = v - v -l e, (4)

N

\

respectively. Note that by-assumption (2) and hypothesis (i),

U(t) = u(t)x(t)I is a scalar operator solution of (3) satisfying
u(t) < p'(B)I | o (5)

and .

e’

(' (8) I-U(t) ]2

" 2
2u"(t) + 0

+ u(t)[Ql(t)+Q(t)] >0 (6)

on J.

To prove the theorem, it suffices to show the existence of a self-

adjoint solution V(t) of (4) satisfying
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U(t) < v(t) < 2W(E)I - u(t)

throughout J.

We now consider the following assertion:

Assertion: If instead of (6) we have the stronger condition

" 2 L] - 2
2u"(t) + ) [u'(t) I-U(t)]
+ u(t)[Ql(t)+Q(t)]-> 0 on J (7)
and in addition we have
U(aa < u'(a)Il (8)

then any solution V(t) of (4) satisfying

U(a) < v(a) < p'(a)I, (9)

0 k ol2u'(a)I-u(a)-v(a)] and

0 ¢ olV(a)-U(a)]
exists and satisfies
U(t) < v(t) < 2u'(8)I - u(t)

throughout J.

Proof of assertion: Let [a,a) be the right maximal interval.of

‘existence of V(t). From (9) we have V(a) < 2u'(a)I - U(a). Suppose
the inequality Vv(t) < 2p'(£)I - U(t) fails to hold throughout [a,a).
Since O k of{2u'(a)I-U(a)-V(a)] - then, by Corollary 1.5.9, there exists

a c £ (a,a) such that 2u*(t)I « U(t) - v(tkr> O on (a,c)v and



2u'(c)I - U{c) - V(c) + a.

Thus, by Corollary 1.5.7, there exists a
x, € Ho x_ # 0 such that (2u'(c)I-U(c)-V(c)]x = 0. Now define
g: [a,a) > R by .

g(t) = ([2u'(t)I-U(t)-V(t)]xo,xo).

Then g(t)

is differentiable on

[a,&2), g(t) >0 on [a,c) and
g({c) = 0.

Since V(t) is a solution of (4) on [a,a) we have,

'—;,‘LV - . 1 [ __.2
(v (t)xo,xo) TS f[u (t)v(it)~v (t)]xo,xo)

M) (Q(E)x_,x ) -

on [a,a). Let M(t) = u'(t)I - U(t). Then Vie)x_ = [u'(c) I+M(c) Ix
and hence

A

[]

(V‘(c)xo.xo) ") S[P'(c)(u'(C)I+M(c))

\
s ' 2 -
(u' (c) I14M(c)) ]xo,xo) v u(c)(Q(c)xo,xo)
1 '
- ") {u (c)M(c)xo,xo)
= T (M (c)xo.xo) - u(C)(Q(c)xo,xo)
— (W' (c)M(c)x_,x )
ule) " o' "o
+

., L1 2 :
2u (c)(;o,xo) + ) (M (C)xo,xo)

r
+

s

—

u(c)(él(c)xo,xo) by (7)

([u"(c)I+M'(c)]xo,xo)

by (3).
Therefore



56

g'(c) = ([u"(c)F+M’(C)-V'(C)]xo,xo)

”

>0'

Q
‘contradicting the fact that g(t) > 0 on [a,c) and g(c) = 0.

Thus
V(t) < 2u'(t)I - U(t) for all t e {a,a).
Now suppose that the inequality U(t) < V(t) fajils to hold
!
throughout [(a,a). Since V(a) > U(a) and 0 ¢ o[V(a)-U(a)] then, by

Corollary 1.5.9, there exists a c¢ ¢ ‘(a,a) such that U(c) < V(t) -on

{a,¢) and U(c) Jr' V(c). Thus, as before, there exists a . x, € H,
' ®

xo # 0 such that U(c)xo = V(c)xo. From (3) we obtain

W)U () + ' (B)U(t)

[p(t)U(t)]'

2 (B U(Y) - ui(e) - (9 (0 on .

0

~

Integrating this equation over - (a,t) gives us

t

uce) = L&l yq) o —= | u 10 -7 (s) 1as
H H a g

1 -2
- m fa ¥ (s)Ql(S)dS

for all t ¢ [a,a). sSimilarly, from (4) we obtain

-~

., - £ :
v(t) = {j—-:{—;- Via) + == [ (24" (8)V(s) v (s) )ds
a .
t
1 2,
e fa L7 (8)Q, (s)ds

for all t ¢ [a,a). On [a,a), we therefore have
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U (a)
u(t)

V(t) - U(t) = (V(a)-U(a)]
t

e, 1 : 2
R RNTS] [a [(2u' {s)V(s)-V* (8))

2 (01" (5) U (s)-U2 (s)) 1ds SIS

- N t 2
e [ n ()4[Q, (s)~Q(s) 1ds.
5=/ . a -3

- k@) - ‘
0= L) ([v(a) U(a)]xo.xo)

1 ¢ 2
) Ty (Ia [(21" (s)V(s)=V°(s))

- (2u'(s)U(s)~Uz(s))]ds X ,x )
o' "o

[

1 ¢ o
(fa b () [Q) (5)-Q(s)1ds x_,x ). (10)

H(c)

I
s
—

Fo; t € [a,c) we have
U(t) < V(t) < 2" (£)I ~ U(t).

Hence 0 < [u'(t)I-U(t)] + (V(t)-u'(t)I] and 0 < [u'(t)I-U(t)] -
[V(t)-u'}t)I]. The right hand sides of the above inequalities commute

(since D(t) 1is a scalar operator) and hence,'py Theorem 1.5.10, we

get . )

0 < W ®-uwl? - W -u 112

[¢ S
= [2u'(t)V(t)—v2(x:ﬂf'- [2u'(t)U(t)-02(t)]

-

for all t e [a,c). Therefore, the first two terms on the right ih



equation (10) are positive and the last is non+negatie, which is a

contradiction. We must therefore have

U(t) < V(t) < 2p"(£)I - U(t)

througﬂout la,a). Then, by Theorem 1.5.5, V(t) is bounded on la,a).

. . ~\ ’
Thus Y(t) is also bounded on [a,a), where Y(t) E,VEE; is a solution

u
of (2). ThereforQ,JbYJéheorem“1.7.3,,we must have a = b. Thus the.
A

-

inequality
U(t) < Vv(t) < 2u' (L)X - U(t)

holds on (a,b) ~and hence the inequality

. .
U(t) < v(t) < 2u'(t)I - u(t),
holds throughout J. This proves our assertion.
L —
Suppose now that the original hypothesis of the theorem holds.
By (5) we have u'(a)I > U(a). For any real number A, define the

self-adjoint ope;ator AA Sy AA = (1-\)Uta) + Au'(a)I. Then

< ofA] = (Mu'(a)-u(a)x(a)]+u(a)x(a)}.

Suppose now that u\(a) # u(a)x(a). Then for any real number ¢, there

exists exactly one value of ) for which c e olal. {Thus the set of

a4

all numbers X for which .

feondn o
u(a)x(a) - i— € olA ] (11)

I

or
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' 3
2u'(a) - u(a)x(a) + oK € OIAA] ) (12)

!

fQr some positive integer k is countable. Therefore we can pick a
)  §
number AO e (0,1) such that when A = AO neither (11) nor (12)
(o L o

holds for any positive integer k.

Now suppose that u'(a) = u(a)x(a). Then o[AA ] = {u(a)x(a)l.
Thus aga&n neithgr “{11) nor (12) hoids for any posgkive integer
k when X =} .

Now let“_v(t) denote the self-adjoint solution of (4)

satisfying V(a) = AA . let“~[a,a) be the right maximal interval of
wh
o .

rexistence of V(t). Note that by our choice ofii?b, we have

“U(a) < v(a) < 2p'(a)l - U(a). We must have Ukt) <V4E) < 2u'(a)l - U(t)

+

throughout f{a,a), for suppose not. Let c¢ ¢ la,a) ~be the largest
number such that the inequality U(t) < V(t) < 2up'(a)I - U(t) holds

on f[a,c]. For each k =‘1,2,3,..., let Uk(t) [Vk(t)] be the

solution of (3) [(4)] satisfying Uk(a) = Ula) - % I
[Vk(a) = V(a) ~ g; I]. Note that for any k =1,2,3,..., we have
}_ - ...]:.. ' ' | '
U(a) P I < v(a) ok I < yu'(a)I and hence Uk(a) < Vk(é) <y (é)l'

@ ’
Note also that

i

- 1
OIVk(a)—Uk(a)] = o[AAo] - (u(a)xf{a)~- 3}0

and

, | ST s ORI
c[gu }a)I—Uk(a)-Vk(a)] = (2u'(a)-u(a)x(a)+ 2k) o[AAOI

o

and thus by our choice of Ao we have
. N ' .
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o¢ o[V, (a)-U, (a)]

0 ¢ o[2u'(a)I-U, (a)-V, (a)]

@

for all positive integers k.

Now let § ¢ (0,a~c). By Theorem 1.7.4, there Xists a sub-

sequence (U (t)} ({v_ (t)}] that converges uniformly on (a,c+§] to
ki ki U’ (t

4 k,
U(e) (V'e)). Also, by Theorem 2.1.5, we have _ i & pie)

u(t) H(t)
Thus for each i = 1,2,3,..., we have

th 0 < p'(E)I - U(t) < p'(t)I - Uk (t) >
i

on [a,c+§) and hence

. 2 ' _ 2
2u"(t)I + ") e’ (t)1 uk (t)]

i

+ u(t)[Ql{F)+Q(t)] >0 on ({a,c+s].

0 therefore have .

L =3

Pr}

Ty

o 0 (8) <V (t) < 20°(8)T - U (¢)
’# ki ki ki

each { =1,2,3,... . Since the set of non-negative
PN ! N

<€losed in B(H) we therefore have

L 4

-

W :

R AR Ule) < Vv(t) < 2u"(t)I - U(t) on [a,c+8] '

""'w. 'f_.‘ W* ‘j 7 ’ ) e J;.i s ,. ’

e K AN . @
e j,gdg§t;ai;ting our choice of c. Thus -

O(t) € V(t) < 2,"(6)I - U(E) on' [a,a).

¥

on [a,c+6].

: : N

- : W
-~ :
o
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By Theorem 1.5.5, V(t) 1is bounded on [a,a) and hence, by Theorem

o~
1.7.3, we have a = b. Thus Y(t) = %%E%w is a self-adjoint solution

of (2) which exists and satisfies

2708 vy

X(6) < Y(®) < S T )

tifroughout J. . 0

A result similar to Theorem 3.1 also exists for solutions to the

left. .

COROLLARY 3.2 Suppose that J = [a,b] .(or (a h]l) and the following

hold:
A
(1) u 1% an element of C[J,{0,=)] such ~hat ',“
]
\ N B(E)T < p(t)X(t) (13)
and
2?”(t)I + =2 [u'(t)I-u(t)X(t)]z
u(t)
+ u(e) [Q (1) +Q(B)] > O _ v )
s -8 4 C
fs o : ; .
s :(;b' - b‘/é' ’ b 2 .»"<f
-G @ f w20 (s) > [ uT(s)Q(s)ds (15)
) ;:t f t ) o s
’ \ :J“ .
. -
LN

.. Then (2) has’a self-adjoint solution Y(t) defined and satisfying

t _ . 9. R v

- - . \

N
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2u'(t) _
ETH I X(t) < Y(t) < X(t)

throughout J.

Let ¢ € J. Then the function g(t) = c +b ~ t maps [c,b]

. Proof.
onto itself. We make the folloqing transformations:
f v 1‘

»

’ -~
” -

-

U(t) = -i(g(t)), Vit) = -Y(g(t))

P

L
al‘(t) -_'Ql(g<t)>, R(t) = Q(g(t))

5
.7 and - plt) = u(g(t)).
" y o
Then U{t) . is a scalar operator solution of P
U'+U2+ (t) =0
b -
on [c,b] and (2) " becomes ?
2
) V' + V7 + R(t) = 0. : (16)
o
From (13) we obtain

\ i :
' p(t)U(t) < p'(B)I 4
on [c,b). Making the'gpange of variable s = g(u), we obtain from (15),
1:,; e
‘ . | 1

g(t) Tty
o (u)R(u)du

] f pz(u)xl(u)du > f
(o} [+

for all t ¢ ([c,b]. Or &quivalently,

o
e

5 iy

“ 'S
oD

«
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t o £t o2
.0 (WR, (u)du > [ p%(uiR(u)du
b c c
\.\‘m"
for all t e {c,bl. Replacing t by g3(t) in (14), we get R
. J f%?
2p"(8)I + p(i) [p'(t)I-o(t)U(t)]2 9 éf“

+p(£) [R (E)+R(£)] > O

for all t ¢ [c,b]. Thus, by Theorem 3.1, (16) has a self-adjoint

solution, V(t), defined and satisfying

2p'(t) o Y
ue) g Vo < St 1 - v

aq

throughout f{¢,b]. Or 'equivalently,

-X(g(t)) < -¥(g(t)) < 2,y )

u(g(t))
;\ﬁ'

for all € [c,b], where Y(t) is a éelf-adjoint solution of (2)
defined by Y(t) = -V(g(t)) for all t ¢ [c,b]l. From the lasf ‘inaqual-

[N
RENY4Y

ity we also obtain

2u'(t)

-~ TTo - T X(®) < ¥() < x()

for all t e [c,bl. Since this is true for arbitrary ¢ in J then

. Y(t) exists and satisfies

B 1o xm < vo < x

throughout J.! ' . - ' :
8 e 0
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In the following comparison theorem, limit argquments such as the
one used in the proof of Theorem 3.1 do not work. We therefore have an
additional condition on the spectrum of the initial value, a condition

that is not needed for the proof of the matrix case.
. ,

THEOREM 3.3 Suppose that J = [a,b] (or [a?b)) and A 1is a self-

adjoint bounded operator such that

Lo

an- .

t t
-x(a) + [ Q, (s)ds > -A + [ Q(s)as” .
a a v
t ’l
> x@@) - [ Q(s)ids |
for all‘ t e€eJ and
{-x(a),x(a)} n o[A] = ¢. : (18)

'\

Then the self-adjoint solution Y(t) of (2) satisfying Y(a) = A

exists and satisfies
|

o’
X(t) < ¥(t) < -X(t)
. o

throughout J. ' .

Proof. We first consider the following claim:

-

Claim: Y(t) satisfies the conclusioﬂ of She thgorem if A satisfies

the stronger condition
N

t t
-x(a) + [ @ (s)ds >-a+ [ Q(s)¢s
a a
t
> X(a) - f Ql(s)ds )
*
a
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for all ¢t ¢ J.

Proof of claim: Let (a,a) be the right maximal interval of exigtence

of Y(t). Putting t =a in (19) gives us -X(a) > -Y(a) > X(a)
or X(a) < Y(a)< -X(a). Suppose that the inequality Y(t) < -X(t)

fails to hold throughout [a,a). We have . o[~X(a)-Y(a)] = -x(a)
bz e

L AR
- o(¥(a)] and hence, by (18), 0 ¢ o[-X(a)-Y(a)]. Thus, by

Corollary 1.5.9, there exists a number c ¢ (a,a) such that
Y(t) < -X(t) on [a,c) and Y(c) % -X(c). By Corollary 1.5.7, there
then exists a- xo € H, xo ¥ 0, such that Y(c)xa = —x(c)xo. For all

t ¢ [a,a) we have

t t
-Y(t) = -¥(a) + [ ¥“(s)ds + [ Q(s)ds
R a a

and hence, using (19), we get

(o] 2 (o}
-Y(c) = -Y(a) + [ Y(s)ds + [ Q(s)ds
. a . a

——

o] (o]
2
>x(a) - [ Q (s)ds - [ x“4s)q
x-S g - Py
. = xle).

[
-

L]
L RS

This contra®¥cts the f%é} that

. - : d -.‘f".

s ’9 ([-Y(c)ﬂﬁlC)lxo,x ),f 0.

’

Ty, (=]

s
A
H .

Therefore Y(t) < -X(t) _on f¢4d¥2J *

Now suppose that the inequality X(t) < Y(t) fails to hold

ps

)

throughout [a,a). We have o[Y(a)-x(;)] = g(¥(a)) - x(a) and hence,

<
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by (18), 0 ¢ o(Y(a)-X(a)]. Thus, by Corollary 1.5.9., there exists a
number c € (a,a) such that Y(t) > X(t) on [a,c) and Y(g) } X(c).
By Corollary 1.5.7., there exists a x° € H, xo # 0 such that x(c)x°
= Y(c)xo. We now have X(t) < Y(t) < -X(t) on [a,c) and since X{(t)

and Y(t) commute we also have

0 < [Y(B)-X(t)] [-X(t)-Y ()]

= x2(t) - v2(t)

on [a,c). Using (19), we thus get

C o 2
-Y(a) + [ Q(s)ds +‘j Y(s)ds
a

. a
c jﬁt 2
< -X(a} + [ Q, (s)as + LAX"(s)ds
‘ a -3

-Y(c)

= —x(c) .

This contradicts the facé that ([—X(c)+Y(c)]xo,x°) = 0. Thus
X(t) < Y(t) < -X{t) on [a,a). Then, by '}‘heorem 1.5.5, ¥Y(t) is bounded
-Von {a,a) and, by Theorem 1.7.3, we must have a = b. Thus
X(t) < ¥(t) < -X(t) on [a,b) and hence X(t) < ¥(t) < -X(t)
ﬂlroughqut J.. This proves our claim. . 4 |
Now suép;ose that A Isatisfies the hypothesis of the theorem

Let ([a,a) -be the;jright mag.imal interval of existence of Y¥(t). Putting
t=a in (17) we see that X(a) < Y(a) < -X(a). Suppose the
inequality X(t) < Y(t) ’_<_ -x(‘; fails to hold throughout [a,a). Let

. . .

c e [a,a) be the largest number such that the inequglity X(t) < Y(t)

< -X(t) holds on [a,c]. Note that for each k = 1,2,3,... ,
) rd
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t
{(-X(a)+ % I) + f Ql(s)ds > -Y(a) B
a

t 1 t
+ [ Q(s)ds > (x(a)- =1 - Q,(s)ds ,
a a

P , |
for all t e J. For k=1,2,3,..., let xk(t) be the scalar operator

solution of (1) such that Xk(a) = X(a) - %-I. Let &§ € (0,a-c). By
Theorem 1.7.4, there exists a subsequence {xk (t)} which converges

i
uniforn¥y to X(t) on (a,c+6]. Also, since x'(a) and -x(a) are

4

elements of the open set p[Y(a)] then there exists a N > 0 such that

ot . 1 N
v

Y S
A

{x(a)- %v-x(a)+ %Y*HAU[Y(a)] = ¢

for all k > N. By our claim therefore

p
(t) < Y(t) < -X_ (t) on [a,c+d]

~

for all k. > N. Hence X(t) < Y(t) < -X(t) on [a,c+§] contradicting
oo )
the definition of c¢. Thus the inequality ’

v X(t) < Y(t) < -X(t)
._’m

holds for all t e [a,a). By Theorem 1.5.5, Y(t) is bounded on [a,a)

and.henée‘ by Theorem 1.7.3, a = b. Therefore, the inequality

. X(t) < ¥Y(t) < -X(t)

holdsrthroughout J. ‘This completes the proof of the theorem. v 0

A result similar to Theorem 3.3 also exists for solut'ons to the

laft+.
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COROLLARY 3.4 SuppoSe that J = [a,b] (or (a,b]) and A 1is a self-

adjoint bounded operator guch that

)
b b
X(b) + [ ¢ (s)ds > -a + [ Q(s)as
l —
t . ‘'t
b
> -x(b) = [ Q(s)ds on J (20)
t N
and
{-x(b) ,x(B)} n O[A) = ¢. (21)

Then the self-adjoint solution Y(t) of (2) satisfying Y(b) = -A

exists and satisfies

ol “X(£) < Y(£) < X(E)

throughout J. ' 3

¢ +b~t maps [c,b]

Proof. Let c € J. Then the function g(t)

onto itself. We make the following transformations:

U(t) = -X(g(t)), V(t) = -¥(g(t))

R(t) = Q(g(t)), .&l(t) = Ql(g(t)).

Then U(t) is a scalar operator solution of

g

u' + U2 + Rl(t)‘ = 0 on [e,b]

-and (2) becomes . .

V' + V2 + R(t) = 0. - (22)
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Noting that X(b) = -U(c) and making the change of variables s = g(u),

(3) becomes

g(t) g(t)
-u(c) + [ R (udu>-A+ [  R(udu
¢ . ¢ -
g(t) -
> ufe) - f R (u)du  for all t e [c,b].
c
Or equivalently, |
t ! t | h
-U(e) + [ R (udu> -A + [ R(udu
c c
t
> u(e) - f Rl(u)du for all t ¢ [e¢,b].
c

Note also that o[-U(c)]= {x(b)} and hence by (21),

o[-U(c)] n oAl = ¢ and o[U(c)] nol[A]l = ¢.

Therefore, by Theor;;.3.3, tﬁere exists a sblution v(t) .of (22) thgt
exists and satisfies U(t) < V(t) < -U(t) throughout [e;b]. Then ‘
Y(t) = -v(g(t)) is a solution of (2) that exists and satisfies

=X(t) < Y(tv) f‘x(t) throughout [¢,b]. Since £his is true for

arbitrary ¢ in J, then Y(t) exists and satisfies -X(t) < Y(t) < X(t)

throughout J. Note that Y(t) is the solution of (2) for which o+

Y(b) = ~V(c) .= ~A. . . | . 0



CHAPTER IV

e ]

APPLICATIONS AND ADDITIONAL

COMPARISON THEOREMS

In this chapter we establish a form of Hille's comparison theorem.

-

Our result is a generalization to the C*—algebra case of a comparison

theorem that/ Heidel [12] gives for real scalar functions. We also

4

combine the results of the previous two chapters to formulate additional

comparison theorems for the following Riccati differential equations:

{

Rl[X] (t) = X' + A ()X + XP(t)X + Q(t)‘ =0

R, [X](£) = X' + XP()X + Q(t) %= 0

R, [X] (t) £ x' + x2 +.0(t) = 0.

7

P and Q ‘are functions from some real interval J into .S, and
is a real-valued function ¢n ' ¥\ Unless otherwise specified the

following three assumptions hold throughout this chapter:

P
B

Assumptions: -

(1) P eC(J,8] and b,i'p(t) <I on J.
(2) Qe c(3,S]. - B

(3) XecClI(~,0]].

-
.

The follo g theorem gives sufficient.conditions for (1)

have a positive tion on J.

4’ . - g._\'

>

to

(1)

(2)

(3)

THEOREM 4.1 Suppose that J = {a,b] (oi fa,b)) adggtbe following '

Hold:
70



(i) Ql e c{J,8) and Ql(t) > Q(t) on J.

(ii

)
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X(t) iIs a positive solution of the inequality

X'+ X2 + Ql(t) <0 on J.

Then any self-adjoint solution Y(t)

exists and satisfies

Proof.*xLet Z(t)

z(a) = X(

a).

By assumption

Y(t) > X(t) > 0

hence, by Theorem 2.2.3,

However,

on J..

¥(t) > 2(t) > X(t) > 0 throughout J.

Q

Y

(L)

Z(t) exists and sati:"irs Z(t) > X(t)§ --

we have' 0 < P(t)

of (1)

that satisfies Y(a) > X(a)

throughout J.

be the self-adjoint solution of (2)

R [Z1(£) = A(£)Z(t) <0

Note that .X(t)

of X' + X° + (-l—)I=

of Theorem 4.1 is the following:

2

4t2

4

COROLLARY 4.2 Suppose that J = [a,b)
r) . N

Q(t) j_(‘lE)I on J.

0

2

l\
(3;?1

Thus, by Theorem 2.1.7, Y¥(t)

{

.such that

< I on J and

exists and satisfies

o

~a

is a positive scdlar operator solution

onfany pd%:tive real interval.

(or

[3,b)), with

An application

a > 0, and

Then any selfwadjpintlkolutiod Y(t) of (1)

4t ) 1
‘that satisfies Y(a) Z-(EZ)I
3 . ’
throughout J. .
Proof.
Q (t) = (-—
. 4t2

%

,

PR

exists and satisfies Y(t) 3”(£§)I

¢

)I and X(t) = I—-ﬁI

-

Jk‘

F Ll

fa.y

“EThe‘followigg theorem gives sufficient conditions for

The proof follows imggdlately from Theorem 4.1 if we take

(2) to |
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have negative solutions.

3

THEOREM 4.3 Suppose that Q(t) > (%ﬂ:)t’zl and P(t) > I on
J = [a,»), where el and a are positive real numbers. If X(t)
is a sélf-adjqint solution of (2) such that X(a) 5_0, then
X(t) < 0 throughout (a,a), the right maxithal interval of eviasl ~a

of X(t)..

Proof. Let y(t) be the real valued solution of the ditferential

13

equation
y' oyl 4 (—i— +e)t™? = 0 @)

that satisfies the initia& condition y(a) = M(X(a)). Let [a,B)
~— ‘
be the right maximal interval of existence of y. It is a well known

fact (e.g. Hartman [10], p. 362) that the second order differential
“equation corresponding to the Riccati equation (4) is oscillatory.
Thus B < » and it follows that y(t) + ~» as t + 8 . Since

P
y(a) . < 0, we see that y(t) < 0 throughout (a,p). The scalar operator

"y ()I watisfies the differential inequality

R, Ly (8111 (8) = y* (&) [B()~T)
+ IR0 -G + )€ 1] 20

for all. t ¢ [a,B). "Since x(a) j y(a)I then, by Theorem‘2.1:3.

Gl ) );)
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N

X(t) i‘y(t)I < 0 for all t e {(a,a) n (a,B8). It follows tha-~

a _<_.B and hence X(t) < 0 throughout (a,a).

-

» : . i
We now combine Theorem 3.1 with the resultsvof Chapter II to

S

obtain the following comparison theorem for (1). )
)

THEOREM 4.4 Suppose that J = [a,b] (or la,b)), a > O, and the
' \

f@i ng hold: : .

(1) U e C[J', (0,00)]' cand p'(t) ?— er(t)

on J.

(110 2u"(0)T + - HE 2 e 5 em ] 2 6'/[0\11/ 3.

2 y
p(t) ' " g /

ey

t ui(s) ot o2 | “
(1i1) [ B=F-1.0s 2 [ w (e)Q(s)ds fortall t e J.
a 4s a :

Theﬁ (1) has a positive solution Y(t) that exists and satisfies

-

Y(t) > (EJLE) throughout J.

Proof. - Note that the hypotheses of Theorem 3.1 are sa}:isfied with
Q. (t)s = (—-l?—)l and X(t) = (-L)I and hence (3) "has a self-adjoint
! at 2t -

solution V(t) that exists and satisfies

-

°

1. 2u'(y) 1
Qe vt < By " 2!

throughc.:)ut J. Let Y(t) be the self-adjoint solution of (1) fAch

1 .
‘that Y(a) = V(a). Then, by Theorem 4.1, Y(t) exists and satisfies
21:’)I.v throughout J.. . % .0

- . - T

T(t) > Ver) > (
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-

L If we take the special case u(t) = ¢®

» ). -t

the followidg corollary:

in Theorem 4.4 we obtain
(o

. COROLLARY 4.5 Suppose that J = [a,b] (or f{a,b)), a > O, and 13«

"
A

_. . real number not less than L such that Y
«Q - 2 3§
Ly
.1 3 2 , ks
_4(8 4)(6 4)I,+, tQ(t) >0 5o
Q v J
and
t _2(8-1) Tt
2 —1as> [ s%¥0(sas
a ‘ - a
M V. o N . | &

on 'J. Then (1) has a positive solution X(t) that exists and
satisfies X(t) > (51?)1' throdghout J.

. N A

"Proof. The proof follows immediately from Theorem 4.4. 0

Another special case of Theorem 4.4 is the following:

COROLLARY 4.6 Suppose that J = [a,b] (or (a,b)), a > 0, and the

-

+ following hold:

(i) uec(s (0]

- i

(1) we > M ang T yme) 20 an o

t 2 R t .
(110) . [ EA8 ag > [ w(a)o(srds foralrl te o
. 4s - i a )
Uvy et 26291 on 3.
> ¢

»

ﬂnn ¢1) .hu a pocitin :olutiqn x(t) tbat, exists and ut.i:fies .

- x(ﬂ)(-z? thrmqhut J. ‘ 7



Proof. The ptoo.f follows immediately from Theorem 4.4. R 0

"
~

Combining Theorem 3.3 with the comparison meb‘pms of Chapter II

<

gives us the following result:

o~

THEOREM 4.7 Suppose that J = (a,b) (or [a,b)) and the fo'llbﬁing,‘ '

hold:,

. /

(1) Ql(t) = ql(t)I e ¢[{J,8]
(i1 X(t) = x(t)I is scalar operator solution of

X' + x2 +’Q1(t%f- 0O on J.

(iii) A is a self-adjoint operato‘z" such that

“ ' « b ¥ ~
o t t. ) - .
) ~x(a) + [ Q,(s)ds > <A + [ Q(s)as - € . '
% W PR . a i & a .“ Y ‘ ')1 e’
8 t L P
' > X(a) - [ Q.(s)ds for-all “teJ o
- . o Y - ) . _/,_‘ . .
. % » Npowo- :
and S . {-x(a),x(a)} n c[A]k é. v A :
. Then  (2) has a self-adjoint solution Y(t) that exists ang
»
- i 4 . -
satisfies Y(t) > X(t) throughout J. .

Proof. Let Y(t) and 2(t) be self-adjoint solutions of (2) and (3),
respectively, -that satisfy ﬂm’i;xitial conditions Y(a) = Z(a) = A. Then,
b.y 'rheorem 3.3, 2(t) - exists and-satisfies X(t) < z(t) < -X(t)

. tl;roqghout J. By-assumption /(15 we have 0 < P(t) < I on J and
. »hence, by Theorem 2.2.3, Y(t) e#ists and s#tisﬁ.os" Y(t) > 2(t) > X(t) ‘
._t;h;ough'outi J. | C | o ' . ' . 0

, ' . _
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g
appllcatlon of Corollary 3.4 when Q (t) = (L)I and «
= R at?

»

"““n"“‘i?’i is o ,fgliow:.ng: " ,
. 8 ‘

(N

THRQREM §.8 . Suppo at J = [a,b] (or (a,b)), a >0, and A% i% a
: 4 .

‘self-ad‘joint operator such that ‘ e
> ,] ‘453 . b . .
S L+ZE15 a4 [ Qlds,
4bt
Wst ‘ e
o KR Ty . D,
od oy e ke A .
. o > v, I 4 o= 1 for all " Tl o
-~ 2b - 4bt _* v < J“‘ -, o .
‘ 1o | . " R 2 S
* 4y - M . B
. ‘ = 2per 55} Mo "&"‘ N ..,a
s, .. . . - o - ru ' ‘
S . & . .
- "\? . ’ - £y
y. 'z‘hezi (3 _has a self-adjoint” solution Y('t) that e)usts am; sat;sfles
- L] & ,9 ' = A
Yit) > (- *'—)I throughout J. .
. _ 2 ‘
5 - < : ) L N . -

'-_ htion Z(t) of (3) that

o

& R s : r '
satigsfies . Z(b) = ‘A exists and.satlsfies (- —)I < 2(t) < (-2-€)I on J.

®

By morem 2.2.3. _therefore, (2) has a self-aldjoint solutionfl")Yv(t) that

.

existg and satisfies }(.t) > 2(t) > (- 2—];:-) I throughout J. ’ El
.- R S
The followihg form of, le's comparison theorem is a generaliza-

- .

tion of a comparison theorem that Heidel [{12] gives for the scalar case.
. - . . '] -

k4

THEOREM 4.9 Let J = [a,») and suppose the following hold: .

(1) Ql(t) = ql(t)I is a conti‘mxous t'unct.iou from qs#-,,;into:: S.

. ' P
(i1) x(t) = x(t)I is a po:.it.ivc scalar opotntot solution of the

2

'R.iccati differential equatzon £'+ X + Ql(t) = 0-on J.

(1i1) The intagrals I’ Q (l)ds and j Q(s)ds exist and satisfy

o .3 ‘" £
v .
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4 -

. °° ne
/ Q, (s)ds > ] Q(s)ds 3 0 afor each t e J. .

t t

& ' -
Then (1) has a posltive solution on J.
. ' %/ e
Proof. Note that x(t) is a real, positive solution of -
-
c 2, v e o
2 +x + ql(t) =0y | ’ (5)
. tn -
on J anch that f q, (s)ds exists‘for
. t 1 :

exercise of Hartman 6[10ﬁ/ exercise 7.

‘.

lim x(t) = 0. No’ge also thé’t 11m {&f ql(s)ds dt = cdyexists an§ .
Tow

e "

therefora, g a tenm of Hartman ([10], 1erlta 7. 1 P. 365)/ we also’ have ’

] - {5 - .
g f ¢ X (t)’dt < -, Now suppose that a ﬁ to< AL In%rating (5) o@_r

It,A]l. we obta:m: . ‘&‘ ' - N ‘ ‘/E ' _
o .4%”:’ | 3 RS ;iS d - v'f R B ‘;: - . | ( - . o é -
on A - 4“ - A . ’ft\;, . “\,
Tt x(t)-- / ql(s)dt = x(A) + [ xz(s)ds. 'ﬂ
. IR “t ‘ L '% ) :

Letting A+ é utlllzz.n'_our ptevmus remarks we sqe that

E

x(t) - f ql(s)ds aists and is posrtive for each t e J. Therefore

t . .
the self-adjoint operator Y(t) defined by . E Y
. . [ .
’ . Y(t) = x(t) + [ [5(5)-Ql(s)]® 1 : g)
- “ . V t
exists and is positive for eagh t ¢ J. »Alls'o, we have - ) .
KIYE = v + Y2 v o
[ . " '. o . - X' + Y2 + Ql(t)
v . o< X' + x2'~.,+ Ql(-t)

-,'0 on J /

)
»
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™
*

&
R

fa

Ly - [

where the inequal.ty is due to the fact that Y(t)l and X(t) commute

and 0 < Y(t) - X(t) for each t € J. Y

Now ler z(t) be any self—édjoin; sélition of (3) ’sqch that
zla) :.Y(a). By Tﬁeorem‘2.l.7, Z(t) exists and sgtisfies Z(t) 3_Q(t)
>0 “throughogt J. Finally, if U(t) ‘is any self-adjoint solutjon
of ‘(1) such that U(a) > Z(a) then, by Theorem 4.1, U(t) exists

and satisfies U(t) > Z(t) > 0 throughout J. ) » g

o

An application of Theorem 4.9 is the“following:‘ﬁ

RN
COROLLARY 4.1Q; Let J ='[a,), a >¢0, and supposdthat for ‘each .t € 5@’
w , * ~ . Y
the integral [ Q(s)ds exists and satisfies _ N
t - = B N »

|

L] o Fa

- . o

v . ® <[ Q(s)ds 5_(2%?1.

t
e f’ . ) 4

R .
: . RAR

Then (1) has Q positive solution on J.

Proof. The proof follows immediad@ly from Theorem 4.9 if we take

I'd

‘ DS 1. ; '
Q8 = (=T and X(0) = (L. q

\
{

‘ ‘n our thesis we have 1imited oukselve to t.he Btudy of -

e:tistence and con\ﬁuison tl{eorems for Riccat differentxal equations in
‘-I

a C'-algebra. Research has also beeq done on second ogder differential
t

v : .
oquat.ions and oscillation 'theorems in C"-algebras. We refer, for

exuple, to the text by Hiue {[13], Chapter 9) and to the research
papers of G. J Etgen and R.T. Lewil [8], G.J. Etgen and J F. Pawlovski
+£9], 'r.L. l!ayden and H.C. Howardr [11], and C.H. williams [28].

To stidy §gcillation theorems in a C*-algebra, one of course has
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to first define what a "zero" of a C"-valued function is. This is done

in a natural manner by’ defining the c*-valued function X(t) to have a
. ) »

“zero" at t = to if it is singular at that point. Now suppose that

X(t) 1is a solution of a differentlal equation on J = [a,®). We say
§
that this sqution is oscillatog if a) -~ there exists a sequence

1 % .
{tn'} in J *ch that tn-*@ and x‘tn) is singular, and b) there

-

g(ists at least one number ¢ € J such that X(c) is non-singular. Note

» that if A is a self-adjoint operator such that a 2cl' or A< -cI

-

for some ¢ >0 then A is non-sirigular. With this in mind, we can see

A "
"ﬁ)‘ollary 4.2, Theorem 4.4, Corollary- 4.6 and‘borollary 4.10 of this

ped v
sed i-oﬂ give sufficient condlt*ns foWe -aRj,ccatJ. dlfferentlal equatlon
v ” ‘- S ‘ Y
to have solutions that have no "zeros" on . J&da wg, a > O. Tha.t :Ls_, "

I
these results cah be interpreted as being nén-osclllation theorems.

Thete are still a great many of. the standard osc11latiqp and b.omparlson

theorems  that have yet to be generalized to the C* -algebra case.

. S ) -

~
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