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Abstract

Energetics are a key driver of animal decision-making, as survival depends on the balance

between foraging benefits and movement costs. However, this fundamental perspective is

often missing from habitat selection studies, which mainly describe correlations between

observed space use and environmental features, rather than assessing the mechanisms behind

these correlations. To address this gap, we present a new model, the energy selection function

(ESF), to assess how moving animals choose habitat based on energetic considerations, thus

incorporating a key aspect of evolutionary behaviour into habitat selection analysis. The

ESF provides a way to test foraging and movement hypotheses, by evaluating selection for

energetic gains and costs. In this thesis, we contrast the ESF to other habitat selection

models, provide guidelines for defining energetic covariates, and demonstrate the model’s

utility with simulations and a case study of polar bears. Simulations indicate that the ESF

can be fitted with low estimation errors, under a number of modelling choices and biological

scenarios. Our case study shows how cost-minimization may arise in species that inhabit

environments with an unpredictable distribution of energetic gains. Because of its close links

to existing habitat selection models, the ESF is widely applicable to any study system where

energetics can be derived, and has immense potential for methodological extensions.
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1 Introduction

Foraging and movement are core considerations in animal ecology that reflect fundamental

aspects of energetic balance and optimality. Animals should distribute themselves in space

so as to maximize their access to energetically rich resources, while minimizing the costs of

travel associated with foraging (Emlen, 1966; MacArthur & Pianka, 1966; Pyke et al., 1977;

Pyke, 2019). Therefore, energetic balance is a critical component of optimal foraging theory,

which assumes that foraging animals should maximize their net energy intake. Theories of

how animals search for and distribute themselves relative to food range from random search

strategies (Shlesinger & Klafter, 1986; Viswanathan et al., 1999; Bartumeus & Catalan, 2009)

to cognitively-based movement decisions (Charnov, 1976; Pyke et al., 1977; Pyke, 2019).

However, many of these models are based on unrealistic assumptions that animals have either

no knowledge (e.g., Lévy foraging) or perfect knowledge (e.g., cognitive foraging theory) of

their environmental surroundings and internal state (Pyke, 2015, 2019). In response to

these limitations, there has been increased interest in modelling the mechanistic processes of

foraging movement (Nathan et al., 2008; Pyke, 2019). While these models have considered

the role of memory and perception in foraging (Van Der Post & Semmann, 2011; Bonnell

et al., 2013), attempts to estimate the direct energetic consequences of movement decisions

are still rare. Energy-based models could provide a crucial link between movement and

foraging ecology, uniting them under a common bioenergetic paradigm.

Optimal foraging research often focuses on the energetic benefits of movement and space-

use patterns. These studies successfully describe foraging strategies in a patchy environment,

and examine prey and patch selection based on factors such as travel time, perception, and

memory (Charnov, 1976; Van Der Post & Semmann, 2011; Bonnell et al., 2013). To assess

food preference, habitat selection models often include covariates that represent foraging

potential. These covariates are usually approximate measures of forage quality or resource

availability (e.g., Hansen et al., 2009; Bastille-Rousseau et al., 2020), but may not be pro-

portional to energetic benefits. Even in cases with more realistic depictions of energy intake

(e.g., the energetic profitability of resources combined with biomass; Fortin et al., 2003),

the role of energetic costs is still often unquantified. Therefore, although these studies have

been instrumental to understand resource preference, new models with realistic depictions

of energy could be useful to better understand the mechanisms of animal space use.
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When considered in a foraging context, energetic costs are often assumed to increase lin-

early with time and/or distance (Reynolds, 2013). In reality, the costs vary widely depending

on factors such as mode of transport (Nathan et al., 2008; Griffen, 2018) and environmental

conditions (e.g., topography, weather, substrate) (Crête & Larivière, 2003; Wilson et al.,

2012). Energy landscapes have been developed as a method to evaluate environmentally-

varying movement costs, which can be combined with animal movement data (Wilson et al.,

2012; Shepard et al., 2013; Gallagher et al., 2017). Environmental variables, such as air ve-

locity for birds (Shepard et al., 2013), water depth for diving animals (Wilson et al., 2012),

or habitat type (Pagano et al., 2020), may be considered in cost estimations. Since energy

landscapes are based on spatiotemporal environmental data, these models quantify the ener-

getic costs of moving through heterogeneous or dynamic environments and could be powerful

if combined with foraging theory.

To link foraging and movement, optimality models should quantify both the energetic

costs and gains of movement decisions. Despite long-standing interest in cost-benefit func-

tions (Schoener, 1971; Sih, 1984), there have been few attempts to energetically compare

movement costs to the associated nutritional benefits (Nathan et al., 2008; Owen-Smith

et al., 2010). As foraging theories are ultimately interested in energy, we propose using

bioenergetics as a unifying currency in movement decision-making. With this approach, we

can assess the relative contribution of energetic gains and costs to observed movements. An-

imals may make movement decisions primarily based on the need to maximize energy intake,

minimize energy use, or balance the two (Schoener, 1971; Shepard et al., 2009). By examin-

ing energetics at the scale of movement steps (i.e. movements between successive recorded

locations), we can link movement ecology to its energetic drivers, allowing us to assess sup-

port for foraging theories. We can therefore gain insights into how energetic trade-offs give

rise to movement and space-use.

In this paper, we introduce a method that explicitly considers movement and habitat

selection in an energetic context. In a model we term an energy selection function (ESF), we

evaluate preference for energetic covariates, representing energy gain and energy expenditure.

We describe the methodological links to resource and step selection functions (RSFs, SSFs),

while showing how the ESF is conceptually unique in its treatment of movement and habitat

availability. We provide practical guidance to implement the ESF and define covariates,

verify the inference procedure through simulations, and provide an example case study of
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polar bears (Ursus maritimus) in the Beaufort Sea, Canada.

2 The ESF

2.1 ESF Model Formulation

We first present standard habitat selection models (RSFs, SSFs) from which we base the

ESF. To estimate habitat preference, these models employ a use-availability approach, in

which we contrast where the animal went (i.e., what resources they used) with where they

could have gone (i.e., available habitat) (Manly et al., 2002; Fortin et al., 2005). While RSFs

assess habitat selection at the scale of the utilization distribution (Manly et al., 2002), SSFs

are used to analyze autocorrelated animal tracking data and describe resource preference at

the scale of the movement step (Fortin et al., 2005; Forester et al., 2009; Thurfjell et al.,

2014). SSFs consider that movement constraints limit the habitat availability of an RSF,

and give the likelihood of a movement step ending at location y given that it started at

location x in the study region Ω as

f(y|x) = Φ(y|x)w(x, y)∫
z∈Ω Φ(z|x)w(x, z)dz . (1)

Following Forester et al. (2009), we consider the numerator to be the SSF. The first term,

Φ(y|x), is the resource-independent movement kernel, which describes how an animal would

move in a homogeneous landscape or in the absence of resource preference (Forester et al.,

2009). The second term, w(x, y), is a weighting function and represents resource selection

without movement constraints (i.e., if Φ(y|x) is uniform over Ω). The weighting function is

typically defined as a log-linear model: w(x, y) = exp{β · H(x, y)}, where β is a vector of

parameters representing the strength of selection for H(x, y), a vector of habitat covariates.

Therefore, by assuming the step density to be a product of resource selection w(x, y) and

movement Φ(y|x), SSFs consider the effect of environmental covariates on short-term move-

ment decisions. The denominator of Equation 1 is a normalization constant that ensures the

SSF likelihood is a probability density function with respect to y (Forester et al., 2009; Potts

et al., 2014). The likelihood can be optimised with respect to β, over all steps, to estimate

the set of parameters that maximise the likelihood of an animal selecting the used locations

relative to the rest of the available habitat.
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We present the ESF as an energy-based habitat selection model. The mathematical

formulation is similar to a standard SSF, and it employs many of the same modelling ap-

proaches. Broadly, the ESF can be viewed as a special case of SSF, where the resource

independent movement kernel is uniform over the whole study region, and where the covari-

ates are based on energetic currencies. The ESF defines the likelihood of a step ending at

location y given that it started at location x as

f(y|x) = w(x, y)∫
z∈Ω w(x, z)dz

, (2)

with energy preference modelled as,

w(x, y) = exp{β1G(x, y)− β2C(x, y)}. (3)

We hereafter refer to equation 3 as the ESF, where G(x, y) and C(x, y) refer to the energetic

gain and energetic cost of the step, respectively. These energetic covariates replace the

typical habitat covariates H(x, y) used in SSFs, allowing us to make inferences about the

role of energy in shaping movement. In section 2.3, we explain how energetic covariates

can be derived from various types of telemetry and environmental data. In this form, β1

represents the selection for energetic gains G(x, y), which may be formulated in terms of

energetically beneficial resources, whereas β2 represents the strength of selection against

energetic costs, which may reflect avoidance of costly movements and environments. When

evaluated together, these parameters provide inferences about different energy maximization

strategies in optimal foraging theory.

In the ESF, we do not need to include the resource-independent movement kernel Φ(y|x)
as a separate term. Rather, since the various aspects of animal movement, such as speed

and tortuosity, directly affect energy expenditure (Halsey, 2017; Wilson et al., 2020), they

are therefore accounted for in the cost term, C(x, y). We illustrate how movement can be

incorporated into C(x, y) in Figure 1, which shows how energetic gains and costs contribute

to the ESF. Thus, similarly to integrated step selection analysis (iSSA; Avgar et al., 2016),

the ESF can be viewed as evaluating movement and habitat selection simultaneously.

2.2 Implementation

Consider a movement track {x1, x2, ..., xn} collected at regular time intervals. The ESF

defines the likelihood of the entire track as L(β1, β2 | x1, ..., xn) =
∏n−1

i=1 f(xi+1|xi), where
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Figure 1: Simulated rasters of energetic gains and energetic costs, and the corresponding
ESF. Energetic gains were simulated as a random covariate field and energetic costs were
defined as a product of the step length and turning angle from the central location (+),
assuming that the animal was facing up the y-axis before turning. ESF = exp(gains−costs)
to represent optimal movement. In all panels, lighter colours represent higher values.

f(xi+1|xi) is the likelihood of a single step (equation 2). However, it can be computationally

demanding to calculate the exact likelihood, as this would require evaluation of w over the

entire domain of integration Ω (i.e., continuously over the whole study region). This is a

standard problem in other habitat selection studies (RSFs, SSFs), as the integral may be

intractable (Rhodes et al., 2005) or require computationally demanding, and possibly unreli-

able, numerical integration methods (Forester et al., 2009). In practice, we can approximate

this likelihood using a case-control design (Forester et al., 2009; Thurfjell et al., 2014). For

each observed location xi (hereafter, a case), we generate a set of random locations (hereafter,

controls) which represent a sample of the available habitat. Using Monte Carlo integration

over the control locations {zi1, zi2, ..., ziK}, we calculate the approximate likelihood as

L̃(β1, β2|x1, ..., xn) =
n−1∏
i=1

w(xi, xi+1)∑K
k=1 w(xi, zik)

. (4)

In theory, we should generate control locations {zi1, zi2, ..., ziK} uniformly across the

whole habitat Ω. This procedure would be computationally intensive, but it can be improved

by noticing that the ESF (equation 3) will typically take small values over most of Ω. That

is, the properties of energetic costs ensure that the ESF decays as a function of the distance
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to the start point of the step xi (see Appendix 1 for further explanation and evaluation of

this concept). It is therefore sufficient to evaluate the ESF over a neighbourhood of the start

point, and we suggest generating control locations uniformly on a disc around xi. Practically,

this is the same as Arthur et al. (1996), but is conceptually different. The radius R of the

disc needs to be large enough, such that the probability of the animal moving beyond R

is negligible. This sampling is not a model of movement or availability, unlike SSFs where

controls are distributed according to Φ(y|x). We suggest using control locations over a

disc merely for computational convenience, and in the ESF framework, the availability is

determined by the effect of energetic costs on movement.

Given that the ESF uses the same general formulation and case-control design as SSFs,

model fitting can be done using the same statistical techniques and software. We can estimate

β1, β2 with maximum likelihood estimation (MLE), with regards to equation 4. MLE is

fast and accessible, using numerical optimizers (e.g., optim in R) or existing software for

conditional logistic regression (e.g., the R function clogit, package survival). The ESF may

be appealing to practitioners, as it builds on existing models and can be implemented with

common software and techniques.

2.3 Defining the Energetic Covariates

The energetic covariates, G (gains) and C (costs), must be formulated specifically to each

study. Generally, both energetic gains and energetic costs may be defined in terms of move-

ment and habitat covariates, although the contribution of each varies between G and C

(Figures 1, 2; energetic gains will mostly depend on resources and energetic costs on move-

ment). In this section, we provide some general recommendations on how to define G and

C, although these may not be applicable to every system. In practice, the formulation of G

and C should be based on available ecological knowledge, data, and expert opinion.

Energetic Gains, G

Energetic gains arise from the consumption of energetically beneficial resources, whose dis-

tribution can be derived from environmental data (Figure 2a). Wherever possible, metrics

used in G should be proportional to energy (e.g., biomass is preferable to a relative habitat

quality index). Further, G can incorporate multiple resources, combined by their energetic

contribution (e.g., several vegetation types, weighted based on their energy content). Un-
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Figure 2: Example energetic gain G (a) and energetic cost C (b) formulations. In all panels,
higher values are lighter in colour. In both (a) and (b), the third panel is a product of the
first two panels, which represent movement and habitat components. In (a), energetic gains
are composed of an energetically beneficial habitat covariate (e.g., forage biomass) scaled to
the speed travelled. In this case, the effect of movement speed is gamma distributed (k = 2,
θ = 2.2) about the start point to represent decreased foraging potential at low and high
speeds. In (b) the energetic costs are defined by the distance and turning angle from the
start point (+; assuming movement up the y-axis), combined with a habitat covariate in
which higher values increase energy expenditure.
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der this formulation, we evaluate selection for all foraging resources as a single energetic

currency, rather than preference for individual resources.

Additionally, energetic gains may depend on the speed travelled by the animal. For

example, grazing herbivores travelling at slow speeds may deplete resources along their path,

while fast travel leaves no time for foraging. In such a case, we may assume a non-linear

relationship where energetic returns are lower at very low and high speeds (Figure 2a).

However, for some species the relationship may be unclear or highly variable. Some predators

may employ both ambush and active hunting (Higginson & Ruxton, 2015), and it may be

unclear how their movement speed affects prey capture rate. Therefore, scaling gains based

on movement should only be done when there is considerable empirical or theoretical support

for hypothesized relationships.

Energetic Costs, C

Generally, energy expenditure will increase with movement speed (Taylor et al., 1970) and

tortuosity (Wilson et al., 2013; Halsey, 2016; McNarry et al., 2017), and with habitat factors,

such as environmental softness (Crête & Larivière, 2003), slope (Halsey, 2016), and resistivity

(e.g., wind and water currents; Chapman et al., 2011; Shepard et al., 2013). Field metabolic

rates of free-ranging animals can be measured with several methods, such as doubly-labelled

water, heart rate sensors, and accelerometers. Doubly-labelled water provides an accurate

measure of energy use, conceptually similar to oxygen consumption, but is logistically diffi-

cult (Nagy, 1989; Speakman, 1997; Butler et al., 2004; Pagano & Williams, 2019). A more

practical alternative is to estimate energy expenditure using biologgers (e.g., heart rate sen-

sors, accelerometers), calibrated using captive surrogates (Pagano & Williams, 2019; Wilson

et al., 2020). These tags can be fitted to animals over longer periods of time, and when

combined with location data, encompass the effects of both movement and habitat. Energy

expenditure estimated from observed steps can therefore be correlated to movement and

habitat characteristics, and these relationships can be used to calculate the costs of control

steps in the ESF (Figure 2b).

A similar approach could be used when only two-dimensional geographical positioning

system (GPS) location data is available. That is, it may be possible to use metabolic

rates estimated from doubly-labelled water and biologgers to model the costs of observed

GPS tracks (as done with control locations, described above). In cases where this data
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is unavailable, other sources of energetic information (e.g., treadmill studies) can create a

synthetic model of energy expenditure. The options to do this will vary depending on the

species, and should be done cautiously, as captive studies often underestimate field metabolic

rates (Bidder et al., 2017). Ultimately, the energy cost model should incorporate movement

and habitat in a way that it is applicable to both observed and control steps.

3 Simulation Study

We ran simulations to assess the performance of the ESF inference method (section 2.2). The

main objective was to recover model parameters from movement tracks simulated directly

from the ESF, with known parameter values. For all simulations, G was defined as a random

covariate field and C was calculated as the step length, both from [0, 1] and assumed to be

in the same units.

3.1 Methods

Simulation Algorithm We generated n locations x1, x2, . . . , xn, with x1 selected ran-

domly from the study area Ω. For each iteration i = 1, . . . , n− 1, we followed these steps to

generate xi+1:

1. Simulate possible endpoints {z1, z2, . . . , zK} uniformly on a disc centred on xi, with a

radius R = 1.

2. Evaluate G and C at each endpoint.

3. For k ∈ 1, 2, ...K, sample xi+1 from {z1, z2, . . . , zK}, with probabilities defined by

pk =
w(xi, zk)∑K
j=1 w(xi, zj)

, (5)

where w is the ESF (Equation 3).

Simulation Scenarios First, we assessed whether the true selection strength affected our

ability to estimate the parameters, and subsequently, whether certain foraging strategies may

be harder to identify. For both β1 and β2, we considered 15 as a high parameter value. We

considered low parameter values to be 0 for β1 (no selection for gains), and 5 for β2 (very weak

selection against costs). We could not use 0 for β2, as the ESF simulation algorithm would
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artificiality constrain the step length to be smaller than the samoling radius R. We tested

different values of β2 and found that 5 was the lowest parameter value where the size of the

radius no longer had a substantial effect on the simulated step lengths. We combined these

parameter values to represent the following movement patterns: i) optimal movement (high

values of both parameters), ii) intake maximization (high β1, low β2), iii) cost minimization

(low β1, high β2), and iv) movement nearly free of energetic considerations (low values of

both parameters). Next, we altered the level of spatial autocorrelation in G. We simulated

the study area Ω as a 1000 × 1000 raster with a resolution of 0.25, and assigned each grid

cell a random value [∼ U(0, 1)]. We calculated the covariate field for G by using a circular

moving average window with diameter ρ (measured in grid units) to control the degree of

spatial autocorrelation (Avgar et al., 2016; Michelot, 2019). We created random rasters of

G with ρ = 1, 5, 10, 25 to reflect four levels of spatially autocorrelated habitat. For each of

the 16 scenarios (parameter sets and spatial autocorrelation), we generated 250 movement

tracks {x1, x2, . . . , xn} of length n = 250. For each track, we tested the inference method

using 20 and 200 control locations in the Monte Carlo integration procedure (section 2.2).

All parameters were estimated using MLE.

3.2 Results

In most cases, the parameters were estimated accurately, although β2 was generally estimated

more precisely than β1 (Figure 3). The median (min, max) difference between estimated and

known parameter values was −0.04 (−65, 27) for β1 and 0.04 (−4.8, 4.7) for β2. Spatial auto-

correlation in G had a noticeable effect on the precision of β1 estimates, but not β2. When β1

was high, there was a pattern of decreased precision with increased autocorrelation. When

β1 was low, precision was lowest when spatial autocorrelation was very low (ρ = 1) and very

high (ρ = 50). Spatial autocorrelation is a documented issue in resource selection analyses,

which can lead to biased parameter estimates (Northrup et al., 2013). In SSFs and ESFs,

high spatial autocorrelation decreases the range of the covariate space that may be explored

for each movement step, which may decrease the ability to infer selection, particularly when

the number of control locations is low (Northrup et al., 2013). However, in our simulations,

the number of control locations used in Monte Carlo integration had negligible effects on

the precision or accuracy of parameter estimations. Therefore, in most cases, 20 control

locations should be adequate to approximate the likelihood, but this also depends on the
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size of the sampling radius. We still recommend caution when working with highly spatially

autocorrelated environmental covariates.

4 Case Study

Polar bears are sea ice-obligate apex carnivores that forage on fat-rich prey, such as ringed

seals (Pusa hispida) and bearded seals (Erignathus barbatus) (Pilfold et al., 2012). Polar bear

abundance, distribution, and body condition are associated with the spatial and temporal

distribution of their prey (Stirling & McEwan, 1975; Pilfold et al., 2014; Galicia et al., 2020),

as well as the sea ice habitat configuration (Rode et al., 2010; Lunn et al., 2016; McCall et al.,

2016). Energy gain is highest in the spring when bears enter a hyperphagic period (Pilfold

et al., 2012), before fasting for several months (Stirling & Øritsland, 1995). Therefore,

polar bears have limited time to store enough energy to survive and reproduce (Stirling &

Øritsland, 1995), and must balance the high-energy returns of their prey against energetic

costs. Polar bears have energetically expensive locomotion (Hurst et al., 1982a; Pagano

et al., 2018) that is affected by habitat dynamics, including sea ice drift (Durner et al.,

2017; Klappstein et al., 2020) and fragmentation (Blanchet et al., 2020). To reach or remain

in preferred habitat, polar bears may oppose the moving sea ice and expend more energy

to cover the same geographic distance (Mauritzen et al., 2003; Auger-Méthé et al., 2016;

Durner et al., 2017). Further, when sea ice cover is low, polar bears are more likely to swim

(Pilfold et al., 2016; Lone et al., 2018), which is 5x more energetically expensive than walking

(Griffen, 2018). These spatiotemporal interactions suggest that energetic considerations may

be important in governing polar bear movement and habitat selection.

The energetics of free-ranging polar bears have yet to be analyzed in a framework that

considers selection of gains and costs. Movement and habitat selection studies often consider

environmental conditions with energetic implications without formulating the covariates into

an energetic currency (e.g., McCall et al., 2016; Johnson & Derocher, 2020) and/or only in-

cluding the effect of a single covariate (e.g., Durner et al., 2017; Klappstein et al., 2020).

When energetics have been more comprehensively considered, they have been coarsely es-

timated (e.g., dynamic energy budgets in Molnár et al., 2011) or limited to energetic costs

(Blanchet et al., 2020; Pagano et al., 2020). In this case study, we apply the ESF to polar

bears in the Beaufort Sea, which has fast ice drift speeds and variable ice concentration

11
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Figure 3: Parameter estimates from the simulations, under 32 different scenarios. Tracks
were simulated with four sets of parameters: “high-high” (β1 = 15, β2 = 15), “high-low”
(β1 = 15, β2 = 5), “low-high” (β1 = 0, β2 = 15), and “low-low” (β1 = 0, β2 = 5). ρ refers to
the level of spatial autocorrelation in the energetic gain covariate G, and nc is the number
of controls used in Monte Carlo integration. Dashed line is the true parameter value.
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(Carmack & Macdonald, 2002). We estimate energetic gains from an energetically-weighted

RSF of seal kills, and develop a cost model for use with GPS telemetry data. Therefore, we

consider polar bear energetics at the scale of movement-based habitat selection.

4.1 Methods

Data Processing

We analyzed 4-hour resolution telemetry data from 23 GPS-collared solitary adult (> 5

years old) female polar bears from 2007-2011 in the Canadian Beaufort Sea (Figures 4, A.4;

Appendix 2). We calculated body mass from axillary girth and body length measurements

(Thiemann et al., 2011). We omitted GPS locations from dropped collars or deceased bears,

following Togunov et al. (2020). We defined a movement burst as a sequence of locations with

no gaps> 24 hours and only kept bursts with≥ 10 locations. We calculated step length as the

Euclidean distance between projected GPS locations (NAD83 UTM Zone 9N, EPSG:3156),

and removed unrealistic locations where the step speed was > 5.4 km/h (Whiteman et al.,

2015). Then, we imputed missing locations of each burst with a continuous-time correlated

random walk model (Johnson et al., 2008), implemented in momentuHMM (McClintock &

Michelot, 2018). We interpolated relevant environmental variables (described below) with

bilinear interpolation (Figure 4), using the raster package.

Energetic Gains G

We derived energetic gains from an RSF model of forage quality from Pilfold et al. (2014).

The RSF modelled locations of seals killed by polar bears, weighted by biomass, relative to

habitat characteristics (see Pilfold et al., 2014). Because the RSF incorporated both seal

biomass and abundance, we assumed the raw RSF value to be proportional to energetic

return. We extended both the temporal and spatial extent of the original rasters (Figure 4).

We created daily rasters which encompassed approximately 100km off-shore along the coast

of Alaska and Canada (from approximately 160◦W to 115◦W), including the Amundsen Gulf

and regions adjacent to Banks Island from March-June of 2007-2011. The resolution of the

rasters was 6.25km and RSF values were zero in locations where sea ice was absent.
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(a) (b)

Figure 4: Illustration of energetic gains in polar bear case study. (a) Map of study area over-
laid with an example seal biomass RSF (Pilfold et al., 2014). (b) Schematic representation
of energetic gain evaluation for a step from x to y, using bilinear interpolation at y based on
the four adjacent cells (black dots).

Energetic Costs C

We formulated costs based on the movement costs of captive polar bears, combined with

environmental covariates to better represent field conditions (Figure 5). Telemetry locations

arise from a combination of active bear movement and passive displacement caused by ice

drift (Mauritzen et al., 2003; Auger-Méthé et al., 2016; Durner et al., 2017). Therefore, we

define a step as the active bear movement between telemetry locations, corrected for ice drift

following Klappstein et al. (2020), using drift data from the National Snow and Ice Data

Center (Polar Pathfinder Daily 25km EASE-Grid Sea Ice Motion Vectors; Tschudi et al.,

2019). At each step, a bear can either be swimming or walking on sea ice, which have distinct

energetic costs (e.g., Hurst et al., 1982a; Griffen, 2018; Pagano et al., 2018). Using aquatic

sensor data from Lone et al. (2018), we modelled the relationship between the proportion of

time in water and sea ice concentration as a generalized additive model (GAM) in the mgcv

package (Wood, 2017). Using this curve, we estimated proportion of time spent in water for

each polar bear step, which we assumed to be the same as the proportion of the distance

travelled. Lastly, we modelled the relationship between travel speed and energy expenditure,
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using combined estimates from five treadmill studies (Øritsland & Jonker, 1976; Hurst et al.,

1982a,b; Watts et al., 1991; Pagano et al., 2018). We modelled energy expenditure as a

function of walking speed as a GAM with a gamma response distribution and a positive

monotonic constraint in the R package scam (Pya & Wood, 2015; Pya, 2019). When the

bear was assumed to be walking, the cost was derived directly from this curve, and when the

bear was swimming, we multiplied this cost by five to represent the higher energy expenditure

(Griffen, 2018). Our modelling approach estimated similar daily costs as those obtained from

doubly-labelled water (Figure A.5).

Fitting the ESF

We eliminated locations that were outside the spatiotemporal extent of prey data availability

(Figures 5, A.4). We generated 20 control locations on a disc around each observed location,

with radius R = 1.1× lm, where lm is the maximum step length of all observed locations (see

Appendix 1 for justification of R). We calculated energetic gains and costs of each step as

described above, using environmental covariate values at each end location. We omitted steps

from analysis when there was > 10 control locations without an energetic gain estimate (i.e.,

outside the raster extent). We fit the ESF with the numerical optimizer optim separately

for each bear. We calculated confidence intervals (CIs) based on the approximate standard

errors of the maximum likelihood estimates, obtained from the inverse of the Hessian matrix

given by optim. Lastly, in Appendix 2.3, we compare the ESF to a null model. We write a

simple random walk (SRW) model as a special case of the ESF, where there is no effect of

energetic gains and costs are defined as l2. By using the same implementation procedure, we

can therefore assess support for the ESF against this simpler movement model using Akaike’s

Information Criterion (AIC).

4.2 Results

We analyzed 7, 861 GPS locations (locations per individual: 80 − 968). Energetic gains at

each step (including controls) ranged from 0 to 27.9 (unitless) and energetic costs ranged

from 3.27 to 161 MJ. The median β1 estimate was −0.01 (range −0.29, 0.83), but only four

estimates had CIs that did not overlap zero (Figure 6). Only three bears selected for energetic

gains (β1 ± 95% CI = 0.83 ± 0.82; 0.32 ± 0.20; 0.28 ± 0.17) and one bear selection against

energetic gains (β1 ± 95% CI = −0.29± 0.20). All β2 estimates showed a selection against
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(a)

(b)

(c)

Figure 5: Schematic illustration of energetic cost evaluation in the polar bear case study, for
an observed step starting at x and ending at y. (a) Arrows represent the observed movement
step (black; GPS), ice drift (blue dashed; ice), and actual bear movement (grey dashed;
calculated as GPS - ice). Ice concentration (%) is estimated at y with bilinear interpolation.
(b) Modelled relationship between ice concentration and the proportion of the step spent
swimming from Lone et al. (2018). We use the estimated ice % from (a) to estimate the
proportion of the bear step spent swimming and walking. (c) Modelled relationship between
polar bear movement speed (km/h) and energetic cost (kJ/kg/h) from several treadmill
studies. Using the bear speed and weight, we calculate Cs for the step. Cs,swim and Cs,walk

are Cs multiplied by the proportion of time in each behaviour. The total energy expenditure
of the step C(x, y) is the sum of Cs,swim multiplied by 5 (to represent the higher costs of
swimming) and Cs,walk.
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costs, with a median of 0.57 (range 0.32, 0.97), and no CIs overlapped zero. The ESF fit

better than the null model (SRW) in all but three cases, indicating that polar bears follow

a cost-minimization pattern, rather than simple Brownian motion (Appendix 2.3).
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Figure 6: Estimated β1 (selection for gains) and β2 (selection against costs) coefficients of
lone adult female polar bears (N = 23). Error bars are 95% CIs and dashed line is at 0.

4.3 Discussion

In this case study, we found a strong pattern of selection against energetic costs in all

individuals, but only four showed selection for (n = 3) or against (n = 1) energetic gains.

However, effects may have been hard to detect if the grain size and spatial autocorrelation

of our covariate data were too high for the temporal scale and spatial domain size of the

telemetry data (Boyce et al., 2003; Boyce, 2006; Northrup et al., 2013). This could result

in low variation between case and control locations, particularly if the tracking data is not

at a biologically relevant resolution. Future studies should assess the effect of scale on

polar bear energy selection. Further, our uncertainty estimates do not consider the error in

our covariate data (Pilfold et al., 2014; Tschudi et al., 2019; Togunov et al., 2020), which

may affect modelling outcomes (Van Niel & Austin, 2007). However, error propagation

is not standard in habitat selection studies, as methods remain analytically complex and
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uncertainty in environmental data is often unknown (Molto et al., 2013). Lastly, we did not

incorporate movement speed into G nor turning angle into C, due to lack of empirical data

to support their inclusion.

Despite the above caveats, our results suggest that most solitary female polar bears in

the Beaufort Sea employ a cost-minimization strategy. Cost-minimization could arise due to

high predictability of energy expenditure, based on internal factors and mechanical movement

constraints, while energy-maximization would require polar bears to have knowledge of the

unpredictable seal distribution (Ramsay & Stirling, 1986; Ferguson et al., 1999). At the

landscape level, polar bear distribution correlates positively to seal biomass (Pilfold et al.,

2014), but we did not observe this at the scale of the movement step, which may be reflective

of local variability in seal distribution. Further, our model assumes that energy selection is

consistent through time and across behaviours, although selection for gains is likely variable

over the study period. Polar bears do not enter the main foraging period until mid-April

(Pilfold et al., 2012) and continue to gain weight into the summer months (Galicia et al.,

2020). From March to May, solitary females may also pair with males for mating, during

which they forage less frequently and are sequestered from ideal habitats for up to 18 days at

a time (Wiig et al., 1992; Derocher et al., 2010; Stirling et al., 2016). Additionally, polar bear

movements may be influenced by site fidelity (Mauritzen et al., 2001), in which recurrent

space-use patterns dominate short-term selection for energetic gains. If selection for gains is

affected by competing behaviours, it may be that only individuals with exceptionally strong

selection may be identified. These hypotheses should be tested in future research, which may

require a more nuanced model formulation, while addressing annual, seasonal, demographic,

and spatial variation in energy selection.

5 Discussion and Conclusions

Evaluating the energetic basis of animal movement and habitat selection remains a topical

issue in ecology (Eisaguirre et al., 2020; Pagano et al., 2020; Williams et al., 2020). Our

new model to estimate the energy preferences of animals is similar to recent approaches to

combine movement and habitat (Avgar et al., 2016; Michelot et al., 2019), but the ESF

uniquely integrates both factors into energetic covariates. Therefore, our approach explicitly

accounts for energetics in the selection process, unlike similar work by Eisaguirre et al. (2020),
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which incorporated costs into the availability kernel. We applied the ESF to lone female polar

bears and found that cost-minimization the most common energetic strategy, which helps

explain their movement in dynamic habitats. We consider this model an important step

towards more realistic models to uncover the contribution of energy in observed space use

patterns.

The performance of the ESF depends on our ability to accurately define the energetic

covariates, which relies on evaluating complex interactions between movement and habitat.

Mischaracterization of the covariates may lead to biased estimates that do not truly represent

energy selection. Challenges in evaluating G and C will be case-specific, but would most

likely arise from insufficient empirical data. In particular, it may not be possible to include

all relevant energetic factors (e.g., every resource that an animal may forage on or the exact

effect of movement or habitat composition on the covariates). In many studies, it may also

be impossible to express G and C in the same unit, or to account for energy assimilation

and conversion rates, which would facilitate comparison of β1 and β2 (i.e., relative strength

of selection). However, even when the covariates are expressed in different units, we can

still make comparisons between individuals or other temporal or demographic factors, as

illustrated in Section 4. Further, it is important that the spatial scale of the covariate data

be complementary to the temporal resolution of the tracking data, and that the tracking data

is at the scale at which energy selection is expected to occur. We hope that this study will

motivate the collection of more precise data to better understand the energetic mechanisms

behind animal movements.

The ESF has close theoretical and practical links to existing methods (SSFs and iSSA),

with great potential for methodological extensions. We could add separate terms to the

model, such as movement metrics (similar to iSSA; Avgar et al., 2016) or terms with no

energetic interpretation. This may prove useful to account for movement when it cannot

be included in G and C and to assess energetic trade-offs. Another possible extension

would be to consider a state-switching ESF model, where an unobserved behavioural state

determines the selection parameters for energetic gains and costs. This could be written as

a hidden Markov model, similarly to the state-switching SSF model of Nicosia et al. (2017).

Ultimately, the ESF is a flexible method to combine energy, movement, and habitat selection,

and is applicable to any study species or system with adequate data.
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Appendix A

1 Radius Size, R

To approximate Equation 2, we generate controls on a disc (Section 2.2). By using this

approximation method, we therefore assume that the probability density function of a step

ending at y given that it started at x over the area of the disc, is

f(y|x) =
{
Eq. 2 if lxy ≤ R

0 if lxy > R
(A.1)

Therefore, for this approximation to be accurate, the disc needs to be large enough so that

the probability of a step longer than R is very small (Figure A.1). If we define the radius as

R = lm× γ, where lm is the maximum observed step length, the approximation will improve

as γ increases. However, as the size of the disc becomes larger, so does the number of controls

needed for the approximation. There is no straightforward way to assess this trade-off (i.e.,

the optimal size of R), but we can use importance sampling, based on where we expect the

ESF to take large values. We explore the effect of the size of R on the approximation using

simulated data, as well as comparing individual polar bear estimates approximated with

different values of γ.

Simulated Data We simulated 250 movement tracks {x1, x2, . . . , xn} of length n = 250,

as described in Section 3. For each step, we generated 50 controls on a disc with a radius

of the size R = lm × γ, where γ = 0.5, 1.1, 2. We fit the ESF for each movement track. As

expected, β2 was estimated with the lowest precision with the smallest radius (γ = 0.5). It

was estimated correctly when γ ≥ 1.1 (Figure A.2). However, this represents a simplistic

example, where the costs are only dependent on step length and β2 = 15 is fairly strong

selection against costs (i.e., the step length distribution should quickly decay to 0).
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Figure A.1: Plot illustrating importance sampling in the ESF. Theoretically, we should
sample uniformly over the entire study area (white dots). However, the ESF should decay
with distance from the start point (+), due to the effect of step length on costs, and controls
generated outside the disc will contribute very little to the approximation (i.e., their ESF is
nearly zero). Therefore, for computational convenience, we can just sample within the disc,
as long as the radius is large enough.
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Figure A.2: Estimates of β1 and β2 with R = γ × lm, where lm is the maximum observed
step length and γ = 0.5, 1.1, 2. Dashed line represents the true parameter value.
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Real Data We checked the effect of radius size on our polar bear telemetry data. We

generated controls on a disc with R1 = 1.1× lm and R2 = 2× lm for each individual, fit the

models separately, and then compared parameter estimates. Estimates varied up to ±0.15 for

β2 (Figure A.3), but followed the same general pattern. There was no evidence of systematic

bias (i.e., underestimation or overestimation), and variation may be explained by the random

generation of controls (which varied between the two trials). β1 also varied between the two

radius sizes, but this is likely attributable to high uncertainty in the estimates (i.e., no clear

selection for gains).
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Figure A.3: Individual estimates of β2 with R1 = 1.1× lm and R2 = 2.0× lm. Each point is
an individual polar bear and the straight line represents a 1:1 relationship.

2 Polar Bear Case Study

2.1 Study Area and Field Sampling

Field sampling was done in Beaufort Sea, Canada (Figure A.4). Sea ice in the area is mostly

annual, with a flaw lead that separates near-shore areas of stable landfast ice and off-shore

drifting pack ice (Carmack & Macdonald, 2002). The lead widens in spring and forms an

active sea ice zone with high productivity (Pilfold et al., 2014), before most ice disappears by

mid-summer (Stern & Laidre, 2016). Sea ice drift is characterized by the clockwise Beaufort
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Gyre, which is strengthening with climate change (Hutchings & Rigor, 2012; Petty et al.,

2016), and increasing the energetic expenditure of polar bears in the area (Durner et al.,

2017).

Following standard capture procedures (Stirling et al., 1989), polar bears were sighted

and immobilized in April-May of 2007-2011. Bears were fitted with GPS collars (Telonics,

Mesa, AZ) set to a collect locations at a 4-hour resolution (relayed via the Argos satellite

system; CLS America, Lanham, MD), and programmed to release after 1-2 years. The

age of each bear was determined by analysing cementum growth layers of an extracted

vestigial premolar (Calvert & Ramsay, 1998), and sex was determined in the field. Capture

and handling was approved by the University of Alberta BioSciences Animal Care and Use

Committee following guidelines from the Canadian Council on Animal Care.

USA

Canada

Beaufort Sea Banks
Island

Amundsen Gulf

66°N

68°N

70°N

72°N

150°W 140°W 130°W 120°W

Figure A.4: Study area in the Beaufort Sea, Canada. Circle points are polar bear collar
deployment locations, and contour lines show the density of satellite telemetry data for all
individuals (once regularised and limited to the spatiotemporal extent of the energetic gains
raster).
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2.2 Polar Bear Cost Modelling

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●●●●●●

●

●

●
●

●

●

●●●●●●●●●●●

●●● ●●●●

●

●

●

200

250

300

350

400

450

0.7 0.9 1.1 1.3
mean bear speed (km/h)

m
ea

n 
da

ily
 c

os
t (

KJ
/k

g)

Figure A.5: Relationship between mean daily movement speed (km/h) and daily energy
expenditure (kJ/kg) for individuals with more than 25 days of locations with 6 locations
(blue line) compared to the estimated relationship from doubly-labelled water (Pagano &
Williams, 2019).

2.3 Comparison to a Simple Isotropic Random Walk Model

The simple isotropic random walk (SRW) is unbiased and uncorrelated, with diffusion coef-

ficient D, such that the density of a step starting at x and ending at y over time interval t is

normally distributed around the start point: y ∼ N(x, σ2), where σ2 = 4Dt (Codling et al.,

2008). The likelihood of a step ending at y given that it started at x is f(y|x) = ψ(y|x, σ2),

where ψ is the probability density function (PDF) of a normal distribution of y with mean

x and variance σ2.

Model Formulation and Implementation We can write the SRW as a special case of

the ESF. The ESF likelihood of a step ending at y given that it started at x is

f(y|x) = S−1 exp[β1G(x, y)− β2C(x, y)] (A.2)
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where S−1 is a normalization constant that ensures it is a PDF of y. To write it as an SRW,

we can set β1 = 0 to represent no effect of energetic gains and C(x, y) = (y − x)2. The

likelihood then becomes f(y|x) = S−1 exp[−β2(y − x)2], which can be rewritten as

f(y|x) = S−1 exp

[
−(y − x)2

2σ2

]
(A.3)

where β2 = 1
2σ2 . We recognize this as the PDF of a bivariate normal distribution with

variance σ2, mean x, and S = 2πσ2. This shows that an ESF with no gains and C(x, y) =

(y − x)2 (i.e., costs formulated as the step length squared) is equivalent to an SRW model.

Model Fitting Following Sections 2.2 and 4.1, we fit the SRW separately for each individ-

ual using optim. Costs were defined as l2, where l is the ice drift-corrected bear step length

(km). We compared models using AIC scores, where AIC = 2 × nllk + 2v where nllk is

the negative log-likelihood and v is the number of parameters in each model (vESF = 2 and

vSRW = 1).

Results SRW costs ranged from 0 − 509 km2 and ESF costs ranged from 3.3 − 161 MJ.

Since costs are in different units between models, β2 estimates are on different scales (Figure

A.6). However, this does not affect the likelihood or AIC scores. The ESF was a better

fitting model in almost all cases: AICESF < AICSRW for 20 out of 23 individuals (Figure

A.7). Based on guidelines from Burnham & Anderson (2002), there was little to no support

for the competing model (ΔAIC > 6) in all but one case (bearID = E; AICESF = −326.3,

AICSRW = −325.5). All but 3 cases had ΔAIC > 10, which indicates essentially no support

for the competing model (Burnham & Anderson, 2002).
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Figure A.6: Parameter (β2) estimates, negative log-likelihoods (nllk) and AIC scores for the
ESF and SRW.
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Figure A.7: Comparison of AIC scores for bears with lower AICESF (black dots; ΔAIC =
AICSRW − AICESF ) and lower AICSRW (red dots; ΔAIC = AICESF − AICSRW ). The
dashed line is at 2, which is a threshold to indicate considerable support for the model.
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