
Exploiting Local Node Cache in Top-k Queries within
Wireless Sensor Networks

Johannes Niedermayer
∗

Institute for Computer Science
LMU, Munich, Germany

niedermayer@cip.ifi.lmu.de

Mario A. Nascimento
Dept. of Computing Science
University of Alberta, Canada

mn@cs.ualberta.ca
Matthias Renz

Institute for Computer Science
LMU, Munich, Germany
renz@dbs.ifi.lmu.de

Peer Kröger
Institute for Computer Science

LMU, Munich, Germany
kroegerp@dbs.ifi.lmu.de

Hans-Peter Kriegel
Institute for Computer Science

LMU, Munich, Germany
kriegel@dbs.ifi.lmu.de

ABSTRACT
Top-k queries are a popular type of query in Wireless Sensor
Networks. Typical solutions rely on coordinated root-to-
nodes and nodes-to-root messages and on maintaining filters
at the nodes, aiming at suppressing unnecessary messages,
hence saving energy and furthering the network’s lifetime.
In this paper, we exploit the capability of a sensor node to
cache a few recently observed values in order to determine
”trends” for the observed values. Those trends can be used
to further restrict the number of messages that need to be
exchanged in the network, thus ultimately extending the
network’s lifetime. We compare our approach to the most
recently proposed solutions in the literature using real and
synthetic datasets, and we show that our approach is robust
with respect to a variety of parameters and is able to improve
the network’s lifetime by up to 28% without any loss in the
quality of the answer.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems—Distributed Databases; H.2.4 [Information Sys-
tems]: Systems—Query Processing

Keywords
Wireless Sensor Networks, top-k queries

1. INTRODUCTION
Wireless sensor networks are usually defined as large-scale,

wireless, ad hoc, multi-hop unpartitioned networks of homo-
geneous, small, static nodes deployed in an area of interest

∗Research performed while visiting the University of Al-
berta.

Technical Report TR10-03. August 2010. Dept. of
Computing Science. University of Alberta. Canada.
All rights reserved. A shorter version of this paper
appears at ACM SIGSPATIAL International Con-
ference on Advances in Geographic Information Sys-
tems 2010 (ACM SIGSPATIAL GIS 2010).

[9]. A single sensor node consists of one or more sensors, e.g.,
for temperature, acceleration, and light intensity, in combi-
nation with a microprocessor, a small amount of memory
and a radio transceiver. By using these components, a node
can take measurements of its surroundings, derive further
information from the collected data, and send the resulting
values to a root node via a path of adjacent nodes.

Applications for such kinds of wireless sensor networks
include monitoring volcano activity [12], determining earth-
quake damage on buildings [8], and habitat monitoring [6].

Although already in use, sensor networks still show some
deficiencies. The most important one is their limited amount
of energy, because sensor nodes usually rely on battery power.
Since networks are often deployed in hard to reach terrain
empty batteries can not be simply recharged. Hence, the
nodes’ energy consumption must be reduced as much as pos-
sible in order to increase the network’s lifetime. The most
important factor when thinking of battery lifetime is the
number of messages a node has to send/receive as well as
their sizes. Therefore, the number of transmitted messsages
and the length of a message should be reduced.

Because requesting every node’s value is expensive in terms
of energy consumption it is usually a good idea to keep track
of a subset of nodes in a sensor network which contains suf-
ficiently useful information, for example the median, quan-
tiles or the k highest sensor measurements. The latter gives
a good overview over extremes and can be used, e.g., for
detecting anomalies.

In this paper we focus on top-k queries in hierarchical
wireless sensor networks where the term hierachical refers
to the structure of the underlying network which forms a
routing tree. We will concentrate on computing the k largest
values (modifications for computing the k smallest values are
trivial). A continuous top-k value query computes period-
ically a set K containing the k largest values and their corre-
sponding nodes from a set of nodesN , i.e. K = {(ni1 , v(ni1)),
..., (nik , v(nik))} with nij ∈ N where v(ni) denotes the cur-
rent measurement of node ni.

In a straightforward solution for the top-k query, every
intermediate node of the routing tree will collect all values
from its children and forward the k largest of these values
together with their corresponding node IDs. This approach
is known as TAG [5]. Nonetheless there exist other sophis-
ticated approaches like FILA [13] and EXTOK [7] that fo-
cus on reducing the overall number of transmitted messages

when performing a top-k query. Our main contribution in
this paper improves on both of these algorithms.

The structure of the paper is organized as follows. First
we present a short introduction to FILA, a related algorithm
for solving top-k queries which relies on filters like EXTOK,
and, more importantly, EXTOK which provides a basis for
our contribution, T-EXTOK (Trend-EXTOK). Both FILA
and EXTOK provide useful ideas towards T-EXTOK and
therefore the improvements are motivated during the intro-
duction of these solutions in Section 2. This will facilitate
the understanding of T-EXTOK in Section 3 and 4. In Sec-
tion 5 we present the results of a performance analysis we
executed using both real and synthetic datasets. The paper
is concluded by providing an overview of related work and
future research in Section 6 and 7.

2. BACKGROUND
In order to present an overview over the existing solu-

tions to address the problem of top-k queries in wireless
sensor networks, two algorithms, FILA and EXTOK are in-
troduced. Figure 1 shows example setups for each algorithm,
using k = 2, at the beginning of each round.

Both algorithms consist of two phases. The initialization
phase is performed once and returns the first top-k set while
the update phase is performed as often as necessary to up-
date the current top-k set at the root. The update phase
is subclassified into three stages, data collection, refinement
and filter broadcasting. We refer to the execution of these
three stages together as a round.

EXTOK and FILA use filtering intervals to avoid unneces-
sary updates, i.e., nodes only have to send update messages
if their observed value breaks the node’s filter. In FILA,
every top-k node owns its own filtering interval while all
non-top-k nodes share a default interval. EXTOK uses only
a default interval while recent top-k nodes send updates dur-
ing each round.

2.1 FILA by example
During the first phase of the algorithm every node sends

its value and ID as a tuple to the root, similar to TAG,
but instead of k tuples k+1 tuples are forwarded because
the k+1-th value is used to compute the upper bound of the
default filter. The messages transmitted during initialization
can be extracted from Figure 1(a). From the received tuples,
in this case the set {(16, H), (19, D), (26, G)}, the root node
computes the first set of top-k nodes and computes the first
set of filters. The filters are created in a manner that filtering
intervals do not intersect, the current value of a node lies
within the bounds of its filtering interval, and all non-top-k
nodes share the same filter. A simple solution to create a set
of filters with these properties is to compute the midpoints
between two consecutive values and use these midpoints as
filter bounds for the nearest greater and the nearest smaller
node. Besides the node with the highest value gets an upper
bound of∞ and the default filter for all non-top-k nodes gets
a lower bound of −∞. These filters are broadcasted to their
respective owners if they change. Therefore, the top-2-nodes
D and G receive the intervals [17.5, 22.5[and [22.5,∞[while
all other nodes use a default interval]−∞, 17.5[.

During the next round, Figure 1(b), only nodes that break
their filtering interval have to send update messages, in our
example this is node H. The root node receives the new value
of H and realizes that the value falls in the filtering interval of

node D. Because the root node can not decide which nodes
form the new top-2 set, it has to probe D which returns
(D, 18). After probing it creates the new top-2 set containing
H and G and computes the new filtering interval for H, which
is [20, 22.5[. Although 22.5 is not the midpoint between G
and H, the filter of node G is not changed because only
intervals of top-k-nodes whose value was updated during the
current round are updated. The default filter is updated to
]−∞, 20[because it must contain all non-top-k values.

In the second round, Figure 1(c), D has to send an update
because its value moved outside the filter. H is probed be-
cause D fell into its filtering interval and the new top-2 set
can be computed. Note that although H dropped below the
top-2 threshold which was 22 in the end of the last round,
the tree does not need to be fully refined.This observation
will become important when looking at the functionality of
EXTOK.

2.2 EXTOK by example
Equivalent to FILA, each EXTOK node has to send its

value and ID during initialization because there is no in-
formation about the distribution of values available and ev-
ery node could be a top-k node. Therefore, the first phase
makes use of a TAG-like aggregation as shown in Figure
1(d). Again, note that node C does not forward all tuples
but only the tuples with the highest 2 values, in our case
{(19, D), (26, G)}, and therefore performs an in-network ag-
gregation. From these tuples the root node computes the ini-
tial set of top-2 values and broadcasts the threshold τ2

0 = 19,
which separates top-2 nodes and non-top-2 nodes, to all of
its children (the subscript of τ denotes the current round
while the superscript shows the value for k since thresholds
depend on k). After each subsequent round t, τk

t is used
by every node to decide on its current state. Nodes which
value was greater or equal to τk

t during the according round
become temporarily monitoring (TM) nodes, they will al-
ways have to send their new measurement and ID during
the next round. In our example the nodes D and G become
TM-nodes. All other nodes become filtering (F) nodes. F-
nodes will only have to send a new tuple during round t+ 1
if their value grows larger than a specified separator σk

t+1.
EXTOK uses the recently broadcasted threshold as the sep-
arator, i.e. σk

t = τk
t−1.

Figure 1(e) shows the state of the sensor network in the
beginning of round 1. Again, TM-nodes are drawn in a
light grey. Nodes D and G have to send their value because
they are TM-nodes. Beside these nodes, node H measured
a value greater than σ2

1 = τ2
0 and therefore has to send

its value too. Therefore, the root always receives all values
greater or equal to σk

t , possibly combined with some TM-
node values less than σk

t . Because in this case the root
received enough values greater than σ2

1 it computes the top-
k values from this set and broadcasts the new threshold τ2

1 =
22. G and H become TM-nodes. This is a very good case
for the algorithm because no refinement is necessary. Infact,
with our first improvement over EXTOK we will focus on
increasing the probability of falling into this low-cost case
by carefully reducing the value of σk

t .
During round 2, Figure 1(f), only the current TM-nodes

send their updates and the value of node H falls below
σ2

2 = τ2
1 . Therefore the root does not receive enough val-

ues greater than τ2
1 , and although the overall number of

received values is equal to k it can not be sure that there are

A

1 (1,B)
B

14
C

19
D

9
F

12
E

26
G

16
H

(19,D)

(12,E) (26,G)

(16,H)

(26,G)
(16,H)

(26,G)
(19,D)

A

1
B

14
C

18
D

9
F

12
E

24
G

22
H

(18,D)

(24,G)

(22,H)

(24,G)
(22,H)

(24,G)
(22,H)
(18,D)

A

1
B

14
C

20.5
D

9
F

12
E

24
G

21
H

(21,H)

(21,H)

(21,H)

INIT
(EXTOK)

ROUND 1
(EXTOK)
τ = 19

ROUND 2
(EXTOK)
τ = 22

A

1 (1,B)
B

14
C

19
D

9
F

12
E

26
G

16
H

(19,D)

(12,E) (26,G)

(16,H)

(26,G)
(16,H)

(26,G)
(19,D)

A

1
B

14
C

18
D

9
F

12
E

24
G

22
H

(22,H)

A

1
B

14
C

20.5
D

9
F

12
E

24
G

21
H

INIT
(FILA)

ROUND 1
(FILA)

ROUND 2
(FILA)

]-∞, 17.5[]-∞, 17.5[[17.5,22.5[

]-∞, 17.5[[22.5,∞[]-∞, 17.5[

]-∞, 17.5[

(22,H)

(22,H)

]-∞, 20[]-∞, 20[]-∞, 20[

]-∞, 20[[22.5,∞[]-∞, 20[

[20, 22.5[

(12,H)

(16,H)

(20.5,D)

(d) (e) (f)

(a) (b) (c)

0
k

1
k

Figure 1: An example network showing the functionality of FILA (top) and EXTOK (bottom). The recent
top-k (k=2) nodes are drawn in a light grey color, the root is visualized by a black circle. The upper half of
a node shows its value while the lower half displays its ID. Messages between connected nodes are displayed
in form of a rectangle, the direction of the message transfer is shown by an arrow beside each message.

no F-nodes in the interval [21, 22[since F-nodes with values
smaller than 22 do not send updates. Hence EXTOK has
to probe the whole tree for values in the interval [21, 22[,
although there is no relevant unknown node in this inter-
val. This is an interesting observation, because by slightly
reducing the separator we would have been able to reduce
the number of message transmissions. Besides, FILA al-
ready performs this reduction of the separator by using the
midpoint between the k-th and k+1-th value for the upper
bound of the default interval. Beside this observation, EX-
TOK will send its new threshold in the end of this round.
However, the top-k set did not change, therefore all nodes
would have been able to derive their current state from their
old state if the threshold would not have been broadcasted.
We will cover this idea in Section 4.

The superior performance of EXTOK compared to FILA
is due to two different reasons. First, even if the new thresh-
old is greater than the recent threshold, it is possible in FILA
that a refinement is necessary, for example if a top-k node’s
value falls into the interval of another top-k node’s inter-
val. This happens more often if measurements are inherently
noise-prone and the noise exceeds the node’s interval width.
For this refinement, the number of transmissions is equiva-
lent to two times the hop-count of this node to the root if
there are no multiple refinement requests grouped together.
In terms of transmitted values the root node must send at
least the node ID while the child node has to respond with
its current value and, if sending multiple requests in a single

message, its node ID. Second, FILA sends different filters to
the top-k nodes. Therefore the amount of data sent while
broadcasting the new filters is greater than the amount of
data sent by EXTOK’s filter broadcasting because EXTOK
sends the same threshold to all nodes.

Further details about EXTOK, including a proof of cor-
rectness, can be found elsewhere [7].1

The next sections introduce two improvements we sug-
gested during the explanation of EXTOK and FILA, first
an improved separator selection and then a new heuristic
for broadcasting thresholds.

3. TO UPDATE, OR NOT UPDATE, THAT
IS THE QUESTION

During each round, EXTOK decides which F-Nodes have
to update their current value by comparing their value to
the old threshold, i.e. σk

t = τk
t−1. The last threshold is

usually a good idea to use for aiding this decision because
the probability for the new threshold being quite similar
to the old threshold is quite high if the distance in time
between two rounds is sufficient small. However the costs
of performing a refinement if there are not enough values
greater than the old threshold are high and in many rounds
a refinement will be necessary.

1Since [7] has been accepted but not yet published
at IEEE TKDE we made its pre-print available at
http://bit.ly/9QQHWe for the convenience of the ACM GIS
2010 reviewers only.

To solve this problem it is useful to carefully reduce the
separator and transmit more updates during the first up-
date stage to avoid refining the whole tree. Although this
increases the number of transmitted values during the first
stage, we do most likely not have to do a refinement and
therefore we can reduce the number of transmitted values
and the number of message transmissions during the sec-
ond stage. However reducing the value of the separator too
much, e.g., to a value less than the smallest value in the sen-
sor network would degrade EXTOK to a TAG-like behaviour
because all nodes would have to send their values.

Therefore we developed and tested several heuristics that
provide a tradeoff between number of updated nodes during
the first stage and the probability of a refinement request
during the second stage. We will concentrate on the best
solution for the sake of this paper. This approach makes use
of a regression model to predict the next threshold by using
the information available from the m most recent thresholds.
The computations can be performed at a node using mini-
mal cache storage, therefore the root does not have to send
more information; sending the new threshold like EXTOK
is sufficient. Furthermore the computation of the separator
is very simple, therefore the CPU load of a sensor node is
only marginally increased.

It should be emphasized that with our separator selection
we do not target on predicting the exact new threshold but
rather on providing a pessimistic lower bound for the new
threshold that can be used to reduce the probability of a re-
finement. Therefore, the optimality criterion for a separator
σk

t which is used during round t is σk
t ≤ τk

t and τk
t − σk

t

should be minimized. τk
t is not known at the point in time

where σk
t is computed.

Beside estimating the new threshold, T-EXTOK addition-
ally reduces this predicted threshold by the maximum neg-
ative difference of all recent thresholds to the regression line
in order to get a worst-case separator estimate. There ex-
ist several different models to predict a value from a set
of existing values, but, in order to address the limited re-
sources of a node by decreasing the computation complexity
for nodes, we selected a linear regression model to estimate
the next threshold. Therefore, we are looking for a function
τest(t) = a+ b× t which minimizes the sum of the quadratic
deviance of the last m thresholds to the linear function as
explained, e.g., in [14]. The solution of this problem is the
well-known formula τest(t) = a+ b× t, where:

b =

t−1P
i=t−m

(i− tavg)(τk
i − τavg)

t−1P
i=t−m

(i− tavg)2
, and a = τavg − b× tavg

tavg and τavg denote the average round count and average
threshold, respectively, over the last m relevant values. By
using this formula, we can compute an estimate of the next
threshold τest(t). However, this function is still not suffi-
cient because it is computed in a way that old thresholds lie
beneath and above the regression line but we want them all
to lie above, because, if assuming the same behaviour of the
threshold in the future, this will make the next threshold
lie above the regression line. Therefore, we have to subtract
a term z from the resulting function that performs a down-

ward shift. A good value for z is z =
t−1

min
i=t−m

(τi−τest(i)) (note

that the result of this formula is negative) which describes
the maximum difference between all relevant old thresholds
(with a value less than the respective value of the regression
line) and their predictions. This term can be multiplied
with a constant factor c > 0 to further improve the perfor-
mance of the separator. In order to avoid that the separa-
tor becomes larger than the recently broadcasted threshold
– which might be possible if we have a very fast upward
trend, we compute the minimum of the predicted threshold
and the last threshold. Therefore, the final formula for the
computation of a separator can be written as

σk
t = min(τest(t), τk

t−1) + c× z

This separator is then used to determine which F-nodes have
to send their values. Because ∀t > 0 : σk

t ≤ τk
t−1 the T-

EXTOK result set of the first update stage will always be
greater or equal to the EXTOK result set which reduces the
number of refinements.

The example in Figure 2 visualizes this techniqe with a re-
gression line that takes 5 measurements into account. The
solid line visualizes the regression line. δ− shows the maxi-
mum negative deviation of the last 5 thresholds from this re-
gression line. Because the next predicted threshold is greater
than the previous threshold, the previous threshold is used
for further computation. From this we subtract 1.5 ∗ δ− to
compute the next separator (c = 1.5).

The selection of an adequate value for m is important for
performance. If m becomes to large the regression line needs
many rounds to react on short trends and rapid changes, but
if it is too small, the regression line becomes very prone to
noise. In our experiments we used a value of 5 for m which
delivered good performance in general. For the first five
rounds, the separator is selected equivalent to EXTOK be-
cause a node has not collected enough thresholds to compute
the regression line at that time. For c we used a value of 1.5
during our experiments because this factor showed the best
performance in our preliminary tests.

t

4

6

8

2

0 1 2 3 4

y=2.6+1.1xτ

δ
-

5

σ

?

Figure 2: Regression driven separator selection.

4. IMPROVING BROADCASTED THRESH-
OLDS

Our first solution addressed reducing the number of re-
finements. This leads to significant improvements because
broadcasting a message into the whole tree always requires
|N |−|L| messages where |N | denotes the number of nodes in
the tree and |L| denotes the number of leaf nodes. However,
there is another condition where we have to traverse the
whole tree; broadcasting a new threshold creates the same
number of messages. To reduce the number of messages,
EXTOK only sends threshold updates if the old threshold

differs from the new threshold, i.e. τk
t−1 6= τk

t . When as-
suming trends in the measured data, this is usually not a
good solution because the threshold increases or decreases
over time. Nonetheless it is still very likely that a node that
was a top-k node during round t − 1 will still be a top-k
node during round t. Therefore we decided to use a solution
where the new threshold is broadcasted only if the set of
top-k nodes changed. Note that the order of nodes in the
top-k set can change between two consecutive rounds, the
only condition is that a node that was a top-k node during
round t− 1 still has to be a top-k node during round t. The
following lemma asserts the correctness of this solution.

Lemma 4.1. If each network node knows about its current
state (TM-node or F-node) and it uses the same separator as
the root node, our proposed approach will return the correct
top-k set.

Proof. EXTOK has already been proven correct [7]. The
case where the new threshold is broadcasted is equivalent to
EXTOK because every node decides about its state by using
the new threshold. Besides, T-EXTOK nodes can determine
their current state by checking if the threshold broadcast
was pruned. In this case the state of each node remains the
same. If no threshold is broadcasted, the last broadcasted
threshold will be assumed as equivalent to the new thresh-
old, even at the root node. By using this information the
new separator σk

t+1 is computed. Equivalent to EXTOK, the
root node will receive responses from all nodes with values
greater or equal to σk

t+1 during the next round, probably in
combination with some TM-node values less than σk

t+1. This
condition is equivalent to EXTOK, therefore the algorithm
is still correct.

This new solution increases the performance especially for
small k because the probability that the top-k set will be
formed from the same nodes as during the last round de-
creases with increasing k.

As discussed, we can reduce the number of transmitted
messages during a round by |N | − |L| if we use this ap-
proach. However, there emerge two new questions. First,
F-nodes can only use outdated thresholds to decide if they
have to send a new message. Does this imply a negative
impact on the algorithms performance? Second, do these
outdated thresholds yield any impact on the separator se-
lection introduced during the last chapter?

To answer the first question, let us assume the following
scenario. For simplicity we assume that σk

t = τk
t−1 like EX-

TOK. Assume that during round t− 1 the threshold of the
top-k set was determined to be α. The top-k set changed
and therefore the new threshold had to be broadcasted hence
all nodes know the exact threshold of the last round during
round t. During round t the set of top-k nodes did not
change, however the top-k-th node’s value dropped from α
to β, α > β. Because the new threshold β is not broadcasted
into the network, the nodes do not know about this decrease
in the threshold. They still use the old value of α to compute
their new separator. Therefore if the value of a TM-node
drops to γ, α > γ > β during round t + 1 the whole tree
has to be refined. We would not have had to do this refine-
ment if each node had received the last real threshold β and
therefore this refinement increases the number of message
transmissions during this round by |N | − |L|+ |R \ (R \U)|,
where R denotes the set of edges that have to be used to

send the refinement response to the root node and U the
set of edges that was used to transmit messages to the root
during the first update stage. Therefore, R \ (R \ U) con-
tains all edges that were used during update and refinement.
These edges would have been used twice and therefore lead
to a performance reduction. The edges R \ U would have
been used once for sending messages to the root with both
techniques, therefore they do not reduce the performance of
the introduced algorithm. Because we saved |N | − |L| mes-
sages during the last round the additional costs only total
|R\ (R\U)|. These costs usually correspond only to a small
fraction of the costs |N | − |L| emerging if a full tree traver-
sal is performed. Nontheless it is possible to create cases
in which we might loose performance. Consider a setting
where top-k nodes always stay top-k nodes, i.e. the top-k
set never changes. In this case, the new threshold would
never be broadcasted and we would force a behaviour sim-
ilar to TAG if there was an upward trend. To avoid this,
another variable could be introduced that forces a threshold
broadcast for example if the set of answers grows to small
or to big. In this paper we do not explore this and leave it
to future research.

The second question refers to the sensitivity of our thresh-
old selection technique to this improvement. The separator
selection relies on a continuous update of the threshold to
adapt the new separator to the behaviour of the physical
phenomenton. We observed that for small k the threshold
broadcasting becomes more important and the performance
of the regression-driven separator selection suffers, however
the overall performance of T-EXTOK increases. For large k
the improvement will be mostly due to the regression-driven
separator selection and the threshold broadcasting algorithm
becomes less important as already mentioned.

5. PERFORMANCE ANALYSIS

5.1 Test Setup
Given that energy supply is a severe constraint within

a wireless sensor network, the network’s lifetime is a use-
ful metric to determine an algorithm’s efficiency. As such,
we compare the yielded network lifespan of T-EXTOK to
those yielded by EXTOK and IFILA, using both synthetic
and real datasets. Furthermore the number of transmitted
values and the number of message transmissions effects the
network lifetime so that the influence of these two factors
are inherently included in our performance analysis. In or-
der to determine the network lifetime, we performed 10 sim-
ulation runs for each tested algorithm until the first node
of the corresponding sensor network ran out of power. All
compared algorithms used the same physical and logical net-
work topology during a simulation run. The topology was
changed between two consecutive simulation runs. On real
world data sets the topology was only changed by selecting
another root node because the node positions were already
defined. The synthetic dataset also enabled the possibility
to reposition the nodes between two simulation runs. We
made sure that all algorithms used the same infrastructure
during each simulation run.

5.1.1 Node Distribution
For performance analysis, nodes were distributed in a rect-

angular area according to the underlying dataset. After dis-
tribution, the physical neighbours of each node were com-

0 50 100 150 200 250
time

(a) Sample traces (synthetic), different sampling rate

0 50 100 150 200 250
time

(b) Sample traces (pressure), different sampling rate

0 50 100 150 200 250
time

(c) Sample traces (INTEL), random nodes

Figure 3: Sample traces of the three data sets. Synthetic and pressure data is plotted with different sampling
rates. Because of its randomness the INTEL dataset shows traces of three different nodes. Graphs are stacked
for sake of clarity, i.e. the y-axis is meaningless.

puted by finding all nodes in a speficied radius – the radio
range d – in the neighbourhood of the node. This informa-
tion was then used to create a routing tree by reducing the
overall set of physical connections between nodes to a small
subset of logical connections. For our simulations, we used
a Dominating Set Tree due to its superior performance com-
pared to a Shortest Path Tree [7]. For each node it is only
possible to send messages to its children or to its parent.
Although the original FILA paper assumes that all nodes
can be reached by the root directly, we argue that even in
this direction it is unlikely that there is not an obstacle in-
terfering with the radio waves and therefore we assume a
multihop setting in both directions, from/to the root.

5.1.2 Synthetic Dataset
The synthetic dataset was created on the fly when per-

forming a simulation run. Nodes were distributed in an area
of 200m in width and length. For initialization of the values
we used an image containing interpolated noise (Figure 4)
to simulate the similarity of neighbouring values in reality.
Each node’s position in the 200mx200m area was mapped
to the corresponding coordinates in the picture and the re-
sulting greyscale value was scaled to a range of [0, 1].

Figure 4: Initial value distribution when using syn-
thetic data. Bright areas denote values similar to 1,
dark areas visualize values similar to 0

Because the input image only produced 256 different val-
ues, we added some additional noise by using a Pseudo Ran-
dom Number Generator. The noise magnitude was set to
less than 1

256
in order to keep the overall distribution of

values in the image. This data was used to initialize the al-
gorithms and compute the first set of top-k values. To com-
pute consecutive sets of values, we used a sinoid function

with additional noise. For the synthetic dataset we chose
the sampling rate, the underlying algorithm, k, the number
of nodes N , and the radio range d of a node as independent
variables. In Figure 3(a) we show traces for the synthetic
dataset with different sampling rates.

5.1.3 Real Datasets
We also used two datasets containing real data: the IN-

TEL Berkley2 dataset used by the EXTOK team and a
dataset containing pressure data provided by the team that
developed IFILA.

The INTEL dataset consists of 54 nodes, for each node
there are 60000 measurements. The original coordinates of
the nodes in the Berkley lab were given, therefore we only
changed the ID of the root node between two simulation
runs. In order to evaluate our proposal, when using this
dataset we only changed d, k and the sampling rate.

The IFILA team had extracted data traces for ca. 1000
nodes from the Live from Earth and Mars project3 at the
University of Washington. However this dataset did not
contain node positions. Because the IFILA team assumed
locally clustered data during their test runs, we used a self-
organizing map approach similar to [3] to sort similar values
near together in an area of 200m in width and length. Fea-
ture vectors of size one were used as input of the self orga-
nizing map, containing the first measurement of each node.
We received the position of each node as an output. By us-
ing this dataset, we explored the behaviour of all algorithms
with changing sampling rate, k and d. Equivalent to IFILA
we used 1022 nodes during our test runs.

An overview showing values for independent variables can
be found in Table 1. In Figure 3(b) and (c) we show sam-
ple datatraces from the pressure and INTEL dataset respec-
tively. The data trace for the pressure dataset is visualized
by taking different sampling rates into account. The traces
of the INTEL dataset just show different traces from three
distinct nodes.

5.1.4 Cost Function
To determine the lifetime of a node within a sensor net-

work, we use the same cost function as used for the origi-
nal FILA [13] research. It distincts between three different
modes: sending a message, receiving a message and sleep-

2http://db.csail.mit.edu/labdata/labdata.html
3http://www-k12.atmos.washington.edu/k12/
grayskies/nw weather.html

0
200
400
600
800

1000
1200
1400
1600
1800

0 2 4 6 8 10 12 14 16 18 20

lif
et

im
e

k

Synthetic: lifetime with increasing k

T-EXTOK
EXTOK

IFILA

0

500

1000

1500

2000

2500

3000

3500

0 2 4 6 8 10 12 14 16 18 20

lif
et

im
e

k

INTEL: lifetime with increasing k

T-EXTOK
EXTOK

IFILA

0

100

200

300

400

500

600

0 2 4 6 8 10 12 14 16 18 20

lif
et

im
e

k

Pressure: lifetime with increasing k

T-EXTOK
EXTOK

IFILA

Figure 5: Effect of k on the network lifetime.

Table 1: Independent variables used during simula-
tion. Bold text denotes default values.
Variable Values

k 1, 5, 10, 15, 20
100, 200, 300, 500 (synthetic)

N 54 (INTEL)
1022 (pressure)

d
25, 30, 35, 40, 45 (synthetic, pressure)
8, 10, 12, 14, 16 (INTEL)

Sampling 250, 125, 63, 32, 16 times/cycle (synthetic)
rate every 1/2/4/8/16th value (pressure)

every 1/2/4/8/16th value (INTEL)

ing. The costs for sending a message is computed by the
function s ∗ (α + β ∗ dq) where s denotes the size of the
transmitted packet, α is a distance independent constant,
β is a distance dependend constant multiplied by dq, with
d the radio range of a node. Equivalent to FILA we as-
sumed α = 50nJ/bit, β = 100pJ/bit/m2 and q = 2. The
energy consumption for receiving data was computed by the
function s ∗ γ, γ = 50nJ/bit. For simplicity, we set the en-
ergy consumption in sleeping mode to 0. The initial energy
supply of each node was set to 0.1 Joule.

We assume that a measurement and a node ID consists
of 2 bytes, for sending the requested number of nodes - as
necessary in EXTOK and FILA refinement requests - we
assume 1 byte. Packet headers are taken into account as
sh = 8 bytes, the maximum packet size smax is set to 128
bytes. Therefore, the maximum payload size sp can be easily
calculated. We decided about the magnitude of these vari-
ables by taking protocol specific constants from the 802.15.4
standard4 into account. This standard is used for example
by SUNSpot nodes and as a base for the ZIGBEE stan-
dard. However for the sake of simplicity we reduced packets
to a header and a payload and did not account underlying
techniques for collision avoidance and protocol specific be-
haviour.

When sending a packet the consumed energy is reduced
from the sender’s energy supply if the sender is not the root
node because we assume an unlimited energy supply for the
root. If a node sends a message, the receiving energy is
subtracted from the remaining energy of all of its physical
neighbours because we use a wireless medium and therefore
a node has to receive a packet before it can decide whether

4http://standards.ieee.org/getieee802/802.15.html

or not it has to process it.

5.2 Network Lifetime
In order to compare the network’s lifespan yielded by the

different algorithms we investigated how they are affected by
the parameters listed in Table 1. We measured the number
of rounds until the first node ran out of energy, and followed
the traditional approach of keeping all parameters but one
fixed at the default value, while varying the“free”parameter.

5.2.1 Varying k

When comparing the three solutions for different k (Fig-
ure 5) and using the synthetic dataset, T-EXTOK gains
up to 28% compared to IFILA which stays alive for 1018
rounds. For pressure and INTEL data, T-EXTOK outper-
forms its competitors by up to 19% (EXTOK: 270 rounds)
and 25% (IFILA: 704 rounds) respectively. On the syn-
thetic dataset, T-EXTOK performs best for small k. How-
ever, its performance gain diminishes more and more with
increasing k. This happens because hot spot nodes, for ex-
ample routing nodes that have to forward a large amount
of packets, will still have to forward update packets from
their children. With increasing k, this part of the energy
consumption becomes more and more important because
the stress of hotspot nodes increases with increasing packet
sizes and the overall probing of the network becomes less
important. Because our algorithm mainly reduces probing
of the network, our algorithm decreases energy consumption
of every node, but this reduction is less important for hot-
spot nodes. However it is possible to alter the hierarchical
structure of the network during consecutive update rounds
because routing nodes do not store significant information
about their children in EXTOK and T-EXTOK. This tech-
nique would change the set of hot-spot nodes which would
increase network lifetime, and because T-EXTOK reduces
the overall number of transfers it would positively affect T-
EXTOK most. We note that we chose to not implement im-
plement this feature in our experiments because we wanted
to compare the “pure” behavior of T-EXTOK.

Another effect of increasing values for k is that the devel-
opment of the top-k threshold becomes smoother as it can
be seen in Figure 6 using the INTEL dataset. This obser-
vation has a positive effect on the performance of our solu-
tion because with a less fluctuating threshold the regression
line achieves better results since its prediction is more sim-
ilar to the new threshold. This behaviour can be observed
when comparing the INTEL and pressure dataset with the
synthetic dataset. With small k a performance loss of T-
EXTOK can be observed. It becomes most obvious in the

INTEL dataset where the threshold is usually similar to 20,
but sometimes increases to 120 during a round while decreas-
ing to 20 again during the next round. Note that this is one
of the worst things that can happen to T-EXTOK because
the regression line approach is very prone to a short-lived
change in this magnitude. However, with increasing k, T-
EXTOK performs better than both competitors even under
these circumstances.

0 50 100 150 200 250
time

k=1

k=5

k=10

k=15

Figure 6: Development of the top-k threshold of the
Intel dataset for different k, stacked.

5.2.2 Varying the sampling rate
Another interesting observation appears when comparing

the performance of the different algorithms by taking the
sampling rate into account (Figure 7). If the sampling rate
of a physical phenomenon decreases, trends are more and
more reduced to very abrupt changes. Therefore, the per-
formance of an algorithm decreases with increasing sampling
rate. The reason for this behaviour is that all solutions
rely on some kind of filter. With a low samling rate the
change in a phenomenon is usually more extreme than with
a higher sampling rate. But if the width of filtering inter-
vals stays similar this means that intervals will be broken
more often with decreasing sampling rate. Because a bro-
ken filter always implies an update, the number of transfers
and transmitted values increases which negatively affects the
network’s lifetime. This behaviour is most apparent for the
pressure and synthetic dataset. In both cases, the perfor-
mance decreases with decreasing sampling rate.

When making use of a linear regression model an ap-
proach might loose even more because the linear regression
reacts slowly to trend changes, therefore the approximation
of the next value becomes worse if the trend becomes too
short-lived. This behaviour is clearly visible in the synthetic
dataset, because the performance of T-EXTOK drops faster
than the performance of EXTOK and FILA for low sampling
rates.

If one choses a greater m (number of past observations)
to compute the regression line even slower trends will lead
to a performance loss. On the other hand, by reducing the
length of the regression line, the performance loss can be
reduced on fast trends. However a “short” regression line
becomes very noise-prone. The INTEL dataset does not
really show trends and therefore changing the sampling rate
of the phenomenon does not show the expected effects.

During our experiments with different sampling rates, T-
EXTOK gained up to 14% (IFILA: 463 rounds), 23% (IFILA:
270 rounds) and 30% (IFILA: 990 rounds) on the synthetic,
pressure and INTEL datasets, respectively, compared to its

strongest competitor.

5.2.3 Varying d

When increasing the radio range d (Figure 8), one might
expect the network to last longer because the height of the
network decreases and therefore less messages will have to
be sent. This again decreases the number of transmitted
values because the number of package headers is reduced.

However, the network lifetime of all approaches diminishes
with increasing d. This is due to three circumstances. First,
the number of children of a hot-spot node increases with in-
creasing radio range. Therefore hot-spot nodes will have to
receive more packets and send more data to their parents.
Second, the overall energy consumption of the whole net-
work for sending a message increases because more nodes
will receive a message. And third, sending nodes need more
energy to send a message due to the formula introduced in
5.1.4. All of these circumstances reduce the network life-
time. This behaviour is clearly visible in our test results,
the performance of all approaches drops with increasing ra-
dio range.

With varying radio range, T-EXTOK gained up to 16%
(EXTOK: 395 rounds), 22% (EXTOK: 402 rounds) and 16%
(IFILA: 1250 rounds) on the synthetic, pressure and INTEL
datasets, respectively, compared to its strongest competitor.

5.2.4 Varying N

Recall that he number of nodes was only changed when
testing the synthetic dataset as the real datasets had a fixed
number of nodes. The results can be found in Figure 9.
For an increased number of nodes the performance decreases
mainly because the number of intermediate nodes increases
with k, although the height of the tree stays the same. Be-
cause the number of intermediate nodes increases, refine-
ment and threshold broadcasting becomes more expensive.
With varying node count, T-EXTOK gained up to 13% com-
pared to its strongest competitor, EXTOK with 395 rounds.

5.2.5 Additional Factors Affecting Network Lifetime
Usually a sensor network is used to perform several con-

current queries, for example a top-k query for temperature
and a top-k query for sound level. These two top-k queries
do not necessarily overlap, i.e. the result sets for both
queries will most probably be different. Now if we reduce
the overal number of probes that traverse the whole tree
for one query the energy supply for hot-spot nodes relevant
to the other query will be conserved. Therefore the over-
all lifetime for a sensor network performing several different
queries would benefit from T-EXTOK, because T-EXTOK
focuses on reducing the number of refinements.

Another important factor when thinking about network
lifetime is the size of packet headers. If an algorithm per-
forms better in terms of message transmissions and a node
uses a protocol with large packet headers its lifetime will
increase compared to an algorithm that performs worse in
terms of transmitted messages, but probably a bit better in
terms of transmitted values when not taking headers into
account. Because our algorithm minimizes the overall num-
ber of messages, its performance will increase compared to
IFILA and EXTOK when using large packet headers.

6. RELATED WORK

0

100

200

300

400

500

600

700

0 50 100 150 200 250

lif
et

im
e

sampling rate

Synthetic: lifetime with increasing sampling rate

T-EXTOK
EXTOK

IFILA
0

200
400
600
800

1000
1200
1400
1600
1800

16 8 4 2 1

lif
et

im
e

sampling rate

INTEL: lifetime with increasing sampling rate

T-EXTOK
EXTOK

IFILA
0

100

200

300

400

500

600

16 8 4 2 1

lif
et

im
e

sampling rate

Pressure: lifetime with increasing sampling rate

T-EXTOK
EXTOK

IFILA

Figure 7: Effect of sampling rate on the network lifetime. Recall that for the synthetic dataset the x-axis
denotes the number of samples per cycle, whereas for the real datasets it denotes how many observations
exist between gathered sampled observations.

0
100
200
300
400
500
600
700
800
900

25 30 35 40 45

lif
et

im
e

d

Synthetic: lifetime with increasing radio range

T-EXTOK
EXTOK

IFILA

0
200
400
600
800

1000
1200
1400
1600
1800

8 9 10 11 12 13 14 15 16

lif
et

im
e

d

INTEL: lifetime with increasing radio range

T-EXTOK
EXTOK

IFILA
0

100
200
300
400
500
600
700
800

25 30 35 40 45

lif
et

im
e

d

Pressure: lifetime with increasing radio range

T-EXTOK
EXTOK

IFILA

Figure 8: Effect of d on the network lifetime.

TAG [5] is an early solution for performing aggregate
queries in wireless sensor networks. In TAG, each routing
node that receives more than k values from its children re-
duces the number of transmitted values to k by removing
the smallest values because they will not be relevant for the
query at the root node. However, despite reducing the num-
ber of transmitted values, the overall number of message
transmissions remains relatively large.

Zeinalipour-Yazti et al. [15] suggested the“Threshold Join
Algorithm” for performing top-k queries which is applicable
for WSNs but not applicable for continuously monitoring
the set of top-k values.

Babcock et al. [1] used arithmetic constraints to reduce
communication costs for approximate continuous top-k queries
that provided a top-k set within specified error bounds. This
method of filtering relevant values from all available values
has been adapted for other algorithms, e.g., FILA [13]. FILA
assigns filters to each node to decide whether or not a node
has to send its new measurement, similar to [1]. We refer to
Section 2.1 for a more detailed discussion of FILA.

IFILA [11], an improved version of FILA increases the
lifetime of a sensor network by computing the filtering in-
tervals in a different manner. It predicts the next measure-
ment of a node using a linear regression model and uses this
information to compute the filtering intervals. If two neigh-
boured values show an upward trend, the interval bound
is shifted from the midpoint a bit upward, if both show a
downward trend the new interval bound is shifted down-
wards. Their approach of making use of trends is similar to
our idea, however, as FILA they transmit different filters to
the top-k nodes which increases the number of transmitted
values. Besides, if a predicted value increases faster than the
distance of a value to its neighbour, IFILA can not take full

advantage from trends because filtering intervals are created
in a non-overlapping manner where an interval has to con-
tain the most recent measurement. When thinking of fast
trends, the new filter that should contain the predicted value
of a node would also contain the old value of the neighbour-
ing node, which is not allowed. IFILA also added another
improvement that aims on reducing the number of message
transmissions while probing. To avoid probing from the root
to a node with far distance to the root, it gives routing nodes
the ability to probe if necessary.

Although similar to FILA, EXTOK [7] is capable of out-
performing FILA and TAG in terms of transmitted values
and network lifetime. EXTOK computes the threshold be-
tween sets of top-k and non-top-k nodes and broadcasts this
separator as a filter. Therefore the set of filters used by
FILA can be reduced to a single value. Besides, it explicitly
examines ties and is fully topology independent, i.e. the hier-
archical topology can change during two consecutive rounds
without overhead. This does not only have practical ad-
vantages if the tree has to be restructured because a node’s
energy supply depleted, it can also be used to extend the
lifetime of a sensor network by changing the topology and
relieve hot-spot nodes. Our solution, T-EXTOK inherits
both of these properties.

Other solutions like SLAT, SLAT-A and HAT [10] focus
only on MAX-queries, i.e., top-1 queries, and do not ex-
amine the case of ties. Besides, HAT is not fully topology
independent because routing nodes store thresholds as well.

A novel contribution that examines top-k queries in WSN
[4] increases TAG’s performance by changing the tree from
a shortest path tree to a cluster tree similar to EXTOK.
They also suggest another method of utilizing filters for top-
k queries. However this filtering approach only makes use

0
100
200
300
400
500
600
700
800
900

1000

100 150 200 250 300 350 400 450 500

lif
et

im
e

node count

Synthetic: lifetime with increasing node count

T-EXTOK
EXTOK

IFILA

Figure 9: Effect of N on the network lifetime.

of these filters during a round and does not use these filter
to predict future measurements as we suggest in this paper.

Another tree topology and querying algorithm was sug-
gested by Cho et al. [2]. They assume that similar sen-
sor measurements are usually locally clustered, for example
humidity or temperature, and therefore developed a logical
tree that exploits this behaviour. Unfortunately the per-
formance of this algorithm decreases rapidly with increasing
spatial uniformity in the underlying data. Although we sim-
ulated the behaviour of locally clustered values during our
performance evaluation, this assumption is not vital for the
performance of our solution.

7. CONCLUSION AND FUTURE RESEARCH
Because of the dependence of wireless nodes on a finite of-

fline power supply, energy saving algorithms for sensor nodes
are a very important factor for increasing the usability of
this technology. In this paper, we introduced two heuristic
approaches for improving the performance of a state-of-the-
art algorithm for top-k queries in wireless sensor networks
called EXTOK. By using these techniques we were able to
get a significant gain compared to EXTOK and IFILA.

In the future we will investigate different use cases where
these techniques or even an adapted version of EXTOK is
applicable, for example median queries. Median queries are
closely related to top-k queries, because computing the n

2
top values from a network containing n nodes will return the
median of the sensor network. However, using top-k query
algorithms for computing medians is still quite inefficient
because the root node will have to keep track of n

2
nodes.

Acknowledgements
This work was partially supported by Ludwig-Maximilians-
Universität (LMU) Munich, Germany, and NSERC Canada.

8. REFERENCES
[1] B. Babcock and C. Olston. Distributed top-k

monitoring. In SIGMOD ’03, pages 28–39, 2003.

[2] Y. Cho, J. Son, and Y. D. Chung. Pot: an efficient
top-k monitoring method for spatially correlated
sensor readings. In DMSN ’08, pages 8–13, 2008.

[3] T. Kohonen. Self-Organizing Maps. Springer Berlin /
Heidelberg, 2001.

[4] X. Liu, J. Xu, and W.-C. Lee. A cross pruning
framework for top-k data collection in wireless sensor
networks. MDM ’10, 0:157–166, 2010.

[5] S. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. Tag: a tiny aggregation service for ad-hoc
sensor networks. SIGOPS Oper. Syst. Rev.,
36(SI):131–146, 2002.

[6] A. Mainwaring et al. Wireless sensor networks for
habitat monitoring. In WSNA ’02, pages 88–97, 2002.

[7] B. Malhotra, M. A. Nascimento, and I. Nikolaidis.
Exact top-k queries in wireless sensor networks.
Technical report, University of Alberta, Edmonton,
Canada, http://www.cs.ualberta.ca/research/theses-
publications/technical-reports/2009/tr09-16, 2009. To
appear at TKDE.

[8] D. Pescovitz. Smart buildings admit their faults.
http://coe.berkeley.edu/labnotes/1101smartbuildings.html,
2001.

[9] K. Römer and F. Mattern. The design space of
wireless sensor networks. IEEE Wireless
Communications, 11:54–61, 2004.

[10] A. Silberstein, K. Munagala, and J. Yang.
Energy-efficient monitoring of extreme values in sensor
networks. In SIGMOD ’06, pages 169–180, 2006.

[11] M. H. Thanh, K. Y. Lee, Y. W. Lee, and M. H. Kim.
Processing top-k monitoring queries in wireless sensor
networks. In Sensor Technologies and Applications,
pages 545–552, 2009.

[12] G. Werner-Allen, K. Lorincz, M. Welsh, O. Marcillo,
J. Johnson, M. Ruiz, and J. Lees. Deploying a wireless
sensor network on an active volcano. IEEE Internet
Computing, 10:18–25, 2006.

[13] M. Wu, J. Xu, X. Tang, and W.-C. Lee. Monitoring
top-k query in wireless sensor networks. IEEE TKDE,
19:962–976, 2007.

[14] X. Yan and X. Gang Su. Linear regression analysis:
theory and computing. World Scientific Co. Pte. Ltd.,
2009.

[15] D. Zeinalipour-Yazti et al. The threshold join
algorithm for top-k queries in distributed sensor
networks. In DMSN ’05, pages 61–66, 2005.

