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ABSTRACT

Consecutive-k-out-of-n systems have been intensively studied in the last ten
years. A complete list of the invariant optimal designs for linear and circular consecutive-
k-out-of-n systems is available in Zuo and Kuo [16]. It is a natural extension that
consecutive-k-out-of-n systems may be subsystems of a complex system. Du and
Hwang (2] first studied the optimal design of series linear and circular consecutive-2-
out-of-n:F systems. They reported that there are invariant optimal designs for series
linear consecutive-2-out-of-n:F systems which consist of n; consecutive-2-out-of-3:F
subsystems, ny consecutive-2-out-of-2m:F subsystems and ns consecutive-2-out-of-
2(m — 1):F subsystems. They also found that there are invariant optimal designs for
series circular consecutive-2-out-of-n:F systems consisting of subsystems which are all
circular consecutive-2-out-of-2m:F subsystems.

In this study the invariant optimal designs for series linear consecutive-k-out-of-
n:G systems have been investigated. It is proved that there is invariant optimal design
for a series linear consecutive-k-out-of-n:G system which consists of / consecutive-k-
out-of-2k:G subsystems and m consecutive-(k— 1)-out-of-2(k —1):G subsystems. It is
also noticed that the optimal partition of components for a series linear consecutive-
k-out-of-n:G system with [ consecutive-k-out-2k:G subsystems and m consecutive-
(k~1)-of-2(k — 1):G subsystems is the same as the best partition of components for a
series linear consecutive-2-out-of-n:F with I consecutive-2-out-2k subsystems and m

consecutive-2-out-of-2(k — 1):F subsystems.
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ASSUMPTIONS AND NOTATION

ASSUMPTIONS
1. All components are either working or failed.
2. All components are statistically independent.
3. Any system or subsystem is either working or failed.
4. All the components in the system are interchangeable.

5. All the components in the system are distinct, i.e., no two components have the

same reliability.
6. The reliability of any component in the system is not 0 or 1 if it is not stated.

NOTATION

2]

integer part of r

z, - component reliability
pi - component reliability
¢. - component unreliability, p; + ¢; = 1

P - a perfect component, p(P) =1,¢9(P) =0

- a dummy component, p(D) = 0,¢9(D) =1



X
R(X)

Q(X)
W,V

Pr(A)

¢

ANB

AUB
XrYorXeY
XuY

(X,P,Y)or (X,1,Y)

(X,D,Y) or (X,0,Y)

Xr(k,n)
Xc(k,n)

an ordered set or arrangement of n components
T30 I X = (2, 2,....1,.), where
1,12,...,1, 18 & permutation of 1,2,.. .. n

reversed set of .\’

svsiemn reliability of arrangement \\

system unreliability of arrangement X

unordered sets

an cvent

the complementary event of A

probability of event A

impossible event, Pr(¢) =0

intersection of events A and B

union of events A and B

X and Y are connected in .cries

X and Y are connected in parallel

an ordered set or arrangement of components obtained
by joining X and Y together through a perfect
component

an ordered set or arrangement of components obtained
by joining X and Y together through a dummy
component

a consecutive-k-out-of-n:F system with arrangement X
a consecutive-k-out-of-n:G system with

arrangement X



Xp(ky,ny) NYr(ka,ny) - asystem with Xg(k1,n1) and Yr(ks,n2)
connected in series
Xg(ki,ny) N Yg(ka,nz) - asystem with Xg(k,n1) and Yg(k2,n2)

connected in series



CHAPTER 1. INTRODUCTION

The consecutive-k-out-of-n system was first studied by Kontoleon in 1980 [9]. A
linear consecutive-k-out-of-n:F(G) system is a system with n components arranged on
a line and the system fails (works) if and only if at least k consecutive components fail
(work). A circular consecutive-k-out-of-n:F(G) system is a system with n components
arranged on a circle and the system fails (works) if and only if at least k consecutive
components fail (work). A consecutive-k-out-of-n:F system becomes a series system
when k = 1 and a parallel system when k£ = n. A consecutive-k-out-of-n:G system
becomes a series system when k = n and a parallel system when k = 1.

In the last decade there have been extensive studies on the consecutive-k-out-
of-n systems. The reason for this is the fact that consecutive-k-out-of-n systems
are widely applicable as well as of great mathematical interest. For example, the
spokes of a bicycle wheel constitute a circular consecutive-k-out-of-n:F system. A
bicycle can work properly even there are some spokes broken as long as there are
no k consecutive spokes broken. A long distance oil pipeline can be treated as a
consecutive-k-out-of-n:F system if each pumping station has the power to pump oil
directly to the next k stations. The pipeline in Figure 1.1 is a consecutive-2-out-
of-7:F system. A microwave communications system is a consecutive-k-out-of-n:F

system [1]. As shown in Figure 1.2, there are eight relay stations. Each station



can transmit signals to the next two stations. Stations 2, 3, ..., 8 constitute a
consecutive-2-out-of-7:F system which is connected with station 1 in series. Figure
1.3 shows a car parking lot. If here comes a bus which needs three consecutive lots
to park, then the parking lots can be treated as a consecutive-3-out-of-n:G system
(n = 10 in the figure). It was reported that the vacuum system of the accelerator at
Brookhaven National Laboratory is a consecutive-k-out-of-n:F system [8]. The core of
the accelerator consists of a great number of identical components. The operation of
the accelerator will not be interrupted until there are a specific number of consecutive
components fail.

There are many other applications of the consecutive-k-out-of-n systems. Com-
puter network systems [6], integrated circuits [7], and statistical sampling are a few
more examples.

Series and parallel consecutive-k-out-of-n systems are natural extensions of con-
secutive-k-out-of-n systems. For example, in the communications system of Figure
1.4, each relay station can transmit signals directly to the next two stations ex-
cept that station 6 can only pass signals to station 7 as there is a big obstacle (a
lake, for example) between stations 6 and 7. In the figure, Stations 2, 3, 4 and 5
constitute a consecutive-2-. :t-of-4:F subsystem, stations 8, 9, 10 and 11 constitute
another consecutive-2-out-of-4:F subsystem. Station 1, station 6, station 7 and the

two consecutive-2-out-of-4:F subsystems are connected in series.



Figure 1.2: Relay Communications System |
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CHAPTER 2. REVIEW OF CONSECUTIVE-k-OUT-OF-n SYSTEMS

DEFINITIONS
Greedy:

If X is an arrangement of the following n components:
<p<...<Pn-1<pn
then, arrangement X is called greedy if
X = (P1,Pn>P3,Pn=2s- -+ Pn-3; P4, Pn-1,P2)-

Regular:

Let
X = (21,%2,.-.,Zn)
X is called regular if
(Z; = Tni41)(Tig1 — Tn=i) < 0, foralls, 1 << [%]

Singular:

Let X be an ordered set or arrangement of n components, where

X = (171,132,. . .,.’Bn).
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Then set or arrangement X is called singular if
(2i = ZTaoia1)(Tiss = Taci) > 0, foralli, 1 <i< [-':}].

If X is not singular, we can obtain a singular arrangement X’ from X by the following

operations:
1. Set:=1.
2. If (z; = Zn-i+1)(Ti41 — Tn-i) < 0, interchange ziy; and zn_;.
3. fi<[}],set i =i+ 1 and go to step 2.
4. Stop.

In the following component z; refers to the component with reliability value ;.

2.1 System Reliability Evaluation

Series and parallel systems are the two most basic reliability models. For a
series system consisting of n components with reliabilities py,pz, ..., pn, its system
reliability Rs is:

n
Rs = P1P2—--Pn=HP:‘- (2.1)
i=1
For a parallel system consisting of n components with unreliabilities ¢1,¢z,...,¢n, its
system unreliability Qp is:

Qp = q1q2--~Qn=Hq:'- (2.2)

=1



In reality most systems are complex systems which are combinations of series,
parallel, and even correlated components or subsystems. There are many methods
and algorithms available to evaluate the system reliability of a complex system. The
following reviews the concepts and methods that will be used in this study.

A path is a set of components such that the system works if all the components
in the set work. A minimal path is a path which has no proper subset of components
whose working will ensure the system’s working. A minimal path is said to work if
all its components work. A minimal path set is a set having all the minimal paths of
the system.

A cut is a set of components such that the system fails if all the components in
the set fail. A minimal cut is a cut which has no proper subset of components whose
f.iluce will cause system failure [15]. A minimal cut is said to fail if all its components
fail. A minimal cut set is a set having all the minimal cuts of the system.

Two systems will have the same reliability if they are constructed from the same
set of components and have exactly the same minimal path set or minimal cut set.

Denote R and Q the system reliability and unreliability, respectively. Assume
we have a system which has n minimal paths Wy, W,..., W, and m minimal cuts

Vi, Va, ..., V. The minimal path set W and the minimal cut set V of the system are
W = (W,W,,...,W,),
Vo= (ViVayeoos Vi),

Denote A; the event that minimal path W; works (¢ = 1,2,...,n), and B; the event

that minimal cut V; fails (: = 1,2,...,m). Then,

R = Pr(AjUA;U...UA,), (2.3)



Q = Pr(ByUB,U...UB,). (2.4)

Now we introduce another method, Sum of Disjoint Products (SDP) method.
The basic concept of SDP method is very simple. To find the probability of an event

A, we could divide A into n subevents Cy,C3,...,C, such that

o

A

2
I

Pr(C;UC2U...UCy), (2.5)

CiNC; = ¢ toralli, j, 1<i, j<nandi#}j (2.6)

Then,

Pr(A) = Pr(Cy) + Pr(C2) + -+ + Pr(Cn).

The system reliability R in equation (2.3) can be evaluated by using SDP method.
Let

Cl = Ala
Cg = Xl ﬂAg,

Cs = zanQnAs,

C., = AANANA;N...NA,; NA,.
Then,

R = PT(A]UAQUA,;)
= Pr(C,UC;...UCh)

A detailed discussion on SDP method was conducted by Locks in [11].
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2.2 Reliability Evaluativu of Consecutive-k-out-of-n Systems

Let X = (p1,ps2,--.,Pa). Denote Rg the system reliability of consecutive-k-out-
of-n:G system Xg(k,n) with n < 2k, and QF the system unreliability of consecutive-
k-out-of-n:F system Xr(k,n) with n < 2k. The following formulas are available from

Zuo and Kuo [16]:

i

n—-k+1 k+i-1
Rg Z (Qk-ﬁ H Pj) ) (2.8)

i=t

n—k+1 k+i—-1
QF Z (Pk+i H q,'), (2.9)

I=t
where ¢ny1 = 1 in (2.8), prss =1 in (2.9). From equations (2.8) and (2.9), Rg and
Qr can be reformulated as,

k4i=1
R = Z (qk+i H Pj) + R(pi+1, P42 - - -1 Pn), (2.10)

=1 j=

k+i~-1
Qr = Z (Pk+i H q,-) + Q(Pi+1,Pt42, - - - 1 Pn);5 (2.11)

=1 =i
where 1 <!<n-k+1.

By decomposing on component p;, Rc can be written as

R R(PI’PZN---,Pi-l,P.',p.'H....,pn)

= piR(plvp27° . -api-lvi»pi+l7-- -apn) + qiR(plaPZa---api—-lyo’pi-i-l,-'-’pn)-

(2.12)
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Equation (2.12) is the system reliability formula of X¢(k,n) expanded on component

pi- It can be further expanded on component p;. Let

R
R,
R3

R,

Theuwu.

i

i

R(pl,pg,. ..
R(p1,p2, . ..
R(p1,p2,- - -

R(plap2w .

‘p|—l\15p|'+l,..
VPi-1y L, Pigry .-
’pl—lvovpi+l,. .

. aPi—l,O,Pﬂ-l» .

Y ST Y ¥ PN
vp)-—lsowp.H'lv' .
-)pJ—l) l’P;+lw--

"9pj—la0vpj+l»- .

Rs = pip;R1 + pig;R2 + qipj Ra + qiq; Ry.

v Pn)s

(2.13)

The formulas of Rg in (2.12) and (2.13) hold for any values of n and k, whereas (2.10)

and (2.11) are based on the assumption that n < 2k.

Similarly we can get the unreliability formula Qf expanded on p; and p; for

consecutive-k-out-of-n:F system Xrg(k,n):

where

Q
Q2
Qs
Q4

Q(plap% ..
Q(p1,p2,. -
Q(p1,p2, -

Q(P17P2, R

'api—lal,pi+1,...
y Pi-12 L, Pis1,y .- -
-~7Pi—-1a0-,Pi+1,-

’ i—ho’pH’lv'-

Qr = pinQx + pinQz + quan + Qs’qJ'Q-i,

yPi=1y Ly Pj+1y - -
,Pj-l,OanH, R
-9 Pj-1, lapj+la cee

. ,Pj~x,0,Pj+1,~ ..

The formula of QF in (2.14) holds for any values of k and n.

yPn),

»Pn)s
7pﬂ)’

' Pn)-

(2.14)
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2.3 Optimal Design of Consecutive-k-out-of-n Systems

A system is said to have invariant optimal design if its optimal design can be
determined by knowing only the ranking of the reliabilities of its components. Such
a system is called an invariant system, and its optimal design is called an invariant
optimal design. A system is said to have variant optimal design if it does not have

an invariant optimal design.

2.3.1 Optimal Desigr of Series-parallel and Parallel-series Systems

A simple series or parallel system has the same system reliability no matter how
its components are arranged. If redundancy is applied to increase system reliability,
different arrangements of components may have different system reliabilities.

A series-parallel system is a system with two or more subsystems (which will
be called stations later) connected in series. Each of these stations is a parallel
subsystem. The number of components in each station is called the redundancy of
the station. Figure 2.1 shows a series-parallel system with S1, §2, S3 and 54 four
stations. The four stations have redundancies of 2, 4, 1 and 3, respectively.

A parallel-series system is a system with two or more subsystems (which will be
called lines later) connected in parallel. Each of these lines is a series subsystem. The
number of components on each line is called the size of the line. The number of the
lines is called the redundancy of the system. Figure 2.2 is a parallel-series system
which has four lines or a redundancy of four. The four lines have sizes of 4, 3, 1 and
2, respectively.

A series-parallel system is called a complex series-parallel system when a com-
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ponent is replaced by a supercomponent or subsystem of more than one component.
The system in Figure 2.3 is a complex series-parallel system in which component 2
is a consecutive-2-out-of-4:F subsystem. The four stations in the system have redun-
dancies of 2, 4, 1 and 3, respectively. Station Sl in Figure 2.3 is called a complex
station or a complex parallel subsystem. A complex parallel-serics system can be
defined similarly.

A series-parallel system has invariant optimal design only when each station has

a constant redundancy of 2 [14]. The invariant optimal design is to:
1. Assign the best component and the worst component to a station.
2. Assign the nezt best component and the nezt worst component to another station.
8. Continue the assignment until each station has been assigned two components.

It is obvious that a complex series-parallel system has no invariant optimal design
if there two or more stations which have a redundancy of greater than two.

All parallel-series systems have invariant optimal designs [4]. Assume a parallel-
series system bas n lines with size mq, ma, ..., mn, respectively, where m; <mj... <

m,. The invariant optimal design is to:
1. Assign the best my components to the line with size ;.
2. Assign the nezxt best my components to the line with size m;.

3. Continue the assignment until all lines have been assigned with the required

number of components.
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Figure 2.2: A Parallel-Series System

Figure 2.3: A Complex Series-Parallel System
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2.3.2 Optimal Design of Consecutive-k-out-of-n Systems

The optimal design of a linear consecutive-2-out-of-n:F system was proved inde-
pendently by Malon [12] and Du & Hwang [3]. The optimal arrangement of a linear
consecutive-2-out-of-n:F system is greedy. Later Malon [13] investigated the optimal
design of consecutive-k-out-of-n:F systems with k > 2. Du and Hwang also reported
the optimal design of a circular consecutive-2-out-of-n:F system in (3]. The optimal
design of linear and circular consecutive-k-out-of-n:F(G) systems with k > 2 was
studied by Kuo et al [10] and Zuo & Kuo [16]. Table 2.1 is a list of the invariant
optimal designs of linear consecutive-k-out-of-n systems. A complete list of the in-
variant optimal designs for both linear and circular consecutive-k-out-of-n systems

can be found in Zuo and Kuo [16].

2.3.3 Optimal Desien of Consecutive-k-out-of-n:G Systems

The optimal design of consecutive-k-out-of-2k:G systems was investigated by
Kuo et al [10]. However, the proof of Theorem 2 in Kuo et al [10] is incorrect. A
correct proof is provided below in three separate theorems.

Lemma 2.1: Let

X = (31,132, ooy LhsThkily: oo ,ng),

F(X) = Z1Z2...Tk + Tk41Tk42 .- - T2k-
Then, X must be singular for F(X) to be mazimized, i.e.,

Z; < ZTokei4ls 1 Sz < k. (215)
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The pair of components z; and z-i41 are called symmetric components, where
1<:1< k.
Proof of Lemma 2.1:

Without loss of generality, we assume ; < r2;. Assume further that X is not

singular. Then there must be an integer ! (1 < ! < 2k) such that
T; < T2k—itls 1 S 1 S l, (216)
Ti41 > Tkt (217)
We will show that F(X) is not maximized. Let
X1l = (331, e ey LYy T2kl LU42s e+ o s Thy Thtls - -y Tok=l-1yTl41y T2k—1419- ¢+ s sz)s
X2 = (1, ..y Tty Tokols T2koimls T2hmt=2s - - - » Tkt 1s Ty o+ s Tlgly T2kl - - -1 T2k),

where X1 is obtained from X by interchanging zi4+; and Zz—;, and X2 is obtained

from X by flipping the string of components Zi41, Zi42, - - - » T2k-1- Now we prove that

either X1 or X2 improves X.

F(Xl) = I1Z2...T(T2%-1T14+2T14+3Tk
+Th41Tk42 - - - T2kol=2L 2kt -1T141T2k—141 - - - T2k (2.18)
F(X2) = I1%3...L1T2%~1T2k~1-1T2k-1-2 - - + Tktl
+2p .. L1182k~ 41 T2k 142 - - - T2k (2.19)
AF1 = F(X1)- F(X)

= I1¥2...T1T142 .- zk(zgk_l -~ :L'1+1)

+Thp1Zk42 - - - T2kl =1 T2k~141 - + - T2k(T141 — T2k—1)
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= (zi41 — Tok—1) (Tha1 « - T2kt-1T2k—141 -+ - T2k — T1T2 - - - TiTI42 - - . Tk) .

(2.20)

AF?2

il

F(X2) - F(X)
= ZokoiZokeio1 -+ Th41(T1T2 . . Tt — Tok-i41T2k=142 - - - T2k)
+T1Z142 - - - Th(T2kmt+1T2k=142 - - - T2k — T1T2 .- - T1)

= (Tok-t41T2k—142 - T2k — L1Z2. .. Z)(T141Ti42 - - Tk — Th41Tk42 - - - Tok-1)-

(2.21)

Now we show either AF1 > 0 or AF2 > 0. From the assumption in (2.16) and (2.17)

we have

Zig1 — L2kl > 0, (2.22)

Tok—l4+1T2k~142 -+ T2k — T1T2... T} >0 (2.23)
If
Thyl - Tokal=1T2kelgl - - -T2k — L1T2. - TiTig2 ... Tk 2 0,

then AF1 > 0, i.e., X1 is at least as good as X.
If

Tkt T2k=l=1T2%k—I41+- - T2%k — T1T2 ... T1TI42 .. - Tk < 0, or

(1k+l ee $2k-1_1)($2k_1+1 v lek) — (.1312:2 .o :c;)(zH.g ve .’L‘k) < 0,
then

Th41Thk42 oo - L2k=l-1 < Ti42Ti43.-- Tk (2-24)
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since

Tok-141L2k=142--- T2k > IT1T2...ZI.

From (2.17), and (2.24) we have

Th41Th+2 -+« T2k~1-1T2k=1 < T141T142 .. Thy

or AF2 >0, i.e., X2 improves X. We conclude that either X1 or X2 improves X.

By a series operations of interchanging two symmetrical components or flipping

the string of components ending with two symmetrical components in X, we can get

a singular arrangement X' from X, such that
F(X") > F(X).

Note that X is also singular, and F(X') = F(X").

Lemma 2.2: Let

X = (2171'2"-'axkyxk-}-lv-"szk)y

F(X) = I1r2... zk(l - :L‘k.H) + (1 —_ Zk)$k+1$k+2 .o L2k

Then, X must be singular for F(X) to be mazimized.
Proof of Lemma 2.2:
The proof of Lemma 2.2 is similar to the proof of Lemma 2.1.

Theorem 2.1: Let

X = (zlazZs'“,zkazk-f-l,"',ka)v

then X maust be singular for it to be an optimal design of system Xg(k,2k).

(2.25)
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Proof of Theorem 2.1:

Theorem 2.1 indicates that the system reliability of Xg(k,2k) can be improved
if X is not singular. We prove the theorem by using induction on k in Xg(k,2k).
(i)

It is easy to prove that Theorem 2.1 holds when k = 2. Let X = (21,3, 23, Z4).
Assume r, < Zq,Z; > T3, i.€., X is not singular. Let X' = (z1,Z3,Z2, T4), where X' is

a singular arrangement obtained from X. We show that R(Xg(2,4)) > R(X¢(2,4)).

R(Xg(2,4)) = z1Z2+ T3Z3 + T34 — T17233 — T2T3Z4, (2.26)
R(X&(2,4)) = I1Z3+ T3Tz + T2%4 — T1ZT3T2 — T3T2%4, (2.27)
R(Xg(2,4)) — R(X6(2,4)) = (z2—z3)(za—21) >0, (2.28)

i.e., X' improves X.
(ii)
Assume Theorem 2.1 holds for k < I, we need to show it is also true when k = I.

Let
X = (Z1,%2- -y Tl Ti41, T142, - - - T2)-

Assume X is not singular and X' is a singular arrangement obtained from X, where
X' = (T, 2oy Th Thp1r Thggs e+ - L)

Denote R,, R, the system reliabilities of arrangements X and X', respectively. Then,

Ra = $l$l+1R($],$2, o9 Ty 1? 1’ Tig290e szI)

+z1(1 — z141) R(z1, 22, .. -, T1-1, 1,0, T142, . - - ,Zal)
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+(1 — z))zi R(2y, 22, - o 2121, 0,1, 142, . .., T21)

+(1 - x,)(l - $1+1)R($1, T2y-e.yTl=1, 0, 0, Tig2ses ,1’21)
(I-2)—out—of~2({-2):G system

-~

= 1'1331+1R (12» voo sy T=1y Tlg2y e - ,Izlj
+z122. .. T2l = 2p0) + (1 = 2) T T4 .- 20+ 0, (2:29)

(1=2)—-out=0f-2(1-2):G system

”~ )

R, = 21z R(2y - s Tl1, Ty - -2 To)
+zizy.. . 2zl — 2i0) + (1 = )24 Thyg - - - Ty + 0. (2.30)
Let
F(X) = zzo...2002(1 — 2141) + (1 — 20T 142 - .. Toy
X1 = (32? e LU=l L4250y $2l—l)$
F(X) = zy2y...51,2)(1 = 24q) + (1 = 2041 Thyp - 2y
X'l = (s oy Tio1sThyas--» Toyey)-
Then,
Ry, = zziR(X1) + F(X), (2.31)
R, = =ziz1,,R(X'1) + F(X"). (2.32)

From the induction assumption, Lemma 4.2 and the way X’ was obtained from X we

have
Ty = TuTig, (2.33)
R(X'1) > R(X1), (2.34)
F(X") > F(X). (2.35)
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From (2.33), (2.34) and (2.35) we have
R, > R, (2.36)

i.e., X’ improves X.

Theorem 2.2: Let

X = (Ils T2y ooy ThyDyThtly Tht2y: - 732k),

then X must be singular for it to be an optimal arrangement of system Xe(k,2k+1).
Proof of Theorem 2.2:
We will show that the system reliability of Xg(k,2k + 1) can be improved if X

is not singular. Denote X' a singular arrangement obtained from X, where

X' = (24,2 s Th Py Thgrs -0 Tok)-
Let R,, R, be the system reliabilities of Xg(k,2k+1) and X (k,2k+ 1), respectively.
Then

R, = pR(zl,zg,...,z;,,l,:ck“,zkn,...,zzk)

+(1 - p)R(xl,l'z, coosThy 0, Thtly- - .,.'Egk)
(k—=1)~out—of~2(k-1):G system

N

= pR(.’tz, ceo s Thy Tkt Thk42y - ,zgk._]_)
+(1 = p)l(z1%2. . Tk + Thg1 -+ - Tok — T1T2 - - - TkTk41Th42 - - . T2k),

(2.37)

- v ' ’ 1 ’
R, = pR(z},2%... T, L, Zhyrs Thyar- - - » T2k)

+(1 = P) R} Ty -2 Zhy 0, Ty -+ Thk)
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(k=1)—out—of=2(k-1):G system

)

_ 7o ro_ ' '
= pR(Ty ..., T Th1sThyare 1 Topy)

[ ’ !’ ! t_ [ ! ’
+(1 = p)(2325- - Th + Thyy -+ T = TYT - T Ty Thga - - Tok)-

(2.38)
Let
X1l = (1'2, ooy Ty Thyly Tht2y- - - vx2k—l))
F(X) = z129...k + Zpg1 ... Tok — L122 ... TkThe1 - - - Tok,s
X'l = (25 Ty Thp1s Thog2s - - -+ T )y
F(X') = 212y . . T + Ziqy .- Top — T1Tp .. TTygr - - - Ty
then
R, = pR(X1)+(1-p)F(X), (2.39)
R, = pR(X'1)+(1-p)F(X'). (2.40)

By the way X' was obtained from X we have
—_ 11 ' r
1T2.. TpZTk4p1Tk42 -+ -T2k = 2125 .. .Ik$k+1xk+2 o T =G,

where c is a constant with the component set given. By Lemma 2.1 and Theorem 2.1

we have
F(X') > F(X), (2.41)
R(X'1) > R(X1). (2.42)

Therefore
R, > R,. (2.43)
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Theorem 2.3: Let
X = (21,T2,..-,Zks Tkl T2k)s
then, a necessary condition for X to be an optimal arrangement of Xa(k,2k) is:

Tigr > Tok-i4r, 1St < k-1 (2.44)

Proof of Theorem 2.3:
Denote R, the system reliability of X¢(k, 2k), then

k~out—of ~2k:G system

R, = R(xl,xz,...,xk,zk+1,...,.’tzk)
k—out—of—(2k+1):G system
= R(21,Z2,... Tk Tki1,-- -1 T2k, 0). (2.45)
Let
X1 = (-‘51,332,--~,$k,xk+1,$k+2,---,xzk,o)-

By Theorem 2.2 X1 must be singular for R, to be maximized. Hence we have

1‘;>0,

Tit1 2> T2k—-i+ls 1<:< k- 1. (246)



CHAPTER 3. OPTIMAL DESIGN OF SERIES
CONSECUTIVE-k-OUT-OF-n:F SYSTEMS

A series consecutive-k-out-of-n:F system is a system with two or more consecutive-
k-out-of-n:F subsystems connected in series. We first state a lemma.

Lemma 3.1: Let

X = (p1.p2,--Pn),
X' = (Pnokt1,Prok+2s-- -1 Ph),
X? = (P1sP2s--+sPamks Pht1s- 1 Pn),
where n < 2k. Denote X} the parallel system which consists of all the components in
X*. Then,
Q(Xr(k,n)) = Q(XpUXi(k,2k))
= Gu-ktrGn-k+2 - - - GQ(XE (K1, 2F1)), (3.1)
where ky =n - k.
Proof of Lemma 3.1:
Lemma 3.1 is immediate since Xr(k,n) and X} U X2%(k1,2k;) have the same
minimal cut set.

Lemma 3.1 implies that a consecutive-k-out-of-n:F system with n < 2k is equi-

valent to a complex parallel system in terms of system reliability evaluation. The
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equivalent complex parallel system has a redundancy of 2k — n + 1: each of the
9k — n components in X! constitutes a line; and subsystem XZ(k1,2k;) is another
line. For example, system Xr(5,7), where X = (p1, P2, P3, Pas Ps, Ps, P7), is equivalent
to a complex parallel system with a redundancy of four (2x5—=7+1=4). Each
of components ps, ps and ps contributes one to the redundancy; subsystem X2(2,4),
where X? = (p1,p2,Pe, pr) adds another one to the redundancy.

For a series consecutive-k-out-of-n:F system to have invariant optimal design,
each of its consecutive-k-out-of-n:F subsystems must have invariant optimal design.
There is an invariant optimal design for consecutive-2-out-of-n:F, consecutive-(n — 2)-
out-of-n:F and consecutive-(n — 1)-out-of-n:F systems (Table 2.1).

If a series consecutive-k-out-of-n:F system has invariant optimal design, the op-
timal design is readily known as long as we know the best partition of its components
into each subsystem. In the following we will use optimal partition and optimal design

interchangeably.

3.1 Series Consecutive-2-out-of-n:F System

Du and Hwang [2] developed the following necessary conditions for the optimal

design of series consecutive-2-out-of-n:F system Xr(2,1) N YF(2, m):

Both Xr(2,1) and Yr(2,m) must be of optimal arrangement, (3.2)

All (X,P,Y), (X,PY), (X, P, Y) and (X, P,Y) must be regular.  (3.3)

By using the above necessary conditions Du and Hwang found that there is in-

variant optimal design for systems:
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(i)  Xr(2,3)NYr(2n)

(i)  Xr(2,2k) N Yr(2,2Kk)

(iii) Xr(2,2k) N Yr(2,2(k = 1))

(iv) (o XF(2.2F)

(V) Moy X5(2,3) @ (2, Y2, 2K) o iy ZE(2.2(k - 1))

(i) The optimal partition of components for system Xp(2,3) N Y¢(2,n) is:
1. Assign the best one and the worst two components to X

2. Assign the rest of the components to Y.

The optimal design holds for all n > 1. If n = 1, which is a trivial case, the
worst component should be assigned to Y as Yr(2,1) is always a perfect subsystem
with any assigned component.

(ii) The invariant optimal partition of components for system Xr(2, 2k)NYr(2,2k)

is:
1. Assign the best of the remaining components to X and the nezt best to Y.
2. Assign the best of the remaining components to Y and the nezt best to X.
3. Repeat steps 1 and 2 alternately until all components have been assigned.
(iii) The optimal partition of components for system Xr(2,2k)NYr(2, 2(k-1))is:
1. Assign both the best component and the worst component to X.

2. Assign the best of the remaining components to X and the nezt best to Y.
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9. Assign the best of the remaining components to Y and the next best to X.
/. Repeat steps 2 and 3 alternately until all components have been assigned.

(iv) Assume we have 2km components with their reliabilities arranged in ascending
order

P <p2<...<Prm-1 < P2km;
and a series consecutive-2-out-of-n:F system Z with m consecutive-2-out-of-2k:F sub-

systems, where

Z =) Xr(2,2k) = Xp(2,2k) N X2(2,2k) N ...N0 X {2,2k).

1=1

Then the optimal partition of components for system Z is:

Fori=1,2,...,k

1. Assign components Pai-1)m+1s P2(i-1)m+2s - - - » P2(i—1)m4m 10 X, X2,...,X™, re-

spectively.

o

ASSign components Pi-1)ym+1s P(2i-1)m+25 ¢+ s P2im to va Xm-l, sy XZ,XI} re-

spectively.

(v) Assume a series consecutive-2-out-of-n system Zis

{ m r
Z = [ Xk(2,3) o [ YF(2,2k) 0 ) Zi(2,2(k - 1)).

i=1 =1 i=1
From (i), (ii), (iii) and (iv) the optimal design for Z can be obtained as follows:
1. Assign the best one and the worst two components to X, Assign the best one
and the worst two of the remaining components to X 2 Continue this assignment

until all the | Xi(2,3) subsystems have been assigned with three components.
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2. Add r perfect components and r dummy components to the set of the 2k(m +

r) — 2r remaining components in step 1. Optimally assign those 2k(m + r)
components to the (m + 1) subsystems of system (et YE(2,2k) by using (iv).
When there is no invariant optimal design, conditions (3.2) and (3.3) can be used

to find out all the candidate optimal designs, one of which must be the optimal de-

sign. For example, the best arrangement for a series consecutive-2-out-of-n:F system

Xr(2,5) N Yp(2,1) with! >1 mong three candidate optimal arrangements. Let
T <2< 23<T4<7Ts,

n<y<...<y-1 <y

By using conditions (3.2) and (3.3) we get the following three candidate optimal

arrangements or ways to partition our ! + 5 components between X and Y.

21 <2< 3 < <Y <yzs<...<yi-1 <y <4 <71 (34)
1< T2 < <3< Yy <ys<...<y-1 <Y <x4< 25, (3.5)
21 <T2< N <Y< 23 <Ys< ... <Yi-1 <Y1 < T4 <7Ts. (3.6)

The optimal design of system Xr(2, 5)NYr(2,!) must be one of the three arrangements
in (3.4), (3.5) and (3.6).

The following sections consider all other series consecutive-k-out-of-n:F systems
which may have invariant optimal design. In the following we will assume all series
consecutive-k-out-of-n:F systems have only two subsystems. The results can be easily

extended to the systems with more than two subsystems. Let
X = (231,232, .. .,In),

Y = (ylayZa"'ayn)'
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3.2 Series Consecutive-(n — 2)-out-of-n:F Systems

When n > 4 there is no invariant optimal design for series consecutive-(n — 2)-
out-of-n:F systems. By Lemma 3.1 Xp(n — 2,n) and Yp(n — 2,n) are equivalent to
two complex parallel systems, each with a redundancy of n — 3 (=2(n —2) —n+1).
Thus, Xr(n — 2,n) N Yp(n — 2,n) is equivalent to a complex series-parallel system
of two stations. A complex series-parallel system has no invariant optimal design
when two or more of its stations has a redundancy of more than two. Therefore
Xrp(n —2,n) N Yp(n — 2,n) cannot have invariant optimal design whenn—-3>2or
n > 5. It may have invariant optimal design only when n —3 =2 or n = 5. But we
found that Xr(3,5)NYr(3,5) has no invariant optimal design (see a counter example

in the Appendix).

3.3 Series Consecutive-(n — 1)-out-of-n:F Systems

There is no invariant optimal design for series consecutive-(n — 1)-out-of-n:F
systems when n > 3. By Lemma 3.1 Xp(n — 1,n) N Yp(n — 1,n) can be treated
as a complex series-parallel system in which each station has a redundancy of n — 1
(2(n=1)=n+1 = n—1). Therefore Xp(n~1,n)NYp(n—1,n) cannot have invariant

optimal design when n—1>2orn > 3.
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CHAPTER 4. OPTIMAL DESIGN OF SERIES
CONSECUTIVE-k-OUT-OF-n:G SYSTEMS

DEFINITIONS
Co-singular:

Denote (X,Y) a set consisting of two ordered subsets X and Y, where

X = (1171:21-°-7xka$k+1""az2k)!

Y = (yl,y2,- <o Yk Yk+1, - - -’ka)-

Then koth (X,Y) and (Y, X) are called co-singular set or arrangement if
z; <y, 1<1<k; z;>y;, k+1<1<2k.

If (X,Y) is not co-singular we can obtain a co-singular set (X', Y’) from (X,Y) by

the following algorithm:
1. Set:=1.
2. If z; > y;, interchange z; and y;; and if zx4; < yi4i, interchange zp4; and Y-
3. fi<k,seti=1i+1 and go to step 2.

4. Stop.
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A series consecutive-k-out-of-n:G system is a system with two or more consecutive-
k-out-of-n:G subsystems connected in series. For a series consecutive-k-out-of-n:G
system to have invariant optimal design, all its consecutive-k-out-of-n:G subsystems
must have invariant optimal design. From Table 2.1 we know that a consecutive-k-

out-of-n:G subsystem has invariant optimal design when n < 2k.

4.1 Optimal Design of Series Consecutive-k-out-of- n:G Systems

Similar to Lemma 3.1 in Chapter 3, we have Lemma 4.1.

Lemma 4.1; Assume n < 2k and let

X = (21,225++1Tn)s
X = (Tr-k+1) Tnek+2s+- s k),
X% = (1)) Tnks Tkaly- -+ Tn)-

Denote X} a series system which is composed of all the components in X*. Then

R(Xg(k,n)) = R(XE:NX&(ki,2k1)),

= ZTp-k+1Tn~k+2--- IkR(Xé(k], 2k1)), (41)

where ky =n — k.
Proof of Lemma 4.1:

Xg(k,n) and XL N X3(k1,2k;) have the same set of minimal paths. Lemma 4.1
follows immediately.

Lemma 4.1 means that a consecutive-k-out-of-n:G system with n < 2k is equiv-
alent to a series system which consists of 2k — n components and a consecutive-k;-

out-of-2k; :G subsystem, where ky =n — k.
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Lemma 4.2: Assume we partition 2n components into two ordered sets X and Y,

where

X

(.’C],-’Bg, ey 2:ﬂ)’

Y = (ylvy%- o syn)a

FY) = [[a+ [[w

=1 =1

If 21 < y1, then a necessary condition for F(X,Y) to be mazimized is:

z; <y, 1<i<n, (4.2)

Proof of Lemma 4.2:

Lemma 4.2 can be proved similarly as Lemma 2.1 in Chapter 2.
Lemma 4.3: LetY be a system which hes component x and a consecutive-k-out-
of-2k:G subsystem connected in series. Then component x must be the most reliable
component for Y to have mazimum system reliability.
Proof of Lemma 4.3:

Let X = (z1,22,...,Z2¢) and assume z; > z for some 7,1 < i < 2k. We will
show that the system reliability can be improved by interchanging component z and

component z;. Let R, be the system reliability.

R, zR(Xg(k,2k))
= z[xiR(xl,Iz,--o,xi-1,1,$§+1,-..,$2k)
+(1 = z)R(z1, 224 -+, Ziz1, 0, Tigy - ., T2k))

= .'C.'C,‘R(Jll,xz, <oy Ti-1, laxi+l7 s ’z2k)

+z(l - :c,-)R(z;,:cg, ceey Tiz1,0, Tiglyeoe ,:vzk) (43)
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Denote R' the system reliability after interchanging component z with compo-
s g

nent z;.
R, = z;zR(zy,%2,...,%i-1,1, Tis1,. -+, T2k)
+zi(1 = z)R(z1, %2, - -, Tie1,0, Tig1, - -+ 5 T2k)- (4.4)
Then,
R,— R, = (zi—z)R(z1,22-..,%i-1,0,Zi1,.. L T2k) > 0,

i.e., the system reliability can be improved by interchanging components x and z; if
there exists any z; such that z; > z. As a result, the optimal design of ¥ must have
component z as the most reliable component.

Lemma 4.4: Let

X = (zl’xzi' <+ s Lhy Thaly - - - ,sz),

Y = (yhy%- ey Yy Yks1s - - '7y2k),

(110 7003 ({1 s

i=1 i=1

F(X,Y)

where a > b > 0, R(X) and R(Y) are system reliabilities of Xg(k,2k) and Yg(k, 2k),

respectively. Then (X,Y) must be co-singular for F(X,Y') to be mazimized, i.e.,

T, <y, 1 <i<k; ; >y, k+1<1i<2k (4.5)

Proof of Lemma 4.4:
We need to show that F(X,Y) is not maximized if (X,Y’) is not co-singular. We

prove the lemma by using induction on k.
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(i)
We first show that the lemma holds when & = 1. Let
= (zl) J:2)»
Y = (ylayZ)a
then

F(X,Y) = ayiR(zy,22) + bzyR(y1,¥2)

= ay(z) + 22 — 1122) + bz (11 + ¥2 — N1y2). (4.6)

Without loss of generality, assume z; < y;,z2 < ¥, ie.,, (X,Y) is not co-singular.

Let

XI

i

(zlv y2)a

Y' = (y,22),
where (X’,Y”) is a co-singular set obtained from (X,Y). Then
F(X'Y') = ap(z1 +y2 — 2132) + bza(y1 + 22 — 1122). (4.7)
Now we prove that F(X',Y') > F(X,Y).

AF = F(X,Y')-F(X,Y)

]

I

(y2 = z2)(ays ~ bz1 — apa 7y + bz 1)

(yg - xg)[ayl(l - 31) - bz;(l - 3/1)] > 0. (4.8)

Il

(i)
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Assume Lemma 4.4 holds for k < I, we prove that it is also true for k = [. Let

= (xlaz'i'v' vy Ty Tlgry e o 7z2l)a

Y = (ylay2a oy YY1, - - ’y2l)7

then
] 1
F(X,Y) = a (H y.-) R(X)+b (1‘[ z,-) R(Y)
i=1 i=1
]
= a (H%’) R(z1, %2, Ti=1, T1 Ttp1s - - - 21)
i=1
!
+b (II xi) R(y1,92,- - s Y1-1, Y1, Yi41,5 - - - yYa1)
i=1
!
= 4a (H yi) o R(zy,22,...,%1-1, L, T141, - - ,Za1)
=1

(i) (f1=)

!
+b (H x.-) YRy, Y2, -, Yi-1, L, Y1415 - -, Y21)

=1

o{foo i)

(I=1)—out—of—2(I—1):G system

-1
= oy {a (H ye) R(z1,%2,. ., Zi-1, Ti41, - - - T21-1)

=1

-1 (l-—l)--out-of;g(l—l):G system
+b (H xi) R(yla Y2s:ce s Yl=1 Y41y - <y y2l-15

i=1

ro(Iln) 0= (T1
+b (ﬂ 3:’) (1 —w) (ﬁ yz+i) (4.9)

=1 =1
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zyic + d, (4.10)

"

where

(I-1) -out~of-2(l-1):G system

-1
¢ = G(ny)R(zh-’l’zw--»31-1,3l+1»---ale—l)

=1

-1
+b (H z;

=1

()i

o{fen (i)

Denote (X',Y’) a co-singular set obtained from (X,Y’), where

(I-1)-out—of —2(I~1):G system
) R (ylv Y2,y Y13 Yl415 0 oy y?‘-—l)a

't vt ot '
X' = (23,%5 s T Tygqs -2 Ty,

Y' = (41,92 Yo Yignr -2 Y20
and
i<y, 1<i<l zi>yl, I+1<i<g2l (4.11)

Then

(I~-1)~out~of~2(1-1):G system

1-1
Y 11 ' Tt ot ' ] roy
F(X.Y') = ziy |a (H.’/i) R(z},25 -1 Tl1y Tigrs - -2 Toten)

=1

(I-1)-out—o0f~2({—-1):G system

-1
+b (HZ:) R(y;,y;, T y:+1’ e Ya1-)

=1

{ [}
+a (H yﬁ) (1-1z) (H z;+i)
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+b (H Z:) (1-y) (H yl’-h')

!
= zyic' +d,

where

(I=1)—out—of~2(1-1):G system

i

-1
/ / ! /
¢ a (Hy,) R(zl,xz, Y IRV TR TR

(I-1)=out—of~2(1-1):G system

r——

=1

off1)o-o ).

R(y{9y27 vy;—l’y{-i-l""

1+)
PR (II ys> (1-2) (II )

(4.12)

(4.13)

By induction assumption, Lemma 4.2 and the way (X', Y") was obtained from (X,Y)

we have
xiy{ = Y,
d > ¢
d > d
Therefore

F(X'Y) > F(XY),

or Lemma 4.4 holds for k = [.

Lemma 4.5: Let

X = (xl’z%---ozkazk-f-la'--’xﬂc)?

(4.14)
(4.15)

(4.16)

(4.17)
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Y = (y,¥2,- -y Uk Yka1s -« - s Y2k)s

X1l = (zzaz3s"'9Ikaxk+21"-1m2k)a
Y1 = (y2’y3v'"vykayk+2»---1y2k)v

k k
F(X,Y) = zrn(l- Yk+1) (H y;) R(X1) + (1 = Thg1)Yar (H .1:.-) R(Y1),

=1

where R(X1) and R(Y1) are the system reliabilities of X1g((k — 1),2(k — 2)) and
Yig((k —1),2(k — 1)), respectively. Then, (X,Y) must be co-singular for F(X,Y)
to be mazimized.
Proof of Lemma 4.5:

First of all, it is easy to see that F(X,Y) = F(Y,X). Assume (X,Y) is not

co-singular and let

XI

il

(1, T Zhy Thgro - - 1 T2k)s
Y' = (51,000 Uko Years - > Y2k)s
X" = (20,25, » Thy Thp1s- -+ » Tgp)s
Y' = (413920 U Yk - Yak)-
Both (X', Y’) and X”,Y") are co-singular arrangement obtained from (X,Y) such
that
i<y, 1<i<k; zi>y!, k+1<1<2k, (4-18)
e >yl 1<i<k; z!<yl!, k+1<i< 2k, (4.19)
By the way (X’,Y’) and (X"”,Y”) were obtained from (X,Y) we have
X' =Y" Y =X" and
F(X',Y)=FY",X")= F(X",Y").
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Let

a = Trpr(l = Yr+1)¥15

b = (1= 2Zks1)Yrs121.

We prove the lemma separately for two cases: @ > band a < b.
(1) Zes1(1 = yee)tn = a 2 b= (1 — Tes1 )Yk 21

By Lemma 4.4 we have

a

! ! ’ 1
z,..H (1 = Y1)y (H y,) R(z5, 25, Thy Thpar -+ - T2k)

=2

b k
+ (1 = Zkt1 k171 (H -‘5:) R(Y3, Y35 - - - » Yo Yhw2r - -+ ¥2¢)
i=2

e
> zk+l 1 - yk+l (H yt) R 1,'2,33, N 1 1%'2 1Y IR $32k)

=2

b k
+(T‘ $k+1)yk+1wx (H 2.‘) R(y2,y3y- - » Yko Y42 - - - ,yzk) = F(X, Y)-

1=2

By Lemma 4.3 and (4.18) we have

k
! ! ! ! (2 !
(H yi) R(z3,25, . s Ths Tpgzs -+ +» To)

1=2

k
> (H z:) R(y;’ yév e y;ﬂ z;=+2’ ey z;k)

=2

k
(H ) R(Y3n Y- oY i -+ Y-
=2

By Lemma 4.2, (4.18) and (4.21) we have

k
F(X,Y") = ziy(1 =y (Hy:) R(Zy, T5 . oy Thy Thyr- -+ T4

i=2

(4.20)

(4.21)
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k
+(1 = Zhys Wi 1 (H3> R(y2,¥3 - - -+ Vi Ykaar -+ s Vai)

=2
a

a k
! / !
> Ten(l = yrs)Wt (Hy) (23,230 -y They Thgzr o -+ Tap)

b

k
+(1- Trt1)Yr+1T1 H-’”:) R(y;, yé, < ’y;ny;:-{-?*""y;k)‘

=2
(4.22)
From (4.20) and (4.22) we have
F(X"Y") > F(X,)Y). (4.23)
(i) Zepr(1 = yrar)tn = @ < b= (1 = Tes1)yk1 21
Similarly as in case (i) it can be proved that
F(X",Y") > F(X,Y). (4.24)

Lemma 4.1 states that a general consecutive-k-out-o” n:G system withn < ~% can
be transformed into an equivalent system with a series sul: ‘ystem and a consecutive-
ky-out-of-2k; :G subsystem connected in series, where k; = n — k. Lemma 4.3 implies
that the optimal design of a consecutive-k-out-of-n system with n < 2k will have
the most reliable components assigned to the series subsystem. By Lemma 4.1 and
Lemma 4.3 the optimal design of system X¢(k1,!)NYg(kz, m) with I < 2k, m < 2k; is
obtained if the optimal design of system X5((I1—ki), 2(I—k1))NYg((m—kz), 2(m —k3z))
is available. Thus we first study the optimal design of system Xg(k, 2k) N Yg(k, 2k).
Theorem 4.1: Let

= (zl,z% ey ThyThkaly - ’z2k)’

Y = (ylay21”- sYks Yk+1s - "1y2k)°
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Then (X,Y) must be co-singular for it to be an optimal arrangement of system

Xag(k,2k)N Yo(k,2k), i.e.,

i<y, 1<i<k; z >y, k+1<:<2k. (4.25)

Proof of Theorem 4.1:

We need to show that the system reliability of Xg(k, 2k) N Ya(k, 2k) is not maxi-
mized if (X,Y) is not co-sinrular or does not satisfy (4.25). We prove the theorem by
using induction on k. When k = 1 Xg(1,2) NYs(1, 2) is a series-parallel system with
each station having a redundancy of 2. As stated in Chapter 2, the optimal design
of Xg(1,2) NYs(1,2) has the best and the worst components in X, and the rest two
components in Y. Thus the theorem holds for k = 1. Assume Theorem 4.1 holds for

k < |. We will demonstrate that the theorem is also true when k = 1. Let

X = (z1,T2y..0 s T1, T4, - - T21),s

Y = (ylvy'Za e Y Yler, .- ,y2l)-
Assume (X,Y) is not co-singular and (X',Y’) is nbtained from (X,Y) and is co-
singular, where

X = (:c'l,a:';,...,x?,z;_,_l,...,x'z,),

Y' = (U5 U Yisns- - Y1)

Denote R, the system reliability of Xg(l,2!) N Ya(l,2), R, the system reliability of
X4(1,21) N Y4(1,21). We show that R, > R,.

l
R, = [31-: .«R(l‘l,xz,- e ZL L Ty, -«,1’21) + (H zi) (1 - 1‘1+1)]

=1



where

where

dl

YO 1t NS > YN ' ’
= R(z5,25, .- Ty T149r--2ZTy) B(Y2: Y30+ 2 Y0 Yigar - -2 Y21)

=z (1= y141) (H yi

43

i=1
({-1)—out~of -2(I-1):G system (I-1)~out—of—-2(I-1):G system

!
X [MHR(%, Y2y 05U lsyl+2$- .. vy2l) + (H yt) (1 - yH-l)]

Timyi R (32,33, e s T T2y e 0 ey -1'21) R (ym Yas oo s Y Yi42y e o 4y yzl)
(I-1)—out=-0f-2(1-1):G system

+$1+1 1 - y1+1 (H y.) R 562,3?3, 1‘1»$1+2,---,1‘2:)

”~

i ({-1)—out—of~2(I~1):G system
) R(y2’y3’ e YL Y42y - - )y2l)

+(1 = Z142) Y12 (H T;

=1
l l
+(1 = z11)(1 = yi41) (II zi) (II y,-> (4.26)
1=1 i=1
Ziayimc+d+e, (4.27)
(I-1)~out~of=2(l1-1):G system (I-1)—out~of -2(I—1):G system

= R(Iz,x;«),...,l'l, T4y x?l)R(yZ»y:‘h YL Y42, . 1y2l)1

= ztu(1 - Y1) (H Yi

(I-1)~out~of ~2(i—1):G system
) R(I2,$3, zl,$l+27---,1‘2l)

i=1

! ) (l-—l)-—out—o/-2(l-1):G system

+(1 - $l+l Yis1 (H T y27 Yy ¥y Y142y - - 7y21)’
i=1

{ 1
= (1-za)(l —y41) (H -'Di) (H y;) :

=1 i=1
R, = ziaync +d +¢, (4.28)
({-1)—out—of ~2({-1):G system ({-1)~out—of~2(l~1):G system

~

f (1-1)-out-of-2(1-1):G system
G ) 'y
)R(zz,zs,--.,zl,$’+2,...,zzl)

=1
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(i-1)-out—of=~2(I~1):G system

1§
+(1 - I;+l)y;+l (H :v:) R(y;’ yé, ) yia y;+2a o ay;l)a

i=1

l 4
¢ = (1- z;“)(l - y;+1) (H"’:) (Hy:) .

1=1 =1

By induction assumption, the way (X’,Y") is obtained from (X,Y) and Lemma 4.5

we have

Ti¥ier = DYl (4.29)
¢ > ¢ (4.30)
d > d, (4.31)
¢ = e (4.32)

From (4.29), (4.30), (4.31) and (4.32) we have proved
R, > R,. (4.33)
Theorem 4.2: Let

X = (.’E],.’Dg,. oy Ty Thalyr oo 13:21:)9

Y = (yl’ Y2y - s Yks Yk+1s - - - ay2k)°

Then (4.84) and (4.35) below are necessary and sufficient conditions for the optimal
design of system Xg(k,2k) N Yg(k,2k).

Both X and Y are optimal, (4.34)

(X,Y) s co-singular. (4.35)
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Proof of Theorem 4.2:

It is obvious that (X,Y’) is not optimal if any of X and Y is not optimal, i.e.,
(4.34) is a necessary condition for the optimal design of X¢(k,2k) N Yg(k,2k). In
Theorem 4.1 we have already proved that (4.35) is a necessary condition for the
optimal design of Xa(k,2k) NYz(k,2k). We need only to show that (4.34) and (4.35)
are also sufficient conditions for the optimal design of system Xg(k,2k) N Yg(k,2k).
We can show that there is only one configuration which satisfies both (4.34) and (4.35).
In other words (4.34) and (4.35) can uniquely determine the optimal arrangement of
components for system Xg(k,2k) N Yg(k,2k). Assume we have 4k components with

their reliabilities arranged in ascending order:

P < P2 <...<Pgk-1 < Pak

Let

) <T < ... < T2k,

N <y <...< Y.

By (4.34), both X and Y must be optimal, we have,

= (zh T3y 3 T2k=1y T2k T2(k~1)r -+ 9 12)1 (436)

Y = (yl,ya,--~,y2k-1,y2k,y2(k-1),~~,yz)- (4-37)

Without loss of generality, we assume that z, < y;. By (4.35) we have
Ty <Y1, T3 < Y3y .oy T2k-3 < Y2k-3, T2k-1 < Y2k~1,

T2 > Y2, T4 Yay - -y T2k—=2 > Y2k-2, T2k > Y2k-
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From the inequalities above we get
T < <Y2<Z2<23<Ys<... <Yz-~3 < Y2k-2 < T2k-2 < Tok-1 < Y2k-1 < Y2k < T2k-
With this string of inequalities we obtain the best design:
) = P1, T3 = Pq, T3 = P5,T5 = P8y - -y L2k-1 = Pak-3, T2k = Pak,

Y1 =D2,Y2 = P3,Y3 = P6,Y5 = P7y- -1 Y2k—-1 = Pak~2,Y2k-1 = Pak-1.

Therefore, the invariant optimal partition of components for system Xg(k,2k) N

Yo (k,2k) is to:
1. Assign the best of the remaining components to X and the next best to Y.
2. Assign the best of the remaining components to Y and the nezt best to X.
3. Repeat steps 1 and 2 alternately until all components have been assigned.

Theorem 4.3: The optimal partition of components for system X¢(k,2k)NYg((k~
1).2(k — 1)) is to:

1. Assign the best component and the worst component to X.
2. Assign the best of the remaining components to X and the nezt best to Y.
8. Assign the best of the remaining components to Y and the nezt best to X.

4. Repeat steps 2 and 3 until all components have been assigned.

Proof of Theorem 4.3
Theorem 4.3 is a special case of Theorem 4.2. The result in Theorem 4.2 holds

for any values of p; (1 < i < 4k) such that 0 < p; < 1. Let p; = 0 and py = 1.
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The optimal design obtained by Theorem 4.2 becomes the optimal design of system
Xc(k,2k) N Yg((k — 1),2(k — 1)) as both the dummy and the perfect components
must be assigned in the same subsystem, which is actually a consecutive-(k ~ 1)-out-
of-2(k ~ 1):G subsystem under optimal arrangement.

Theorem 4.4: Assume we have a series consecutive-k-out-of-n:G system Xy which

consists of m consecutive-k-out-2k:G subsystems:
Xu = Xg(k,2k) N X%(k,2E)N -+ 0 X2 (k,2k).
If we have 2mk components with their reliabilities arranged in ascending order:
P1<p2<...<Pomk-1 < P2mk,

then the optimal partition of components for Xpr can be obtained by the following

algorithm:
1. Seti=1.
2. AsSign Pa(i—1)ym+1, P2(i-1)m42s - - - » P2(i-1)m+m 10 X1, X2, .., X™, respectively.
3. ASSign p(ai—1)ym+1:P2i-1)m+2, - - - » P2im t0 X™, X™71 . X!, respectively.

4. Ifi<k,seti=1i+1 and go to step 2; stop when i = k.

Proof of Theorem 4.4

Let
ry<zy<...<zl,

i<zi<. .. <2,

I <z <...<zh,
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First of all every subsystem X "(1 <i< m)must be optimal, or

X' = (zl,zd, ... Theoyy Ther -+ Tir T3)5 (4.38)
X? = (zf,zg,...,z%k_l,zgk,...,zf,zg), (4.39)

(4.40)
X™ = (27,27, Tok11T3ks- - » Tg T3 )- (4.41)

Without loss of generality we assume
<2<, <o

If X» is optimal all pairs of subs-:'ems XN X! fori =1,2,...,m-1, and X™nX*?

must be optimal. By (4.35) we have

i<zh<...<azh, fori=13,...,2k-1, (4.42)

>zh> ... >k, fori=24,...,2k (4.43)

Theorem 4.4 follows immediately from (4.42) and (4.43).
Theorem 4.5: Assume there is a series consecutive-k-out-n:G system with | consecutive-
k-out-of-2k:G subsystems and m consecutive-(k—1)-out-of-2(k—1):G subsystems. The

optimal partition of components for the system can be obtained as follows:

1. Add m perfect components and m dummy components to the set of components

avatlable.

2. Do optimal design as if for a series consecutive-k-out-o, n:G system with (14+m)

consecutive-k-out-of-2k:G subsystems.
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Proof of Theorem 4.5:

Theorem 4.3 is a special case of Theorem 4.4 as Theorem 4.3 is a special case of
Theorem 4.2.

The optimal design obtained by Theorem 4.5 has (I + m) consecutive-k-out-of-
2k:G subsystems, of which m subsystems have both a perfect and a dummy compo-
nents. Each of these m subsystems is actually a consecutive-(k — 1)-out-of-2(k — 1):G
subsystem under optimal design. Therefore, the optimal design obtained by The-
orem 4.5 is the optimal design for a series consecutive-k-out-of-n:G system with [

consecutive-k-out-of-2k:G subsystems and m consecutive-(k — 1)-out-of-2(k — 1):G

subsystems.

4.2 Relationship Between Consecutive-k-out-of-2k:G System and

Consecutive-2-out-of-2k:F System

From Section 3.1 and Section 4.3 we found that given a set of components the
optimal partition of these components for a series consecutive-k-out-of-n:G system
Xe(k,2k) N Yg(k,2k) is the same as that of a series consecutive-2-out-of-n:F system
Xr(2,2k) N Yr(2,2k). We take examples to demonstrate this relationship.

First consider the optimal design of series consecutive-2-out-of-4:G system Xg(2, 4)N
Yz(2,4), which is the simplest case. Assume we have eight components with reliabil-
ities:

P <p2<...<ps,

and

X = (z1,%2,23,%4),



50

Y = (yl» Y2, Y3, y4)

The set of minimal cuts of system Xg(2,4) is:
(1) 21,23 (2) 2,23 (3) z2,24.

Now we look at system X}(2,4), where X' = (1, 23, Z2, Z¢). Its minimal cut set is:
(1) 21,23 (2) 22,23 (3) 22, 4.

Xc(2,4) and X((2,4) have exactly the same set of minimal cuts. The two systems
are therefore equivalent in terms of system reliability evaluation although they are
different kinds of systems. Similarly, system Y5(2,4) is equivalent to system Yz(2,4)
where Y’ = (y1,¥3,¥2,¥4). Thus, system Xg(2,4) N Y5(2,4) is equivalent to system
X5(2,4)NY4(2,4). In Chapter 3 we have already known that Xg(2,4) NY£(2,4) has

invariant optimal design,

X' = (plvps,p51p4)’ (444)

Y, = (p2)p77p6,p3)' (445)

From (4.44) and (4.45) we directly obtain the optimal design for system X¢(2,4) N
YG(234)3

X (p11p5’ Ds, P4)’ (4.46)

Y = (p2,ps,p7,p3)- (4.47)

When k > 2 the relationship between Xg(k,2k) and X1(2,2k) is not as simple

as that between X¢(2,4) and X;(2,4). Consider a consecutive-4-out-of-8:G system
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Xc(4,8). Let

X = (-’51»-‘52,153,174,:65,16» T, -Ts)'
1 \

X = (-’rl, 35»:52)-56,173’3:7,34'38)»

v2

X* = (za,-‘b’s,x«-’rs)-

The minimal cut set of Xz(4,8) is:

(31,:85), (12’15)7 (zz,zs), (33735)v (x3$$5)1 (13,27)’ (1‘4,15)a (34, xﬁ)’ (34917)v(m4a z8)-

The minimal cut set of X}(2,8) is:

(21, 25), (25,22), (T2, %6), (T6,Z3), (Z3,Z7), (T7,Z4), (T4, Ts).

The minimal cut set of X%(2,4) is:

(13’ 35), (357 z4)1 (1:4, 36)-

It’s obvious that the minimal cut set of X(4,8) is the union of the minimal cut
sets of X1(2,8) and X%(2,4). Denote A the event that system Xg(4,8) works, A,

the event that X}(2,8) works and A, the event that X%(2,4) works. Then
R(Xc(4,8)) = Pr(A) = Pr(AiNAz) = R(X}(2,8)n X2(2,4)). (4.48)

Xc(4,8) can be converted to an equivalent system X}(2,8) N X%(2,4), where X* is a
different arrangement of the components in X and can be determined by X; X%(2,4)
is a correlated subsystem of X} (2, 8) and X2 can be determined by X! or X. If system
Xg(4,8) is of optimal design both X}(2,8) and X2(2,4) are of optimal design. This

relationship can be stated conversely. Given an arrangement of system X}(2,8),
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we can find a correlated subsystem X2(2,4) such that system X}(2,8) N X%(2,4)
is equivalent to system Xg(4,8). Optimal arrangement of components in system
XL(2,8) will result in the optimal arrangement of components in subsystem X3(2,4)
and therefore the optimal design of system X}(2,8) N X{(2,4) or system Xc(4,8).
There is the same relationship between Y5(4,8), Y(2,8) and Y2(2,4), where

Y = (v1,¥2,¥3 ¥4, Y5, Y6, Y72 ¥8),
Yl = (ylay5-,"23y63y3sy7ay47y8)a
YZ

I

(ySa Ys, Y4, y6)'

Denote B the event that system Yg(4,8) works, B the event that Y3(2,8), B; the

event that Y2(2,4) works. Then

R(Ys(4,8)) = Pr(B) = Pr(Bin By) = R(Y}(2,8)NY3(2,4)).

(4.49)
Now we observe system Xg(4,8) NYz(4,8).
R(Xs(4,8) N Ys(4,8)) = Pr(ANB)
= PT(AlnAanlnt)
= PT’((A] N Bl) N (Ag N Bz)) (4.50)

In (4.50), Pr(A; N By) is the reliability of series consecutive-2-out-of-8:F system
XL(2,8) NYA(2,8), and Pr(A; N B,) is the reliability of system X#(2,4) NYE(2,4).
The arrangement of components in system Xg(4,8)NYg(4,8) determines the arrange-

ments of components in system X1(2,8) N Y}(2,8) and system XZ(2,4) N YZ(2,4).
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Both systems X}(2,8)NYA(2,8) and X2(2,4) NY3(2,4) are of optimal design if sys-
tem Xg(4,8) NY5(4,8) is optimally de 1gned. Conversely, given a design of system
X#(2,8) N YA(2,8), a correlated subsystem X3(2,4) N Y2(2,4) can be determined
such that system X}(2,8) N YA(2,8) N X3(2,4) N Y2(2,4) is equivalent to a series
consecutive-4-out-of-8:G system Xg(4,8) NY5(4,8). The optimal design of system
X}(2,8) NY2(2,8) will result in the optimal design of subsystem X2(2,4) N Y2(2, 4),
and therefore the optimal design of system X}(2,8) N YA(2,8) N X2(2,4) N Y3(2,4)
or system Xg(4,8) N Yz(4,8).

As shown early, the proof of the optimal design of system Xp(2,2k) N Yr(2, 2k)
is totally different from the way of finding the optimal design of system Xg(k,2k) N
Yo(k, 2k) although the two systems have exactly the same best partition of compo-
nents. Tue optimal design of system Xg(k,2k)NYg(k,2k) with k > 2 may be derived
directly from the optimal design - .vsiem Xp(2,2k) N YF(2,2k), or vice versa, as in
the case where k = 2. We need to goin deeper understanding of the relationship

between systems Xg(k,2k) and Xr(2,2k) before we could reach any conclusion.
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CONCLUSION

We studied optimal design of systems with linear consecutive-k-out-of-n:G sub-
systems connected in series, and identified and proved the invariant optimal design
of series consecutive-k-out-of-n:G systems with n < 2k. A system is called a series
circular consecutive-k-out-of-n:G system if it has circular consecutive-k-out-of-n:G
subsystems connected in series. The optimal designs of series circular consecutive-k-

out-of-n:G systems are yet to be investigated.
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APPENDIX A.

A Counter Example

There is no invariant optimal design for system Xz(3,5) N Yr(3,5). Assume we

have ten components with reliabilities

1 <p2<...< po-

When

p = 0.042, p; = 0.214, p3 = 0.330, ps = 0.573, ps = 0.596,
pe = 0.649, p7 = 0.653, ps = 0.661, pg = 0.747, pyo = 0.861,
the optimal design for Xr(3,5) N YF(3,95) is:
X = (p1,Ps, P10, Ps, P2),

Y = (p31 Ps., p97p7$p4)'

While when
p = 0.219,p; = 0.312, p; = 0.734, p, = 0.744, ps = 0.746,

pe = 0.802,p7 = 0.878, ps = 0.934, py = 0.947, pyo = 0.958,

the optimal design for X#(3,5) N YF(3,5) is:

X = (ps3, ps, P10; P, P2),
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Y = (pl » P8, P9, P64 p‘)



