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Abstract

Assuming that the SU(2)-isospin symmetry in nuclei is spontaneously broken
to U(1) we derive the observed splitting in the dispersion relations of protons and
ncutrons in nuclei and show that the isobaric analog state is the Nambu-Goldstone
boson of the broken symmetry. The explicit isospin symmetry breaking caused by the
Coulomb interaction explains the observed displacement of the isobaric analog state

with respect to the parent ground state.
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Introduction

While the existing approaches to the nuclear many-body problem exploit the
assumption of SU(2)-isospin invariance of the effective nucleon-nucleon interaction,
they do not explain why (in apparent defiance of the SU(2)-isospin invariance) protons

and neutrons feel different effective potentials in the nucleus (See. fig.0.1).

The Bethe-Weizsicker semiempirical binding energy formula carries this in-
equivalence between protons and neutrons ir the (so called) "symmetry term”. And
derivations of it from microscopic consiserations exist: in a Fermi gas [1] and liquid
model [2] and the shell model [3]. Although these approaches predict the correct
dependence of the symmetry energy on the neutron and proton number, their as-
sumption ’ab initio’ is different Fermi momenta for protons and neutrons. Thus the
question where from protons and neutron derive their different Fermi momenta in

nuclei and how this fact doesn’t invalidate consequences of the nuclear SU(2) isospin

invariance remains unanswered.

Consider the state obtained from a nucleus in ground state when a neutron
is removed and substituted with a proten endowed with the spin and coordinates
of the removed neutron.If the SU(2) isospin symmetry were realized in a Wigner-
Weyl mode (i.e. as a symmetry of the Lagrangian and of the ground state) the
produced nucleus(called daughter) would be degenerate in energy with the initial
nucleus (called parent) (fig.0.2a). However the symmetry energy term in the Bethe-

Weizsécker formula predicts that the ground state of the daughter nucleus lies below

the ground state of



F1g.0.1.Protons and neutrons feel different nuclear effective poten-

tial (Copied from (17], p.47)
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Fig.0.2. a) Imaginary situation: the dotted line shows the expected
position of the g.s. of the daughter nucleus if SU(2)-isospin had

been a symmetry of the ground state
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Fig.0.2. b) Actual situation: the continuous line in the daughter
nucleus shows the actual position of the g.s. of the daughter nucleus
while the isobaric analog state (in the daughter nucleus) lies at the

level of the g.s. of the parent nucleus



the parent nucleus (fig.0.2b). Apparently even in the absence of the Coulewb inter-
actions protons and neutrons in nuclei are not equivalent. But, although the ground
state of the daughter nucleus is not degenerate with the ground state of the parent,
there still exists a collective state in the energy spectrum of the daughter nucleus
(fig.2,b), the isobaric analog state (IAS) of ground state of the parent nucleus, which,
in the absence of the Coulomb interactions, is degenerare in energy with the ground

state of the parent nucleus (and therefore carries the SU(2) symmetry).

Is it a coincidence that the symmetry lost in the quasiparticle spectrum (pro-
tons and nertrons feel different effective potential in the nucleus) is recovered thongh

the collective excitation - the isobaric analog resonance?

A similar situation exists in ferromagnetism: as a consequence of the dynamical
symmetry rearrangement of SU(2) spin symmetry the spin-up quasiclectrons differ in
their dispersion relations from the spin-down quasielectrons and a collective state

(magnon) appears as a Nambu-Goldstonc boson of the broken symmetry.

Therefore the challenge is to try to explain the "symmetry energy” term in
Bethe-Weizsicker formula (or the asymmetric nuclear potential for protons and neu-
trons ) and the appearance of the isobaric analog states as deriving from spontancous
breakdown of nuclear isospin symmetry: protons and neutrons being the quasiparti-
cles, which split in their dispersion relations, while the isobaric analog resonance is

the Nambu-Goldstone boson, which recovers the broken symmetry.

This work is organized as follows:

Chapter 1 introduces the concept of charge symmetry and charge independence

and discusses the symmetry of the ground state of nuclei.

Chapter 2 discusses the essentials of Umezawa’s [6] self-consistent, treatment

of spontaneously broken (or rearranged ) symmetries on the example of SU(2) isospin



syminetry.

Chapter 3 describes the features of the isobaric analog resonances relevant
to and derivable from the assumption of broken isospin invariance. Reviewed are

chapters of Henley & Frauenfelder’s [5] book and Lemmer’s Cargese Lectures (1968)

[7].

Chapter 4 develops a schematic contact model of the effective nuclear interac-
tions with dynamically rearranged symmetry of the ground state. Obtained are the
dispersion relations of the quasinucleons (protons and neutrons in nuclear matter)
and it is argued that the splitting in their energy gives rise to the "symmetry energy”
term in the Bethe-Weizsicker semiempirical mass formula. Mean field approximation
is employed to solve the gap equation for the order parameter in the broken symme-
try phase and the coefficient of the "symmetry energy term” in the Bethe-Weizsacker
formula is calculated. The isobaric analog state is showr. to be the Nambu-Goldstone
gapless mode of the broken symmetry. Coulomb interaction, which breaks explicitly
the isospin symmetry of the nuclear Hamiltonian provides the observed energy shuit

of the isobaric analog state with respect to the ground state of the parent nucleus.

In conclusion it is suggested that aspects of the dynamics of the isobaric analog
resonances be addressed from the viewpoint of the low energy theorems for Nambu-
Goldstone bosons: the narrowness of their decay width attributed to Adler’s consis-
tency theorem , while the emerging experimental evidence of relations between the
cross sections for excitation of single and double isobaric analog states in charge ex-

change reactions interpreted as a manifestation of the multiple production theorem

for Nambu-Goldstone bosons.



Chapter 1

Isospin Symmetry of Nuclear Interactions and

The Ground State of Nuclei

When the experiments of Chadwick revealed the existence of neutron, with its spin

equal and mass approximately equal to proton’s, the immediate question was where

that symmetry came from.

Heisenberg [8] conjectured that the interaction of protons and neutrons in
nuclei (invoked to counteract the Coulomb repulsion of protons and keep mnuclei from
disintegration) should obey a charge symmetry, i.e. a discrete symmetry with respect
to exchange of protons with neutrons and vice versa. To excmplify the concept
of charge symmetry assumption, consider proton-proton scattering (fig.1.1). Apply

charge symmetry to obtain neutron-neutron scattering:
Cunrce
O o — @
p SymueTr y

Fig.1.1. Charge symmetry relates the nn-scattering to the pp-

7]

- scattering

Therefore charge symmetry implies that the strength of the nn- and pp- inter-
action amd consequently the scattering lengths of n-n scattering and p-p scattering

are equal (or close, if charge asymetric effects can be treated perturbatively ).



Compare this prediction with the experimental evidence for the s-wave scat-

tering lengths
app = —16.6 to — 16.9 fm ( corrected for the Coulomb repulsion )
app = —-16.4+1.9 fm
to sce the remarkable agreement.

Substantial evidence in support of charge symmetry of nuclear interactions
comes from the the scattering of positive and negative pions from deuteron targets:
they exhibit approximately equal cross sections after correction for the Coulomb scat-
tering. As the experiment shows the pa~ system behaves approximately as its charge

symmetric counterpart nz* (and the same applies to pa* and nz ™).

Important evidence is provided by the structure (see fig.1.2) of excited states
in mirror nuclei (i.c. odd A and obtainable from one another by swapping a neutron
into proton or vice versa ). The correction for the Coulomb repulsion puts the energy

levels with respectively assigned quantum numbers in remarkable coincidence.

However the occurrence of #° in the 7-meson triplet (i.e. showing similar
properties: mass, coupling to nucleons etc.) can't be predicted from charge symmetry.
To assume that 7° is a charge singlet leaves open the question why its mass comes

close to that the charged pions 7~ , 7. Charge symmetry may be a part of a larger

symmetry, but what symmetry ?

As the study of the excited levels of isobar nuclei (i.e. containing the same
mass number A) shows the similarity in the respective level repetition and spacing
persists in nuclei with the same A, but different ratios of protons and neutrons.(See

the triplet on fig.1.3 and the quadruplet on fig.1.5.)
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Fig.1.2. Level structure in mirror nuclei (isobars). Spins, paritics

and isospins of levels are shoun.
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Fig.1.3. Level structure of A=1{ isobars. The labels denote spin and
parity, for instance 0. The ground state of “N is an isosinglet;

the first excited stsate is a member of an isospin triplet.
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Fig.1.4. Splitting of an isospin triplet by the electromagnetic inter-
action.
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Clearly this suggests that not only the pp- and nn- interactions are the same,
but also the nuclear pn-interaction comes close. Remark that charge symmetry cannot
make any predictions about the strength of np-interaction as compared to that of nn-
or pp-interactions, because under charge transformation the p-n pair transforms into

itself (fig.1.6)

Cuaree
@ O —> O @
" P S'y»mtm y P n

Fig.1.6. Charge symmetry transforms a np-interacting pair inlo
itself and therefore cannot relate the strength of the np-interaction

to the pp- or the nn-interactions

However the experimental value for the s-wave scattering length in the singlet

state of pn-interaction appasently differs from that of pp- and nn- interactions [10]
apn = —23.679 + 0.028 fm

Examining the experimental evidence Breit, Condon and Present [9] proposed
that the nn-, np- and pp- interactions are equal provided that the Coulomb interac-

tions are substracted and states with equal orbital and spin numbers are compared.

Indeed, correction for magnetic effects removes about 1 fm of the 7 fm differ-
ence between app and apn. The remaining discrepancy implies about 4% difference

between the strengths of pp- and np- nuclear interactions [10].

There is as yet no firm evidence of any discrepancy between the pp- and nn-

nuclear interactions.

The one-pion exchange part of the nuclear force provides an explanation for
the greater accuracy of charge symmetry (see Fig.1.7). Whereas the p-p and n-n

pairs both interact by exchanging a 7%, the p-n pair interacts exchanging a 7+ and

10



7~ . The pion mass difference (mt —myg)/mg = 0.03 will thus have no effect on charge
symmetry, but it destroys the charge independence. According to Henley {11}, about

half of the difference between a,, and a,, can be accounted for in this way.

Pp nteraction nn intetachon
3 b
g 1 S -
! |
| |
1 2° | 2°
! {
| I
p : - a- 4
L b
2 c
P e P P g n
! 1
! |
| g + b
| |
1 |
" i " e Ay
[ c

pn nteraction

Fig.1.7. Diagrammatic representation of the contribution of the

single pion exchange to the pp-, nn- and np- interactions

Formally the concept of charge independence was developed in analogy with

the spinor representation of the rotational group. Crucial evidence that SU(2) pro-
vides correct description of the symmetry of nuclear forces comes from experiment -

the excited states in nuclei are grouped in multiplets according the irreducible repre-

sentations of SU(2)-isospin group.

Protons and neutrons are considered the doublet (basic) representation of
SU(2)
) 0
|p) = |n) = ,
0 l

Rotations in isospin space are carried by the unitary operator

U(a) =explit - a], (1.1)

11



where 7’5 are the isospin matrices related to the Pauli matrices by definition by

g

T=%.

Isospins of individual nucleons can be added as vectors in isospin space.
A
T = ZT T; = Z‘Ta,-‘ (1.2)
i=1 i=1
And the isospin charge Tj is related to the electric charge through

A A
Q=Y q= e(T3+§)

=]

as the experimental evidence that protons couple to electromagnetic field re-

quires.

Isospin independence of nuclear reactions is expressed through the requirement

that the isospin generators commute with the nuclear Hamiltonian.

[Hn,T] = 0 (1.3)

The clectromagnetic interactions destroy the isotropy of charge sjace, coupling

to protons only, i.c.

[Hh + H-,,T] #0, (14)
where H, is the electromagnetic interaction term.

Treating the electromagnetic field as a perturbation to the isospin invariant
nuclear Hamiltonian H), one obtains the splitting of the (otherwise 2T+1 degenerate)

nuclear levels in the presence of electromagnetic field (Fig. 1.4)

Weak interactions on nucleons also break the isospin invariance of the Hamil-
tonian. If one treats them as a perturbation to the invariant part of the Hamiltonian,

one can estimate the effect of the breaking.

12



Obviously, the quest is to attempt to explain the observed deviations from
isospin symmetry as due to the explicit breaking of the symmetry by the weak and
the electromagnetic forces. The different masses of proton and neutron and between
the charged and the neutral mesons can also be treated as explicit sources of symmetry

breakdown, although it’s believed that this difference can ultimately be attributed

the electromagnetic forces.

Leaving aside the very interesting question of the experimental evidence of

explicit breakdown of isospin symmetry (refer to[12] for a review), we proceed to ask:

Is the SU(2)-symmetry of the nuclear forces a symmetry of the ground state

of nuclei?

Examine the Bethe-Weizsicker semiempirical formula, proposed to character-

ize the energy of the gound state of nuclei:
B(N,Z) = a,A+a,A} + a,,.i—: + a,(N"TZ)2 ~ 5(A), (1.5)
where B(N, Z) is the binding energy defined as
B(N,Z) = M(A) - (NM, + ZM,) (1.6)
and the values of the coefficients are [1]
a,=-15.68 MeV (coefficient of volume energy)
a,= 18.56 MeV (coefficient of surface energy
a.= 0.717 MeV (coefficient of coulomb energy)
a;= 28.1 MeV (coefficient of the syi::metry energy)

34A~% MeV for odd-ode! sesclei
6(A) = 0 MeV for odd-even nuriei (coefficient of pairing energy)

—34A-1 MeV for even-even nuclei

13



Charge symmetry may be a symmetry of the ground state, because for a fixed A and
allowing N to exchange value with Z, the energy of the ground state doesn’t change,
provided that correction for the changed Coulomb interaction is made. Symmetry of
the ground state implies degenerate energy levels, however the reverse is not always

true.

If SU(2)-isospin symmetry were a symmetry of the nuclear ground state, then

the energy of the ground state would not change under rotations in the isospin space.

Consider the effect of rotation in the isospin space on the ground state energy

as described by the Bethe-Weizsacker formula.

As the Bethe-Weizsicker formula doesn’t accommodate continuous changes of
the direction of T, (| T |= A), where A is the mass number, consider only rotations
in discrete steps (see Fig.1.8). Then the change in the projection of T describes
going from a nucleus (Z, N) to a neighbouring nuclei (Z +1,N —1), (Z - 1,N +1),
(Z+2,N -2)etc. A

Fig.1.8. Discrete rotations in isospin space corvespond to going

Jrom one nucleus to another in an isobar multiplet

Obviously the energy of the ground state changes, the variance coming from

the
72
acﬂ

(N-2)?

and a,——-—A—- (17)

terms.

14



Leaving aside the first term as coming from the explicit breaking of the isospin

symmetry by the Coulomb repulsion of protons in nuclei, we discuss the term

— 7\2
alg-j\—r]ﬁ—s (1'8)

i.e. the so called "symmetry energy” term in Bethe-Weizsicker semiempirical mass

formula.

Its non-invariance may be attributed to the inherent non-invariance of the
ground state of the nucleus under SU(2) isospin transformation, i.c. the SU(2) may

be broken in the ground state (spontancous breakdown of symmetry).

It might be objected that to argue about the exact symmetry of the true
ground state of a system on the basis of an approximate formula is questionable.
But how can an asymmetric approximation be a good approximation to a symmetric
state? Anyway, we were unable to find a better approximation for the energy of the

ground state that is a symmetric approximation.

Therefore we conjecture t.hat the ground state of heavy nuclei violates the
SU(2)-isospin symmetry and explain in Chapter 2 how this can happen. We stress
upon two ingredients of the mechanism of symmetry rearrangement and state that
both have been observed in nuclei: the splitting in the dispersion relations of the

quasiparticles and the appearance of a gapless collective mode.

To prepare for the ensuing discussion we explain the meaning of the words
"splitting in the dispersion relations of the quasiparticles” and "gapless collective

mode” on an example from ferromagnetism.

As argued by Umezawa et al. in (13}, the ferromagnetic phase transition, in
which the spin-up electrons are separated from the spin-down electrons by an energy
gap (see fig. 1.9) and the appearance of the spin wave, is described as a dynamical

symmetry rearrangement [14],[13]. The order parameter, which in a translationally

15



invariant theory is a spatial constant, is related to the energy gap, while the collective

mode (spin wave) is the zero mode (gapless) Nambu-Goldstone boson.

We proceed with discussion of the nuclear isospin phase transition stressing
upon the similarity of fig.1.9 (the splitting in the dispersion relations of the quasi-
clectrons in a ferromagnetic) and fig.1.10, which is related to the observed and used

initial approximation for the proton and neutron wave functions as deriving from an

asymmetric one-body nuclear potential.

A

e Y|
b

N (e} «—— | — N (e)

Fig.1.9. Splitting in the dispersion relations of spin-up and spin-
down quasielectrons in ferromagnets. (Copied from [16),p.21)

® F-x @

Fig.1.10. Splitting in the dispersion relations of protons and neu-

trons in nuclei.(Copicd from (17], p.47)

16



It is well known[15] that this asymmetry (the gap) in the effective nuclear
potential for protons and neutrons is included in the Bethe-Weizsicker semiempirical

formula in the so called, "symmetry energy” term. Indeed, defining si,, and ¢, as the

neutron and proton chemical potentials

_9E _ 9B(N,2) _JE _ dB(N,2)
I =9N =" aN =9z~ "oz (1.9)

one can prove that

_ 9B(N, 2) (N~2)

- - = 10
e Aar—2— (1.10)

which explains why (in the absence of Coulomb interactions) proton in heavy nuclei

(N > Z) seems to sit in a potential well, which is deeper than that of neutron.(Sce
fig.1.10)

Assuming that, indeed, the splitting of the dispersion relations of proton and
neutron in nuclei is a sign of dynamical symmetry rearrangement, we seck the other

ingredient of the phenomenon - the Nambu-Goldstone boson.

And we find it under the name of Isobaric Analog Resonance (IAR). Before we
proceed to a discussion of the properties of these remarkable resonances in nuclei we

devote a chapter on the general features of the dynamical symmetry rearrangement.
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Chapter 2

Dynamical Rearrangement of Isospin Symmetry

Umezawa[19] and collaborators developed a consistent approach to quantum
ficld theories with symmetry rearrangement of the ground state and applied it to pion
dynamics {20], superconductivity [21], superfluidity, ferro- and para-magnetism [13]

at zero and finite temperature [22].

To distinguish between the concepts of observed symmetry and symmetry
of the Lagrangian Umezawa introduced the concept of dynamical map [6] between
the Heisenberg (unobserved) fields and the (observed) asymptotic fields which are

solutions of the linearized Heisenberg equations with boundary conditions consistent

with the observational symmetry.

Dynamical map is the weak relation (i.e. satisfied for the matrix elements of the

operators) between the Heisenberg (interpolating) fields and the physical (asymptotic

or in-) fields, called quasiparticles

du(z) £ 8 [¢"(z)] , (2.1)

where the functional @ is defined in section 1.2. We now discuss the implications of

the weak relation, which are independent of the choice of ®.

Suppose that the Lagrangian of the system remains unchanged (i.e. exhibits a

symmetry) when the Heisenberg fields ¢ (z) are transformed to ¢ (x) under a group

transformation F, i.e.
Llgu(@)] =Llgu(z)] . when @y(z)="Flpn(z)) (22)
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Do the physical fields ¢™(z) which through the dynamical map (1.1) induce

the F- transformation of the Heisenberg ficlds necessarily transform as

¢ (x) = F [¢"(=)] (2.3)
or the ¢*(z) may transform under a different transformation G

¢™ (2) = G [¢"(2)] | (24)

and yet induce through the dynamical map (1.1) an F-transformation of the Heisen-

berg fields (1.2)? Or in other words we seek to determine G from

Flgu(z)] 2 & [G[¢"(2)]],

—~
o
e

S

where & is given and F is a specified transformation of the Heisenberg fields which

leaves the Lagrangian 2.2 unchanged.

Because the dynamical map is a weak relation, it does not fix the transforma-

tion of the quasiparticles, when the transformation of the Heisenberg fields is chosen.

If the observed fields are F-transformed when the Lagrangian exhibits a sym-
metry under the F-transformation of the Heisenberg fields, it is said that the symme-

try is realized in a Wigner-Weyl mode or as an unbroken symmetry.

If the observed fields transform under a different group G, when the Lagrangian
is invariant under a F-transformation of the Heisenberg ficlds, then it is said that the
F-symmetry of the Lagrangian is rearranged into a G-symmetry of the observed fields.
‘The symmetry rearrangement is accompanied by the appearance of a nonzero vacuum

expectation value of a certain local operator, called the order parameter.

Because the transformation of the quasiparticle fields induces through the
dynamical map the transformation of the Heisenberg ficlds, G an F are parametrised

by equal number of parameters, i.e. degrees of symmetry are not lost during the
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syminetry rearrangement. But consider what one would think if G and F contain
a common subgroup S and one is prejudiced to believe that the symmetry of the
Lagrangian should manifest itself as the same symmetry at the observational level.
Expecting to find F, one observes only the subgroup of it S realized in a Wigner-Weyl
mode, which may mislead one into believing that the F symmetry is spontaneously (for
no reason) broken to S at the observational level. A careful analysis, however reveals

the missing degrees of symmetry disguised as gapless fields - the Nambu-Goldstone

bosons.

To exemplify the dynamical symmetry rearrangement consider a nonrelativis-
tic model of interacting fermion fields with a Lagrangian invariant under a global

SU(2) isospin transformation
c [z/)'(x)] = L{$(z)], when 9'(z)=explit  a]¥(z) (2.6)

Construct the generating functional of the Green functions

W, [o'n] = % [ Dupwt expli [ diz [L 1] + syt (@)msb(a) + 1! (@)(z) + ¥ (@)n(a)] ),
(2.7)

where N = W0, 0} and the c-term is added to explicitly break the SU(2)symmetry
of the Lagrangian to U(1) and prescribe the boundary conditions on the Green func-

tions, as explained in [23)].

When the limit € — 0 is taken, the symmetry of the Lagrangian is recovered,
however what remains from this procedure, are certain relations between the Green
functions (Ward-Takahashi identities) which allow for solutions from which one can
tell what pattern of symmetry breaking was used by the e-term and how the symmetry

of the Lagrangian is rearranged into the observed symmetry of the quasiparticles.

To derive the Ward-Takahashi identities we change variables in the generating

functional ¥(z) — exp [i7 - @] ¥(z) and observe that, because the functional integral
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does not depend on the integration variables, the a-dependence is fictitious
ow
P 0, (2.8)
from where the (basic) Ward-Takahashi identities follow

[ 20 @rb(e) ~ $ @)l gr e = 0 (29)
/d4$<17t($)T+¢(1:) - ¢t(x)r+n(z))q',q.€ = —iE/(ﬂ:L‘(T_,.(I)),'",M (210)
/ Bzt (@) h(z) = W@ e = Hie / T (D)) (211)

The Ward-Takahashi identities allow to define the order parameter, a quantity

of vital importance for theories displaying symmetry rearrangement of the ground

state. Motivated by the consequences for the observables, which we discuss later, we

choose

(! (z)msd(z))e (2.12)

as an order parameter.

By taking ;Ef(—y) from 2.10, multiplying by 7_, taking #(v) with contraction

of the isospin indices and using the isospin algebra one can derive
W rb@he = - [y G dw) Vv (213)

If translational invariance of fermion Green functions is assumed, the order

parameter is a spatial constant, depending on ¢

(¥ (z)r39())e = v (2.14)

Consider the limit e — 0

velim v = -lim ¢ [ d'y(r () (2)) (2.15)

where 74(z) = (YH(z)729(x)), etc.
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Whether or not the symmetry is rearranged is decided by the vacuum expec-

tation value of the order parameter.

If v = 0, then any finite integral on the right hand side of 2.14 will suffice to
make it an equality in the limit € — 0 As discussed in Section 2 the symmetry is

of the Heisenberg ficlds appears as a symmetry in quasiparticle fields (Wigner-Weyl

mode of symmetry realization).

However if v # 0, then a gapless boson (w(q)jq~0 — 0) is required to make
the equation 2.15 consistent (Goldstone Theorem), i.e. a collective excitation whose

spectral function

___ x(d® :
Ag,q) = a=wlq) +ie + continuum (2.16)

must contain a pole at zero (See Appendix A for derivation).

As explained earlier, the gapless mode (called Nambu-Goldstone boson) car-
ries the degrees of symmetry which the Lagrangian loses when the e-term is specified
and which do not show up as the same symmetries in the quasiparticle sector after
the symmetry of the Lagrangian is recovered through ¢ — 0. The symmetry of the
Heisenberg fields is rearranged into a different symmetry of the observed quasiparti-

cles.

When no translational invariance of the fermion Green functions is assumed

the order parameter may be observed as a collective excitation (as is the case with

the o-boson in the chiral dynamics of pions).

¢(z) = (V! (z)ms9(z)) (2.17)

To account for the appearance of collective excitations at the observational level

(change of the observed degrees of freedom) one redefines the generating functional

AR R % [ DvPHDrDr, Dpexpi [ diz (L [¥] + ieola)+
TEWE) + ¥ (@0(a) + 34 (8)7_(2) + 74 (@i (2) + s(2)oz)] ), (218)
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The transformations of the boson fields under an infinitesimal isospin transformation

§¥(z) = [iT - a]¢¥(z) of the fermion fields are

67_(x) = —iat¢(z) + iadr_(r) (2.19)
074 (z) = +ia~¢(z) — ia’r, (1) (2.20)
6¢(z) = +iat 7, (z) — ia"7_(x) (2.21)

Changing variables in the generating functional and taking partial derivatives with

respect to the a’s we can rederive the WT-identities showing explicitly the bosons

degrees of freedom
[ da(nt@inet(z) - ¥ (@iren(a) +ija(2)r-() — iry (@@ =0 (222

[ d'stal@irb(e) - iryn(e)=iga @) sl (@) = +e [ drir(oag
(2.23)
[ d'aa!(@Yir-(e)- ! @hir-n(a)+idla)i-(2)—is()r-(@)se = ~¢ [ drir_()a
(2.24)

where J stands for the sources nt,n,j*, 5, s.
The Ward-Takahashi identities will further be used to show the splitting in
the dispersion relations of the quasiparticles - yet another artifact of the dynamical

rearrangement of isospin symmetry besides the appearance of the Nambu-Goldstone

boson.

By taking appropriate functional derivatives (without contraction of the isospin

indices) from 2.22 one obtains

T3(¥(z)9(y)) — (W) (y))ra = 0 (2.25)

The Fourier transform of the matrix Green’s function of the fermions

d'p
(2)4

(W(z)PH(y))as = i / e G(p) (2.26)
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can be expanded in the (complete) set of matrices
Sa(P) = A(p)oas + B*(p)73, (2.27)
where summation over k is implied.

Using 2.25 one obtains that B*~(p) =0, i.e.

S(p)z(A(pHB(p) 0 )
0 A@p)- Bl)

(2.28)

A convenient parametrization is,
AP)+ Bp) = o (229)
A(p) - B(p) = e—(p):-T(M’ (2.30)

which allows to relate e(p) and p(p) to the dispersion relations of the quasiparticles.

Whether or not y(p) can be nonzero is decided by the WT-identities between

the quasiparticle propagators and the vertex functions.

We derive this identity.

By taking me- from 2.24, with boson sources put to zero one obtains

[ #=tot@ir- (@) b6 = ([#(6)r] ) - [ el (Yir-n(o), 8L )y =
—¢ [y (23)

Next, by taking -—6'1_3(_5 and putting the fermion sources to zero one obtains

(I3 L) = (ol [$' (0] ) = ¢ [ Prtwl W) (ear  (232)

which for @ = 1 and 8 = 2 reads
W) - W) = ¢ [da@l@riz)  (23)
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Switching to the Fourier transforms of the quasiparticle propagators and the vertex

functions, defined as

i) = [ 22 @y D5, (p) (234)
(@) = /2 e=0s._(p) (235)
(@) =i [ S e tena) (230)
@ (2) = ¢ [ TEE 231)

S_(P1)T=(p1; 2,71 — P2)S+(p2)A(p1 — pa)e™ P etPavgilia—m):
and using v = —lim,_.g #€A(0) one can write the relation 2.33 in Fourier space as

S~!(p) - S7'(p) = vT~(p,p,0) (2.38)

Now we can use the result 2.28 derived from the rotational symmetry around

the third axis to substitute S,(p) and S_(p) with

S gy = — L -1
S+0) = ooy = W@ = (239)

obtaining

) = E=E20) (2.40)

Clearly, u(p) # 0 implics v # 0 and I'_(p) # 0, which is exactly the assumption
of the spontaneously broken symmetry. Thus the splitting in the dispersion relations
of the quasiparticles arises from the dynamical rearrangement of SU(2) symmetry. As
argued in Chapter 4, in the case of spontaneously broken SU(2)-isospin symmetry of
strong interactions in nuclear matter this effect is observed as a difference in proton

and neutron effective potentials in nuclear matter.

We have mentioned that in the spontaneous breakdown of symmetry the origi-
nal symmetry of the Lagrangian is manifested as a different symmetry at the observa-

tional level. Now we show that SU(2)-isospin symmetry of our model is transformed
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into a different symmetry of the observed ficlds.

As we have shown the WT-identities obeyed b i%ie Gresn functions of our

model require the existence of (at least) three asymptot:~ § 'de:

i) two non-relativistic fermjon fields, satisfying s3¢ -suations

Dy**(z) =0,

-9 v?
D=(1E—m"“‘#+ 0 )
- 'y v’ ‘
0 i -

ii) one non-relativistic (complex) boson iield, satisfying the equation

where

K7i*(z) =0,

where
K(d) = igt- - w(—Vz).

Whether or not the order parameter can propagate as a field can not be decided from
considerations based on the WT-identities. However it can be shown that if such field

exists it is unstable and decays into Nambu-Goldstone bosons.

The dynamical map between the Heisenberg operators and the observed in-

fields is given by the in-field expansions
S =: {exp[~iA]) : (241)

Su(r) =: (Y(z)exp[-iA]) :, (2.42)

where the : : stand for normal products and
A= [ [w 1(2) D (2W™(2) + ¥ 1" (2) D (2)(2) +72(2) K (2)7i%(2) + 7i7(2) K (z)r.(z)] :
(2.43)
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Equations 2.41,2.42 are equivalent to the LSZ-reduction scheme.

Now we formulate the question of the dynamical symmetry rearrangement :
What transformations of the in-fields induce a SU(2)-isospin transformation of the

Heisenberg fields ¥5(z) ? Or more precisely, we seek a transformation of
¥(z) = ™ (z;0)  T(2) > 7 ™(z:0), (2.44)

which through the dynamical map equation

Swu(x) =: (W{z)exp|-id]) -, (245)
where
S =: (exp[—iA]) ;, (2.46)
induces
S—8;  Yu(z) » Yy(z)=explir- a) Y(z). (2.47)

In addition we require that the transformed in-fields ¢'**(z), 7'™(z) satisfy the

equations of motion.

The answer to this question will be found as we examine the conditions imposed
on the dynamical map 2.42 by the WT-relations 2.22, 2.23, 2.24, which though the
particular choice of the e-term and the order parameter carry the pattern of the

symmetry breaking and rearrangement.

Let a = na with n being a unit vector in the direction of the transformation.
Define A(a) as the expression obtained after the in-fields ¥™(z), 7(z) in A are sub-
stituted with the transformed in-fields 9'"(z;) and 7™ (z;a). Then the dynamical

map 2.42 and condition 2.47 give

S¥u(z) = explion - 7| Syu(z) =: (W(e)exp[-i(a)l):  (248)
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or in differential form

7 : (Y(z)exp[-iA(a)]) := (¢(x) ( )exp [-iA()))
which for the a*-component reads as
e (z)) =
/d‘z ([.‘/)f( )71(3 &) 77(2 0)¢( )+J+( ) ) _(Z)+T+(Z)] ( 2, )]M »
(2.49)

and has to be compared with the operator identity

(e ¥(2)) 1oy + / diz: ([n'(z)in.tp(z) _—¢'(z)i'r+1)(z) - ij+(z)¢(z)] yP(E)) 1y =
+v, / d*z : (14(2), ¥(2)) 1 ',-K‘(.:r) (2.50)

obtained from 2.23 with the special choice of sources as the following operators in the

Fock space of observables:

n(z,@) =~ D @ ™(z,0)  n(z,0) = —¢t'"(z,0) D (z) (2.51)
i) =-1"(z,0) K(z)  j-(z,0) = — K (z)7"(z,0) (2.52)

Using integration by parts to shift the action of the differential operators on
the free fields under the integral on the left-hand side of equation 2.50, one can prove

that the integral over z is zero.

Then the comparison of the equations 2.49, 2.50 yields the conditions

__"*é:f) =0 f; f) =0 (2.53)

j+6(2+a—) =0 L ;zf) v K (2), (2:54)

which after substitution with the specisl choice of sources 2.51 give differential equa-

tions for the in-fields

t,in in
¥ 8((;, Q) _, L‘?%_a) —0 (2.55)
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(2, ™2, '

Following the same procedure but applied to the variation of a~ one also

obtains

Pza) yn(za)
o -0 T =0 (2.57)

hz0) o 1(za)
da— o Ve, (2.58)

To summarize, we showed that the the rotations around 7, and 7_ leave the

fermion in-fields unchanged

¥(2) T () (2.59)

while the boson in-fields are translated

7(z) "2 7in(z) — %y (2.60)
(z) olel ™™z)+a v (2.61)

One can also show that under these transformations of the in-ficlds the S-

matrix remains unchanged, i.e.
§ [¥(),7™(@)] = 5 [¥™(z), 7" (z)] (2.62)
thus the required invariance condition 2.47 is satisfied.

Now we will show that the rotation under the third axis which prese rve' the
symmetry of the £.-Lagrangian, remains as the same symmetry in the sector of the

observed fields, i.e. we will show that the transformation of the Heisenberg fields
Yu(z) — exp [inas) Yu(z) (2.63)

is induced though the dynamical map by the same transformation of the in-fields
P™(z) — exp [imgas) ¥ (z) (2.64)
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7%(z) — exp [irsas] (), (2.65)

) ( (@) )
¥y(z)

r(z) = ( 7+(z) )
7_(z)

The proof proceeds exactly as before, when we showed how the in-fields should trans-

where as befott ¥(z) is

but 7(z) now stands for

form under 7, and 7_ rotation in order to induce the required transformation of the

Heisenberg fields. Now we use 2.22 to show that

: {13(x)) 1 +

[ 'z ([12)ims(z) - $(imn(z) + G4 (@)r-(2) — ins (215 (2)] , () 2ag= O,
which when compared with the condition imposed by the dynamical map

H(ra(z)) =
/d‘z ([,/,t )'lz , @) 77(2 a)'p( )+]+( ,a) r(2) + 742 )] —(z, a)]¢

yields
tiin in
L) = gtz %a—)=+i¢‘"(z,a> (2:66)

Thus we sce that the fermion and boson doublets are rotated around the T3 - axis:
¥™(z) — exp [irsas] ¥™(z) (2.68)
7"(z) — explirsag) 7(3), (2.69)

i.e. the rotation of the Heisenberg fields around the 13-axis is induced by the

rotation of the fermion and boson in-fields.
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Chapter 3

Isobaric Analog States

The isobaric analog states were discovered as prominent resonances in (p,n) scattering
experiments on 385t and 8Y targets [24]. As the experiment showed for certain en-

ergies of the incident protons the number of neutrons emitted increased substantially
(see Fig.3.1).

Assuming a compound nucleus mechanism, in which a proton is initially ab-

sorbed by the target nucleus (Z,N)

p+%Sr—8 - _ By,

P+ Sr —% Zr 8 Zrin (3.1)

leading to the nucleus (Z+1,N) in an excited state, whose energy is later
released through neutron emission, the resonances were proved to lie at the ground

state level of the analog nuclei, respectively:

BY* corresponds to %Sr (gs.)

0Zr*  corresponds to  ?Y (gs.) (3.2)

The discovery that the SU(2)- isospin symmetry, according to which isobar
multiplets are constructed, can be used as a predictive tool in heavy nuclei, came as
a surprise. Clearly, in that region, the Coulomb forces are comparable to the nuclear

forces and it was expected that they cannot be treated as a perturbation to the latter.
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Fig.3.1. Neutron yields for ¥8Sr(p,n) and ¥Y(p,n) near thresh-
old. (from [23])

Yet, although considerable, the effect of the the Coulomb forces could be
estimated by perturbation theory and substracted from experimental data to show
that the predictions of the the exact SU(2)-isospin symmetry still hold. How could
this happen? We return to this question in‘Chapter 4, where we argue that after the

vacuum realignment the Coulomb force can still be treated perturbatively.

32



We now turn to the definition and description of the basic properties of the

isobaric analog resonances [25], [5].

Assume that the Coulomb interactions are switched off, (we estimate the effect
of the Coulomb interaction later) take a nucleus (Z,N), called parent, at its ground
state and decide to replace a single neutron with a proton endowing it with the spin
and orbital quantum numbers of the replaced neutron (even neglecting the difference
in mass). Using the isospin formalism this is expressed as changing the projection of

the isospin vector T, (| T |= A) of the nucleus from
1 1
T, ;'=_T3=§(N—-Z) to Tc=T= -2-(N—Z)—1 (3.3)

As predicted from the "symmetry energy” term in Bethe-Weizsacker formula, the
ground state of the obtained nucleus (called daughter) lies below the ground state of
the parent nucleus. Another argument often used, which is equivalent to the above,

is that in its ground state the nucleus always picks up the smallest possible projection

of its isospin vector, in this case
1
T = i(N -2Z)-1 (3.4)

As the ground state of the daughter nucleus drops below the ground state of the
parent (See Fig.3.2) it allows for an excited state in the daughter nuclens to come
at the level of the ground state of the parent, thus simulating the SU(2) symmetry,
although the symmetry in the ground state is broken, as discussed earlier in Chapter
1. When this state was found, it was called the isobaric analog state of the parent
ground state (IAS), because it was observed in the neighbouring isobar nucleus and

carried the quantum numbers of the ground state of the initial (parent) nucleus (apart

from a different isospin projection).
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When the influence of the Coulomb interaction is considered (See Fig.3.3), its
effect is to a) shift upward the spectra as a whole of the parent and danghter nucleus
and b) displace the positions of proton and neutron thresholds in both the parent
and daughter nuclei. (This is also seen from a previous picture, namely Fig.1.9. The
reversion of the sign of the energy gap between proton and neutron in the presence
of the Coulomb field comes from the fact that protons couple to clectric ficld and in

sufficiently high field this energy can become bigger than the symmetry energy.)

The Coulomb field also causes the isobaric analog state to decay, however we

will leave this very important question out of the scope of our present discussion.

Clearly, the shift in nuclear spectra due to the clectromagnetic interactions of
protons (called Coulomb displacement energy) is important to estimate and predict,
because it gives valuable information about nuclear structure.This has been done in
the conventional formalism [26]. We show in Chapter 4 how this can be accomplished

in Umezawa’s unified treatment of spontaneously broken symmetrics.

We now proceed with discussion how the energy of inelastically scattered pro-
tons on targets containing heavy nuclei is related to the energy of the isobaric analog

state, the Coulomb displacement energy in mean field approximatior and the energy

the ground state of the parent nucleus [7).

Consider inelastic proton scattering (p,p') from a target nucleus ( Z,N ) for

example, 12Ce 33 .

Assume that a resonance is observed at energy say Ei of the scattered protons
(See Fig.3.4.).
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Estimate the Coulomb displacement energy A, of the ground state of the

nucleus (Z,N+1), i.e. the parent nucleus of the compound nucleus, which is produced
after the incident protons are absorbed by the target nucleus. The formula often used

is the semiempirical formula

A.=-1.036 + 1.44822? MeV, (3.5)
3

which treats the Coulomb interactions of protons in nuclei as a mean ficld produced by
the a uniforinly charged sphere and takes into account proton statistics by antisym-
metrizing protons’ wave function in nuclei[27]. The Coulomb displacement energy A,
gives the difference between the actual ground state of the parent nucleus (Z,N+1)
and the estimate where it would lie if a proton were replaced by a neutron but is

still considered as a proton in the "symmetry energy” term in the Bethe-Weizsicker
P Yy gy

formula.

A comparison of the independently obtained quantities Ej, (experimental) and
A. (semiempirical estimate) suggests the following relationship. When Ej is added
to the neutron emission threshold S, in the parent nucleus , one obtains the Coulomb
displacement energy of the isobaric analog state with respect to the parent ground

state (an estimate using 3.5)

A.=Ec+ S, (3.6)

This is the experimental evidence.

As we have mentioned the explanation to the above-stated fact is provided
by the suggestion that, if corrected for the Coulomb displacement energy (and the
neutron-proton mass difference) , the isobaric analog state (observed in the daughter
nucleus) appears at the level of the ground state of the parent nuclens. Following

Lemmer’s 1968 Cargese Lectures [7] we now show how this suggestion, based on the

charge invariance of the nuclear forces, works.
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Fig.3.5. Energetic relations for an analog resonance. (from [7])

The charge independence of nuclear interactions implies that by taking away a
neutron and substituting it with a proton with the same spin-space quantum numbers
one obtains a state with the same energy as the energy of the state with which one
started, although this may not be the ground state of the new system. Thus the
encrgy of the isobaric analog state should be degenerate with the parent ground
state. However, this is when the Coulomb interaction is absent. In reality there is an
encrgy gain A, due to Coulomb repulsion a single proton feels in the Coulomb field
of the target nucleus (Z,N) and an energy loss § = (m, — m,) due to the fact that a
proton is lighter than a neutron. Therefore the analog state of a given parent state

will be at an energy

EA = Ac -6 (37)

above the latter. If A, is large enough then the analog state is pushed above the
threshold for proton emission from the proton plus target system (called the analog

system) and is seen as a resonance in proton scattering.

By examining Figure 3.5, which reflects the assumptions about the position of
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the isobaric analog state and the effect of the Coulomb interaction, one can write

Ex=Eq—Sq+6 (3.8)

which together with 3.7 gives
Ey,=A.- S, (3.9)

i.e. it provides an explanation of the experimentally determined relation 3.5 between
the Coulomb displacement energy of the parent nucleus, the neutron threshold in the

parent nucleus and the kinetic energy of the emitted protons at the resonance.

This relation is in remarkable agreement with experimental data over a wide
range of nuclei [28],[27], suggesting that the basic features of the underlying physics
are correctly included in this simple model. For instance, A, is estimated to be 15.3
MeV in %%Ce. The neutron separation energy of “!Ce is S, =5.44 MeV. Therefore
t.e estimated value of the kinetic energy of the scattered proton at the (isobaric

analog) resonance is Ei = 9.9 MeV. The experimental value is Ef*? = 9.773 MeV.

However the equation 3.7 does not provide an explanation why the isobaric
analog resonance lies exactly at the (corrected for the Coulomb repulsion of protons)
ground state of the parent nucleus. Rather, the fact that it is obeyed in experiment
reflects the correctness of an assumption that for a dynamical reason, which must be
provided by the study of nuclear interactions in the daughter nucleus, the isobaric
analog states are allowed as a collective excitation (resonance) in it. Conceived and
developed by Fallieros [29],(30], this remarkable argument is inspired by the success
of the particle-hole description of the giant dipole resonance by Brown and Bolsterli
[31] and suggests calculation of nuclear excitation spectra in a model of nuclear struc-
ture. Because of the tremendous success of the nuclear shell model in predicting the
properties of nuclei at that time, logically its power was tried on the isobaric analog
states. To repeat, the objective is to build the isobaric analog resonances as a collec-

tive particle-hole excitation on the nuclear ground state. After obtaining the desired
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result within a shell model approach we will notice how insensitive it is to the details
of nuclear structure. This observation will be used as a motivation for the dynamical
symmetry rearrangement approach of Umezawa which we apply in Chapter 4 to 8%

the study of the IAR.

Before reviewing the approach of Falliero following the Cargese (1968) lectures
of Lemmer (7], we'd like to relate the isospin formalism introduced earlier to the

characteristic pictorial description of nuclear structure in the shell model.

In the shell model derivation [3] of the "symmetry term” in Bethe-Weizsacker
semiempirical mass formula, the fact that protons and neutrons have different Fermi
momenta in nuclei, is attributed to the neutron excess in nuclei and Pauli principle.
Thus in the language of the shell model Fig.1.10 is viewed as an adjusted to give
equal Fermi momenta picture Fie.3.6, where the asymmetry does not come from
the asymmetry of the effective potential, but from the excess of neutrons and the
impossibility to accomodate more than one nucleon of a given species (proton or

neutron) at a given quantum state.

Protons Neutrons

.

\ (N-2)

\ 7 3 levels
L
L

¥ X %X Xx
¥ ¥ 2 x x

x x

2
3 levels

Fig.3.6. Splitting in the dispersion relations of protons and neutrons

in nuclei in the shell model approach. (Copied from [4],p.221)
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We will discuss the decay channels of the isobaric analog state of the ground

state of 2° Pb whose shell picture in obvious notations is

Valence
neutron

82

Fig.3.7. Schematic representation of the 2 Pb nucleus. The core is

indicated by blocks (Copied from [5])

Consider the energy diagrams Fig.3.8 for the isobars ° Pb and 2*Bi. |Com-

pare with Fig.3.3.)

Continuum

=

Discrete
levels

Fig.3.8. Energy level diagram for the isobars (Z,N) and (Z+1,N-1),
for A=209, Z=82. Coulomb interaction included.(Copied from [5))
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The concept of isospin invariance, which implies that when the nuclear isospin
raising operator T, is applied to the ground state of the parent nucleus | T ,-T3)
it gives a degenerate state in the daughter nucleus and the definition of the isobaric

analog state as
| IAS) =|Ts . -Tv +1) (3.10)
are combined to obtain

| IAS) =const. Ty |Ts ,-T5) (3.11)

where the constant is readily found from the the algebra of the raising and lowering

operators of isospin
T |T,-To) = (T -T)T+ T3+ 1)} |T,-Ts), (3.12)
which forT3 = ~T, and T = T\ gives

| analog) = _\/_QI-T__; | parent g.s.) (3.13)

One can factorize the action of the isospin raising operator T',on the ground state of

209P}p into a part acting on the core and another one acting on the single neutron

[ Pb) = | core) |single neutron) =[*® Pb) |n) (3.14)
T, = TS 4T (3.15)

Thus for the isobaric analog state of the ground state of 2 Pb one obtains

1 s
| IAS) = —5\/_7,_;(7‘; +T3P) [* Pb) =

1 sp\ 1208
__(T¢ +T )I Pb) In) —_
1

g 19 T P oy 1 Py T )] =

‘/-21? [ﬁn ~11 Bi + n)+ [ Pb+ p)] . (3.16)
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If represented in a pictorial form the equation reads

I
21,

{Analog> =

Fig.3.9. Representation of the analog state of a single-particle shell
model state.( from [5])
‘Therefore the decomposition of the isobaric analog state into the |8 Bi* + n)

and |2 Pb + p) points out the chanels of decay

—>208Ph + p
analog{—> 208Pb* 4 p
—> 208Bj* 4 p

Fig.3.10. Decay channels of the isobaric analog state (in 2°Bi) of
the ground state of 2 Pb.( from [5))

We now discuss the essentials of Falliero’s dynamical approach to the isobaric

analog resonances choosing as a particular example 28Pb in the ground state and its

analog in 28B;,

As we saw from the previous ( preparatory ) example , the T} operator relates
the g.s. of Pb to a pfi- excitation ( i.e. a proton particle - neutron hole excitation)

in 8Bi. Calculate the energy of this excitation with respect to the ground energy of
28p} (Fig.3.12 ).
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Pb?OB Bi 208

(a) (v)

Fig.3.11. a) 28 Pb core b) pii-excitation relative to the ground state
of 28Pb. (from [7])

To do that one can imagine that a neutron from the core is removed to infinity
(supply energy S,), then turned into a proton there (gain energy from the proton-
neutron mass difference) and returned to the spin-orbital state previously occupied
by the removed neutron (energy S, is released in the binding). Clearly, in the rough
energy balance described above we have neglected the interaction of the approaching
proton-particle with the neutron-hole in the neutron shell. Note that also, because of
the Pauli principle, only the excess of neutrons, occupying energy levels higher than
these of protons’ in the shell can be subjected to that operation. Calculating the net
energy in the above Gedanken experiment one obtains the so called zero excitation
cnergy of the pi- excitation (zero because the interaction energy of the pfi-pair has
been neglected)

Ey=5-6-5, (3.17)

When one trics to predict the position of the isobaric analog state of the 28 Pb ground
state in 28Bi, one obtains E,;=5.6 MeV , while the needed , i.e. experimental

displacement of the isobaric analog state is 17.6 MeV. (See Fig.3.13)

44



15.3 176

—— np

| Eﬁp =56
208
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J

Pb 208

Fig.3.12. Proton-neutron hole levels in 28 Bi, measured relative to
the ground state of 28 Pb. All energies are in MeV. The analog state
of ®Pb (g.5.) (in 2®Bi) lies at 17.6 MeV on this scale. (from [7))

We decide to include the pii-interactions in an attempt to achicve agreement

between our estimate and the experimental value.

To simplify the calculation we choose an attractive §-interaction (contact in-

teraction) between protons and neutrons , i.c.

Vip = —Vab(rn — 1), (3.18)

which means repulsive pfi-interaction with the corresponding strength.

Because the angular momentum of the filled core supplying the pii-excitation
is zero, these pairs must necessarily couple to zero. Thus the question is how to
diagonalize the Hamiltonian of the coupled to zero angular momentum of N-Z inter-
acting pfi-pairs. We sketch the method of Brown and Bolsterli, which was originally
provided a particle-hole description of the giant dipole resonance. The only formal

difference is that instead of pj excitations coupled to angular momentum one, we use
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pit excitations coupled to angular momentum zero.

While the zero excitation contribution to the diagonal elements of the Hamil-
tonian is Eg, the calculation of the matrix elements of the coupled to zero angular

momentum interacting pii-pairs gives (see Appendix B)

G70) 1V 153500 = 22525+ DHs + D}, (3.19)

where F, stands for
F, =V, / drr®RY(r)R3(r). (3.20)

If one assumes that the zero excitation energies are degenerate (i.e. Ep,; = E for all

pii-pairs supplied by the excess neutrons of the shell) , then the matrix elements of

the total Hamiltonian takes the form

- Fo 1 . 1 o 1
H,=Eb .+ 55(2_1 +1)2(25 +1)2. (3.21)
If the eigenvalues of H;; are calculated, in this case one finds that, while N-Z-1 of

them stay at the zero excitation energy, one of them is pushed up to

_ F,1 :
Ex=E+ 5 zjj(z] +1) (3.22)

Assuming that this is the level of the isobaric analog state measured from the ground
state of the parent nucleus, one can reverse the argument and see whether nuclear
interactions can provide that shift. For 8 Pb the sum over J is equal to the 44 (the
neutron excess N-Z in 28Pp) . Therefore the required shift of 17.65 — 5.63 ~ 12 MeV
may be provided by

F, 44 F,
—f e | == 12 -_=u. .2
41r( 5 ) MeV , or = 0.55 MeV, (3.23)

a value which is reasonable in the shell model.

Providing a particle-hole description of a monopole (J=0) resonance and iden-

tifying it with the isobaric analog state (IAS) by the above mentioned argument
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might seem questionable because, after all, there are other monopole excitations of

the nucleus. What distinguishes the isobaric analog state from the other monopole

resonances 7

As it will be seen below the clue comes from the specific neutron hole - proton

particle nature of this monopole excitation.

Define the pfi-excitation

| pit); = Y C(j — mjm | 00)(—1Y+™a;m(n)al,(p) | PU) (3.24)

i.e. it is a superposition of all pfi-pairs in which individual members of the pair carry

equal in absolute value and opposite in direction angular momentum j.

Since
( - 1)1'+m

C(j — mjm | 00) = T (3.25)

| pR); is equal to
_ 1
| p2); = —]ﬁajm(n)a}m(l’) [**® Pb). (3.26)
Define the isobaric analog state as the superposition of all | pii); , i.c.

| IAS) = ZC,- | pia); (3.27)
J

To determine C; one uses that | JAS) is an eigenstate of the total Hamiltonian

H=T+V ,ie.
H |IAS) = E, | IAS) (3.28)
or in the angular momentum basis E4 satisfies the secvlar equation
Det(Epb;p ~ Hy) = 0 (3.29)

which is equivalent to

Z(EA5jj' - Hjj')Cj' =0, (3.30)

.t

J

47



where

F,1

Hyp = (7 (0) | H| 53(0)) = Béyy + 225(25 + 132 + 1)} (3.31)

Therefore

_ F,1 . Loost 1
(Ba=EYCi= 15 > (25 +1)7(25 +1)3 (3.32)
j'
or
Fo 1 1 o 1 . 1

- - | 4 33
C; 2 (B F) Y (25 +1)2Cy (25 +1)2 (3.33)

J-l
ie. Cj ~ /27 +1. But this is just the weight with which | pii); comes into the
building of the analog state previously defined as

Ty PP Pb) =33 ajm(n)al,(p) P8 Pb) =" /2 + 1|8 Pb),  (3.34)
im J
where use of 3.26 was made.

Thus we see that if the isobaric analog state is defined as the solution of the

secular equation 3.29
| 1AS) = 3_C; | pi);, (3.35)
j
where C; ~ /27 + 1, corresponding to energy E4
Fol il

Es=E+ 4—ﬁ-c—,;(zj +1)3 %jc,..(m +1)3, (3.36)

then it turns out to be obtainable from the g.s. of 28Pb by acting on it with the

isospin raising operator T, :
| IAS) =T, |*®® Pb). (3.37)

This completes the identification of the collective excitation with the isobaric analog

state (IAS).
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We now turn to the very important and interesting connection between the
energies of the zero excitation modes, the IAS and the "symmetry energy” term in
the Bethe-Weizsacker semiempirical mass formula. It was originally discovered by

Falliero et al.[30]. We will follow the presentation of Lemmer in his Cargese lectures
(1968).

Consider the effective nuclear potential V,, for a single neutron as compared to

that of a single proton V,. As discussed earlier
Vo=Va-U+V, (3.38)

where U is related to the symmetry energy in the Bethe-Weizsicker seiniempirical
mass formula and V; is the Coulomb potential. If evaluated for a state | a) which
is presumed to be initially occupied by a neutron and then by a proton, it gives the

difference between the binding energies of the proton and neutron in that state

Sa=S,=—(e|U]a)+(a| Vi |a) (3.39)

If the state | a) is representative of the all the states that can be occupied in turn by
a neutron and then a proton (i.e. the states occupied by the excess neutrons in the

ground state), then this relation may be thought as averaged, which gives
Ac={a|V.|la) U={(a|U|a) (3.40)

i.e. the above matrix elements are related to the observed Coulomb displacement en-
ergy, and the (observed) difference between the proton and neutron chemical poten-

tials derivable, as we showed, from the Bethe-Weizsacker semiempirical mass formula.

But, as we discussed earlier, that difference is also related to the zero-excitation

energy

Sa~Sy=E+6 (3.41)



Comparing the equations 3.39 and 3.41 one obtains

~-U+A.=E+§, (3.42)
from where, remembering that,
- F,1 )
Ac~6=E, and Ep,=E+—=-%(2j+1) (3.43)
4r2 5
once gets
- F,1 F,1
- -—o— y —-_ -—o— — 3-44
u 47f2§;(2]+1) w3V -2 (344)

This is a remarkable result. It relates the observed difference in the proton and
neutron chemical potentials to the strength of the nuclear interaction; F, ~ V, in the
schematic model discussed earlier. We will return to this point later when we derive

it from a dynamical symmetry rearrangement point of view.

Now we show that the isobaric analog state is displaced at A, — § with respect
to the ground state of the parent nucleus and therefore in the absence of the Coulomb
interaction should be degenerate in energy with it thus confirming the prediction of

the exact isospin symmetry of the nuclear 2-body force.

Obviously, if one wishes to explain the difference in the separation energies of
neutron and proton , which remains as a difference even after the Coulomb repulsion
of protons is accounted for, one needs to explain why an SU(2) - invariant nuclear
force gives rise to different effective potentials for protons and neutrons. For a contact
(i.e. 6-) interaction the answer is provided by a remarkable property of the SU(2)-
isospin invariant nuclear force: only particles of the different species can interact at
one point, i.c. Vi, =V, =0, while V,,, is generically nonzero. This fact is directly
related to the Pauli exclusion principle. (Here, as well as in the previous discussion,
we have neglected the spin of protons and neutrons. However as Brown et al. [32]

have shown that its inclusion does not change substantially this result.)
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If this property of the SU(2)-isospin invariant é-force is taken into account,
then the difference between the separation energies of proton and neutron, or rather

the contribution to that difference from the nuclear force A,

En=5.-S,=0np+A,—6 (3.45)

is easily understood: simply when a neutron is scparated it interacts with Z protons,

while when a prot:i is put in its place it interacts with N neutrons.
Therefore, applying as before the é-interaction model 3.18 to estimate the
contribution A,,, one obtains

F,1
AnP - —Z;i(N - Z)v (346)

where the negative sign comes from the fact that now one considers the interac-
tion of a single nucleon with the rest of the uucleons of the opposite species in the
nucleus coupled to j=0 , i.e. now the interaction is between neutron(particle) and

proton(particle) and it is attractive according to the initial assumption 3.18.
We now return to the relationship between E4 and E,;
E —E+512(2°+1) (3.47)
A= Ar2 5 2+ h .

where the summation is over the excess neutron states. Arguing as before that this

sum equals {N-Z) and inserting the value of E from 3.45

- F,1
Eyi = _Z;E(N—Z)+A°—6 (3.48)
we obtain
Eys=A,-6, (3.49)

which is exactly the relation observed in experiment and which scemed to be predicted
by the assumption that SU(2)-isospin symmetry remains intact in heavy nuclei (refer

to 3.7). Then we asked ourselves if a dynamical explanation could be provided and
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here we end up saying that a schematic: (i.e. é-interaction) model of nuclear interac-
tions provides such an explanation. At first glance one may think that the "miracle”
cancelation of differeat effects which lead to the result 3.49 ocewrred entirely because
of the special property of the contact force. However a closer examination reveals an
interesting very general fact: If one chooses appropriately the difference between the
effective one-body potentials of the protons and neutrons in nuclei, then one can put
in place the isobaric analog state, i.e. make it correspond to the Coulomb displaced

ground state of the parent nucleus.

We devote the next chapter to the derivation of this statement from the view-

point of the dynamical rearrangement of isospin symmetry in nuclei.
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Chajrter 4

Dynamical Rearrangement of Isospin Symmetry
in Nuclei in a Contact Model of Nuclear

Interactions

Recently F. Khanna and H.Umezawa initiated an excensive search for nuclear features
which are related and could be described within the formalism of dynamical symmetry
rearrangement. They argued ! [33] that the s- and d- bosons in the IBM model may
appear from a dynamical rearrangement of Elliot symmetry. Discussing [34] the
spin-isospin excitations in nuclei H.He, F.Khanna and H.Umezawa conjectured that
they may appear from spontaneous b.« skdown of SU(4) spin-isospin symmetry and

that the isobaric analog states are the Nambu-Goldstone bosons of the spontancously

broken SU(2) isospin symmetry:

"One may use SU(2) isospin symmetry for large nuclei.This would lead to
excitation modes 74 | 0) that may be associated with the isobaric analog states that
have been prominent in (p,n) reactions. It was a surprise to find them in heavy
nuclei. SU(2) isospin symmetry is explicitly broken by the Coulomb interaction. It
was anticipated that for nuclei with large value of Z , isospin would not be a good
symmetry. However, rather sharp states that were related to the parent ground state
by the operator 7, | 0) were found in heavy nuclei. The state is displaced by an
energy that is very close to the expectation value of the Coulomb interaction. If the

conjecture of spontaneous symmetry breakdown is correct, in the absence of Coulomb

lin collaboration with X.Zhu
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interaction, the isobaric analog state would have a structure that may be described
in terms of pair of nucleons. The pair of particles in the Coulomb interaction would

acquire a finite mass.It would be interesting to find if the level spacing can be obtained

using such an argument.”

To show how tise approxh of dynamical - :ymetry rearrangement, indeed ,
confirms this prediction and to compa.. 12 results with the conventional approach,

discussed in Chapter 3, we specify the SU(2) isospin invw:i:nt nuclear interaction as

V= [ dl@mlEnmn() (4.1)

i.c. we choose an isospin invariant contact interaction (up and down arrows stand for

neutron and proton respectively). Choosing the order parameter as before

I = (¥!(z)7s9(2))e (42)

we can derive the WT-identities between the Green functions following the e-procedure

described in Chapter 2.
W @)mp)e = - ¢ [ dy(r@)r-(2), (43)
(W) - Gi]) = - [ da@iEwiE-@). (@4

The method of the derivation of the Ward-Takahashi can be used further to
derive identities linking 3-point Green functions to 4-point Green functions , etc. ,
thus obtaining a chain of equations reflecting the basic nonlinearity of the field equa-
tions. However when one iterates the solution, for example expressing the 3-point
Green functions through the 4-point Green functions and substituting the result into
the relation between the 2- and 3- point Green functions , one needs to truncate the
chain, i.e.to approximate the solution. Then the question arises whether one can pick
up the approximation to satisfy the WT-identities for the exact Green functions. As

argued by J.Goldstone, A. Salam and S. Weinberg [35], the expansion in the number
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of loops gives the invariant approximation, i.e. complying with the symmetry require-
ments of the theory reflected in the WT-identitics. Umezawa et al. [13] extende:! 14e
argument to include the case when bound states appear in the theory as a result of
spontaneous symmetry breakdown.

We decide to see whether a Hartrec-Fock approximation (HF) to the quasipar-
ticles (i.e. truncation of the chain at the 3-point Green’s function) and the correspond-

ing random phase approximation (RPA) to the collective state (IAS) are consistent

with the Ward-Takahashi identities.

Deciding to use proper vertices (instead of the improper that we used for

pedagogical purposes in Chapter 2), we define

(¢1(x)¢¥(y)T_(z)) =2 d‘(};f)"spz S_(p1) S (py)e= P == 5)gmiPalz=9)

d* —ipiz +ipay i(pr-pr)e
+i / L] pzs (P )T~(P1; P2, 1 = P2) S (P2) APy — pa)e™ 1=t P ilen=p)

(4.5)

Substituting with the Fourier transforms of the Green's functions in the 4.4 and using

I = ~lim,_,q i€A(0) we obtain
52'(p) = S7'(p) = IT-(p,—p,0), (4.6)
where I'_(p, —p, 0) is the proper vertex.

According to 4.2

I=- lg%('l)f(t - E,X)?ﬁ}(t +¢, x) - ¢l(t - C,X)l/){(t + G,X», (47)

which after substitution with the Green’s functions of the quasiparticles gives

4
I=—i (;17,1; 2P [S4(p) = S-(p)] = —i /+ (—g—;-));[&(p)—s-(p)], (4.8)

where the integration path for dpy is along the half circle of the upper plane for

complex py, indicated by the symbol +.
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Combining 4.6 and 4.8 one can derive the (so called) gap equation

1=—i %s+<p>s_(p)r-<p; p.0), (49)

which can be used (either it or 4.8 ) to determine the order parameter in consistency

with the approximation used for the quasiparticles.

Choosing a HF-approximation (setting I'_(p; p,0) = X to the exact propagators
of the quasinucleons (i.e. protons and neutrons in nuclei), we require that 4.6, which

is valid for the exact propagators be valid for the HF-approximation to them:

1
S~ ) ”’ (4.10)

where A is the unrenormalized coupling constant.

If one uscs the arguments which in Chapter 2 lead to the parametrization of

S+(p) and S_(p) in terms of the functions e(p) and p(p) , one can see that

_ O(ex(p)) O(-e+(p))
S0 = o) %t o alp) - (4.12)
where
x(p) = 5% ~ K3) ¥ ). (4.12)

‘Thus we obtain a splitting in the dispersion relations of proton and neutron
in nuclei, which is proportional to the order paremeter and the coupling constant.
However the order parameter I in 4.12 must be picked up to be consistent with the
approximation for the quasiparticles. To do that we can use either 4.8, which derives

from the definition of the order parameter or the gap equation 4.9.

The order parameter that is consistent with the HF-approximation for the

quasiparticles may be determined from the equation

Iyp = —i /+ (‘2’% [$2(p) - S°(p)] (4.13)
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where 59 (p) and S%(p) are the quasiparticle propagators in Hartree-Fock approxima-

tion, i.e.

o [ 8(-e+(p) __ O(=e-(p))
o (27')4 Po—€+(p)—ie  po—e_(p)—ie
= [ G 8- (p) - O (o)
=n(Iyr) — 2(Inr), (4.14)

where n(Iyr) and 2(IyF) stand for the neutron and proton densitics.

The calculation is presented in Appendix C. Here we state the result. The
nuclear density n is just above the critical nuclear density n., which justifies the

approximation of the coupling constant with

4€p e
A= 23 - (4.15)

"Thus we see that the dispersion relations for the quasinucleons in the HF-approximation

for the propagators are

N-2Z
ep) = 5= - ) 720,02 2) (4.16)
where a; is the value of the symmetry energy coefficient
Ep
=2—. 4.17
2] (4.17)

We saw in Chapter 1 that the splitting in the dispersion relations of proton and
neutron in nuclei (proportiaaal to N-Z ) is observed in experiment and is also pre-
dicted by the "symmetry energy term” in the Bethe-Weizsiacker semicmpirical mass
formula. We mentioned the attempts to explain the presence of this term in different
models. Here we have presented a derivation that relates this effect to the dynamical
rearrangement of isospin symmetry in nuclei ap-’ we have estimated the value of the

symmetry energy coefficient in Bethe-Weizsicker semiempirical mass formula.
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For ey = 37 — 45MeV the computed value of a; falls within the experimental
values claimed to lie between 22 MeV (earlier)[15],{16] and 28 MeV (later) estimates
[1],[18].

When the quasiparticle propagators are calculated in HF-approximation, the

corresponding collective state is calculated in the random phase (RPA) approximation[36].

We proceed to show that the (RPA) for the collective state satisfies the re-

quirement (for the exact propagator) that it be a gapless mode.

Because the exact propagator of the collective state is related to the 3-point

Green function as

(s (2)7_()) = im(y(t - & )} (¢ + € X)7-(w)), (418)

then the equation 4.5 can be used to obtain

80 = =i [ 2 2S-(p+ 3053~ 30

i [ 5.0+ 30S- (- 3000+ Saip— J0.0AW), (419

which when solved for A(g) gives

[ 55S_(p+39)S-(p - L9)

A(g) = —i—
1+if 35S (p+39)S-(p - 30)T—(p + La;p - Lg,9)

(4.20)

The denominator for ¢ = 0 is zero because of the gap equation for the exact
propagators of the quasiparticlesi.e. this confirms that the Goldstone theorem holds

for the exact propagator of the collective state.

To determine whether the approximation to the exact collective state propa-
gator satisfies the Goldstone theorem, i.e. whether it has a pole at ¢ = 0, one has to
insert the HF-approximation for the quasiparticle propagators.

I 355 p+39)S%(p - Lg)
1+iA [ 5552 (p + 39)S%(p - 19)

A(Q)rpa = —i (4.21)
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But when ¢ = 0 the derominator is exactly the gap equation, which may be used to
determine the order parameter consistent with the HF-approximation for the quasi-
particles. Instead we used the equivalent of it 4.8. Thercfore the random phase

approximation tc the: propagator of the collective state satisfies the Goldstone theo-

rem.

To summarize, we have shown that the when the HF-approximation for the
quasiparticles is picked up to satisfy the WT-identities for the propagators and the

vertex function, then the RPA approximation for the collective state obeys the Gold-

stone theorem.



Consider the effect of the explicit breaking of isospin symmetry by the elec-
tromagnetic interactions. Treating the latter in the mean field approximation, i.e.
assuming that protons move in the mean Coulomb field of the nucleus one and pick-

ing for symplicity the latter as constant one can write

Ve = Bl ()5(1+ m)(a). (4.22)

Factorizing the effect of the Coulomb coupling into a symmetry-obeying term
Y!(z)¥(z) and a symmetry-violating term ¥!(z)731(z), one can include the former
into the SU(2) isospin invariant Lagrangian, and note the latter has the structure
of the added e-term in the Lagrangian, although not infinitesimal. Therefore, if one
decides to derive the Goldstone theorem following the e-procedure in Chapter 2, one

would obtain

lig (W (2)rsp(a))e = +ilim (B +ie) [ dylr (), (429)

which implies

o : x(0)
I—-ll_i!(l) (E. + i€) ”

w(k) =0 +ie’ (4.24)

from where it follows that
w(k)lk=0= E. (4.25)

Thus we sce that the effect of the Coulomb field in the nucleus on the isobaric analog
state is to shift up its position with respect to ground state of the parent nucleus.
This effect is very well known and in fact (in a reversed argument) the observed shift

is used to determine the mean Coulomb field of the nucleus [37].
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Chapter 5

Conclusion

Assuming that the isospin symmetry of nuclear interactions is spontancously broken
in nuclei we have derived the different nuclear effective potentials of protons and neu-
trons in nuclei and showed that the appearance of the isobaric analog states (1AS) is

required to satisfy consistency conditions imposed by the Ward-Takahashi identitics.

Employing the Hartree-Fock approximation for the quasiparticles and the cor-
responding RPA for the collective state (IAS) we showed that the order parameter in
the mean field approximation is equal to the neutron-proton number difference. The
splitting in the dispersion relations of protons and neutrons in nuclei, which gives rise
to the "symmetry energy” term in the Bethe-Weizsicker semiempirical mass formula,
is proportional to the coupling constant of the theory and the neutron-proton number
difference.The "symmetry energy” coefficient a; in the Bethe-Weizsiicker semiemnpir-

ical mass formula is evaluated in the mean field approximation and the result agrees

with phenomenological fits.

We treated the Coulomb interactions in mean field approximation (picking
up an uniform mean field for simplicity) and showed that the isobaric analog state

acquires a finite gap proportional to the Coulomb potential.

Other issues which may be addressed within the approach of dynaunical sym-
metry rearrangement (the sector of low energy theorems for Nambu-Goldstone bosons,
in particular [6] ) are the decay of isobaric analog states and their multiple produe-

tion in charge exchange experiments [38]. Maybe the narrowness of their decay width
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can be attributed to Adler’s consistency theorem, while the emerging experimental
evidence of relations between the cross sections for excitation of single and double
isobaric analog states in charge exchange reactions may be a manifestation of the mul-
tiple production theorem for Nambu-Goldston« i»nsons. Research is currently under

way along these lines.
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Appendix A

The Green’s Function of the Nambu-Goldstone

Boson

The causal Green's function of a nonrelativistic interacting complex scalar boson field

is defined as

G(r,r';t —1)={0(t —t )0 ] mu(r,t)rh(r,t) | 0) + 6(t —t){0 | T5(r .t )7u(r,t) | 0)},
where 7y and 73} are ficld operators in Heisenberg representation.

If the matrix elements are expanded in the complete set of physical states | v),

iéit‘ﬂ
(O] ru(r, )75 (r',£) | 0) = 30| r(x,t) | v){v | TH(r 1) | 0) (A.1)
(0 | T?,.(l",t')'r”(l‘, t) | 0) = Z (0 | T,'*i(l",t') I V)(V | TH(rvt) I 0) (A.2)
Assuming time translational symetry of the theory (which implies energy con-
servation)
T,|10)=|0) Ti|v)=exp{-i&,t}|v), (A.3)
one obtains from
(O] ru(r,2) | v) = (0| 7' Tory (x, )T T, | v) (A4)
O (' ) |v) = O TV T (c', )T | v), (A.5)
the relations
(0] Tu(r,t) | v) = exp(=i&,t){0 | Ty(r,0) | v) (A.6)
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(O 75(x',¢') | ) = exp(—iE,t {0 | T}(r’,0) | v) (A7)
(v | Tu(r,t) | 0) = exp(i&,t){v | Tu(r,0)] 0) (A.8)
(v | 7H5(x,€) | 0) = exp(i£, Wv | H(r',0) | 0, (A9)

which, when inserted into the definition for the causal Green's function give

Glr,r';t—1) =Y 8(t — ) exp [-i,(t - )] x

{(0 ] 7a(r,0) | w)w | 74(x',0) | 0) + (0 | 75(r', 0) | v){v | Tu(r,0) | 0)}

If tke representation

F2miexp(—iet)f(Lt) = /d Sﬂz—%% (A.10)

is used, the Green’s function may be written as

G(r,r';t—t) = i/ %%rgexp [—iq,,(t - t')] X

7 {(Olﬁf(r',o)|V)(V|Tn(r,0)|0) _ 0| u(r, 0)|V)(V|Tu(r 0) IO)}
QO+£u_i0 8 +10

[ 4

If in addition the theory is translationally invariant (which implies conservation of

total momentum P,), i.e

Rety(r,0)R;Y = 74(0,0)  Rp7h(r, 0)RS' = 7;4(0,0) (A.11)
Re|0)=|0)  Ry|v)=exp{-iP, -r}|v), (A.12)
then using
(0] 74(r,0) | ¥) = (0| R;' Reryy(x,0) R 'R, | v) (A.13)
(v | 73(r',0) | 0) = {v | R'Rpf(x',0)R' Ry | 0), (A.14)
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one obtains

G(r-—r;t— t)= i/ £l-q—'fexp [—iq,,(t - t')] X

v | 734(0,0) | 0) |2 | {v|74(0,0)]0) ]
;{cxf’[“"’ ]H AT )0 +ep [P, (r =) €(Pﬂ+qo-10}

If one makes the substitution P, — —P, in the second term, the exponential terms

are factorized

G(r,t)=1 / %grfexp [—igo(t)] d_exp [+iP, - q x
{I(VIT??(O,O)lO) I, [vi7x(0,0)]0) I2}

E(P)) =g~ 10 E(-P,)+ ¢ —1i0
From this expression after comparison with the definition of the Fourier transform of
the Green function

4
6ir,ty =i [ b eplita - a)] Ala. a0, (A15)

one obtains

A(q,g.) Z(27r (P, - q) x

{I( |Tn(0,0)|0) 2 _HVITH(O’OHO) |2}
+qo + gu("'Pu) -0 Qo — gy(Py) +10

(A.16)

Arguing that the poles of the propagator Eq.A.17 give the energies of the
single particle states (i.e. those states, whose energy is entirely determined by the
total momentum €,(P,) = £(P,)) one obtains that close to the poles

| €01 7i(0,0) [ 7(a)) > (0] 74(0,0)] 7:(q))
Aag)~ qolirf-() 0 qa—8+(q)-:i0

(A.17)

where | 74(q)) stand for the single particle states and €+(q) for their dispersion

relations.
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One can argue[39] that the {0 term in the propagator of the quasiparticles
(synonymous with single particle states) comes from a damping term in the respec-
tive Lagrangi=::, added to ensure the convergence of the path integral from where
the Green’s functions are derived by functional differentiations. However the added
damping term may not observe the symmetry of the Lagrangian, thus raising the

question of its rearrangement[23] in the limit £ — 0.

Assuming that the damping is caused by the added ie!(z)739(z) term in the
fermion Lagrangian one can write in the Fourier space the Ward-Takahashi identity

linking the order parameter to the boson propagator

 lim —ie { LOL7H©,0) |7 (0) (0] 7a(0,0) | 7,(0))
“ﬂ%‘“{ Emy40 B awwj; } (A18)

and see that the pole contribution to the boson propagator may ensure the non-zero

value of the order parameter only if

£+(p) = 0, when |[p|—0. (A.19)

Then

v =|(0] 73(0,0) | 7-(0)) [* ~ | (0] 74(0,0) | 74(0)) |* - (A.20)

If one considers a small isospin violating boson density coupling to an external field
h (in energy units), i.e. hyt(z)m39(z), then its effect will be to shift the poles of
A.17 at zero momenta up and below the ground state energy. Arguing that the mode
with energy less than the ground state energy would be unobservable (in a properly
normalized vacuum) one obtains that one of the normalization cocfficients in A.17
must be identically zero. Assuming without loss of generality that it is the first
coefficient that is non zero one obtains that the boson propagator is

Alqg) = LOLTHO.0) | m-(@) P

% —€-(q) -0

with the dispersion relation of a gapless mode Eq.A.19.

+ continuum (A.2])
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Thus we have proved that to satisfy the Ward-Takahashi identities in the case

of spontancously broken (global) symmetry one needs to assume the existence of a

gapless boson (Goldstone theorem).
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Appendix B

Particle-hole Caleulation of the Isobaric Analog

Resonance

Construct the proton (particle) - neutron (hole) wave function coupled to zero mo-

mentum

Yilrp = Ta) = (=11 [Y;,(05, 0a)Y;i (65, 0p)]g Rsi(rp) Rji(ra), (B.1)

where

[Y.‘ii (0'_" ‘pﬁ)y'i (01" (pP)]g = Z C(jia jh 0’ m,—m, 0)),1':'(0;” (pp)yj:m (0,, ) (pii)
(B.2)
For a contact interaction

Y76, 9)Y;,™(0, ) =

L
5 [+ DEi+ ) )

( J47r(2)L(-il) )] (Jis Jis Lym, —=m, 0)C(ji, 5i, L; 0,0,0)Y(0, )
L

Substituting in B.2 and summing over m picks up the L=0 contribution

25+ 1 .o
5 On oYl ol = ZE (55, 0:0,0,00%, (B3)
where
.. (-1)%

C(],‘,],‘,O;0,0,0) = \/2-7-—_*_—1- (B’l)

Therefore

25 +1 ]

ity ~ 1a) = | S R ) Ry () VY (13.5)
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and the matrix element is

G701 V150 = 2505 +103ei + 1), (B.6)

where F, stands for

F, =V, /0 drr®RY(r)R3(r). (B.7)
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Appendix C

Calculation of the Symmetry Energy Constant aj

Carrying out the integration in the domain where the argument of the #-functions is

positive yields (the index HF in Iy is omitted )

dp 1 dmp,
I= 2/(27)—3 [O(-€:+(p)) - O(=¢-(p))] = @3 [Pt -], (C.1)
where
L
YN K
Py = [2m(€P * *2—)] (C.2)
Therefore the order param.!. - - the HF-approximation is self-consistently deter-

mined as a function .+ ri« -..upiing constant A and the nuclear density n from the

equation
3= e - 3], ()
which was obtained from C.1 using C.2 and
n= sog(2mer)} (C4)

Expressing the nuclear density n through the densitics of protons and neutrons n =

n4 + n_ and using that each density is determined from

d*p e
ny=2 [ aao(-es(p)) (C.5)
one obtains
A M, .
dep

73



Further, it is convenient to redefine the order parameter I as a dimensionless param-
eter A denoting the relative isospin polarisation

Azt T+ (C.7)
ny +ny n

Then by combining C.3 and C.6 one obtains an equation which relates the relative
isospin polarisation to the nuclear density and coupling constant.

DY | 2 2

2—e,-=z[(1+A)3 —(l—A)a]. (C.8)

This equation is an analog of the well known Stoner equation in the theory of ferro-
magnetism. The only difference is the coefficient 2 which arises from the additional

isospin degree of frecdom of nuclear matter.

For fixed coupling constant A the nonzero isospin polarization occurs at nuclear

densities
4e F

>2— .
n_23/\ (C.9)

Considering the actual value of nuclear relative isospin polarisation A = 0.2,

one obtains that the actual nuclear density is just a few percent above the critical

value
4¢ P
Ne = 2—, C.10
Therefore one can take the critical nuclear density n, as representitative of the actual

nuclear density n. This allows us to express the coupling constant A through the

critical nuclear density
4¢ F

A=22 (C.11)
and by substitution in
4052 = (= ) = My = ) - (c1)
to obtain the value of the symmetry energy coefficient a;
0 = gep. (C.13)
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