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Abstract

Stochastic computing (SC) is an alternative computing paradigm originally proposed to

reduce the size of digital arithmetic circuits. In SC, a number is encoded and represented by

a stream of random bits or stochastic sequence (e.g., a Bernoulli sequence). Computations

can be performed by bit-wise operations on the bit streams. Due to the long sequences

required for accurate computation, however, the long latency and low energy efficiency

present significant challenges for SC.

In this work, quasirandom numbers are used to generate the sequences for energy-

efficient implementation of SC circuits. Specifically, the quasirandom numbers that lead

to the Sobol sequence are introduced for the first time for use in SC. Compared to the

use of pseudorandom numbers generated by a linear-feedback shift register (LFSR), using

Sobol sequences improves the computation accuracy of a stochastic circuit with a reduced

sequence length. A hardware Sobol sequence generator is proposed; its parallelization

is implemented with a few extra XOR gates by exploiting the inherent parallelism of the

Sobol sequence generation algorithm. In terms of energy consumption, throughput per area

and computation time, the circuits that use parallel Sobol sequence generators outperform

conventional SC circuits using LFSRs.

To further improve the energy efficiency, dynamic stochastic computing (DSC) is

proposed. In DSC, a digital signal is encoded by a stochastic sequence with consistently

varying probabilities. This sequence is referred to as a dynamic stochastic sequence

(DSS). DSC is then used in digital signal processing (DSP), hardware ordinary differential
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equation (ODE) and partial differential equation (PDE) solvers and stochastic

computing-based gradient descent circuits (SC-GDCs).

In these applications, each bit in the DSS is used to encode one sample from a signal

or function. For DSP, the definition of a DSS is provided; the generation and the

reconstruction of a DSS are explicitly discussed and analyzed to obtain the optimal signal

generation and reconstruction parameters. Experimental results show that an

oversampling is required for DSP applications as in a Δ − Σ modulator to produce

relatively high-quality results. Different DSC circuits are then devised to implement

frequency mixing, function estimation, an infinite impulse response (IIR) filter and

numerical integration. The simulation results show that up to 60% time and energy

savings are achieved using DSC compared to a fixed-point binary implementation with a

similar accuracy for function estimation when processing the same oversampled signals.

However, a fixed-width binary circuit still has a higher energy efficiency and speed when

processing signals sampled at the Nyquist rate compared to a DSC-based frequency mixer

using oversampled signals at a similar accuracy. Using Sobol sequences to generate a DSS

encoding a continuous signal improves the accuracy of the computed result compared to

the use of conventional LFSR-generated sequences.

In the proposed stochastic ODE/PDE solvers using DSS’s, we showed that a stochastic

integrator produces an unbiased estimate of the Euler solution. Different stochastic ODE

solvers are designed for a nonhomogeneous ODE, a set of ODEs and a second-order

ODE. Moreover, an array of stochastic Laplacian circuits is proposed to solve a

larger-scale problem, i.e., a steady-state heat equation. Each stochastic Laplacian circuit is

used to produce the numerical solution for one discretized point in a squared area, as

described by one differential equation in the heat equation. Additionally, three error

reduction schemes are considered to reduce the variation in the computed result, including

the use of Sobol sequences. The simulation results show that these designs achieve a
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higher energy and hardware efficiency than their fixed-point binary counterparts with a

limited loss of accuracy.

In the SC-GDC, the DSS is used to encode the gradient information of a cost function

in a machine learning model. A gradient descent algorithm is then performed by using

stochastic integrators to accumulate the gradients. Optimal weights or parameters are then

obtained for a particular machine learning model. An array of SC-GDCs is used to update

the weights for an adaptive filter, softmax regression and to train a fully connected neural

network. The gradient information is encoded by the DSS’s, which are then accumulated

and converted to a fixed-point number by a stochastic integrator. The SC-GDC achieves

a higher or similar accuracy and a significant improvement in hardware efficiency over a

conventional SC design and a 16-bit fixed-point implementation.
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Preface

This dissertation presents original work in the field of stochastic computing (SC) by Siting

Liu.

In Chapter 3, a parallel Sobol sequence generator is designed and applied to stochastic

circuits. I developed all of the VHSIC Hardware Description Language (VHDL) codes for

the generator and the parallel stochastic circuits working with the parallel generator. To

simulate the circuit functions, I also developed MATLAB codes that implement the exact

behaviors of the circuits. The accuracies of the results are obtained by the MATLAB codes

and the hardware measurements are obtained from the synthesized results of the VHDL

codes. This work appears in IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, 26 (7): 1326-1339, July 2018, titled “Toward energy-efficient stochastic circuits

using parallel Sobol sequences,” by S. Liu and J. Han. Dr. Han provided the original idea

of the usage of low-discrepancy sequences in SC and revised the manuscript.

I proposed a new type of stochastic sequence, the dynamic stochastic sequence (DSS),

which can encode a consistently changing signal. This work is introduced in Chapter 4.

I developed the MATLAB codes for simulating the use of DSS in several digital signal

processing applications and numerically analyzed the optimal parameters for achieving a

high calculation accuracy. This work has been drafted as S. Liu and J. Han, “Dynamic

Stochastic Computing for Digital Signal Processing Applications.” Dr. Han revised the

manuscript and provided suggestions to improve the experiments.

Original work on a hardware ordinary differential equation (ODE)/partial differential

equation (PDE) solver is presented in Chapter 5. I developed all the VHDL codes for the
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proposed ODE solvers, simulated the circuits using MATLAB codes and synthesized the

circuits using Synopsis Design Compiler. Part of this work is published as S. Liu and

J. Han, “Hardware ODE solvers using stochastic circuits,” in the proceedings of 2017 54th

ACM/EDAC/IEEE Design Automation Conference (DAC). Dr. Han revised the manuscript

and provided suggestions to improve the designs.

Chapter 6 introduces original work on a stochastic computing-based gradient descent

circuit (SC-GDC). It performs the gradient descent algorithm and can be used for the

efficient training of learning machines. It is published in IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 37(11): 2530-2541, Nov.

2018, as S. Liu, H. Jiang, L. Liu and J. Han, “Gradient Descent Using Stochastic Circuits

for Efficient Training of Learning Machines.” I developed the SC-GDC, simulated it in

several training algorithms, synthesized it and compared the performance to the other SC

designs as well as the fixed-point implementations. Dr. Jiang provided the VHDL code for

the adaptive filter circuits using conventional SC and helped develop the signed stochastic

number generator. Dr. Duncan Elliott suggested to use saturating counters for both the

hardware and software simulations in the thesis. Dr. Han and Dr. L. Liu contributed in the

discussions and provided suggestions for improving the manuscript. Dr. Han provided

suggestions to improve the design and revised the manuscript.
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Chapter 1

Introduction

1.1 Motivation

Moore’s Law has successfully predicted the down scaling of transistor sizes for the past

five decades, and now billions of transistors are integrated on a single chip within an area

of a few hundreds of square millimeters. The scaling of transistors results in a lower power

consumption with a higher performance or switching speed [5]. However, as the pursuit of

Moore’s Law continues, a variety of challenges emerge, such as reliability and variability

issues and dark silicon. For example, the reduced critical charge, depending on process

changes that can help or worsen the problem, makes a chip more vulnerable to cosmic

radiation and subject to bit flips or soft errors [6]. For nanoscale technologies, the threshold

and supply voltages do not scale down further, so the power density, which is proportional

to the square of the supply voltage and inversely proportional to the chip area, increases as

more transistors are integrated into one unit area. As a result, not all the transistors can be

simultaneously powered at full performance for a given level of the thermal design power,

or else more heat will be generated than that can be dissipated safely.

The reliability, variability and “dark silicon” issues can interact with each other, leading

to an increased uncertainty for the operation of transistors and circuits [7,8]. These present

a great challenge to design a reliable and energy-efficient circuit while maintaining a high

performance. A variety of techniques have been proposed to deal with these challenges,

including the development of new device structures [9, 10], near-threshold computing [11]

and various power management and protection strategies [7, 12–14]. However, none of

the above methodologies is a panacea to the scaling issues. For example, near-threshold
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computing provides high performance with reduced energy consumption and works well

for applications with a high thread-level parallelism. However, it is highly sensitive to

process variations and power supply fluctuations [12]. Power management and protection

strategies have proved to be effective for certain technology nodes, which is not necessarily

an indication of continued effectiveness with further scaling.

An alternative approach is to adopt different computing paradigms [15], such as

approximate computing with approximate arithmetic circuits [16–18] and stochastic

computing [19, 20]. In these computing paradigms, accuracy can be traded for speed,

energy efficiency and error tolerance. So they are mostly used in applications where an

exact answer is not required, such as image processing and data mining [15]. At a lower

hardware cost, there is an increasing interest in building stochastic circuits [21–28] for

neuromorphic computing [29] because stochastic circuits show great advantages over

conventional computing paradigms for brain-inspired computation-intensive tasks.

Stochastic circuits have also been proposed for applications in deep neural networks and

convolutional neural networks for lower hardware and power consumption [24–26, 30].

In this thesis, stochastic computing (SC) is studied for its advantages in (1) relatively

low hardware cost compared to conventional arithmetic circuits, (2) inherent resilience to

soft errors and computation noise, and (3) biological plausibility.

• In SC, some complex computations can be implemented by simple logic circuits.

For example, a multiplexing circuit is sufficient for computing a Bernstein

polynomial [1], while expensive multipliers and adders are required for

conventional binary circuits. A Bernstein polynomial circuit can approximate an

arbitrary continuous function with values in the interval [0,1]. The hardware cost of

the SC circuits and the fixed-point 8-bit binary circuits for computing Bernstein

polynomials are compared in Fig. 1.1 by transistor counts. As the sequence

generation overhead can be mitigated by different sharing schemes [28, 31, 32], only

the computational units are considered for SC circuits to compare the computing

density without considering the overhead of stochastic number generators (SNGs)

and probability estimators (PEs), which are components for converting a number

between stochastic and binary representations. As shown in Fig. 1.1, a stochastic

circuit can achieve one hundredth of the hardware cost of its fixed-point binary
2



counterpart. When the conversion components are considered, SC circuits would

still have a smaller area even if those components take 80% of the area of an SC

system [19]. Therefore, lower power consumption and higher clock frequencies can

be expected for SC.
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Figure 1.1. Transistor counts of stochastic circuits without considering SNGs vs. 8-bit
binary circuits computing Bernstein polynomials with different orders. The binary circuits
are simplified to use the least number of multipliers.

• The robustness of SC is reported in [1] and [33]. As shown in Fig. 1.2, when a bit-flip

occurs in a circuit, a stochastic circuit can still produce close-enough results whereas

the effects of an error in the conventional binary circuit are related to the position of

the bit being affected. In other words, SC can tolerate more soft errors in a circuit

than conventional arithmetic circuits. However, if a permanent error occurs (e.g.,

stuck-at errors), it cannot be recovered using either SC or conventional methods.

• Additionally, SC encodes a number in a similar manner to the rate coding in the

brain [34]. The similarities between SC and neuron models are summarized in

Table 1.1. In the brain, information is carried by neuronal spike trains. In rate

coding theory, information is encoded by the number of spikes per unit time, as

shown in (b) in the table; whereas in SC, the frequency of ‘1’s is used to encode a

number, as shown in (a). The average-over-pool encoding system in the neuron

takes multiple spike trains and information is believed to be encoded by the average

spikes per unit time [34], as shown in (d) in the table. In this sense, it can be

considered to be a parallel SC system, such as a parallel stochastic multiplier shown
3
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Figure 1.2. Fault tolerance against bit-flips: (a) stochastic circuits vs. (b) conventional
binary circuits. Both circuits compute x1x2s + x3(1− s). The numbers in the dotted
rectangles are the faulty results (adapted from [1]). The error can be larger in the result
produced by the binary circuit than the one produced by the SC circuit, especially when
there is a bit-flip error on its higher bit. Note that inaccuracy can be resulted from limited
sequence length in SC circuits, and it is not considered here.

in (c) in the table. Moreover, one of the basic stochastic elements, the stochastic

integrator ((e) in the table), loosely resembles the integrate-and-fire neuron model in

(f) [34]. The stochastic integrator “fires” randomly according to the value stored in

the counter; whereas the neuron fires when the accumulated membrane potential

reaches a threshold. The stochastic integrator will be discussed in detail in Chapters

4, 5 and 6. The human brain is capable of handling complex tasks with spike trains.

Similarly, a neuromorphic computer using SC can potentially be established with

low energy consumption and high performance. Finally, insights on how the brain

works could possibly be obtained through SC.

However, conventional SC may not be a good candidate to alleviate the dark silicon

problem. Firstly, to achieve a high accuracy, a long sequence is often required in

conventional SC to encode a number. To fully process the long sequence, it takes a
4



Table 1.1. Similarities between the stochastic computing and neuron models.

Stochastic computing Neuron models [34]

...010100101010110100...

p =
L
N

L

N: number of ‘1’s in the sequence

p: encoded value A = Δt
n (t; t+Δt)

Δt

n(·): number of spikes in the time window

A: encoded value

(a) Stochastic encoding. (b) Rate coding.

j=1

2

3

M

 

...01010...

...11000...

...00010...

...01000...

p = M
N

L

Rate = average over pool of equivalent neurons
(several neuron, single runs)

j=1
2
3

 

A = 1
Δt M

n(t; t+Δt)M
Δt

(c) Parallel stochastic multipliers. (d) Average-over-pool.

                 2n-state Counter    
INC

DEC

RNG

>
s

A

B

comparator

C

RNi
C (t+1) = C (t) + A - B 

if C > RNi , s = 1 
else           , s = 0{

Synapse

Dentrites

Axon

Soma
(cell)

Membrane

VM (t+1) = VM (t) + ∑ ϵij -∑ ι ij 

if VM > Vth , reset and fire

else            , do not fire
{

 ϵij: Excitatory inputs of the neuron   

ι ij: Inhibitory inputs of the neuron   

VM: Membrane potential

(e) A stochastic integrator [4]. (f) A spiking neuron model.

relatively large amount of time and hence energy compared to conventional fixed-point

arithmetic circuits [1]. Another reason is that the frequent switchings in a stochastic

sequence may make the energy efficiency even lower due to a relatively high activity

factor and hence a high power consumption. Also, the costly SNG and PE, which are used

to convert a value between a fixed-point number and the corresponding stochastic

sequence, consume a major portion of the hardware resources in an SC system [19].
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1.2 Objective

This work is aimed at addressing the main disadvantages of SC, namely, the long latency

and high energy consumption issues. Specifically, the following topics are covered.

• Design of parallel Sobol sequence generators and parallel stochastic circuits for

energy-efficient SC. To reduce the sequence length, the Sobol sequence is proposed

to be used in SC with a high accuracy. To further improve the performance and

energy efficiency, parallel Sobol sequence generators and stochastic circuits are

developed by exploiting the inherent parallelism in the Sobol sequence generation

algorithm.

• Proposal to use dynamic stochastic computing (DSC) for high-performance

and energy-efficient SC-based digital signal processing (DSP). While it could be

inefficient to use a long sequence to encode one number in conventional SC, we

note that a stochastic sequence can carry the information of a continuous signal with

each bit encoding a sample from the signal. This new type of sequence is referred to

as a dynamic stochastic sequence (DSS). In this way, the sequence length encoding

each number is 1, thus it significantly improves the performance and energy

efficiency of a stochastic circuit. To recover the information from a DSS, two signal

reconstruction units are developed.

• Hardware ordinary differential equation (ODE) solvers using the proposed

DSC. To implement a high-performance and energy-efficient SC-based ODE solver,

the stochastic integrators are used to implement the accumulation step in the Euler

method. With the derivative function implemented by using the DSS, each estimate

is made by processing one bit in the sequence. Laplace’s partial differential

equation (PDE) is then solved by an array of stochastic Laplacian circuits to show

its scalability.

• Design of a stochastic computing-based gradient descent circuit (SC-GDC) for

the efficient training of learning machines. As machine learning models are

becoming more complex, the cost to train the models is growing dramatically. To

implement a gradient descent (GD) training algorithm, an SC-GDC is developed to
6



accumulate the gradient by using the DSS’s, which encodes the gradient

information. An SC-GDC array is then composed to implement the

least-mean-square algorithm of an adaptive filter, a softmax regression and to train a

fully connected neural network.

1.3 Dissertation outline

The rest of this thesis is organized as follows. Chapter 2 reviews the basics and current

developments of SC. Our work is presented in the remaining chapters. In Chapter 3, the

Sobol sequence is introduced and used to generate stochastic sequences; new parallel

stochastic circuit designs for using parallel Sobol sequence generators are also proposed.

In Chapter 4, the concepts of DSS and DSC are introduced and a DSS is used to encode a

digital signal and several DSP applications are implemented using DSC circuits. In

Chapter 5, a numerical solution is obtained by using a stochastic integrator to solve an

ODE/PDE. DSS is used as the inputs of the stochastic integrators for the ODE/PDE

solvers. This design achieves higher energy efficiency and performance over its binary

counterpart with a limited loss of accuracy. When the DSS’s are used to encode the

gradient information, the stochastic integrators are adapted to implement the GD

algorithm in Chapter 6 and they are used to train learning machines with a high efficiency.

Chapter 7 concludes this thesis and discusses promising directions for future work.
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Chapter 2

Stochastic Computing Systems

Originally proposed in the 1960s [4, 35], stochastic computing (SC) is intended to be a

low-cost alternative to conventional computing. In SC, numbers are encoded by random

binary bit streams, which are referred to as stochastic sequences. The probability of each

bit being ‘1’ is referred to as the probability of a stochastic sequence. Computation is

often performed by using simple logic gates. As shown in Fig. 2.1, a typical SC system

consists of three major parts: the stochastic number generators (SNGs) that convert binary

numbers into stochastic sequences; the stochastic circuits that carry out the stochastic

computation; and the probability estimators (PEs) that convert stochastic sequences back

to binary numbers.

SNG array…
Binary 
inputs …

Stochastic 
sequences

Stochastic 
computing 

circuits
…

Stochastic 
sequences

PE …
Binary 
outputs

Figure 2.1. An SC system.

2.1 Stochastic number representations

In order to represent a real number using the probability of a stochastic sequence, different

mapping schemes are used to encode numbers within certain ranges [4]. For the different

mapping schemes, the computational elements are different.
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2.1.1 Linear mapping

Assume that x is the number to be encoded and that p is the probability of a stochastic

sequence. The simplest strategy is to let x = p, i.e., the probability of the stochastic

sequence is used to represent a number. This is referred to as the unipolar representation.

As the value of the probability lies within [0,1], only real numbers within [0,1] can be

represented by using the unipolar representation. In order to expand the range to include

negative values, the bipolar representation takes a linear transformation of the unipolar

representation by letting x = (p−0.5)×2, so that the representation range is [−1,1].

2.1.2 Nonlinear mapping

A nonlinear mapping can expand the range of the stochastic representation to infinity. For

example, a single-line extended unipolar representation with an infinite range can

represent a number in [0,+∞). This can be accomplished by a nonlinear mapping of

x = p/(1− p). So a stochastic sequence with a probability of ‘0’ represents ‘0’, whereas a

stochastic sequence with a probability of ‘1’ represents +∞. Unbounded quantities taking

both positive and negative values can be represented by a single-line extended bipolar

representation using the mapping strategy of x = (2p−1)/[2p(1− p)] [4].

However, the nonlinear mapping is rarely used due to its complex basic computational

elements and the large variations when encoding large values [4]. A double-line

representation or extended stochastic logic (ESL) [36] has been proposed to mitigate these

problems. The ESL uses two stochastic sequences, in which the ratio of the two bipolar

numbers encoded by these stochastic sequences is used to represent an unbounded

quantity in (−∞,+∞). Since the variation of a stochastic sequence is the largest when its

probability is 0.5 [37], a bipolar number near zero (xmax = 2pmax−1 = 0) suffers the most

from random fluctuations. As a result, the accuracy loss is significant when the

“denominator sequence” of the ESL is near zero.

Recently, a sign-magnitude representation was proposed to expand the representation

range of the unipolar range by adding an extra sign bit to a stochastic sequence [38]. The

same range is achieved as the bipolar representation and the computed results are more

accurate when using the sign-magnitude representation. However, it is still considered a

9



linear mapping since it is a modified unipolar representation. A few examples of the above-

mentioned representations are shown in Table 2.1.

Table 2.1. Examples of different SC representations

Seq. 1 Seq. 2 Sign Value encoded

Unipolar 10101 – – 0.6
Bipolar 10001 – – 2×0.4−1 =−0.2

Sing.-line ext. uni. 10101 – – 0.6/(1−0.6) = 1.5
Sing.-line ext. bi. 01000 – – (2×0.2−1)/[2× (1−0.2)×0.2] =−15/8

ESL 10101 01001 – (2×0.6−1)/(2×0.4−1) =−1
Sign-magnitude 10101 – 1 −1×0.6 =−0.6

For the rest of this thesis, the unipolar representation by a linear mapping is adopted for

its simple circuit implementation and high accuracy, unless stated otherwise.

2.2 Stochastic sequence generation

An SNG shown in Fig. 2.2 is used to generate a stochastic sequence. A random number

generator (RNG) is conventionally implemented by a linear-feedback shift register

(LFSR). A maximum-length n-bit LFSR traverses all the integer numbers from 1 to 2n−1

within a period of 2n−1, i.e., 2n−1 clock cycles. The numbers generated by an LFSR are

called pseudorandom numbers because they are deterministic rather than truly random

once the seed and the structure of the LFSR are determined. However, due to its statistical

characteristics, a pseudorandom number can be approximately considered as a uniformly

distributed random number. If the n-bit fractional number to be encoded, x, is larger than

the n-bit “uniformly” distributed pseudorandom number, a ‘1’ is generated, otherwise, ‘0’

is the output. Then, the probability of generating a ‘1’ is x. The detailed description and

mathematical model for the LFSR-based SNG is available in [39].

Random number 
generator (RNG)

x

Stochastic sequence 
encoding x

0101100

Comparator
B

A
A<B

N

N

CLK

Figure 2.2. An SNG.
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2.3 Stochastic circuits

Stochastic circuits are the core part of an SC system. There are two major categories of

stochastic circuits, combinational and sequential.

2.3.1 Combinational circuits

The combinational circuits in an SC system are typically smaller than their fixed-point

binary counterparts. For example, in Fig. 2.3(a) and (b), a single AND or an XNOR gate

performs unipolar or bipolar multiplication, respectively. In Fig. 2.3(c), a stochastic scaled

adder is implemented by a multiplexer.

MUX

01100110…
p1=0.5

10101010… 
p2=0.5

00100010…
p=p1p2=0.25

01100101…
p1=0.5

11101110… 
p2=0.75

sel

psel=0.5
00110110… 

0

1 p=(1-psel)p1+pselp2=0.625

01100111… (a) A unipolar stochastic multiplier

(c) A stochastic scaled adder10010000…
00101000… 01000111… 

×2-1= -0.5 4
16p1=

×2-1= -0.5 4
16p2=

×2-1= 0.25 10
16p1p2=

(b) A bipolar stochastic multiplier

Figure 2.3. Three stochastic combinational arithmetic circuits.

For the stochastic multiplier in Fig. 2.3(a), if and only if both the random bits in the

stochastic sequences encoding p1 and p2 are ‘1’s, the AND gate produces a ‘1’. So the

probability that a ‘1’ is observed from the output is p1 p2 if the stochastic sequences

encoding p1 and p2 are independently generated. The function of the bipolar multiplier

can be obtained similarly. By controlling the probability of the selection signal of the

multiplexer, psel , in Fig. 2.3(c), the stochastic sequence encoding p2 has a chance of psel

being selected, while the top one with a chance 1− psel , so that the probability that a ‘1’ is

observed from the output is obtained by

p(output = 1) = p(output = 1|sel = 0)+ p(output = 1|sel = 1)

= p1(1− psel)+ p2 psel.
(2.1)
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While it is inconvenient to design single combinational stochastic circuit case by case,

a generic method is proposed for synthesizing stochastic circuits that compute Bernstein

polynomials by using the multiplexing circuit shown in Fig. 2.4 [1].

MUX

+…

SNG
Array

x
x

x
z0
z1

zN

y

N independent stochastic 
sequences that each encodes x

…
N+1 stochastic sequences 

encoding coefficients

Binary 
adder

Figure 2.4. A multiplexing circuit that implements Bernstein polynomials [1].

The binary adder is used to count how many ‘1’s are in the input stochastic sequences

encoding x. The sequences encoding x are independently generated, so the output of the

adder follows a binomial distribution, i.e., p(output = k) =
(N

k

)
xk(1 − x)N−k,

(k = 0,1,2, . . . ,N). Therefore, the probability of ‘1’ in the output sequence y is given by

p(y = 1) = p(y = 1|sel = 0)+ p(y = 1|sel = 1)+ · · ·+ p(y = 1|sel = N)

= z0

(
N
0

)
x0(1− x)N + · · ·+ zk

(
N
k

)
xk(1− x)N−k + · · ·+ zN

(
N
N

)
xN(1− x)0,

(2.2)

which is a Bernstein polynomial.

Another synthesizing method for arbitrary multilinear polynomials can be achieved by

using the Walsh-Hadamard transform [40]. A multilinear polynomial is linear on all of its

variables. It can be a sum of products of multiple variables that all appear with a power of 1.

It is shown that the Boolean function of a stochastic circuit can be obtained by performing

the Walsh-Hadamard transformation on the coefficients of the multilinear function to be

computed. It is also shown that the stochastic combinational circuits can be considered to

be Monte Carlo (MC) problems [41].
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2.3.2 Sequential circuits

There are generally two types of stochastic sequential circuits, finite state machine (FSM)-

based and stochastic integrator-based.

For the FSM-based circuits, a state transition graph is shown in Fig. 2.5. The input

for the circuit is a stochastic sequence with probability x. The FSM can be considered

as a Markov chain if the input sequence is not autocorrelated, i.e., each bit is generated

independently. Let the probability of transitioning from state Si to state S j be pi j. Then,

a square transition matrix (TM) can be used to describe the Markov chain with pi j as the

element in the ith column and the jth row.

S0 S1 Sk-1 Sk Sk 1 SN 2 SN 1…………

X=0X=0X=0X=0X=0X=0

X=1 X=1 X=1 X=1 X=1 X=1 X=1

X=0

Figure 2.5. State transition graph for an FSM-based stochastic circuit.

As per Fig. 2.5, the TM of an FSM-based circuit is given by

PTM =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1− x x 0 0 . . . 0
1− x 0 x 0 . . . 0

0 1− x 0 x . . . 0
... . . . . . . . . . . . . ...
0 0 0 1− x 0 x
0 0 . . . 0 1− x x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.3)

According to (2.3), the ith step probability distribution of the states, Pi, is given by

Pi = PTMPi−1, (2.4)

where Pi is a column vector where each element Pi,k is the probability that the FSM is in

state k and ∑N−1
k=0 Pi,k = 1. The stationary state of the FSM-based stochastic circuit can be

obtained by [42]

lim
i→∞

Pi = lim
i→∞

(PTMPi−1) . (2.5)

The solution of (2.5) is

Pk(x) =
( x

1−x)
k

∑N−1
j=0 (

x
1−x)

j
, (2.6)
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where Pk(x) stands for the probability of being in state Sk, given an input stochastic

sequence with probability of x. According to (2.6), by assigning different outputs (0 or 1)

to each state, linear gain, exponential, hyperbolic and absolute value functions can be

approximated by the FSM-based circuits. A general synthesis method is discussed in [43].

Although it can produce stochastic circuits with lower hardware cost compared to the

method in [1], it still requires long stochastic sequences to achieve a high accuracy.

In [4], stochastic integrator-based circuits are proposed to perform the integration of

two stochastic sequences by using an up/down counter, as shown in Fig. 2.6(a). The RNG

and comparator are used to generate the output sequence that encodes the number stored

in the counter. The stochastic integrators with feedback are called ADaptive DIgital

Elements (ADDIEs). In an ADDIE, when the counter in the stochastic integrator has an

equal probability for increment and decrement, the number stored in the counter reaches

an equilibrium state. When an equilibrium state is established, the value encoded in the

counter in Fig. 2.6(c) is A/B, and so this circuit implements a stochastic divider. Similarly,

the circuit in Fig. 2.6(d) computes B/(A + B). The circuit in Fig. 2.6(d) has a similar

behavior to the adaptation of human eyes when exposed to either dark or light

environments [4]. Unfortunately, both circuits based on ADDIE require a relatively long

“warm-up” phase before the counters reach their equilibrium states [44].

                 2n-state Counter    
INC

DEC

RNG

>
Seqout

A

B Seqout

(a) (b)

comparator

A

B

+

-

Countout
Countout

A

B

+

-

+

-

A

B

A/B

(c) (d)

B/(A+B)

Figure 2.6. Stochastic integrator and its applications: (a) a stochastic integrator; (b) the
symbol of a stochastic integrator; (c) an ADDIE-based stochastic divider; (d) an ADDIE-
based adaptive stochastic converter.
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2.4 Applications of stochastic computing

Most stochastic circuits have a disadvantage in accuracy due to their randomness, so they

are mainly used in inherently fault-tolerant applications such as low-density parity check

(LDPC) decoders [45–47], LU decomposition [48], control systems [49–51], signal

processing [52–58], image processing [59–62], machine learning

[22, 24–26, 28, 36, 50, 63–74] and invertible logic [75]. They are also used in reliability

evaluation and biological models [37, 76–79]. Recently, emerging devices such as

spin-based devices [80–85] and memristors [86, 87] have been used for SC, leveraging the

inherent randomness in the devices.

In the stochastic LDPC decoder design, the sum-product algorithm (SPA) can be

implemented by simple logic gates: the information is updated by using J-K flip-flops

(JKFFs) and the parity block is implemented by XOR gates, as shown in Fig. 2.7. The

function of a JKFF in the stochastic domain is obtained by using the TM discussed in the

previous section and it computes the update function C = AB/(AB+(1−A)(1−B)). The

XOR gate computes C = (1−A)B+(1−B)A.

A
J

K

QB C A

B

C

(a) (b)

Figure 2.7. Components of a stochastic LDPC decoder: (a) a JKFF for information-update;
(b) an XOR gate for parity-check.

When SC is used to implement a finite impulse response (FIR) or an infinite impulse

response (IIR) filter [55, 58, 88], stochastic circuits, including the stochastic multiplier and

scaled adder, are used to implement the multiply-accumulate (MAC) computation for the

filter. Different strategies are adopted to improve the accuracy or the energy efficiency of

the MAC operation. In [89], the transfer function of an ADDIE indicates that it is an IIR

without using stochastic multipliers or adders.
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In [60, 61], several specific image processing algorithms are realized by different

stochastic circuits. In [61], edge detection, a median filter, contrast stretching and image

segmentation are implemented by a multiplexer circuit, an FSM-based hyperbolic tangent

function, an FSM-based stochastic linear-gain function and a multiplexer tree,

respectively. The experimental results show that the stochastic implementations are

extremely tolerant to soft errors compared to conventional implementations. In [60], the

stochastic implementations are considered for real-time image processing applications and

an analog comparator is used to generate the stochastic sequence from a sampled signal.

An edge-detection circuit is considered as an example and progressive precision is applied

to produce acceptable results with a reduced sequence length.

Inspired by the neuronal coding scheme, SC has been used to implement neural

networks (NNs). All the computation required for an NN can be achieved in the stochastic

domain so that no conversion is required between stochastic sequences and binary

numbers, which could lead to hardware-efficient designs. The required stochastic

components for implementing an NN are summarized in [22]. In [25], approximate

parallel counter-based and OR gate-based inner product blocks are explored for

implementing deep convolutional neural networks. In [26], integral SC is used to deal

with numbers beyond [0,1] and the stochastic circuits using integral stochastic sequences

are proposed. In [24], several techniques are employed to dynamically obtain a trade-off

between accuracy and energy, including near-zero weight removal, using

accumulation-based activation functions and early decision termination.

2.5 Limitations of stochastic computing

In the conventional stochastic circuits, long stochastic sequences are required to achieve

high accuracy, which leads to a high latency. It is reported in multiple sources that at least

28-bit length sequences (or 28 clock cycles) are required to produce an acceptable quality

for use in machine learning [22, 25, 26, 66, 90] and sequence lengths of at least 27 are

required for image processing tasks [1, 60]. The high latency also leads to an inferior

energy efficiency when compared to their conventional binary counterparts. To improve

the accuracy, effort has been made to understand and reduce the impact of random
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fluctuations in SC. In [91–93], correlations, autocorrelations and their impacts on SC are

discussed by using probability transfer matrices. It has been found that, sometimes, the

correlations can be exploited to achieve better accuracy. The correlations have also been

used to build hardware-efficient dividers [94–96]. The error and variance propagation

through multiple stages of stochastic circuits are studied in [97] by using variance transfer

functions. In [98], a framework is developed for SC circuits to calculate the numerical

deviation of the computed value with a confidence level. However, most of them provide

only theoretical estimation of the error based on true random sequences, whereas in

reality, the stochastic sequences are typically generated by using pseudorandom

sequences. In [99], seed selection and sequence scrambling are discussed for LFSR-based

SNGs to improve the accuracy; however, a selected seed and a specific permutation of a

pseudorandom sequence only work for a single case. Besides, although the randomness in

a Bernoulli sequence minimizes signal correlation, it leads to a rather wide distribution of

the value encoded in the output stochastic sequence. A non-Bernoulli sequence is used to

reduce the randomness in SC by using a fixed number of ‘1’s for reliability evaluation

in [37].

Up counter

s

Deterministic “stochastic” 
sequence encoding s

1,1,1,...0,0,… 
Comparator

Y

X
X<Y

n-bit

n-bit

(a)

11110000…
p1=0.5

11000000… 
p2=0.25

11000000…

p=min{p1,p2}=0.25

(b)

Figure 2.8. One type of deterministic sequence: (a) an SNG; (b) an AND gate produces the
minimum number instead of the product when using two deterministic sequences.

Instead of using a true stochastic sequence, deterministic methods have been adopted

to reduce the random fluctuations. One approach is to use organized permutations of ‘0’s

and ‘1’s [69, 70, 100, 101]. The basic idea is to gather the ‘0’s (or ‘1’s) to the head (or tail)

of a stochastic sequence. These deterministic “stochastic” sequences can be generated by

replacing the RNG in the SNG with an up (or down, determined by the position of ‘0’s

and ‘1’s) counter as shown in Fig. 2.8. The sequences generated by this method are highly

correlated. It is evident in Fig. 2.8(b) that for two deterministic sequences passing the

stochastic multiplier, the output is the minimum of the two values encoded by the sequences
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instead of the product. Another approach is to use the Halton sequence as suggested in

[41]. However, a base-conversion circuit is inevitable for the Halton sequence generator,

which introduces a significant hardware overhead. Recent work also suggests using FSM-

based SNGs [102], time coding [62], Δ−Σ modulation [103] and Sobol-based deterministic

methods [104] after the proposal of using Sobol sequences [105] to generate the sequences.
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Chapter 3

Toward Energy-Efficient Stochastic

Circuits Using Parallel Sobol Sequences

Stochastic computing (SC) often requires long stochastic sequences and, thus, a long

latency to achieve accurate computation. The long latency leads to an inferior

performance and low energy efficiency compared to most conventional binary designs. In

this chapter, a type of low-discrepancy (LD) sequence, the Sobol sequence1, is considered

for use in SC. Compared to the use of pseudorandom sequences generated by

linear-feedback shift registers (LFSRs), the use of Sobol sequences improves the accuracy

of stochastic computation with a reduced sequence length. The inherent feature in Sobol

sequence generators enables the parallel implementation of random number generators

with an improved performance and hardware efficiency. In particular, the underlying

theory is formulated and circuit design is proposed for an arbitrary power of 2 degree of

parallelization. In addition, different strategies are implemented for parallelizing

combinational and sequential stochastic circuits. At a root-mean-squared error (RMSE) of

around 5× 10−3, the 8× parallel stochastic multiplier using Sobol sequences consume

approximately 1.5% of the energy per operation (EPO) of that using conventional

non-parallelized LFSR-generated pseudorandom numbers. For the stochastic divider, the

EPO is reduced by 99.3% at an RMSE of around 2× 10−2. Meanwhile, an average of 79

(up to 110) times improvements in throughput per area (TPA) and less than 1% runtime

are achieved at the aforementioned accuracy. A sorting network is implemented for a

1The Sobol sequence is used to refer to the sequence of quasirandom numbers that are generated by using
the method proposed by the Russian mathematician I. M. Sobol throughout this chapter. The stochastic
sequences, containing only ‘0’s and ‘1’s, generated using the Sobol sequences are referred to as the Sobol-
based stochastic sequences.

19



median filter (MF) as an application. For a similar image processing quality, a higher

energy efficiency is obtained for an 8× parallelized stochastic MF compared to its binary

counterpart at a low resolution (e.g., less than or equal to 7-bit resolution).

3.1 Introduction

Although an SC circuit can be simple, its performance is undermined by the required

sequence length [19]. Since only one bit is generated in each clock cycle, it takes L clock

cycles to fully generate and process a stochastic sequence with L bits. As a result, the

energy consumption increases proportionally with L and the throughput decreases in an

inversely proportional manner with L; therefore, a large L leads to a low energy efficiency.

The accuracy of SC can be improved by increasing the sequence length, but the stochastic

error only decreases with 1/
√

L [37].

In [41], the Halton sequence is introduced for use in SC. This LD sequence requires a

shorter length for achieving the same accuracy compared to LFSR-generated

pseudorandom sequences. When several independent sequences are required, however,

the generation of Halton sequences relies on the use of counters with different radices, and

thus base conversion becomes necessary for a binary circuit. The base conversion imposes

additional hardware overhead on the stochastic circuit. In [105], the Sobol sequence is

introduced to replace LFSR-generated sequences to improve the efficiency of an SC

circuit. It is shown that in most cases, the use of Sobol sequences leads to a better energy

efficiency with a similar accuracy compared to the use of LFSR-generated sequences.

However, the improvement is not as significant when compared to the use of Halton

sequences.

In this chapter, the inherent feature of Sobol sequence generation is exploited for an

efficient parallel implementation of the generator. In the proposed 2m× (m = 0,1,2, . . .)

parallel generator, only a few extra XOR gates are required to implement the parallelization.

Both parallel combinational and sequential circuits are then designed for SC. With 8×
parallelization, a circuit using Sobol sequences consumes approximately 1% of the energy

consumption of an LFSR-based circuit with more than 49 times of the TPA to achieve

a similar accuracy. A stochastic MF is implemented for removing noise in images. At a
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similar quality, the parallel stochastic Sobol design achieves a higher energy efficiency than

its binary counterpart at a relatively low resolution.

3.2 Review

3.2.1 Low-discrepancy sequences

LD sequences were first proposed to accelerate the convergence process of Monte Carlo

(MC) integration [106, 107], which is referred to as quasi-MC. MC integration requires

S-dimensional (or S-independent) random sequences to estimate an S-dimensional

numerical integration. Using random sequences with a sufficient length, MC integration

can provide an estimate of the result for a numerical integration. It has been shown that a

lower discrepancy in the random samples leads to a smaller error in MC integration [106].

An SC circuit can be considered as an MC problem. It is shown in [41] that a stochastic

circuit using Halton sequences as LD sequences produces a smaller error than a circuit

using pseudorandom sequences.

Discrepancy is a measure indicating how evenly a random sequence is distributed in

the sample space. For a random sequence P, it can be quantitatively measured by the star

discrepancy D∗(P). For a random sequence with L random points, it is given by [41, 106]

D∗(P) = max
B

∣∣∣∣A(B;P)
L

−λ (B)
∣∣∣∣, (3.1)

where B is any s-dimensional region in the form ∏s
i=1[0,ui) within an s-dimensional unit

cube ∏s
i=1[0,1]; A(B;P) is a function that counts the number of points satisfying P ∈ B,

and λ (B) is the Lebesgue measure of B: it is the length of B if s = 1 or is the area of B if

s = 2.

The D∗(P) is bounded by O(log(L)s−1/L) for an LD sequence. Thus, using a longer

sequence (with a larger L) and/or fewer independent sequences (with a smaller s) implies a

smaller error in an SC circuit. For a small s and a large L, the error in quasi-MC integration

asymptotically converges to O(1/L), whereas it is approximately proportional to 1/
√

L

for using pseudorandom sequences. Thus, the stochastic circuits using LD sequences can

produce more accurate results with shorter sequences.

Several methodologies have been developed to generate different types of LD

sequences, including Halton, Sobol and Faure sequences. Software-based generation
21



methods have been developed, but few have been implemented in hardware. Examples of

the aforementioned sequences are shown in Fig. 3.1.

0 0.5 1
(a)

0

0.2
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1

0 0.5 1
(b)

0

0.2
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0.6

0.8

1

0 0.5 1
(c)

0

0.2

0.4

0.6

0.8

1

Figure 3.1. Examples of 2-dimensional (a) Sobol sequence; (b) Halton sequence; and (c)
LFSR-based pseudorandom sequences. The LD sequences are more evenly distributed than
the pseudorandom sequences.

3.2.2 Sobol sequence generation

A direction vector array (DVA) {Vk} (k = 0,1, . . . ,N − 1) is a group of intermediate

variables; these variables can be generated by using primitive polynomials [108]. The

direction vectors (DVs) are pre-calculated and stored in the DVA in the hardware

implementation. Uncorrelated Sobol sequences are generated by using multiple DVAs

derived by different primitive polynomials. At least �log2 L� DVs are required for

generating a Sobol sequence of length L. An algorithm for generating Sobol sequence

with a specific DVA is elaborated in [108] and is briefly summarized in Fig. 3.2. In

Fig. 3.2, {Ri}, with i = 0,1,2 . . . ,L−1, is a Sobol sequence of length L, and “LSZ” stands

for “least significant zero”.

At each iteration of the loop, the ith quasirandom number, Ri, is XOR-ed with one of

the DVs, Vk, to produce Ri+1. The DV index k is determined by the position of the least

1: R0 = 0; � Initialization
2: for i = 0 to L−2 do

3: k =LSZ position of i; � Detection of LSZ
4: Ri+1 = Ri⊕Vk;
5: end for;
6: return {Rn}, n = 0,1, . . . ,L−1

Figure 3.2. Sobol sequence generation algorithm.
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Table 3.1. Truth table of a 4-to-2 priority encoder for LSZ detection

Inputs Outputs
D3 D2 D1 D0 Q1 Q0
X X X 0 0 0
X X 0 1 0 1
X 0 1 1 1 0
0 1 1 1 1 1

significant zero (LSZ) in the binary form of i. For example, if i = 11, i is first converted

to the binary representation (1011)2. Then, the LSZ of i is at bit 2, which implies that

k = 2. Accordingly, V2 in the DVA is XOR-ed with R11 to produce R12. The LSZ detection

is of complexity O(logN), where N is the bit width of a number, using shift-and-count in

a software implementation, whereas a priority encoder can detect the LSZ much faster in

hardware. The truth table of a 4-to-2 priority encoder for the LSZ detection is shown in

Table 3.1. Note that “X” stands for “don‘t care”.

For the algorithm in Fig. 3.2, a hardware Sobol sequence generator is proposed in [2],

as shown in Fig. 3.3. A counter counts i in the for-loop. The priority encoder is used to

detect the LSZ. The obtained index k is then passed to the component that stores the values

in DVA for retrieving Vk at each clock cycle. The XOR gates and D flip-flops (FFs) are used

to perform Ri+1 = Ri⊕Vk for each iteration of the for-loop. An N-bit generator can produce

non-repeated Sobol sequences with a length of L = 2N . Parallelization can be implemented

on the Sobol sequence generator in Fig. 3.3, however only a maximum degree of 4× is

achieved in [2].

3.3 Parallel Sobol sequence generator

A method to mitigate the long-latency problem is to parallelize the computation by

duplicating the stochastic number generators (SNGs) and stochastic circuits. However, the

energy efficiency may not be improved because the power consumption would be

increased such that the energy consumption would remain nearly the same. Additionally,

the hardware cost would also be increased. However, Sobol sequence generation is

inherently parallelizable so that better energy efficiency can indeed be obtained by

implementing a high degree of parallelism.
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Counter 
(starting 

from i=0)

Priority 
encoder

index
k

DVA

V3

V2

V1

V0

 

Ri

Vk Ri+1

D-FFs

LSZ detection and 
index generation

k Vk
0 10000000
1 11000000
2 11100000
3 11110000
4 11111000
5 11111100

… …

Example of a DVAWorking example of a Sobol sequence generator

The D-flip flops are reset for an extra clock cycle to compensate the 
clock cycle required to fetch the DV.

CLK i k Vk R i R i+1
reset 0 0 00000000 00000000 00000000

1 1 1 10000000 00000000 10000000
2 2 0 11000000 10000000 01000000
3 3 2 10000000 01000000 11000000
4 4 0 11100000 11000000 00100000
5 5 1 10000000 00100000 10100000

… … … … … …

(a)

(b) (c)

Figure 3.3. (a) A Sobol sequence generator, adapted from [2]. (b) An example is given by
using (c) the designated DVA. The example reflects actual hardware operation instead of a
mathematical model.

3.3.1 Formulation

In what follows, the unique feature of Sobol sequence generation is exploited for

parallelization. Specifically, the LSZs of continuous non-negative integers follow a regular

pattern. For the ease of interpretation, let L(i) indicate the LSZ position of i in its binary

format (i = 0,1, . . . ). The LSZs of continuous integers are listed in Table 3.2. Following

the algorithm in Fig. 3.2, the pattern of the LSZs is explored to generate multiple or

multi-dimensional Sobol sequences.

As shown in Table 3.2, L(i) is “nearly periodic” with a period of 8, except for the i‘s

with a remainder of 7 when divided by 8, i.e., i ≡ 7 mod 8. Next, we show that L(i) is

“nearly periodic” with a period of 2m (m = 0,1,2, . . . ), except for the i’s that i ≡ (2m− 1)

mod 2m. It is proven that the LSZ for the residue class modulo 2m is

L(i) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

L( j)+m when i≡ (2m−1) mod 2m,

for j = 
i/2m�.
L(l) when i≡ l mod 2m,

l = 0,1, . . . ,2m−2.

(3.2)
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Table 3.2. LSZ positions of continuous non-negative integers

i 0 1 2 3 4 5 6 7
L(i) 0 1 0 2 0 1 0 3

i 8 9 10 11 12 13 14 15
L(i) 0 1 0 2 0 1 0 4

i . . .
L(i) . . .

i 8j 8j+1 8j+2 8j+3 8j+4 8j+5 8j+6 8j+7
L(i) 0 1 0 2 0 1 0 L(j)+3

An example of (3.2) is shown in Fig. 3.4. The detailed mathematical proof is provided

as follows.

L(i) = L(j) + m  L(i) = L(l)  

i = (XX…XX 111…1)2 

m ‘1’sHigher bits, j

i = (XX…XX X…X)2 

Lower m bits, l

(b)(a)

j =  i/2m  i = l mod 2m  

Figure 3.4. LSZ position for the residue class modulo 2m: (a) case 1: the lower m bits are
all ‘1’s; (b) case 2: the lower m bits are not all ‘1’s.

Lemma 3.3.1. L(i) = k is equivalent to [2]:

i≡ (2k−1) mod 2k+1,(k = 0,1, . . .). (3.3)

Fig. 3.5 shows an example for Lemma 3.3.1.

i = (XX…X 0 111…1)2 

the kth bit

k ‘1’sDon’t-care 
bits 

2k-1

i ≡ 2k-1 mod  2k+1

L(i)=k 

Figure 3.5. An example of Lemma 3.3.1.

Corollary 3.3.1.1. For a number i = 2m · j+2m−1,(i, j,m ∈ Z≥0) or i≡ 2m−1 mod 2m,

L(i) = L( j)+m.
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Proof. Let L( j) = k. Per Lemma 3.3.1, we have j ≡ 2k − 1 mod 2k+1, that is, j = h ·
2k+1 + 2k− 1, h ∈ Z≥0, so that i = 2m · j + 2m− 1 = 2m · (h · 2k+1 + 2k− 1) + 2m− 1 =

h ·2m+k+1 +2m+k−1. Therefore,

i≡ (h ·2m+k+1 +2m+k−1) mod 2k+m+1

≡ (2m+k−1) mod 2k+m+1.
(3.4)

By applying Lemma 3.3.1, we obtain L(i) = m+ k = L( j)+m.

Corollary 3.3.1.2. For a number i≡ l mod 2m,(i,m, l ∈ Z≥0, l = 2m−1), L(i) = L(l).

Proof. Since i ≡ l mod 2m and l = 2m− 1, 0 ≤ l ≤ 2m− 2, and i can be represented by

i = 2m · j+ l, j = 0,1, . . . . Let L(l) = k. First, it is clear that k < m, which can be proved

by contradiction. Per Lemma 3.3.1, we also have l ≡ 2k−1 mod 2k+1. The LSZ of i can

be obtained by

i≡ (2m · j+ l) mod 2k+1. (3.5)

Since m > k, and m,k ∈ Z≥0, so m ≥ k+1. Then, the first term on the right hand side of

(3.5) can be removed due to (2m · j)≡ 0 mod 2k+1. Equation (3.5) becomes

i≡ l mod 2k+1

≡ 2k−1 mod 2k+1.
(3.6)

Again, we obtain L(i) = k = L(l) with the application of Lemma 3.3.1.

By Corollaries 3.3.1.1 and 3.3.1.2, (3.2) is explained.

3.3.2 Parallelized Sobol SNG and probability estimator

As per Table 3.2, it is clear that L(i) = L(0) = 0 for every even number i because an even

number ends with ‘0’ in the binary format, which is the second case of (3.2) when m = 1.

Therefore, the first DV, V0, can be pre-loaded instead of being computed for every other

clock cycle as shown in Fig. 3.3, i.e., to perform Ri+1 = Ri⊕V0. As per (3.2), when i is

an odd number, the same LSZ detection and index generation unit can be used, with the

counter counting j = 
i/2�, (i = 1,3,5, . . . so j = 0,1,2, . . . ) instead of counting i. The

‘+m’ term (or ‘+1’ in this case) in (3.2) can be offset by shifting the index of DVA instead

of changing the LSZ detection and index generation unit as in [2]. Thus, the index of the
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DV loaded from the shifted DVA is given by k+1 = L( j)+1, which is in accordance with

the first case in (3.2). The XOR gate at the bottom is used to perform Ri+2 = Ri+1⊕Vk.

Accordingly, a 2× parallel Sobol sequence generator is designed as shown in Fig. 3.6.

Working example of a 2× parallel Sobol sequence generator

Counter 
(starting 

from j=0)

Priority 
encoder

index
k

Shifted
DVA

V4

V3

V2

V1

 

Ri

Ri+1

D-FFs
LSZ detection and 
index generation

V0

Ri+2
Vk+1

(a)

(b)

CLK j k R i V0 Ri+1 Vk+1 R i+2
reset 0 0 00000000 10000000 10000000 00000000 10000000

1 1 1 00000000 10000000 10000000 11000000 01000000
2 2 0 01000000 10000000 11000000 11100000 00100000
3 3 2 00100000 10000000 10100000 11000000 01100000
4 4 0 01100000 10000000 11100000 11110000 00010000
5 5 1 00010000 10000000 10010000 11000000 01010000

… … … … … … … …
The D-flip flops are reset for an extra clock cycle to compensate the clock cycle required to fetch the DV.
The DVA used is the same as the one in Fig. 3(c).

Figure 3.6. (a) Proposed 2× parallel Sobol sequence generator. The D-FFs at the final stage
are used for recursively generating the Sobol sequence. (b) A working example shows how
the generator works.

A 4× parallel Sobol sequence generator can similarly be constructed for m = 2. When

i ≡ l mod 4 (l = 0,1,2), as per (3.2), the LSZ position for i, L(i), yields L(i) = L(l).

Equivalently,

L(i) =

⎧⎪⎪⎨
⎪⎪⎩

0 when i≡ 0 mod 4,
1 when i≡ 1 mod 4,
0 when i≡ 2 mod 4.

(3.7)

Accordingly, V0 and V1 are preloaded to perform the XOR operations. When i≡ 3 mod 4,

i.e., i = 3,7,11, . . . , the shifted DVA produces Vk+2 with k = L( j), where j = 
i/4�. The

counter in Fig. 3.7 is used for counting j ( j = 0,1, . . . ). A 4× parallel Sobol sequence

generator is designed and the diagram is shown in Fig. 3.7.
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Counter 
(starting 

from j=0)

Priority 
encoder

index
k

Shifted
DVA

V5

V4

V3

V2

 

Ri

Ri+1

LSZ detection and 
index generation

V0

Ri+2

D-FFs

V1
Ri+3

Ri+4

V6

Vk+2

Figure 3.7. Proposed 4× parallel Sobol sequence generator.

Similarly, an arbitrary degree of 2m× (m = 3,4, . . .) parallelization can be implemented

by exploring the regular pattern of the LSZ positions. Only several additional XOR gates

are required to implement the parallelization. When multiple Sobol sequences are required,

a second DVA different from the existing one is inserted, and so are the XOR gate array

and the D-FFs. The LSZ detection and index generation components can be shared since

the LSZs are the same for the different Sobol sequence generations [2]. A generator for

two uncorrelated Sobol sequences is shown in Fig. 3.8.

LSZ detection and 
index generation

Shifted
DVA 1

index k Shifted
DVA 2

R1

XOR 
arrays

D-FFs

R2

XOR 
arrays

D-FFs

Figure 3.8. Two uncorrelated Sobol sequences are generated by the same LSZ detection
and index generation component, but with different DVAs.

An SNG is composed of a random number generator (RNG) and a comparator. Similar

to Fig. 2.2, a Sobol SNG can be implemented by an N-bit Sobol sequence generator and a

comparator. For a parallel SNG, 2m comparators are required to implement 2m×
parallelization, and 2m stochastic sequences encoding the same value are generated.

Because the circuit for generating additional Sobol sequences is small (using a few XOR
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gates), the hardware cost of the comparators will dominate, especially when the degree of

parallelization is high. A 2m× parallel Sobol SNG is shown in Fig. 3.9.

N-bit width 
2m× parallel Sobol 
sequence generator

R2
m
i+1 A

B
A<B

A

B
A<B

A

B
A<B

Round(p×2N)
N-bit width

2m× stochastic 
sequences encoding p

2m-Comparator 
array

  

 

R2
m
i+2

R2
m
i+2
m

Figure 3.9. A 2m× parallel Sobol SNG, i = 0,1, . . . .

The probability estimator (PE) can be implemented by an accumulative parallel counter

(APC) as proposed in [3]. The APC can take multiple stochastic sequences in one clock

cycle and obtain the total number of ‘1’s in parallel stochastic sequences. The diagram is

shown in Fig. 3.10.

2m-to-(m+1) 
compressor… 

2m× parallel 
stochastic 
sequences

  +

Accumulator

Figure 3.10. An APC adapted from [3].

3.4 Parallel stochastic circuits

3.4.1 Basic computing elements

To compare the hardware efficiency of using different types of random sequences in SC,

several basic stochastic elements are considered: (a) an AND gate implementing a

multiplier, as shown in Fig. 2.3(a); (b) a multiplexing circuit computing the Bernstein

polynomial [1] as a high-dimensional case, as shown in Fig. 2.4; (c) a divider based on

stochastic integrator (with an up/down counter) as a stochastic sequential element, as

shown in Fig. 2.6(c).
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In Fig. 2.3(a), given uncorrelated stochastic sequences encoding x1 and x2, the

probability of the output of the AND gate is y = x1x2 in the unipolar representation. The

multiplexing circuit in Fig. 2.4 is used to calculate an Nth-order Bernstein polynomial

f (x) = ∑N
i=0 ziBi,N(x), where Bi,N(x) =

(N
i

)
xi(1− x)N−i. The selection signal is produced

by a binary adder summing up the independent stochastic bit streams encoding x. A

stochastic divider employs the converged value of the up/down counter to estimate the

quotient of two numbers [22]. As shown in Fig. 2.6(c), when an equilibrium state is

reached, the probabilities of counting-up and counting-down are equal.

3.4.2 Parallel computing elements

As shown in Chapter 1, Table 1.1, a parallel stochastic circuit works similarly as the

average-over-pool coding scheme in a neuron. The simultaneously arriving “spikes”

produced by the parallel SNG using Sobol sequences are processed by the following

proposed parallel stochastic circuits.

Parallel combinational elements

The implementation of parallel stochastic combinational elements is straightforward. In

general, 2m duplicates of the original stochastic circuit can implement 2m× parallelization.

Fig. 3.11 shows a 4× unipolar stochastic multiplier, which is implemented by four

duplicates of the AND gate.

Stochastic 
sequences

4× Sobol 
SNG

PE

4× stochastic 
multipliers

opA

opB

Figure 3.11. A 4× unipolar stochastic multiplier. The SNG generates parallel stochastic
sequences for the multiplier and multiplicand, opA and opB, respectively. PE stands for a
probability estimator.
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Similarly, a parallel stochastic Bernstein polynomial circuit can also be implemented

by duplication.

Parallel sequential elements

Stochastic sequential elements mainly consist of two categories: finite state machine

(FSM)-based and stochastic integrator-based. For the FSM-based circuits, the

functionalities are based on the theory of Markov chains, that is, the current state of the

FSM is only directly related with its last state. This type of circuit requires that each bit in

the input stochastic sequence is independently generated. However, the bits in a Sobol

sequence are generated from the previous bits, and this violates the requirement and will

not produce accurate results. For example, a stochastic tanh (Stanh) circuit using a Sobol

sequence creates a hard-threshold function instead of an S-shaped curve as shown in

Fig. 3.12. However, the use of Sobol sequences improves the accuracy of stochastic

integrator-based circuits. The stochastic divider is considered as an illustrative example.

S0 S1 S2 S3 S4 S5

X=0X=0X=0X=0X=0

X=1 X=1 X=1 X=1 X=1

Y=0 Y=1

X=0

X=1

y

x

(a)

(b)

Figure 3.12. Using Sobol sequences in the FSM-based Stanh circuit produces inaccurate
results: (a) the state transition graph of Stanh; (b) the results of tanh(3x) computed by using
Sobol and LFSR-generated sequences. Note that x is encoded by the stochastic sequence
X, while y is encoded by the sequence Y.

Because it does not increase the convergence speed of a stochastic divider by simply

duplicating the circuit, the parallelization can be implemented by doubling the input
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sequences of the up/down counter to accelerate the computation, as shown in Fig. 3.13. To

help understand the underlying theory, the mathematical model of a stochastic divider is

analyzed as follows.

P1

P2

Parallel 
Sobol SNG

P1/P2
2× sequence

A

B
A<B    Up/down Counter

DEC

Parallel Sobol sequence 
generator

A

B
A<B

Parallel 
Sobol SNG

+

+

Half adder 2× Stochastic 
sequences 

encoding P2

2× Stochastic 
sequences 

encoding P1

inc1

inc2

dec2

dec1

INC 

   (Y)

Figure 3.13. A 2× parallel stochastic divider.

In the stochastic divider in Fig. 2.6(c) [22], the computation of the quotient relies on

the convergence of the stochastic integrator until its equilibrium state is reached. Let p1,i,

p2,i and qi be the ith bit in the stochastic sequences encoding P1, P2 and P1/P2. Let the

integer stored in the N-bit counter be Yi. The probability value carried by the counter is

then yi = Yi/2N , where N is the bit width of the up/down counter. The AND gate serves

as a stochastic multiplier, and the output of the AND gate encodes p2,i · qi. The up/down

counter is updated by the rule [89]:

Yi+1 = Yi + p1,i− p2,i ·qi. (3.8)

If the initial value stored in the counter is Y0, then the value of Yk at an arbitrary kth

clock cycle is obtained by accumulating (3.8) for i = 0,1, . . . ,k−1 as

Yk = Y0 +
k−1

∑
i=0

(p1,i− p2,i ·qi). (3.9)

Additionally, the sequence {qi} is generated by comparing the number stored in the counter

and the uniformly distributed random number generated by the RNG, in a similar manner

to an SNG, so the expectation of qi is E[qi] = yi = Yi/2N . Then, the expectation of Yk is

given as

E[Yk] = Y0 +
k−1

∑
i=0

(P1−P2yi). (3.10)
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Substituting Yk and Y0 by yk and y0, (3.10) becomes

E[yk] = y0 +
1

2N

k−1

∑
i=0

(P1−P2yi). (3.11)

The Euler method is a first-order iterative algorithm that solves an ordinary differential

equation (ODE). For an ODE dy(t)
dt = f (t), a one-step solution is calculated from the

previous estimate as follows,

ŷi+1 = ŷi +h f (ti), (3.12)

where h is the step size and ti = hi. ŷi is the Euler numerical solution at the ith step.

Given an initial condition of an ODE y0, the kth step numerical solution is calculated by

accumulating (3.12) through i = 0,1, . . . ,k−1, such that

ŷk = y0 +h
k−1

∑
i=0

f (ti). (3.13)

By comparing (3.11) and (3.13), it can be seen that the stochastic integrator of the

divider provides an unbiased estimate to the Euler solution of the ODE

dy(t)
dt

= P1−P2y(t) (3.14)

with a step size of h = 1/2N . By solving (3.14) analytically, the convergence process of the

counter is approximated by

y(t) =
P1

P2
− 1

P2
(P1−P2y0)e−P2t , (3.15)

where t is discretized to the number of clock cycles, i.e., ti = h · i = i/2N , i = 0,1, . . . and

y0 is set to the initial value of the counter. As t approaches infinity, the exponential term

approaches 0 so that y(t) converges to the quotient of P1 and P2. The convergence process

is governed by an exponential function, and the speed of convergence is determined by the

exponent.

The convergence process of the proposed parallel stochastic divider in Fig. 3.13 can

similarly be evaluated. The up/down counter updates its value by Yi+1 = Yi + inc1 + inc2−
dec1− dec2, where signals {inc1, inc2,dec1,dec2} can only be 0 or 1. The expectation of

the “INC” input parallel stochastic sequences, i.e., inc1 + inc2, can be obtained from the

distribution of ∑P1 in Table 3.3, as E[INC] = 0× (1−P1)
2 +2P1(1−P1)+2×P2

1 = 2P1.
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Similarly, E[DEC] = 2P2y(t). Then the expectation of the value stored in the counter at the

kth clock cycle is given as

E[Yk] = Y0 +
k−1

∑
i=0

(2P1−2P2yi). (3.16)

Table 3.3. Probability distribution of ∑P1 in a parallel stochastic divider.

∑P1 0 1 2

probability (1−P1)
2 2P1(1−P1) P2

1

Due to (3.16), the parallel stochastic divider actually solves

dy(t)
dt

= 2P1−2P2y(t). (3.17)

The solution for (3.17) is

y(t) =
P1

P2
− 1

P2
(P1−P2y0)e−2P2t . (3.18)

Compared to (3.15), the exponent is doubled, and so the convergence process of the 2×
parallel divider design is twice as fast as the one that does not use any parallelization.

Convergence time of a stochastic divider

The time when the value of y(t) converges, referred to as the convergence time, can be

estimated by (3.15) or (3.18). Since the value stored in the counter is an N-bit number,

the resolution is 1/2N for encoding a probability in [0,1]. When the absolute value of the

exponential term in (3.15) (or (3.18)) is smaller than the resolution of the counter, the state

of the counter can be considered converged. The convergence time can then be estimated.

Additionally, both the divisor and dividend are shifted to the left by the same number of

bits such that the most significant bit (MSB) of the divisor is ‘1’. By doing so, the divisor,

P2, is amplified, so that the term containing the exponential expression in (3.15) or (3.18)

approaches to 0 faster, while the quotient is not changed. Assume that the convergence

time is tconv, an inequality is composed to find tconv for the original stochastic divider as per

(3.15), ∣∣∣∣(P1−P2y0)
1
P2

e−P2tconv

∣∣∣∣< 1
2N . (3.19)
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By solving the inequality, tconv is estimated to be

tconv ≥ 1
P2

(N log2+ log
∣∣∣∣P1−P2y0

P2

∣∣∣∣) (3.20)

This approach is used for estimating the runtime of a stochastic divider. Also, it can be

applied to any stochastic integrator-based circuits, whose convergence follows an

exponential function.

3.5 Experiments and results

3.5.1 Metrics

The performance of the SC elements are examined by EPO, TPA [88], and runtime. The

RMSE is used to measure the accuracy.

Given the sequence length L and degree of parallelization P for a stochastic arithmetic

operation, the EPO for an SC element can be calculated by

EPO = Total Power×Tclk×L/P, (3.21)

where Tclk is the clock period and power is measured at the corresponding Tclk. P = 1 when

no parallelization is applied. Similarly, the EPO of an SNG is measured by the energy

consumption for generating one bit. Throughput is used to measure how much information

a system can process during a unit time. The TPA of an SNG is measured by the number

of stochastic bits generated in a unit time per unit area. The TPA of a stochastic circuit

is measured by the number of computation results produced in a unit time per unit area.

The runtime is considered as tc×L/P for producing one result for a combinational circuit,

where tc is the critical path delay. The sequence length of a stochastic divider is determined

by the convergence time. Subsequently, the TPA is given as

TPA = 1 bit×P/tc/area (3.22)

for an SNG and

TPA = 1/(tc×L/P)/area (3.23)

for a stochastic arithmetic circuit.
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The runtime, T , is evaluated by

T = tc×L/P. (3.24)

The critical path delay, area and power consumption are first obtained by the Synopsys

Design Compiler (DC) with a 28-nm industrial process. The same temperature and process

corners are applied to all the circuits. Detailed parameters are listed in Appendix A. The

EPO, TPA and runtime are then computed. The RMSE is obtained by using 10,000 random

trials for each circuit.

3.5.2 Evaluation of the proposed Sobol SNG

Accuracy

The accuracy of an 8-bit Sobol SNG is compared with an 8-bit LFSR-based SNG to show

how accurately a real number is encoded by using those two different types of SNGs with

different sequence lengths. The numbers to be encoded are chosen randomly. For a

different sequence length, the ratio of ‘1’s in the stochastic sequences generated by the

two SNGs are calculated. The difference between the ratio and the number to be encoded

is measured by RMSE and the results are shown in Fig. 3.14.

2 4 6 8
Sequence length (2 )

10-2

10-1

RM
SE

LFSR-based
SNG
Sobol SNG

N

Figure 3.14. Accuracy of the Sobol SNG and LFSR-based SNG.

The accuracy of a stochastic sequence generated by a Sobol SNG is consistently higher

than that generated by an LFSR-based SNG. Note that the parallelization does not affect

the accuracy since the total number of 1’s remains the same, but with a faster generation

rate.
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Hardware efficiency

A Sobol SNG consists of a sequence generator and comparators. A 2m× parallelization

requires approximately (2m− 1)×N more XOR gates than a single Sobol SNG, where

N is the bit width of the generator. The number of comparators required is the same as

the degree of parallelization, i.e., 2m. Table 3.4 shows the components required in a 2m×
parallel Sobol SNG.

Table 3.4. Hardware cost for a 2m× parallel Sobol SNG

Parallelism LSZ detection & DVA XOR gates Comparators

1× 1 N 1
2× 1 2N 2
4× 1 4N 4
. . . . . . . . . . . .

2m× 1 2mN 2m

The hardware efficiency of a Sobol SNG is measured in EPO, TPA and generation time.

For the Sobol SNG, different degrees of parallelization are implemented. The results are

shown in Fig. 3.15 for an 8-bit SNG. The performance of an 8-bit LFSR-based SNG is used

as a reference.

When no parallelization is applied, as can be seen in Fig. 3.15, the Sobol SNG has a

lower hardware efficiency compared with the LFSR-based SNG. However, the EPO and

TPA of a Sobol SNG increase with the degree of parallelization because of its small

hardware cost.

3.5.3 Stochastic combinational circuits

Accuracy

For the AND-based stochastic multiplier, two independent stochastic sequences are

required. For a third-order Bernstein polynomial circuit, at least 4-dimensional or 4

independent stochastic sequences are required. The accuracy comparisons for the

stochastic multiplier and Bernstein polynomial circuit are shown in Fig. 3.16, in which

another type of LD sequences, Halton sequence, is also considered. The Halton sequence

generators are implemented by inversely-mapped counters using different bases [41].
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Figure 3.15. Hardware measurements of parallel Sobol SNGs.

As shown in Fig. 3.16, for the same sequence length, the accuracy of the results

produced by using Sobol sequences are mostly higher than those obtained using

LFSR-generated and Halton sequences. For the stochastic multiplier, it is also observed

that as the sequence length increases, the RMSE of the LD sequences-based circuits

decreases faster than that of the LFSR-based design. However, due to the increased

dimension of the sequences, the RMSE of the Bernstein polynomial circuit using LD

sequences does not converge as fast as the multiplier.

Hardware efficiency

The hardware efficiency of stochastic multipliers are shown in Figs. 3.17, 3.18 and 3.19.

For the same accuracy, a lower EPO, a larger TPA and a shorter runtime indicate a more

efficient hardware design. From Figs. 3.17, 3.18 and 3.19, most designs using Sobol

sequences show a higher efficiency than Halton and LFSR-based designs. This is due to
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Figure 3.16. Accuracy of combinational stochastic circuits using Sobol, Halton and LFSR-
generated sequences.

the shorter sequence length required in a design using Sobol sequences to achieve a

similar RMSE. Also, the parallelization in Sobol sequence generation makes a design

more efficient because of the small hardware cost to implement the parallelization. The

stochastic multipliers using Halton and Sobol sequences consume a similar energy when

no parallelization is applied, whereas a parallel design using Sobol sequences is more

energy-efficient than the design using Halton sequences. If parallelization is implemented

for the Halton- or LFSR-based designs, the EPO and TPA would not change much due to

the extra power consumption and hardware cost, albeit with a reduction in runtime.

10-4 10-3 10-2 10-1

RMSE

103

104
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O 

(fJ
)

Sobol 1
Sobol 2
Sobol 4
Sobol 8
LFSR
Halton

Figure 3.17. EPO of stochastic multipliers using 212-bit, 210-bit, 28-bit, 26-bit and 24-bit
length from left to the right.

The stochastic multiplier using 28-bit Sobol sequences has a similar RMSE to a design

using 212-bit LFSR-generated sequences. The EPO of the 8× parallel Sobol multiplier
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Figure 3.18. TPA of stochastic multipliers using 212-bit, 210-bit, 28-bit, 26-bit and 24-bit
length from left to the right.
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Figure 3.19. Runtime of stochastic multipliers using 212-bit, 210-bit, 28-bit, 26-bit and
24-bit length from left to the right.

costs only 1.44% of the energy of the LFSR-based design with 49.80 times of the TPA.

The Bernstein polynomial circuits are also evaluated, and the results show a similar trend

to the multipliers.

Curse of dimensionality

The benefits using LD sequences can diminish as the dimension of the sequences increases

[106], which is referred to as the “curse of dimensionality”. To investigate how the number

of dimensions affects the accuracy and the hardware efficiency of a design using Sobol

sequences, n-dimensional random sequences are employed to implement (n− 1)th-order

Bernstein polynomial with the same sequence length. A total of 10,000 MC simulation runs

were carried out, with the coefficient of the Bernstein polynomial randomly chosen. As
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shown in Fig. 3.20(a), the RMSEs of LFSR-based designs oscillate around 0.04 throughout

all dimensions. Although the RMSE of a design using Sobol sequences increases, it does

not exceed that of an LFSR-based design for up to 20 dimensions. Also, the RMSE of

the designs using Halton sequences are slightly larger than that of the designs using Sobol

sequences.
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Figure 3.20. Accuracy, EPO, TPA and runtime of an (n-1)th-order Bernstein polynomial
circuit using different random sequences with the same sequence length. An n-dimensional
random sequence is required to implement an (n-1)th-order Bernstein polynomial circuit.

The EPO, TPA and runtime are reported in Figs. 3.20(b), (c) and (d). As can be seen, a

4× parallel design using Sobol sequences always results in the lowest EPO, the largest TPA

and the shortest runtime. The EPO of the design using Halton sequences increases quickly

with the order of the polynomial because a larger counter is required in the larger base

for a higher-dimensional Halton sequence. The EPO of the design using Sobol sequences
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increases rather slowly because the LSZ detection and index generation unit is shared to

generate multidimensional Sobol sequences, as shown in Fig. 3.8.

3.5.4 Stochastic sequential circuits

Verification of the proposed parallel stochastic divider

The parallel stochastic divider design proposed previously is first verified using hardware

simulation. An 8-bit counter is used and different degrees of parallelization are applied.

The result produced using LFSRs is also considered for comparison as shown in Fig. 3.21.

The predicted convergence time is calculated by using (3.19) with P1 = 0.8, P2 = 0.9 and

y0 = 0.5.

0 200 400 600 800 1000 1200
Number of clock cycle

0.5

0.6

0.7

0.8

0.9

Qu
oti

en
t e

sti
ma

tio
n y

(t)

Predicted convergence time

T=1309
T=328

T=655

Sobol 1
Sobol 2
Sobol 4
LFSR
Expected curves

Figure 3.21. Convergence processes of stochastic dividers using Sobol sequences with 1×,
2× and 4× parallelization, computing 0.8÷ 0.9. y(t) is initialized with y0 = 0.5. The
LFSR-based design is also considered for comparison.

From Fig. 3.21, all the parallel divider designs converge to the accurate result with

different speeds. The Sobol design using 4× parallelization is the fastest, followed by the

designs using 2× parallelization and no parallelization. The result produced by using

LFSRs fluctuates significantly and leads to an ambiguous result, as shown in Fig. 3.21.

However, the results produced by Sobol sequences are more stable. Additionally, the

predicted convergence time fits well with the simulation results with less glitches for

Sobol sequences.
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Accuracy

The accuracy is measured with different degrees of parallelization and different bit widths

for the up/down counter. The results are shown in Fig. 3.22.
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Figure 3.22. Accuracy of stochastic dividers using Sobol sequences with 1×, 2×, 4×
and 8× parallelization with different sizes of the up/down counter. The RMSEs for using
Halton and LFSR-generated sequences without parallelization are also compared.

As shown in Fig. 3.22, the parallelization has little effect on the accuracy of dividers

using Sobol sequences, and the RMSEs of those designs almost overlap with one another.

The RMSE of a design using Sobol sequences decreases linearly with the bit width of the

up/down counter and it is consistently smaller than that of an LFSR-based design. A divider

using Halton sequences shows a similar accuracy to its counterpart using Sobol sequences.

Hardware efficiency

For different operands, the convergence time (in the number of clock cycles) of the

stochastic divider is different. An average convergence time is estimated for randomly

chosen operands and the average EPO, TPA and runtime are obtained by using the average

convergence time. Different degrees of parallelization are applied to evaluate the

improvement in performance and hardware efficiency. The results are shown in Figs. 3.23,

3.24 and 3.25.

As can be seen, as the degree of parallelization increases, the energy and hardware

efficiency improve. However, the improvement of a higher degree parallelization is not

as significant as at a lower degree parallelization. It is evident in Fig. 3.24 that the TPAs

of 8× parallel stochastic dividers are close to 4× ones, whereas the TPAs of 2× parallel
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Figure 3.23. EPO of stochastic dividers using Sobol sequences with 1×, 2×, 4× and 8×
parallelization with 12-bit, 10-bit, 8-bit, 6-bit and 4-bit up/down counter from left to the
right. The LFSR-based design without parallelization is also shown.
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Figure 3.24. TPA of stochastic dividers using Sobol sequences with 1×, 2×, 4× and 8×
parallelization with 12-bit, 10-bit, 8-bit, 6-bit and 4-bit up/down counter from left to the
right. The LFSR-based design without parallelization is also shown.

stochastic dividers are well separated from the ones without parallelization. This occurs

because the number of comparators increases linearly with the degree of parallelization, as

shown in Table 3.4. Thus, they dominate the energy and hardware cost of the design.

For the designs using Halton sequences, they have a similar EPO, TPA and runtime to

their Sobol counterparts without parallelization. However, the design using Sobol

sequences benefits from the efficient implementation of parallelization, so it outperforms

its Halton counterpart in all considered metrics.

For the LFSR-based designs, it takes at least two more bit widths to achieve a similar

accuracy to the designs using Sobol sequences. Therefore, it results in a longer runtime
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Figure 3.25. Runtime of stochastic dividers using Sobol sequences with 1×, 2×, 4× and
8× parallelization with 12-bit, 10-bit, 8-bit, 6-bit and 4-bit up/down counter from left to
the right. The LFSR-based design without parallelization is also shown.

and a lower hardware efficiency. When a 12-bit LFSR-based design is compared with an

8-bit Sobol design, the 8× parallel design using Sobol sequences costs 0.92% of the energy

consumption and produces 89 times of the TPA of an LFSR-based design. Additionally,

the accuracy of an 8-bit divider using Sobol sequences is higher than that of the 12-bit

LFSR-based divider.

The basic stochastic elements are not compared with their binary counterparts because

this would either favor the SC design without considering the SNGs and PEs or,

otherwise, it would impose a large overhead on the stochastic arithmetic elements.

Instead, the hardware efficiency is compared at the application level in the next section.

3.6 Application

3.6.1 A sorting network and median filter design

A sorting network rearranges a list of values in an ascending or descending order. It is

widely used in modern computer systems for file matching, data searching and filtering,

among other applications [109]. A sorting network can be implemented in hardware by

comparators and multiplexers for comparing and swapping the values. However, the

hardware cost is very high for large volumes of input data. The depth of a sorting network

is defined as the largest number of comparators that an input goes through in the network.

It is in the order of O(n log(n)2) [110], where n is the size of the input data. If the
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compare-and-swap is executed in parallel, the runtime is proportional to the network

depth. Here, a stochastic circuit is used to implement the sorting network with an

energy-efficient compare-and-swap unit.

The design of a basic stochastic unit is shown in Fig. 3.26. The underlying principle

can be explained by considering the AND gate as an example. The probability of its output

sequence is given as

RNG

Comp

Comp

PX

PY

Pout=min(PX,PY)

Pout=max(PX,PY)

RN

Figure 3.26. Stochastic sorter circuit. The stochastic sequence encoding a larger value is
moved downward.

P[Pout = 1] = P[(PX > RN)∧ (PY > RN)]

= P[min{PX ,PY}> RN].
(3.25)

Thus, the probability of the output sequence is the lesser value of PX and PY . Similarly, the

OR gate can be shown to obtain the larger value of PX and PY :

P[Pout = 1] = P[(PX > RN)∨ (PY > RN)]

= P[max{PX ,PY}> RN].
(3.26)

The output stochastic sequence can be used for further comparing and swapping with

the values in another stochastic sequence generated from the same RNG such that (3.25) is

satisfied. Hence, a sorting network can be constructed by using just one RNG generating

the stochastic sequences for all the input data and the AND and OR gates for comparing

and swapping the stochastic sequences.

Salt-and-pepper impulse noise can occur due to the malfunction of image sensors, errors

in memory or a noisy channel [111]. Unwanted white and black pixels appear in an image

upon the occurrence of this noise. An MF is often used to reduce this type of noise in

images without losing the edges. It replaces each pixel in an image with the median value

of the surrounding pixels. A 3×3 MF can be implemented by a sorting network [112]. A

design is shown in Fig. 3.27 with the stochastic sorter as its basic unit.
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Figure 3.27. The basic unit for implementing an MF.

Since the input sequences are required to be generated by the same RNG as per (3.25),

only one RNG is used for the first layer of the sorters as shown in Fig. 3.28. Passing through

the first layer of sorters, the output sequences are still the original stochastic sequences with

the same permutations of ’0’s and ’1’s for a certain value, but with a different order. This

means that the output sequences can be directly used as the input sequences in the next

compare-swap layers instead of being regenerated by an SNG. As a result, only one RNG

is required for the stochastic MF. Additionally, the LD characteristic is maintained after

stages of computations. Both Sobol sequences and LFSR-generated sequences can be used

for this scheme.

3.6.2 Experimental results of the median filter

This stochastic MF design is tested on the 8-bit grey image “cameraman” corrupted by salt-

and-pepper noise with a density of 0.1. A conventional binary design is also considered

for comparison. Different levels of approximation are applied to the binary design by

truncating the bit width. Since there are in total 8 layers of comparing and sorting, the

binary MF takes 8 clock cycles to produce the final result. The original and polluted images

are depicted in Fig. 3.29 and the filtering results are shown in Fig. 3.30.

It can be seen that both binary and stochastic circuits can filter the noise with a high

quality. However, when the sequence length is reduced to 16 bits for a stochastic design or

the bit width is reduced to 4 for a binary design, some severe distortions become evident.

For the stochastic MF using LFSR-generated sequences, the image can be either darker or

47



RNG
Comp

Comp
P2

P1

Comp
P7

...

Comp

Comp
P9

P8

1

...

Layer 1
Layer 2 ...

2

...

3

4

Output 
sequence

...
...

...

...

Figure 3.28. Stochastic MF based on the sorting network in Fig. 3.27(c). Since the output
stochastic sequences from gates 1, 2, 3 and 4 are not used, they can be removed to save
hardware. Each sorter unit is marked by a dotted rectangle.

(a) Original image (b) Corrupted image

Figure 3.29. Original and corrupted “cameraman” images.

brighter than the original image due to random fluctuations. There is a loss of detail in

Figs. 3.30(f) and (g) for 16-bit and 32-bit stochastic designs using LFSRs, respectively.

The quality of the output image can be measured quantitatively by the peak signal-to-

noise ratio (PSNR). The results are illustrated in Fig. 3.31. Because of the random noise

and random fluctuations in LFSR-based stochastic circuits, 100 MC simulation runs were

carried out to allow the mean and standard deviation of the PSNRs to be measured. For

both the Sobol and binary designs, the deviation is purely introduced by the randomly
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(a) Sobol 16-bit length (b) Sobol 32-bit length (c) Sobol 64-bit length (d) Sobol 128-bit length

(e) Sobol 256-bit length (f) LFSR 16-bit length (g) LFSR 32-bit length (h) LFSR 64-bit length

(i) LFSR 128-bit length (j) LFSR 256-bit length (k) Binary 4-bit width (l) Binary 5-bit width

(m) Binary 6-bit width (n) Binary 7-bit width (o) Binary 8-bit width

Figure 3.30. Filtering results using the stochastic and binary implementations of an MF.

added noise rather than the design itself due to their deterministic nature, thus the deviation

is very small. As can be seen, the LFSR-based stochastic design results in the lowest

PSNR because of the randomness in the generation of the random sequences. The design

using Sobol sequences has overall the best PSNR even over the binary design because a
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Figure 3.31. PSNR comparison of different median filter implementations.

simple truncation in the binary design introduces a bias and the resulting value is equal to

or smaller than its actual value. On the other hand, the results produced by the LD-based

designs can either be larger or smaller than the actual value. The distribution of the error

of a stochastic sorter is shown in Fig. 3.32.
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Figure 3.32. Distribution of the errors produced by the stochastic sorter.

Since a base-2 Halton sequence is the same as a one-dimensional Sobol sequence, they

produce results with a similar accuracy. The efficiency of the hardware implementation is

again measured by EPO, TPA and runtime. The results are shown in Figs. 3.33, 3.34 and

3.35.

As can be seen from Fig. 3.33, the energy efficiency is improved using parallel designs

using Sobol sequences. The EPO of the 8× parallel stochastic MFs are smaller than their
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Figure 3.33. EPO comparison of different median filter implementations.
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Figure 3.34. TPA comparison of different median filter implementations.

binary counterparts at a similar processing quality (PSNR as shown in Fig. 3.33(b)) except

for the 8-bit binary design. For the same resolution, the hardware efficiency in terms of

EPO, TPA and runtime for the binary circuits is proportional to the bit width N, whereas it

is proportional to 2N for the stochastic circuits. Therefore, the slope of the EPO curve in

Fig. 3.33 for the binary circuits is less steep than those for the stochastic circuits.

However, the TPA and runtime still have the shortcomings of a stochastic MF. The

stochastic MF is only faster with 16-bit sequences and 8× parallelization than 4-bit binary

design. Due to the extra hardware cost of the comparators and the increased critical path
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Figure 3.35. Runtime comparison of different median filter implementations.

delay, the TPA of a Sobol MF design is not significantly improved by the parallelization.

However, all parallel Sobol designs consistently show advantages over the LFSR-based

designs for all considered metrics with a better image processing quality. The designs

using Halton sequences require a similar EPO to 2× parallel Sobol designs, while they are

not as efficient as designs using Sobol sequences with 4× or larger parallelization.

3.7 Summary

The use of parallel Sobol sequences in SC achieves higher energy efficiency, higher

throughput and shorter runtime than the use of conventional LFSR-generated sequences

and the Halton sequence, another type of LD sequence. The parallelization exploits the

regular patterns of the LSZ positions of continuous nonnegative integers. As a result, it

imposes only a relatively small hardware overhead of a few XOR gates.

The proposed stochastic circuits using parallel Sobol sequences are applied and

evaluated in a sorting network and an MF. The stochastic MF using Sobol sequences

shows a higher energy efficiency than its binary counterparts with resolutions of 7 bits and

below and it consistently outperforms an LFSR-based MF with a higher filtering quality.
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Chapter 4

Dynamic Stochastic Computing for

Digital Signal Processing Applications

Stochastic computing (SC) utilizes a random binary bit stream to encode a number by

counting the frequency of 1’s in the stream (or sequence). Typically, a small circuit is used

to perform a bit-wise logic operation on the stochastic sequences. Energy efficiency,

however, is a challenge for SC due to the long sequences required for accurately encoding

numbers. To overcome this challenge, we consider to use a stochastic sequence to encode

a continuously varying signal instead of a fixed number to achieve higher accuracy, higher

energy efficiency and greater flexibility. Specifically, one single bit is used to encode a

sample from a signal for efficient processing. This type of sequences encodes constantly

varying values, so it is referred to as dynamic stochastic sequence (DSS). The DSS

enables the use of SC circuits to efficiently perform tasks such as frequency mixing,

function estimation, filtering and integration of the sampled signal.

4.1 Introduction

In SC, a random binary bit stream or a stochastic sequence is used to encode a number.

The arithmetic circuits that are used to process the sequences are area- and power-efficient

because complex functions can be implemented by simple logic circuits to process one bit

at each clock cycle. However, most of the designs rely on relatively long stochastic bit

streams to obtain a high accuracy, thus resulting in an inferior performance and low

energy efficiency compared to conventional arithmetic circuits. This performance

bottleneck stems from the fundamental principle of the digital encoding of analog or
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continuous signals in SC, which, by itself, is likely overly ambitious to attain without

efficient encoding techniques. In [89, 103], a Δ− Σ modulated bit stream is used as a

stochastic sequence for filtering, multiplication and image processing. However, the Δ−Σ

modulated bit streams suffer from high signal correlations and degrade the accuracy of the

results [103].

In this chapter, we propose a new type of SC that uses a DSS to encode a continuously

variable signal rather than a static number. In such a sequence, the bit values show a

dynamical pattern that constantly changes with the signal amplitude. To further improve

the accuracy, quasirandom numbers are used to generate the dynamic sequences. In the

resulting dynamic stochastic computing (DSC), the length of the sequence is dramatically

reduced compared to conventional stochastic sequences. This reduction significantly saves

the energy consumption compared to conventional SC. This new encoding technique

enables the use of single-bit SC circuits for low-power computing of many digital signal

processing (DSP) functions.

4.2 Digital signal processing systems

A DSP system usually requires analog-to-digital converters (ADCs) and digital-to-analog

converters (DACs). An ADC is used to convert an analog signal to a digital signal while

a DAC converts a digital signal to an analog signal. Due to the conversion from an analog

signal to a digital signal, the difference between an analog signal, x, and the quantized

digital signal, X [n], is referred to as a quantization error (e in Fig. 4.1), caused by the

limited resolution of the digital representation. It can be viewed as an additive noise, as

shown in Fig. 4.1(b). The digital signal from the ADC is stored or directly processed

by a DSP circuit. After the processing, it is stored or converted back by a DAC to an

analog signal, as shown in Fig. 4.1(a). However, the DSP circuits often consist of relatively

expensive multipliers and adders.

One type of the sampling techniques uses oversampling to reduce the quantization error;

it is referred to as the Δ−Σ modulation. For the Δ−Σ modulated bit stream, it is generated

by a Δ−Σ modulator (DSM), and it can be used directly for signal processing [113]. The

block diagram of a DSM is shown in Fig. 4.2(a). The error between the original digital
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Figure 4.1. (a) A typical DSP system; (b) a model of quantization error.

signal x(n) and the feedback signal, X [n], is integrated over time, producing the signal u(n).

u(n) is then quantized to generate next bit in the sequence. The quantization noise (e(n))

produced by the quantizer can be viewed as an additive white noise as shown in Fig. 4.1(b).

Then, the DSM in Z-domain can be modeled as Fig. 4.2(b). When the quantization noise

is zero, the signal transfer function (STF) in z-domain is given by [114]

STF =
X(z)
x(z)

= z−1; (4.1)

while, similarly, the quantization noise transfer function (NTF) is given by [114]

NTF =
X(z)
e(z)

= 1− z−1. (4.2)

Since the STF has a value of z−1, it indicates that the DSM preserves the original

information of the signal with a single delay; however, for the quantization noise, the

DSM serves as a high-pass filter as per (4.2). It is called a “noise-shaping” effect: it

“pushes” the low-frequency power of the quantization noise to a high frequency. Later, a

low-pass filter can be used to reduce the high-frequency power of the quantization noise to

achieve a high accuracy [115]. This type of bit stream has recently been used in SC for

filtering, multiplication and image processing [103].

4.3 Proposed dynamic stochastic computing systems

In a DSC system, a digital signal is first converted to a DSS by a dynamic stochastic

number generator (DSNG). Then the bit sequence is processed by the stochastic circuits

and converted back to a digital signal by a signal reconstruction unit, as shown in Fig. 4.3.

It is generally assumed that a digital signal is available from an ADC or storage. If an

analog signal is directly used as an input, the DSNG can be replaced with an analog
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Figure 4.2. (a) Block diagram of a DSM; (b) Z-domain model of the DSM.

design such as the stochastic number generator (SNG) in [60]. In this section, the

generation of the DSS, the reconstruction of the output signal and general aspects of DSC

circuits are discussed.

Digital signals 
(from ADCs or 

storage)

Dynamic stochastic 
number generators 

(DSNGs)

Signal 
reconstruction 

unit To be stored or 
converted back to 

analog signals

Dynamic 
stochastic 
sequences

Dynamic 
stochastic 
sequences

Dynamic stochastic computing 
(DSC)

Stochastic 
logic

Figure 4.3. A DSC system.

4.3.1 Generation of the dynamic stochastic sequence

Definition 1. Let 0≤ f (t)≤ 1 be a continuous time-domain signal. After a sampling with

a clock period of T , it can be converted to a sequence of { f (kT )}, k = 0,1, . . . . A DSS {Ak}
encoding f (t) satisfies that the kth bit in the random binary sequence has the expectation,

E[Ak] = f (kT ), (4.3)

where T 1 is the sampling period and 1/T is the sampling rate.

A DSS can be generated by comparing each element in the sequence ({ f (kT )}) with

a uniformly distributed random number within [0,1]. Therefore, the expectation of the kth

1T will be used as the notation for sampling period throughout this chapter.

56



bit in a DSS is f (kT ). Similar to a conventional SNG, the diagram of a DSNG is shown in

Fig. 4.4. Also, a DSS can also be generated by an SC-based ordinary differential equation

RNG

B

A
A<B

f(t)

0 T 2T 10T

Dynamic stochastic 
sequence encoding f(t)

110100000101 

A discrete-time digital signal, 
supplied to the comparator one 
sample point per clock cycle

Figure 4.4. A DSNG.

(ODE) solver, as presented in Chapter 5. The generation of a Δ−Σ modulated signal can be

considered as a Bernoulli process [113] so that Δ−Σ modulated signal can be considered

as a type of DSS’s as well. In these cases, a Δ− Σ modulated signal or the stochastic

sequence produced by a stochastic integrator can be considered to form approximately

a Bernoulli sequence satisfying (4.3) [116]. Fig. 5.1 presents several examples of using

the ODE solvers to generate DSS’s following the formulation in (5.13) and the definition

of a DSS. For example, in Fig. 5.1(b), the solution is given by y1(t) = 0.5−0.5cos(t) and

y2(t) = 0.5+0.5sin(t). According to the function of a stochastic integrator, the expectation

of the kth bit in Y1, E[Y1,k] ≈ 0.5− 0.5cos(k/2n), where n is the width of the counter in

the stochastic integrator. So Y1 approximately encodes 0.5− 0.5cos(t) with a sampling

period of 1/2N and, similarly, Y2 approximately encodes 0.5+0.5sin(t). In Fig. 5.1(c), the

solution of the ODE is given by y(t) = te−t , so that Y approximately encodes te−t .

If the signal value lies within [−1,1], a linear mapping can be applied for the bipolar

representation.

4.3.2 Reconstruction of the DSS

The outputs of combinational stochastic circuits are still stochastic sequences. To convert

a DSS back into a digital signal, a reconstruction unit is required. The DSS can be

reconstructed to a digital signal by using either a moving average (MA) circuit, an

exponential smoothing circuit [117] or a stochastic integrator.
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Moving average

The DSS’s can be reconstructed by an MA operation as

x̂(tk) =
1

2N

k+2N−1−1

∑
i=k−2N−1

Xi, (4.4)

where x̂(tk) is the reconstructed signal at time tk = kT . 2N is the length of the averaging

window, which allows for an easy division by shifting.

In this design, the MA is implemented by an up/down counter and a 2N-bit shift register,

as shown in Fig. 4.5. The input is the DSS to be decoded. The stochastic bits Xk+2N−1−1

and Xk−2N−1−1 are the input and the output of the shift register respectively, with all the

other bits between these two bits stored in the shift register by N.

Shift 
register

       Up/down
      Counter    

Up

Down

x(t)ˆ Xk+2   -1N-1

Xk-2   -1N-1

Figure 4.5. An MA circuit.

From (4.4), it can be obtained that

x̂(tk)− x̂(tk−1) =
1

2N

⎡
⎣k+2N−1−1

∑
i=k−2N−1

Xi−
k+2N−1−2

∑
i=k−2N−1−1

Xi

⎤
⎦

=
1

2N (Xk+2N−1−1−Xk−2N−1−1),

(4.5)

which is computed by the up/down counter. If Xk+2N−1−1 is 1 and Xk−2N−1−1 is 0, the

counter counts up; if Xk+2N−1−1 is 0 and Xk−2N−1−1 is 1, the counter counts down; otherwise,

the counter keeps its value. The value stored in the counter is then normalized by 2N to

obtain x̂(tk). A major drawback of this method is that the hardware cost of the shift register

grows exponentially with N to store a long sequence [117]. However, this reconstruction

scheme works similar to the rate coding as shown in Table 1.1.

Exponential smoothing

The exponential smoothing operation is implemented by an ADaptive DIgital Element

(ADDIE) for a signal reconstruction [117], as shown in Fig. 4.6.
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       Up/down
      Counter    

Up

Down

Random number 
generator (RNG)

Comparator

B

A
A<B

Xi

Zi

Yi

Figure 4.6. An ADDIE.

Following [117], the exponential smoothing function is formulated as follow. Let the

output of the comparator be Zi (0 or 1) at clock cycle i, the input bit be Xi, and the multi-bit

integer value stored in the counter be Yi. The random number generator (RNG) and the

comparator work as an SNG, so the probablity of generating a ‘1’ is Yi/2N , where N is

the bit-width of the counter, i.e., yi = E[Zi] = Yi/2N . As per the function of the up/down

counter, Yi+1 = Yi +Xi−Zi [89]. Therefore, given Yi, the expectation of Yi+1 is

E[Yi+1] = (2N−1)Yi/2N +E[Xi] (4.6)

by taking expectations of the Xi and Zi. Assume Y0 is 0, and let Yi+1 ≈ E[Yi+1] for i =

0,1, . . . , (4.6) can be rewritten as

yi+1 =
1

2N Yi+1 ≈ 1
2N

i

∑
k=0

⎡
⎣(2N−1

2N

)k

E[Xi−k]

⎤
⎦ , (4.7)

where the coefficients of {E[Xi−k]} form a geometric sequences. It indicates an

exponential smoothing. Then, {yi} is an estimate of the encoded signal. However, to

reconstruct the signal instead of filtering it, the width of the counter N needs to be

carefully selected because the same circuit can be used as a low-pass infinite impulse

response (IIR) filter [89], which may attenuate the encoded signal. A sinusoidal signal

reconstructed by an ADDIE is shown in Fig. 4.7. It requires a warm-up phase to allow the

integrator to follow the signal if it is initialized with a random value other than the actual

initial value. It is shown in Fig. 4.7 at the start of the signal. On the other hand, a long

shift register is not required for the ADDIE, thus reducing hardware cost in most cases

(with a large N value) compared to the MA circuit.
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Figure 4.7. Original and the reconstructed signals by using an ADDIE.

Stochastic integrator

When a stochastic integrator produces the output of a DSC system, a reconstruction unit is

not required as the integration results encoded by the counter, i.e., Countout in Fig. 2.6(a),

can directly be used as the output. It is applicable to certain tasks, such as a numerical

integration or an IIR filter as discussed later in 4.4.3 and 4.4.4.

4.3.3 Dynamic stochastic computing circuits

DSC circuits are efficient and flexible to implement a series of function compositions. For

example, a combinational SC circuit implementing the function f (x) can be used to

implement the function composition f [χ(t)] with the input DSS encoding the signal χ(t).

This principle also applies to multi-input combinational circuits.

For a finite state machine (FSM)-based sequential circuit, as shown in Fig. 3.12,

however, the output does not accurately encode f [χ(t)] because the FSM-based circuit

requires that each bit in the stochastic sequence is generated independently. The adjacent

bits in a DSS are correlated and violate this requirement, as discussed in Chapter 3. On the

other hand, a stochastic integrator does not require this due to the accumulation of bit

values, so it works well with the DSS’s.

4.4 DSC-based DSP

Based on the proposed DSS and DSC system, several applications in DSP using DSC are

discussed in this section.
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4.4.1 Frequency mixer

Conventionally, a frequency mixer is implemented by an analog multiplier consisting of

nonlinear components. New signals at the summation and difference of the original

frequencies are then produced. Using the DSS’s, a stochastic multiplier is proposed to

implement a frequency mixer, as shown in Fig. 4.8(a). The x-axis denotes time, which is

measured by seconds1. As per (4.3), if the input sequences X and Y are statistically

independent and Xk, Yk and Zk are the kth bits in the sequences X , Y and Z, respectively,

we obtain E[Zk] = E[Xk]E[Yk] = x(kT )y(kT ) at clock cycle k for the output sequence.

Therefore, the output sequence Z encodes z(t) = x(t)y(t), which is the product of the two

signals, x(t) and y(t).

Fig. 4.8(b) shows the output results when multiplying two sinusoidal signals with

frequencies of 1 Hz and 6 Hz, both sampled at a rate of 212 Hz. The DSS is reconstructed

to a digital signal by an MA operation with an averaging window of length 128.

As shown in Fig. 4.8(b), the results produced by the stochastic circuit are very close to

the results produced by using double precision numbers with a signal-to-noise ratio (SNR)

of 25 dB. It also shows that there are more 1’s (or 0’s) in the DSS’s when the original signal

is closer to 1 (or 0). The DSS’s are decimated for clarity.

4.4.2 Approximation of functions

Bernstein or multilinear polynomials have been implemented in SC either by a

multiplexing circuit or a Boolean function with auxiliary inputs [1, 40]. By using the

DSS’s, more complex functions can be implemented with the same circuit. In this section,

a multiplexing circuit consisting of an accumulator and a multiplexer is discussed as an

example. Fig. 4.9(a) shows a multiplexing circuit that computes a Bernstein polynomial,

f (x) = 1/11(2x3 + 3x2 + 6x), where all the input sequences to the accumulator encode a

fixed value x. However, the same circuit can be used to compute the function composition,

f [x(t)], when DSS’s encoding x(t) serve as the inputs to the accumulator. It is shown as

follows. The expectation of the kth bit in the output sequence Y can be obtained as

E[Yk] = ∑n
i=0 bi

(n
i

)
xi(t)(1 − x(t))n−i, where {bi} are the Bernstein coefficients

1This also applies to later figures that show the time-domain results.
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Figure 4.8. A frequency mixer by using a stochastic multiplier with DSS’s as inputs, (a)
circuit and (b) mixed output.

({1,2/11,5/11,0} in Fig. 4.9(a)) encoded by the inputs of the multiplexer and n is the

order of the Bernstein polynomial [1]. The value of the function f [x(t)] at t = kT is then

equal to E[Yk], so the output sequence encodes f [x(t)].

When x(t) = e−2t , the output sequence of the multiplexer encodes

f [x(t)] = 1/11(2e−6t + 3e−4t + 6e−2t). Fig. 4.9(b) shows the reconstructed result that is

produced when using an MA with an averaging window of length 256. The reconstructed

signal has an SNR of 29 dB. The sequences for the coefficients of the Bernstein

polynomial, i.e., the inputs to the multiplexer, are generated by an SNG as in a

conventional SC circuit.
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Figure 4.9. A summation of several exponential functions computed by (a) a multiplexing
circuit and (b) the output results.

4.4.3 Numerical integration

Integration is an important operation in DSP. To process the single-line DSS encoding

the signal to be integrated, the original two-input stochastic integrator is modified in this

design. For the unipolar representation, the “DEC” port of the stochastic integrator is

connected to ‘0’ in Fig. 2.6(a), while the other input is the DSS encoding the signal to be

integrated; for the bipolar representation, the stochastic integrator is modified as shown in

Fig. 4.10. When the input is a ‘1’, the counter counts up; otherwise, it counts down.

Random number 
generator (RNG)

Comparator

B

A
A<B

               Counter    Up/down
X

Figure 4.10. A single-input bipolar stochastic integrator for numerical integration.

The modified stochastic integrator provides an unbiased estimate to the Riemann

sum [118], which is an approximation of the integral. As the modified bipolar stochastic

integrator is similar to the unipolar design, only the function of the unipolar design is

shown as follows.

By the Riemann sum, the integral over the interval from 0 to nT is approximated by
∫ nT

0
f (τ)dτ = T

n−1

∑
k=0

f (kT ) (4.8)

where { f (kT )} (k = 0,1, . . . ,n−1) is the sampled signal. Taking (4.3) into (4.8) leads to
∫ nT

0
f (τ)dτ = T

n−1

∑
k=0

E[Ak], (4.9)
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where Ak is the kth bit in the DSS, which encodes the signal to be integrated. Thus, the

integral can be approximated by

∫ nT

0
f (τ)dτ ≈ T

n−1

∑
k=0

Ak. (4.10)

The approximation is partly reduced due to the bit accumulation on the right hand side

of (4.10) and the accumulation is performed by the counter in Fig. 4.10. T can be set to a

2’s negative power for ease of computation.

Fig. 4.11 shows the results of an integral of a sinusoidal signal. The signal to be

integrated is sampled at a rate of 256 Hz and converted to a DSS. The integration is

achieved by using the bipolar stochastic integrator in Fig. 4.10. The SNR of the result

reaches 34 dB. Since the integrated results are directly provided by the counter, a

reconstruction unit is not required in this case.

0 1 2 3 4 5 6
t (s)

-1

-0.5

0

0.5

1

Original signal
Analytical results
Dynamic stochastic

Figure 4.11. The input sequence (not shown) encodes the original signal cos(πt/2). The
results produced by the stochastic integrator are close to the analytical results.

4.4.4 Low-pass IIR filter

In [89], it is shown that an ADDIE [4] with different parameters can be used as a low-

pass IIR filter with different frequency responses. The ADDIE is essentially a stochastic

integrator with a feedback signal as its input, as shown in Fig. 4.6.

If the counter is N-bit wide, the transfer function of the IIR filter in the Z-domain is

H(Z) =
1

2NZ +1−2N , (4.11)

which indicates a stable first-order low-pass IIR filter [89]. To filter a signal, it is first

converted to a DSS; the obtained sequence is then the input to the port X of ADDIE. The
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Figure 4.12. The filtering results in (a) time domain and (b) frequency domain.

output of the counter in the ADDIE provides the filtering result by a normalization factor

of 2N .

In this section, the IIR filter is tested by filtering mixed sinusoidal signals of f1 = 4 Hz

and f2 = 196 Hz. The input DSS encodes the mixture by a sampling rate of 65.5k Hz and

it is filtered by an 8-bit ADDIE. The filtering results are shown in Fig. 4.12 in both the

time and frequency domains. As shown in the results, the signal with a higher frequency is

almost filtered out. Again, since the output signal is provided by the counter in the ADDIE,

a reconstruction unit is not required.

4.5 Optimization of sequence generation and signal

reconstruction

4.5.1 Optimal sampling rates and reconstruction parameters

The DSS can be reconstructed to a digital signal by either the MA or the exponential

smoothing. In an MA, a long averaging window, i.e., a large N in (4.4), leads to a strong

smoothing effect. However, the interval [(k− 2N−1)T,(k + 2N−1)T ] is larger when N is

larger; therefore, it may not provide an accurate estimate to x(t) at t = kT by considering

to much information before and after time t. For the exponential smoothing using ADDIE,
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Figure 4.13. Original signal (blue line) and the reconstructed signal (red line) by an MA
with different parameters under different sampling rates. Sampling rates from top to bottom
rows: 24,26,28,210 Hz. MA window lengths from left to right columns: 23,24,25,26. The
SNRs are measured in dB.

the reconstructed signal tends to be polluted by the quantization error when the width, N,

of the ADDIE is small; on the other hand, when the width is large, the ADDIE functions

more like a filter than a reconstruction unit as per (4.11). So, the optimal reconstruction

parameter N must be numerically analyzed for both cases with respect to the sampling rate

of the original signal. For a better accuracy and more stable measurement, the Sobol

sequences are used for the analysis in this section. Different sampling rates and

reconstruction parameters are explored for different methods, as shown in Figs. 4.13 and

4.14. The bipolar representation is used and the accuracy is measured by SNR.

Fig. 4.13 shows that the smoothing effect is too strong, such that the signal is attenuated

or filtered, when the averaging window is too long. For example, when the sampling rate
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Figure 4.14. Original signal (blue) and the reconstructed signal (red) by ADDIEs with
different parameters under different sampling rates. Sampling rates from top to bottom:
24,26,28,210 Hz. Bit widths of the ADDIE from left to right: 2,3,4,5, including one sign
bit. The SNRs are measured in dB.

is 26 Hz, a window length of 25 or 26 is too long to fully reconstruct the signal. Moreover,

since the original signal is periodic, the results become a straight line when the length of the

window is a multiple of the period of the sampled signal. For example, when the sampling

rate is 24 Hz and the averaging window length is 24 or 25, the MA produces a straight line

instead of a sinusoidal signal. Also, when the sampling rate is 24 with a window length

of 26, the signal between the short time interval, [0,4], can hardly be reconstructed due to

the short time interval and a lack of sample points. Given a fixed window length, a larger

sampling rate tends to result in a larger SNR. Generally, the optimal averaging window
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length is about 2n+1 when the sampling rate is 22n Hz as empirically determined from the

experimental results, and a sampling rate of at least 32 Hz is required to reconstruct a 1 Hz

signal with an SNR higher than 13 dB. However, this result may vary for different types of

encoded signals.

The results using ADDIEs (exponential smoothing) for signal reconstruction are shown

in Fig. 4.14. When the width of the ADDIE is not well chosen, the amplitude of the

reconstructed signal is reduced by an unwanted filtering effect. Also, the optimal width for

the ADDIE has a strong linear relationship with the logarithm of the sampling rate. The

optimal width of the ADDIE for reconstructing the signal is about n when the sampling

rate is 22n Hz, as empirically determined from the experimental results.

4.5.2 Pseudorandom sequences vs. quasirandom sequences vs. Δ−Σ
modulated sequences

In [41,119], it is shown that the use of quasirandom numbers improves the accuracy of SC

with shorter stochastic sequences. Also, a Δ−Σ modulated sequence can be considered as

a Bernoulli sequence [116]. It resembles a DSS and, therefore, can be used in SC [89]. In

Fig. 4.15, these types of stochastic sequences are tested for sequence generation and

signal reconstruction. The original signal used is a 1-Hz sinusoidal signal. It is sampled

with a sampling rate of 210 Hz to reduce the inaccuracy caused by under-sampling.

Different methods for reconstruction, i.e., by an MA (or an ADDIE) with an optimal

averaging window length (or an optimal width), are also considered. The SNRs are

reported to indicate the accuracy.

As shown in Fig. 4.15, the signals generated or reconstructed by the linear-feedback

shift registers (LFSRs) are most heavily corrupted by random noise except that they are

both generated and reconstructed by the same LFSR. In Fig. 4.15(i), the signal is

generated and reconstructed using the same sequence so only one LFSR is required and

the accuracy is improved due to the reduced variance [120]; so is the case with

Fig. 4.15(e). The signal reconstructed by an MA with an averaging window length of 64

generally has a higher accuracy than the ones reconstructed by a 5-bit ADDIE because the

use of a wider counter provides a higher resolution. For the ADDIE, a higher sampling

rate is required to obtain an optimal reconstruction if a larger counter is desired for a
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Figure 4.15. DSS’s generated and reconstructed using different methods. The first line
of the sub-caption indicates how the sequences are generated and the second line indicates
how they are reconstructed. The blue line shows the original signal while the red line shows
the reconstructed signals. The results in the same row use the same generation method and
the results in the same column share the same reconstruction method. The MAs all have a
window length of 26 and the ADDIEs all have a width of 5. The SNRs are measured in dB.

better resolution. The signal generated by Δ−Σ modulation and reconstructed by an MA

has the highest accuracy overall because it is generated and reconstructed in a

deterministic manner, thus being the least influenced by the random noise.

4.6 Hardware efficiency assessment

Conventionally, signal multiplication, function approximation and signal filtering are

implemented using either analog or digital circuits. However, an analog circuit is hard to
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integrate with digital systems and is vulnerable to noise and mismatch; a digital circuit

may require expensive multipliers in a conventional binary implementation. The proposed

DSC provides a potential solution for efficient signal processing. In this section, the

hardware efficiency is evaluated for the frequency mixer and the function estimator. The

resolution of the results (in bit width) are matched. The area, power and critical path delay

are measured using Synopsys Design Compiler (DC) with a 28-nm industrial process. The

detailed parameters are summarized in Appendix A.

4.6.1 Frequency mixer

Two sinusoidal signals with frequencies of 1 Hz and 6 Hz are multiplied to measure the

SNR of the results produced by different SC systems. Although an MA circuit produces

a higher accuracy than the ADDIE-based signal re-constructor with the same bit width, its

hardware consumption increases exponentially with the bit width, as discussed in [117], so

an ADDIE is used to reconstruct the signal for a smaller hardware cost. With a sampling

rate of 216 Hz (resulting in a dynamic sequence length of k ·216 bits for a k-second signal)

and a 5-bit ADDIE, the DSC circuit produces an SNR of 24.20 dB, as shown in Figure

4.16(a).

For the conventional SC (CSC) circuit, the same sampling rate is used, and then the

same low-discrepancy sequences are applied. With a sequence length of 25 encoding each

sampling point, the CSC circuit produces an SNR of 23.30 dB, as shown in Fig. 4.16(b).

A binary implementation using 5-bit fixed-width multiplication is also considered and the

result is shown in Fig. 4.16(c).

As shown in Fig. 4.16, the results produced by the DSC circuit show stronger

variations because the signal reconstructor consistently tracks the input signal, which

makes it very sensitive to the change of the input sequence. The DSC frequency mixer

produces a similar or a slightly higher SNR than the CSC circuit. However, due to the

effect of limited precision, the fixed-width multiplication by a binary circuit produces the

lowest quality.

The hardware evaluation results are shown in Table 4.1. For the stochastic designs,

the RNG (low-discrepancy (LD) sequence generator) can be shared to generate multiple

stochastic sequences, so the cost is negligible when considering a large SC system and it is
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Figure 4.16. Frequency mixer: DSC vs. CSC vs. fixed-width binary implementation.

Table 4.1. Hardware efficiency evaluation of dynamic and conventional stochastic
frequency mixer producing one result

Area Power No. of clk Minimum Energy SNR
(μm2) (μW ) cycles time (ns) (fJ) (dB)

Dynamic SC 81.76 12.70 1 0.70 50.79 24.20
Conventional SC 66.59 10.27 32 9.28 1314.85 23.30
Fixed-width binary 79.64 13.79 1 0.72 55.18 20.84
Ratio (Dyn.:Conv.) 1.23 1.24 0.031 0.075 0.039 –

not included in the hardware evaluation [119]. However, the hardware cost of comparators

are counted since every signal requires a comparator to generate a sequence and they cannot

be shared. The signal reconstruction units/probability estimators (PEs) are also counted for

the dynamic/conventional stochastic designs.

As shown in Table 4.1, the DSC circuits have a slightly higher area and power

consumption than the conventional stochastic circuit due to the use of ADDIE-based

signal reconstructor, while the SNG (comparator) and the multiplier are the same for those
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two circuits. However, this disadvantage is negligible when considering the dominating

factor, the sequence length or the number of clock cycles for producing one result: it is 25

for CSC; whereas it is only 1 for DSC. Due to the significant reduction in sequence length,

the DSC frequency mixer consumes only 3.9% of the energy and 7.5% of the time

required by the conventional design with a similar accuracy.

Compared to the fixed-width binary design, the DSC circuit has a slightly larger

hardware cost, while it requires a slightly lower energy and shorter time to produce the

result. Also, the SNR of the results produced by the proposed method exceeds that of the

binary design by 3.38 dB. However, when the input data are sampled at the Nyquist

frequency, i.e., 14 Hz considering that the mixed frequencies are 5 Hz and 7 Hz, the

fixed-width binary design processes the signal of π/2 seconds (s) with 22 multiplications,

as shown in Fig. 4.17(b). On the other hand, the DSC cannot produce adequately accurate

results with signals sampled at the Nyquist rate. It takes the DSC design 25,736 bit-wise

AND operations to process the same signal at a sampling rate of 214 Hz to produce results

with a similar accuracy to the 5-bit fixed-width binary design. This result is shown in

Fig. 4.17(a). In this case, the latency of the DSC circuit is much longer, and the energy

efficiency is much lower than the fixed-width design when processing a signal with the

same length. The hardware efficiency is compared in Table 4.2.

Table 4.2. Hardware efficiency evaluation of DSC and fixed-width frequency mixer
processing the same period of signal with different sampling rates

Sampling No. of clk Minimum Energy SNR
rate (Hz) cycles time (ns) (fJ) (dB)

Dynamic SC 214 25,736 1.49×104 1.12×106 19.16
Fixed-width binary 14 22 15.84 1.21×103 20.69

4.6.2 Function estimator using multiplexing circuits implementing

Bernstein polynomials

The function y(t) = 1/11(2e−6t + 3e−4t + 6e−2t) is used for the accuracy evaluation of

the dynamic and conventional SC systems. For the DSC system, a multiplexing circuit

in Fig. 4.9(b) with DSS’s is used to perform the function estimation with DSS’s encoding
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Figure 4.17. A DSC-based frequency mixer using oversampled signals vs. a fixed-width
design using signals sampled at the Nyquist rate.

x(t) = e−2t as the inputs. With a sampling rate of 216 Hz and 6-bit ADDIE as the signal

reconstructor, the SNR produced by the DSC system is 26.60 dB as shown in Fig. 4.18(a).

For the CSC system, a multiplexing circuit proposed in [1] is used to approximate the

function with a minimum-order Bernstein polynomial to reduce the hardware cost of the

SNGs (comparators), which constitutes a major part of the SC system [19]. To estimate

the function y(t) using conventional SC circuit, it is approximated by a Bernstein

polynomial, y1(t) = 17/256t3 + 159/256t2(1− t) + 66/256t(1− t)2 + 249/256(1− t)3.

Using a sequence length of 64, the SNR of the estimate is 25.90 dB, as shown in

Fig. 4.18(b).

A fixed-width binary circuit is also considered to implement the polynomial. The binary

circuit is optimized to use the least number of multipliers to reduce the hardware cost. The

resulting 6-bit design produces an SNR of 27.81 dB, as shown in Fig. 4.18(c), which is

slightly higher than that of the result produced by the DSC circuit.

The hardware evaluation of the two SC and the binary circuits is reported in Table 4.3.

As shown in Table 4.3, the DSC circuit has a slightly higher hardware cost but with a similar

power consumption compared to the CSC circuit. However, for the CSC circuit, the long

sequence undermines the performance and energy efficiency. The DSC takes only about
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Figure 4.18. Function estimator: DSC vs. CSC vs. fixed-width binary implementation.

3.2% of the time and 1.6% of the energy of the CSC to achieve a higher accuracy and attains

about 60% savings in energy and time compared to the binary circuit. Since the processed

signal is not band-limited, the fixed-width binary design that uses signals sampled at the

Nyquist rate is not included for comparison. However, when a lower sampling rate is

used, the fixed-point design can achieve a lower total energy cost while maintaining a high

accuracy; whereas this is not feasible for the DSC circuits.

Table 4.3. Hardware efficiency evaluation of dynamic and conventional stochastic function
estimator producing one result

Area Power No. of clk Mininum Energy SNR
(μm2) (μW ) cycles time (ns) (fJ) (dB)

Dynamic SC 175.60 20.54 1 0.7 82.17 26.60
Conventional SC 158.63 20.02 64 21.76 5125.12 25.90
Fixed-width binary 301.76 50.77 1 1.75 203.08 27.81
Ratio (Dyn.:Conv.) 1.11 1.03 0.016 0.032 0.016 –
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4.7 Discussion

Since DSS’s and Δ− Σ modulated bit streams can both be considered to be Bernoulli

sequences and used for SC [113], their similarities and differences are discussed. To gain

insights into the DSS, an analysis is performed in the frequency domain first.

Compared to the DSM, the DSNG has a similar “noise-shaping” effect. Fig. 4.19 shows

the results of an FFT analysis of the DSS and the Δ−Σ modulated signal encoding the same

sinusoidal signal. Only the quantization noise is considered in the experiment.

0 0.5 1 1.5
Normalized frequency (rad)

0

0.5

1

Sp
ec

tru
m

-  modulated signal
Dynamic stochastic sequence

Figure 4.19. Spectrum: Δ−Σ modulated vs. dynamic stochastic sequence.

In Fig. 4.19, the signal encoded is a sinusoid, and its spectrum is shown as a spectral

peak near the frequency at 0 rad/s, which has an amplitude of 1. After either a Δ− Σ

modulation or a DSNG, the original spectrum of the signal is well preserved; while the

spectrum of quantization noise is shifted and concentrated in the high-frequency domain.

This is the reason why it has a similar behaviour to the Δ− Σ modulated bit stream.

However, instead of relying on the feedback loop as a high-pass filter in a DSM, it is

achieved by introducing the random sequences, specifically, the Sobol sequences, when

generating the DSS’s. Compared to the Δ−Σ modulation, it does not cause any stability

issues without including a feedback loop.

Also, the DSC can avoid correlation issues by using independent Sobol sequences,

whereas correlation exists in the Δ−Σ modulated signals and it can degrade the accuracy

seriously [103]. For example, if multiplying two signals with different frequencies, the

DSC produces a much higher accuracy than using the Δ− Σ modulated signals even

multiplying signals with different frequency, as shown in Fig. 4.20. However, multiplying
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two Δ− Σ modulated signals that encode identical values leads to the original signal

instead of their product [103].

0 1 2 3 4 5 6 7 8
t (s)

(a) Results produced by multiplying two -  modulated bit streams
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SNR: 23.11 dB
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(b) Results produced by multiplying two dynamic stochastic sequences
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0
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Figure 4.20. Δ−Σ modulated vs. dynamic stochastic sequence for frequency mixer.

4.8 Summary

In this chapter, DSC is proposed that leverages an efficient encoding technique using

DSS’s and simple digital SC circuits to implement complex DSP functions. Frequency

mixing, function approximation, filtering and numerical integration are implemented by

using a stochastic multiplier, a multiplexing circuit, an ADDIE and a stochastic integrator,

respectively. The optimal parameters for reconstructing the signals are numerically

analyzed. Moreover, the generation of the DSS’s is discussed. It is shown that using either

a quasirandom sequence or a deterministic Δ − Σ modulated sequence improves the

accuracy of the results compared to the use of an LFSR-generated sequence. Compared to

CSC, the proposed DSC achieves a speedup and an energy efficiency improvement over

conventional SC of more than 13× and 25×, respectively, for signal multiplication at a

better accuracy. For function estimation, the improvement is even larger, which are 31×
and 62×, respectively. With a similar accraucy, DSC using a 6-bit resolution ADDIE also
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achieves a saving in energy and time by 60% compared to a 6-bit conventional binary

circuits, when dealing with complex tasks such as function estimation using the

oversampled data. However, due to the requirement of over-sampling, the proposed

method has a lower energy efficiency and higher latency compared with fixed-width

circuits using signals sampled at the Nyquist rate.
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Chapter 5

ODE Solvers Using Stochastic Circuits

A novel ordinary differential equation (ODE) solver is proposed that uses a stochastic

integrator to implement the accumulative function of the Euler method. We show that a

stochastic integrator is an unbiased estimator for a Euler numerical solution. Unlike in

conventional stochastic computing (SC) circuits, in which relatively long stochastic bit

streams are required to produce a result with a high accuracy, the proposed stochastic

ODE solver provides an estimate of the solution for every bit in a stochastic sequence or a

dynamic stochastic sequence (DSS), thus significantly reducing the latency and energy

consumption of the circuit. Complex ODE solvers are constructed for solving

nonhomogeneous ODEs, systems of ODEs and higher-order ODEs. Experimental results

show that the stochastic ODE solvers provide very accurate solutions compared to their

binary counterparts, with on average an energy saving of 46% (up to 74%), 8× throughput

per area (up to nearly 12×) and a runtime reduction of 72% (up to 82%). Furthermore,

through solving Laplace’s equation, it is shown that this method is scalable and can be

used for a large scale partial differential equation (PDE) solving.

5.1 Introduction

ODEs are widely used in the modeling of natural processes in physics, chemistry and

biology, as well as in solving problems in many engineering and social studies such as

scientific computing and economics. Various algorithms have been developed for solving

an ODE. However, most of the algorithms are computationally intensive, especially when

solving problems for a large-scale system. While a general-purpose processor is often
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used, acceleration has been achieved by using the massively parallel structure of graphics

processing units (GPUs) [121, 122]. However, a GPU is not well suited for mobile and

embedded applications because it is large and power hungry compared to a tailored

application-specific integrated circuit (ASIC) design.

Conventional digital ODE solvers require the use of adders, multipliers, registers and

complex control circuitry, such as in a digital differential analyzer (DDA) [123]. Although

more efficient implementations have been proposed by using concurrent processing paths

[124], a conventional binary design still requires a complex datapath and control circuitry.

In this chapter, a novel ODE solver is proposed by using SC circuits. Detailed

formulation shows that a single stochastic ODE solver provides an unbiased estimate of

the Euler numerical solution for an ODE. Three error reduction schemes are further

proposed and verified by both theory and simulations. The approach to building more

complex ODE solvers is demonstrated by constructing the circuits for solving three

typical ODEs. With a limited loss of accuracy, the proposed stochastic ODE solvers show

significant advantages in energy consumption and throughput compared to their binary

counterparts. A modified stochastic Laplacian circuit is also proposed to solve a large

scale PDE.

5.2 Proposed stochastic ODE solvers

5.2.1 Formulation

The circuit diagram and a symbol of the stochastic integrator are shown in Fig. 2.6(a) and

(b) [4]. A key component in a stochastic integrator is a 2n-state up/down counter. A random

number generator (RNG) and a comparator work as an stochastic number generator (SNG)

for generating a stochastic bit stream, Seqout , to encode the value stored in the counter.

The bit stream can be used as a feedback for itself or as an input bit stream for subsequent

stochastic integrators. If not used, the RNG and the comparator can be removed to reduce

hardware cost. The input signals A and B carry stochastic bit streams, which determine

whether to increase, decrease or keep the value of the counter.

The counter is typically a 2n-state counter with n-bit width, counting from 0 to 2n−1.

The initial value is determined by the input of the application. Let I denote the integer value
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stored in the counter. The probability to be encoded by the output stochastic bit stream is

I/2n in the unipolar representation or 2× I/2n− 1 in the bipolar representation. Without

loss of generality, only the unipolar representation is considered in this chapter; designs for

the bipolar representation can similarly be derived by a linear mapping.

Let the two bits in the input streams A and B be ai and bi respectively at the ith clock

cycle. The function of the up/down counter is then

Ii+1 =

⎧⎪⎪⎨
⎪⎪⎩

Ii +1 if ai = 1 and bi = 0
Ii if ai = bi ,
Ii−1 if ai = 0 and bi = 1

(5.1)

where Ii and Ii+1 are the integers stored in the counter at the ith and (i+1)th clock cycles.

Equivalently, we have

Ii+1 = Ii +ai−bi. (5.2)

The expectation of Ii+1, E[Ii+1], is given by

E[Ii+1] = E[Ii +ai−bi] = E[Ii]+E[ai]−E[bi]. (5.3)

Let the probability that ai is “1” at the ith clock cycle be pa,i and the probability that bi

is “1” be pb,i, (5.3) becomes [89]:

E[Ii+1] = E[Ii]+ pa,i− pb,i. (5.4)

To convert an integer into a stochastic number in the unipolar representation, both sides of

(5.4) are normalized by 1
2n . Hence, (5.4) is transformed to

E[si+1] = E[si]+
1
2n (pa,i− pb,i), (5.5)

where si = Ii/2n and si+1 = Ii+1/2n. If the initial value in the counter is s0, then by an

iterative accumulation of (5.5), the expected value of sk at the (arbitrary) kth clock cycle

(k = 1,2, . . .) is obtained as

E[sk] = s0 +
1
2n

k−1

∑
i=0

(pa,i− pb,i). (5.6)

For an ODE dy(t)
dt = f (t,y(t)), the numerical solution for a given t can be estimated by

considering the derivative of y(t) at a discrete ti as

dy(t)
dt

|t=ti = lim
Δt→0

y(ti +Δt)− y(ti)
Δt

≈ y(ti +h)− y(ti)
h

, (5.7)

80



where h is a small value for the time interval Δt. Let ti+1 = ti +h (ti = h · i when t0 = 0 and

h is a constant, i = 0,1,2, . . . ), (5.7) leads to the solution by the Euler method [125]:

ŷi+1 = yi +h f (ti,yi), (5.8)

where ŷi+1 is the numerical estimation of the function value of y(t) at ti+1, i.e., y(ti+1),

and h is the step size for the estimate. Let t start from t = 0, with h = 1
2n and f (t,y(t)) =

pa(t)− pb(t), (5.8) is simplified to

ŷi+1 = yi +
1
2n [pa(

i
2n )− pb(

i
2n )]. (5.9)

If the initial condition of the ODE is y0, the estimate of the solution at the kth step is

given by an iterative accumulation of (5.9) over i, which leads to

ŷk = y0 +
1
2n

k−1

∑
i=0

[pa(
i

2n )− pb(
i

2n )]. (5.10)

Hence, for the ODE
dy(t)

dt
= pa(t)− pb(t), (5.11)

the Euler numerical solution ŷk provides an estimated value of the function y(t) at t = k/2n,

k = 0,1,2, . . . , i.e.,

y(
k
2n )≈ ŷk. (5.12)

Let the input sequences of the stochastic integrator encode the probabilities pa(t) and

pb(t) at t = i/2n, i.e., pa,i = pa(
i

2n ) and pb,i = pb(
i

2n ); as per (5.6) and (5.10), the

normalized expected value of the up/down counter at the kth clock cycle, E[sk], provides

an unbiased estimate of the Euler solution at the kth time step, ŷk, for the same initial

condition, i.e., y0 = s0. By (5.12), we obtain

y(
k
2n )≈ E[sk], (5.13)

that is, E[sk] (k = 1,2, . . .) provides an approximate solution of the ODE (5.11) with a step

size of 1/2n.

The input bit streams only serve as the control signals for the counter, while the output

of the counter provides the Euler estimate, one estimate at each time step or per clock cycle,

thus achieving great efficiency.
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5.2.2 Stochastic ODE solver designs

In this section, several designs are proposed as typical ODE solvers. Note that all the ODEs

and parameters are chosen so that the solution lies in the range [0,1] of the stochastic

unipolar representation; otherwise, it is considered that an overflow occurs. To evaluate

accuracy, the analytical solutions are also obtained for comparison.

Nonhomogeneous ODEs

Nonhomogeneous ODEs refer to the type of ODEs that involves time, i.e., using t-related

terms.

As per (5.11) and (5.13), if pa(t) = 1 and pb(t) = 0, a stochastic integrator solves the

ODE,
dy(t)

dt
= 1−0, (5.14)

with y(0) = 0, i.e., the counter is initialized to “0”. The analytical solution for (5.14) is

y(t) = t. It is produced by the output of the counter, as shown in the stochastic integrator

at the first stage in Fig. 5.1(a). The output sequence generated from the first stage is a DSS

that encodes y(t) = t as per (4.3) and the formulation of the stochastic integrator at the first

stage. If the output sequence from the stochastic integrator is connected to a subsequent

stochastic integrator (with 0 as another input), the cascaded structure, as shown at the first

two stages in Fig. 5.1(a), solves the ODE,

dy(t)
dt

= t, (5.15)

with y(0) = 0. It is because that the second stage of the circuit can be viewed as a numerical

integrator as shown in Chapter 4, and it can also be explained by the formulation of the

stochastic integrator as shown in the previous section. The analytical solution for (5.15) is

y(t) = (1/2)t2, estimated in the circuit by the output of the second counter. Similarly, the

three stages of the cascaded structure solve

dy(t)
dt

=
1
2

t2, (5.16)

with y(0) = 0. The analytical solution for (5.16) is y(t) = (1/6)t3, estimated by the output

of the third counter.
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Hence, the cascaded stochastic integrators in Fig. 5.1(a) are solvers for a set of

nonhomogeneous ODEs. In the cascaded structure, the integrators in the earlier stages are

used to generate the stochastic bit stream for the t-related terms in the ODE to be solved.

The cascading of the stochastic integrators can be continued for solving an ODE with a

higher-order polynomial as its solution. Note that the output sequence from the integrator

at the last stage is not connected to any other components, so the RNG and comparator in

this stochastic integrator can be removed.

Systems of ODEs

A system of ODEs can be solved by using multiple stochastic integrators. For a system of

ODEs such as {
dy1(t)

dt = y2(t)−0.5,
dy2(t)

dt = 0.5− y1(t),
(5.17)

with y1(0) = 0 and y2(0) = 0.5 as the initial values of the two counters. For this system, two

cross-coupled stochastic integrators provide a solution by utilizing the output bit stream

from one integrator as an input of the other integrator, as shown in Fig. 5.1(b). These

sequences are DSS’s encoding y1(t) and y2(t) respectively. In this design, the other inputs

are set to 0.5, as determined by (5.17). The analytical solution for (5.17) is y1(t) = 0.5−
0.5cos(t) and y2(t) = 0.5+0.5sin(t). Other values other than 0.5 can be used in (5.17) if

they do not result in an overflow.

Higher-order ODEs

To solve an mth order ODE, at least m stochastic integrators are required since one

stochastic integrator performs a single integration. For a second order ODE such as

d2y(t)
dt

+2
dy(t)

dt
+ y(t) = 0, (5.18)

with y(0) = 0, dy(t)
dt |t=0 = 1, an additional function, z(t) = dy(t)

dt + 2y(t), is introduced for

the first two terms in (5.18) such that dz(t)
dt = d2y(t)

dt + 2dy(t)
dt . By doing so, the order of the

ODE is lowered and (5.18) is converted into two first-order ODEs{
dz(t)

dt =−y(t),
dy(t)

dt = z(t)−2y(t).
(5.19)
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In Fig. 5.1(c), the first stochastic integrator solves the first ODE in (5.19) by initializing

the counter to z(0) = dy(t)
dt |t=0 + 2y(0) = 1. The inverter serves as a stochastic subtractor

that computes the function 1− y(t). The second stochastic integrator solves the second

ODE by initializing the counter to y(0) = 0.

Due to the ×2 factor for y(t), the updating rule of the second stochastic integrator

becomes: Ii+1 = Ii+ai−2bi, where ai and bi are two input bits at the ith clock cycle. 2bi is

implemented by a 1-bit left-shift of bi. The second stochastic integrator is then modified to

accommodate the modified updating rule. The analytical solution for (5.18) is y(t) = te−t ;

z(t) = (t+1)e−t is computed by the first stochastic integrator as an intermediate result. The

output DSS of the first stochastic integrator encoding z(t) is then connected to the second

stochastic integrator to compute y(t).
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Figure 5.1. Designs of stochastic ODE solvers.

5.3 Error reduction schemes

One major disadvantage in SC is the loss of accuracy [126]. Usually, it is believed that

multiple independent RNGs need to be utilized for a higher accuracy, which inevitably
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increases the hardware overhead. However, we show here that sharing RNGs can reduce

the variance in the solution of a stochastic ODE solver, thus reducing the error.

The error in the solution of a stochastic ODE solver is mainly caused by: (1) the Euler

numerical method and (2) the randomness in SC.

In the Euler method, the error is measured by the local truncation error (LTE) and global

truncation error (GTE). The LTE refers to the error introduced in a single step of estimation

and the GTE refers to the error caused in multiple steps. The LTE and GTE are proportional

to h2 and h respectively, where h is the step size [125]. Thus a simple solution is to increase

the bit width of the up/down counter to reduce the step size (h = 1/2n, where n is the bit

width of the counter), thereby reducing error due to the Euler method. Note that increasing

the bit width of the counter leads to a better granularity in the final solution, but it does not

significantly increase the latency of the stochastic circuit, unlike in conventional SC.

The error introduced by SC is related to the variance of the derivative term, ai− bi.

When independent RNGs are used to generate ai and bi, the variance at a single step is

given by

Var[ai−bi] = pa,i(1− pa,i)+ pb,i(1− pb,i). (5.20)

The total variance is the sum of variances at each step if each random number is

independently generated, as is approximately the case for using an linear-feedback shift

register (LFSR).

However, if the same RNG is used to generate A and B, the probability distribution of

ai− bi is shown in Table 5.1 (assume pa,i ≥ pb,i). In this case, the variance of ai− bi can

be derived as:

Vars[ai−bi] = E[(ai−bi−E(ai−bi))
2] = (pa,i− pb,i)(1− pa,i + pb,i). (5.21)

Table 5.1. Probability distribution of ai−bi when the same RNG is used to generate A and
B

ai−bi Probability

-1 0
0 1− pa,i + pb,i
1 pa,i− pb,i
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Because Vars[ai − bi] − Var[ai − bi] = −2pb,i(1 − pa,i) ≤ 0, we obtain

Vars[ai− bi] ≤ Var[ai− bi] for any i = 0,1,2, . . . . Therefore, sharing the use of RNGs to

generate input stochastic bit streams improves the accuracy. The same conclusion can

similarly be obtained for pa,i < pb,i.

Further improvement of the accuracy can be achieved by using low-discrepancy (LD)

sequences for a faster convergence and thus better progressive precision [41, 127].

5.4 Experiments and results

5.4.1 Validation of the proposed designs

In this section, the proposed stochastic ODE solvers are validated by hardware simulations

using designs specified in VHSIC Hardware Description Language (VHDL). The designs

are synthesized by Synopsys Design Compiler (DC) and analyzed by Mentor Graphic

ModelSim with the STM 28-nm technology library. The detailed parameters and setting

are available in Appendix A. The numerical solution is produced by using 8-bit counters

with a step size of 1/28.

Fig. 5.2(a) shows the results produced by the circuit in Fig. 5.1(a) for solving (5.14),

(5.15) and (5.16), in comparison with the analytical results. Note that for t > 1, the result

is not shown as it exceeds the range of the unipolar representation in SC. The simulation

results are depicted in Fig. 5.2(b) for two full periods along with the analytical solution

for (5.17). A full period of the sine/cosine function can be generated within 1609 clock

cycles (�2×π×28�), while a conventional SC function generation method requires 1024-

bit sequences to produce a single result [128]. Thus, a stochastic ODE solver can be used as

an efficient function generator. The simulation results produced by the circuit in Fig. 5.1(c)

are depicted in Fig. 5.2(c), in comparison with the analytical results.

As seen from the results, the 8-bit stochastic ODE solvers produce very accurate

solutions when compared to the analytical results. A quantitative evaluation of the results

using the root-mean-squared error (RMSE) is reported next.
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Figure 5.2. Simulation results of stochastic ODE solvers. Analytical solution vs. hardware
results produced by the stochastic ODE solvers for (a) (5.14), (5.15) and (5.16); (b) (5.17)
and (c) (5.18).

5.4.2 Validation of the error reduction schemes

The accuracy of the stochastic ODE solvers with different configurations is measured to

verify the three error reduction schemes by: (1) increasing the bit width; (2) sharing the

use of RNGs; (3) using LD Sobol sequences [105]. The proposed design in Fig. 5.1(b) is

considered for an RMSE analysis in the first full period of the functions y1(t) and y2(t).

The results are shown in Fig. 5.3.

As can be seen, the circuit with a larger width tends to have a lower RMSE. In general,

the circuits using LD sequences produce more accurate results than those using

pseudorandom (PR) sequences generated by LFSRs. For the same bit width, the circuits
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Figure 5.3. RMSE of y1(t) and y2(t) for the stochastic ODE solver in Fig. 5.1(b) under
different configurations.

using PR sequences with shared RNGs provide more accurate numerical solutions than

those using independent RNGs. When LD sequences are used, the RMSE is not

significantly affected by using shared RNGs. Nevertheless, LD sequences are adopted

with the RNG-sharing scheme, resulting in a reduced hardware cost and energy

consumption [105].

5.4.3 Performance evaluation

The accuracy and hardware cost of the stochastic ODE solvers are evaluated and compared

with their binary counterparts. The binary circuits are implemented by using a second-

order Runge Kutta (RK2) (midpoint) numerical method1 [125]. The RK2 method is also

known as a modified Euler method with GTE in O(h2) and LTE in O(h3). The numerical

solution of an ODE in the form of dy(t)
dt = f (y(t), t) using the RK2 method is given by

ŷi+1 = yi +h f (ti +
h
2
,yi +

h
2

f (ti,yi)), (5.22)

where h is the step size of the estimate. The bit width of the stochastic ODE solver is set

to 8, so that h is 1/28 for the stochastic ODE solver. The binary ODE solvers also employ

8-bit designs with a step size of 1/28 for comparison. The RK2 method performs iterative

additions and multiplications. For a step size of 1/28, however, the multiplication can be

1RK2 is used instead of the original Euler method because using conventional binary circuits with
truncation-based accumulations for the Euler method leads to a large loss of accuracy.
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simplified by shifting. Thus, a binary RK2 ODE solver can be implemented by iterative

shifting and additions [129].

For the stochastic solvers, the RNG in a stochastic integrator is implemented by the

simplest Sobol sequence generator, a reversely mapped counter [41]. The RNG is shared

to reduce the hardware cost. As a result, only one RNG is required to generate stochastic

bit streams for each design.

The accuracy of the hardware ODE solvers is measured by RMSE. The hardware

efficiency is measured by energy per operation (EPO), glstpa and minimum runtime. The

EPO is the total energy consumed for completing one estimate of the solution, obtained as

the power multiplied by the clock period. The throughput per area (TPA) is the maximum

throughput per area and per time unit, given by 1/(area× critical path delay). The

minimum runtime is obtained by multiplying the critical path delay and the number of

clock cycles needed to obtain the solutions in Figs. 5.2(a), 5.2(b) and 5.2(c) respectively.

The power, area and critical path delay are first measured to compute the EPO, TPA and

minimum runtime.

Table 5.2. Hardware performance comparison of the ODE solvers

ODE Metric SC RK2 (binary) Improvement

(5.15)
EPO (fJ) 144.49 201.05 28%

TPA (w/μs/μm2) 13.84 3.86 258%
Runtime (ns) 104.96 263.68 60%

(5.16)
EPO (fJ) 186.10 253.05 26%

TPA (w/μs/μm2) 9.76 0.94 934%
Runtime (ns) 104.96 586.24 82%

(5.17)
EPO (fJ) 201.21 466.00 56%

TPA (w/μs/μm2) 4.75 0.58 716%
Runtime (ns) 2573.59 8557.20 70%

(5.18)
EPO (fJ) 156.04 591.62 74%

TPA (w/μs/μm2) 5.68 0.44 1184%
Runtime (ns) 1597.44 6819.84 76%

As shown in the simulation results in Table 5.2, all of the stochastic ODE solvers have

a smaller EPO, minimum runtime and a larger TPA than their binary counterparts. The

improvement is obtained as the relative difference between the measures of the SC and

binary circuits with respect to the measure of the binary circuit. The stochastic ODE solver
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achieves up to 74% in energy saving, up to nearly 12× throughput enhancement and up to

82% drop in runtime. On average, the stochastic designs achieve an energy saving of 46%,

7× TPA improvement and a 72% reduction of runtime due to the smaller delay and area.

Due to the random fluctuations in an SC circuit, the RMSE is larger for a stochastic ODE

solver than for a binary ODE solver, as shown in Table 5.3. However, the RMSE is in the

order of 10−3, which indicates that the accuracy obtained by a stochastic ODE solver is

quite high.

Table 5.3. Accuracy comparison of the ODE solvers (RMSE in 10−3)

ODE SC RK2

(5.15) 5.66 3.70
(5.16) 3.88 2.37
(5.17) 4.69 3.59
(5.18) 5.86 2.11
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Figure 5.4. Comparison of stochastic and binary ODE solvers with different bit widths.
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To further test the hardware efficiency at a similar accuracy for the stochastic and binary

designs, the design shown in Fig. 5.1(b) is used. Fig. 5.4 shows the accuracy and hardware

efficiency of the stochastic designs compared to their binary counterparts with various bit

widths and step sizes. In Fig. 5.4(a), the stochastic design shows a smaller RMSE when the

bit width is 4 for both circuits. However, the accuracy of a binary design becomes higher

for a larger bit width. When a similar RMSE is achieved (e.g., for 8-bit binary and 10-bit

stochastic designs), the stochastic design shows considerable advantages in EPO and TPA

over the binary design, despite having a slightly longer runtime.

5.5 Accuracy vs. sequence length

Although the stochastic ODE solver can be used to achieve a higher hardware efficiency

than its binary counterpart, extending the sequence length for each value encoded by the

DSS can still improve the accuracy of the computed result. For example, one bit is used

to encode a point in a signal in a DSS. However, multiple bits can be added to encode the

same value as in conventional SC for a better accuracy. In Fig. 5.5, the sequence lengths

encoding each number are extended and different ODE solvers with different bit widths are

tested.

As shown in Fig. 5.5, extending the sequence length tends to improve the accuracy of

the results. However, irregular patterns appear when solving (5.16), i.e., a longer sequence

can lead to a lower accuracy. This occurs because the circuit lacks a feedback, thus making

the solution unstable. When solving (5.17) and (5.18), longer sequences generally produce

higher accuracy for the solvers that use Sobol sequences. Due to the randomness in the

LFSR-generated psuedorandom numbers, the accuracy of the solvers that use LFSRs is

more irregular except for the one that solves (5.18).

5.6 Stochastic Laplacian circuit for Laplace’s equation

A PDE is a type of differential equations that contains multiple variables and their

derivatives. For example, Laplace’s equation is a second order PDE that can be used to

describe many natural phenomena, such as thermodynamics, fluid-dynamics and

gravitation, thus it is very important in mathematical physics [130]. A 2-dimensional
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Figure 5.5. Stochastic ODE solvers with different sequence lengths that solve (a) (5.16)
using Sobol sequences; (b) (5.16) using pseudorandom numbers; (c) (5.17) using Sobol
sequences; (d) (5.17) using pseudorandom numbers; (e) (5.18) using Sobol sequences and
(f) (5.18) using pseudorandom numbers.
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Laplace’s equation is given by

∇2u =
∂ 2u
∂x2 +

∂ 2u
∂y2 = 0, (5.23)

where ∇2 is referred to as the Laplacian operator. A numerical solution of (5.23) can be

obtained by dividing the 2-dimensional space into square grids and computing the value

at each grid numerically. For example, a 2-dimensional space can be divided as shown in

Fig. 5.6 with a horizontal interval of Δx and vertical interval of Δy and Δx = Δy. The value

at location (i, j) is denoted by ui, j. Then, the second-order partial derivative terms in (5.23)

can be approximate by a second-order finite difference scheme,

ui,jui-1,j ui+1,j

ui,j+1

ui,j-1

Δx

Δy

  

 

  
 

Figure 5.6. The 2-dimensional space is divided into grids and the value at each point is
solved numerically. Each point is in the center of the grid.

∂ 2u
∂x2 ≈

ui−1, j−2ui, j +ui+1, j

Δx2 , (5.24)

which can be derived by a Taylor expansion. Similarly,

∂ 2u
∂y2 ≈

ui, j−1−2ui, j +ui, j+1

Δy2 . (5.25)

Since Δx = Δy, combining (5.23), (5.24) and (5.25) leads to [130]

ui−1, j +ui+1, j +ui, j−1 +ui, j+1−4ui, j = 0. (5.26)

By solving the linear equation set consisting of (5.26) for each grid point, a steady-state

numerical solution of Laplace’s equation is obtained. Boundary conditions are required

to obtain a unique numerical solution, which are similar to the initial value in the Euler

method.
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5.6.1 Proposed stochastic Laplacian circuit design

In [4], a stochastic Laplacian circuit has been proposed, as shown in Fig. 5.7. In Fig. 5.7,

ui, j is used to denote the result at point (i, j) and the upper case Ui, j represents the

corresponding stochastic sequence encoding the value. The input stochastic sequences are

randomly chosen by the multiplexer with equal probability to compute

1/4(Ui, j−1 +Ui−1, j +Ui, j+1 +Ui+1, j).

+

-

MUX

Ui,j-1
Ui-1,j
Ui+1,j

Ui,j+1

ui,j

Ui,j

(a)

ui,j

Ui,j-1 Ui,j

Ui-1,j
Ui,j Ui+1,j

Ui,j

Ui,j+1Ui,j

(b)

ui,jui-1,j ui+1,j

ui,j-1ui-1,j-1 ui+1,j-1

ui,j+1ui-1,j+1 ui+1,j+1

......

...

(c)

Figure 5.7. Stochastic Laplacian circuits: (a) the circuit diagram of a single element; (b) a
symbol and (c) an array of Laplacian circuits solving Laplace’s equation (adapted from [4]).

It is equivalent to obtain the steady-state solution by a finite-difference method using

an iterative accumulation,

un+1(i, j) = un(i, j)+
1
4

λ [un(i−1, j)+un(i+1, j)+un(i, j−1)+un(i, j+1)−4un(i, j)],

(5.27)
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where un(i, j) is the estimate of the solution at iteration n at point (i, j) and λ is the step

size. It can also be interpreted as solving a steady-state heat equation given by

du
dt

= ∇2u =
∂ 2u
∂x2 +

∂ 2u
∂y2 . (5.28)

After a long enough period of time, the heat stops to flow, i.e., du/dt = 0, and the

temperature at each point becomes a fixed value given a fixed boundary condition. Then

the function of the circuit in Fig. 5.7(a) can be formulated as in a stochastic ODE solver

that solves (5.28). Since the value of each point is supplied to the adjacent four points to

accomplish the update, four copies of the DSS’s (Ui, j’s in Fig. 5.7(b)) that encode the

value are required and they are connected as shown in Fig. 5.7(c).

However, due to the loss of accuracy and inefficiency using a multiplexer, an

accumulative parallel counter (APC) and a shifter are used to improve the accuracy and

efficiency of stochastic additions [51]. The modified stochastic Laplacian circuit is shown

in Fig. 5.8. The expectation of the 3-bit binary number from the APC is then

E[Usum] = [un(i− 1, j) + un(i + 1, j) + un(i, j−1) + un(i, j+1)], and the 1/4 factor is

implemented by a 2-bit right-shift. The stochastic integrator is modified to update ui, j with

ui, j−λ [Ui, j +1/4Usum] for each clock cycle.

+

-

Ui,j-1
Ui-1,j
Ui+1,j
Ui,j+1

ui,j

Ui,j

+
(×1/4)3
Usum

Figure 5.8. Modified stochastic Laplacian circuit using APC.

5.6.2 Experiments and results

A steady-state heat equation is given by (5.28). To solve it numerically, an area of interest,

[0,1]2 or a unit square, is selected, and let the boundary condition be

u(x,y) =

{
1 when y = 0 (0 < x < 1) or x = 1 (0 < y < 1),
0 when y = 1 (0 < x < 1) or x = 0 (0 < y < 1).

(5.29)
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The area is divided into 20× 20 squares so Δx = Δy = 0.05. The values at the corner

of the unit square area are not considered to avoid contradiction. Since the values on the

edges of the square area are defined by the boundary condition, so a 18× 18 stochastic

Laplacian circuit array can solve the problem. Fig. 5.9(a) shows the results produced by

the stochastic circuits and Fig. 5.9(b) is the solution provided by a MATLAB software

program with double precision. By using a 10-bit counter in the stochastic integrator, the

RMSE of the results is as low as 1.2×10−3.

(a) (b)

Figure 5.9. Simulation results for a steady-state heat equation produced by (a) the stochastic
Laplacian circuits and (b) MATLAB program using double precision.

5.7 Summary

A novel ODE solver is proposed that uses a stochastic integrator to implement the

accumulative function of the Euler method. We show that a stochastic integrator is an

unbiased estimator for an Euler numerical solution. Unlike in conventional stochastic

circuits, in which long stochastic sequences are required to produce a result with a high

accuracy, the proposed stochastic ODE solver provides an estimate of the solution for

every bit in the stochastic sequence or DSS, thus significantly reducing the latency and

energy consumption of the circuit. Complex ODE solvers are constructed for solving

nonhomogeneous ODEs, systems of ODEs and higher-order ODEs. Experimental results

show that with limited loss of accuracy, the stochastic ODE solvers using 8-bit counters
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provide an average energy saving of 46% (up to 74%), 8× throughput per area (up to

nearly 12×) and a runtime reduction of 72% (up to 82%) compared to their 8-bit binary

counterparts. Additionally, a modified stochastic Laplacian circuit is proposed that uses

the stochastic integrator and the APC to solve a large-scale steady-state heat equation with

a high accuracy.
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Chapter 6

Gradient Descent Using Stochastic

Circuits for Efficient Training of

Learning Machines

Gradient descent (GD) is a widely used optimization algorithm in machine learning. In

this chapter, a novel stochastic computing-based gradient descent circuit (SC-GDC) is

proposed with a dynamic stochastic sequence (DSS) encoding the gradient information.

Inspired by the spiking neuron model in Table 1.1, a stochastic integrator is used to

optimize the weights in a learning machine by its “inhibitory” and “excitatory” inputs.

Specifically, two AND (or XNOR) gates for the unipolar representation (or the bipolar

representation) and one stochastic integrator are, respectively, used to implement the

multiplications and accumulations in a GD algorithm. Thus, the SC-GDC is very area-

and power-efficient. As per the formulation of the proposed SC-GDC, it provides unbiased

estimates of the optimized weights in a learning algorithm. The proposed SC-GDC is then

used to implement an least-mean-square (LMS) algorithm in an adaptive filter (AF) and an

softmax regression (SR). With a similar accuracy, the proposed design achieves more than

30× improvement in throughput per area (TPA) and consumes less than 13% of the

energy per training sample, compared with a fixed-point implementation. Moreover, a

signed SC-GDC is proposed for training complex neural networks (NNs). It is shown that

for a 784-128-128-10 fully-connected NN, the signed SC-GDC produces a similar

training result to its 16-bit fixed-point counterpart, while achieving more than 89.1%

energy saving and 66% reduction in training time with about 38× improvement in TPA.
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6.1 Introduction

Deep learning utilizes a computational model to automatically discover intricate structures

from large raw data by following a general-purpose training procedure. By using a

multiple-layer computational model, it has produced many promising results for various

tasks including object recognition, natural language processing and autonomous driving

[131]. However, a larger computational load is imposed on training a learning machine as

a model becomes more complex; e.g., tens of millions of parameters or weights need to be

optimized for image recognition in AlexNet [132]. To improve performance, graphics

processing units (GPUs) with massively parallel computing resources have widely been

used for machine learning.

To further improve performance, machine learning specific chips have been developed,

such as the TrueNorth neuro-chip [133], the tensor processing unit (TPU) [134], and the

Minerva [135]. However, most of these chips are designed for inference rather than training

or optimizing the weights in a learning process. A recent study shows that only three days

are required to train a network playing the Go game using four TPUs [136]. Nevertheless,

this is still not energy-efficient for mobile or embedded applications.

To reduce the energy consumption in a learning system, quantization and binarization

have been shown to be effective [137, 138]. However, both methodologies are mostly

implemented in software and no dedicated hardware is available for training. In [137],

binarized weights and activations are used to drastically reduce memory usage during the

inference phase, whereas in the backpropagation, the binarization is not applicable, and

real values are used to compute the optimal weights by using GD.

In this chapter, a novel SC-GDC is proposed for the efficient training of learning

machines using stochastic circuits. In the proposed design, the gradient information of a

training sample is carried by DSS’s. It is different from the conventional belief that the

gradient value used during training cannot tolerate much inaccuracy [137].

By using the proposed SC-GDCs, the loss functions of an LMS AF and an SR are

minimized to obtain optimized weights. The simulation results show that SC-GDC-based

LMS weight update unit achieves a higher accuracy with less than 0.1% of the computation

time than a previous stochastic design. For handwritten-digit recognition, the proposed SR
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unit using an SC-GDC array produces a similar test accuracy to a software implementation

using the same SR model. It takes only 42.6% of the computation time and less than 16%

of the energy of a fixed-point design. A more complex 784-128-128-10 NN is trained by

a signed SC-GDC array. The signed SC-GDC achieves more than 88% energy saving and

82% reduction in time compared to its 16-bit fixed-point implementation while preserving

a similar test accuracy.

The variance bound for the proposed SC-GDC is given by an error analysis. Moreover,

it is shown that sharing the random number generators (RNGs) for generating some of the

input stochastic sequences reduces the variance of the computed result.

6.2 Background

6.2.1 Gradient descent

As a basic optimization algorithm, GD has widely been used in machine learning to

optimize the weights of a model by minimizing the loss function. Let L(w) be a

multivariate differentiable loss function and the vector w be the weights in a learning

machine, GD computes the local minimum of the loss function by the following iterative

optimization [139]:

wi+1 = wi−η∇L(wi),(i = 0,1,2, . . .), (6.1)

where wi is the optimized weight vector at the ith step; η is a constant or variable step size,

or learning rate, which determines how fast the model learns; ∇L(wi) is the gradient of the

loss function at w = wi. ∇L(w) is given by

∇L(w) =
[

∂L(w)
∂w1

, ∂L(w)
∂w2

, . . . , ∂L(w)
∂w j

, . . .
]
, (6.2)

where w j is the jth element in vector w. If the step size is constant, the optimization result

at the kth step can be obtained by accumulating (6.1) from i = 0 to k−1,

wk = w0−η ∑k−1
i=0 ∇L(wi), (6.3)

where the vector, w0, is usually initialized randomly [139].
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6.2.2 Stochastic integrator

Stochastic integrators are sequential stochastic computing (SC) elements that accumulate

the difference between two stochastic sequences [4]. As shown in Fig. 4.6, a stochastic

integrator consists of an n-bit counter, an RNG and a comparator. The counter updates

its value by [89] where ai and bi are the ith bits from the stochastic sequences A and B

respectively, i.e., they are the values of A and B at the ith clock cycle since each bit is

generated per clock cycle. Ci and Ci+1 are the n-bit binary numbers stored in the counter at

the ith and (i+1)th clock cycles. Equivalently, we have

Ci+1 =Ci +ai−bi. (6.4)

As in an SNG, the output stochastic sequence is generated by comparing the n-bit binary

number with an n-bit random number generated by the RNG. So, at the ith clock cycle,

the probability generating a 1 equals to 2−nCi, i.e., the value encoded by the n-bit binary

number is Pi = 2−nCi in the unipolar representation. Normalizing (6.4) by 2−n leads to

Pi+1 = Pi +2−n(ai−bi). (6.5)

Assume the initial value is P0, then by an iterative accumulation of (6.5) from i = 0 to

k−1, the value encoded by the counter at the kth clock cycle is obtained as

Pk = P0 +2−n ∑k−1
i=0 (ai−bi). (6.6)

Taking the expectation of (6.6) gives us

E[Pk] = P0 +2−n ∑k−1
i=0 (E[ai]−E[bi]). (6.7)

Comparing (6.7) and (6.3), the stochastic integrator provides an unbiased estimate of

a weight optimized by the GD algorithm, i.e., E[Pk] = wk, under the conditions that: 1)

the stochastic integrator is initialized with w0; 2) the expectation of the difference of the

stochastic sequences equals to the negative of gradient, i.e., E[ai]−E[bi] =−∇L(wi); and

3) the step size equals to 2−n [140].
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6.3 Proposed SC-GDC design

6.3.1 SC-GDC circuit design

Fig. 6.1 shows the proposed unipolar SC-GDC for optimizing a weight, wi, j, i.e., the jth

element in the vector w at time step i. If there are N elements in w, N SC-GDCs are required

to optimize the N weights. In Fig. 6.1, F(wi,xi) is the inferred value given by the model,

and ti is the target or desired output value for input xi, which is used to supervise the training

of a model. ∂F(wi,xi)/∂wi, j is the input signal for a linear model. For an NN model, these

signals can be obtained by a back-propagation. The stochastic number generators (SNGs)

are used to stochastically binarize the inputs of SC-GDC, and the stochastic multiplier and

integrator are used to efficiently compute (6.1). The SC-GDC works in an online manner,

which means that it uses {F(wi,xi),∂F(wi,xi)/∂wi, j, ti} of training sample xi sequentially

to update the weight. When the bipolar representation is used, the AND gates are replaced

by XNOR gates for multiplication.

+

-

SNG
∂ F(wi, xi)

∂ wi,j
SNG

SNG

ai

bi

Pi = 2-nCi
n

wi,j[Pi] = F(wi, xi)

ti

Figure 6.1. Proposed unipolar SC-GDC.

The circuit design of a stochastic integrator is shown in Fig. 6.2. One n-bit adder is

used to compute (6.4) by taking advantage of SC. Since ai can only be 0 or 1, it is used as

the carry input of the adder. n copies of bi are used to perform “−bi” in (6.4). Specifically,

(bibi . . .bi)2 represents -1 in 2’s complement when bi is 1, otherwise it represents 0. The

random numbers are generated by a linear-feedback shift register (LFSR) that works as an

RNG. The LFSR and the comparator can be removed if the output sequence is not used for

further stochastic computation.

6.3.2 Formulation of SC-GDC

To train a learning machine by using GD, the loss function is defined first. The quadratic

error between the inferred value and the target value is a commonly used loss function,

102



Registers

LFSR

Cin

n copies of bi

ai

n-bit
adder

Ci

n

Sum

Output 
sequencen

n

Comparator

Figure 6.2. Circuit design of a stochastic integrator.

which is also known as the LMS error, given by

L(wi) = 0.5[ti−F(wi,xi)]
2. (6.8)

The gradient is the partial derivative of the loss function as per (6.2). For wi, j, it is the

partial derivative of the loss function with respect to wi, j, i.e.,

∂L(wi)

∂wi, j
=−∂F(wi,xi)

∂wi, j
ti +

∂F(wi,xi)

∂wi, j
F(wi,xi). (6.9)

Equation (6.3) is then transformed to

wk, j = w0, j−η
k−1

∑
i=0

[−∂F(wi,xi)

∂wi, j
ti +

∂F(wi,xi)

∂wi, j
F(wi,xi)]. (6.10)

As shown in Fig. 6.1, two AND gates are used to implement the multiplications in (6.9),

and we have

E[ai] =
∂F(wi,xi)

∂wi, j
ti = f−(i),

E[bi] =
∂F(wi,xi)

∂wi, j
F(wi,xi) = f+(i),

(6.11)

where ai and bi are the two output bits of the AND gates and functions f+(i) and f−(i)

contain the gradient information of training sample i. Then, sequences a and b can be

considered as DSS’s encoding f−(i) and f+(i) respectively. On the other hand, since each

training sample is randomly picked for each iteration or for different i, f+(i) and f−(i) are

random signals. Sequences a and b encoding the gradient information are, sebsequently,

used as the inputs for the stochastic integrator to implement the accumulation in (6.10). As

per (6.7) and (6.11), the expectation of the value encoded by the counter at the kth clock

cycle is given by

E[Pk] = P0 +
1
2n

k−1

∑
i=0

[
∂F(wi,xi)

∂wi, j
ti− ∂F(wi,xi)

∂wi, j
F(wi,xi)]. (6.12)
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As per (6.10) and (6.12), if the counter is initialized with the value of w0, j, then the

proposed SC-GDC provides an unbiased estimate to the weight to be optimized with a step

size of 2−n, i.e.,

E[Pk] = wk, j, for η = 2−n and P0 = w0, j. (6.13)

Therefore, the SC-GDC is used to perform GD-based online learning, and the weights

are stochastically optimized by the SC-GDC. Each bit from the DSS accounts for 2−n in the

unbiased estimate of the optimized weight and the randomness of each bit can be canceled

out during the accumulation. As a result, this method leads to a high accuracy using a DSS

encoding the gradient of the training samples.

6.4 Error analysis

6.4.1 Single-step variance for SC-GDC

The variance of the estimated weights produced by the SC-GDC is obtained by analyzing

the probability mass function (PMF) of the result by one-step optimization, i.e., the value

of wi+1 updated from wi. For the proposed unipolar design in Fig. 6.1, let Y = F(wi,xi),

X = ∂F(wi,xi)/∂wi, j, and T = ti for simplicity; further let ys, xs and ts be the stochastic

bits encoding these values, generated by the three SNGs. Thus, E[ys] = Y , E[xs] = X and

E[ts] = T . ys and xs are independently generated to ensure the correctness of the

multiplications, so are ts and xs. However, ys and ts are not necessarily independent. If ys

and ts are independently generated, the PMF of wi+1 is listed in Table 6.1. As per (6.5),

only when ts =1, xs =1 and ys =0, is wi increased by 2−n. When ts =0, xs=1 and ys =1, wi

is decreased by 2−n; otherwise, wi does not change.

The variance of a random variable x is given by

Var[x] = E[(x−E[x])2]. (6.14)

Table 6.1. Probability distribution of wi+1 when ys, xs and ts are independently generated.

wi+1 Probability

wi−2−n (1−T )XY
wi 1−T X−XY +2T XY
wi +2−n (1−Y )T X
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As per Table 6.1 and (6.14), the variance of wi+1 is computed as

Varind[wi+1] = 2−2n[XY (1−XY )+T X(1−T X)+2TY X(1−X)]. (6.15)

However, when the same RNG is used to generate ys and ts, they are not statistically

independent. The variance of wi+1 can be computed similarly by using its PMF. The

variance of wi+1 is directly given here, by

Varshare[wi+1] = 2−2n(|T −Y |X)(1−|T −Y |X). (6.16)

The variance is reduced by 2−2n+1 min{T,Y}(1−max{T,Y}) compared to the case

when ys and ts are independently generated. Therefore, it reduces the variance, thus

improving the accuracy when using the same RNG to generate stochastic bits ys and ts.

6.4.2 Multiple-step variance bound

If every stochastic bit is independently generated at each step, i.e., they are temporally

independent, the multi-step variance is the summation of the single-step variances [141].

When the RNG is shared, the maximum single-step variance is 2−2n−2 only when |T −
Y |X = 0.5. Thus, the variance bound of the estimated optimized weights after k steps is

given by

Varbound[wk] = 2−2n−2k. (6.17)

As per (6.17), the variance bound exponentially decreases with the bit width n. When

the bipolar representation is used, the variance can be derived similarly, and the bound is

given by 2−2nk.

6.5 Applications

6.5.1 System identification using least-mean-square adaptive filters

To assess the efficiency of the proposed SC-GDC, it is used in an LMS AF for system

identification. The block diagram of an AF is shown in Fig. 6.3. An AF system consists

of a linear filter and an optimization module that adjusts the weights of the linear filter. It

can be considered as a simple learning machine with one neuron and a linear activation
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function. An AF has been implemented in approximate arithmetic circuits as a cerebellar

model to control eye movement [142, 143].

In an AF system, the output of the linear filter at the ith step, yi, is given by

yi = F(wi,xi) = wixi = ∑M−1
j=0 wi, jxi−M+ j+1, (6.18)

where M is the length of the filter; wi is a vector of M weights, wi = [wi,0,wi,1, ...,

wi, j, ...,wi,M−1]; and xi is the input vector at the ith step, xi = [xi−M+1, ...,xi−M+ j, ...,xi]
T.

The desired signal, ti, guides the estimation of the weights in the target system [144].

Linear filter with 
weights wi

LMS weight 
update unit

yi +
- ti+

ei

xi 

Δwi  

Figure 6.3. An AF.

In the LMS algorithm, the loss function is the quadratic error between ti and yi, which

is given by (6.8) with F(wi,xi) = yi = wixi. As per (6.18), ∂F(wi,xi)/∂wi, j = xi−M+ j+1.

Thus, the weight update unit is constructed from the SC-GDCs as shown in Fig. 6.4. M

SC-GDCs are used to minimize the loss function and hence, to estimate the weights of the

target system.

+ - + - + -

wi,jwi,1 wi,M

xi-M+j+1 xixi-M+1

ti

yi

RNG1

RNG2
  

  

  
Comparator:

Figure 6.4. LMS weight update unit using SC-GDCs.

Since xi, wi and yi take values within [−1,1], the bipolar representation is used. Thus,

the stochastic multipliers are implemented by XNOR gates. The DSS’s encoding yi, ti and
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xi are generated by the RNGs and comparators. As discussed in Section 6.4, to reduce the

variance as well as the hardware cost, the RNG is shared to generate the sequences for yi

and ti. As the M SC-GDCs are independent of each other, the RNG generating sequences

for the vector xi is also shared. For the same reason, the stochastic sequences encoding yi

and ti are, respectively, shared among different SC-GDCs.

6.5.2 Handwritten-digit recognition using softmax regression

A softmax layer is usually the output layer in NNs for multi-class classification, which can

be trained by using the GD algorithm. A softmax layer by itself can be considered as a

learning machine, which can perform classification of a relatively simple dataset. Fig. 6.5

shows an SR model, where wm, j denotes the weight of the connection between the jth input

and the mth neuron. The output of the neurons a = [a1, . . . ,aM]T is given by

a = wx =

⎡
⎢⎢⎢⎣

w1,1 w1,2 · · · w1,J
w2,1 w2,2 · · · w2,J

...
... . . . ...

wM,1 wM,2 · · · wM,J

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1
x2
...

xJ

⎤
⎥⎥⎥⎦ . (6.19)

The probability of input x belonging to class m, P(x ∈ m|w), is then estimated by the

softmax function [145],

ym = P(x ∈ m|w) =
eam

∑M
k=1 eak

. (6.20)

x1

xJ

 

Softm
ax function

Classification
resultInput layer

 

ym

 

y1

yM

xj

Weights

   

Neurons
a1 

am 

aM 

Figure 6.5. An SR model.

The loss function of an SR model is evaluated by the cross entropy, given by [145]

Lce(w) = ∑M
m=1−tm logym, (6.21)
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where m is the class label, and tm is the actual classification result in a one-hot code. tm is 1

when the input data belongs to class m; otherwise, it is 0. The partial derivative of the cross

entropy with respect to wm, j is obtained by

∂Lce(w)

∂wm, j
=

∂Lce(w)

∂ym

∂ym

∂am

∂am

∂wm, j
=−(tm− ym)x j, (6.22)

which is similar to the gradient of the quadratic error loss function. Thus, a GD-based SR

unit can be implemented by using an SC-GDC array with ym, x j and tm as its inputs. Since

x j, tm,ym ∈ [0,1], the unipolar SC-GDCs are used. The SR unit is shown in Fig. 6.6 for

training the MNIST handwritten-digit dataset.
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Figure 6.6. An SC-GDC array for the training of the SR model.

In Fig. 6.6, the input samples are 28× 28 gray-scale images, which are flattened into

vectors of 784 values. There are 10 classes of digits, so 784× 10 weights are to be

optimized by at least 784×10 SC-GDCs if the weights are updated in parallel. The RNGs

and comparators are shared to the maximum extent to reduce the hardware cost and
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improve the accuracy as in the LMS weight update unit. Thus, two independent RNGs are

used.

At clock i, one of the training samples, image i, is loaded to the SR model.

Corresponding triples {tm,i,ym,i,x j,i} are computed and connected to the SC-GDC array.

Meanwhile, in the SC-GDC array, {tm,i,ym,i,x j,i} are stochastically binarized and the

DSS’s encoding the gradient information are used to update the weights stored in the

stochastic integrators. Since only one clock cycle is used to train one image and to update

the weights, the performance of the SC-GDC array is much higher than conventional

stochastic circuits where a long sequence is usually used to ensure the accuracy.

However, if a counter needs to count beyond the maximum/minimum value it can reach,

an overflow occurs. In this design, an overflow is avoided by adding extra bits and using the

2’s complement representation. For example, for an 8-bit counter, it can encode a negative

number or a number larger than 1 by adding 2 bits to its most significant bit, e.g., “01 0000

0001” encodes 257/28 and “11 1111 1111” encodes −1/28 in the extended counter. If

the weights are still out of the representation range of the extended counter in some other

applications, the counter can always be further extended.

6.6 Experiments and results

6.6.1 Accuracy evaluation

System identification using an LMS AF

The proposed LMS weight update unit is used to perform system identification for a high

pass finite impulse response (FIR) filter (target system) with 103 weights, so 103 SC-GDCs

are required. Pseudorandom numbers are used to generate the DSS’s for the simulations of

the LMS AF and also the designs below. The frequency response of the AF after training is

shown in Fig. 6.7. It indicates that the results produced by the SC-GDCs are very close to

the target system. After 220 steps of training using a 15-bit counter1 (for a step size of 2−15),

the root-mean-squared error (RMSE) between the optimized and actual weights is around

6.45× 10−4, and the maximum absolute error is 2.90× 10−3 for 100 runs. According to

1Since the weights used in the AF are within [−1,1], a wrapping counter can be used without overflow.
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the 3-σ rule and the theoretical bound of variance derived in Section 6.4, the maximum

error, in this case, is under the 3-σ bound, i.e., 2.90×10−3 � 3×
√

220/22×15.
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Figure 6.7. System identification results.

Handwritten-digit recognition using SR

The proposed SR unit in Fig. 6.6 is used to recognize the handwritten digits in the MNIST

dataset. 60,000 images are used for training by using the SC-GDCs, and 10,000 images

are used to evaluate the optimized weights without cross-validation. In the SC-GDCs, 9-

bit saturating counters are used for the experiments with the highest bit representing the

integer and the remaining bits representing the fractional part.2 The weights are initialized

with random values.

An epoch of training is completed when the model is exposed to every training sample

exactly once. The recognition accuracy and the cross entropy are shown against the number

of training epochs in Fig. 6.8. The accuracy and cross entropy are reported every 10,000

steps or training samples.

Fig. 6.8(a) shows that the optimized weights produce a recognition accuracy around

92% for both the training and test data, which is similar to a software implementation

using the same SR model [145]. The cross entropy converges rapidly at the first 10,000

samples and it becomes stable after about 4 epochs of training.

2A saturating counter is used so that the value represented by the counter is limited between [0,2).
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Figure 6.8. (a) Recognition accuracy and (b) cross entropy using the SC-GDCs.

6.6.2 Hardware evaluation

The hardware efficiency of the proposed SC-GDC is evaluated in terms of speed,

throughput and energy consumption. The proposed designs are implemented in VHSIC

Hardware Description Language (VHDL) and synthesized in Synopsys Design Compiler

(DC) with a 28-nm STM process. The other parameters and settings are listed in

Appendix A. As per the formulation of the SC-GDC, one training sample is loaded to the

circuit per clock cycle, and it does not require a long sequence to compute one result as in

a conventional SC circuit. Therefore, the proposed design is more efficient than the

conventional SC design.

The GD algorithm can be considered as walking from point A (initial weights) to point

B (optimal weights) in a high-dimensional space. A larger step size leads to a smaller

number of steps to reach point B, thus to a lower latency for the gradient descent circuit.

Therefore, to optimize the energy efficiency and speed, a larger step size is preferable.

However, if the step size is too large, the optimal point could be missed. It then may incur

instability. Therefore, for a fair comparison, the maximum step size in a power of 2 that

does not incur instability is used for each application by an exhaustive search, so that their

energy efficiency and speed are optimized.
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LMS weight update unit

The LMS weight update unit is compared with an existing SC design [51] and a fixed-

point implementation for the same task. The fixed-point GD circuit is shown in Fig. 6.9,

consisting of a subtractor, a multiplier, a shifter, an adder and registers. The shifter is used

as a multiplier for multiplying the step size, 2−k, where k is a positive integer.

-
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wi
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 R
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wi+1

Figure 6.9. Fixed-point LMS weight update circuit.

The accuracy of the fixed-point circuit and the proposed design is matched by observing

the convergence of the misalignment. The misalignment is defined as the normalized mean

squared error between the optimized weight ŵ and the actual value w of the target system,

Misalignment =
E[(w− ŵ)2]

E[w2]
. (6.23)

The convergence curves in misalignment are shown in Fig. 6.10.
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Figure 6.10. Convergence curves in misalignment of the (a) SC-GDC-based and (b) fixed-
point LMS weight update units.

For the stochastic design, the step size is 2−11 by using 11-bit counters in the SC-

GDCs. Fig. 6.10(a) shows that the misalignment for the stochastic design converges to
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-23 dB after about 64,000 steps of training. For the fixed-point circuit, a 16-bit design3 is

used with a step size of 2−6, and the misalignment converges to around -23 dB after about

1,100 steps. One hundred simulations are performed to measure the average minimum

steps required for the misalignment to decrease to -23 dB. The average minimum steps

and the critical path delay are then used to estimate the minimum computation time (“Min.

time” in Table 6.2). Also, the energy per operation (EPO) is used to evaluate the energy

consumption for training one sample, and the total energy is used to measure the energy

cost of the circuits for the whole training process. The TPA is used to evaluate the hardware

efficiency by computing maximum number of samples that can be trained by the circuit per

unit time and per unit area.

The results in Table 6.2 show that the proposed stochastic design consumes only about

0.047% of the total energy and 0.1% of the computation time of the stochastic design in

[51] with a higher accuracy. Compared to the fixed-point implementation, the proposed

design achieves 87.4% energy saving for each training sample and 35.3× TPA. However,

the large number of steps leads to a large total energy cost for the proposed design.

Table 6.2. Hardware evaluation of the LMS weight update units.

Metrics SC-GDCs [51] 16-bit Fixed-point Ratio
Step size 2−11 2−10 2−6 -
Steps 58504 16384 912 -
Min. time (ns) 6.0×104 6.5×107 3.6×103 17:18056:1
EPO (fJ) 1.2×104 9.1×107 9.5×104 1:7583:8
Total energy (fJ) 7.0×108 1.5×1012 8.8×107 8:17045:1
TPA (Sa./μs/μm2) 6.7×10−5 1.0×10−8 1.9×10−6 6700:1:190
Misalign. (dB) -23 -6 -23 -

SR unit

For the SR unit, the design in [146] realizes only the inference phase of an SR. To the best of

our knowledge, no previous stochastic design is available for training an SR model, thus the

proposed design is only compared with a fixed-point implementation using the GD circuit

in Fig. 6.9. The weights are considered as converged when the cross entropy is below 0.3.

3According to our experiments, 16-bit width for the fixed-point truncation-based implementation is the
minimum width that does not incur divergence of the naïve GD algorithm. It also applies to the below
applications.
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The proposed design takes about 4 epochs to converge when the step size is 2−8, whereas

2 epochs are required for the fixed-point design with a step size of 2−7. One epoch takes

60,000 clock cycles for both the stochastic and fixed-point circuits. The training samples

are randomly shuffled at each epoch. Since the RNGs and the comparators are shared

among the SC-GDCs, they are omitted in the hardware simulation. As shown in Table 6.3,

the hardware evaluation results indicate that the proposed design costs 42.55% computation

time of its fixed-point counterpart without any accuracy loss (“Aver. test Accu.” in the

table). Meanwhile, 84.4% total energy saving and more than 70× TPA are achieved by

using the SC-GDCs. The small difference in accuracy could be caused by the random

initialization and different order of the image samples.

Table 6.3. Hardware evaluation of the SR units.

Metrics SC-GDCs 16-bit Fixed-point Ratio
Step size 2−8 2−7 -
Epochs 4 2 -
Area (μm2) 7.2×105 1.1×107 0.07:1
Min. time (ns) 2.0×105 4.7×105 1:2.35
EPO (fJ) 5.9×105 7.5×106 1:13
Total energy (fJ) 1.4×1011 9.0×1011 1:6.4
TPA (images/s/μm2) 1.6×103 2.3×101 70:1
Aver. test Accu. 91.76% 91.73% -

6.6.3 Discussion

The hardware evaluation results indicate that for weight estimation tasks such as system

identification, the proposed stochastic design using SC-GDCs obtains an adequate

accuracy, although it takes a larger number of steps than its 16-bit fixed-point counterpart.

However, for applications such as image recognition that can tolerate more errors, the

number of epochs required for the proposed stochastic design and conventional

fixed-point design are on the same level, which indicates a high-performance and

energy-efficient stochastic design. However, the accuracy of the image recognition of the

MNIST dataset is quite low (around 92%) compared to the state-of-the-art result (around

99%). This is due to the inherent simplicity of the SR model rather than the training

method or the SC-GDC. Next, a complex NN model that produces higher recognition
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accuracy is used to test the performance of the SC-GDCs, where hundreds of thousands of

weights are to be optimized.

6.7 Signed SC-GDC units training complex NNs

6.7.1 Background for back-propagation

An NN consists of a set of neurons and the connections between them; the neurons are

typically organized layer-by-layer. Fig. 6.11 shows an NN with one input layer, two hidden

layers and one output layer. The output signals of an NN are generated based on the input

signals and the weights of the connections. For an image recognition task, the input signals

are the pixels of an image, and the output signals are the classification results. To produce a

correct classification for an image, a GD algorithm can be used to train an NN by adjusting

the weights of the connections. However, for the hidden layers in an NN, the target value

and the loss function cannot be computed directly. Typically, it requires both forward- and

backward-propagation (FP and BP) algorithms to obtain the gradients.
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Figure 6.11. (a) A multilayer NN. (b) The function of a neuron during FP.

In FP, each neuron computes the weighted sum of the outputs from the previous layer

(or the training data from the input layer). An activation function is then used to decide

whether the neuron is activated based on the weighted sum result as shown in Fig. 6.11(b).

The output layer is usually a softmax layer for a multi-class classification task. During FP,

the weights remain unaltered.
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In BP, the error signals, {e j}, are first obtained as the differences between the outputs

and the class-labels of the training data,

e j = t j− y j, (6.24)

where y j is the jth output of the NN and t j is the target output, i.e., the actual class-label

in one-hot code. t j is 1 when the input data belongs to class j; otherwise, it is 0. Then, the

local field, δ (l)
j for neuron j in layer l is computed using the error signals and the weights

by

δ (l)
j =

⎧⎨
⎩

e j for neuron j in output layer

f ′(v(l)j )∑
m

δ (l+1)
m w(l+1)

m, j for neuron j in hidden layer l, (6.25)

where v(l)j is the weighted sum of neuron j in layer l,

v(l)j = ∑
h

w(l)
j,hy(l−1)

h . (6.26)

w(l)
j,h denotes the weight of the connection between neuron h in layer l−1 and neuron j in

layer l. When neuron j is in the softmax output layer, its local field equals the error signal,

as shown in the first equation in (6.25). The signal flow of the local field during BP in an

NN is shown in Fig. 6.12.
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Figure 6.12. (a) The signal flow of local fields during BP. (b) The local field is given by
the product of the derivative of the activation function and the weighted sum of local field
from the next layer.

Then, the gradient with respect to each weight is given by

∇w(l)
j,h =−δ (l)

j y(l−1)
h . (6.27)
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Note that when l = 1, y(l−1)
h is the training data from the input layer.

Finally, the GD algorithm can be used to optimize the weights with the gradient function

of ∇w(l)
j,h.

6.7.2 Design of signed SC-GDCs

In an NN, data are usually normalized to have a mean of 0 and the weights are initialized

with small random numbers near 0 to improve the training efficiency [139]. This results

in a lot of near-0 intermediate results during the computation. Meanwhile, the bipolar SC

suffers the most from accuracy loss when representing near-0 numbers due to its large

variance [119]. The reason is as follow. Let the probability of 1’s in a stochastic sequence

be p. The variance of the sequence is given by p(1− p)/L, where L is the sequence length.

When p = 0.5, the variance reaches its maximum value, which indicates a possibly large

error. For the bipolar representation, x = 2p− 1 (x ∈ [−1,1]). So the stochastic sequence

encodes x in the least accurate manner when x = 0 (or p = 0.5). It means that using the

bipolar representation will dramatically increase the variance of the results, thus leading to

increased error. However, it is necessary to be able to encode negative numbers by using

stochastic sequences in this application. Thus, instead of using the bipolar representation,

a sign bit is added to the unipolar representation to encode a negative number, which leads

to the sign-magnitude representation [69]. The variance p(1− p)/L approaches 0 when p

(or x) approaches 0 when using the unipolar representation. In this way, the variance is

very small for the encoded values near 0, so the computed results are more accurate than

the ones using the bipolar representation.

The stochastic circuits are adjusted to work with the sign-magnitude representation.

The signed SNG and multiplier are shown in Figs. 6.13(a) and (b) respectively. In the

signed SNG, the n-bit input x is in 2’s complement. Thus, the sign bit for x is its most

significant bit, x[n− 1], denoted as Xsign. The absolute value of a negative number, |x|, is

approximated by flipping all bits using inverters. The RNG and the comparator are then

used to generate the magnitude bit, X . In the signed multiplier, the XOR gate is used to

compute the sign bit and the AND gate serves as a unipolar stochastic multiplier. The

symbol of a signed stochastic integrator using the sign-magnitude representation is shown

in Fig. 6.13(c). The counter in the signed stochastic integrator updates its value according
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to Table 6.4. In this way, the signed stochastic integrator implements the same function as

an ordinary stochastic integrator for (6.4), where ai and bi can take either 0, -1 or +1.

RNG
Unipolar stochastic 

sequence encoding |x|, X

0101100…B

A
A<B

n

n

Sign bit, Xsign

Y

Xsign
Ysign

X

(a)

(b)
Y

Xsign

Ysign

X

C

(c)

Psign

P

+

-

x M
U

X

≈-x

0
1

x[n-1]

Figure 6.13. (a) A signed SNG. (b) A signed stochastic multiplier. (c) A symbol of signed
stochastic integrator.

Table 6.4. The logic of signed stochastic integrator.

Ci+1 Asign A Bsign B Ci+1 Asign A Bsign B
Ci 0 0 0 0 Ci 1 0 0 0
Ci-1 0 0 0 1 Ci-1 1 0 0 1
Ci 0 0 1 0 Ci 1 0 1 0
Ci+1 0 0 1 1 Ci+1 1 0 1 1
Ci+1 0 1 0 0 Ci-1 1 1 0 0
Ci 0 1 0 1 Ci-2 1 1 0 1
Ci+1 0 1 1 0 Ci-1 1 1 1 0
Ci+2 0 1 1 1 Ci 1 1 1 1

The signed stochastic integrator takes “differential” signals to update its value, i.e., one

signal to increase the value and another to decrease the value. Thus, the local field signal

in (6.25) has to be rewritten as a differential pair to work with the stochastic integrator. By

applying the distributive law of multiplication, (6.24) and (6.25) are combined and rewritten

as

δ (l)
j,+ =

⎧⎨
⎩

t j for neuron j in output layer

f ′(v(l)j )∑
k

δ (l+1)
k,+ w(l+1)

k, j for neuron j in hidden layer l,

δ (l)
j,− =

⎧⎨
⎩

y j for neuron j in output layer

f ′(v(l)j )∑
k

δ (l+1)
k,− w(l+1)

k, j for neuron j in hidden layer l,

(6.28)
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and δ (l)
j = δ (l)

j,+−δ (l)
j,−. Thus (6.27) can be rewritten as

∇w(l)
j,h =−(δ (l)

j,+−δ (l)
j,−)y

(l−1)
h . (6.29)

As per the formulation of the SC-GDC, the signed SC-GDC is proposed to calculate the

gradients and to update the weights as shown in Fig. 6.14. In a signed SC-GDC, two signed

stochastic multipliers and a signed stochastic integrator are used. Also, the magnitude

stochastic bits of δ (l)
j,+ and δ (l)

j,−, i.e., the unipolar stochastic sequences encoding |δ (l)
j,+| and

|δ (l)
j,−| are generated by the same RNG to reduce hardware cost and variance of the results.

It is assumed that δ (l)
j,+ and δ (l)

j,−, i.e., the local fields are available to the signed SC-GDC by

a BP. It means that (6.28) is computed by other methods (such as a systolic array) other than

SC, because it results in a significant accuracy loss if the entire BP algorithm is computed

in SC. However, the updating of the weights is purely implemented by using the signed

SC-GDCs. The overflow of the counters is handled in a similar manner to the SR units.

+

-B

Asign

Bsign

A

δj,+
(l)

sign bit

δj,+
(l)

magnitude bit

δj,-
(l)

sign bit

δj,-
(l)

magnitude bit

yh
(l-1)

sign bit

yh
(l-1)

magnitude bit

wj,h
(l)

Figure 6.14. Proposed signed SC-GDC. The magnitude bit is a unipolar stochastic bit used
to encode the absolute value of the number.

6.7.3 Handwritten-digit recognition

The MNIST handwritten-digit dataset is used to test the effectiveness of the proposed

signed SC-GDCs. The input data are pre-processed to have a mean value of 0. A

784-128-128-10 fully connected NN is used and hyperbolic tangent (tanh) function is

selected as the activation function for the hidden layers, which is given by

y = tanh(x) =
ex− e−x

ex + e−x , (6.30)

and its derivative function is

tanh′(x) = 1− y2. (6.31)
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For this activition function, f ′(v(l)j ) in (6.28) is given by (6.31). “Fully connected”

means that each neuron in layer l has connections with every neuron in layer l − 1.

Typically, a fully connected NN has more complex connections to be trained, while a

convolutional neural network (CNN) has sparse connections between two adjacent

convolutional layers. So, training a fully connected NN can be a more challenging task for

the proposed circuitry than training a CNN. Therefore, a fully connected NN is selected

instead of a CNN to evaluate the proposed design, though CNN has a better test accuracy

in most cases. However, the basic processes of training a fully connected NN and a CNN

are similar, i.e., computing the gradients and applying an optimization algorithm, such as

the GD, to compute the weights. Therefore, once the gradients are obtained, the proposed

method can potentially be used to train a CNN as well. However, some modifications are

required to implement a modified GD algorithm for a CNN, such as GD with momentum

and adaptive step size.

Similar to the circuit for the training of the SR model in Fig. 6.6, an array of signed

SC-GDCs are used to train the weights in all layers. In total, 784× 128+ 128× 128+

128×10 = 118016 weights and 128+128+10 = 266 biases are trained by 118282 signed

SC-GDCs. Only the “naïve” GD algorithm in (6.1) is considered to train the NN model.

Other optimization techniques and variants of the GD algorithm, such as cross-validation,

weight regularization, momentum terms and adaptive optimization, are not considered. The

array of signed SC-GDCs works in the same manner as in the SR training unit. One clock

cycle is required to train one sample. Also, the RNGs and comparators can be shared

among the inputs and two RNGs are sufficient to generate the stochastic sequences: one

for {y(l−1)
h }; one for {δ (l)

j,+} and {δ (l)
j,−}. So, the cost of SNGs is omitted. The proposed

circuit for the training of a multilayer NN is shown in Fig. 6.15. The signed SC-GDCs are

organized layer-wise to show their connections and signals instead of the actual mapping

of the circuit. The rightmost column of the signed SC-GDCs in each layer is used to train

the biases, which can be considered as “weights” with an input of constant 1. Hence, the

input signals, y(l−1), for these SC-GDCs encode a 1.
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6.7.4 Experiments and results

The average test accuracy and cross entropy against epoch are shown in Fig. 6.164. It

illustrates that the stochastic circuit using the bipolar representation has a relatively slow

convergence for the cross-entropy, thus leading to a low accuracy. Unless the model is

trained with a smaller step size, the test accuracy produced by the bipolar stochastic

circuits remains at below 95% after 20 epochs. Compared to the fixed-point

implementation, the signed SC-GDCs produce a slightly lower accuracy with the same

step size of 2−10; however, it has a similar convergence speed. A double precision

floating-point implementation is also compared as a reference; it shows a similar accuracy

to the fixed-point design.
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Figure 6.16. (a) Test accuracy and (b) cross entropy produced by the signed SC-GDCs, the
bipolar SC-GDCs and the fixed-point implementation.

Fig. 6.17 shows the classification accuracy and cross entropy for different widths of SC-

GDCs, for which 8-, 10- and 12-bit SC-GDCs with the same initial values for weights are

considered. The 8-bit design converges the fastest during the first few epochs. However,

due to the large step size (1/28), it loses its advantage in accuracy after a few epochs to

the 10-bit design, and converges to a slightly lower value. On the other hand, the 12-bit

design can produce a finer estimate of the optimal weights. However, it takes a longer time

to converge, which would incur a higher energy consumption.
4Saturating counters are used here in a fixed-point manner (1 sign bit, 1 most significant bit for the integer

part and the other bits for the fractional part), such that they return values within [−2,2) for both software
and hardware simulations.
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Figure 6.17. (a) Test accuracy and (b) cross entropy produced by the signed SC-GDCs with
different widths.

The hardware cost of the circuits are measured and estimated as shown in Table 6.5 by

using the same method as for the AF and SR applications. The fixed-point implementation

used for comparison is shown in Fig. 6.9, where the additions and accumulations are

implemented by fixed-point circuits. Table 6.5 shows that the signed SC-GDC-based

design consumes 10.9% of the energy and 25.5% the computation time of the fixed-point

implementation, while providing about 38 times TPA, with a similar test accuracy5 The

total sequence length of the DSS’s for training 60,000 images for 20 epochs is

60,000×20=1,200,000, and it takes the same amount of accumulations for the fixed-point

implementation to accomplish this.

6.7.5 Related work and discussion

In [28], extended stochastic logic is used to implement both FP and BP of a multilayer

perceptron. By using a binary search, a reconfigurable stochastic computational activation

unit and an LFSR sharing scheme, the design achieves lower area and energy consumption

compared to the binarized neural network, and the floating- and fixed-point

5The results are slightly different from [120] since the overflow is not considered in a single SC-GDC
in [120] while the overflow is avoided by a saturating counter here. It is assumed that an overflow causes
an interrupt and can be processed by a higher level controller in [120], which is more practical due to the
rare occurrence of the overflow. Additionally, we found that the comparators can be shared among the SC-
GDCs, so they are not considered here, which is different from [120]. Detailed comparisons are shown in
Appendix B.
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Table 6.5. Hardware evaluation of the signed SC-GDC array training a 784-128-128-10
neural network.

Metrics Signed SC-GDCs 16-bit Fixed-point Ratio
Step size 2−10 2−10 -
Epochs 20 20 -
Area (μm2) 1.3×107 1.7×108 0.08:1
Min. time (ns) 1.6×106 4.7×106 1:3
EPO (fJ) 1.2×107 1.1×108 1:9.2
TPA (image/s/μm2) 5.7×101 1.5 38:1
Aver. test Accu. 97.04% 97.49% -

implementations. With a similar network size and structure, a similar accuracy is obtained

in this chapter compared to [28]. However, a relatively long sequence is required for [28]

to achieve a high accuracy, which incurs a long latency. Specifically, 256 clock cycles

with 16× parallelization are required to handle one image with a maximum operation

frequency of 112.4 MHz, while it takes only 1 clock cycle in this work to accomplish the

gradient accumulation of one training sample with a maximum operation frequency of

1.03 GHz. Also, the use of extended stochastic logic in [28] requires an extra stochastic

divider and more computation time to convert a stochastic sequence back to a binary

number. However, a converter is not required in this design since the value stored in the

SC-GDCs is already in 2’s complement format.

In [137], the weights and activations are binarized to +1 or -1 to reduce the power

consumption and hardware resources. However, the binarization is only applicable to the

FP of an NN. In fact, by using real-valued variables and gradient during the training

process, a larger workload is imposed on training binarized weights and activations.

Compared to [137], this chapter focuses on the efficient training of an NN by stochastic

binarization of the gradient instead of the weights and activations. Also, dedicated

hardware using stochastic circuits are proposed to perform the GD algorithm. It makes the

SC-GDC applicable to most optimization tasks that can be solved by a GD algorithm,

such as system identification that clearly cannot be solved by binarizing the weights.

Recently, a TernGrad method is proposed to reduce the communication cost for

synchronizing gradients and parameters in distributed training [138]. In TernGrad, the

gradient is compressed to only three levels, {−1,0,+1}, stochastically. Compared to
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[138], this work focuses on enhancing the computation efficiency instead of reducing the

communication cost. Therefore, the activations and local fields used for training the NN

are stochastically binarized, and the stochastic bits are used in the computation of

gradients by stochastic circuits instead of fixed- or floating-point multipliers and adders.

Due to the simplicity of the proposed stochastic circuits, significant energy saving and

hardware efficiency are achieved compared to conventional arithmetic circuits. Generated

by the stochastic circuits, the stochastic bits encoding the gradients in an SC-GDC are

similar to the ternary gradients, and can be directly used to reduce the communication

cost.

The proposed design can also be adapted to deal with more complex learning tasks.

For example, to implement a variant of GD algorithm using a dynamically adjustable step

size, an additional stochastic sequence can be used to encode the step size. Then, one

more stochastic multiplier can be used for the SC-GDC to multiply the additional

stochastic sequence. To implement batch learning, multiple stochastic sequences encoding

the gradient information can be used as the inputs of the SC-GDCs. It resembles a spiking

neuron, in which the probability of an action potential occurring in a postsynaptic neuron

is determined by multiple excitatory and inhibitory synapses in the presynaptic neurons.

6.8 Summary

In this chapter, a novel SC-GDC for online learning is proposed by using stochastic circuits

to implement the GD algorithm. By encoding the gradient information using DSS’s, the

SC-GDC provides an unbiased estimate for the optimized weights in a learning algorithm.

The proposed SC-GDC units are then utilized in system identification and handwritten-

digit recognition using an SR model. Compared to a conventional SC system identification

design, the proposed design provides 6.7×103 times TPA improvement, 1000× speed-up

and 99.9% energy reduction. For the SR model, the proposed SC-GDC consumes 42.6%

of the computation time and less than 16% of the energy with more than 70× of the TPA

of a 16-bit fixed-point design, while providing a similar accuracy.

Moreover, a signed SC-GDC is proposed to improve the accuracy of the bipolar SC-

GDC; it is then used to implement the training of a complex NN. For a 784-128-128-10

fully connected NN, the use of the sign-magnitude representation significantly improves
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the accuracy of SC, thus leading to a faster convergence compared to the use of the bipolar

representation. Compared to its fixed-point counterpart, a similar accuracy is obtained

while 89.1% energy saving per training sample, 66% reduction in training time and about

38× improvement in TPA are achieved.

The proposed circuitry can be useful for online learning systems where real-time

interaction with the environment is required [147] with an energy constraint. It can also be

used to train a machine learning model using private or security-critical data on mobile

devices if data are sensitive and cannot be uploaded to a cloud computer.
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Chapter 7

Conclusion and future work

7.1 Summary

In this dissertation, the basics and recent developments of stochastic computing (SC) are

first reviewed. Two novel schemes are proposed to improve the efficiency of an SC system

as well as the accuracy of an SC circuits, i.e., generating low-discrepancy (LD) stochastic

sequences using the Sobol sequences and by using the dynamic stochastic sequence (DSS).

To reduce the sequence length while maintaining a high accuracy, Sobol sequences are

used to generate LD stochastic sequences. Inspired by the average-over-pool coding

scheme in the brain and by exploiting the inherent parallelism of Sobol sequence

generation, a parallel Sobol-based stochastic number generator (SNG) is implemented to

further improve the energy efficiency and reduce the computation time. It is shown that

the stochastic circuits using 8× parallelism consume approximately 1% of the energy per

operation (EPO), achieves up to 89 times improvements in throughput per area (TPA), and

requires 1% of the runtime of the conventional linear-feedback shift register

(LFSR)-based non-parallelized circuits.

To achieve a high-performance and energy-efficient SC system, a DSS is proposed and

used in SC. In the DSS, each bit can have a different probability to be ‘1’ and a varying

digital signal (or equivalently, with different probabilities) can be encoded by the DSS.

The DSS is used for energy-efficient digital signal processing (DSP) applications, such as

frequency mixing, function generation and infinite impulse response (IIR) filtering. An

energy and time saving of up to 60% is obtained compared to a 6-bit conventional binary

circuit for a function estimation application when processing the same oversampled signal.
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However, when processing the same period of signals, the binary circuits consume much

lower total energy and require a shorter time using signals sampled at the Nyquist rate than

the dynamic stochastic computing (DSC) circuits using oversampled signals.

In addition, the DSS is efficiently used in the design of an ordinary differential

equation (ODE) solver and a stochastic computing-based gradient descent circuit

(SC-GDC). In these designs, an accumulation of the stochastic bits in DSS’s is

accomplished by a stochastic integrator that implements the Euler method and a gradient

descent algorithm. The randomness can be greatly reduced during the accumulation. A

higher energy efficiency, shorter runtime and a higher TPA than their fixed-point

implementation are observed in solving a non-homogeneous ODE, a set of ODEs, a

second-order ODE and training a softmax regression model with a similar accuracy.

Arrays of the stochastic ODE solvers and the SC-GDC are used to solve Laplace’s

equation and to train a fully connected neural network (NN), respectively. Furthermore,

the use of Sobol sequences in a stochastic ODE solver and DSP applications can improve

the accuracy of the computed results.

7.2 Future work

Although the proposed methods greatly improve the energy efficiency and performance

of the SC circuits, the improvements over their binary counterparts are not as significant.

There is still design space unexplored for SC to achieve an even higher energy efficiency

and performance.

The connection between SC and a spiking neuron is a topic of interest. In this thesis,

it is shown that that the proposed DSS is similar to a rate-coded spiking train in a neuron

and that the moving average circuit used as a signal reconstruction unit in Chapter 4 can

be utilized for decoding the information of a spike train based on rate coding. Similarly,

different types of neuronal coding schemes, such as temporal coding, can be studied and

used for high-performance and energy-efficient SC. On the other hand, by tracking the

behavior of an SC circuit using different neuronal coding schemes, insight could be gained

to understand how information is processed in the brain.
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The parallel Sobol-based stochastic sequence works similarly to the average-over-pool

coding in a neuron, and the stochastic integrator can be viewed as a spiking neuron with

one inhibitory and one excitatory synapse. As discussed in Chapters 4 and 6, this “naïve

neuron” can be used for IIR filtering and training an NN. Furthermore, a parallel

stochastic integrator with multiple inputs is used in a stochastic divider to achieve high

performance and energy efficiency in Chapter 3; however, it is a single arithmetic

component and far from being competitive with a real neuron in terms of the scale of

computing capacity. In reality, numerous synapses co-exist for ultra-high density

information processing in one neuron. So a parallel stochastic integrator-based circuit

with a higher degree of parallelization, i.e., with a larger number of inputs and more

complex connections, could be designed for more complex tasks such as deep learning.

Finally, a neuromorphic SC-based computer or accelerator could be built using

high-degree parallel stochastic integrators with reconfigurable logic and connections to

realize various functions.
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Appendix A

In this dissertation, all the circuits were implemented by VHSIC Hardware Description

Language (VHDL) code, and the functions were validated by circuit simulation and

MATLAB code. The functions of the circuits were simulated by using both MATLAB

R2018b and ModelSim SE-64 6.6c software.

The VHDL code was synthesized by Synopsys Design Compiler (DC) version

F-2011.09-SP4. A 28-nm low power bulk technology from STMicroelectronics with

regular threshold was used for the synthesis to measure the dynamic power consumption,

hardware cost and the critical path delay. The IC development kit and standard cell

versions are identified as “C32_SC_12_CORE_LR_C28@1.1@20111209.0”. The

temperature was set at 25 °C and the supply voltage was 1.0 V. The “typical-typical”

process corner was used for simulating the transistors. The wire cost was not considered

during the simulation.

When performing the simulations, the power consumption was measured at a clock

period of 4 ns. Since a default activity factor was used instead of computing the actual

activity factor in a stochastic computing (SC) circuit, a lower estimate of power

consumption for the SC circuits might be expected due to the frequent transitions between

‘0’ and ‘1’ in a stochastic sequence as opposed to conventional logic. A high-effort

compiler was used for all the designs with the default optimization option for overall

performance.
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Appendix B

The synthesis results of the 12-bit stochastic computing-based gradient descent circuits

(SC-GDCs) using wrapping and saturating counters are shown in Table B.1. The area,

power and critical path delay of the design using a saturating counter increase due to the

extra logic gates to detect the overflows compared to those of the design using a wrapping

counter.

Table B.1. Synthesis results of an SC-GDC training a neural network.

SC-GDC using wrapping counters saturating counters

Area (μm2) 106.2 113.3
Power (μW) 24.8 25.4

Critical path delay (ns) 1.1 1.3

The synthesis results of the 16-bit fixed-point implementations using wrap-around and

saturated values are shown in Table B.2. Although a slight increase in power consumption

is expected for a similar reason as in an SC-GDC, a slight reduction is observed for the

fixed-point designs using adders with saturated values for the accumulations of gradients.

This could be due to a random anomaly in the synthesis tools.

Table B.2. Synthesis results of a fixed-point implementation training a neural network.

Fixed-point implementation using wrap-around values saturated values

Area (μm2) 1402.5 1424.4
Power (μW) 240.0 236.0

Critical path delay (ns) 3.9 3.9

All the above results are obtained by using the settings listed in Appendix A.
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