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Abstract

Since 2013, Deep Neural Networks (DNNs) have caught up to a human-level per-

formance at various benchmarks. Meanwhile, it is essential to ensure its safety and

reliability. Recently an avenue of study questions the robustness of deep learning mod-

els and shows that adversarial samples with human-imperceptible noise can easily fool

DNNs. Since then, many strategies have been proposed to improve the robustness of

DNNs against such adversarial perturbations. Among many defense strategies, ad-

versarial training (AT) is one of the most recognized methods and constantly yields

state-of-the-art performance. It treats adversarial samples as augmented data and

uses them in model optimization.

Despite its promising results, AT has two problems to be improved: (1) poor

generalizability on adversarial data (e.g. large robustness performance gap between

training and testing data), and (2) a big drop in model’s standard performance. This

thesis tackles the above-mentioned drawbacks in AT and introduces two AT strategies.

To improve the generalizability of AT-trained models, the first part of the thesis in-

troduces a representation similarity-based AT strategy, namely self-paced adversarial

training (SPAT). We investigate the imbalanced semantic similarity among different

categories in natural images and discover that DNN models are easily fooled by ad-

versarial samples from their hard-class pairs. With this insight, we propose SPAT

to re-weight training samples adaptively during model optimization, enforcing AT to

focus on those data from their hard class pairs.

To address the second problem in AT, a big performance drop on clean data, the

second part of this thesis attempts to answer the question: to what extent the robust-
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ness of the model can be improved without sacrificing standard performance? Toward

this goal, we propose a simple yet effective transfer learning-based adversarial training

strategy that disentangles the negative effects of adversarial samples on model’s stan-

dard performance. In addition, we introduce a training-friendly adversarial attack

algorithm, which boosts adversarial robustness without introducing significant train-

ing complexity. Compared to prior arts, extensive experiments demonstrate that the

training strategy leads to a more robust model while preserving the model’s standard

accuracy on clean data.
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Chapter 1

Introduction

1.1 Motivation

Deep learning (DL) enables machines to learn from large scale of data and perform

human-like tasks. With the recent success of DL in computer vision (CV) and natural

language processing (NLP) areas, DL is beginning to provide more convenience and

flexibility in our daily lives. Many industrial products have managed to incorporate

DL techniques to improve their products, and solve problems that were impossible

to address with traditional software engineering. While lots of research has been

conducted to further advance the performance of DL algorithms, little attention has

been paid on the safety and security aspects of DL until recent years.

Szegedy et al. [1] first discovered an intriguing property of neural networks in

2014. Consider a state-of-the-art (SOTA) neural network that generalizes well on

the training dataset. They show that by adding some non-random, imperceptible

perturbation to a test image can arbitrarily change the output of the network. Such

perturbed examples are termed as ”adversarial examples”. Adversarial examples can

be used to perform attacks on machine learning systems and pose security concerns to

DL algorithms. As communities increasingly rely on DL techniques in safety-critical

applications, it is important to ensure their security and robustness against malicious

attacks.

Although AT has shown promising results in improving the adversarial robustness
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of DNNs, there are still many unresolved challenges exist in the AT paradigm. (1)

Poor generalizability on adversarial samples. Recent work observes AT often suffers

from the over-fitting problem, where there is a growing disparity in training and vali-

dation robustness performances [2]. (2) Although ATs can improve the robustness of

DNNs, they are often accompanied by a decrease in standard accuracy. (3) AT usually

uses a specific type of attack to generate adversarial examples during training, this

sometimes leads to poor generalizability to some unseen adversarial attacks. (4) AT is

an extremely time-consuming training paradigm. This is because AT requires adver-

sarial examples that are generated on-the-fly, and finding representative adversarial

examples is hard and often requires multiple iterations of complete back-propagation.

This thesis mainly focuses on the first two challenges described above.

1.2 Thesis Scope

The objective of this thesis is to design and train more reliable and robust DNN

based image classification models. More specifically, we aim to train DNNs that

can correctly classify or detect adversarial examples. Concretely, there are two main

contributions described in this thesis:

1. The first main contribution is that we propose a self-paced AT strategy (SPAT)

that can significantly boost the robustness of DNNs compared with other SOTA

defenses. Our work is inspired by the imbalanced semantic similarity among

different classes. More specifically, we notice the fact that DNNs are more

easily to be fooled among similar classes, such as cats and dogs. Therefore, we

introduced a re-weighting strategy to re-scale the loss of each class based on the

difficulty of how easily it can be fooled.

2. The second contribution is to maintain the standard accuracy performance while

improving the adversarial robustness of adversarially trained models. To address

the trade-off problem between standard accuracy and adversarial robustness,
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we propose a training-friendly adversarial attack method to reduce the training

complexity of AT. Then we adopt a transfer learning based AT method to

allow adversarial robustness smoothly transfer to clean-data pre-trained models

without interfering with their standard accuracy performance.

1.3 Thesis Outline

The thesis is outlined as follows. Chapter 2 describes the general background infor-

mation of adversarial machine learning. Specifically, we introduce why adversarial

examples exist, how to craft them, and some existing defense strategies. Chapter 3

presents details of my submitted paper, ”Self-Paced Adversarial Training”. Chapter 4

presents my published paper: ”Adversarial Fine-tune with Dynamically Regulated

Adversary”. Finally, conclusion of the work and possible directions of future work

are presented in Chapter 5.
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Chapter 2

Background

2.1 Blind Spots in Neural Networks

Figure 2.1: A conceptual demonstration of why adversarial examples exist. Although
a well-trained classifier can correctly classify data points from different classes, there
are still regions close to the data points that will be misclassified.

Neural networks or multi-layer perceptrons (MLPs) are the foundation of deep

learning models. The goal of neural networks is to approximate some function f

that is highly non-linear and hard to be formulated with traditional mathematics

expressions. Neural networks that are used to categorize inputs are called classifiers:

y = f(x;θ) (2.1)
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where x is the input vector, θ is the learned parameters of f , and y is the predicted

label of x.

Neural networks usually consist of an input layer, multiple hidden layers, and an

output layer. The process of classifiers making predictions is called feedfoward. This

is because information from the input layer flows sequentially through hidden layers,

and finally to the output layer y. Based on the architecture of feedfoward neural

networks, there are lots of successful commercial applications have been developed.

For example, Convolution Neural Networks (CNNs) for object detection and recog-

nition in Computer Vision tasks; and recurrent networks, which provide foundations

for many natural language processing applications.

Intuitively, adding small perturbations cannot change the object category of an

image. However, Szegedy et al. show that by adding some carefully calculated noises

can cause a well-trained neural network to respond very differently. Previous work

has tried to explain the vulnerability of DNNs to adversarial attacks from different

perspectives, ranging from the optimization paradigm of supervised learning [1, 3] to

discontinuity of neural networks in high dimensional manifold [4–6]. Up until now,

there is still no unified theory that can fully explain and capture the behavior of

adversarial examples. Therefore, we start by relaxing the problem to a simple linear

classification case. Consider a shallow linear neural network with weight vector w,

the output of the input x is calculated as y = w⊤x. And for adversarial input

x′ = x′ + η, the output is y′ = w⊤x′. Here η is the adversarial perturbation and x′

is the adversarial example. We can derive the output interference from adversarial

perturbation as:

y′ − y = w⊤η (2.2)

Intuitively, we expect the classifier to have little interference as long as ∥η∥∞ < ϵ,

where ϵ is a regulation term to ensure the noises are small enough to be observed

by human eyes. To maximize the interference, we can project η to its l∞ norm so
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that η = sign(w). Assume w is an n-dimensional vector and the average absolute

value of w is m. Formally, we can formulate the maximum distortion of adversarial

perturbation for a linear classifier as:

max(y′ − y) = ϵmn (2.3)

From above analysis, we can conclude that adversarial interference grows linearly

with n. The explanation suggests that adversarial examples exist for DNNs with

large enough dimensionality.

2.2 How to Craft Adversarial Examples

Cat: 93%; 
Dog: 7%

+ 0.002 × =

Cat: 93%; 
Dog: 7%

+ 0.007 ×

Cat: 21%; 
Dog: 79%

Cat: 56%; 
Dog: 44%

=

Figure 2.2: An illustration of how FGSM perturbation can interfere with the DNNs.
Here we pre-traine a binary classifier to distinguish cats from dogs using a subset of
ImageNet. Initially the classifier correctly classy the cat image with 93% confidence.
On the top row, we disturb the image with very small noises generated by FGSM.
The classifier still can make a correct prediction but with much lower confidence. On
the second row, we apply a larger, yet still human-imperceptible perturbation to the
image, the prediction of the classifier changes to dog with 79% confidence.
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In Section 2.1, we explain why adversarial examples exist and demonstrate a simple

method to generate adversarial perturbation for a simple linear classifier. In this

section, we formally introduce adversarial attack methods for DNNs with non-linear

activation functions. There are two general criteria to characterize adversarial attacks:

(1) White and black box attacks. Depending on the transparency of the defense

model, white box attacks have direct access to the architectures and parameters of the

defense model, but black box attacks do not have access to the model information.

(2) Targeted and untargeted attacks. Both targeted and untargeted attacks

aim to perturb inputs so that well-trained models would make incorrect predictions.

However, targeted attacks have a more restricted constraint, which is the perturbed

inputs need to be misclassified to a specific target class. In the following sections,

we give a more detailed explanation of how to generate different types of adversarial

attacks and introduce some popular attack strategies in the literature.

2.2.1 White Box Attack

White box attacks allow attackers to access model information directly. Most of the

strong adversarial attacks are white box attacks, thus they are commonly used to

benchmark adversarial robustness. In this section, we show some SOTA white box

attacks that can consistently cause a variety of models to make mistakes.

Fast gradient sign method (FGSM) [4] is the first formally proposed adver-

sarial attack method that directly exploits gradient information of the model.

xfgsm = x+ ϵsign(∇xJ(θ,x, y)) (2.4)

Here θ is the parameters of neural network and ∇xJ(θ,x, y) is the cost to train

the classifier. The idea of FGSM is similar to what we explained in Section 2.1,

the only difference is that we calculate the sign of back-propagated gradients as the

perturbation instead of directly use the sign of weights. FGSM only requires a single-

step attack and can be calculated efficiently during back-propagation.
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Projected gradient decent (PGD) [7] is another gradient based adversarial

attack proposed by Madry et al. PGD can be viewed as an iterative variant of FGSM

and formulated as:

xt+1
pgd = xt

pgd + ϵsign(∇xJ(θ,x, y)) (2.5)

where x0
pgd is randomly perturbed input:

x0
pgd = x+ ηrandom, ∥ηrandom∥∞ < ϵ (2.6)

PGD uses more number of iterations (t) to find stronger adversarial examples, how-

ever, it also requires more computation time compared to FGSM.

C&W attack [8] was proposed by Carlini et al. in 2017. C&W attack is an

optimization based attack and the overall objective function can be formulated as

follow:

minimize (D(x, x′)) such that argmaxf(x′) = t (2.7)

Here D is the distance metric, f(x′) is the output of classifier f , and t represents

an arbitrary false class. The exact form of C&W attack varies with different choices

of distance metrics and optimization function. The authors showed that with large

enough optimization steps, C&W attack can achieve almost 100 percent attack success

rate on any undefended model.

Deep Fool [6] is an attack method aiming to find the minimum adversarial pertur-

bation needed to fool a classifier. Specifically, the attack tries to calculate the distance

from a normal input x to its nearest decision boundary. Therefore, the adversarial

perturbation of Deep Fool is calculated from geometric perspective:

xt+1
deepfool = xt

deepfool − f(x)
∇xJ(θ,x, y)

∥∇xJ(θ,x, y)∥2
(2.8)

where x0
deepfool corresponding to original input x. The number of iterations t is subject

to the condition that f(xt
deepfool) ̸= f(x).
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2.2.2 Black Box Attack

In contrast to white box attacks, black box attacks have limited knowledge to the

model, therefore, black box attackers are less effective than the white box counterpart.

While the capability of black box attacks is limited, they are the most concerned

attacks in real-world scenarios because the model information is usually protected.

In this section, we introduce some popular black box strategies.

Transferable attack is a strategy that uses a substitute model to craft adver-

sarial examples. Szegedy et al. observed that the same adversarial perturbation can

cause a different neural network trained on different subset of the dataset to make

mistakes. This observation show that adversarial examples are transferable to unseen

neural networks. Inspired by this, some work pre-train a substitute neural network

on datasets of the same domain to perform attacks [9–11].

Gradient estimation attack is proposed for tasks that hard to obtain substitute

classifiers. Since the attackers only have access to the output results, they choose to

use a query feedback mechanism to estimate gradient direction [12–14]. Specifically,

the attackers continuously craft the perturbation based on the output results while

querying on the model. The attackers usually start with random input and add noises

to the input until the output is distorted to an acceptable level.

Gradient free attack [15] is based on the concept of greedy local-search tech-

nique. Unlike previous attack methods, gradient free attack does not require gradient

information to craft adversarial examples. The proposed attack observes the changes

in output by randomly perturbing a local area of the input and determines the im-

portance of pixels based on the change of classification accuracy. Although gradient

free attack offers more flexibility to generate adversarial examples, the greedy search

method is very time-consuming as it must be conducted pixel by pixel.
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2.2.3 Targeted and Untargeted Adversarial Attack

There are two common objectives of adversarial attacks: targeted and untargeted.

Untargeted attack aims to push the original input x out of its ground truth class.

Targeted attack on the other hand, aims to move x to a specific target class. Therefore,

the objective function for untargeted attack is:

maximize J(θ,x, yi) subject to f(x) ̸= yi (2.9)

where yi is the true class for x. For targeted attack, the objective function is given

by:

minimize J(θ,x, yt) subject to f(x) = yt (2.10)

where yt is the target class that we want to move the input to. Targeted attack can be

viewed as a more constrained type of untargeted attack as the target space is reduced

from n-1 classes to 1 target class. Due to this reason, targeted adversarial examples

are harder, and more expensive to generate.

2.3 Adversarial Defenses

The potential threat from adversarial vulnerabilities of DNNs has raised concerns,

some defense strategies against adversarial attacks have been proposed from the re-

search communities. However, design adversarial robust DNNs has shown to be a

very difficult task, since the research community has not yet arrived at a unified

theoretical solution to explain the optimization problem.

To date, most adversarial defenses strategies are developed along three directions:

gradient masking ,robust regularization, and adversary detection. Most of the ad-

versarial attack methods in the literature require direct gradient information, or use

estimated gradient information to construct adversarial examples. Therefore, a new

avenue of research aims to create a defense mechanism by obfuscating gradient infor-

mation to the attacker, namely gradient masking. While gradient masking can refuse
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the attackers to access gradient information of the model, it does not directly improve

the robustness of the model itself. Robust regularization on the other hand, aims to

fundamentally enhance the robustness of the model without relying on external tools.

Finally, adversary detection aims to detect and reject adversarial examples to protect

the neural network.

2.3.1 Gradient Masking

Athalye et al. [16] characterize gradient masking into three sub-categories. In this

section, we introduce these three types of gradient masking strategies by explaining

why they are able to help improve the robustness of DNNs and their limitations.

Shattered Gradient refers to defense strategies that are non-differentiable or

cause the gradient to be non-exist or incorrect. The intention of this defense is to

break local linearity of neural networks so that attackers cannot continuously search

for optimal adversarial examples along the gradient direction. The most commonly

used and easily deployed non-differentiable defense is input transformation. Guo

et al. [17] proposed 5 different non-differentiable input transformation methods to

counter adversarial examples: image cropping and rescaling, bit-depth reduction,

and JPEG compression. They also explore the effectiveness of different combinations

of input transformations. Their experimental results indicate that input transfor-

mations can effectively protect undefended models without introducing much extra

computation loads.

Stochastic Gradient is a strategy that leverages randomization to defend against

adversarial attacks. Previous work show that randomization techniques such as drop-

out, can be used as effective tools to prevent neural networks from over-fitting. Re-

cently, Dhillon et al. [18] show that apply drop-out to each layer can help improve

adversarial robustness while only sacrifice little standard classification accuracy. Xie

et al. [19] propose to use a randomization layer to defend against adversaries. More

specifically, the randomization layer first randomly re-scale the input then apply
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padding to reconstruct the image to its original size. Such defense strategy is cost-

efficient and can largely reduce the success rate of existing adversarial attack methods.

Vanishing & Exploding Gradients method usually deploys generative models

to reconstruct the input. PixelCNN [20] uses an auto-encoder-like structure to purify

the adversarial perturbations. The authors argue that adversarial examples mainly

lie in the low-probability region between the decision boundaries. Thus, PixelCNN

aims to project the adversarial examples back to their high-confidence latent regions.

Samangouei et al. adopt similar idea and apply Generative Adversarial Network

as the image reconstructor. Both of them can be viewed as image pre-processing

defenses using a sub-neural network. Even this type of defense is differentiable, the

generative neural networks are usually deep enough so that the gradient information

of the actual classifier is vanished/exploded when perform adversarial attacks.

Although all three type of gradient masking strategies can achieve SOTA perfor-

mance on specific attacks, they can be easily broken with more general adversarial

attacks or black box attacks as shown in [16]. In other word, since gradient masking

specifically targets on gradient based attacks, when the attackers do not heavily rely

on the information of the gradient, they can easily bypass the defense mechanisms.

2.3.2 Adversarial Training: Robust Regularization

The idea of robust regularization is to build intrinsic robustness into neural networks

themselves. Goodfellow et al.[4] first propose to use an extra adversarial regulation

term combine with the regular cross entropy loss to improve robustness, that is:

L(θ) = αJ(θ,x, y) + (1− α)J(θ,x+ ϵsign(∇xJ(θ,x, y), y)) (2.11)

Here α is a hyper-parameter to control the relative loss from adversarial data, and J is

cross entropy loss. Such robust regularization method also refer to as ”adversarial

training” and has proven to help model defend against FGSM attack. However,

Kurakin et al. observe that using FGSM as the adversarial examples during training
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can cause over-fitting and label leaking. This is due to the fact that FGSM examples

are generated with the information of ground truth label of the inputs. To address

this issue, they propose to use iterative FGSM (iFGSM) to hide the information of

label. Such training algorithm can also improve the robustness of models against

stronger adversarial attacks but is more time-consuming.

Madry et al. [7] redefine adversarial training as a saddle point (min-max) opti-

mization problem. They show that even the constituent part of adversarial training

is non-convex and non-concave, the underlying optimization problem is overall still

tractable. Specifically, they abandon the standard cross entropy loss, and only use

PGD adversarial examples during training. Therefore, the min-max game is formu-

lated as:

L(θ) = minE(x,y)∼Dmax
δ∈S

[J(xpgd, y;θ)] (2.12)

The authors also find that adversarial training favors large capacity models as the

decision boundaries of robustness neural networks are far more complicated than their

undefended counterparts.

Previous adversarial methods aim to correctly classify adversarial examples, Kan-

nan et al. find that a more robust classifier can be found by constraining the logits

of neural networks. In other word, as the adversarial perturbations are usually small,

it is intuitive to consider the differences in output logits are small too. The authors

propose Adversarial Logit Pairing (ALP) to enforce the output logits between clean

data and adversarial data to be similar. The overall objective of ALP is:

L(θ) = J(θ,x, y) + λL(f(x),f(x′)) (2.13)

where L can be different choices of loss to measure the similarity of f(x) and f(x′) such

as L2, L1 or Huber loss. Zhang et al. propose Trades [21] which adopt almost identical

objective function as ALP. The main difference is that they use KL divergence to

measure the similarity between corresponding logits.
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Inspired by logit pairing algorithms, a group of research community observe that

label information is not required for robustness training. Formally, ALP and Trades

enhance model robustness by pushing the output logits to be similar without using

the true label to compute losses as shown in Eq. 2.13. Therefore, some work managed

to use unlabeled data to further enhance adversarial robustness [22, 23].

2.3.3 Adversarial Example Detection

While previous research has shown that directly imposing adversarial robustness to

DNNs is hard, some work suggests deploying detection mechanisms to protect DNNs

from adversarial attacks. Grosse et al. [24] propose to use an N+1 class training

algorithm, where the extra class is used for detecting adversarial examples in arbitrary

classes. Hendrycks & Gimpel propose to use PCA to detect adversarial examples from

natural data, as they find adversaries place a higher weight on the larger principal

components than natural images. Feinman et al. observe that the latent distribution

of adversarial examples is slightly different from clean data distribution. Therefore,

the authors propose a defense called kernel density estimation. They use Gaussian

Mixture Model to study the distribution of output from the penultimate layer and

argue that adversarial examples belong to a different distribution than natural data.

2.3.4 Adversarial Robustness Benchmarks

In the literature of adversarial machine learning, there are several commonly used

datasets for benchmarking adversarial robustness. MNIST [25] featuring its simplicity

often used to validate the feasibility of the proposed AT strategy. MNIST consists of

10 classes, each representing a number digit from 0 to 9. The whole dataset contains

60,000 training images and 10,000 testing images of size 28 × 28 pixels. CIFAR-10

and CIFAR-100 are two more complicated classification tasks that are frequently used

for benchmarking adversarial robustness. CIFAR datasets consist of real-world image

categories such as planes, ships, cats, etc. Compare with MNIST, CIFAR datasets
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are more recognized as it has been shown that some AT defenses that perform well

on MNIST datasets do not scale on CIFAR datasets [8]. Other than MNIST and

CIFAR datasets, TinyImageNet [26] and ImageNet [27] datasets are also used to

evaluate adversarial robustness. However, due to the fact AT is a time-consuming

training paradigm, the occurrence of ImageNet and other large-scale datasets is not

as frequent as CIFAR and MNIST datasets in the literature of AT.

2.4 Discussion & Conclusions

While much effort has been made to discover the best solutions for adversarial ro-

bustness, there is still a significant gap to a satisfactory level of security safety. Fur-

thermore, Carlini et al. [28] recently show that most existing adversarial example

detection method can be easily broken with a more dedicated attack generated by

C&W. To date, adversarial training is the most recognized defend method which

proven to help model develop robustness against a variety of attacks, but there are

still several limitations that are hard to address. Firstly, the training time of adver-

sarial training is significantly longer than vanilla training. This is because adversarial

examples have to be generated ”on the fly” and most adversarial training strategies

use iterative methods to generate them. Secondly, while improving adversarial ro-

bustness, it often has the consequence of hurting the standard accuracy. Some work

believe that robustness and accuracy are fundamentally against each other [21, 29].

Thirdly, previous work show that adversarial training can easily cause over-fitting [7,

30].

As the research community continues to develop more powerful methods of ad-

versarial attacks, it is becoming increasingly difficult to develop a unified defense

solution. Currently, there are still many obstacles needed to be addressed. To allow

DL continuously facilitate us in a wider range of applications, we believe that building

robust and secure DNN classifiers is as important as enhancing their performance in

natural environments.
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Chapter 3

Self-Paced Adversarial Training

3.1 Introduction

In existing AT methods, untargeted attacks are widely used in model optimization

and evaluation [6, 7, 21, 23, 31–33]. Unlike targeted attacks that aim to misguide

a model to a particular class other than the true one, untargeted adversaries don’t

specify the targeted category and perturb the clean data so that its prediction is away

from its true label. In theory, adversarial perturbation in untargeted attacks can be

added along arbitrary directions, thus leading to uniformly-distributed false predic-

tions. However, we observe that misclassification statistics after adversarial attacks

highly deviate from a uniform distribution over categories. Figure 3.1 presents the

misclassification statistics of PDG-attacked dog and cat images, where almost half of

dog images are misclassified as cats, and over 40% of the cat images are misclassified

as dogs. Considering that cat and dog images share many common features in vision,

we raise the following questions:

”Does the unbalanced inter-class semantic similarity lead to the non-uniformly dis-

tributed misclassification statistics? If yes, are classification predictions of untargeted

adversaries predictable?”

To answer these questions, this chapter revisits the recipe for generating gradient-

based first-order adversaries and surprisingly discovers that untargeted attacks may

be targeted! In theory, we prove that adversarial perturbation directions in untar-
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geted attacks are actually biased toward the hard-class pairs of the clean data under

attack. Intuitively, semantically-similar classes constitute hard-class pair (HCP)

and semantically-different classes form easy-class pair (ECP).

Inspired by this intriguing yet far-overlooked aspect of untargeted adversarial at-

tacks, we come up with the conclusion that HCPs deliver the most informatics knowl-

edge for model optimization. Accordingly, we propose explicitly taking the inter-class

semantic similarity into account in AT algorithm design and develop a self-paced ad-

versarial training (SPAT) strategy to upweight/downweight hard/easy-class pair loss,

encouraging the training procedure to neglect redundant information from easy class

pairs. Since HCPs and ECPs may change during model training (depending on the

current optimization status), their scaling factors are adaptively updated at their own

pace. Such self-paced reweighting offers SPAT more optimization flexibility. In ad-

dition, we further incorporate an HCP/ECP consistency term in SPAT and show its

effectiveness in boosting model adversarial robustness. Our main contributions are:

• We investigate the cause of the non-uniformly distributed misclassification statis-

tics in untargeted attacks. We find that adversarial perturbations are actually

biased by targeted sample’s hard-class pairs.

• We introduce a SPAT strategy that takes inter-class semantic similarity into

account. Adaptively upweighting hard-class pair loss encourages discriminative

feature learning.

• We propose incorporating an HCP/ECP consistency regularization term in ad-

versarial training, which boosts model adversarial robustness by a large margin.
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(a) PDG attacks on Dog (b) PDG attacks on Cat

Figure 3.1: Predictions of untargeted adversarial attacks (PGD-20) by a CIFAR-10
vanilla-trained classifier. The standard accuracy of the classifier is 95.53%. After the
attacks, almost half of dog images are misclassified as cats (a) and over 40% of the
cat images are misclassified as dogs (b).

3.2 Related Work

3.2.1 Adversarial Attack and Defense

The objective of adversarial attacks is to search for human-imperceptible perturbation

δ so that the adversarial sample

x′ = x+ δ (3.1)

can fool a model f(x;ϕ) well-trained on clean data x. Here ϕ represent the trainable

parameters in a model. For notation simplification, we use f(x) to denote f(x;ϕ) in

this chapter.

Adversarial Training uses regulation methods to directly enhance the robustness

of classifiers. Such optimization scheme is often referred to as the ”min-max game”:

argmin
ϕ

E(x,y)∼D[max
δ∈S

L (f(x′),y)], (3.2)

where the inner max function aims to generate efficient and strong adversarial pertur-

bation based on a specific loss function L , and the outer min function optimizes the

network parameters ϕ for model robustness. Another branch of AT aims to achieve

18



logit level robustness, where the objective function not only requires correct classifica-

tion of the adversarial samples, but also encourages the logits of clean and adversarial

sample pairs to be similar [21, 23, 31]. Their AT objective functions usually can be

formulated as a compound loss:

L (θ) = Lacc + λLrob (3.3)

where Lacc is usually the cross entropy (CE) loss on clean or adversarial data, Lrob

quantifies clean-adversarial logit pairing, and λ is a hyper-parameter to control the

relative weights for these two terms. The proposed SPAT in this chapter introduces

self-paced reweighting mechanisms upon the compound loss and soft-differentiates

hard/easy-class pair loss in model optimization for model robustness boost.

3.2.2 Re-weighting in Adversarial Training

Re-weighting is a simple yet effective strategy for addressing biases in machine learn-

ing, for instance, class imbalance. When class imbalance exists in the datasets, the

training procedure is very likely over-fit to those categories with a larger amount

of samples, leading to unsatisfactory performance regarding minority groups. With

the re-weighting technique, one can down-weight the loss from majority classes and

obtain a balanced learning solution for minority groups.

Re-weighting is also a common technique for hard example mining. Generally,

hard examples are those data that have similar representation but belong to different

classes. Hard sample mining is a crucial component in deep metric learning [34,

35] and Contrastive learning [36, 37]. With re-weighting, we can directly utilize the

loss information during training and characterize those samples that contribute large

losses as hard examples. For example, OHEM [38] and Focal Loss [39] put more

weight on the loss of misclassified samples to effectively minimize the impact of easy

examples.

In adversarial training, previous studies shows that utilizing hard adversarial sam-
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ples promotes stronger adversarial robustness [7, 23, 40, 41]. For instance, MART [23]

explicitly apply a re-weighting factor for misclassified samples by a soft decision

scheme. Recently, several re-weighting based algorithms have also been proposed

to address fairness related issues in AT. [42] adopt re-weighting strategy to address

the data imbalance problem in AT and showed that adversarially trained models

can suffer much worse performance degradation in under-represented classes. Xu et

al. [43] empirically showed that even in balanced datasets, AT still suffers from fair-

ness problem, where some classes have much higher performance than others. They

propose to combine re-weighting and re-margin for different classes to achieve robust

fairness. Zhang et al. [44] propose to assign weights based on how difficult to change

the prediction of a natural data point to a different class. However, existing AT

re-weighting strategies only considered intra-class or inter-sample relationships, but

ignored the inter-class biases in model optimization. We propose to explicitly take

the inter-class semantic similarity into account in the proposed SPAT strategy and

up-weights the loss from hard-class pairs in AT.

3.3 Untargeted Adversaries are Targeted

Untargeted adversarial attacks are usually adopted in adversarial training. In theory,

adversarial perturbation in untargeted attacks can be added along arbitrary direc-

tions, leading to uniformly-distributed false predictions. However, our observations

on many adversarial attacks contradict this. For example, when untargeted adver-

saries attack images of cats, the resulting images are likely to be classified as dogs

empirically. We visualize image embeddings from the penultimate layer of the vanilla-

trained model via t-SNE in Figure 3.2. In the figure, the embeddings of dog and cat

images are close to each other, which suggests the semantic similarity in their rep-

resentations. With this observation, we hypothesize that the unbalanced inter-class

semantic similarity leads to the non-uniformly distributed misclassification statistics.

In this section, we investigate this interesting yet overlooked aspect of adversarial
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Figure 3.2: t-SNE visualization of 1000 randomly sampled image embeddings from
CIFAR-10. Due to the naturally imbalanced semantic similarity, inter-class distance
is much smaller for hard-class pairs.

attacks and find that untargeted adversarial examples may be highly biased by their

hard-class pairs. The insight in this section directly motivates the proposed self-paced

adversarial training for model robustness improvement.

3.3.1 Notations

Given a dataset with labeled pairs {X ,Y } = {(x, y)|x ∈ Rc×m×n, y ∈ [1, C]}, a

classifier can be formulated as a mapping function f : X −→ Y :

f(x) = S(W Tzx), (3.4)

where C is the number of categories, and S represents the softmax function in the

classification layer. We use zx to denote the representation of an input sample x
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in the penultimate layer of the model and W = (wi,w2, ...,wC) for the trainable

parameters (including weights and bias) of the softmax layer. Note that wi can be

considered as the prototype of class i and the productionW Tzx in (3.4) calculates the

similarity between zx and different class-prototype wi. During training, the model f

is optimized to minimize a specific loss L (f(x), y).

In literature, the most commonly used adversarial attacks, such as PGD and its

variants, generate adversaries based on first-order derivative information about the

network [7]. Such adversarial perturbations can be generally formulated as follows:

x′ = x+ ϵg(∇xL (f(x), y)), (3.5)

where ϵ is the step size to modify the data and ∇x is the gradient with respect to the

input x. We take g to denote any function on the gradient, for example, g(x) = ∥x∥p

is the ℓp norm.

3.3.2 Bias in Untargeted Adversarial Attacks

The first-order adversarial attacks usually deploy the CE loss between the prediction

f(x) and the target y to calculate adversarial perturbations. The CE loss can be

formulated as

L (f(x), y) = −log
ewi

T zx∑︁C
j=1 e

wj
T zx

(3.6)

For notation simplification in the rest of this chapter, we have σ(wi
Tzx) =

ewi
T zx∑︁C

j=1 e
wj

T zx
.

Lemma 1:

For an oracle model that predicts the labels perfectly on clean data, the gradient of the

CE loss with respect to sample x from the ith category is:

∇xL (f(x), y) = [
C∑︂
j ̸=i

σ(wj
Tzx)wj ]∇xzx. (3.7)
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Proof of Lemma 1:

For an oracle model that predicts the labels perfectly on clean data, the gradient of the

CE loss with respect to sample x from the ith category is:

∇xL (f(x), y) = [
C∑︂
j ̸=i

σ(wj
Tzx)wj ]∇xzx,

where σ(wi
Tzx) =

ewi
T zx∑︁C

j=1 e
wj

T zx
.

Proof:

The CE loss can be formulated as

L (f(x), y) = −log
ewi

T zx∑︁C
j=1 e

wj
T zx

.

Hence,

∇xL (f(x), y) = −∇xlog
ewi

T zx∑︁C
j=1 e

wj
T zx

= −∇x[loge
wi

T zx − log
C∑︂

j=1

ewj
T zx ]

= −∇x[wi
Tzx] +∇x[log

C∑︂
j=1

ewj
T zx ]

= −∇x[wi
Tzx] +

1∑︁C
k=1 e

wk
T zx

∇x[
C∑︂

j=1

ewj
T zx ]

= −∇x[wi
Tzx] +

1∑︁C
k=1 e

wk
T zx

·
C∑︂

j=1

ewj
T zx∇x[wj

Tzx]

= −∇x[wi
Tzx] +

C∑︂
j=1

ewj
T zx∑︁C

k=1 e
wk

T zx
∇x[wj

Tzx]

= −∇x[wi
Tzx] +

C∑︂
j=1

σ(wj
Tzx)∇x[wj

Tzx]

= [σ(wi
Tzx)− 1]wi

T∇xzx + [
C∑︂
j ̸=i

σ(wj
Tzx)wj ]∇xzx
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For an oracle model that predicts the labels perfectly on clean data, σ(wi
Tzx) = 1

for a data from the ith class. Hence, the first term in the proof vanishes. That is,

∇xL (f(x), y) = [
C∑︂
j ̸=i

σ(wj
Tzx)wj ]∇xzx,

Lemma 1 indicates that for a clean data x from the ith category, its first-order ad-

versarial update follows the direction of the superposition of all false-class prototypes

wj for j ∈ [1, C], j ̸= i. The weight of the jth prototype wj in the superposition

is σ(wj
Tzx). The greater the value of the dot product σ(wj

Tzx), the more bias in

adversarial perturbations toward the ith category. In an extreme case where only one

σ(wk
Tzx) is non-zero, the untargeted attack becomes a targeted attack.

To investigate if the values of σ(wj
Tzx) is equal or not, we let vj = ∥wj∥2 and

s = ∥zx∥2 be the Euclidean norm of the weight and data embedding. Then (3.7) in

Lemma 1 can be rewritten as ∇xL (f(x), y) = [
∑︁C

j ̸=i σ(vjs cos(θj))wj ]∇xzx, where

cos(θj) measures the angle between the two vectors wj and xz. Here, we discussed

two conditions.

Condition 1:

We regulate vj = 1 and thus convert the CE loss to the normalized cross entropy

(NCE) loss in Lemma 1. Recently, many studies show that NCE loss encourages a

model to learn more discriminative features [45–47]. Furthermore, such hypersphere

embedding boosts adversarial robustness [41]. When we follow NCE’s regularization

and enforce vj = 1, (3.7) in Lemma 1 is further simplified to

∇xL (f(x), y) = [
C∑︂
j ̸=i

σ(s cos(θj))wj ]∇xzx, (3.8)

Since σ() is a monotonically increasing function, the adversarial update direction is

significantly biased by large cos(θj). It is noteworthy that s cos(θj) quantifies the

projection of a data representation xz onto the jth class prototype wj , which reflects

the inter-class similarity between zx and a specific false-class prototype. Therefore,
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this chapter defines the false classes associated with a higher cos(θj) as the hard-class

pairs of data x; contrastively, the false classes with large θj as the easy-class pairs.

With this context, we conclude that the adversarial perturbations introduced by the

NCE loss are dominated by those hard classes with smaller inter-class distances from

the true data category.

Condition 2:

We relax the condition vj = 1 and extend our discovery to a generic CE loss. Though

vj can be any value in theory, we empirically find that their values are quite stable

and even for all j as shown in Table 3.1. With these observations, we conclude

that untargeted adversaries are actually targeted; Furthermore, the virtual targeted

categories are its hard-class pairs.

Models ResNet-18 ResNet-34 ResNet-50

v0 1.113 1.036 1.072

v1 1.134 1.063 1.106

v2 1.103 1.023 1.055

v3 1.082 1.005 1.032

v4 1.113 1.037 1.068

v5 1.096 1.023 1.057

v6 1.122 1.048 1.083

v7 1.121 1.046 1.085

v8 1.127 1.051 1.096

v9 1.121 1.046 1.088

Table 3.1: Weight norms of the softmax layer in CE-trained models on CIFAR-10

Figure 3.3 illustrates a geometric interpretation of our discovery in a simple triplet

classification setting, with y = {−1, 0, 1}. We assume the latent representation of

class -1 is closer to class 0 (hard class pair) and class 1 is farther from class 0 (easy
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Figure 3.3: A geometric interpretation of our discovery about untargeted attacks.
Different colors represent different classes and Wi is the prototype vector for class i.
According to Lemma 1, the overall attack direction for class 0 will be dominated by
class -1.

class pair). Since cos(θ−1) > cos(θ+1), The attack direction of samples from class 0

is dominated by class -1. Therefore, the data from class 0 is adversarially modified

towards class -1.

3.4 Self-Paced Adversarial Training

Our discovery in Section 3.3.2 motivates the innovation of our re-weighting strategy

in the proposed SPAT in twofold.

• From the perspective of learning robust, discriminative features. Compared to

adversaries from hard-class pairs having similar semantic representations, easy-

class pairs contribute less to model optimization. Encouraging a model to learn

HCP samples facilitates the model to extract good features.

• From the perspective of adversarial defense of untargeted attacks. Thanks to
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the discovered targeted property of untargeted attacks, we know that many

clean data are adversarially modified toward their hard-class pairs. With this

prior knowledge of untargeted attacks, one can improve models’ robustness by

learning HCP adversaries in AT.

With above considerations, our self-paces strategy proposes to up-weights training

sample’s hard-class pair loss in adversarial training.

Specifically, following prior arts in adversarial training, the proposed SPAT strategy

adopts a compound loss:

L SPAT = L sp
acc + λL sp

rob (3.9)

where λ is the trade-off parameter for the accuracy and robustness terms. Notably,

we introduces distinct up-weighting policies in L sp
acc and λL sp

rob, which encourages the

model learning from hard-class pairs.

3.4.1 Self-Paced Accuracy Loss

According to our empirical observations and theoretical analysis in Section 3, untar-

geted attacks are prone to generate adversaries from hard-class pairs. We argue that a

model with stronger HCP discrimination capability would be more robust against ad-

versarial attacks. To this end, we propose up-weighting HCP loss and down-weighting

ECP loss in model training to facilitate discriminative representation learning.

As analysis in Section 3.2, cos(θj) evaluates the representation similarity between

zx and the prototype vector wj of the jth class. Ideally, for a data from the ith

category, we target cos(θj) = δ(i − j), where δ(x) is the Dirichlet identity function.

Toward this goal, we monitor the values of cos(θj) and take them as metrics to

adaptively re-weight training samples in adversarial training.

Formally, we propose to reshape the NCE loss by the self-paced modulating factors

gt and gfj :

L sp
acc = − log(

eg
twi

T zx∑︁C
j ̸=i e

gfj wj
T zx + egtwi

T zx
), (3.10)
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where ∥wi∥2 = 1 and ∥zx∥2 = s [45]. For a sample with true label i, the true-class

modulating gain gt and false-class weights gfj are defined as{︄
gt = 1− cos(θi) + β

gfj = cos(θj) + β
. (3.11)

β is a smoothing hyper-parameter to avoid gt = 0 and gfj = 0. This study adopts

the NCE loss, rather than the CE loss, in L sp
acc for the following reasons. NCE

is a hypersphere embedding. Compared to the CE loss, the directional embedding

encourages a model to learn more discriminative features [45–47]. Recent study in [41]

further shows that deploying NCE in adversarial training boosts model’s robustness

against various attacks. It is noteworthy that our ablation study shows that the

proposed self-paced modulating mechanism not only boosts model robustness with

the NCE loss, it also improves model performance with the CE loss.

Intuitively, the introduced self-paced modulating factors amplify the loss contribu-

tion from hard-class pairs, meanwhile down-weight easy-class pair loss. Specifically,

according to (3.11), a data from the ith category is associated with large gt and gfj

when its representation zx is far away from its true-class prototype vector wi while

close to a false-class prototype wi. In this scenario, zx and a false-class prototype

vector wj constitutes a hard-class pair and both gt and gfj amplify the loss in (3.10),

encouraging the model to learn a better representation. On the other hand, when zx

and a false-class prototype vectorwj constitutes an easy-class pair with small cos(θj),

gfj is small and thus reduces the ECP contributions to model optimization.

3.4.2 Self-Paced Robustness Loss

The robustness loss term in AT encourages a model to generate the same label to

both clean data x and their adversarial samples x′. Intuitively, given a robust repre-

sentation model, x and x′ should share the same hard-class pairs and easy-class pairs.

From our analysis in Section 3.2, such an HCP/ECP consistency constraint on x and
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(a) Effects of α to KL loss

(b) Effects of β to CE loss

Figure 3.4: The loss value with respect to the cosine similarity between the true class
vector and the predicted vector (Sp) for a binary classification task. We propose
to use the SP modulating factor (wsp) to adjust the relative weights between easy
samples and hard samples. For those samples that can be correctly classified with
high confidence (similarity> 0.6), the relative losses are reduced. Therefore, enforcing
the training process to focus more on hard class pairs.
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x′ can be formulated as:

cos(θj) ≈ cos(θ′
j),∀j. (3.12)

θ′
j is the angle between zx′ and a prototype vector wj in the softmax layer of a model.

In prior arts, KL divergence is a widely used as a surrogate robust loss in AT

[21, 23]. It quantifies the difference between predicted logits on clean data and its

adversarial version:

KL(f(x)∥f(x′)) =
C∑︂
i=1

fi(x)log
fi(x)

fi(x′)
. (3.13)

Though the KL divergence measures the logit similarity from the point of view of

statistics, it doesn’t impose the aforementioned HCP/ECP consistency constant in

(3.12) on model optimization.

In this study, we propose a new regularization factor, Linc(x, x
′), to penalize

HCP/ECP inconsistency in model robustness training. With simple math, (3.12)

can be converted into a more intuitive expression: fj(x) ≈ fj(x
′) for all j. To ac-

commodate the two inconsistency conditions, fj(x) ≫ fj(x
′) and fj(x) ≪ fj(x

′)),

within one formula, we propose the use of [log
fj(x)

fj(x′)
]2 to quantify the HCP/ECP in-

consistency between x and x with respect to a specific class j. Another benefit of

the square operation is its amplification effect on large values, which encourages the

model to satisfy the HCP/ECP consistency constraint. Instead of accumulating all

inconsistency penalties direction, we follow the statistic perspective of computing KL

divergence and the new regularization factor is formulated as

Lsp
inc(x, x

′) =
C∑︂
j

[fj(x)log
fj(x)

fj(x′)
]2. (3.14)

Therefore, our new robustness loss is

L sp
rob = αKL(f(x)∥f(x′)) + Lsp

inc(x, x
′), (3.15)

where α is a hyper-parameter to balance the two robustness terms.

The pseudocode of the proposed SPAT algorithm is presented in Algorithm 1.
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Algorithm 1 Self-Paced Adversaral Training

1: Input: Number of training data N , batch size m, number of iterations for inner
optimization K, maximum perturbation ϵ, step sizes η1 and η2, classifier param-
eterized by θ

2: Output: Robust classifier fθ
3: for s = 1... N/m do
4: read mini-batch {x1, ...,xm} from training data
5: for i = 1... m do
6: x′

i = xi + 0.001 ∗N (0, I) ▷ N (0, I) is the standard normal distribution
7: for j = 1... K do
8: x′

i = ΠB(xi,ϵ)(x
′
i + ηsign(∇xL sp

rob(xi,x
′
i;θ)) ▷ Π is the projection

operator
9: end for
10: end for
11: θ = θ − η2

∑︁m
i ∇θL SPAT (xi,yi,x

′
i;θ)

12: end for

3.5 Experiments

In this section, we first evaluate SPAT on two popular benchmark datasets, MNIST

and CIFAR10, in both white-box and black-box settings. Then we conduct a com-

prehensive empirical study on the proposed SPAT, providing an in-depth analysis of

the method. A comparison study with state-of-the-art AT methods is presented.

3.5.1 Robustness Evaluation under Different Attacks

In this section, we evaluate the robustness of SPAT on two benchmarks, MNIST and

CIFAR10, under various attacks.

Experimental settings:

For MNIST, we use a simple 4-layer-CNN followed by three fully connected layers as

the classifier. We apply 40-step PGD to generate adversaries in training, with ϵ = 0.3

and step size of 0.01. We train the models for 80 epochs with the learning rate of 0.01.

Since MNIST is a simple dataset, three classical attacks, FGSM [4], PGD-20 [7], and

C&W with l∞ [28], are deployed in our white-box and black-box settings.

On CIFAR-10, adversarial samples used in ATs are generated by 10-step PGD, with
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defense Clean FGSM PGD-20 C&W

Madry’s 99.15 97.22 95.51 95.66

ALP 98.79 97.31 95.85 95.50

TRADES 99.10 97.42 96.22 96.01

MART 98.89 97.70 96.24 96.33

SPAT 99.21 98.12 96.64 96.57

Table 3.2: White box robustness accuracy(%) on MNIST

defense Clean FGSM PGD-20 C&W

Madry’s 99.15 97.06 96.00 96.88

ALP 98.79 97.23 96.13 97.32

TRADES 99.10 97.27 96.88 97.03

MART 98.89 97.68 96.73 97.20

SPAT 99.21 97.80 97.27 97.40

Table 3.3: Black box robustness accuracy(%) on MNIST.

ϵ = 8/255 and step size of ϵ/4. The rest training setup is the same as in section 3.5.2.

Since CIFAR-10 is a more complex dataset, we further include four stronger attacks in

this experiment, which are PGD-100, MIM [48], FAB [49], and AutoAttack (AA) [50].

All attacks are bounded by the l∞ box with the same maximum perturbation ϵ =

8/255.

Baselines:

SOTA defense methods including Madry’s [7], ALP [31], TRADES [21], MART [23],

GAIRAT [44], and MAIL-AT [liu2021probabilistic] are evaluated in this compar-

ison study. We follow the default hyperparameter settings presented in the original

papers. For instance, λ = 6 in TRADES and 5 in MART. For ALP, we set the weight

for logit paring as 0.5.
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defense Clean FGSM PGD-20 PGD-100 MIM-20 FAB C&W AA

Madry’s 84.35 54.23 46.70 45.73 47.03 47.67 48.62 46.90

ALP 85.21 54.07 46.19 44.78 46.55 47.60 48.80 46.44

TRADES 82.12 56.49 51.82 50.21 51.25 48.21 49.96 47.32

MART 83.08 60.19 54.87 52.97 53.91 48.62 51.23 47.87

GAIRAT 83.14 60.03 54.85 52.68 53.44 37.11 40.73 35.90

MAIL-AT 83.80 61.33 55.06 53.26 54.57 45.55 48.67 44.32

SPAT 84.26 62.27 59.56 58.57 59.07 48.74 50.56 48.33

Table 3.4: White box robustness accuracy(%) on CIFAR-10 with ResNet-18.

defense Clean FGSM PGD-20 PGD-100 MIM-20 FAB C&W AA

Madry’s 84.35 79.84 80.35 80.91 80.12 81.93 79.98 82.02

ALP 85.21 80.07 81.20 81.04 80.77 82.46 81.33 83.01

TRADES 82.12 79.98 80.69 80.80 80.24 81.71 80.55 81.91

MART 83.08 81.50 82.31 82.89 82.04 83.02 82.97 83.06

GAIRAT 83.14 79.92 80.40 80.61 80.22 82.49 82.43 82.69

MAIL-AT 83.80 81.22 82.16 82.37 81.96 83.10 82.38 83.36

SPAT 84.26 82.54 83.45 83.33 82.95 84.23 83.96 84.25

Table 3.5: Black box robustness accuracy(%) on CIFAR-10 with ResNet-18.
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White-Box Robustness:

Table. 3.2 and Table 3.4 report the white-box robustness performance on MNIST

and CIFAR-10, respectively. SPAT achieves the highest robustness in all 4 attacks

on MNIST and 6 out of 7 on CIFAR-10. The only exception is the l∞ C&W attack

which directly optimizes the difference between correct and incorrect logits [7]. Notice

that the optimization function of the C&W attack (l∞ version) is the same as the

objective function (boosted cross entropy) for MART which makes the rest defense

strategies in an unfair position. Even so, SPAT is only 0.67% less robust than MART

under C&W attack. We shown in Appendix that the proposed SPAT also works well

with larger models such as WideResNet-34.

Black-Box Robustness:

In the black-box attack setting, since adversaries do not access the model architecture

and parameters, adversarial samples are crafted on a naturally trained model and

transferred to the evaluated models. Here we use a naturally trained LENET-5 [25]

and ResNet101 for adversarial sample generation, whose natural accuracy is 98.94%

and 95.53% on MNIST and CIFAR-10 respectively.

Table. 3.3 and Table 3.5 report the white-box robustness performance on MNIST

and CIFAR-10, respectively. Since the features for MNSIT is simple and linear,

we notice for certain cases the black box attacks are even stronger than the white

box attacks. For example, white box FGSM attack is weaker than its black box

counterpart on all defenses. On the CIFAR10 dataset, while all models reach much

higher robustness accuracy compared to white box attacks, SPAT again achieves the

top performance. It is worth noting that the weakest attack (FGSM) has the highest

black box transferability, while the strongest attack method, AutoAttack, has almost

no effect on the SPAT trained model (from 84.26% to 84.25%).

In addition, our experimental results on CIFAR-10C in Appendix suggest that the

model trained by SPAT is also robust to naturally image corruptions.
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3.5.2 Breaking Down SPAT

To gain a comprehensive understanding of SPAT, three sets of ablation experiments

are conducted: (1) Sensitivity to hyper-parameters, (2)Remove the SP factors in the

SPAT loss, and (3) Replacing NCE with CE in SPAT.

Experimental Setup:

We use ResNet-18 [51] as our classifier for CIFAR-10 dataset. Our experimental

settings follow prior arts in [21, 23]. All models in this ablation study are trained 100

epochs with SGD and batch size is 128. The initial learning rate is set as 0.1 and

decays by 10 times at 75th and 90th epoch. At AT training stage, we use 10-step PGD

to generate adversarial samples, with ϵ = 8/255, step size = ϵ/4, and λ = 6. For

evaluation, we apple 20-step PGD to generate attack data, with ϵ = 8/255, step size

= ϵ/10. The default hyper-parameter in all experiments are s = 5 and α = β = 0.2,

unless otherwise specified.

Sensitivity of Hyper-parameters

SPAT has three newly introduced hyper-parameters, s and α in L sp
acc and β in L sp

rob.

Table 1 presents the sensitivity of these hyper-parameters on CIFAR-10 dataset and

shows their impacts on model accuracy and robustness. The best performance metrics

are highlighted in bold. Similar to NCE[41, 45], the scale factor s in SPAT regulates

the length of embeddings. From Table 3.6c, a larger s leads to higher robustness but

lower accuracy. This is because a larger s indicates a larger spherical embedding space

and thus samples from different classes can be distributed more discretely. However,

the relatively-sparse sample distribution in the large embedding space increases the

difficulty of classification. α and β are parameters up-weighting hard-class pair loss

in SPAT. As shown in Table 3.6a and 3.6b, appropriately choosing α and β can boost

model robustness with little accuracy degradation.
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α Clean PGD-20

0.0 84.66 58.32

0.2 84.26 59.56

0.4 83.60 60.11

0.6 83.01 60.57

(a) Varying α in L sp
rob

β Clean PGD-20

0.0 85.03 57.88

0.2 84.26 59.56

0.4 83.81 59.64

0.6 82.66 57.62

(b) Varying β in L sp
acc

s Clean PGD-20

1 87.57 49.52

3 86.16 55.77

5 84.26 59.56

8 82.54 60.24

10 81.24 61.02

(c) Varying s in L sp
acc

Table 3.6: Hyper-parameter sensitivity in SPAT. If unspecified, the default values
are: s = 5, α = β = 0.2.

Analysis of SP:

Table 3.7 records the performance when removing the proposed self-paced factors in

the SPAT loss function. Note, when removing SP weights in the accuracy loss, we

let gt = gfj = 0 and the proposed self-paced NCE loss becomes the original NCE

loss. As indicated in Table 3.7, removing the SP mechanism from either robustness

loss or accuracy loss leads to substantial performance degradation. In particular, the

introduced self-paced robustness term encourages the model to follow the HCP/ECP

consistency constraint, which contributes to a larger margin of robustness improve-

ment.
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loss functions Clean PGD-20

Lsp
nce + λLsp

rob 84.26 59.56

Lnce + λLsp
rob 82.49 58.74

Lsp
nce + λLrob 84.01 56.14

Lnce + λLrob 83.33 54.58

Table 3.7: Removing SP factors from SPAT.

loss functions Clean PGD-20

Lsp
nce + λLsp

rob 84.26 59.56

Lsp
ce + λLsp

rob 82.86 53.55

Lce + λLrob 82.12 51.82

Table 3.8: Replacing NCE with CE in SPAT.

Analysis of NCE in SPAT:

This study introduces the self-paced modulation factors upon the NCE loss. Table 3.8

compares model performance when we replace NCE with either the CE loss or a self-

paced CE loss (by relaxing normalization vj = 1). The normalization regularization

in NCE boosts both model robustness and standard accuracy. In addition, incorpo-

rating the self-paced factors into the CE loss also improves model performance. This

observation validates our innovation of up-weighting hard-class pair loss in model

optimization.

3.5.3 Case Study: Naturally Corrupted Perturbation

Adversarial attack is the most extreme scenario for evaluating the robustness of mod-

els. Unlike adversarial attacks, naturally-corrupted data, such as blurring, compres-

sion, defocusing, etc, do not require model information to generate noises and can

be seen as a type of generic black-box attack. In this experiment, we explore the

potential of SPAT on such naturally-corrupted data. We apply the SPAT-trained
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ResNet-18 in Section 5.2 on the corrupted CIFAR-10 dataset (CIFAR-10-C [52]). In

CIFAR-10-C, the clean CIFAR-10 data are processed to mimic various image dis-

tortions under harsh conditions. Table 3.9 presents classification accuracy on the

CIFAR-10-C dataset. Results show that the SPAT-trained model exhibits stronger

robustness to different types of corruption.

defense PGD TRADES MART SPAT

Blur 73.23 72.43 73.35 74.71

Contrast 78.68 76.05 76.59 78.39

Fog 46.38 45.74 45.19 49.34

Frost 70.59 64.65 70.39 71.36

Snow 73.95 70.08 74.92 75.02

jpeg 81.09 79.09 80.42 81.73

Saturate 80.23 78.68 80.51 81.92

Defocus 77.66 76.05 76.59 78.39

Table 3.9: Accuracy (%) of different corruption types in CIFAR10-C.

3.6 Conclusion and Future work

In this chapter, we studied an intriguing property of untargeted adversarial attacks

and concluded the direction of first-order gradient-based attack is largely influenced

by its hard-class pairs. With this insight, we introduced a self-paced adversarial

training strategy and proposed up-weighting hard-class pair loss and down-weighting

easy-class pair loss in model optimization. Such an online re-weighting strategy on

hard/easy-class pairs encouraged the model to learn more useful knowledge and disre-

gard redundant, easy information.Extensive experiment results show that SPAT can

significantly improve the robustness of the model compared to state-of-the-art AT

strategies.

In the future, on one hand, we plan to apply the hard/easy-class pair re-weighting
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principles to recently proposed AT algorithms, and explore the potential improvement

by differentiating hard/easy-class pairs in AT. On the other hand, we plan to inves-

tigate ”true” untargeted adversarial attacks so that the adversarial perturbations are

less predictable.
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Chapter 4

Adversarial Fine-tune with
Dynamically Regulated Adversary

4.1 Introduction

To improve model adversarial robustness, many defense strategies, such as data aug-

mentation, gradient masking, adversarial example detection, and adversarial training

have been proposed with the aim of finding countermeasures to protect DNNs [7, 48,

53, 54]. Particularly, adversarial training is widely recognized as the most effective

solution. It incorporates adversarial data in model training and helps build model

robustness to adversarial attacks. Despite its success in improving model robustness

to adversarial data, state-of-the-art (SOTA) adversarial training strategies have been

observed to cause model performance degradation [7, 21, 22, 41]. For instance, SOTA

adversarial training methods such as TRADES [21] loses about 10% standard accu-

racy for a 50% adversarial robustness improvement on CIFAR-10 image set. This

observation has led to a discussion of the relationship between adversarial robustness

and standard generalization (e.g., classification accuracy), with a central debate on

whether accuracy and robustness are intrinsically in conflict. Some studies, for ex-

ample, Tsipras et al. [55] and Raghunathan et al. [29], claim that the trade-off of

model accuracy and adversarial robustness is unavoidable due to the nature of DNNs.

In contrast, Raghunathan et al. [29, 56] argue that the robustness-accuracy trade-off

could disappear with unlimited data. Yang et al. [57] present a theoretical analysis, as
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well as a proof-of-concept example, showing that this trade-off is not inherent and ar-

guing that the observed accuracy-robustness trade-off is introduced by limitations in

current adversary training methods. More recently, Xie et al. [19] leverage adversarial

samples to improve model accuracy by introducing an auxiliary batch normalization

layer particularly designed for adversarial samples. However, this study does not dis-

cuss if the model robustness is improved or not. To summarize, although adversarial

training improves model robustness against adversarial attacks, how to achieve this

goal without trading off model accuracy on clean data in adversarial training is still

an open question and remains under-explored.

It should be noted that a major loss of standard performance on clean data is un-

acceptable in many applications that might cause severe consequences. Instead, the

standard performance is more valued than model robustness against malicious ad-

versarial attacks. Such applications include medical diagnosis, autonomous surgical

robotics, etc. This leads to the question: To what extent can we boost model ro-

bustness without sacrificing standard performance? Unlike prior adversarial training

strategies that allow model performance degradation on clean data, we investigate if

it is feasible to improve adversarial performance without any standard performance

loss. Specifically, this chapter proposes a pre-train based adversarial training strat-

egy, where adversarial training is applied to clean-data (vanilla-trained) models. To

prevent catastrophic forgetting in model refining, we follow a replay-based strategy

and maintain the 1:1 clean-adversarial data ratio in model refinement. To further

reduce adversarial samples’ negative impacts on standard accuracy, we incorporate

novel dynamically regulated adversarial (DRA) samples in model refinement. Un-

like most adversarial attacks that add adversarial noise to every image pixel, DRA

searches for highly stimulated adversarial features and generates adversarial samples

accordingly. Such strategy in adversarial sample generation enforces the model refine-

ment to learn descriptive but non-robust features. Extensive experimentation shows

that the proposed adversarial training strategy improves model adversarial robust-
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ness with a large margin, but without standard performance loss. The contributions

of this study are summarized as follows.

• We propose a simple, yet generic adversarial training strategy that improves

adversarial robustness by a large margin without sacrificing standard accuracy.

The proposed method is particularly useful for applications where standard

performance is more valued than adversarial robustness.

• We further introduce an unbounded adversarial attack method, namely DRA.

It introduces smaller image distortions and facilitates the adversarial refinement

to focus on the learning of the most descriptive but non-robust features.

• We show that our adversarially trained models exhibit robustness not only to

adversarial samples; but also against naturally corrupted images, which suggests

its potential for real-world applications.

The rest of this chapter is organized as follows. Section 4.2 presents a brief re-

view of related works. Section 4.3 formulates the target problem and specifies our

motivations. The technical details of the proposed method are elaborated in Section

4.4. Section 4.5 presents extensive experiments and discussions, then followed by

conclusions in section 4.6.

4.2 Related Work

Since Madry’s MinMax optimization is prone to over-fit adversarial samples, many

adversarial training methods mix clean data and adversarial data in training.

L(θ) = E(x,y)∼D[L(x, y; θ) + max
δ∈S

L(x+ δ, y; θ)]. (4.1)

Note, in (4.1), adversarial examples are leveraged to regularize the vanilla training on

clean data. Recently, Raghunathan et al. [29] introduce robust self-training (RST) to

balance the vanilla and adversarial loss by a regularization parameter β > 0.

L(θ, β) = E(x,y)∼D[L(x, y; θ) + βmax
δ∈S

L(x+ δ, y; θ)]. (4.2)
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Another regularized adversarial training strategy, TRADES [21], is proposed to boost

model robustness following the Locally-Lipschitz smoothness constraint.

L(θ, λ) = E(x,y)∼D[L(fθ(x), y) (4.3)

+ 1/λ ·max
δ∈S

L(fθ(x+ δ), fθ(x))],

where fθ denotes the training model parameterized by θ. Unlike RST computing an

adversarial loss between the prediction fθ(x + δ) and label y as the regularization

term in (4.2), TRADE regularizes the training by calculating L(fθ(x + δ), fθ(x))

from a pair of clean sample x and its adversarial version x + δ. The regularization

parameter λ determines the trade-off between accuracy and robustness in the overall

optimization. It is worth to notice that a small regularization parameter helps the

model emphasize more on accuracy over robustness which is closely aligned to our

objective of adversarial training. However, we show later in Section V that even very

small value of λ−1 cannot guarantee models to achieve comparable accuracy to vanilla

trained models.

Pre-training is a popular training framework that can help reduce training time

or improve accuracy performance for fine-tuning downstream tasks. Jeddi et al. [58]

start with a clean data pre-trained model and fine-tune with PGD adversarial training

with the aim of reducing the time cost and overfitting issue [30]. Hendrycks et al. [59]

adversarially pre-train their model on a downsampled ImageNet and apply adversar-

ial fine-tuning which can significantly improve model robustness on CIFAR datasets

compared with adversarial training from scratch. Chen et al. [36] show that self-

supervised pre-training such as Selfie [60], Jigsaw [61], also lead to better robustness

than traditional adversarial training. In contrast to previous adversarial pre-training

strategies, our approach mainly focuses on maintaining accuracy and treats adversar-

ial robustness as an added bonus. More specifically, we incorporate a novel adversary

generating method (DRA) to facilitate our goal by reducing the learning complexity

of adversarial training.
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4.3 Primitives

4.3.1 Problem Formulation

In this study, we focus on improving model robustness to imperceptible, in-distribution

adversarial samples defined by Fawzi et al. [62]. Briefly, assume that clean data fol-

lows a distributing D, in-distribution adversarial samples (x′) can also be roughly

described within D.

To answer the question: to what extent we can boost model robustness without

sacrificing standard performance, we formulate the problem as

L(θ) = E(x,y)∼D[max
δ∈S

L(x+ δ, y; θ)] (4.4)

s.t. E(x,y)∼D[L(x, y; θ)] ≤ E(x,y)∼D[L(x, y; θstd)],

where θstd = argmin
θ

E(x,y)∼D[L(x, y; θ)] represents the model with parameter θstd that

yields the minimized standard loss. Comparing the new problem in (4.4) with previous

adversarial training methods, the new regularization term in (4.4) explicitly defines

the behavior of the model: to improve adversarial robustness without the loss of

model’s standard performance.

4.3.2 Motivation

To answer the question in (4.4), we re-examine SOTA adversarial training strategies

and obtain an interesting observation. Yang et al. [57] show that many real image

sets, such as MNIST, CIFAR-10, SVHN and Restricted ImageNet, are r-separated,

with the smallest inter-category sample distance being no smaller than 2r. Further-

more, their empirical separation distance is 3x-7x larger than the typical adversarial

perturbation constraint ϵ adopted in prior arts, i.e. ϵ < r. In theory, any r-separated

dataset has more than one classifier that are both accurate and robust up to per-

turbations of size r. This r-separated claim aligns well with adversarial robustness

experiments on the MNIST dataset in previous adversarial training studies [7, 21, 41].
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Table 4.1: Performance of adversarial training methods on MNIST and CIFAR-10.
Adversarial accuracy is evaluated with PGD attacks.

MNIST (ϵ = 0.3) CIFAR-10 (ϵ = 8/255)

Astd Arob Astd Arob

Vanilla 99.3% 0.3% 93.0 % 0.0%

Madry’s [7] 99.2% 95.6% 87.3% 47.0%

Trades(1/λ = 1) [21] 99.3% 94.1% 86.6% 44.3%

Trades(1/λ = 6) [21] 99.3% 96.0% 81.2% 53.5%

MART [41] 99.1% 96.2% 83.4% 52.8%

However, as summarized in Table 4.1 where the standard performance and adversar-

ial performance are denoted by Astd and Arob respectively, on CIFAR-10 which is a

more complicated dataset, previous adversarial training often leads to around 10%

standard accuracy drop for models to gain desired adversarial robustness.

From the above observation, we hypothesize that the observed trade-off between

adversarial robustness and standard accuracy is due to the limitation of model capac-

ity. The problem of image classification on the MNIST dataset is relatively easy and

the models adopted in previous adversarial training studies have enough capacity to

jointly benefit from standard and adversarial samples. However, for complex prob-

lems such as classification on CIFAR-10 dataset, conventional adversarial training in

3.2 increases the difficulty in model optimization due to the noisy representation of

adversarial perturbations. In another word, learning both standard features and ad-

versarial features (i.e. those non-robust, yet highly predictive patterns [3]) is beyond

the capacity of those models (e.g. ResNet-18, ResNet-50, etc.).

Under the hypothesis that model capacity is not enough to simultaneously learn

standard and adversarial features, we value clean-data accuracy over adversarial ro-

bustness. Thus, we made two modifications to existing adversarial training strategies
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Figure 4.1: A conceptual illustration of our adversarial fine-tune method. Classifier 1
is the clean data pre-trained classifier which is accurate but not robust to adversarial
samples. Our adversarial fine-tuning method seeking for both accurate and robust
classifier by pushing the classifier 2 out of the yellow adversarial regions defined by
δ ∈ S.

to tackle the problem formulated in (4.4). Briefly, we propose a heuristic transfer

learning based adversarial training strategy that starts with a clean data pre-trained

model which already has strong generalizability on clean data. To further reduce the

learning complexity, we incorporate easy-to-learn adversarial samples in the adver-

sarial fine-tuning. Please refer to the next section for details of the proposed method.

4.4 Methodology

4.4.1 Transfer Adversarial Training

SOTA adversarial training methods usually train a robust model from scratch using

either adversarial data only in (3.2) or a combination of clean and adversarial data

following (4.1-4.3). However, none of them guarantee that the standard performance

will be preserved. Indeed, due to the highly non-convex loss surface in model op-

timization, optimizing both targets simultaneously may be at odds with each other

[55].

To solve the primal conditioned optimization problem in (4.4), we apply the Karush-
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Figure 4.2: Systematic diagram of the proposed adversarial transfer adversarial training
strategy, where we use various ResNets as the backbone. From left to right: DRA, a
proposed method to generate adversarial samples. It filters out negligible adversarial noises
and reduces adversarial training complexity. The orange block and green block represent
standard training and robust training, respectively. in standard training, we train a model
with θstd on clean data that yields high standard performance. Then the robust training
aims to find a better θ in the vicinity of θstd to boost adversarial robustness without standard
performance loss.

Kuhn-Tucker (KKT) approach and obtain a dual unconstrained optimization problem

by introducing a KKT coefficient λ,

L(θ, λ) = E(x,y)∼D[max
δ∈S

L(x+ δ, y; θ)] (4.5)

+ λE(x,y)∼D[L(x, y; θ)− L(x, y; θstd)]].

Therefore, the solution to the dual problem

min
θ

max
λ,λ>0

L(θ, λ) (4.6)

is identical to the solution of the primal problem in (4.4). Note that to solve the

problem in (4.6), we need the margin value E(x,y)∼D[L(x, y; θstd)] which is fixed before

the adversarial training described in (4.6). That is, a model with θstd is already

obtained for high standard performance. Therefore, instead of training a robust

model with θ from scratch, we introduce a transfer learning strategy to solve (4.6)

and propose to search a new θ from θstd, as the standard performance is unlikely to

severely change in the small vicinity of θstd. Fig. 4.1 visualize the conceptual idea
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of the propose adversarial training strategy on a r-separated dataset. Classifier 1

is vanilla-trained over clean data. It is accurate but nor adversarial robustness. By

pushing the classification boundary out of the yellow adversarial regions defined by

δ ∈ S, the obtained classifier 2 has the identical standard performance with improved

adversarial robustness.

The detailed systematic diagram of the proposed adversarial training strategy is

depicted in Fig. 4.2. Specifically, the proposed training strategy divides the train-

ing into two phases: vanilla standard training and adversarial robust training. In

standard training, we exploits clean data to train an accurate model. The standard

training has two benefits. First, it provides the margin value in (4.6). Second, due

to inherent transfer learning property, the downstream adversarial robust training

is more cost-efficient than SOTA adversarial training strategies that often require

large training loads and long training time to handle the complexity introduced by

adversarial features.

With the clean-data pre-trained model, adversarial samples are incorporated in

the model refinement phase. To prevent model catastrophic forgetting in model fine-

tuning, we follow the replay-based strategy and let the network iteratively update

upon clean and adversarial samples.

Unlike conventional fine-tuning tends to unfreeze several outer layers to preserve

the knowledge learned from the source task, we argue that it is important to update

all parameters in robust training stage. Briefly, adversarial noises propagate through

each layer in the model and aggregate into large prediction distortions. All layers of

a robust model must contribute to the defend against adversarial attacks.

4.4.2 Dynamically Regulated Adversary in Adversarial Train-
ing

Adversarial training is usually referred to as the ”MinMax” optimization game, where

the adversarial samples are significant contributors. In fact, aggressive adversarial at-
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tacks are preferred in adversarial training, because models trained on aggressive ad-

versarial attacks are more resistant to weaker adversaries. Therefore previous studies

have usually adopted the PGD attack in adversarial training.

A good adversarial attack approach for adversarial training should be aggressive

but without greatly increasing training complexity. Although PGD is an aggressive

solution for introducing noise, we argue that PDG is not the best candidate for

adversarial training in the sense that it introduces excessive noisy information in

model robustness training. More specifically, PGD uses a Sign() clipping method to

project adversarial noises onto the L∞ ball. It treats all image pixels equally and

applies the same noise injection strategy to all pixels, regardless of their contribution

to the prediction results. We argue that the treatment of adding adversarial noise to

all pixels in PGD significantly increases the training complexity. We will show in the

experimentation that the proposed DRA attack is a better candidate than PGD in

adversarial training and facilitates various adversarial training.

This work introduces a novel gradient-based attack method, namely DRA attack.

Unlike PGD, which treats image pixels equally, DRA distinguishes important pixels

from others by aggressively modifying only those image features that are highly pre-

dictive, but non-robust. In this way, DRA adversaries enforce the robustness training

by focusing more on these predictive features, thus helping to improve model’s robust-

ness against adversarial attacks. Specifically, DRA quantifies pixel significance by the

gradient of the loss function with respect to its pixel value. A large gradient value

suggests that the pixel contributes more to the image prediction. In this regard, DRA

abandons the Sign(·) method so that it can smoothly search for the optimal adver-

sarial samples along the gradient. In addition, when generating adversarial samples,

DRA uses a more resilient distance metric L1 to bound the adversarial noise instead

of using the L∞ constraint.

Fig. 4.3 presents a visual comparison of the DRA and PGD adversaries. Compared

to PGD, DRA introduces stronger noise in the ”cat” region, which is the most predic-
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Figure 4.3: A visual comparison of PGD (left) and DRA (right) adversaries. They are both
able to fool DNNs with imperceptible noises, however, the overall noise budget of DRA is
smaller. Furthermore, DRA focuses on highly discriminate pixels (patterns that contribute
most to final prediction outcomes), where PGD equally distributes adversarial noises over
the whole image. As we can see from the example, DRA noises align well with the salient
map of the cat.

tive pattern in the image. We claim that the lower noise level in the image background

makes the learning more complex. We show in the experimental section that DRA

samples help various training strategies achieve higher adversarial robustness than

PDG for the same adversarial aggressiveness.

4.5 Experiments

In this section, we present extensive experiments to evaluate the accuracy-robustness

performance of the proposed adversarial training strategy on MNIST and CIFAR-10
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datasets.

4.5.1 Experimental Setup

In the proposed adversarial training strategy, we first train a model on clean data only

so that the model has high standard performance. The model is then fine-tuned with

clean and DRA samples. In both training processes, we utilize image augmentation

including random cropping and random flipping. In addition, the image batch size

is set to 128, SGD with momentum to 0.9 and weight decay to 2e − 4 for model

optimization.

On the MNIST dataset, we follow the TRADES study and use a simple CNN model

with 2 convolutional layers and 2 fully connected layers. We set ϵ = 0.1, p = 2/3 and

iterate 20 times to generate DRA samples for 50 epochs of robust fine-tuning.

On the CIFAR-10 dataset, we use ResNet as the backbone model and perform 60

epochs of adversarial fine-tune in the robust training phase. Adversarial samples used

for our robust training are generated in 5 iterations. The noise constraint is linearly

decayed from 2 to 0.5 in the first 50 epochs, and only clean images are fine-tuned in

the last 10 epochs.

For evaluation purposes, adversarial samples are generated by PGD under various

noise constraints (e.g. ϵ = 0.1, 0.3 out of 1 for MNIST images and ϵ = 2, 5, 8 out

of 255 for CIFAR-10) in 20 iterations with step size ϵ/20, unless otherwise specified.

We compare our DRA fine-tuned model with TRADES [21] on both datasets using

relatively small regularization parameter (1/λ). We find that this setting is consis-

tent with our objective, as the small regularization parameter intuitively enforces

TRADES to primarily optimize the clean data accuracy while ”trading off” a small

amount of adversarial robustness.
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Table 4.2: Accuracy-Robustness performance against PGD attacks on MNIST. Note,
the target is to improve adversarial robustness without sacrificing standard perfor-
mance.

Model natural PGDϵ=0.1 PGDϵ=0.3

Vanilla trained 99.3% 88.3% 18.6%

Trades(1/λ = 1) 99.3% 98.4% 93.5%

Trades(1/λ = 0.5) 99.3% 97.9% 92.1%

Trades(1/λ = 0.1) 99.4% 97.2% 90.8%

Ours 99.3% 98.0% 95.9%

Table 4.3: Accuracy-Robustness performance against PGD attacks on CIFAR-10,
with ResNet-50 as the backbone model.

Model natural PGDϵ=2 PGDϵ=5 PGDϵ=8

Vanilla trained 93.7% 45.0% 15.9% 5.6%

Trades(1/λ = 0.05) 91.4% 53.5% 25.8% 8.6%

Trades(1/λ = 0.01) 92.6% 49.4% 19.2% 6.3%

Ours 93.8% 64.9% 31.0% 10.9%

4.5.2 Accuracy-Robustness Performance

The numerical results on the MNIST are shown in Table 4.2, where ”natural” indicates

the standard performance of the model on clean data and ”vanilla trained” indicates

that the model is trained with clean data only. On the MNIST dataset, both TRADES

and our method maintain high standard accuracy while improving model’s adversarial

robustness; the proposed method obtains 2% to 5% higher robustness than TRADES

with various settings.

For the more complex dataset, CIFAR-10, Table 4.3 shows the results with ResNet-

50 as the backbone. Unlike the MNIST dataset, ResNet-50 with the proposed ad-

versarial training strategy significantly outperforms TRADES in terms of adversarial

robustness. Note that in our experiment, the maximal ϵ of DRA in adversarial train-

ing is 2, which corresponds to ϵ =4 to 5 in PDG attacks. We believe that training
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Table 4.4: Accuracy-Robustness performance against PGD attacks on CIFAR-10,
with various backbone models.

Models natural PGDϵ=2 PGDϵ=5 PGDϵ=8

ResNet-18 (vanilla) 93.1% 44.1% 14.6% 5.8%

(-0.7%) (+16.3%) (+10.9%) (+2.7%)

ResNet-18 (ours) 92.4% 60.4% 25.5% 8.5%

ResNet-34 (vanilla) 93.3% 46.6% 15.3% 4.5%

(-0.4%) (+14.8%) (+12.6%) (+4.4%)

ResNet-34 (ours) 92.9% 61.4% 27.9% 8.9%

ResNet-50 (vanilla) 93.7% 45.0% 15.9% 5.6%

(+0.1%) (+19.9%) (+15.1%) (+5.3%)

ResNet-50 (ours) 93.8% 64.9% 31.0% +10.9%

ResNet-101 (vanilla) 93.7% 46.9% 15.9% 6.8%

(+0.1%) (+22.9%) (+16.3%) (+7.4%)

ResNet-101 (ours) 93.8% 69.8% 32.3% +14.2%

the model with a large DRA ϵ would further improve the robustness.

In addition, we vary the backbone models for the CIFAR-10 experiments and report

the accuracy-robustness performance in Table 4.4. First, for clean CIFAR-10 image

classification, vanilla-trained models and our adversarial fine-tuned models achieve

comparable performance in all examined backbone models. In particular, ResNet-50

and ResNet-101 can even outperform their vanilla training counterparts in terms of

clean data accuracy. Second, to defend against PGD attacks, we observe that models

with larger capacity are able to boost their adversarial robustness to a larger margin,

which supports our hypothesis discussed in section 3.
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4.5.3 Effect of DRA on Adversarial Training

Generation of strong adversarial samples (with higher attack success rates) is a crit-

ical factor in adversarial training. We investigate the impact of different types of

adversarial samples in three different adversarial training strategies: Madry’s [7],

TRADES [21], and ours. Concretely, we replace PGD samples with DRA data in

Madry’s, and TRADES. Similarly, we use PDG in the proposed method and compare

its performance with DRA. We note that DRA is a stronger adversary than PGD

for the same ϵ conditions due to the presence of soft-bounded constraint. To make a

fair comparison, we choose different ϵ for them so that DRA-generated samples and

PGD-generated samples can have similar attack strengths. Specifically, we set ϵ = 1

for DRA and ϵ = 2.55 for PGD, as both settings resulted in a robust accuracy of

44.5% on vanilla-trained ResNet-50.

Table. 4.5 reports CIFAR-10 classification performance with ResNet-50 as the back-

bone model. We observe that in all three settings, DRA is more beneficial for improv-

ing model robustness. Furthermore, the clean data accuracy of DRA trained models

is higher than that of the PGD trained models using Madry’s and our method. Since

the loss function of TRADES (Eqn.4.3) is essentially designed to improve robustness

through trading accuracy, we believe it is reasonable to assume that the standard

accuracy of the DRA trained model is slightly lower than that of the model trained

with PGD. In short, Table. 4.5 with numerical results validate our hypothesis that

DRA is a better adversary that benefits model’s adversarial training.

4.5.4 Ablation on DRA Hyperparameter Setting

Our DRA attack algorithm filters out unimportant pixels by a pre-fixed percentage

and applies adversarial noises only to important image features that contribute to the

final prediction. In this ablation study, we investigate the effect of hyperparameter

settings (e.g. the value of significant feature percentage p and noise budget ϵ in

Algorithm 4.4.2) on CIFAR-10 dataset. Specifically, CIFAR-10 images are in size
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Table 4.5: ResNet-50 trained with PGD Vs. DRA on CIFAR-10

Model Clean data PGDϵ=2 PGDϵ=5 PGDϵ=8

Madry’s + PGD 88.8% 66.1% 30.9% 11.0%

(+0.6%) (+0.6%) (+0.7%) (+1.5%)

Madry’s + DRA 89.4% 66.7% 31.6% 12.5%

TRADES + PGD 87.9% 65.0% 34.3% 12.1%

(-0.7%) (+3.3%) (+4.8%) (+1.8%)

TRADES + DRA 87.2% 68.3% 39.1% 13.9%

ours + PGD 90.6% 59.2% 27.0% 10.1%

(+0.7%) (+0.8%) (+1.9%) (-0.3%)

ours + DRA 91.3% 60.0% 28.9% 9.8%

of 3 × 32 × 32. We treat the values of red, green and blue independently and thus

obtain N = 3072 pixel values per image. To comprehensively study this problem,

we vary the values of p and ϵ and report DRA’s attack success rates on CIFAR-10

vanilla-trained ResNet-18, ResNet-34 and ResNet-50.

Fig. 4.4 reports adversarial attack success rate versus the percentage p out of the

3072 pixels. With the settings ϵ = 1, we note that the successful attack rate of DRA

grows linearly in the most significant 500 (i.e. p = 1/6) pixels and saturates in about

1000 (p = 1/3) pixels. For ϵ = 2, the successful attack rate also almost saturates at

approximately 1000 (p = 1/3) pixels.

To further investigate the impact of DRA thresholds on the overall adversarial

training method, we train ResNet-50 with different values of p and report the per-

formance in Table. 4.6. We notice that a higher threshold value p does contribute to

better model robustness, however, the improvement becomes marginal as p > 1/3. In

particular, increasing p from 1/2 to 1 only leads to less than 0.5% robustness incre-

ment for PGD attacks, but causes the downgrade of natural accuracy by 0.8%. These
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Table 4.6: Ablation on DRA hyperparameter settings: adversarial training perfor-
mance versus different threshold value p.

p natural PGDϵ=2 PGDϵ=5 PGDϵ=8

0 93.7% 45.0% 15.9% 5.6%

1/6 91.8% 58.5% 28.0% 9.2%

1/3 91.3% 60.0% 28.9% 9.8%

1/2 90.4% 61.4% 29.1% 10.0%

1 89.6% 61.9% 29.3% 10.1%

results also support our claim that introducing too much unnecessary noise in the

images complicates model optimization and tends to lead to a standard performance

loss. Similar to the results in Fig. 4.4, Table 4.6 indicates that p = 1/3 to 1/2 is a

good setting for generating adversarial samples in the proposed method.

(a) ϵ = 1 (b) ϵ = 2

Figure 4.4: Ablation on DRA hyperparameter settings: DRA’s attack success rates versus
the significant feature percentage p on CIFAR-10 vanilla-trained ResNet models. A marginal
improvement on attack success rate is observed when p > 1/3.

4.5.5 Evaluation on Naturally Corrupted Images

Corrupted data with naturally occurring perturbations and distributed shifts pose

challenges to model generalization. In this experiment, we explore the potential

of DRA fine-tuned models on corrupted data. We train a ResNet-50 model with

our adversarial fine-tuning strategy and evaluate its performance on the corrupted

56



Original

Gaussian 
noise

Fog

Snow

Figure 4.5: Corrupted image samples in Cifar-10-C [52].

CIFAR-10 dataset (CIFAR-10-C [52]). In CIFAR-10-C, the clean CIFAR-10 data

are processed to mimic various image distortions under harsh conditions. Table 4.7

presents classification accuracy on the CIFAR-10-C dataset with the DRA refined

model and the vanilla trained model. Results show that the DRA fine-tuned model

exhibits stronger robustness to different types of corruption.

4.6 Conclusion

In this chapter, we aim to tackle a unique problem in adversarial training: improving

the adversarial robustness of a model without sacrificing the standard performance.

We explicitly formulate the problem and propose a cost-efficient adversarial training

strategy. It decomposes adversarial training into two phases: standard training and
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Table 4.7: The accuracy of DRA trained ResNet-50 vs. Vanilla trained ResNet-50
over different corrupted types.

Corrupted Type ResNet-50 ResNet-50

(DRA Trained) (Vanilla trained)

Snow 85.37% 84.10%

Frost 84.4% 81.41%

Zoom blur 84.97% 82.13%

Motion blur 76.89% 74.08%

JPEG compression 89.51% 84.51%

Gaussian noise 75.85% 50.92%

robust training. In addition, we introduce a training-friendly adversary to further

benefit adversarial training. Extensive experimentation on MNIST and CIFAR-10

datasets suggest that the proposed adversarial training strategy serves better for the

target objective.
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Chapter 5

Conclusions, & Future Work

5.1 Conclusions

In the past few years, Deep Learning has achieved great success in numerous industrial

applications. While many researchers continue to develop more advanced and superior

algorithms, limited attention has been paid to the security and safety aspects of deep

learning. That is, can we trust DNNs to make decisions for us in environments where

safety or security is highly concerned? Recently, a newly proposed research area

namely adversarial machine learning aims to discover if DNNs can be easily attacked

or fooled. Since 2014, a variety of adversarial attack methods have been proposed to

trick DNNs, but there are few methods proposed that can successfully defend against

them. In this thesis, we propose two novel adversarial training methods to improve

the adversarial robustness of DNNs.

In the first phase of the thesis, we discover a bias pattern from the semantic similar-

ity between different classes that exist in most SOTA adversarial training algorithms.

Inspired by this discovery, we propose Self-Paced Adversarial Training (SPAT) to

balance the semantic bias in untargeted adversarial training. Experimental results

show that SPAT significantly boosts adversarial robustness of DNNs compared to

SOTA defenses. The second phase of the thesis is inspired by the trade-off paradigm

of traditional adversarial training. That is, while many defense methods help im-

prove adversarial robustness, they can also hurt the standard accuracy of clean data.

59



Therefore, we propose a more efficient adversarial training strategy to disentangle this

negative effect. Extensive experiment results show that our method can help DNNs

jointly benefit from adversarial data and clean data.

5.2 Future Work

With the growing interest in adversarial machine learning from the research commu-

nity, there are stronger and more concealed adversarial attack methods have been

proposed each period of time, which means that training an optimal robust and se-

cure DNN model is becoming harder. We believe that certified adversarial robustness

cannot be fully achieved unless we possess a deeper understanding and interpretation

of deep learning models themselves as well as their optimization methods.
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