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Abstract

3D character animation plays a pivotal role in video games and film produc-

tions. One crucial aspect that captivates audiences is the visual appeal and

fluidity of character motion within these digital mediums. However, creating

realistic character motion requires significant efforts and resources, including

access to Motion Capture (MoCap) studios and skilled animation artists. The

capability to automatically generate 3D character motion as desired would

greatly empower the production of 3D digital content. Moreover, by learn-

ing to generate lifelike character motions, we can gain deeper insights into

the physical motor behavior of real humans. Ultimately, this could lead to

the creation of digital dynamic clones of ourselves. In this thesis, we make

a step towards solving this problem, to generate lively character motion as

wishes. We present controllable 3D character motion generation techniques

that could create human-like motion following versatile instructions, such as

natural language commands, motion examples, game-pad signals, and terrain

environments.

We begin by presenting a novel generative framework that enables general

text-to-motion generation. A neural network learns to generate corresponding

3D skeletal animation based on the given descriptive natural language sen-

tence. The network not only learns the text-conditioned dataset distribution

but also models the unconditional motion prior. By utilizing this learned gen-

erative prior, this method can produce robust and life-like motion and extend

any given motion clips. We then integrate the text-to-motion framework with
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the off-the-shelf stylization method to generate even more expressive motions.

Furthermore, we develop a hierarchy reinforcement learning system that can

enable the digital character to perform specific motions with spontaneous in-

teraction in a physically simulated environment. Two policies are trained in an

end-to-end manner to explicitly leverage the motion expert databases through

retrieval and drive the simulated character with torques. The agents trained

in the physical simulator inherently learn to interact and be resilient against

perturbations from the environment.
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We choose to go to the Moon in this decade and do the other things, not

because they are easy, but because they are hard.

– John F. Kennedy, 1962.
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overlooked the stochastic nature of human motion. Humans can perform di-

verse motions in response to the same instruction. A modern perspective views

motion modeling as a process of learning data distribution. By modeling the

pure dataset prior, the model learns the natural and reasonable appearance

of human motion. When learning from conditional data distributions with

additional control prompts, the model can generate motion in a controllable

manner.

In this thesis, we adopt generative modeling approaches to develop intelli-

gent 3D skeletal motion performers by leveraging prior knowledge from human

motion data. At the core of our work is the generative learning paradigm,

which emphasizes the stochastic property of motions. Our works learn the

nature of motion distribution and its variations conditioned on text descrip-

tions, game-pad inputs, and motion examples within kinematics or physically

constrained dynamics environment, as illustrated in Fig. 1.1. Fig. 1.4 demon-

strated some applications from the community built with our works. We be-

lieve that controllable 3D character motion generation in both contexts could

be of interest to other domains, particularly in applications such as augmented

reality, virtual reality and robotics.

1.1 Motivation

Human motions are inherently complex and captivating, involving a wide array

of skills and tasks. Even minor variations in these movements can convey a

wealth of information. In the realm of 3D digital characters, replicating such

lifelike motions typically requires the expertise of skilled actors or artists to

meticulously capture every detail. This leads to intriguing questions: Can

we create 3D characters that can follow simple language instructions just like

humans? Furthermore, can we broaden this capability to control them through

various inputs, such as motion examples or game-pads?

Addressing these challenges is crucial, as achieving versatile and control-

lable 3D character motion generation has profound implications for augmented

reality, virtual reality, and robotics. Our approach leverages generative model-
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ing techniques, which are pivotal for capturing the stochastic nature of human

motions and learning from extensive motion data. By using state-of-the-art

generative learning paradigms, we aim to develop methods that can gener-

ate lifelike movements under different control signals. Specifically, our work

focuses on generative modeling, which emphasize the non-determinism of hu-

man motion. We utilize advanced methods such as masked transformers for

generative motion modeling and residual vector quantization for compact yet

almost lossless latent representation. Additionally, we propose a hierarchical

reinforcement learning framework with adversarial training in physics simula-

tors, ensuring legal dynamics.

Through these innovative methodologies, we seek to push the boundaries of

digital character animation, making it more accessible, realistic, and adaptable

to a wide range of applications. Our goal is to develop 3D characters that not

only mimic human movements but also respond dynamically to diverse control

signals, thereby advancing the field of digital character animation.

1.2 Thesis Overview

The work presented in this thesis explores 3D human character motion genera-

tion conditioned on text and game-pad-controlled simulated environment. We

begin with a brief background review of the fundamental concepts in generative

models, reinforcement learning, imitation learning, and 3D character motion

(Chapter 2). Then we give an overview of related techniques on latent rep-

resentation, generative mask modeling, and retrieval augmented generation.

We also review the most closely related work in motion matching, generative

human motion modeling, and simulated character control (Chapter 3). This

is followed by the two main works of this thesis: MoMask (Chapter 4) and

RACon (Chapter 5). The kinematic-based motion generation method MoMask

(Chapter 4) develops the state-of-the-art text2motion framework to generate

life-like character motion from text descriptions, shown in Fig. 1.2. Our Mo-

Mask, when provided with a text input, generates high-quality 3D character

motion with diversity and precise control over subtleties such as “two strides
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to represent human motion as multi-layer discrete motion tokens with high-

fidelity details. Starting at the base layer with a sequence of motion tokens ob-

tained by vector quantization, residual tokens of increasing orders are derived

and stored at subsequent layers of the hierarchy. For the base-layer motion

tokens, a Masked Transformer predicts randomly masked motion tokens con-

ditioned on text input during training. During inference, the Masked Trans-

former iteratively fills in missing tokens, starting from an empty sequence.

Extensive experiments demonstrate that MoMask outperforms state-of-the-art

methods in text-to-motion generation, and gains superior performance against

the strongest GPTs-based and diffusion-based counter parts. Diffusion Mod-

els are not well-suited for sequence generation, while GPTs tend to be overly

cumbersome. MoMask can be understood as a nonlinear language model, po-

tentially representing the best modeling paradigm for motion in recent times.

1.4 RACon: Retrieval-Augmented Simulated

Character Locomotion Control

Figure 1.3: Example of a simulated character running against physical pertur-
bation from the environment, controlled by RACon.

RACon is an advanced hierarchical reinforcement learning system designed

to enhance the realism and responsiveness of simulated character motion. By

integrating a retriever and a motion controller, RACon utilizes task-oriented

retrieval to search for motion experts from a user-specified database, which
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are then used alongside manipulation signals to drive the character. The

system features a retrieval-augmented discriminator to stabilize training and

maintain the naturalness of the motions. Key contributions of RACon include

an end-to-end integrated approach that incorporates two RL frameworks as

an HRL system, a retrieval-augmented (RA) discriminator as a training-time

motion prior, and a set of rewards designed to jointly optimize the policies.

Empirical studies show RACon outperforms existing methods in both quality

and adaptability of locomotion control, enabling seamless transitions between

different motion types without extensive tuning.

Promt: A person walks backward in a 

small zig zag. [Femalemodel style]  
Promt: A person steps to the left sideways.

[Drunk style]

S
ty

le
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o
n
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n

t

Stylized T2M Stylized T2M

Figure 1.4: Applications built on the work in this thesis by the community1

and our lab [29]. (a) The motion generated by our work being used as a plugin
in ClipStudio, a popular software for digital creation; (b)(c)(d)(e) web games
developed by individual creators using our API; (f) an application to generate
stylized motion from text, built by our lab team.

1https://x.com/tnksoft; NickFisherAU; tegnike; azailuhca; npaka123.
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Chapter 2

Background

This thesis leverages supervised learning, reinforcement learning, and imitation

learning to train generative models capable of understanding and replicating

the distribution of motion, thereby generating 3D character motion as desired.

In this chapter, we provide a brief overview of the fundamental concepts in gen-

erative models, reinforcement learning, imitation learning, and 3D character

motion.

2.1 Generative Models

A generative model is a statistical model of the joint probability distribution

P (X, Y ) over a given observable variable X and target variable Y [73]. Such

a model can be employed to ‘generate’ random instances of an observation

x [70].

In recent years, the field of deep learning has given rise to a popular trend

of methods known as deep generative models (DGMs). These methods blend

generative models with deep neural networks. Achieving high performance

with DGMs often requires scaling up both the neural networks and the asso-

ciated training datasets. Some of the most well-known DGMs are variational

autoencoders (VAEs) [43], generative adversarial networks (GANs) [26], auto-

regressive models [84], and diffusion models [37]. A notable recent develop-

ment in this field is the push towards creating larger and more efficient deep

generative models.
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2.2 Reinforcement Learning

Reinforcement Learning (RL) is a type of machine learning where an agent

learns to make decisions by interacting with an environment, which is an ex-

ternal system. The objective is to learn a policy that maximizes cumulative

rewards over time [91]. It is typically modeled as a Markov Decision Process

(MDP), characterized by:

States (S): The set of all possible states, which is a representation of the

current situation in the environment.

Actions (A): The set of all possible actions, which are decisions made by

the agent that affect the environment.

Transition Function: The probability of transitioning from one state to

another, given an action:

T (s′, s, a) = Pr(St+1 = s′ | St = s, At = a), (2.1)

where St is the state at time t, At is the action taken at time t, and St+1 is

the next state.

Reward Function: The immediate reward received after transitioning

from state s to state s′ under action a:

r(s′, s, a). (2.2)

A basic reinforcement learning agent interacts with its environment in dis-

crete time steps. At each time t, the agent receives the current state St and

reward rt. It then chooses an action At from the set of available actions,

which is subsequently sent to the environment. The environment moves to a

new state St+1 and the reward rt+1 associated with the transition (St, At, St+1)

is determined [91]. The goal of a reinforcement learning agent is to learn a

policy, which is a strategy used by the agent to decide actions based on the

current state:

π : S ×A → [0, 1], (2.3)

where

π(s, a) = Pr(At = a | St = s), (2.4)
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that maximizes the expected cumulative return. The objective is to find the

optimal policy π∗ can be written as:

π∗ = argmax
π

J(π), (2.5)

where the expected discounted return J(π) could be formulated as:

J(π) = Eτ∼p(τ |π)

[

T−1
∑

t=0

γtrt

]

, (2.6)

p(τ |π) = p(s0)
∏T−1

t=0 p(st+1|st, at)π(at|st) is the distribution of trajectories τ

induced by a policy π, and γ ∈ [0, 1] is a discount factor.

2.2.1 Goal-Conditioned Reinforcement Learning

In Goal-Conditioned Reinforcement Learning [58], an agent interacts with the

environment via the policy π(at|st, g), aiming to accomplish a specific goal

g ∼ pg, with pg representing the desired goal distribution. The reward is

then typically determined by the function r(st, at, g), which assesses the ac-

tion based on the current state and the goal. The learning objective entails

maximizing the cumulative return J(π), which can be expressed as:

J(π) = Eat∼π(·|st,g),g∼pg
st+1∼T (·|st,at)

[

∑

t

γtr(st, at, g)

]

, (2.7)

where T (·|st, at) represents the environment’s forward dynamic distribution

and γ stands for the discount factor.

2.2.2 Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) combines RL with deep learning, allow-

ing the agent to handle high-dimensional state spaces, such as images. Neural

networks are used to approximate the value functions or policies [71]. The

two typical algorithm families for deep reinforcement learning are Deep Q-

Networks (DQNs) and Policy Gradient Methods. DQN extends Q-learning

using deep neural networks to approximate the Q-value function. This ap-

proach has been successful in various domains, including playing Atari games
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at superhuman levels [71]. Policy gradient methods learn the policy directly by

optimizing the expected cumulative reward using gradients. These methods

are effective in continuous action spaces and complex environments. A typical

policy gradient method, Proximal Policy Optimization, is used in the work of

this thesis thanks to its robustness and efficacy.

Proximal Policy Optimization (PPO)

Proximal Policy Optimization (PPO) is a type of policy gradient method that

aims to improve training stability and efficiency. PPO strikes a balance be-

tween policy optimization and preventing too-large updates, which can desta-

bilize training [87]. The three-key design of PPO leads to its stable and ef-

ficient performance. Firstly, PPO modifies the policy gradient objective to

ensure the new policy does not deviate too much from the old policy. The

objective function includes a clipping term that limits the policy update size:

LCLIP(θ) = Et

[

min
(

rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]

, (2.8)

where rt(θ) = πθ(at|st)
πθold

(at|st)
is the probability ratio of the new and old policies,

Ât is the advantage estimate, and ϵ is a small hyperparameter that controls

the clipping range. Secondly, the clipped objective is used which is a surro-

gate for the true objective, providing a pessimistic estimate of the expected

reward to ensure safe updates. Lastly, PPO uses generalized advantage esti-

mation (GAE) to reduce variance and improve the efficiency of the advantage

estimates:

Ât =
∞
∑

l=0

(γλ)lδt+l, (2.9)

where δt is the temporal difference error, γ is the discount factor, and λ is a

parameter that controls the bias-variance trade-off.

PPO makes multiple updates using the same batch of data, improving sam-

ple efficiency. Moreover, the clipping mechanism ensures stable and reliable

policy updates. In summary, it is a robust and efficient DRL algorithm that

balances exploration and exploitation while ensuring stable policy updates,

making it a popular choice for various RL tasks.
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2.3 Imitation Learning

Imitation learning involves training an agent to replicate the behavior of an

expert by observing examples of the expert’s actions. This process can be

categorized into two main approaches: behavioral cloning and inverse rein-

forcement learning (IRL).

Behavioral Cloning. This approach treats imitation as a supervised

learning problem, where the goal is to learn a policy that maps states to ac-

tions based on expert demonstrations [97]. While straightforward, behavioral

cloning often requires large amounts of data to avoid compounding errors due

to covariate shift, where the states encountered during training differ from

those encountered during deployment.

Inverse Reinforcement Learning (IRL). IRL involves inferring a cost

function that explains the expert’s behavior and then using reinforcement

learning to derive a policy that optimizes this cost function [117]. Although

IRL can handle more complex scenarios and reduce compounding errors, it is

computationally intensive due to the need for repeated reinforcement learning

in an inner loop.

2.3.1 Generative Adversarial Imitation Learning

Generative Adversarial Imitation Learning (GAIL) [36] emerges as a powerful

approach to teaching agents to perform tasks by imitating expert behaviors

without requiring direct reinforcement signals or continuous interaction with

the expert. GAIL combines the strengths of generative adversarial networks

(GANs) from deep learning with the principles of imitation learning to directly

learn policies from expert demonstrations without explicitly modeling the cost

function. The key idea is to draw an analogy between imitation learning and

GANs, where the learning process involves a game between two entities: a

generator (policy) and a discriminator.

Generator (Policy). The generator attempts to produce behaviors that

are indistinguishable from those of the expert. It generates actions based on

the current state to maximize the likelihood of being perceived as an expert

11



by the discriminator.

Discriminator. The discriminator distinguishes between the expert’s be-

havior and the generator’s behavior. It provides feedback to the generator,

helping it improve by penalizing actions that deviate from the expert’s behav-

ior.

The interaction between the generator and the discriminator forms an ad-

versarial process, where the generator improves its policy by learning from the

discriminator’s feedback, and the discriminator becomes better at distinguish-

ing between expert and generated behaviors.

In GAIL, the objective is to find a policy π that minimizes the discrepancy

between the occupancy measures of the expert and the generated trajectories.

Formally, this involves optimizing the following objective:

min
π

max
D

EπE
[logD(s, a)] + Eπ[log(1−D(s, a))] (2.10)

where D is the discriminator, πE is the expert policy, and π is the generator

policy. The discriminator tries to maximize the likelihood of correctly identi-

fying expert actions while minimizing the likelihood of incorrectly identifying

generated actions. Conversely, the generator tries to fool the discriminator by

producing actions that the discriminator cannot distinguish from the expert’s

actions.

2.4 3D Character Motion

3D character motion, which is a sequence with spatial and temporal dimensions

to represent the animation of 3D characters. More specifically, we focus on

the motion of articulated subjects, such as humans or humanoids. There

are two perspectives on this modality: kinematic solutions and simulator-

based (dynamic simulation) methods. Most of the kinematic solutions focus

on directly modeling the spatial state, while simulator-based methods often

additionally formulate second-order systems with hard constraints from the

dynamic functions.
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2.4.1 Rotation-based Motion Representation

The 3D skeletal character motion is a sequence of 3D poses continuously ar-

ranged along the temporal dimension. The 3D pose could be simply repre-

sented by a set of 3D key points or joint positions for humans. With regard

to the skeletal motion, each pose is further regularized by a fixed skeleton tree

as a hard constraint. To feasibly satisfy this constraint, the 3D skeletal pose

could be parameterized SE(3) transformations. To be specific, each rigid body

(link) is described by the Special Euclidean Group:

SE(3) :=

{

T :=

[

R p
0 1

]

| R ∈ SO(3), p ∈ R
3

}

⊂ R
4×4 (2.11)

where, p is the translation of the link, the pose T of a rigid body in the world

frame specifies a transformation from the body frame to the world frame or

its parent body frame.

For this rotation-based pose representation, given a kinematic chain com-

posed of links and joints with multiple degree of freedom, we could use For-

ward Kinematics to find the position and orientation of any joints and

the end-effector in the word frame when all the joint rotation parameters are

known.

Figure 2.1: Example to illustrate Joints, Links, End-effector, Kinematic chains
for 3D skeletal motion [23].
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We give a brief introduction to key concepts of rotation-based motion rep-

resentation, which could also refer to robotics and Fig. 2.1.

• Links: Links are rigid bodies that give structure to the articulated char-

acter.

• Joints: Joints are the movable parts (actuators) of the articulated char-

acter that connect the links of the character. Joints cause relative motion

between adjacent links.

• Kinematic chains: Kinematic chain is the assembly of links connected

by joints to produce a desired motion. Human arm is an example of a

kinematic chain. Human body is a group of kinematic chains connected

in series.

• Degree of Freedom (DOF): Degree of freedom in robotics is simply the

total number of independent joints which can change the pose of the

robot. If we take a human arm from shoulder to palm (fingers not

included), arm has 7 DOF. For instance, the shoulder has 3 DOF, the

elbow has 1 DOF, and the wrist has 3 DOF. However, for simplicity,

every human joint has 3 DOF if not otherwise specified.

• End-Effector: The end-effector is the last link of the manipulator inter-

acting with the environment in robotics.

2.4.2 Articulated Character Simulation

A physics engine is a quadratic program that provides an approximate sim-

ulation of certain physical systems, such as rigid body dynamics, soft body

dynamics, and fluid dynamics [69]. We will focus on physics engines for rigid

body dynamics, collision, and external force (e.g., gravity). Simulators play a

key role in training physically plausible motion performers and robots. Popular

physics simulator such Isaac Gym [66], MuJoCo [96], PyBullet [17], DART [45],

Drake [92] use numerical methods to solve the dynamic functions with the hard

constraint of collision. To be more specific, at every time step, assigned the
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physics attributes (e.g. density, stiffness, and coefficient of friction) and given

the current state of the subject (e.g. velocity, torques, and accelerations), the

simulator updates the next subject state by solving the dynamic. Among all

the physics simulators publicly available, Isaac Gym is currently the most ef-

ficient environment for online learning since it operates on GPU and supports

parallel accelerations. This leads to blazing fast training times for complex

simulated character control tasks on a single GPU with 2-3 orders of mag-

nitude improvements compared to conventional online training that uses a

CPU-based simulator and GPUs for neural networks [66].

Issac Gym uses the Temporal Gauss Seidel (TGS) [64] solver to compute

the future states of objects in our physics simulation. The TGS solver uses the

observation that sub-stepping a simulation with a single Gauss-Seidel solver

iteration yields significantly faster convergence than running larger steps with

more solver iterations. It folds this process efficiently into the iteration process,

calculating the velocity at the end of each iteration and accumulating these ve-

locities (scaled by δt/N , where N is the number of iterations) into a per-body

accumulated delta buffer. This delta buffer is projected onto the constraint

Jacobians and added to the bias terms in the constraints. This approach adds

only a few additional operations to a more traditional Gauss-Seidel solver, pro-

ducing almost identical performance costs per-iteration. However, it achieves

the same effect on convergence as having sub-stepped the simulation without

the computational expense. With positional joint constraints, an additional

rotational term is calculated for joint anchors to improve the handling of non-

linear motion and avoid linearization artifacts [66].
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Chapter 3

Related Work

Generating 3D motion akin human has been a long lasting problem in the

cross-discipline of computer vision, animations and robotics. On one hand,

recently, the emerging generative artificial intelligence techniques are revo-

lutionizing this field. By modeling the distribution of large motion caption

dataset, we are going to be able to generate motion more natural than ever

before. On the other hand, involving physics constrains by controlling charac-

ter motion in the physics simulator is intuitively one of the best solutions to

guarantee physically plausible results. In this chapter, we first provide a brief

overview of related techniques on latent representation, generative mask mod-

eling, and retrieval augmented generation. Then we review the most closely

related work in motion matching, generative human motion modeling, and

simulated character control.

3.1 Latent Representation and Deep Quanti-

zation

Motion contains plenty of redundant features, particularly along the temporal

dimension. This redundancy necessitates more efficient latent representations

for network learning and drives the use of deep compression and quantiza-

tion techniques. Deep Motion Signatures [2] learns semantically meaningful

discrete motif words leveraging triplet contrastive learning. TM2T [31] starts

applying vector quantized-VAE [100] to learn the mutual mapping between

human motions and discrete tokens, where the autoencoding latent codes are
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replaced with the selected entries from a codebook. T2M-GPT [111] further

enhances the performance using EMA and code reset techniques. This is

adopted in several other works such as PoseGPT [61] and MotionGPT [41],

[114]. Nevertheless, the quantization process inevitably introduces errors, lead-

ing to suboptimal motion reconstruction. In the work of this thesis, MoMask,

we adapt residual quantization [5], [68], [110], a technique used in neural net-

work compression [22], [51], [52] and audio quantization [5], [102] which itera-

tively quantizes a vector and its residuals. This approach represents the vector

as a stack of codes, enabling high-precision motion quantization.

3.2 Generative Masked Modeling

BERT [18] introduces masked modeling for language tasks that word tokens

are randomly masked out with a fixed ratio, and then the bi-directional trans-

former learns to predict the masked tokens. Despite being a decent pre-trained

text encoder, BERT cannot synthesize novel samples. In this regard, [11] pro-

poses to mask the tokens with a variable and traceable rate that is controlled

by a scheduling function. Therefore, new samples can be synthesized iter-

atively following the scheduled masking. MAGE [50] unifies representation

learning and image synthesis using the masked generative encoder. Muse [10]

extends this paradigm for text-to-image generation and editing. Magvit [109]

suggests a versatile masking strategy for multi-task video generation. Inspired

by these successes, we first introduce generative masked modeling for human

motion synthesis in our work, MoMask.

3.3 Retrieval Augmented Generation

Retrieval Augmented Generation (RAG) has increasingly captured the atten-

tion of the Natural Language Processing (NLP) community, demonstrating ex-

ceptional performance in a variety of NLP tasks, such as dialogue systems[48],

machine translation[27], text style transfer[106], etc. Compared to traditional

pre-trained generation models, RAGs offer compelling advantages, such as

straightforward knowledge acquisition, robust scalability, and reduced train-
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ing costs. A critical component of RAMs is the retrieval metrics, often associ-

ated with similarity measurements. Dense-vector retrieval exploits pre-trained

encoders like BERT to assess the similarity of latent space vectors [46], [49].

However, employing similarity-based metrics as a simple heuristic may not al-

ways yield optimal results, as the closest match in a hand-crafted feature space

may not necessarily fit best within a specific content space scenario. Conse-

quently, the ideal solution appears to be the integration of the retriever and its

augmented model into a task-oriented, learnable entity. To facilitate the gra-

dient flow from the retrieved value to the generated query, re-parameterization

techniques are applied, such as weighted summing of retrieval candidate val-

ues, biased with relevance scores [6] linked to query-key similarity. In motion

generation task, it is impractical to combine various motion clips using any ad-

ditive approach. As such, we employ policy-gradient to train a query generator

with specific task objectives. This approach enables our retrieval component

to autonomously handle extensive and disordered databases and boosts control

task responsiveness.

3.4 Motion Tracking

Numerous studies have explored the use of simple objectives or meticulously

constructed heuristics in motion-tracking to replicate locomotion behaviors [19],

[35]. To enhance animation realism, the recent focus has shifted to the incor-

poration of motion capture data [39], [57], where reference motions serve as

constraints to promote character imitation. These constraints, typically de-

fined as a tracking objective, aim to minimize the pose discrepancy between

the simulated and reference motion [75], [101]. Reference motions require

careful selection and synchronization with the simulated character. A phase

variable, utilized in [47], [75], serves as an additional signal to generate a con-

densed set of reference poses, with each pose assigned a phase. Despite the

success of phase-variable-based methods in replicating simple motions, they

are still inapplicable for a wider range of motions that are difficult to synchro-

nize. An alternative solution involves the ensemble of multiple independent
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models [57], [75]. Contemporary methods handling larger motion datasets as-

sign exact reference poses for the target frame as the objective rather than a

motion phase[4], [14], [101], [104]. Consequently, the motion tracking problem

simplifies to precise motion planning and straightforward mimicking. Never-

theless, identifying the most suitable action for a character to mimic in a given

scenario remains challenging and necessitates extensive engineering efforts to-

wards a sophisticated motion planner [4], [74]. Thus, these motion tracking-

based methods may have their performance limited by the pre-designed motion

planner and the quality of the MoCap database. In contrast, our work trains

a motion expert retriever in tandem with the controller. The retriever, unlike

previous methods, is automatically optimized with its own objective and the

overarching system objective, making it task-oriented. We aim to develop a

more integrated and efficient approach for controlling physics-based charac-

ters through the joint training of these components, even with extensive and

chaotic MoCap databases.

3.5 Generative Human Motion Modeling

Recently, there has been a surge in motion generation research, exploring

various domains such as motion prefix [59], [67], action class [9], [32], [61],

[78], audio [25], [89], [99], [116], and texts [13], [30], [31], [79], [95]. Early

works [1], [24], [40], [53], [81] commonly modeled motion generation deter-

ministically, resulting in averaged and blurry motion outcomes. This issue is

effectively addressed by stochastic models. GAN modeling is employed in [7],

[103] for action-conditioned motion generation. Simultaneously, the temporal

VAE framework and transformer architecture are utilized in works such as [33],

[78].

For text-to-motion generation, T2M [30] extends the temporal VAE to

learn the probabilistic mapping between texts and motions. Similarly, TEMOS [79]

leverages Transformer VAE to optimize a joint variational space between nat-

ural language and motions, further extended by TEACH [3] for long motion

compositions. MotionCLIP [94] and ohMG [55] model text-to-motion in an
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unsupervised manner using the large pretrained CLIP [83] model.

The advent of diffusion models and autoregressive models has significantly

transformed the field of motion generation. Diffusion methods train a network

to gradually denoise the motion sequence, guided by a scheduled diffusion pro-

cess [13], [42], [44], [60], [95], [99], [112]. While diffusion models show promising

capabilities for generating high-quality motions, their inference efficiency re-

mains a bottleneck, typically requiring hundreds of sampling steps. Various

solutions, such as latent diffusion [13], [86] and the DDIM sampler [90], have

been proposed to address this issue, but it remains an ongoing challenge. In

autoregressive models [25], [31], [41], [111], [114], motions are first discretized

into tokens via vector quantization [100], which are then modeled by expressive

transformers similar to language models. This approach has become popular

for topics such as action-to-motion [61], text-to-motion [31], [41], [111], [114],

and dance generation [25], [89].

3.6 Simulated Character Motion Control

A growing number of studies are now focusing on integrating stochastic gener-

ative models with explicit physics awareness in motion control, predominantly

through non-differentiable physics simulators. Harmonizing the statistical as-

sumptions of novel generative models with sampling-based methods or rein-

forcement learning, however, remains challenging. Drawing from Generative

Adversarial Imitation Learning (GAIL) principles [36], one strategy employs

a discriminator to guide the system, aiming to align the character’s motion

distribution with the dataset [21], [77]. Despite this, such methods often fall

prey to mode collapse, a common issue in GAN family models. While using

conditional variables in the latent space can enhance latent capacity, training

control policies or tuning the latent space remains challenging [20], [76], [93].

Following a similar latent representation approach, another set of methods

employs Variational Autoencoders (VAEs) [43] to map the conditional distri-

bution of the labeled dataset into a unified latent space [56], [105], [107], [108].

Here, a trained world model replaces the corresponding non-differentiable sim-

20



ulator, transforming the reinforcement learning problem into a fully differen-

tiable supervised learning problem. This approach simplifies the task but could

deviate significantly from the original problem depending on the precision of

the world model.

Recently, diffusion models have also emerged in the motion control do-

main, leveraging their strong generative capabilities to model the distribution

of state-action trajectories [98]. Some approaches use diffusion models as tra-

jectory planners, cascading with an action controller to solve the inverse dy-

namics p(a1, ..., ak|s1, ..., sk) [85]. Others use diffusion models to generate the

current action through a few denoising steps, replacing common single forward

policies [12], [15], [88].
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Chapter 4

MoMask: Generative Masked
Modeling for Text-to-Motion
Generation

In this chapter, we introduce MoMask, a novel masked modeling framework

for text-driven 3D human motion generation. In MoMask, a hierarchical quan-

tization scheme is employed to represent human motion as multi-layer discrete

motion tokens with high-fidelity details. Starting at the base layer, with a

sequence of motion tokens obtained by vector quantization, the residual to-

kens of increasing orders are derived and stored at the subsequent layers of the

hierarchy. This is consequently followed by two distinct bidirectional trans-

formers. For the base-layer motion tokens, a Masked Transformer is desig-

nated to predict randomly masked motion tokens conditioned on text input

at training stage. During generation (i.e. inference) stage, starting from an

empty sequence, our Masked Transformer iteratively fills up the missing to-

kens; Subsequently, a Residual Transformer learns to progressively predict the

next-layer tokens based on the results from current layer. Extensive exper-

iments demonstrate that MoMask outperforms the state-of-the-art methods

on the text-to-motion generation task, with an FID of 0.045 (vs e.g. 0.141

of T2M-GPT [111] in CVPR’23) on the HumanML3D dataset, and 0.228 (vs

0.514) on KIT-ML, respectively. MoMask can also be seamlessly applied in

related tasks without further model fine-tuning, such as text-guided temporal

inpainting.

22



4.1 Introduction

Generating 3D human motions from textual descriptions, aka text-to-motion

generation, is a relatively new task that may play an important role in a

broad range of applications such as video games, metaverse, and virtual re-

ality & augmented reality. In the past few years, it has generated intensive

research interests [13], [30], [31], [41], [44], [79], [95], [111], [112]. Among

them, it has become popular to engage generative transformers in modeling

human motions [25], [31], [41], [111]. In this pipeline, motions are transformed

into discrete tokens through vector quantization (VQ), then fed into e.g. an

autoregressive model to generate the sequence of motion tokens in an unidi-

rectional order. Though achieving impressive results, these methods shares

two innate drawbacks. To begin with, the VQ process inevitably introduces

approximation errors, which imposes undesired limit to the motion generation

quality. Moreover, the unidirectional decoding may unnecessarily hinder the

expressiveness of the generative models. For instance, consider the following

scenario: at each time step, the motion content is generated by only consider-

ing the preceding (rather than global) context; furthermore, errors will often

accumulate over the generation process. Though several recent efforts using

discrete diffusion models [44], [60] have considered to decode the motion to-

kens bidirectionally, by relying on a cumbersome discrete diffusion process,

they typically require hundreds of iterations to produce a motion sequence.

Motivated by these observations, we propose a novel framework, MoMask,

for high-quality and efficient text-to-motion generation by leveraging the resid-

ual vector quantization (RVQ) techniques [5], [68], [110] and the recent gen-

erative masked transformers [10], [11], [50], [109]. Our approach builds on

the following three components. First, an RVQ-VAE is learned to establish

precise mappings between 3D motions and the corresponding sequences of dis-

crete motion tokens. Unlike previous motion VQ tokenizers [25], [31], [111]

that typically quantize latent codes in a single pass, our hierarchical RVQ em-

ploys iterative rounds of residual quantization to progressively reduce quanti-

zation errors. This results in multi-layer motion tokens, with the base layer
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serving to perform standard motion quantization, and the rest layers in the

hierarchy capturing the residual coding errors of their respective orders, layer

by layer. Our quantization-based hierarchical design is further facilitated by

two distinct transformers, the Masked Transformer (i.e. M-Transformer) and

Residual Transformer (R-Transformer), that are dedicated to generating mo-

tion tokens for the base VQ layer and the rest residual layers, respectively.

The M-Transformer, based on BERT [18], is trained to predict the ran-

domly masked tokens at the base layer, conditioned on textual input. The

ratio of masking, instead of being fixed [18], [34], is a scheduled variable that

ranges from 0 to 1. During generation, starting from all tokens being masked

out, M-Transformer produces a complete sequence of motion tokens within a

small number of iterations. At each iteration, all masked tokens are predicted

simultaneously. Predicted tokens with the highest confidence will remain un-

changed, while the others are masked again and re-predicted in the next it-

eration. Once the base-layer tokens are generated, the R-Transformer ensues

to progressively predict the residual tokens of the subsequent layer given the

token sequence at current layer. Overall, the entire set of layered motion to-

kens can be efficiently generated within merely 15 iterations, regardless of the

motion’s length.

Our main contributions can be summarized as follows: First, our Mo-

Mask is the first generative masked modeling framework for the problem of

text-to-motion generation. It comprises of a hierarchical quantization gener-

ative model and the dedicated mechanism for precise residual quantization,

base token generation and residual token prediction. Second, our MoMask

pipeline produces precise and efficient text-to-motion generation. Empirically,

it achieves new state-of-the-art performance on text-to-motion generation task

with an FID of 0.045 (vs. 0.141 in [111]) on HumanML3D and 0.204 (vs. 0.514

in [111]) on KIT-ML. Third, our MoMask also works well for related tasks,

such as text-guided motion inpainting.
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tokens in the sequence simultaneously. (c) Layer-by-layer progressive predic-

tion by the Residual Transformer. A text-conditioned residual transformer

learns to progressively predict the residual tokens tj>0 from the tokens in pre-

vious layers, t0:j−1. The inference process of generation is detailed in Sec. 4.2.4.

Starting from an empty sequence t0(0), the M-Transformer generates the base-

layer token sequence t0 in L iterations. Following this, the R-Transformer

progressively predicts the rest-layer token sequences t2:V within V − 1 steps.

4.2.1 Training: Motion Residual VQ-VAE

Conventional motion VQ-VAEs [31], [41], [111], [114] transform a motion se-

quence into one tuple of discrete motion tokens. Specifically, the motion se-

quence m1:N ∈ R
N×D is firstly encoded into a latent vector sequence b̃1:n ∈

R
n×d with downsampling ratio of n/N and latent dimension d, using 1D con-

volutional encoder E; each vector is subsequently replaced with its nearest

code entry in a preset codebook C = {ck}
K
k=1 ⊂ R

d, known as quantization

Q(·). Then the quantized code sequence b1:n = Q(b̃1:n) ∈ R
n×d is projected

back to motion space for reconstructing the motion m̂ = D(b). After all, the

indices of the selected codebook entries (namely motion tokens) are used as

the alternative discrete representation of input motion. Though effective, the

quantization operation Q(·) inevitably leads to information loss, which further

limits the quality of reconstruction.

To address this issue, we introduce residual quantization (RQ) as described

in Fig. 4.1(a). In particular, RQ represents a motion latent sequence b̃ as V +1

ordered code sequences, using V + 1 quantization layers. Formally, this is

defined as RQ(b̃1:n) = [bv
1:n]

V

v=0, with bv
1:n ∈ R

n×d denoting the code sequence

at the v-th quantization layer. Concretely, starting from 0-th residual r0 = b̃,

RQ recursively calculates bv as the approximation of residual rv, and then the

next residual rv+1 as

bv = Q(rv), rv+1 = rv − bv, (4.1)

for v = 0, ..., V . After RQ, the final approximation of latent sequence b̃ is the

sum of all quantized sequences
∑V

v=0 b
v, which is then fed into decoder D for
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motion reconstruction.

Overall, the residual VQ-VAE is trained via a motion reconstruction loss

combined with a latent embedding loss at each quantization layer:

Lrvq = ∥m− m̂∥1 + β
V
∑

v=1

∥rv − sg[bv]∥22, (4.2)

where sg[·] denotes the stop-gradient operation, and β a weighting factor for

embedding constraint. This framework is optimized with straight-though gra-

dient estimator [100], and our codebooks are updated via exponential moving

average and codebook reset following T2M-GPT [111].

Quantization Dropout. Ideally, the early quantization layers are expected

to restore the input motion as much as possible; then the later layers add up

the missing finer details. To exploit the capacity of each quantizer, we adopt a

quantization dropout strategy, which randomly disables the last 0 to V layers

with probability q ∈ [0, 1] during training.

After training, each motion sequence m can be represented as V + 1

discrete motion token sequences T = [tv1:n]
V
v=0 where each token sequence

tv1:n ∈ {1, ..., |C
v|}n is the ordered codebook-indices of quantized embedding

vectors bv
1:n, such that bv

i = Cvtvi for i ∈ [1, n]. Among these V + 1 sequences,

the first (i.e. base) sequence possesses the most prominent information, while

the impact of subsequent layers gradually diminishes.

4.2.2 Training: Masked Transformer

Our bidirectional masked transformer is designed to model the base-layer mo-

tion tokens t01:n ∈ R
n, as illustrated in Figure 4.1(b). We first randomly

masked out a varying fraction of sequence elements, by replacing the tokens

with a special [MASK] token. With t̃0 denoting the sequence after masking,

the goal is to predict the masked tokens given text c and t̃0. We use CLIP [83]

for extracting text features. Mathematically, our masked transformer pθ is

optimized to minimize the negative log-likelihood of target predictions:
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Lmask =
∑

t̃0
k
=[MASK]

− log pθ(t
0
k|t̃

0, c). (4.3)

Mask Ratio Schedule. We adopt a cosine function γ(·) for scheduling the

masking ratio following [10], [11]. Practically, the mask ratio is obtained by

γ(τ) = cos(πτ
2
) ∈ [0, 1], where τ ∈ [0, 1] that τ = 0 means the sequence is

completely corrupted. During training, the τ ∼ U(0, 1) is randomly sampled,

and then m = ⌈γ(τ) · n⌉ sequence entries are uniformly selected to be masked

with n denoting the length of sequence.

Replacing and Remasking. To enhance the contextual reasoning of the

masked transformer, we adopt the remasking strategy used in BERT pretrain-

ing [18]. If a token is selected for masking, we replace this token with (1)

[MASK] token 80% of the time; (2) a random token 10% of the time; and (3)

an unchanged token 10% of the time.

4.2.3 Training: Residual Transformer

We learn a single residual transformer to model the tokens from the other

V residual quantization layers. The residual transformer has a similar ar-

chitecture to the masked transformer (Sec. 4.2.2), except that it contains V

separate embedding layers. During training, we randomly select a quantizer

layer j ∈ [1, V ] to learn. All the tokens in the preceding layers t0:j−1 are

embedded and summed up as the token embedding input. Taking the token

embedding, text embedding, and RQ layer indicator j as input, the residual

transformer pφ is trained to predict the j-th layer tokens in parallel. Overall,

the training objective is:

Lres =
V
∑

j=1

n
∑

i=1

− log pφ(t
j
i |t

0:j−1
i , c, j). (4.4)

We also share the parameters of the j-th prediction layer and the (j+1)-th

motion token embedding layer for more efficient learning.
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4.2.4 Inference

As presented in Figure 4.2, there are three stages in inference. Firstly, starting

from an empty sequence t0(0) that all tokens are masked out, we expect to

generate the base-layer token sequence t0 of length n in L iterations. Given

the masked token sequence at l-th iteration t0(l), M-Transformer first predicts

the probability distribution of tokens at the masked locations, and samples

motion tokens with the probability. Then the sampled tokens with the lowest

⌈γ( l
L
) · n⌉ confidences are masked again, and the other tokens will remain

unchanged for the rest iterations. This new token sequence t0(l+1) is used to

predict the token sequence at the next iteration until l reaches L. Once the

base-layer tokens are completely generated, the R-Transformer progressively

predicts the token sequence in the rest quantization layers. Finally, all tokens

are decoded and projected back to motion sequences through the RVQ-VAE

decoder.

Classifier Free Guidance. We adopt classifier-free guidance (CFG) [10], [38]

for the prediction of both M-Transformer and R-Transformer. During training,

we train the transformers unconditionally c = ∅ with probability of 10%.

During inference, CFG takes place at the final linear projection layer before

softmax, where the final logits ωg are computed by moving the conditional

logits ωc away from the unconditional logits ωu with guidance scale s:

ωg = (1 + s) · ωc − s · ωu. (4.5)

4.3 Experiments

Empirical evaluations are conducted on two widely used motion-language bench-

marks, HumanML3D [30] and KIT-ML [80]. HumanML3D dataset collects

14,616 motions from AMASS [65] and HumanAct12 [32] datasets, with each

motion described by 3 textual scripts, totaling 44,970 descriptions. This di-

verse motion-language dataset contains a variety of actions, including exercis-

ing, dancing, and acrobatics. KIT-ML dataset consists of 3,911 motions and

6,278 text descriptions, offering an small-scale evaluation benchmark. For both

29



Datasets Methods
R Precision↑

FID↓ MultiModal Dist↓ MultiModality↑
Top 1 Top 2 Top 3

Human
ML3D

TM2T [31] 0.424±.003 0.618±.003 0.729±.002 1.501±.017 3.467±.011 2.424±.093

T2M [30] 0.455±.003 0.636±.003 0.736±.002 1.087±.021 3.347±.008 2.219±.074

MDM [95] - - 0.611±.007 0.544±.044 5.566±.027 2.799±.072

MLD [13] 0.481±.003 0.673±.003 0.772±.002 0.473±.013 3.196±.010 2.413±.079

MotionDiffuse [112] 0.491±.001 0.681±.001 0.782±.001 0.630±.001 3.113±.001 1.553±.042

T2M-GPT [111] 0.492±.003 0.679±.002 0.775±.002 0.141±.005 3.121±.009 1.831±.048

ReMoDiffuse [113] 0.510±.005 0.698±.006 0.795±.004 0.103±.004 2.974±.016 1.795±.043

MotionGPT [41] 0.492±.003 0.681±.003 0.778±.002 0.232±.008 3.096±.008 2.008±.084

MoMask (base) 0.504±.004 0.699±.006 0.797±.004 0.082±.008 3.050±.013 1.050±.061

MoMask 0.521±.002 0.713±.002 0.807±.002 0.045±.002 2.958±.008 1.241±.040

KIT-
ML

TM2T [31] 0.280±.005 0.463±.006 0.587±.005 3.599±.153 4.591±.026 3.292±.081

T2M [30] 0.361±.005 0.559±.007 0.681±.007 3.022±.107 3.488±028 2.052±.107

MDM [95] - - 0.396±.004 0.497±.021 9.191±.022 1.907±.214

MLD [13] 0.390±.008 0.609±.008 0.734±.007 0.404±.027 3.204±.027 2.192±.071

MotionDiffuse [112] 0.417±.004 0.621±.004 0.739±.004 1.954±.062 2.958±.005 0.730±.013

T2M-GPT [111] 0.416±.006 0.627±.006 0.745±.006 0.514±.029 3.007±.023 1.570±.039

ReMoDiffuse [113] 0.427±.014 0.641±.004 0.765±.055 0.155±.006 2.814±.012 1.239±.028

MoMask (base) 0.415±.010 0.634±.011 0.760±.005 0.372±.020 2.931±.041 1.097±.054

MoMask 0.433±.007 0.656±.005 0.781±.005 0.204±.011 2.779±.022 1.131±.043

Table 4.1: Quantitative evaluation on the HumanML3D and KIT-ML test set
of MoMask.

motion datasets, we adopt the pose representation from the work of T2M [30].

The datasets are augmented by mirroring, and divided into training, testing,

and validation sets with the ratio of 0.8:0.15:0.05.

Evaluation metrics from T2M [30] are also adopted throughout our exper-

iments including: (1) Frechet Inception Distance (FID), which evaluates the

overall motion quality by measuring the distributional difference between the

high-level features of the generated motions and those of real motions; (2)

R-Precision and multimodal distance, which gauge the semantic alignment be-

tween input text and generated motions; and (3) Multimodality for assessing

the diversity of motions generated from the same text.

Though multimodality is indeed important, we stress its role as a secondary

metric that should be assessed in the conjunction with primary performance

metrics such as FID and RPrecision. Emphasizing multimodality without

considering the overall quality of generated results could lead to optimization

of models that produce random outputs for any given input.

Implementation Details. Our models are implemented using PyTorch. For

the motion residual VQ-VAE, we employ resblocks for both the encoder and de-

coder, with a downscale factor of 4. The RVQ consists of 6 quantization layers,

where each layer’s codebook contains 512 512-dimensional codes. The quanti-
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(a) Comparisons on FID and Inference Cost (b) HumanML3D User Study

Figure 4.4: (a) Comparison of inference time costs of MoMask. (b) User study
results on the HumanML3D dataset of MoMask.

Quantitative Comparisons. Following previous practices [30], [95], each

experiment is repeated 20 times, and the reported metric values represent

the mean with a 95% statistical confidence interval. Additionally, we conduct

experiments with MoMask exclusively generating the base-layer motion tokens,

denoted as MoMask (base). Quantitative results for the HumanML3D and

KIT-ML datasets are presented in Table 4.1. ± indicates a 95% confidence

interval. MoMask (base) means that MoMask only uses base-layer tokens.

Bold face indicates the best result, while underscore refers to the second best.

Overall, MoMask attains state-of-the-art performance on both datasets,

demonstrating substantial improvements in metrics such as FID, R-Precision,

and multimodal distance. For the suboptimal performance on KIT-ML dataset,

we would like to point out that the leading model, ReMoDiffuse [113], involves

more intricate data retrieval from a large database to achieve high-quality

motion generation. Additionally, we observe that MoMask, even with the

base-layer tokens alone, already achieves competitive performance compared

to baselines, and the inclusion of residual tokens further elevates the results

to a higher level.

In Figure 4.4(a), we evaluate the efficiency and quality of motion genera-

tion using various methods. All tests are conducted on the same Nvidia2080Ti.

The closer the model is to the origin, the better. The inference cost is cal-

culated as the average inference time over 100 samples on one Nvidia2080Ti
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device. Comparing to baseline methods, MoMask positions itself more favor-

ably between generation quality and efficiency.

User Study. We further conduct a user study on Amazon Mechanical Turk to

validate our previous conclusions. This user study involves 42 AMT users with

master recognition, with the side-by-side comparisons between MoMask and

each of the state-of-the-art methods including MDM [95], MLD [13] and T2M-

GPT [111]. We generate the 50 motions for each method using the same text

pool from HumanML3D test set, and collect feedback from 3 distinct users

for each comparison. The results are shown in Fig. 4.4(b), where each bar

represents the preference rate of MoMask over the compared model. Overall,

MoMask is preferred over the other models most of the time. The dashed line

marks 50%. MoMask is preferred by users in most of the time, and even earns

42% of preference on par with ground truth motions.

Qualitative Comparisons. Figure 4.3 displays qualitative comparisons of

our approach and MDM[95], MLD [13], and T2M-GPT [111]. The comparison

is conducted by giving three distinct text descriptions from HumanML3D test-

set. Only key frames are displayed. Compared to previous methods, MoMask

generates motions with higher quality and better understanding of the subtle

language concepts such as ”stumble”, ”sneak”, ”walk sideways”. MDM [95]

usually generates overall semantically correct motions but fails to capture nu-

anced concepts such as ”sneak” and ”sideways”. Though T2M-GPT [111]

and MLD [13] have improved performance in this aspect, they still find it

difficult to generate motions accurately aligned with the textual description.

For example, in the bottom row, the motions from these two methods ei-

ther forget to walk sideways (T2M-GPT [111]) or to sneak away (MLD [13]).

Moreover, MLD [13] sometimes produces lifeless motions where the character

slides around, as shown in the top row. In comparison, our method is able to

generate high-quality motions faithful to the input texts.

4.3.2 Component Analysis

In Table 4.2, we comprehensively evaluate the impact of different design com-

ponents in MoMask through various comparisons, showcasing the performance
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Figure 4.7: Reconstruction results using a different number of residual layers
in RVQ.

models.

Inference Hyper-parameters. The CFG scale s and the number of itera-

tions L are two crucial hyperparameters during the inference of masked model-

ing. In Fig. 4.6, we present the performance curves of FID and multimodality

distance by sweeping over different values of s and L. We initially find a

accuracy-fidelity sweep spot around s = 4, meanwhile 10 iterations (L = 10)

for masked decoding yield sufficiently good results. Moreover, several key ob-

servations emerge. Firstly, an optimal guidance scale s for M-Transformer

inference is identified around s = 4. Over-guided decoding may even inversely

deteriorate the performance. Secondly, more iterations are not necessarily

better. As L increases, the FID and multimodality distance converge to the

minima quickly, typically within around 10 iterations. Beyond 10 iterations,

there are no further performance gains in both FID and multimodal distance.

In this regard, our MoMask requires fewer inference steps compared to most

autoregressive and diffusion models.
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4.3.3 Application: Temporal Inpainting

In Fig. 4.5, we showcase the capability of MoMask in temporally inpainting

a specific region in a motion sequence. Dark dash line indicates the range(s)

where the motion content(s) is given by the reference sequence. Orange dash

line indicates the range of motion content generated by MoMask, conditioned

on the text prompt below. The region can be freely located in the middle,

suffix, or prefix. Specifically, we mask out all the tokens in the region of interest

and then follow the same inference procedure described in Sec. 4.2.4. For both

tasks, our approach generates smooth motions in coherence with the given text

descriptions. Additionally, we conduct a user study to quantitatively compare

our inpainting results with those of MDM [95]. In this study, 40 samples

are generated from both methods using the same motion and text input, and

presented to users side-by-side. With 6 users involved, 68% of the results from

MoMask are preferred over MDM.

4.4 Limitations

We acknowledge certain limitations of MoMask. Firstly, while MoMask excels

in fidelity and faithfulness for text-to-motion synthesis, its diversity is rela-

tively limited. We plan to delve into the underlying causes of this limitation

in future work. Secondly, MoMask requires the target length as input for mo-

tion generation. This could be properly addressed by applying the text2length

sampling [30] beforehand. Thirdly, akin to most VQ-based methods, MoMask

may face challenges when generating motions with fast-changing root motions,

such as spinning.
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Methods
Reconstruction Generation
FID↓ MPJPE↓ FID↓ MM-Dist↓

Evaluation on KIT-ML dataset

M2DM [44] 0.413±.009 - 0.515±.029 3.015±.017

T2M-GPT [111] 0.472±.011 - 0.514±.029 3.007±.023

MoMask 0.112±.002 37.2 0.228±.011 2.774±.022

Evaluation on HumanML3D dataset

TM2T [31] 0.307±.002 230.1 1.501±.017 3.467±.011

M2DM [44] 0.063±.001 - 0.352±.005 3.116±.008

T2M-GPT [111] 0.070±.001 58.0 0.141±.005 3.121±.009

MoMask 0.019±.001 29.5 0.051±.002 2.957±.008

w/o RQ 0.091±.001 58.7 0.093±.004 3.031±.009

w/o QDropout 0.077±.000 39.3 0.091±.003 2.959±.008

w/o RRemask - - 0.063±.003 3.049±.006

MoMask (V , 0) 0.091±.001 58.7 0.093±.004 3.031±.009

MoMask (V , 1) 0.069±.001 54.6 0.073±.003 3.031±.008

MoMask (V , 2) 0.049±.002 46.0 0.072±.003 2.978±.006

MoMask (V , 3) 0.037±.001 42.5 0.064±.003 2.970±.007

MoMask (V , 4) 0.027±.001 35.3 0.069±.003 2.987±.007

MoMask (V , 5) 0.019±.001 29.5 0.051±.002 2.962±.008

MoMask (V , 6) 0.014±.001 26.7 0.076±.003 2.994±.007

MoMask (V , 7) 0.014±.000 25.3 0.084±.004 2.968±.007

MoMask (q, 0) 0.077±.000 39.3 0.091±.003 2.959±.008

MoMask (q, 0.2) 0.019±.001 29.5 0.051±.002 2.957±.008

MoMask (q, 0.4) 0.021±.000 30.2 0.082±.003 3.006±.007

MoMask (q, 0.6) 0.024±.000 33.2 0.053±.003 2.946±.006

MoMask (q, 0.8) 0.023±.000 33.4 0.083±.004 3.002±.008

Table 4.2: Comparison of MoMask RVQ design vs. motion VQs from previous
works.

Methods
R Precision↑

FID↓ MMDist↓
Top 1 Top 3

Ours (B) 0.521±.002 0.807±.002 0.045±.002 2.958±.008

Ours (U) 0.514±.003 0.805±.003 0.210±.008 3.002±.009

Table 4.3: Ablation of bidiretionality on HumanML3D.
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Chapter 5

RACon: Retrieval-Augmented
Simulated Character
Locomotion Control

Current generative models, though able to generalize to diverse motions, often

pose challenges to the responsiveness of end-users control. To address these is-

sues, in this chapter we introduce RACon: Retrieval-Augmented Simulated

Character Locomotion Control. Our end-to-end hierarchical reinforcement

learning method utilizes a retriever and a motion controller. The retriever

searches motion experts from a user-specified database in a task-oriented fash-

ion, which boosts the responsiveness to the user’s control. The selected motion

experts and the manipulation signal are then transferred to the controller to

drive simulated character. In addition, a retrieval-augmented discriminator is

designed to stabilize the training process. Our method surpasses existing tech-

niques in both quality and quantity in locomotion control, as demonstrated in

our empirical study. Moreover, by switching extensive databases for retrieval,

it can adapt to distinctive motion types at run time.

5.1 Introduction

Recent advancements in the simulation of virtual character motion can be

largely credited to the advent of physics-based deep reinforcement learning

methods, such as those outlined in [21]. Despite these advancements, it re-

mains a considerable challenge to create systems that allow end users to conve-
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niently manipulate virtual character locomotion while simultaneously ensuring

the motions generated are convincingly natural and realistic. Moreover, the

system should be capable of seamlessly transitioning to new motion types in

real-time.

Motion tracking has been utilized by several recent studies [57] to imitate

a library of pre-existing 3D expert motion sequences. Often a motion plan-

ner is employed to synchronize expert motions with the character simulation

over time, relying on manually constructed pose features [4]. Although these

methods have been demonstrated to generate high-fidelity motions, their per-

formance largely depends on the quality and quantity of the available expert

motions. These are typically carefully curated and often limited in scope,

resulting in mediocre generalization when faced with complex scenarios or

large datasets. Their effectiveness diminishes further when dealing with novel

motion types or styles [57], [75]. In response to these limitations, recent re-

search has considered stochastic generative models such as GANs [21], [76], [77]

and VAEs [56], [105], [107]. These models have produced impressive results,

demonstrating their ability to generalize to unseen motion types or scenar-

ios. However, as a black-box framework, these models pose a challenge for

end-users who wish to explicitly determine or edit specific poses or skills [77],

[107].

The recent successes of Retrieval-Augmented Models (RAM) in Natural

Language Processing, showing case its straightforward knowledge acquisition

and scalability, has inspired us to employ innovative retrieval and RAM tech-

niques in our motion control context. Our work aims to enhance task re-

sponsiveness, generate natural and realistic animations, and alleviate the need

to fine-tune a complex controller. Consequently, we propose an end-to-end

retrieval-augmented (RA-) solution that utilizes hierarchical reinforcement

learning (HRL) for task-oriented learnable retrieval and physics-based charac-

ter control.

The workflow of our approach is as follows: The direction and velocity

specified by the game-pad stick are combined with the current character state

and fed into a retrieval policy. This policy predicts an adaptive query, which
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then searches for the reference motion from an expert motion database. The

controller receives this reference and the goal to generate driven signals for

the character’s actuators within the simulator. The retrieved and simulated

motions are subsequently filtered through a RA-discriminator, adhering to the

Generative Adversarial Imitation Learning (GAIL) strategy [36]. This step

serves as a motion prior, ensuring the coherence of retrieved motions and the

naturalness of simulated ones.

Components such as the goal, prior, and simulated state feedback are fed

back to both the retrieval and control modules. Within this context, two

reinforcement learning frameworks, task-oriented retrieval and embodied agent

manipulation, are seamlessly integrated into our approach. Thanks to our RA-

HRL design, our system can generate high-fidelity character motions and adapt

to distinctive motion types without extensive professional tuning or selection.

Meanwhile, it remains interpretable, providing evidence of retrieved reference

motion from user-selected Motion Capture (MoCap) databases (as depicted in

Fig. 1.1).

Our contributions are summarized below:

• An end-to-end integrated approach is proposed, which incorporates two

RL frameworks as an HRL system, and a RA-discriminator as a training-

time motion prior. A set of rewards is designed to jointly optimize the

two policies at both the policy level and the system level. This leads

to stable run-time performance, and alleviates the mode collapse issue

typically found in GAIL models, scaling to large-scale datasets.

• Our approach is demonstrated to drive character locomotions of both

high fidelity and diversity, outperforming the state-of-the-art methods

both quantitatively and qualitatively. It is additionally capable of tran-

siting to different motion types in-situ, in responding to end-user choices.
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5.2.1 Task-Oriented Learnable Retrieval (TOLR)

The idea of motion retrieval revolves around the periodic querying of the

database to identify the motion clips that are best compatible in terms of ful-

filling user control expectations. The periodically retrieved clips are stitched

together to create a complete reference trajectory. Traditional methods like

Motion Matching [4] employ hand-crafted features for retrieval, posing a chal-

lenge in determining which features are vital for optimal performance whenever

there’s a modification in the database or the representations (e.g., DoFs). In

contrast, our work introduces an innovative data-driven strategy that employs

neural networks to formulate queries based on the current character state and

task objectives. By harnessing the learning capabilities of neural networks, our

approach can automatically identify significant features for motion retrieval,

even within massive and disordered databases.

Specifically, TOLR framework illustrated in Fig. 5.2 is considered as a goal-

augmented Markov decision process. The environment of retrieval is defined

as the process of kNN-based K,Q, V search where the given query vector Q

is employed to search for the most similar key vector K to find the optimized

value V . These keys are calculated from the motion clips in advance when

building the databases at one time, which are constituted as libraries of key-

value pairs in the form K : V |Mretr. At run time, we first extract and compute

the raw query in the same manner as the keys K, with features such as initial-

frame root velocity, clip average velocity, end effector positions, etc. Then, the

retriever policy is used to generate a weight vector, working as the adaptive

importance of different features, which adjusts the raw query to be the input

of the environment Q. Our retrieval environment can hold a set of databases

{Mretr
k } of different motion types for the user to choose at run time. Given

the action aretrt as a query Q, the environment searches for the most similar

key K to index the most suitable value V , i.e. a motion clip s̃t+1, from the

database.

Additionally, the retrieval environment can integrate extra plug-in motion

databases of preferred types in real-time to perform locomotion in unique
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distance between the current character state and the goal. Specifically, it

is the combination of cosine similarity and norm difference of the retrieved

trajectory velocity and expected counterpart. q̃t is the horizontal root velocity

and rotation extracted from the retrieval state sretrt . rpriort is determined by a

discriminator, as explained in Sec. 5.2.3.

5.2.2 Simulated Character Control

Although TOLR provides a synchronous reference sub-goal ĝsubt ≜ sretrt+1 for the

controller πctrl
(

actrlt |st, g, s
retr
t+1

)

, the learning objective here differs from a mere

mimicry term that would require strict adherence to the reference motion and

trajectory. We conceptualize our methodology as an end effector constraint,

allowing the controller to learn the motion types from specific reference mo-

tions, without being trapped by them. Therefore, we incorporate only the

end effector feature and root rotations of the reference motion to define the

reference reward:

rreft = whrht + wrrotrrrott + wravelrravelt + wlocalrloct , (5.2)

where
rht = exp

(

−sh∥bht − b̂ht ∥
2
)

,

rrrott = exp
(

−srrot∥brrott ⊖ b̂rrott ∥
2
)

,

rravelt = exp
(

−sravel∥bravelt − b̂ravelt ∥2
)

,

rloct = exp

(

−sep
5
∑

k=1

∥jkt − ĵkt ∥
2

)

.

(5.3)

Here, ⊖ signifies the rotation difference. rht represents the root height reward,

rrrott denotes the root rotation reward independent of yaw, rravelt is the root

angular velocity reward relative to the root coordinate, and rloct measures the

error of character body endpoints relative to the root coordinate. ·̂ indicates

the target extracted from expert reference ĝsubt . We normalize the global hor-

izontal information for root features b{h,rrot,ravel} by registering them to the

origin. The endpoints of a body {j}5k=1 are used for the representation of the

character end effector.
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Our modified mimicry objective allows for some deviation from the original

reference, as it doesn’t require the character to replicate the rotation at every

joint. While this flexibility might compromise the naturalness of the motion, it

benefits the controller responsiveness by offering a more adaptable curriculum.

This deviation can then be offset and enhanced through the RA- motion prior

rpriort , as discussed in Sec. 5.2.3. Additionally, we incorporate the locomotion

control goal into the reward definition for the controller policy:

rt = wgrgt + wrefrreft + wpriorrpriort , (5.4)

where rgt = exp
(

− d
(

g, qt
))

, similar to r̃gt , while qt is from the simulated state

st.

5.2.3 Retrieval Augmented Adversarial Motion Prior

Given a motion dataset, our adversarial framework trains a motion discrimi-

nator to predict whether a state transition ⟨st, st+1⟩ originates from the real

dataset or is a generated sample. Our generated samples can be either sim-

ulated state transitions, represented as (st, st+1) ∼ M
πctrl

, or retrieved state

transitions denoted as (st, s̃t+1) ∼M
πretr

. Here, s̃t+1 is the state retrieved from

databases based on the simulated state st. Our motion discriminator then

provides a prior reward, rpriort , which fosters coherence for retrieved motions

(Sec. 5.2.1) and naturalness for simulated motions (Sec. 5.2.2). Intriguingly,

a composite generated sample can be formed as (st, st+1, s̃t+2) ∼ M
π, as the

retrieved anchor state s̃t+1 can be stepped to produce the subsequent s̃t+2,

resulting in a retrieval-augmented term of simulated state transition. This in-

tegration of generated samples has proven empirically to enhance the system’s

performance. In what follows, we discuss the effect of this retrieval-augmented

design, namely Retrieval Augmented Adversarial Motion Prior.

Previous GAIL-based methods, such as AMP [77], have shown limitations

in terms of stability and efficiency. These methods typically require well-

organized, high-quality, and limited-scale datasets, as the generation process

might initiate with extremely outlier instances, potentially leading to early-

stage model breakdown or unstable learning process. To mitigate these issues,
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our design transforms the framework into a Conditional GAIL, augmenting

the simulated sample features to ⟨st, st+1, s̃t+2⟩ by utilizing the retrieved state

s̃t+2. More specifically, the simulated motion and the retrieved expert feature

s̃t+2 are concatenated to form a retrieval-augmented simulated sample. In

the context of controller training, the RA-term can be seen as a pseudo-label

condition drawn from real motion databases and ideally being coherent with

the preceding simulated states ⟨st, st+1⟩. Empirically, one of the most notable

characteristics of real motion samples is temporal smoothness. This property

facilitates the discriminator’s task in distinguishing fake from real samples and

guides the synthesis of spatial pose more easily, by considering the consistency

between the simulated states and the RA-term.

We define the training objective for the discriminator as:

argmin
φ

E(st,st+1,st+2)∼Mdemo [logDφ (st, st+1, st+2)]

+ E(st,st+1,s̃t+2)∼Mπ [log (1−Dφ (st, st+1, s̃t+2))]

+
wgp

2
E(st,st+1,st+2)∼Mdemo∥∇φDφ (st, st+1, st+2) ∥

2,

(5.5)

and the motion prior reward for the two policies as:

rpriort = −α logmax [1−Dφ (st, st+1, s̃t+2) , ϵ] , (5.6)

where α is a scaling factor to adjust the range of the reward. Here, Mdemo

represents the demonstration dataset of real motions, while Mπ denotes the

generated dataset. Given that s̃t+2 is retrieved from the real motion database,

it can be viewed as the posterior label condition for the simulated transition

⟨st, st+1⟩. Accordingly, we can recast the discriminator within the framework

of a Conditional GAIL, formalizing it as Dφ (st, st+1|s̃t+2). It’s worth noting

that the features could extend beyond three continuous states, incorporating

st−i and s̃t+2+j in implementation.

5.3 Experiments

5.3.1 System Workflow

An in-depth view of the training procedural steps in our proposed method is

offered in Algorithm 1, detailed using pseudocode for the sake of clarity. This
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structured overview elucidates the sequence of actions executed within our

system, facilitating the reader’s understanding of the underlying mechanics

and process flow.

5.3.2 Network Architecture

We build all the neural networks, including Dφ, π
retr, πctrl, V retr, V ctrl, with

three-layered MLPs of hidden sizes [1024, 512] and size-specific output layer.

Particularly, we set up the policy for retrieval a little different from the com-

mon. The architecture of our task-oriented learnable retrieval (TOLR) is de-

picted in Fig. 5.3. The feature extractor is non-differentiable that extracts and

computes feature from motion clips or the current state. The pipeline at the

bottom is the actual retrieval policy built by linear layers. As the keyK is part

of the environment, which shouldn’t be influenced by the agent, modifying the

key through an agent policy — following the traditional setting to create the

key and query via identical mapping — would conflict with our TOLR RL

framework definition. Consequently, we calculate the key in advance when

building databases (i.e. {K : V |Mretr}) at one time, and exclusively use the

policy to generate the query at run time. To preserve the essence of classical

retrieval, we design the policy to generate adaptive weights to automatically

tune the raw query into Q through a Hadamard product, where the raw query

is computed in the same manner as the key.

5.3.3 Motion Database

Our demonstration dataset of real motions,Mdemo, is sourced from AMASS [65],

a comprehensive motion dataset that consolidates various MoCap data re-

sources. We extract over 40,000 seconds of expert motion, unified to 30 fps.

The databases for retrieval, {Mretr
k }, are also constructed from AMASS. We

filter common locomotion movements using category labels from BABEL [82],

such as walking, running, turning, and so forth—which amount to approxi-

mately 49,000 motion clips, each with a duration of 0.5 seconds. Additionally,

we build databases for cartwheel movements (∼6590 clips) and zombie move-

ments (142 clips), respectively. It should be noted that the zombie database is
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acter model file. We count the Degrees of Freedom excluding the global root

descriptor (i.e. position and rotation) which is of 6 DoFs but not actuatable.

Compared with related work Tab. 5.1 on the simulated humanoid model used,

our setup incorporates 55 DoFs simultaneously, which is a much more chal-

lenging context while enabling expressive and vivid animation. *In DReCon,

25 actuators are driven by controller policy, while the rest are under open-loop

control [4].

Table 5.1: Comparison of the simulated character definition

Method Rigid Bodies Degrees of Freedom
DReCon [4] 23 25* (48)
AMP [77] 13 28
ASE [76] 13 28
Ours 22 55

5.3.6 Baseline Implementation

For a fair comparison, we adapt the baseline models with minimal changes

from their official implementations (except for DReCon [4]), training them

on the same data splits. Specifically, our comparative experiment is confined

to common locomotion tasks that only include walking, running, and turning,

etc. This is because the baseline models are not designed to extend to a diverse

range of locomotion skills.

AMP [77] & ASE [76]. For AMP and ASE which are already set on Isaac

Gym [66], we modify the dim of I/O features within the network and envi-

ronment to accommodate our character model. We also adjust the dataloader

with minimum modification. However, we notice that the datasets they used

likely have manually set sampling weights for each motion sequence. In our

case, our MoCap dataset is too vast for manually tuning the sampling weights.

Consequently, we employ uniform sampling weights for them. We also tune

the performance following the paper, adjust the discriminator learning, e.g.

extend the length of discriminator input sample from 2 to 10.

DReCon [4]. We re-implement DReCon to control our character model,

following an unofficial implementation example written by C++ and the pa-
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per. We also manually tuning the performance following the paper. However,

performance may vary due to the use of the simulator and open-loop control

solver (i.e. Isaac PhysX engine) that differs from the Bullet engine [16] they

used. Additionally, it depends on the significant engineering effort involved in

empirical parameters, such as tuning motion matching.

5.3.7 State Representation and Measurement

Feature Representations. The representation of overall system state st =

{bh ∈ R
1, brrot ∈ R

6, bvel ∈ R
3, bavel ∈ R

3, bjrot ∈ R
17×6+4, bjavel ∈ R

17×3+4, j ∈

R
5×3} ∈ R

206, which is built from a set of features. These include: root height,

rotation, linear velocity and angular velocity, represented in the character’s lo-

cal coordinate frame; local rotation and angular velocity of each joint; 3D po-

sitions of hands, feet and head, represented in the character’s local coordinate

frame. For spherical joints, we convert the raw representation of axis-angle to

the 6D-rotation representation[115].

The representation of retrieved state s̃t = {bh ∈ R
1, brrot ∈ R

6, bvel ∈

R
3, bavel ∈ R

3, j ∈ R
5×3} ∈ R

28. To clarify, s̃t is the value V of our KQV

searching process. More specifically, it’s a expert state sequence {s̃t, s̃t+1, . . . , s̃t+15}

starting from the anchor frame s̃t.

The representation of raw query andK contains {brrot ∈ R
6, bvel ∈ R

3, bavel ∈

R
3, bjrawrot ∈ R

17×3+4, gxzdir ∈ R
2, gspeed ∈ R

1, gfacedir ∈ R
2} ∈ R

72, where

g{xzdir,speed,facedir} can be calculated from user control signal and expert clips,

corresponded to raw query and K. Q is then generated by the retrieval policy

from raw query as shown in Fig. 5.3

Measurement Function. The distance function d(·) to measure the goal

reward is formed as follows:

d(·) =exp(−10∥bspeed − b̂speed∥2 − 5 tan(θyaw − θ̂yaw))

+ bfacedir · b̂facedir,
(5.7)

where bspeed is the character root velocity along xOz plain and projected to

the target velocity direction, ”·” is the dot product to calculate the cosine

similarity of facing direction. We also provided the code in the supplement.
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positioned between the feet. In contrast, performing a ’cartwheel’ presents a

more complex locomotion challenge.

Our results, demonstrating the transition between common locomotion and

a cartwheel, are presented in Fig. 5.5 showing in 5 fps. The game-pad control

signal is marked with a blue stick. The color of the simulated character marks

different retrieval databases {Mretr
k |k} chosen by users at run time. (Light

Grey: Common Locomotion. Brown: Cartwheel.) Initially, the character is

guided by the reference retrieved from the common locomotion database. We

then shift to the cartwheel database in Envretr by simply switching the lookup

dictionary, indicated by the color of brown. We provide further qualitative

results in the supplementary video.

Without any additional planning required, our motion switching perfor-

mance at run-time showcases the flexibility and adaptability of our system.

Notably, our proposed approach showcases the extraordinary versatility of even

a lightweight MLP controller, which can cover a diverse range of distinctive

modes. Additionally, the simulated character is able to execute specific styles

while simultaneously reaching the user-designated goal, further underscoring

the responsiveness of our approach.

Table 5.2: Quantitative comparison on the basic locomotion setting for
RACon.

Method MVE(m/s) ↓ TRate(%) ↓ Len(%) ↑ FID ↓ MModality ↗
Real Motion - - - 0.0113 1.0271

DReCon (TOG’19) 3.361 28.06 82.98 7.998 3.386
AMP (TOG’21) 3.551 5.00 96.01 3.453 1.096
ASE (TOG’22) 3.472 1.65 98.52 4.212 0.727

Ours 2.709 0.44 99.69 3.453 1.380
Ours (sretr) 2.837 - - - -

Common Locomotion Quantitative Comparisons. We show quanti-

tative results of common locomotion control in Table 5.2, compared with

DReCon [4], AMP [77] and ASE [76].

We employ various evaluation metrics including Mean Velocity Error (MVE),

Termination Rate (TRate), Episode Length (Len), Fréchet Inception Distance

(FID), and Multimodality (MModality).
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Table 5.3: The hyperparameter used in RACon experiment.

Param Value Param Value
w̃g 0.2 wg 0.1

wprior 0.8 wref 0.1
wh 1 wprior 0.8
wrrot 5 wgp 5
wravel 3 α 2
wlocal 10 γ 0.97
sh 2.5 τ 0.95
srrot 1.25 lr 5.0e-5
sravel 7.5 lrD 5.0e-3
sep 75 i|⟨st+1−i,D⟩ range(8)
sh 0.2 j|⟨st+2+j,D⟩ range(2)
srot 0.2 retr step 15

We show the additional quantitative results of common locomotion tasks

for effect of hyper-parameter in Tab. 5.4.

Effect of γ. γ is the reward discount factor which is of great important

in reinforcement learning application, commonly range from 0.9 to 0.999. Our

experiment shows that when γ is large, the model gain the lowest failure rate

while it struggles to maintain responsive control over the movement velocity.

While small γ leads to better response according to the smaller MVE but

fails more. TRate refers to the long-term planning compared with the relative

short-term velocity control. It is coherent with the common observation of γ

in reinforcement learning applications.

Effect of wprior. wprior weighs how important to follow the motion-prior

distribution. Small prior reward weights wprior would result in a high failure

rate, which verifies the importance of prior reward for robustness. On the

other side, large prior reward weights might diminish the effect of goal reward,

showing unsatisfied MVE.

5.3.10 Ablation Study

Dataset We conducted additional experiments to evaluate the messiness of

our used dataset AMASS [65], compared to the dataset CMU MoCap [8] com-

monly used in the baselines. Firstly, we include far more motion clips in our
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Table 5.4: Effect of hyper-parameter and design for RACon.
Method MVE(m/s) ↓ TRate(%) ↓ Len(%) ↑ FID ↓ MModality ↗

Dataset (AMASS[65]) - - - 0.0113 1.0271
Dataset (CMU MoCap[8]) - - - 0.0097 0.6904

Ours(sretr) 2.837 - - - -
w/o learnable retriever 2.387 - - - -

Ours (γ = 0.97, wprior = 0.8) 2.709 0.44 99.69 3.453 1.380
w/o learnable retriever 3.170 8.71 91.54 4.178 1.593

w/o RA-GAIL 2.610 4.37 95.37 3.770 1.716
γ = 0.99 4.97 0.31 99.86 3.199 1.017
γ = 0.95 2.683 6.47 95.20 3.972 1.892

wprior = 0.1 3.97 23.70 78.02 5.943 3.520
wprior = 0.5 2.713 0.64 99.29 3.738 1.439
wprior = 1.0 3.86 0.39 99.62 3.340 1.153

training setting compared with the delicately selected CMUMoCap used in the

baselines original implementation[76], [77]. Secondly, Tab. 5.4 shows a larger

diversity of the dataset we used according to the MModality. The higher FID

score implies a relatively chaotic motion composition. This dataset setting

builds a more challenging but practical scenario for applications.

Module The task-oriented learnable retriever (TOLR) policy is disabled

to retrieve by the raw query. We also show in Tab. 5.4 the intermediate state

of the system, sretr. Using the hand-crafted raw query improves the MVE of

sretr. However, it’s crucial to recognize that the task’s primary concern revolves

around the simulated state. The model without TOLR is mediocre in regard

to the overall system performance.

We also evaluated the model trained with RA-GAIL or GAIL scheme.

GAN-based method, modeling the overall distribution of the entire dataset—which

aligns with the FID’s motivation-results in a favorable FID score. Based on

empirical evidence, controllers trained with GAIL may become stagnant, re-

peatedly generating the most stable motion clip, which is referred to as mode-

collapse in GAN. It is more evident in the supplementary video that baseline

methods suffer from replanting in the face of massive databases and compli-

cated skeletal structures. In addition to the training curves presented in the

manuscript, which is pivotal for illustrating the impact of RL training strate-

gies, we also provide the corresponding quantitative results in Tab. 5.4. The
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model trained without RA-GAIL is observed to gain a better MVE score than

it’s counterpart. It might be due to the replacement of r̃retr in rretr. We can-

not utilize the original prior term for training the retrieval policy, as it doesn’t

have any direct involvement in the outputs with GAIL. Instead, we introduce

a slight smoothing term for compensation. Consequently, the retriever and the

entire system may shift their emphasis towards the goal reward associated with

MVE. The increased termination rate could potentially stem from this change

or the potentially unstable training process of standard GAIL, as evident in

the training curves in the manuscript. Due to the tightly integrated system

and training strategy, it’s not feasible to implement the system without some

form of additional effect.

We provide further evidence of the strength of the retrieval-augmented

adversarial prior, demonstrating its ability to promote more stable training.

Fig. 5.7 presents the training curves of policies learned on a straightforward

locomotion task (using the common locomotion database only), comparing

those with and without RetrAugDisc. The Goal Performance shows the nor-

malized overall goal return of an episode. The discriminator reward mean and

std are per-step values. For the sake of consistency and simplicity in our ex-

periments, we employ a standard unlearnable retriever to query the retrieved

expert clips. The policy trained with a retrieval-augmented adversarial prior

not only learns faster but also shows a higher goal return in the end. Our

policy, trained with a retrieval-augmented adversarial prior, yields a smaller

training reward variance, indicating a more stable training process.

5.4 Limitation

Our method may not perform well when faced with severe perturbations, and

our model is not designed to recover from a fall, see Fig. 5.8. This is an issue

that our model does not explore enough trajectory, e.g. falling down. In the

future, it is possible to give the policy more chance to explore rare situations

using empirical settings or novel RL approaches. We might also try to teach

our retriever to recover using our task-oriented learning scheme. Another
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issue is choppy stride animation. We observe unnatural, quick short steps

when our model encounters situations such as sharp turns or imbalance. Our

future plans include introducing penalties for these undesirable movements.

The initial step towards this will be to identify the statistical features of these

anomalies.

Figure 5.8: Failure Cases of RACon.
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Algorithm 1 Training with RA-HRL

1: inputMdemo: dataset of real motion demonstration
2: input {Mretr

k |k}: k databases of different motion types
3: Dφ ← initialize discriminator
4: πretr ← initialize retriever
5: πctrl ← initialize controller
6: V retr, V ctrl ← initialize value functions

7: while not done do

8: Bretr,Bctrl ← ∅ initialize experience buffers
9: for trajectory i = 1, ..., n do

10: for time step t = 0, ..., T − 1 do

11: s̃t+1 ← ⟨π
retr(st, g),Envretr{Mretr

k |k}⟩
12: if flagretr then
13: sretrt+1 ← s̃t+1

14: else

15: sretrt+1 ← stepping sretrt

16: end if

17: st+1 ← ⟨π
ctrl(st, g, s

retr
t+1),Envphy⟩

18: Calculate rewards {rgt , r̃
g
t , r

ref
t , r

prior
t } accordingly

19: rretrt ← w̃gr̃
g
t + wpriorr

prior
t

20: rt ← wgr
g
t + wrefrreft + wpriorr

prior
t

21: record (st; a
retr
t ; g; rretrt ) in τ retri

22: record (st; at; g, s
retr
t+1; rt) in τ ctrli

23: store transitions (st; st+1; s̃t+2) inM
π

24: end for

25: end for

26: store
{

τ retri

}n

i=1
,
{

τ ctrli

}n

i=1
in Bretr,Bctrl

27: Update discriminator:
28: for update step = 1, ..., n do

29: mdemo ← sample batch (st; st+1; st+2) fromM
demo

30: mπ ← sample batch (st; st+1; s̃t+2) fromM
π

31: update Dφ according to Eq. (5.5) using mdemo & mπ

32: end for

33: update V retr and πretr using data from Bretr

34: update V ctrl and πctrl using data from Bctrl

35: end while
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Chapter 6

Conclusion and Future Work

6.1 Discussion and Conclusion

In this thesis, we have explored the generation of 3D human character mo-

tion conditioned on text and game-pad-controlled simulated environments. By

adopting generative modeling approaches, we developed intelligent 3D skeletal

motion performers that learn from human motion knowledge. Our work em-

phasized the stochastic nature of motions, enabling the generation of lifelike

character movements in both kinematic and physically constrained dynamics

environments.

Our kinematic-based motion generation method, MoMask, established a

state-of-the-art text-to-motion framework, demonstrating swift performance

and inherent frame editing capabilities. MoMask features three advanced tech-

niques: residual quantization for precise motion quantization, masked trans-

former, and residual transformer for high-quality and faithful motion genera-

tion. MoMask is efficient and flexible, achieving superior performance without

extra inference burden, and effortlessly supporting temporal motion inpainting

in multiple contexts. This approach highlighted the distinct characteristics of

motion compared to natural language and images, and enhanced motion qual-

ity through a residual vector quantization variational autoencoder. It lever-

ages cutting-edge techniques like masked transformers for generative motion

modeling and residual vector quantization for a compact yet lossless repre-

sentation of rotational skeletal motion continuity. We found that Diffusion

Models aren’t ideal for sequence generation, and while GPTs are powerful,
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they can be overly complex. The masked transformer, acting as a nonlin-

ear language model, proves to be both efficient and effective in our context.

In terms of fidelity and efficacy, MoMask emerges as a potentially superior

modeling paradigm for motion generation in current times.

Furthermore, our hierarchical reinforcement learning framework, RACon,

for game-pad-controlled simulated character control successfully integrated

task-oriented motion retrieval and a model-based controller in an end-to-end

manner. This retrieval-augmented hierarchical reinforcement learning system

is not only interpretable but also demonstrates exceptional generalizability

across diverse motion types. It allowed for seamless character locomotion

and real-time switching of movement styles using a game-pad. The retrieval-

augmented generative adversarial imitation learning pipeline further enhanced

training stability and performance. It represents a small step towards large-

scale models for general motion control tasks by leveraging extensive motion

datasets. The end-to-end trainable task-oriented retrieval also reduces the

human effort required for feature crafting in conventional motion-matching

pipelines. This advancement has the potential to positively influence a broad

spectrum of applications, including virtual reality, animation, robotics, and

more.

While our methods show promise, there are limitations that need to be

addressed in future work. These include improving the robustness of motion

generation in diverse and complex environments, and expanding the range of

control signals beyond text and game-pad inputs. Nevertheless, the advance-

ments presented in this thesis open new avenues for applications in augmented

reality, virtual reality, and robotics, paving the way for more natural and ver-

satile 3D character motion generation.

6.2 Future Work

Given that kinematic-based motion foundation models are within reach, future

work in the field would be directed towards building large control models for

simulated character manipulation.
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One potential direction is expanding current models with more modalities

and data [54], such as learning from large-scale video datasets or informative

inertial sensor data sequences. This approach could lead to a more generaliz-

able motion generation or control model.

Another direction is cascading kinematic-based motion foundation mod-

els with universal humanoid controllers, which precisely drive the simulated

character to perform the given poses. The current state-of-the-art universal

humanoid controllers [62], [63] can imitate almost all the motions in AMASS

dataset [65] roughly. There are an increasing number of applications in the

community making text-to-motion models with these unified controllers to

perform different tasks as wished. The future work in this direction would

be to enhance the control precision of the universal controllers/imitators and

make end-to-end fine-tuning possible to comprehensively promote the complex

system performance.

Ultimately, it could involve directly constructing large control models us-

ing advanced reinforcement learning paradigms. The efficiency gap between

reinforcement learning and supervised learning is critical to their performance

disparity. Recent advancements in reinforcement learning, particularly in of-

fline imitation learning, could offer a promising path forward. The reinforce-

ment learning problem could be conceptualized as a state-action trajectory

planning problem [98], leveraging robust sequence modeling methods like tra-

jectory transformers or diffusion models. However, action information is com-

monly unavailable. Acquiring action parameters corresponding to the state

trajectory is sometimes challenging or time-consuming. Designing a better

action-state trajectory for acquiring workflow would be helpful in future re-

search. Furthermore, trying to get rid of action with state-only learning is also

a possible direction. Additionally, though the modeling capacity of the diffu-

sion model is larger than ever model before, the diffusion model requires much

more time for inference due to its progressive denoising process. Moreover, the

diffusion models’ synchronized denoising process does not fit the principle of

the Markov process or sequence problem well. Improving diffusion models to

be specialized for motion control tasks or developing even suitable generative
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models would be a future solution.

We anticipate that large control models will prove invaluable in develop-

ing policies for effectively controlling complex virtual reality characters and

potentially even robots.
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