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Abstract

Ultrasound is a widely used imaging modality, which provides continuous real-time

imaging of the human heart, brain, liver, and many other organs. Accurate cardio-

vascular evaluation plays an important role in early disease diagnosis and echocardio-

graphy plays an important role in the assessment of cardiovascular diseases. The lack

of ionizing radiation and portability make echocardiography one of the safest imaging

modalities. Although two-dimensional echocardiography is widely used to obtain the

motion of the heart structures in real-time, real-time 3D echocardiography (RT3DE)

imaging allows better 3D imaging by extracting spatial features along with temporal

information, thus improving clinical decision making. There have been technological

advances; however, the majority of acquired RT3DE images tend to be of low quality,

characterized by the absence of anatomical information, decreased spatial and tempo-

ral resolution, speckle noise, and a limited field of view. By registering RT3DE images

obtained from several sonography windows, it is possible to enhance the recognition

of structures and achieve a substantial improvement in image quality as well as it is

also useful in the fusion of echo images to image the entire heart.

This study proposes a fully automatic point-based rigid registration technique,

followed by nonrigid B-spline registration, to align 4D echocardiogram images ac-

quired from various sonographic windows. The methodology was evaluated using

scans acquired from seven volunteers. The accuracy of registration was visually and

quantitatively assessed by delineating the left ventricle in each scan and computing

the Dice score overlap metric and the Hausdorff distance mutual proximity measure

between the first scan and the rest. The overall findings demonstrate that the sug-
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gested registration method improves image alignment compared to the initial scans,

which might be helpful in the fusion of echocardiographic images.
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Chapter 1

Introduction

1.1 Motivation

Image registration is the process of aligning two or more images taken from different

modalities or different windows into a common coordinate system [1]. In medical

imaging, multiple scans of the same patient are often taken over time using single or

multiple imaging modalities such as ultrasound, magnetic resonance imaging (MRI),

computed tomography (CT), positron emission tomography (PET), and single photon

emission computed tomography (SPECT). The registration of these images acquired

at different times or with different sensors can reveal minute changes or patterns that

can indicate the progression of the disease or the effectiveness of treatment. Ultra-

sound images tend to be noisy and subject to unique artifacts, and it is possible to

enhance the recognition of structures as well as achieve a substantial improvement

in image quality using image registration to align images acquired at multiple sonog-

raphy windows. In addition, it is also useful in the fusion of echo scans to image

the entire heart. The definition of the window in echocardiography image acquisition

refers to the specific location of the transducer on the patient. The images used in

this study are acquired from the parasternal and apical windows. Figure 1.1 shows

the scanning planes of the heart. In order to find the appropriate alignment between

the two images, it is necessary to find a transformation to be able to link the points

of one image with the corresponding points of the other. Over the years, many tech-
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niques have been developed to register images to fix variations that cause images to

be misaligned. Depending on the technique used, the registration algorithms can be

divided into two types as feature-based and intensity-based methods [2].

Figure 1.1: Scanning planes of the heart. The long and short axis planes correspond
to images acquired in the parasternal window and the apical plane corresponds to
images acquired from the apical window [3].

Feature-based registration relies on identifying distinctive features in the images,

such as corners and edges, and matching them to perform image alignment, whereas

intensity-based registration relies only on image pixel intensities. A transformation

that maximizes the similarity between the pixel intensities of the images to be reg-

istered is calculated to find the optimal alignment. Mean squares, normalized cor-

relation, and mutual information are some of the common intensity-based similarity

metrics used in image registration. Based on the image coordinate transformation,

we can categorize different types of image registration. Rigid registration is one of

the simplest methods used to align images when only translations and rotations are

needed, whereas the affine transform allows for shearing and scaling in addition to ro-
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tation and translation. Non-rigid or deformable registration methods are used when

two images are related through non-rigid geometric transformations, where the cor-

respondence between images cannot be achieved without localized deformations. For

example, the structures of the heart can deform nonlinearly with the cardiac motion.

Point-based or landmark-based registration allows the embedding of expert knowledge

into the registration procedure when dealing with challenging registration tasks that

cannot be achieved with the usual registration techniques. In point-based registra-

tion, the transformation is computed by using predefined sets of landmark points or

coordinates identified on the fixed and moving images. The images are aligned in

such a way that the total Euclidean distance between the points on the fixed image

and the corresponding points on the moving image is reduced.

1.2 Thesis contribution

An overview is provided of this thesis’ contribution to the field of medical image

registration.

Two-step rigid and non-rigid image registration for the alignment of

images acquired from standard and nonstandard apical (Apl) windows:

This study proposes a fully automatic point-based rigid registration technique, fol-

lowed by nonrigid B-spline registration, to align 4D echocardiogram images acquired

at different apical windows.

Two-step rigid and non-rigid image registration for the alignment of

images acquired from apical and parasternal (Psl) windows:

This study proposes a fully automatic point-based rigid registration technique, fol-

lowed by nonrigid B-spline registration, to align 4D echocardiogram images acquired

at apical and parasternal windows.

Visual and quantitative evaluation of the accuracy of registration:

The accuracy of registration was visually and quantitatively assessed by delineating

the left ventricle in each scan and computing the Dice score overlap metric and the
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Hausdorff distance mutual proximity measure between the first scan and the rest.

1.3 Thesis overview

The thesis is structured into 5 main chapters as follows:

In Chapter 2, the basics of image registration, registration algorithms for use be-

tween ultrasound images, image registration approaches in the literature, and details

on how deep reinforcement learning is used for anatomical landmark detection are

presented.

Chapter 3 presents the dataset, the methodology of the proposed algorithm, a

point-based rigid registration followed by B-spline non-rigid registration to register

multiview 3D echocardiography sequences. It discusses how the LV annotations were

delineated to evaluate the accuracy of registration and provides details on how the

Dice similarity coefficient and the Hausdorff distance measures were used to quanti-

tatively evaluate the alignment between pairs of 3D and 4D scans.

Chapter 4 presents the training results of the landmark detection models and the

visual and quantitative accuracy of the proposed algorithm using the registered im-

ages.

Finally, in Chapter 5, the work performed for this thesis is summarized, and future

work, and limitations are discussed
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Chapter 2

Background

2.1 Problem definiton

2.1.1 Heart anatomy and function

Heart anatomy

The cardiovascular system of the human body is made up of the heart and a

network of blood vessels. The heart is the main organ of the cardiovascular system

that pumps blood throughout the human body. The heart circulates the oxygenated

blood from the lungs to all the body parts and works with other body systems to

control the heart rate and blood pressure. The right side of the heart is responsible

for receiving deoxygenated blood from the entire body and sending it to the lungs.

The lungs oxygenate the blood and circulates to the left side of the heart. The left

side of the heart is responsible for pumping the oxygenated blood to the rest of the

body.

As shown in figure 2.1, the heart is divided into four chambers. Each side of

the heart consists of two chambers, the upper chambers are called the atria, and

the lower chambers, are the ventricles. The left atrium, the upper left chamber of

the heart, receives oxygenated blood from the lungs and pumps it down into the

left ventricle which circulates it to the body. The right atrium, the right upper

chamber of the heart, receives deoxygenated blood from the body and pumps it into

the right ventricle which then sends it to the lungs to be oxygenated. The left lower
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chamber of the heart called the left ventricle (LV), receives blood from the left atrium

and pumps it out under high pressure through the aorta to the body. Finally, the

lower right chamber of the heart called the right ventricle (RV) receives deoxygenated

blood from the right atrium and pumps it under low pressure into the lungs via

the pulmonary artery. The heart itself is comprised of three layers of tissue. The

outermost layer is the epicardium, the middle is the myocardium and the innermost

layer is the endocardium. The myocardium is the thickest muscular layer, responsible

for pumping the blood.

Figure 2.1: Basic anatomy of the heart [4].

Cardiac function and cycle

An electrocardiogram (ECG) is used to record and assess the heart’s electrical

activity over cardiac cycles. The use of the ECG offers a quick, non-invasive method

of determining the heart’s rhythm. Figure 2.2 shows the basic components of an

ECG. The three main components are P wave, QRS complex, and T wave. The

P represents the electrical activity of the upper heart chambers, the QRS complex
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denotes the electrical movement of the ventricles and finally, the T wave represents the

ventricles resetting electrically to prepare for the next muscle contraction [5]. Figure

2.3 shows an example of end-systolic and end-diastolic frames and the corresponding

electrocardiogram tracings. With expertise, it is possible for clinicians to manually

identify the ED and ES phases of an echocardiography image by visually inspecting

each frame of the echo sequence for changes in the LV dimension and left-sided valves

with relation to the ECG tracing [6].

Figure 2.2: An example of an ECG of a heart [6].

2.1.2 Ultrasound imaging

Ultrasound is one of the most widely used imaging modalities that provides continu-

ous real-time imaging. It is considered one of the safest modalities due to its lack of

ionizing radiation. It is also portable and less expensive compared to other modalities,

allowing it to be used in various fields of medicine [8]. Real-time three-dimensional

(3D) acquisition is a recent advancement in ultrasound imaging. Conventional ultra-

sound transducers provide two-dimensional images, usually at 30 to 60 frames per

second. Before the introduction of real-time 3D ultrasound imaging, 2D planar im-

ages were obtained by systematically moving a standard ultrasound transducer across
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Figure 2.3: Sample end-diastolic (ED) and end-systolic (ES) frames with correspond-
ing electrocardiogram (ECG) tracings [7].

a 3D area, and then the images were stacked to create 3D images [9]. However, this

method was sensitive to patient motion and had difficulties in localizing the trans-

ducer. Furthermore, it is not sufficiently swift to capture three-dimensional images

of a dynamic organ like the heart. On the other hand, real-time 3D ultrasound

acquisition has the ability to generate around 20-30 volumes per second and accu-

rately capture the movement of the heart with a remarkably high temporal resolution.

Real-time 3D ultrasound imaging can be described as a form of four-dimensional (4D)

imaging, where time is considered as the fourth dimension.

2.1.3 Evaluating cardiac function using ultrasound imaging

US imaging of the heart consists of both two-dimensional (2D) imaging and 3D imag-

ing over time. There are several advantages of using the 3D modality compared to

the traditional 2D approach. Regional wall motion analysis and inspecting the wall

thickness are crucial parts of diagnosing disease in a patient. It can provide insight

into specific areas of the heart that are functionally abnormally. With 2D imaging,

the sonographer may have to modify the orientation of the transducer to observe a

particular segment of the myocardium. The use of 3D US allows for a much larger
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volume to be captured [8]. Apart from regional analysis, 3D US enables the ability

for valves to be analyzed and characterized [8]. By using image registering to register

RT3DE images obtained from several sonography windows, it is possible to enhance

the recognition of structures and achieve a substantial improvement in image quality

compared to the original scans.

2.2 Image registration overview and methods in

literature

2.2.1 Basics of image registration

Image registration is the process of aligning two or more images or volumes and

transforming them into the same coordinate system. The technique is used in a wide

variety of medical imaging applications. The images can be obtained from various

points in time, using different sensors and/or from different viewpoints. Typically,

when we align two images, one is considered stationary and referred to as the target,

reference, or fixed image. The other image is subjected to various transformations

such as translation, rotation, warping, etc. This image is referred to as the source or

moving image. The process of mapping features from one image to another is referred

to as the geometrical transformation, deformation field, or displacement field. In order

to register two or more images, it is necessary to estimate a transformation. Typically,

these changes are categorized as rigid, which involves only rotation and translation

to align images, affine, which includes scale factors and shears in addition to rigid

registration, and non-rigid/deformable, where the correspondence between structures

in two images cannot be achieved without some localized stretching or deformation.

Figure 2.4 illustrates these classifications. Soft tissues, such as those found in the

human body, generally do not conform to a rigid or affine approximation[10].

Respiration induces motion in the patient’s body during cardiac imaging acquisi-

tion. Utilizing gating or synchronization with the heartbeat and/or respiratory cycle
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Figure 2.4: Three transformation models.

is a common approach to acquiring a series of volumes. However, the volumes may

still be misaligned. Undesired patient movement can potentially lead to the occur-
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rence of motion artifacts. In order to conduct an accurate analysis of the patient’s

progress over a period of time, it is necessary to align the volumes to a common

reference frame. Hence, image registration is used to carry out this alignment. Image

fusion involves merging data from numerous scans to expand the field of view (FOV)

of the heart. This procedure is commonly conducted when the complete heart is not

clearly seen in the acquired scan. Image registration is often used to align different

volumes and facilitate the observation of key structures.

2.2.2 Landmark based image registration

The localization of anatomical landmarks or fiducial markers in medical imaging

is used to initialize intensity-based registration between two images and to regis-

ter between image spaces. In difficult registration problems, registering images using

landmark points provides accurate results. During the registration process, the trans-

formation that aligns the fixed and moving images given a set of pair landmarks is

computed. SimpleITK’s landmark-based transform initializer computes the best-fit

transform that maps the fixed and moving images in the least squares sense (sum

of the squares of the residuals). Point 1 in the fixed image will get mapped close to

point 1 in the moving image, etc. Using 3D rigid transform alongside a set of land-

marks would allow computing the translation and the rotation components to align

the images minimizing the distance between given landmark points on two images.

Figure 2.5: Registration using manually placed landmarks.
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2.2.3 Deformable image registration

Deformable image registration is the process of finding correspondence between struc-

tures in two images that cannot be achieved without some localized stretching or

deformation. The three primary components of deformable image registration are

1) the similarity measure, 2) the transformation model, and 3) regularisation. The

similarity measure is typically specified as an objective function that obtains its op-

timal value when two images have a specific relationship. The similarity measure

in intensity-based registration methods is defined directly by image intensities. The

mean squares image similarity metric is calculated by obtaining the square of the

difference between matching pixels in each image and then calculating the average of

these squared differences. The mean squared error SMSE could be defined as,

SMSE(IF (P ), IM(T (P, µ))) =
1

n

n∑︂
i=1

(IF (Pi)− IM(T (Pi, µ)))
2 (2.1)

where IF (P ) is a fixed image, IM(P ) is a moving image, transformation with pa-

rameters µ is T (P, µ) and n is the number of pixels in the image. The optimal value

of this metric is zero. Poor matches between two images result in large values of the

metric.

The Mutual Information (MI) [11] metric calculates the mutual information be-

tween two images. MI is a measure of how much information one voxel intensity in

one image tells about the corresponding voxel in the second image. This involves

measuring the probability density distributions (PDF) of the intensities of the fixed

and moving images, without the need to explicitly define the exact form of the re-

lationship. Mattes Mutual Information [12] is an implementation that samples the

same pixels in each cycle. Using a predetermined collection of discrete positions to

assess the marginal and joint probability density functions enhances the smoothness

of the trajectory in the search space. Given a fixed image IF (P ), a moving image

IM(P ), and a transformation with parameters µ is T (P, µ) the mutual information is
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defined as,

SMI(IF (P ), IM(T (P, µ))) = H(IF (P )) +H(IM(T (P, µ)))−H(IF (P ), IM(T (P, µ)))

(2.2)

where H(IF (P )) and H(IM(T (P, µ))) are the marginal entropies, and

H(IF (P ), IM(T (P, µ))) is the joint entropy of fixed and moving images.

The transformation model is the second component of an image registration pro-

cess. The transformation model specifies the collection of possible transformations

necessary for aligning two images. In rigid parametrization, rotation and shifting are

sufficient transformations to align two images with different orientations. Deformable

transformations can be classified into parametric and non-parametric types. In non-

parametric approaches, the estimation of a transformation is done by an unknown

function. Parametric approaches rely on a specific parameterization of the transfor-

mation, such as spline-based methods [13]. The B-spline method uses B-spline curves

to define a continuous deformation field to map voxels of fixed and moving images

[14]. There is no unique solution to estimate a non-rigid transformation based on only

a set of given control points/landmarks. There can be an infinite number of trans-

formations that have different behavior in the remaining parts of the image but will

match the corresponding landmarks. Usually, a regularization term is used to enforce

some constraints to transformation, to solve the problem with a unique solution.

2.2.4 Multiresolution image registration

Multiresolution registration is an approach to reduce the computational complexity

of image registration problems. It allows algorithms to work on both fine and coarse

scales, rather than waiting for local pixel-level operations to converge at large scales.

Multi-resolution methods have also been called coarse-to-fine, hierarchical, and pyra-

midal in the literature. The pyramid model for a multiresolution image registration

method is shown in Figure 2.6. Level n has the original images, with each upper level

featuring images reduced in size by a certain factor (typically 2) to create new images.

13



To acquire the intended low-resolution images, the process is repeated. The minimum

resolution can be automatically determined or can be provided as input by the user.

Initially, the images at the top level are aligned. Reducing image size simplifies the

correspondence procedure by minimizing local geometric discrepancies between the

images. Registration parameters at level n are estimated using the registration result

at level n − 1. The process is repeated until registration at the highest resolution

(level n) is achieved. This subdividing process enables us to deal with smaller im-

ages and reduces the search area. In addition, knowing the approximate registration

parameters makes finding the ultimate registration parameters faster.

Figure 2.6: Coarse to fine image representation for multiresolution image registration.

2.3 Methods in literature

2.3.1 Ultrasound image registration

Ultrasound is often used to acquire images of the human heart, brain, liver, and

other organs [15],[16],[17] and is increasingly being used in animal studies [8]. Since
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US imaging is used to acquire images of different organs of the human body, over

the years many registration algorithms have been developed to address monomodal

ultrasound-to-ultrasound registration. In [18], a fully automatic, feature-based, non-

rigid registration algorithm was proposed to register 3D brain ultrasound images.

Their feature-based registration reduced the mean target registration error of images

acquired before and after opening the dura mater from an initial value of 3.3 to 1.5

mm. In [19], a method was proposed using Gabor filters to extract features to regis-

ter 3D ultrasound images of the fetal head. Among the different metrics the authors

used, they achieved 92% of the successful registration rate for the correlation ratio

metric. In [20], a hybrid procedure was proposed using global statistics and local

textural features to register envelope-detected radio frequency ultrasound data of the

human neck and was shown to outperform standard measures such as SSD, NCC, and

Hellinger distance. In [21], a fully automated deformable registration algorithm was

developed using the Bayesian regularization framework to register free-hand ultra-

sound volumes of female breasts. In [22], a semiautomated deformable approach was

used using manually placed control points along with the Nelder simplex algorithm as

an optimizer to register breast images. In [23], a registration framework with mutual

information was proposed as a similarity metric to rigidly register 2D liver images.

An affine registration method was proposed in [24], and a rigid registration approach

was proposed in [25] to register real-time 4D liver ultrasound images. Compared to

brain or head image registration, cardiac image registration is more complex because

the heart is a moving organ and presents fewer accurate anatomical landmarks that

can be used for registration [26]. Although several articles have been published in the

field of medical image registration, only a few focus on cardiac image registration.

In [27], a multiresolution deformable algorithm was proposed to automatically track

the mitral annulus on 3D ultrasound images. To calculate performance, the root

mean square difference between manually traced landmarks and automatic tracking

was calculated, and the algorithm produced 1.96 ± 0.46 mm as the average error,
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which is within the acceptable error range according to the authors. In [9], a mutual

information-based registration framework was proposed to register real-time 3D ul-

trasound data. A pair of volume frames at identical cardiac phases were selected from

two frame sets to perform the registration. The authors have evaluated the accuracy

of the registration by artificially introducing a misalignment.

Echocardiography, also known as cardiac ultrasound, can acquire moving images

of the heart in real time and is an important tool in the diagnosis of cardiovascular

disease, a leading cause of death worldwide [28]. Accurate cardiovascular evaluation

plays an important role in early diagnosis of the disease. Most often, two-dimensional

(2D) echocardiography image sequences are acquired to see the motion of the heart;

however, the imaging is limited to only one plane in each scan. The 3D echo tech-

nique is more efficient and useful and captures real-time three-dimensional views of

the heart’s structure and shows how well the heart pumps blood. Using 3D allows clin-

icians to study parts of a heart from different angles with greater accuracy, enabling

a more accurate assessment of heart function. The real-time 3D echocardiography

(RT3DE) imaging technique allows better 3D imaging by extracting spatial features

along with temporal information, thus improving clinical decision making [29]. In ad-

dition, RT3DE allows the compilation of information on cardiac anatomy and function

using single-beat or multi-beat acquisitions. However, the practicality of employing

multiple pulses in multibeat modality is constrained by the need for precise control

of breathing and maintaining normal heart rate during the image acquisition process

[30].

Although there have been technological advancements, many acquired RT3DE im-

ages tend to be of poor quality, characterized by the absence of anatomical infor-

mation, decreased spatial and temporal resolution, speckle noise, and a limited field

of view (FOV) compared to 2D images [31], [32]. By registering RT3DE images ob-

tained from several windows, it is possible to enhance the recognition of structures

and achieve a substantial improvement in image quality [33]. Considering all of the
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aforementioned drawbacks, the authors of [34] have introduced a method that reg-

isters apical and parasternal echocardiographic images by utilizing local orientation

and phase differences. An initial rigid transformation was performed by identifying

three manual landmark points on the end-diastolic frames of both the fixed and mov-

ing images. This was then followed by registration using a unique voxel similarity

function. An inherent limitation of the algorithm being discussed is the requirement

for manual involvement in order to obtain the first alignment. Our study introduces

an entirely automated technique for aligning multiview 3D echocardiogram images.

Additionally, we employ a non-rigid registration as a second step to rectify minor

misalignments. The alignment accuracy of the proposed method is assessed by mea-

suring the overlap between the left ventricular regions. As the starting point of the

proposed method, we utilize Leroy et al.’s multi-agent communicative reinforcement

learning system [35] to train a model. This model is used to automatically detect

landmarks in 3D echocardiography images. Subsequently, we employ SimpleITK’s

landmark-based registration technique to rigidly align the images. Next, we employ a

B-spline-based multiresolution deformable registration technique utilizing the Simple

Elastix package to rectify slight discrepancies in the rigidly aligned images mentioned

beforehand.

2.4 Deep reinforcement learning for anatomical

landmark detection

2.4.1 Reinforcement learning

Reinforcement learning (RL) is a subset of Machine Learning (ML) that falls within

the broader domain of Artificial Intelligence (AI) and is influenced by behavioral

psychology and neuroscience [36]. In RL, an artificial agent learns by taking actions in

an environment and receiving a new state along with a reward, similar to how animals

learn via trial and error. Environmental policies are acquired by direct learning from
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inputs with high dimensions. This problem is often modeled mathematically as a

Markov decision process (MDP). Figure 2.7 shows a reinforcement learning loop. An

agent at every timestep t is in a state St takes action At, receives a scalar reward

Rt, and transitions to the next state St+1 according to environment dynamics. The

agent attempts to learn a policy or map from observations to actions, which would

increase the total cumulative reward. This learning technique allows the agent to

automatically execute a sequence of decisions that optimize a reward metric for the

task, without any human interaction or explicit programming to carry out the job

[37].

Figure 2.7: Reinforcement learning loop, the agent takes an action in the environment
and receives the updated state and corresponding reward [38].

As mentioned above, the agent comprises two elements: a policy and a learning

algorithm. A policy is a function that determines actions depending on observations

obtained from the environment. Usually, the policy is a mathematical model that

can approximate functions and has adjustable parameters, such as a complex neural

network. The learning algorithm iteratively adjusts the policy settings using infor-

mation from the actions, observations, and rewards. The objective of the learning

algorithm is to identify an optimal policy that maximizes the total reward obtained

throughout the learning.
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2.4.2 Medical Applications

Reinforcement learning agents can be used in clinical applications to take advantage

of their high accuracy and fast navigation abilities while working with 3D medical im-

ages. RL has been used in various clinical applications such as locating landmarks in

fetal head ultrasound, adult brain, and cardiac MRI scans [39]. It has also been used

to find standard view planes in brain MRI images [40]. Supervised machine learn-

ing solutions for anatomical landmark detection learn from large annotated image

databases. These solutions for anatomy detection are subject to several limitations

such as suboptimal feature engineering techniques and computationally expensive

search strategies. To overcome these issues the detection problem has been reformu-

lated as a deep reinforcement learning problem in [41]. In scenarios where a 3D CNN

in a supervised context is used to predict landmarks in medical images, it would take

the whole image as an input and outputs the predicted landmark’s position. Whereas

the power of the RL approach is that it takes much less memory and processing power

while still producing state-of-the-art results [42].

2.4.3 Anatomical landmark detection

Deep reinforcement learning (DRL) combines elements of classical reinforcement learn-

ing with deep learning. The utilization of deep Q-networks (DQN) emerged due to

the progressively complex state and action spaces, hence the inclusion of the term

‘deep’ in deep reinforcement learning. The goal is to evaluate the expected Q-value

of a given state s when taking action a. Q-learning [43] aims to determine a Q-value

that evaluates the effectiveness of doing a certain action in a particular state s by

acquiring knowledge through a policy that maximizes the cumulative reward during

the training process. Mnih et al. [36] suggested employing a deep neural network

called DQN to estimate these q-values.

In this work we use Leroy et al.’s [42] proposed communicative DQN-based RL

agents for the detection of anatomical landmarks in echocardiography images. These
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agents are programmed to acquire knowledge through learning while exploring various

locations in 3D medical imaging and tested on brain MRI and fetal head ultrasound

images. Figure 2.8 depicts a schematic representation of the navigating agents within

a 3D volume or environment E. The example shows three agents looking for landmark

A. Similarly, in the proposed registration approach, three agents each, a total of six,

were looking for landmarks B and C.

Figure 2.8: A schematic diagram of multi-agents interacting with the 3D image envi-
ronment E. All three agents will take action toward a target landmark A during each
step. After taking the sequential action, the learned policy is formed by the path
between the starting points and the target landmarks [42].

For the agents, the state represents a region of interest (ROI) that is 45×45×45

voxels in size and it is centered on each agent. In order to enhance the stability

and convergence of the network, the history of the last 4 states is provided as an

input. At the start of each episode, every agent is positioned randomly within the

80% of the inner part of the image. The agent stops upon reaching the designated

landmark. During the process of inference, the terminal state is activated when the

agent oscillates around a target location. An agent can take action in the six directions
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in the 3D Cartesian coordinates, namely left, right, up, down, forward, or backward

till it reaches the terminal state. The reward is calculated using the difference between

the Euclidean distance of the current point of interest and the target landmark and the

point of interest of the previous step and the target landmark. The calculated reward

is clipped between -1 to 1 to make sure positive rewards are given if the agent moves

towards the target. The architecture of the communicative multi-agent reinforcement

learning for anatomical landmark detection is shown in Figure 2.9. It shows an

example of two agents sharing the same convolutional layers. The model takes a

tensor of size number agents× 4× 45× 45× 45 as an input. The convolutional layers

are shared between all the agents. The agents learn to communicate by averaging

the output of the fully connected layer of each agent, which is then concatenated to

the input of the next fully connected layer. The last fully connected layer is a size of

6, which is the size of the action space (six directions) mentioned above. Finally, the

model is trained using the DQN loss function [44].

Figure 2.9: The communicative multi-agent reinforcement learning architecture for
anatomical landmark detection [42].
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Chapter 3

Two-Step Rigid and Non-Rigid
Image Registration

A flow diagram that describes the entire registration process is shown in Figure 3.1.

The individual steps of the procedure are explained below.

3.1 Participant population and data

Seven volunteers with no known cardiac disease, stable sinus rhythm, and 18 years or

older were scanned. The Health Research Ethics Board of the University of Alberta

granted approval for the study, and written informed consent was obtained from all

participants. In this study, a total of 124 4D (3D+time) echocardiography scans of

dimensions n×272×176×208 and n×224×176×208 were used where n represents

the number of volumes or frames within a sequence and ranges between 25 − 30

for each scan. All images were resampled to an isotropic voxel size with spacing

1× 1× 1 mm along the x, y and z coordinate directions for training the anatomical

landmark detection models.

3.2 Image acquisition and preprocessing

Three-dimensional echocardiogram images of the left ventricle (LV) were acquired

in real-time from multiple windows, mostly apical and parasternal windows, using

an X5 probe on a commercially accessible Philips EPIQ 7C scanner. The ultrasonic
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Figure 3.1: Chart showing the key steps in the registration procedure. (icons:
Flaticon.com)
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transducer was attached to a Universal Robots UR10e arm, which was used to control

the transducer during the scanning procedure. ECG-synchronized multi-beat full-

volume datasets were obtained, comprising around three to four images captured

from the same acquisition window. Each volunteer had a single session in which

all datasets were acquired. Participants were instructed to hold their breath to try

to prevent the occurrence of stitching artifacts. The scans were acquired with a

starting average frame rate of 25 ± 3 Hz employing 4-beat (4Q) and heart model

acquisition (HMQ) techniques. DICOM images were exported using QLab software in

Cartesian DICOM format to be compatible with third-party software. The proposed

landmark detection model does not work directly on 4D images and is applied to 3D

volumes (spatial). Therefore, the exported cartesian DICOM images were converted

into NRRD sequences using the Pynrrd Python module and then 3D volumes were

extracted from the NRRD sequence. In total, 213 apical and 149 parasternal 3D

volumes at the end-diastolic phase were selected based on image quality among 7

volunteer participants.

3.3 Training

The first step of the proposed registration method was a landmark-based rigid reg-

istration using the SimpleITK library. The SimpleITK’s landmark-based transform

initializer calculates the best fit that maps the fixed and moving images in the least

squares sense using an equal number of landmarks on the fixed and moving images.

The landmarks were predicted using a neural network approach to remove the manual

overhead of landmark annotation on the fixed and moving images. The proposed neu-

ral net models were trained using communicative deep Q-network-based reinforcement

learning agents implemented by Leroy et al. [35] and used to automatically detect

three landmarks, given a new 3D echocardiography volume. Previous research car-

ried out using the proposed landmark detection method to identify landmarks on

adult MRI and fetal head ultrasound showed improved accuracy in locating the de-
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sired landmark through the use of communicative agents. To the best of the authors’

knowledge, this is the first application of the communicative deep Q-network-based

reinforcement learning technique to detect landmarks in 3D echocardiography images.

Furthermore, the findings demonstrated that the collective efforts of multiple agents

in looking for a single landmark are more effective than assigning a single agent to

each landmark. Therefore, in our study, we employed three agents to search for each

of our landmarks. Two models were trained: one specifically for parasternal 3D vol-

umes and another specifically for apical landmark identification. We proceeded with

different models on the basis of the following rationale. 1) There is a difference in the

structures observed in the 3D apical and parasternal volumes; specifically, the apex

part of the heart is usually not captured in the parasternal volumes. 2) There is an

unequal distribution of data across the two datasets.

Figure 3.2 shows the chosen landmark points used for point-based registration.

(a) Apical (b) Parasternal

Figure 3.2: End-diastolic frames of apical and parasternal 3D volumes with manually
annotated landmark points. The first point (L1) was picked where the right coronary
cusp attaches to the aortic root annulus in PSLAX. The second (L2) and third (L3)
points were selected at the anterior and posterior mitral valve leaflet attachment on
the mitral valve annulus in the PSLAX, respectively.

We used multiplanar reconstruction on the collected 3D volumes to identify land-

marks, specifically focusing on the end-diastolic frames. This was done using a 3-
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chamber view. The initial point (L1) was selected where the right coronary cusp

attaches to the aortic root annulus in the parasternal long axis view (PSLAX). The

second (L2) and third (L3) locations were chosen at the anterior and posterior at-

tachments of the mitral valve leaflet on the mitral valve annulus in the PSLAX view.

The clinical expert, a diagnostic cardiac sonographer, manually labeled all the chosen

landmarks using three orthogonal views in the open source program 3D Slicer [45].

3D Slicer utilizes the RAS coordinate system as its default. The multi-agent land-

mark identification approach requires the use of real-world physical coordinates. To

do this, the RAS coordinates of the annotated landmarks were transformed into phys-

ical x, y, and z coordinates by using the origin and spacing data. The 3D apical and

parasternal datasets were separated to form the training set comprising 166 apical and

113 parasternal volumes, the validation set comprising 23 apical and 16 parasternal

volumes, and the test set comprising 33 apical and 20 parasternal volumes.

The accuracy of the landmark detection model is assessed by computing the Eu-

clidean distance error between the detected landmarks and the target landmarks.

Therefore, similar to [35], the most suitable model was selected during the training

process considering the highest accuracy achieved in the validation data set. A total

of nine agents, three assigned to each landmark, performed a search within a 3D echo

volume to locate three separate landmarks. The batch size was set to 128 and 64 for

the apical and parasternal data, respectively, and the number of episodes was set to

75,000. Other training hyperparameters remained unchanged and used their default

values. We used an AMD CPU and an Nvidia A100 graphics card equipped with

40GB of RAM for training. More details on how the agents learn are explained in

section 2.4.3.
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3.4 Image registration

3.4.1 Rigid registration

From the extracted 3D volumes, we chose the standard apical end-diastolic 3D volume

of the highest quality from each volunteer as a fixed image. All remaining images

were deemed to be the moving set. Image registration often involves applying a

transformation to the set of moving images. We applied the model that had the

highest validation accuracy to make predictions on both fixed and moving images for

landmark identification. As stated in Section 3.3, the training process and prediction

are based on the physical x, y, and z coordinates of the landmarks. SimpleITK uses

LPS coordinates. Consequently, we transformed physical coordinates back into RAS

coordinates. LPS coordinates were derived by negating the RAS coordinates. The

following figure displays three spaces together with their respective axes.

Figure 3.3: Figure illustrating the three spaces and their corresponding axes. (Source:
slicer.org)

Finally, the predicted sets of coordinates were utilized to implement a point-based
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rigid registration, which resulted in the transformation of the moving image to align

with the fixed image. After the registration procedure was performed, the transfor-

mation was extended to the remaining 3D volumes in the same sequence, and the

whole sequence of echo data was saved as an NRRD file. Furthermore, the resultant

transformation matrix for each moving sequence with respect to the fixed image was

stored in a file.

3.4.2 Non-rigid registration

SimpleElastix [46] is a freely available image registration library that extends Sim-

pleITK and incorporates a Python wrapper for image registration techniques. For

the second part of our two-step registration procedure, we used a multimetric, mul-

tiresolution B-spline deformable registration. This algorithm was implemented using

the SimpleElastix library and applied to images that had already undergone rigid

registration. The fixed image remained unchanged, whereas nonrigid registration was

performed exclusively on the end-diastolic frame. B-spline registration involves map-

ping every voxel in a moving image to a corresponding voxel in a fixed image using

a continuous deformation field defined by B-spline curves [14]. To enhance the ac-

curacy of the registration process and reduce the time required for computation, a

multiresolution framework was employed to apply the B-spline transform. This ap-

proach involved two consecutive phases for the apical images and a single phase for

the parasternal images, resulting in an improved registration process. Furthermore,

during the registration procedure, the similarity metric between the corresponding

voxels of the fixed and moving pictures was computed using two metrics, namely, the

mean squares and the Mattes mutual information. The mean squares similarity met-

ric calculates the total squared differences between corresponding pixels in the fixed

image and the moving image. The Mattes mutual information measure calculates

mutual information using the approach proposed by Mattes et al. [12], comparing

fixed and moving images. Using the parameters described above, a B-spline transform
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was computed to determine the spatial correlation between the two 3D volumes. Sub-

sequently, the deformation field obtained from the transform was utilized to modify

the remaining 3D volumes in the sequence, and the modified sequence was stored.

3.5 Evaluation

3.5.1 Delineation of left ventricle

In order to assess the accuracy of the registration, the degree of overlap between

the regions of the left ventricle (LV) was measured. Usually, there is poor align-

ment between the LV areas in two distinct scans, specifically between the apical and

parasternal scans. Once the images are registered, the alignment should be improved.

Therefore, the Dice score, which measures the overlap between two areas of LV before

and after registration, was computed to assess the accuracy of the registration. The

Hausdorff distance was used to calculate the mutual proximity between the LV areas.

The LV annotations were delineated by a diagnostic cardiac sonographer and a cardi-

ologist using TomTec Arena1, a commercially available software. TomTec Arena uses

speckle tracking method for obtaining a delineation of the LV over the full cardiac

cycle. Speckle tracking is a method that examines the tissue motion by analyzing

speckle patterns. The individual steps are displayed in Figure 3.4. The clinician first

manually identifies the apex and the mitral valve, and the LV is aligned vertically ac-

cording to these two points. In the second step, a rough estimation of the endocardial

borders is automatically produced for the ED and ES frames, where the clinician has

the opportunity to adjust them. Then tracking (using a speckle tracking method) is

initiated and revised if necessary. The final results include volumetric measurements,

regional analysis, and metrics concerning the strain [47].

The annotations were performed as mentioned above on the echocardiogram pic-

tures obtained immediately from the scanner. The LV annotations were exported as

UCD segments in the original image coordinate system and subsequently transformed

1https://www.tomtec.de/products/tomtec-arena
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(a) Initial manual alignment of the LV (b) Beutel (contour) revision

(c) Manual tracking revision (d) Final analysis

Figure 3.4: The process for semi-automated delineation of the LV across the cardiac
cycle using the TomTec Arena software. The annotations were exported as UCD
segments after the analysis.

into NRRD sequences. Figure 3.5 shows a sample apical echocardiography image with

the corresponding exported ED and ES annotations in different planes. The ED phase

is rendered in green and the ES phase is rendered in yellow. To calculate the metrics,

each LV annotation underwent a transformation using identical rigid and non-rigid

transformations that were computed to align the respective echocardiography images.

To assess the reliability of the extracted volume annotations of the left ventricular

regions, we calculated the interrater agreement by comparing the annotations made

by two raters on the same dataset. Interrater agreement yielded a mean Dice score

value of 0.8413 across 9 apical and parasternal datasets taken from three volunteers.
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(a) Axial (b) Coronal (c) Sagittal

Figure 3.5: Sample apical echocardiography image with the corresponding ED and
ES annotations in different planes. ED is rendered in green and ES is rendered in
yellow.

Figure 3.6: Sample 3D binary mask of delineated LV at the ED phase.

3.6 Metrics

3.6.1 Dice coefficient

The Dice coefficient is a statistical tool that measures the similarity of two sets of

data. The overlap between each pair of annotations was measured using the metric.

The Dice metric between a pair of 3D annotation volumes U, V was calculated as

follows.

Dice(U, V ) =
2 ∗ (U ∩ V )

U + V
(3.1)

Since the rigid and non-rigid transforms were applied to all the 3D volumes within

the sequence, the average Dice score between a pair of 4D annotation sequences
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Figure 3.7: Illustration of Dice metric.

Useq, Vseq was calculated as,

Dice(Useq, Vseq) =
1

n

n∑︂
i=1

Dice(Ui, Vi) (3.2)

where n was the number of 3D volumes within a sequence. For cases where one

sequence has more 3D volumes than the other, the extra 3D volumes were not included

in the calculation. A high Dice coefficient value indicates a high level of similarity

between the two masks, meaning that there is proper alignment. Conversely, a low

Dice coefficient value indicates poor alignment. The Dice metric ranges from 0 to 1,

with 1 indicating complete overlap.

3.6.2 Hausdorff distance

The Hausdorff distance (HD) [48] is used to measure the maximum distance between

two objects, measuring how far two point sets are from each other. It calculates the

distance of a set to the nearest point in the other set. A more general definition of

Hausdorff distance between two finite point sets U and V would,

HD(U, V ) = max
u∈U

min
v∈V

||u− v|| (3.3)

where || || is the Euclidean norm on the points U and V.

The average HD between a pair of 4D annotation sequences Useq, Vseq was calculated

as follows,

HD(Useq, Vseq) =
1

n

n∑︂
i=1

HD(Ui, Vi) (3.4)
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Figure 3.8: Computing the Hausdorff distance between the blue line U and the red
line V.

where HD(Ui, Vi) was the HD between two 3D volumes Ui, Vi and n was the number

of 3D volumes within a sequence. For cases where one sequence has more 3D volumes

than the other, the extra 3D volumes were not included in the calculation. A high

Hausdorff distance value indicates the points are farthest from one set to another,

meaning a poor alignment between LV annotations. Conversely, a low Hausdorff

Distance value indicates better alignment.
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Chapter 4

Results

In this section, we present the training results of the landmark detection models

and evaluate the visual and quantitative accuracy of the proposed algorithm us-

ing the registered images. The proposed method is evaluated quantitatively using

two metrics, namely, Dice metric (DM) and Hausdorff distance (HD in mm). Sepa-

rate evaluations are done for registering images acquired at various apical windows

(Apical-to-apical) and registering images acquired at apical and parasternal windows

(Apical-to-parasternal). In the end, we provide a comprehensive analysis combin-

ing both results. We also compare the alignment of the registered images with the

corresponding original images.

4.1 Model training and validation

In our proposed method we used three agents to search for each of the landmarks. For

every agent, once they reach their final positions, we take the average as the final po-

sition for each landmark. As we have mentioned earlier, two models were trained, one

for the identification of landmarks in apical 3D volumes and another for parasternal

3D volumes. Figure 4.1 shows the collab-DQN agents during testing. The agents are

simultaneously looking for the anterior mitral valve leaflet attachment on the mitral

valve annulus landmark (L2) in echo scans. The screenshot was taken on the agents

right after they were spawned within the 80% starting zone in the environment. The
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agent is denoted by a blue dot, and its field of view is shown as a yellow square sur-

rounding it. The red dot is the landmark, with its red circle indicating its distance to

the agent in the z dimension. At the bottom, if the preceding step brought the agent

closer to the objective, the text is displayed in green. Conversely, if the agent moved

further away, the text is shown in red. Similarly, we trained 3 agents each to identify

the other two landmark points.

Figure 4.1: Collab-DQN agents during training. They are simultaneously looking for
the anterior mitral valve leaflet attachment on the mitral valve annulus landmark
(L2).

Table 4.1 shows the mean and standard deviation of the distance errors of three

agents looking for the landmarks on both apical and parasternal validation datasets.

A total of 23 apical and 16 parasternal volumes were used for this purpose. The

second landmark (L2), for anterior mitral valve leaflet attachment on the mitral valve

annulus, shows slightly better accuracy scores for both apical and parasternal mod-

els. The distance errors for L2 indicate, on average agents’ position may deviate by

2.54 mm for apical and 2.71 mm for parasternal 3D volumes from the actual position.

We provide the related graphs obtained during the agent’s training on the anterior

mitral valve leaflet attachment on the mitral valve annulus landmark (L2). The initial

50,000 episodes of the training are shown. The remaining portion of the training

process is omitted, as the agent has reached convergence and is relatively constant.

In figures 4.2, 4.3, and 4.4 we can see the maximum distance error, minimum distance

error, and mean distance error on the validation set over the number of episodes
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Table 4.1: Mean and standard deviation of distance errors (in mm) of three agents
for trained apical and parasternal models on the validation dataset.

Landmark
Distance errors of 3 agents (mm)

Apl Psl

L1 3.08 ± 0.77 2.99 ± 0.76

L2 2.52 ± 0.06 2.71 ± 0.37

L3 3.36 ± 1.22 3.29 ± 0.69

respectively. The orange line corresponds to the training results on the apical images

and the blue on the parasternal images. At the 50k episode mark, the average distance

error is around 2.5 mm for apical and 2.99 mm for parasternal on the validation

set. This is closer to the mean distance errors reported in Table 4.1 for the full

75k episodes. The mean of maximum distance error for all 9 agents looking for 3

landmarks towards the end of the training for the model that had the best performance

on the validation set is around 17.7 and 9.11 for apical and parasternal respectively.

This indicates that, in the worst-case situation, the agent’s position may deviate by

17mm for detecting landmarks on apical images and by 9mm for detecting landmarks

on parasternal images.

Figure 4.2: Maximum distance error on the validation set over the number of episodes.
This shows worst cases are getting closer and closer to the correct landmark

In Figures 4.5 and 4.6 we can see the training loss and score. The loss ranges

36



Figure 4.3: Minimum distance error on the validation set over the number of episodes.

Figure 4.4: Average distance error on the validation set over the number of episodes
(log-scale). Single agent trains for an epoch on the anterior mitral valve leaflet at-
tachment on the mitral valve annulus landmark (L2) and is then evaluated on the
validation set.
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from 0.09 to 1.0 throughout training and is stable after convergence. The score is

calculated by summing the rewards received throughout an episode. An ideal agent

would possess a finite score that would vary because of its arbitrary starting position

in the environment. The agent’s score gradually increases during training and levels

off between 50 and 100. An agent moving randomly would often receive a somewhat

negative score since, on average, a random step would result in the agent moving

further away from the landmark in a Euclidean distance scenario. The graphs validate

that the agent is effectively learning during stable training.

Figure 4.5: Huber loss of the single agent’s DQN over the number of episodes (log-
scale).

Figure 4.6: Score for each episode on the training set over the number of episodes
(smoothened).

38



4.2 Apical-to-apical image registration

We evaluated the alignment accuracy of registering images acquired at apical win-

dows. The results include registering two apical 4-chamber images, registering an

apical 4-chamber image with an apical 3-chamber view, and registering a standard

apical image with a non-standard apical image. In total, we used 33 (7 fixed, 26

moving) 4D apical echo sequences acquired from 7 volunteers for the evaluation.

4.2.1 Visual assessment

We used the 3D Slicer1, a free open-source software used for medical image analysis

and visualization, to visually evaluate the accuracy of the alignments of the regis-

tered 4D sequences and the corresponding LV annotations. Two 4D sequences, fixed

and moving images, were loaded into the program, and by gradually adjusting the

transparency value to switch between the foreground (moving apical) and background

(fixed apical) images, an assessment for possible misalignments between the image

pairs was done by the expert. Example registration results for a pair of apical slices

with corresponding LV annotations are shown in Figure 4.7.

The fixed volume and the corresponding LV annotation are rendered in magenta,

whereas the moving volume and annotation are rendered in green. The top row

corresponds to long-axis slices, whereas the bottom row shows short-axis slices. The

first column shows the original apical fixed and moving slices before any alignment.

The second and third columns show rigid and non-rigid registered results, respectively.

From the short axis view, one could clearly see the midlevel LV structures of the LV

masks after alignment. Figure 4.8 shows original, rigid, and non-rigid registration

results of an example pair of apical 3D echocardiography annotations. The first two

rows show the long axis and the bottom two rows show short axis views. To assess the

alignment accuracy through a cardiac cycle, slices taken at the end-diastolic state are

visualized in the first and third rows, and slices taken at the end-systolic are visualized

1https://www.slicer.org/
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(a) Before registration (b) Rigid registration (c) Non-rigid registration

Figure 4.7: Example results for alignment of echo images with corresponding annota-
tions. Original volumes, rigid and non-rigid registration results of an example pair of
apical 3D echocardiography images in the long-axis (first row) and short-axis (bottom
row) views. The fixed volume and the corresponding LV annotation are rendered in
magenta, whereas the moving volume and annotation are rendered in green. The
results indicate a significant alignment improvement for the apical and parasternal
volumes and the corresponding LV annotations after image registration.

in the second and fourth rows. The fixed volume’s LV annotation is rendered in

magenta, and the moving volume’s annotation is rendered in green. The results

demonstrate clear alignment at end-diastolic and end-systolic states after performing

the proposed two-step registration process compared to the original volumes.

The checkerboard pattern is often used to combine two images and then compare

the registration results. Sample results of registered images acquired at apical win-

dows are shown in Figure 4.9. To assess the accuracy of the registration, the images

are superimposed in a 2 × 2 checkerboard pattern. The first two columns show the

original fixed apical and moving apical images respectively and the third column

shows the superimposed checkerboard image before registration. The last column
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(a) Before registration (b) Rigid registration (c) Non-rigid registration

Figure 4.8: Example results of annotations before and after registration. Original,
rigid, and non-rigid registration results of an example pair of apical 3D echocardiog-
raphy annotations in the long-axis (first two rows) and short-axis (bottom two rows)
views. The first and third rows show end-diastolic and the second and fourth row
shows end-systolic slices. The fixed volume’s LV annotation is rendered in magenta,
whereas the moving volume’s annotation is rendered in green.
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shows the checkerboard image after applying the proposed two step registration. For

the checkerboard pattern, the top-left and bottom-right sections are taken from the

fixed apical dataset, while the top-right and bottom-left sections correspond to the

moving apical acquisition. Assessed visually, the continuity of the left ventricle walls

is particularly visible in the images. Also, we could see a clear alignment of the LV

from the short-axis papillary muscle view. It is clear that the algorithm succeeds in

keeping the continuity of the main structures.
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(a) Original apical (b) Original apical (c) Before registration (d) After registration

(fixed image) (moving image)

Figure 4.9: Sample slices taken from two volunteers before and after alignment. The
first two columns show the original fixed apical (a) and moving apical (b) images.
The third (c) and fourth (d) columns show the two apical datasets that have been
superimposed on a 2×2 checkerboard pattern before and after alignment, respectively.
The upper two rows correspond to long-axis slices and the lower two show short-axis
slices. Misalignments are highlighted in red circles. We can notice the continuity
of the ventricular walls and better alignment of the LV after registration from the
short-axis papillary muscle view.
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4.2.2 Quantitative assessment

The proposed method was quantitatively evaluated by computing the Dice coeffi-

cients and the Hausdorff distance between the pair of annotations. The metrics were

calculated for each 3D annotation volume within a sequence and the average values

for entire annotation sequences were computed according to equations (3.2) and (3.4)

explained in section 3.6, methodology. Both metrics were calculated for each sequence

with rigid, non-rigid registration and before applying any transformations.

The bar plots in Figure 4.10 show the Dice score results for each pair of sequences

acquired from 7 volunteers. Images taken from volunteer 1 are denoted as V1, volun-

teer 2 are denoted as V2, and so on for all 7 volunteers. A total of 33 apical scans were

used in the evaluation. A significant improvement in the Dice coefficient was observed

for images with major misalignment (V2-2, V2-3, V2-4, V3-4, V3-6). Additionally,

we could also see an improvement in the Dice score for images with minor misalign-

ments after applying the proposed two-step registration process. Overall, a significant

increase in the Dice coefficient after rigid registration and further improvement after

non-rigid registration were observed.

To further confirm the alignment accuracy, in Figure 4.11 we have compared the

Dice score and Hausdorff distance for each 4D sequence. The scatter plots on the top

figure represent the Dice score for each image and the box plot gives us a good indica-

tion of how the Dice scores were distributed before and after registration. The higher

the value, the better the alignments are. We could see an improvement in Dice score

after rigid registration and it is further improved after applying the non-rigid regis-

tration. The mean and standard deviation of the Dice score for the original images

was 0.6490 ± 0.1846 and it was improved to 0.8222 ± 0.0581 after registration. The

bottom plot shows the Hausdorff distance, which measures the maximum distance

between any point in the LV annotations of the fixed to the moving image. The lower

the value, the closer the LV annotations are. The distributions of the computed Haus-
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Figure 4.10: The Dice coefficient between pair of apical sequences with rigid, non-rigid
registration and without any alignment for scans acquired from seven volunteers.
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dorff distance are summarized using boxplots indicating a lower maximum distance

between two registered annotations, a mean distance of 9.2 mm, compared to the

echocardiography images without alignment where the calculated mean distance was

13.9 mm. The results indicate that the LV annotations of fixed and moving images

move closer after registration.

Figure 4.12 shows the Dice coefficient and Hausdorff distance values for each 3D

volume within a sequence with rigid, non-rigid registration and without registration.

Each row corresponds to a pair of apical images taken from 4 different volunteers. The

results show a significant improvement in the Dice coefficient values after registration

at the end-diastolic and end-systolic phases. At the same time, the Hausdorff distance

between the LV annotations becomes small, meaning that the annotations are getting

closer to each other. The same was observed for other registered apical sequences.
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Figure 4.11: The Dice score and Hausdorff distance between pair of apical sequences
with rigid and non-rigid registration and without any alignment for scans acquired
from seven volunteers. The results show significant improvement in Dice score and
close mutual proximity between registered echocardiography images.
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Figure 4.12: Sample Dice coefficient and Hausdorff distance values for each 3D volume
within a sequence with rigid, non-rigid registration and without registration. Each
row corresponds to a pair of apical sequences from four different volunteers. The
results show significant improvement in the Dice coefficient and Hausdorff distance
values after registration for both end-diastolic and end-systolic phases of echocardio-
graphy images.
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4.3 Apical-to-parasternal image registration

In this section, we evaluate the alignment accuracy of registering images acquired

at apical and parasternal windows. The results include registering pairs of standard

apical and standard parasternal images and registering pairs of standard apical and

non-standard parasternal images. In total, we used 27 (7 fixed apical, 20 moving

parasternal) 4D apical and parasternal echo sequences acquired from 7 volunteers for

the evaluation.

4.3.1 Visual assessment

Similar to how we evaluated the alignment accuracy of apical scans, we used 3D

Slicer to evaluate the alignment accuracy of registering apical and parasternal im-

ages. Two 4D sequences, fixed and moving images, were loaded into the program,

and by gradually adjusting the transparency value to switch between the foreground

(moving parasternal) and background (fixed apical) images, an assessment for pos-

sible misalignments between the image pairs was done. Example registration results

for a pair of apical and parasternal slices with corresponding LV annotations are

shown in Figure 4.13. The fixed volume and the corresponding LV annotation are

rendered in magenta, whereas the moving volume and annotation are rendered in

green. The top row corresponds to long-axis slices, whereas the bottom row shows

short-axis slices. The first column shows the original apical fixed and parasternal

moving slices before any alignment. The second and third columns show rigid and

non-rigid registered results, respectively. From the short axis view, one could clearly

see the midlevel LV structures of the LV masks after alignment. Figure 4.14 shows

original, rigid, and non-rigid registration results of an example pair of apical and

parasternal 3D echocardiography annotations. The first two rows show the long axis

and the bottom two rows show short axis views. Slices taken at the end-diastolic

state are visualized in the first and third rows. The second and fourth row shows
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slices taken at the end-systolic state. The fixed volume’s LV annotation is rendered

in magenta, and the moving volume’s annotation is rendered in green. The results

demonstrate clear alignment at end-diastolic and end-systolic states after performing

the proposed two-step registration process.

(a) Before registration (b) Rigid registration (c) Non-rigid registration

Figure 4.13: Example results for alignment of echo images with corresponding an-
notations. Original volumes, rigid and non-rigid registration results of an example
pair of apical and parasternal 3D echocardiography images in the long-axis (first row)
and short-axis (bottom row) views. The fixed volume and the corresponding LV an-
notation are rendered in magenta, whereas the moving volume and annotation are
rendered in green. The results indicate a significant alignment improvement for the
apical and parasternal volumes and the corresponding LV annotations after image
registration.

Figure 4.15 shows sample checkerboard pattern results of registered images ac-

quired at apical and parasternal windows. The first two columns show the apical,

fixed image, and parasternal, moving image respectively and the third column shows

the superimposed 2 × 2 checkerboard image before registration. The last column

shows the 2× 2 checkerboard image after registration. For the checkerboard pattern,
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the top-left and bottom-right sections are taken from the apical dataset, while the

top-right and bottom-left sections correspond to the parasternal acquisition. Assessed

visually, the continuity of the left ventricle walls is particularly visible in the images.

Also, we could see a clear alignment of the LV from the short-axis papillary muscle

view. It is clear that the algorithm succeeds in keeping the continuity of the main

structures.
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(a) Before registration (b) Rigid registration (c) Non-rigid registration

Figure 4.14: Example results of annotations before and after registration. Original,
rigid and non-rigid registration results of an example pair of apical and parasternal 3D
echocardiography annotations in the long-axis (first two rows) and short-axis (bottom
two rows) views. The fixed volume and the corresponding LV annotation are rendered
in magenta, whereas the moving volume and annotation are rendered in green.
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(a) Original apical (b) Original parasternal (c) Before registration (d) After registration

(fixed image) (moving image)

Figure 4.15: Sample slices taken from two volunteers before and after alignment.
The first two columns show the original apical (a) and parasternal (b) images. The
third (c) and fourth (d) columns show apical and parasternal datasets that have been
superimposed on a 2×2 checkerboard pattern before and after alignment, respectively.
The upper two rows correspond to long-axis slices and the lower two show short-axis
slices. Misalignments are highlighted in red circles. We can notice the continuity
of the ventricular walls and better alignment of the LV after registration from the
short-axis papillary muscle view.

53



4.3.2 Quantitative assessment

Similar to apical sequences the metrics were calculated for each 3D annotation volume

within a sequence and the average values for entire annotation sequences were com-

puted according to equations (3.2) and (3.4) for each sequence with rigid, non-rigid

registration and before applying any transformations.

The bar plots in Figure 4.16 show the Dice score results for each pair of sequences

acquired from 7 volunteers. A total of 27 apical scans (7 apical, 26 parasternal) were

used in the evaluation. Since apical and parasternal images are acquired at different

windows, compared to apical sequences, we could see a lower Dice score for original

images without any alignment. Once registered we could see significant improvements

in the Dice coefficients for registering a pair of apical and parasternal images. Also, we

could also see an improvement in the Dice score after applying non-rigid registration.

Overall, a significant increase in the Dice coefficient after rigid registration and further

improvement after non-rigid registration were observed.

Figure 4.17 shows the Dice score and Hausdorff distance for each 4D sequence. We

could see an improvement in the Dice score after rigid registration which is further

improved after applying non-rigid registration. The mean and standard deviation

of the Dice score for the original images was 0.4706 ± 0.0977 and it was improved

to 0.7616 ± 0.0713 after registration. Computed Hausdorff distances summarized

using boxplots for rigid and non-rigid registration indicate a lower maximum distance

between two registered annotations compared to the echocardiography images without

alignment. Since the images were acquired at two different windows, apical and

parasternal, the mean Hausdorff distance of the original images was 32.4 mm, higher

than images acquired only at apical windows. After registration, this value was

brought down to 12.9 mm. The results indicate that the LV annotations of fixed and

moving images move closer after registration compared to the initial scans. Figure

4.18 shows the Dice coefficient and Hausdorff distance values for each 3D volume
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within a sequence with rigid, non-rigid registration and without registration. Each

row corresponds to a pair of apical and parasternal images taken from 4 different

volunteers. The results show a significant improvement in the Dice coefficient values

after registration at the end-diastolic and end-systolic phases. At the same time,

the Hausdorff distance between the LV annotations becomes small, meaning that the

annotations are getting closer to each other.
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Figure 4.16: The Dice coefficient between pair of apical and parasternal sequences
with rigid, non-rigid registration and without any alignment for scans acquired from
seven volunteers. 56



Figure 4.17: The Dice score and Hausdorff distance between pair of apical and
parasternal sequences with rigid and non-rigid registration and without any alignment
for scans acquired from seven volunteers. The results show significant improvement in
Dice score and close mutual proximity between registered echocardiography images.

57



Figure 4.18: Sample Dice coefficient and Hausdorff distance values for each 3D volume
within a sequence with rigid, non-rigid registration and without registration. Each
row corresponds to a pair of apical and parasternal sequences from four different
volunteers. The results show significant improvement in the Dice coefficient and
Hausdorff distance values after registration for both end-diastolic and end-systolic
phases of echocardiography images.
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4.4 Combined results

In this section, we provide comprehensive results of registering images acquired at

various apical and parasternal windows. A total of 53 (7 fixed, 46 moving) 4D se-

quences from 7 volunteers comprising both apical and parasternal windows were used

to compute the values.

4.4.1 Visual assessment

The alignment accuracy of registering images acquired at apical and parasternal win-

dows was visually evaluated using the 3D Slicer software. The fixed, moving images

and the corresponding LV annotations were used for this purpose. In addition to that

the fixed and moving images were superimposed in a 2×2 checkerboard pattern before

and after registration in order to appreciate the quality of the alignment. Assessed

visually, the results of registered images acquired at both apical and parasternal win-

dows show significant alignment compared to the original scans. From the registered

images presented in sections 4.2.1 and 4.3.1, the continuity of the left ventricle walls

is particularly visible and a clear alignment of the LV can be seen from the short-axis

papillary muscle view. This shows that the algorithm succeeds in aligning the images

while keeping the continuity of the structures.

4.4.2 Quantitative assessment

The mean and standard deviation of the Dice coefficient values are given in Table

4.2. The first row contains the results for the registration of two images acquired from

apical windows (Apl-to-Apl). The second row shows the results for the registration of

the apical with the parasternal (Apl-to-Psl) window images. Since these images are

acquired at two different windows, we could see a much lower Dice score (compared to

apical images) for images without any alignment. The last row shows the combined

results of apical image registration and apical to parasternal image registration. The

overall results yielded an average Dice score of 0.7959, after applying the two-step
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registration process which indicates that there was an overall significant improvement

in the alignment after registration.

Table 4.2: The mean and standard deviation of Dice score values measuring the
overlap of entire 4D left ventricular annotations. A total of 53 4D sequences were
used to compute the values.

Image View Dice Coefficient

Before

Registration

Rigid

Registration

Non-Rigid

Registration

Apl-to-Apl 0.6490 ± 0.1846 0.7279 ± 0.0767 0.8222 ± 0.0581

Apl-to-Psl 0.4706 ± 0.0977 0.6981 ± 0.0849 0.7616 ± 0.0713

Combined 0.5714 ± 0.1760 0.7149 ± 0.0809 0.7959 ± 0.0703

The mean and standard deviation of the Hausdorff distance values are given in

Table 4.3. After applying the proposed registration method, the average distance

decreased from 21.9 mm to 10.8 mm for registered images comprising both apical and

parasternal windows. The overall results show a high Dice score and low Hausdorff

distance for the registered images, indicating a better alignment compared to the

original images.

Table 4.3: The mean and standard deviation of Hausdorff distance values measuring
the overlap of entire 4D left ventricular annotations. A total of 53 4D sequences were
used to compute the values.

Image View Hausdorff Distance (mm)

Before

Registration

Rigid

Registration

Non-Rigid

Registration

Apl-to-Apl 13.9 ± 6.6 12.4 ± 3.3 9.2 ± 2.7

Apl-to-Psl 32.4 ± 6.9 14.9 ± 4.2 12.9 ± 3.8

Combined 21.9 ± 11.4 13.5 ± 3.9 10.8 ± 3.7

For the same data, Figure 4.19 shows the Dice score and Hausdorff distance for each
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4D sequence. In the top plot, the scatter plots represent the Dice score and the bottom

plot represents the Hausdorff distance for each sequence. The box plot gives us a good

indication of how the Dice scores and Hausdorff distances were distributed before and

after registration. The distributions of the computed Hausdorff distance summarized

using boxplots indicate a lower maximum distance between two registered annotations

compared to the echocardiography images without alignment. The results indicate

that the LV annotations of fixed and moving images move closer after registration.
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Figure 4.19: The Dice score and Hausdorff distance between pair of sequences with
rigid and non-rigid registration and without any alignment for scans acquired from
seven volunteers. The results show significant improvement in Dice score and close
mutual proximity between registered echocardiography images.
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4.4.3 Comparison with ANTs library

Advanced Normalization Tools (ANTs)2 is a medical image registration and segmen-

tation toolkit and is available as a Python library. ANTs registration was done using

the same multiresolution framework settings as of SimpleElastix’s; two consecutive

phases for the apical images and a single phase for the parasternal images were used

along with Mattes mutual information as the similarity metric. Tables 4.4 and 4.5

provide a comparison of the mean and the standard deviation of the Dice score and

Hausdorff distance values between SimpleElastix and ANTs measuring the overlap

of entire 4D left ventricular annotations for a total of 30 sequences (20 apical, 10

parasternal) acquired from 7 volunteers. We got better results for both Dice score

and Hausdorff distance with Elastix library for registering images at both Apl-to-Apl

and Apl-to-Psl windows.

Table 4.4: A comparison of the mean and standard deviation of the Dice score values
between SimpleElastix and ANTs measuring the overlap of entire 4D left ventricular
annotations.

Image View
Dice Coefficient

Rigid

Registration

Elastix

Registration

ANTs

Registration

Apl-to-Apl 0.7343 ± 0.0733 0.8453 ± 0.0412 0.7192 ± 0.1526

Apl-to-Psl 0.7224 ± 0.0854 0.7844 ± 0.0738 0.5239 ± 0.2157

Combined 0.7303 ± 0.0763 0.8250 ± 0.0605 0.6541 ± 0.1961

2https://github.com/ANTsX/ANTs

63

https://github.com/ANTsX/ANTs


Table 4.5: A comparison of the mean and standard deviation of the Hausdorff dis-
tance values between SimpleElastix and ANTs measuring the overlap of entire 4D
left ventricular annotations.

Image View
Hausdorff Distance (mm)

Rigid

Registration

Elastix

Registration

ANTs

Registration

Apl-to-Apl 10.99 ± 5.89 8.33 ± 1.99 12.52 ± 4.76

Apl-to-Psl 14.66 ± 4.11 12.60 ± 3.56 19.74 ± 5.89

Combined 12.21 ± 5.58 9.75 ± 3.28 14.93 ± 6.13

4.5 Conclusion

We proposed an algorithm using point-based rigid registration followed by B-spline

non-rigid registration to register multiview 3D echocardiography sequences. The pro-

posed method has yielded promising results in registering echocardiography images

taken in different sonographic windows. Experiments were conducted to register pairs

of apical images and pairs of apical and parasternal images. The accuracy of the reg-

istration was visually and quantitatively assessed using the Dice similarity coefficient

and the Hausdorff distance measure between pairs of 3D and 4D scans by delineating

the left ventricular region. The proposed approach was tested on 53 4D echocardio-

graphy sequences acquired from seven participants. The results yielded an average

Dice score of 0.7959 and a Hausdorff distance of 10.8 mm for the registered echocar-

diography sequences. The high Dice score and lower Hausdorff distance for registered

images show that the accuracy of alignment improves significantly after registration

compared to the original scans, which could be useful in the fusion of echo images

leading to a significant increase in image quality and structure definition.
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Chapter 5

Conclusion

5.0.1 Summary

Medical image registration techniques serve as the fundamental basis for procedures

such as image-guided radiation therapy, image-guided radiation surgery, and computer-

assisted diagnosis. Though medical images are acquired using multiple modalities,

ultrasound is becoming one of the widely used modalities, because of its lack of ion-

ization, portable, and inexpensive over other modalities. However, ultrasound images

tend to be notoriously noisy and subject to unique artifacts. Registering real-time 3D

echocardiography images acquired at different windows has the potential to improve

image quality, is useful to image the entire heart, and also allows for better 3D imag-

ing by extracting spatial features along with temporal information, thus improving

clinical decision making.

The main goal of this thesis was to propose an algorithm to automatically register

echocardiography images acquired at different sonography windows. The contribu-

tions of this study are (1) point-based rigid registration followed by a nonrigid registra-

tion to align images acquired from standard and nonstandard apical (Apl) windows,

(2) point-based rigid registration followed by a nonrigid registration to align images

acquired from apical and parasternal (Psl) windows, and 3) visual and quantitative

evaluation of the accuracy of registration by measuring the overlap between the left

ventricle regions. A total of 53 4D echocardiography sequences acquired from 7 vol-
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unteers were used for this purpose. The overall results indicate that the proposed

registration approach improves the alignment of the images compared to the original

scans, which could be useful in the fusion of echo images.

5.0.2 Limitations and future works

However, it is essential to note that this research is limited because the images have

been taken from volunteers without any heart abnormalities and the number of 3D

volumes that have been used to train the landmark detection model is relatively small

compared to real-world applications. Further research should focus on increasing the

diversity of the dataset and incorporating more diverse volunteers to improve the

model’s generalizability. Future works could be extended to validate the proposed

technique on a larger and more diverse dataset. This involves patient data collected

from various ultrasound scanners and institutions. Testing this approach on individ-

uals with major anomalies in the left ventricle, such as those with a history of cardiac

attack, cardiomyopathy, and congenital disorders, would be intriguing.

67



Bibliography

[1] L. G. Brown, “A survey of image registration techniques,” ACM Comput. Surv.,
vol. 24, no. 4, 325–376, 1992, issn: 0360-0300. doi: 10.1145/146370.146374.
[Online]. Available: https://doi.org/10.1145/146370.146374.

[2] P. M. Patel and V. M. Shah, “Image registration techniques: A comprehensive
survey,” International journal of innovative research and development, 2014.
[Online]. Available: https://api.semanticscholar.org/CorpusID:61445208.

[3] C. Mitchell et al., “Guidelines for performing a comprehensive transthoracic
echocardiographic examination in adults: Recommendations from the american
society of echocardiography,” Journal of the American Society of Echocardiog-
raphy, vol. 32, no. 1, pp. 1–64, 2019.

[4] Chambers of the Heart, en. [Online]. Available: https://my.clevelandclinic.org/
health/body/23074-heart-chambers (visited on 01/21/2024).

[5] Electrocardiogram (EKG) Components and Intervals, en-US. [Online]. Available:
https://myhealth.alberta.ca:443/Health/Pages/conditions.aspx?hwid=zm2308
(visited on 01/25/2024).

[6] Cardioserv, Understanding the Basics: Physiology of Diastole, en-US, Nov. 2017.
[Online]. Available: https ://www.cardioserv .net/echo- physiology- diastole/
(visited on 01/24/2024).

[7] F. Dezaki et al., “Cardiac phase detection in echocardiograms with densely
gated recurrent neural networks and global extrema loss,” IEEE Transactions
on Medical Imaging, vol. PP, pp. 1–1, Dec. 2018. doi: 10 .1109/TMI.2018 .
2888807.

[8] C. Che, T. S. Mathai, and J. Galeotti, “Ultrasound registration: A review,”
Methods, vol. 115, pp. 128–143, 2017, Image Processing for Biologists, issn:
1046-2023. doi: https://doi.org/10.1016/j.ymeth.2016.12.006. [Online]. Avail-
able: https://www.sciencedirect.com/science/article/pii/S1046202316304789.

[9] V. Zagrodsky, R. Shekhar, and J. F. Cornhill, “Mutual information-based reg-
istration of cardiac ultrasound volumes,” in Medical Imaging 2000: Image Pro-
cessing, SPIE, vol. 3979, 2000, pp. 1605–1614.

[10] W. Crum, T. Hartkens, and D. Hill, “Non-rigid image registration: Theory and
practice,” The British journal of radiology, vol. 77 Spec No 2, S140–53, Feb.
2004. doi: 10.1259/bjr/25329214.

68

https://doi.org/10.1145/146370.146374
https://doi.org/10.1145/146370.146374
https://api.semanticscholar.org/CorpusID:61445208
https://my.clevelandclinic.org/health/body/23074-heart-chambers
https://my.clevelandclinic.org/health/body/23074-heart-chambers
https://myhealth.alberta.ca:443/Health/Pages/conditions.aspx?hwid=zm2308
https://www.cardioserv.net/echo-physiology-diastole/
https://doi.org/10.1109/TMI.2018.2888807
https://doi.org/10.1109/TMI.2018.2888807
https://doi.org/https://doi.org/10.1016/j.ymeth.2016.12.006
https://www.sciencedirect.com/science/article/pii/S1046202316304789
https://doi.org/10.1259/bjr/25329214


[11] P. Viola and W. Wells, “Alignment by maximization of mutual information,”
vol. 24, Jan. 1995, pp. 16–23, isbn: 0-8186-7042-8. doi: 10.1109/ICCV.1995.
466930.

[12] D. Mattes, D. R. Haynor, H. Vesselle, T. K. Lewellen, and W. Eubank, “Non-
rigid multimodality image registration,” in SPIE Medical Imaging, 2001. [On-
line]. Available: https://api.semanticscholar.org/CorpusID:44108676.

[13] M. Holden, “A review of geometric transformations for nonrigid body registra-
tion,” IEEE Transactions on Medical Imaging, vol. 27, no. 1, pp. 111–128, 2008.
doi: 10.1109/TMI.2007.904691.

[14] D. Rueckert, L. Sonoda, C. Hayes, D. Hill, M. Leach, and D. Hawkes, “Nonrigid
registration using free-form deformations: Application to breast mr images,”
Medical Imaging, IEEE Transactions on, vol. 18, pp. 712 –721, Sep. 1999. doi:
10.1109/42.796284.

[15] T. Selbekk et al., “Ultrasound imaging in neurosurgery: Approaches to mini-
mize surgically induced image artefacts for improved resection control,” Acta
Neurochirurgica, vol. 155, pp. 973 –980, 2013. [Online]. Available: https://api.
semanticscholar.org/CorpusID:17540394.

[16] D. V. Sahani et al., “Intraoperative us in patients undergoing surgery for liver
neoplasms: Comparison with mr imaging,” Radiology, vol. 232, no. 3, pp. 810–
814, 2004, PMID: 15273336. doi: 10 .1148/radiol .2323030896. eprint: https :
//doi.org/10.1148/radiol.2323030896. [Online]. Available: https://doi.org/10.
1148/radiol.2323030896.

[17] K. L. Hansen et al., “Intraoperative vector flow imaging of the heart,” in 2013
IEEE International Ultrasonics Symposium (IUS), 2013, pp. 1745–1748. doi:
10.1109/ULTSYM.2013.0445.

[18] M. Letteboer, P. Willems, M. Viergever, andW. Niessen, “Non-rigid registration
of 3d ultrasound images of brain tumours acquired during neurosurgery,” Nov.
2003, pp. 408–415, isbn: 978-3-540-20464-0. doi: 10.1007/978-3-540-39903-
2 50.

[19] F. Cen, Y. Jiang, Z. Zhang, H.-T. Tsui, T. Lau, and H. Xie, “Robust registra-
tion of 3-d ultrasound images based on gabor filter and mean-shift method,”
vol. 3117, Jan. 2004, pp. 304–316, isbn: 978-3-540-22675-8. doi: 10.1007/978-
3-540-27816-0 26.

[20] T. Klein, M. Hansson, A. Karamalis, and N. Navab, “Registration of rf ultra-
sound data using hybrid local binary patterns,” Proceedings / IEEE Interna-
tional Symposium on Biomedical Imaging: from nano to macro. IEEE Inter-
national Symposium on Biomedical Imaging, pp. 1072–1075, May 2012. doi:
10.1109/ISBI.2012.6235744.

[21] G. Xiao, M. Brady, J. Noble, M. Burcher, and R. English, “Nonrigid registration
of 3-d free-hand ultrasound images of the breast,” IEEE transactions on medical
imaging, vol. 21, May 2002. doi: 10.1109/TMI.2002.1000264.

69

https://doi.org/10.1109/ICCV.1995.466930
https://doi.org/10.1109/ICCV.1995.466930
https://api.semanticscholar.org/CorpusID:44108676
https://doi.org/10.1109/TMI.2007.904691
https://doi.org/10.1109/42.796284
https://api.semanticscholar.org/CorpusID:17540394
https://api.semanticscholar.org/CorpusID:17540394
https://doi.org/10.1148/radiol.2323030896
https://doi.org/10.1148/radiol.2323030896
https://doi.org/10.1148/radiol.2323030896
https://doi.org/10.1148/radiol.2323030896
https://doi.org/10.1148/radiol.2323030896
https://doi.org/10.1109/ULTSYM.2013.0445
https://doi.org/10.1007/978-3-540-39903-2_50
https://doi.org/10.1007/978-3-540-39903-2_50
https://doi.org/10.1007/978-3-540-27816-0_26
https://doi.org/10.1007/978-3-540-27816-0_26
https://doi.org/10.1109/ISBI.2012.6235744
https://doi.org/10.1109/TMI.2002.1000264


[22] C. R. Meyer et al., “Semiautomatic registration of volumetric ultrasound scans,”
Ultrasound in medicine & biology, vol. 25, no. 3, pp. 339–347, 1999.

[23] S. Ramamoorthy, K. R., and S. Rajaram, “Registration of ultrasound liver
images using mutual information technique,” Advances in Intelligent Systems
and Computing, vol. 246, pp. 147–153, Nov. 2014. doi: 10.1007/978-81-322-
1680-3 17.

[24] J. Banerjee, C. Klink, E. D. Peters, W. J. Niessen, A. Moelker, and T. van Wal-
sum, “4d liver ultrasound registration,” in Biomedical Image Registration: 6th
International Workshop, WBIR 2014, London, UK, July 7-8, 2014. Proceedings
6, Springer, 2014, pp. 194–202.

[25] O. K. Øye, W. Wein, D. M. Ulvang, K. Matre, and I. Viola, “Real time image-
based tracking of 4d ultrasound data,” inMedical Image Computing and Computer-
Assisted Intervention–MICCAI 2012: 15th International Conference, Nice, France,
October 1-5, 2012, Proceedings, Part I 15, Springer, 2012, pp. 447–454.
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