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Abstract

Tiling problems have been a mainstay in recreational mathematics and they often lead to 

deep results. It can be shown that the question of whether an area can be tiled by a given 

set of tiles is part of the computational complexity class of problems known as NP 

complete.

At times it is possible to answer tiling problems in the negative using numbering 

arguments. This is precisely the case when not even a signed tiling of the area exists. As 

a result, some of the most difficult non-existence tiling problems are those in which it can 

be shown that a signed tiling does exist. More advanced methods involving 

combinatorial group theory have been developed to solve a handful of these types of 

problems.

This paper is a survey of the existing literature. One of the highlights of this thesis is an 

approach by John Conway and Jeff Lagarias. The material is not organized 

chronologically, but in such a way that makes it easier for the reader to comprehend some 

of the main results of interest through carefully chosen examples.
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CHAPTER 1
TILING PROBLEMS

§1.1 PLANE AND REGION TILINGS

In mathematics, the concept o f tiling is very similar to the tiling of a section of floor or 

tiling a mosaic. The difference, however, is that often when you are tiling a floor or 

mosaic you will cut a tile to make it fit the region you are tiling. Mathematical tiles are 

geometric figures so that identical copies of them can be used to cover a specified region 

without gaps or overlaps, and without cutting any of the tiles. Tiling problems can be 

categorized into two types: plane tiling problems and region tiling problems.

A plane tiling is a placement of tiles which covers the entire two-dimensional plane 

without gaps or overlaps. A region tiling is such a placement which covers a specific 

region of the plane without gaps, overlaps, or extra area outside o f the region left over 

from any tile.

Problems concerning the tiling of regions of the plane are some of the most popular in 

combinatorics and recreational mathematics. Tilings used in art have been documented 

for centuries and there are still many unsolved tiling problems that mathematicians and 

computer scientists are working on today. Two tiling problems that have been of 

particular interest over the last 50 years are as follows:

(1) Given a finite set £  o f tiles, does £  tile the entire plane?

(2) Given a finite set £  of tiles and a region R, does £  tile R?

The development of the interest in these problems is primarily credited to Hao Wang 

Moreover, Wang along with Kahr, Buchi, and Moore contributed vastly to the solution
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of the decidability of problem (1) above, until it was proved in 1966 to be undecidable 

by R. Berger. This means that there is no algorithm that can be used to determine 

whether a tiling of the plane exists given a set o f tiles. To prove this, Berger found a set 

o f tiles which covers the plane aperiodically, but not periodically. Berger’s set consisted 

of over twenty-thousand tiles. In 1969 R.M. Robinson found such a set consisting of 

only six tiles, and in 1974, Roger Penrose discovered a remarkable pair o f tiles that 

cover the plane aperiodically, but not periodically. These are now known as Penrose 

kites and darts and Penrose constructed these tiles with the help o f the golden ratio, Phi 

(see Example 1.3 below).

It is clear that problem (2) above is decidable through exhausting all possibilities. 

However, this problem is in the computational complexity class NP-complete which 

means that for many problems of this type, it is not feasible, even for a computer, to 

exhaust all possible tile patterns. The remainder o f this paper will focus on problems of 

type (2) with certain restrictions on the types of tiles in Z as well as the regions R to be 

tiled.

Examples:

1.1 The only regular polygons that can tile the plane are the equilateral triangle, square, 

and regular hexagon. These tilings are referred to as the triangle, square, and 

hexagon lattices. A tile in one of these lattices is referred to as a cell.

Fig 1.1 — The three regular polygon tilings

2
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1.2 In the mid-1900s, M.C. Escher used different tiling patterns in several o f his works 

of art. Note that the entire plane can be tiled by the fish shaped tiles used below.

Fig  1.2—F ish-M .C . Escher

1.3 In 1974, Roger Penrose discovered a remarkable pair of tiles that can tile the plane 

aperiodically, but not periodically; these are known as Penrose kites and darts. The 

tiles can be prevented from tiling periodically by putting notches and tabs on the 

edges of the tiles, but a more aesthetic approach is to color the tiles as shown and 

require the edges to match.

Fig  1.3 — Penrose Kites and Denis

3
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1.4 An example of a region tiling problem is as follows:

Set o f  tiles: £  =

Region to be tiled: R = rectangle of dimensions m x n .

This problem was solved by D.W. Walkup [13]. In a paper published in 1964, Walkup 

proved that in order for an m x n  rectangle to be tiled using only tiles in £ ,  both m and 

must be divisible by four.

§1.2 POLYOMINOES, POLYIAMONDS, POLYHEXES

From this point on, we restrict both the tiles in the set £  as well as the regions if to be 

tiled to what are commonly known as polyominoes, polyiamonds and polyhexes. A 

polyomino is an extension of the domino. It is a connected region on the square lattice 

where any unit square in the polyomino must have at least one edge in common with 

another unit square in the polyomino. Further, the polyominoes that we will consider 

will not have any holes (an experienced reader will recognize this as precisely the 

definition of a simply connected region on the square lattice). Polyiamonds are 

extensions of the diamond; they are the analogue of polyominoes on the triangle lattice. 

Polyhexes are the analogue on the hexagon lattice.

We will consider a polyomino that can be obtained by another by means of reflection 

and/or rotation as equivalent to the first. See Figure 1.4 for the complete list of 

inequivalent monominoes, dominoes, trominoes and tetrominoes. An exercise for the 

reader is to construct the complete set of twelve inequivalent pcntominoes. A further 

exercise is to construct the complete sets of polyiamonds and polyhexes comprised of 

five or less triangles and hexagons respectively. Some incredible results have been
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discovered with the tiling of polyominoes, polyiamonds and polyhexes and I highly 

recommend [6 ] from the list of references for the interested reader.

Monominoes

Fig 1.4 — Table o f  inequivalent polyominoes using four or less squares

In the next section we will also need the notion of a signed tiling. Here, the individual 

tiles are given weights of either +1 or -1. When determining the existence of a signed 

tiling, the entire lattice is considered; a lattice region R is said to have a signed tiling 

with tiles from 2  if there is a placement of weighted tiles (with overlapping allowed) 

such that each cell in R has a total weighted sum o f+1 and each cell not in R has a total 

weighted sum of zero. In order to distinguish a signed tiling from a tiling, we will often 

refer to a signed tiling of R that does not use any negatively weighted tiles as a perfect 

tiling.

Examples:

1.5 A 3 x 3 square cannot be tiled by dominoes. This is clear since the area of a 

domino does not divide the area of a 3x3 square. In fact, an m x n  rectangle is 

tileable by dominoes precisely when either m or n is divisible by 2 .

1.6  The following is an example of a tiling of a hexagonal triangle of side length 9, 

using only the triangle 3-hex tile. An interesting exercise is to see which hexagonal 

triangles with side length 12  or less can be tiled by the triangle 3 -hex tile.
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FIG 1.5 — Tiling o f  the hexagonal triangle with side length 9 with copies o f  the triangle 3-hex tile

1.7 The following region on the triangle lattice has a signed tiling by diamonds, but 

clearly doesn’t have a perfect tiling.

Positive weighted tiles: [1,3], [4,5], [2,6], [7,8] 

Negative weighted tiles: [6,7]

FIG 1 .6 - Example o f  a region with a signed tiling but no perfect tiling

» /  * /
W  W
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CHAPTER 2
METHODS FOR PROVING 
NONTILEABILITY OF REGIONS

§2.1 COLORING AND NUMBERING ARGUMENTS

It is clear how to show that a region can be tiled with a given set E of tiles: by 

producing a valid tiling. However it is often very difficult to show that a region cannot 

be tiled. One method is to exhaust all possible patterns, however as the regions to be 

tiled become larger and more complicated, this method quickly becomes impractical 

even for the fastest computers. Several more practical methods have been developed for 

showing the nonexistence of tilings of regions on regular lattices given a particular E .

The first of these types of arguments is the coloring argument. Say for example that we 

are to tile an 8 x 8 square region with horizontal and vertical domino tiles. This is not a 

difficult problem at all and one of the many possible solutions is shown in Figure 2.1.

Fig 2.1 - Domino tiling o f  an 8 x 8  square

1
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However, now if  we chop off the top-left and bottom-right comers of the region, as in 

Figure 2.2(a), the problem becomes more difficult. It would take a very long time to try 

every possible pattern in order to determine if a solution exists. Yet, if  we color 

alternating squares red and white as in Figure 2.2(b), and notice that each domino tile 

must cover exactly one red square and one white square, then if a tiling does exist, there 

must be the same amount of red squares as white squares. However, counting the 

squares resolves that there are 32 red squares but only 30 white. We can thus conclude 

that a tiling of the region with dominoes does not exist.

-  J

FIG 2.2(a), (b) -  Coloring o f  an 5 x 8 mutilated square

A second method that is often used to prove nonexistence of tilings is called the 

numbering argument. Assume that we are to tile our 8 x 8 square region with copies of 

the L-tetromino tile; we are allowed to rotate and reflect the tiles as we wish. Anyone 

who has had some experience with the popular game Tetris will not have trouble solving 

this problem (see Figure 2.3). However the problem becomes much more difficult when 

we enlarge our region to a 10  x 10 square.

Fig 2.3 — Tiling o f  an 8 x 8  square with L-tetrominoes
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Again it would be very impractical and time consuming to try every possible pattern. 

However, if we number the cells in alternating rows with ones and fives as in Figure 2.4, 

and notice that each tile will cover either three ones and a five (sum of eight), or three 

fives and a one (sum of 16), we can see that each tile will cover a total sum of a multiple 

of eight. This means that if a tiling were to exist, the total sum of all cells in the 10 x 10 

square must also be a multiple of eight. Since the total sum is 300, which is not a 

multiple of eight, we can conclude there does not exist a perfect tiling of the 1 0 x 10 

square region by L-tetrominoes.

i ; 1 1 1 1 : i : i : i ! 11 l
5! 5 5 5 5 : 5 ! 5 : 5 ; 5 ; 5

1 ! 1 1 1 1 ; i ! 1 : i ; i ; i
5 : 5 5 5 5 : 5 ; 5 ! 5 ; 5 : 5

i : 1 1 1 1 ! l ! 1! 1: i :  i
5 : 5 5 5 5 ! 5 ! 5 : 5 ! 5 ! 5

-  -  L
1 I 1 1 1 1 1 ! 1 1 ! 1 i ! 1 ■ ' i l li i
5 ! 5 5 5 5 ! 5 ! 5 ! 5 ! 5 ' 5__L
i : 1 1 1 1 : t : i : i l i l t

_____L
5 I 5 5 5 5 ! 5 : 5 ! 5 : 5 : 5

FIG 2.4- Numbering o f  a  1 0 x 1 0  square

Numbering arguments are often useful in proving the nonexistence of tilings of a region 

by a set of tiles. However, there are region tiling problems for which perfect tilings do 

not exist, although it cannot be verified by any numbering argument. This is shown in 

the following theorem.

Theorem 2.1:

1) Any numbering argument that proves nonexistence of a tiling o f a region also proves 

nonexistence of any signed tiling of that region.

2) If a simply connected region has no signed tiling by simply connected tiles, then 

there is a numbering argument proving that no signed tiling exists.
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Proof:
1) This can be done by extending the numbering pattern over the entire lattice.

2) This will be done in the extension after Chapter 5

■

Important Consequence:

Theorem 2.1 shows that numbering arguments cannot prove non-existence of perfect 

tilings in regions that do have signed tilings. Therefore, these are often the most 

difficult tiling problems to solve.

§2.2 OTHER METHODS

Another method that can be used to determine tileability of regions given a certain set of 

tiles is called integer programming. In this method, each possible tile placement is 

given a variable x, , which represents how many times that tile placement occurs in the 

tiling. For example, if  we want to tile the region in Figure 2.5 on the square lattice with 

dominoes, then the ten possible tile placements are given the variables xx, x2, • • •, x,0.

i i  <
i i  i

Xg X 7 Xg Xg X[Q

F ig  2.5 — Possible tile placements

Now, for each cell in the region, there is an equation which indicates that the cell is 

covered exactly once. Thus for this example, we get the following system of equations.

10
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A tiling then corresponds to a solution to the above system. Further, a solution to the 

system where each x( is either 0 or 1 corresponds to a tiling. A solution to the system 

where some of the x, ’s are not 0 or 1 corresponds to a signed tiling. Thus the region 

tiling problem is equivalent to the zero-one integer programming problem and hence 

falls into the computational complexity class NP-complete.

Several other methods have been used to show the nontileability of regions with a given 

set of tiles. Some of them include exhausting all possible patterns and using subtle 

geometric arguments like the method that Walkup used in his 1964 paper [13].

In a paper published in 1988, John Conway and Jeff Lagarias describe an especially 

creative method of determining when a region does not have a perfect tiling. Their 

method proves to be stronger than any numbering argument: at times their method can 

prove nontilablity in regions that possess signed tilings, but not perfect tilings. Conway 

and Lagarias’ method lies in the mathematical territory of combinatorial group theory, 

and thus included in this paper is the following section on the theory of groups. We will 

return to Conway and Lagarias’ ingenious method in Chapter 4.

11
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CHAPTER 3
GROUP THEORY

§3.1 ELEMENTS OF GROUP THEORY

The Theory o f Groups is a very captivating and diverse subject in mathematics. It is 

with group theoretical methods that Abel proved that a general formula to solve for the 

roots of a quintic equation does not exist, and it is with the theory of groups that it was 

proved that it is not possible to trisect an arbitrary angle using only a compass and 

straightedge. One of the greatest mathematical feats of the 20th century was the 

classification of all finite simple groups.

Only the basics of the theory of groups that is required for this paper is included here. 

The reader who is familiar with group theory may skip over this section and at times, if 

needed, refer to certain concepts. The interested reader is strongly encouraged to study 

this topic further; a good textbook for the beginner is [1] in the list of references.

Definition:

A group is an ordered pair (G,°) where G is a set of elements and o is a binary 

operation on G  satisfying the following laws:

(i) For all a,b e G , a °b  is still in G  and is called the product o f a and b.

(ii) For all a,b,c g G , a ° (b ° c) = (a ° 6 )° c

(iii) There exists an element e e  G  such that e° g  = g ° e  = g  for all g  e G . e is 

called the identity element of the group.

(iv) For each a e G  there is a unique element a -1 e G , called the inverse of a, such 

that flofl"1 = a~l o a = e

Further, the group (G,o) is called abelian if  a ° b = b ° a for all a,b e G.

12
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When the operation o is clear, we use the notation G  instead of writing the ordered 

pair(G ,o). Further, we regularly use the notation gh for g ° h .

In each of the examples below, the reader is encouraged to verify that the group 

described does, in fact, satisfy the above four laws in the definition of a group.

Examples:

3.1 The sets of integers 3 ,  rational numbers Q , real numbers 31, and complex numbers 

C are all groups under the operation addition: zero is the identity element, and for 

any element x, the inverse of x is -x. Further, these groups are all abelian. The set 

of irrational numbers is not a group under addition since there is no identity element.

3.2 The set of integers with the operation multiplication is not a group since not every 

integer has a multiplicative inverse within the set of integers. However, the sets of 

non-zero rational numbers, real numbers and complex numbers are all groups under 

multiplication. The identity element is 1; a non-zero complex number z = a + bi

included in these groups since there is no z such that 0 ° z  =  zo O  =  l.

3.3 The preceding examples are all examples of infinite groups. That is, there are an

with the operation o, defined so that ak ° a m = ak+m, and the relation a” = a ° .

Then Cn is a group with n elements. The identity element in this group is a 0, and 

the inverse of the element a k is a"~k. This group is abelian since a m+k = ak+m. C„ 

is called the cyclic group of order n.

For small groups, it is often useful to construct what is called the group table. The 

group table illustrates what the product of any two elements in the group is. The group 

table for C4 is shown below.

has multiplicative inverse z  1 = —------
a 2 +b2

i.  Note that zero cannot be

infinite number of elements in the group. Consider the set C„ = \a°
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o a a1 a3
...... 0"..... - ....u 1 2a a a a a

i i 2 2 0a a a a a
....... 2..... 7 0 1a a' a a a

3 0 i 2a a a a a

3.4 Take the set of integers and separate them into classes defined by their remainder 

when they are divided by five. For example 3, 8 , -2, -7 would all belong to the 

same class while -2,-1,0,1,2 would all belong to different classes. Now label the 

five distinct classes with 0 , 1, 2 ,3,4 depending what the remainder is when an 

integer from that class is divided by five. Let G = (jo,I,2,3,4j°) where o is 

defined so that x o y  = x + y  (for example, 3 °4  = 7 = 2). It follows that G  is a

group with identity element 0 , and the inverse of x  is 5 -  x . As an exercise, 

construct the group table for G. Notice from the group table that G  is actually the 

same as C5 from Example 3.3. Any of the C„ can be constructed in a similar way.

3.5 Another example of a finite group is the set o f symmetries of a square (see 

Appendix B). A square can be rotated 0°,90°,180°,270° or it can be reflected on its 

vertical axis, horizontal axis, or either of its diagonals. Thus this group has a total 

of eight elements. The identity element is the rotation of 0°. It is left as an 

exercise for the reader to compute the inverses for each of the eight symmetries. Is 

this group abelian?

3.6 The set of all even integers is a group under addition. Further, the set of all integers 

divisible by an integer n is a group under addition.

3.7 The group F2 is the set of all possible words created with two elements and their 

inverses. For example, if the generators are g  and h, then some elements o f F2

14
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would be gh2g h 4  and hgu h 5ghg . The operation of the group is concatenation. 

That is, the product of the two previous elements is gh2 gh~3 g n h~5 g h g . (What is 

the inverse of this element?) This group is not abelian. F2 is called the free group 

on two generators; the free group on n generators can be defined similarly.

3.8 The set o f n x n  matrices with entries from 3  and non-zero determinant forms a 

group under matrix multiplication. This group is often called the general linear 

group o f degree n. It is often given the notation GLn (3).

Remark: One useful property of groups is that for every g ,h e G , (go h)~l = h _1 ° g  1

Often a group G  will have “smaller” groups embedded inside of it that use the same

operation as G. This is the notion of a subgroup.

Definition:

Let (G ,o) be a group. The subset H  of G  is a subgroup of G  if H  is nonempty and H  is

itself a group under o.

Examples:

3.9 The subsets {e} and G are always subgroups of a group G.

3.10 The set of integers is a subgroup of the rational numbers under addition.

3.11 The set of non-zero integers is not a subgroup of the non-zero rational numbers 

under multiplication.

3.12 Consider the group C6 = \a°,al ,---,a5}. Then the subset {a0, a 2, a 4] is a 

subgroup of C6. Further, if we relabel a 0,a 2,a 4 as b ° ,b \b 2 respectively, then

15
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we see that this subgroup is actually C3. In fact Cm is a subgroup of Cn as long 

as n is divisible by m.

3.13 The rotations of 0°,90°,180°,270° is a subgroup of the group of symmetries of a 

square. In fact, this subgroup is C4.

3.14 The set of all integers divisible by 6  is a subgroup of the group of even integers 

under addition.

Once we have a subgroup of a group G, we can take an arbitrary element from G and 

multiply each element in the subgroup by that element. What results is another subset of 

the group that is not necessarily a group itself, but it has other interesting properties.

Definition:

Let G be a group, H  be a subgroup o f G, and g  be an arbitrary element of G. The right 

coset o f H  generated by g  is the subset of G defined by Hg = {h ° g \ h e  H }. Similarly, 

the left coset of H generated by g  is the subset of G defined by gH  = {g o h \h e  H } .

Examples:

3.15 Let G be the additive group of integers, let H  be the subgroup of integer multiples 

of 3 and let g, = 1. Then Hgx = the subset of all integers that are one more than 

a multiple of 3. Note that if  g 2 = 2, then G = / /  u  Hgx u  Hg2.

3.16 Let G be the group of rational numbers Q under the operation addition; let H  be 

the group of the set of integers 3 ,  and let g x = 3, g 2 = ^ . Then Hgx = H  and

g 2H  = j-^-1 a is odd j  the latter is not a group since it doesn’t contain an identity 

element.

16
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3.17 Consider the group of symmetries of the square in Appendix B. The set

H  = {0° rotation, reflection on the vertical line of symmetry} is a subgroup of this 

group. If we let r be the counterclockwise rotation of 90°, then rH = {r, first 

diagonal reflection} while Hr = {r, second diagonal reflection}.

We should take note of a few properties of right cosets. Firstly, a e  Ha since e, the 

identity element of G, is in H. Secondly, if  //contains m elements, then so does Ha, 

indeed Ha contains at most m elements and if  hxa = h2a for any hx,h2 e H  then hx = h2. 

It should also be clear that if a e H  then Ha = H . Consider now two right cosets Ha 

and Hb, a *  b , of H  in G. Suppose that c is a common element of these two cosets so 

that for some hx,h2 e H  we have c = hxa -  h2b . Then a = hx l o {h2 °b)= (/?(' o h2 )o b 

and since hx x o h2 e  H , it follows that a e H b  and Ha = Hb.  Thus the set of right 

cosets of H  in G partition G into distinct sets of equal size. These properties are also 

true for left cosets.

Example 3.17 shows that given a subgroup H, the set of left cosets of H  generated by an 

element are not always the same as the set of right cosets of H  generated by the same 

element. It is actually very special when a subgroup has the property that its left coset is 

the same as its right coset regardless of what element is used to generate the cosets. A 

subgroup with this property is called normal.

Definition:

Let H  be a subgroup of G. H  is called normal in G provided that gH  = Hg for every 

g e G . Another way to say this is that a subgroup H  is normal in G provided, for every 

element h e  H  and every g  e G , we have g~lhg e  H .

Examples:

3.18 The subgroups {e} and G of a group G are always normal in G.
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3.19 Any subgroup N  of an abelian group G is normal since for all g  e G and n e  N , 

g~1ng = g~lgn = n e  N .

3.20 The subgroup defined in Example 3.17 above is not normal, but the subgroup of 

rotations in the group o f symmetries of a square is. In fact, any subgroup that 

contains half the elements of the entire group is normal.

Now that we have the concept of cosets, we can define operations between cosets. 

However when we define these operations, we have to be careful to ensure that what we 

are defining is actually well-defined.

Definition:

An operation o is said to be well-defined if  whenever a = a' and b -  b ' , we have that 

a ° b  = a' ° b ' .

Examples:

1 23.21 Multiplication of rational numbers is well-defined. For example if  a = —, a' -  —,

, 2 , ,  6 , 1 2 2 6 1b = —, b = — we h av e   ------ = —.
3 9 2 3 4 9 3

Q C O H- C3.22 If we define the operation © on the rational numbers as — © — =  then ©
b d  b + d

is not well-defined. For example — © — = — and — © — = — but — * — .
2 3 5  4 9  13 5 13

3.23 Consider the group of the symmetries of the square in Appendix B and let r be the 

group element “ 90° clockwise rotation” and let s be the element “reflection on 

the vertical line of symmetry”. Let H  be the subgroup defined in Example 3.17; 

then notice that rH  = sr3H  = {r, sr3} and r sH  = srH  = | r 3,.sr}. If we define the 

operation o on these cosets as aH  o bH = {a° b )H , we have that
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rH o r3H  = {r o r3)H  = eH  = H , but sr3H  ° srH = {sr3 ° sr^H - r 2H  = \r2,s r 2}. 

So the operation o is not well-defined with this set of cosets

Theorem 3.1:

The multiplication of cosets defined by H a° Hb = H(a o 6 ) is well-defined if and only if 

H  is a normal subgroup of G.

Proof:

=>) We are given that aH  o bH = (a° b)H  is well-defined. In particular, for any h e  H  

we have that eH = h H , and consequently, for all b e G hH ° bH  = eH  ° b H . That is, 

hbH  = ebH = b H . In other words, b~xhb e H  for all b e  G . So H is  normal.

<=) Now we are given that H  is normal in G. Let a'H  = a H . We must show that for 

any b H , we have that a'H  ° bH  = aH  ° b H , that is, a'bH = abH . This is true provided 

that (ab)~l(a'b)e H . Further, (abyl(a'b)=b~la~la'b = b~l{a~xa')b. But a~xa 'e H  

since a'H  = a H . So (a b y l(a'b)e H  since H  is normal. We have shown that aH  can 

be replaced with a'H  without affecting the value of any product. Similar calculations 

would show that bH  can be replaced with any equal b 'H . Hence, whenever a'H  = aH  

and b'H = bH  we have that a'Hb'H  = abH  as desired.

Definition:

Let G be a group and S’be a normal subgroup of G. The set of all distinct cosets of S  in 

G is call the quotient group o f G by S  and is denoted by . The group operation is

defined as Sgx o Sg2 = S(gx ° g 2). Note that S  becomes the identity element in the 

quotient group .

1 9
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Examples:

3.24 With G and H  as in Example 3.15 above, we have = {H, HI, H 2 ] . Note that 

we have the following group table.

o H H I H2

H H HI H2

H I HI H2 H

H2 H2 H HI

Therefore in , H is the identity element; H  ' =H , H \ x = H2, H2~x = H I ; 

(j/jj is abelian. When dealing with a quotient group, it is common to use a single 

element from each coset to represent the coset. So = {0,1,2}. Note that 

is actually the same as C3.

3.25 = {q e Q | q e  [0, l)}. This is an infinite abelian group.

Definition:

Let c and b be elements of a group G. Then c is called a conjugate of b provided that

c = a~xba for some a € G. In this case, we also say that c and b are conjugate.

Examples:

3.26 In an abelian group, the only element conjugate to any element g  is itself since if 

c = a xga then c = ga~xa -  g .

3.27 In the group of symmetries of the square, the counterclockwise rotation of 90° is 

conjugate to the counterclockwise rotation of 270° since if  you reflect the square 

vertically, then rotate it 270° counterclockwise, then reflect vertically again, it is 

the same as rotating the square 90° counterclockwise.

2 0
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3.28 Two elements in a free group that are circular permutations of each other are 

conjugate. For example, in F2 the elements x*y~*xzy~l , y ^ x z y ^ x 2,, and 

y~2xzy~'x3y~2 are all conjugate.

Definition:

Let g  be an element of a group G. The conjugacy class of g in  G is

jc e G | c = a~lga for some a e  G}. That is, the conjugacy class of g  in G is the set of

all elements in G that are conjugate to g.

Examples:

3.29 In an abelian group, each element is its own conjugacy class. This is because the 

only element conjugate to an element g  in an abelian group is itself.

3.30 The identity element in a group is always its own conjugacy class.

3.31 The five conjugacy classes of the group of symmetries of the square are 

{0° rotation }, {180° rotation }, {90° rotation, 270° rotation}, { vertical 

reflection, horizontal reflection } , { up-diagonal reflection, down-diagonal 

reflection }. The conjugacy classes of a group always partition the group. That is, 

each element is in exactly one conjugacy class.

3.32 The conjugacy class of an element g  in the free group Fn is {/ig/T1 | h e  Fn}. 

Definition:

A subset S  o f elements o f a group G with the property that every element of G can be 

written as a (finite) product of elements of S  and their inverses is called a set o f  

generators for G. The notation used to say this is G = (S ) , and we say that G is

generated by S. Any equation in the group that the generators satisfy is called a relation 

in G. If a group G is generated by a subset S  and there is a collection of relations, say
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RX,R 2,- ,R „  such that any relation among the elements of S  can be deduced from these, 

we call these generators and relations a presentation of G and write 

G = (S \R „ R 1, - , R , ) .

Examples:
3.33 The integer 1 is a generator for the additive group 3  since every integer is a finite 

sum o f+ l’s and - l ’s; so 3  = (l).

3.34 A presentation for the cyclic group Cn -  (a \a n = l) •

3.35 Any of the square’s eight symmetries can be obtained from the rotation of 90° 

and the vertical reflection elements. It is thus generated by these two elements; 

we will call them r and 5 respectively. Further, we have the relations r 4 = 1, 

s 2 = 1, rs -  sr~'. It can be shown that any other relation in this group can be 

derived from these three, and thus this group has the presentation

^ r , s |r 4 = s 2 = 1  ,rs = sr~1̂ .

Remark: A free group doesn’t have any relations. This is why it is termed “free”: it is 

“free” of relations.

§3.2 GRAPHS OF GROUPS (CAYLEY DIAGRAMS)

Suppose that you are setting up a soccer tournament with six teams, and you want each 

team to play three of the other teams. One way to describe this is with the diagram in 

Figure 3.1(a) where the six teams are represented by points and two teams are connected 

by a line if they are going to play each other in the tournament. Neither the placement 

of the six points, nor the lengths of the lines are important. We could just as well 

describe this situation with the diagram in Figure 3.1(b)
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(a) (b)

FIG 3.1 -  Example o f  equivalent graphs

The diagrams in Figure 3.1 are examples of graphs. A graph is a collection of points 

(called vertices) and lines (called edges) connecting some of the points. Neither the 

locations of the vertices nor the lengths of the edges are important; what is important is 

which vertices are connected. The two graphs in the figure above are called equivalent. 

That is, we can label the vertices in each graph in such a way that two vertices that are 

connected in one graph are also connected in the second, and two vertices that aren’t 

connected in the first are also not connected in the second (see Figure 3.2).

2

1

6

5

Fig 3 .2 -  Labeling o f  corresponding vertices

A  digraph is a graph whose edges are given a direction as in the following diagram. 

Digraphs can be used to represent a situation like which airports are connected by one 

way flights. Further, a digraph with the property that any vertex can be reached from 

any other vertex by following the directed edges is said to be strongly connected.

FIG 3.3 —(a) Digraph that is not strongly connected (b) Digraph that is strongly connected

2 3
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Graphs and digraphs can be used to represent all sorts of situations: tournaments, flights 

connecting airports, electric networks, family trees, etc. Any type of situation where we 

are concerned about how a set of points is connected can be represented by a graph.

Even a group can be represented by a graph.

The graph o f  a group is a digraph such that each vertex represents an element in the 

group and each edge represents the action of one of the group’s generators on the vertex 

it’s adjacent to. That is, if  a  is a generator of a group G and g  is an arbitrary element of 

G, and g ° a  = h e G , then there is a directed edge from the vertex representing g  to the 

vertex representing h. Thus, any vertex v in the graph of a group with n generators will 

have 2 n directed edges adjacent to it. n edges will be directed away from v (one for 

each generator) and n edges will be directed towards v (one for the inverse of each 

generator). In the graph of a group, the vertex which represents the identity element is 

arbitrary. That is, we can choose any vertex to be the identity element and we will still 

have the graph of the same group. Graphs of groups are also called Cayley Diagrams.

Example:

3.45 The graph (or Cayley diagram) of Cn is a polygon with n vertices. Each edge in 

the graph is directed with the same orientation (either clockwise or 

counterclockwise). Notice that each vertex has one edge directed away from it and 

one edge directed towards it.

Fig 3.4 — The graph o f  the group Cg

2 4
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3.46 The graph of an infinite group has an infinite number of vertices. For example the 

group of integers under addition has the following Cayley diagram. The group of 

integers is often thought of as the infinite cyclic group Cx .

Fig 3 .5 -  The graph o f  3

3.47 The previous examples are graphs of groups with only one generator. The group 

of symmetries of a square has two generators. The following is its Cayley diagram. 

Here the red edges represent the action of the 90° rotation generator, and the blue 

edges represent the action of the reflection generator. When there are directed 

edges to and from a pair of vertices we usually represent this with a single non

directed edge. This means that the generator has the property that its square is the 

identity. Further, comers in a graph are interpreted as vertices. We can even think 

of the Cayley diagram for the group o f symmetries of the square as the skeleton of 

a cube.

—
y \ » \

' r  k — —i
r

- 4 ----------

■ »  —
\ \

f

- 4 ----------------

----------------► -

i

\
FlG 3 .6— The graph o f  the group o f  symmetries o f  the square

Definition:

Let T be the graph of a group G. Suppose any word in the generators of G that 

describes a closed path beginning and terminating at a vertex v of T also describes a 

closed path regardless of which vertex we choose to start our path from, then T is said 

to be homogeneous.

Notice that the three Cayley diagrams in the examples above are all homogeneous. In 

fact the graph of a group is always homogeneous. Further, any strongly connected 

homogeneous graph that can be “colored” with n colors in such a way that each vertex
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has exactly one incoming edge and one outgoing edge of each color is the graph of a 

group. This means that both of the graphs in Figure 3.7 are graphs of groups. Notice 

that the first is the graph of a group with 10  elements and two generators; this graph can 

be thought of as the skeleton of a pentagonal prism. The second is the graph of an 

infinite group with two generators.

FIG 3 .7 -Exam ples o f  homogeneous graphs

A section of the graph of the free group with two generators is shown in Figure 3.8. 

Recall that the free group does not have any relations, and thus there are no cycles in the 

graph of the free group. In this figure, the horizontal lines represent the action of the 

generator a, and the vertical lines represent the action of the generator b.

A i

Fig  3 .8 - Part of the graph of the free group F2

2 6
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CHAPTER 4
GROUP THEORETICAL 
APPROACH TO TILING PROBLEMS

§4.1 THE TILE PATH GROUP AND COMBINATORIAL 

BOUNDARY OF A REGION

We now return to solving tiling existence problems. In order to see how group theory 

can be used to demonstrate the nontileability of a lattice region R with tiles from a set E, 

we begin by defining the combinatorial boundary [d/?] of R, the tile group T(e) of a set 

of tiles E , and the tile path group P(z) of a set of tiles Z . The criterion that Conway 

and Lagarias discovered is that in order for a region R to have a perfect tiling by tiles in 

Z , the combinatorial boundary [fi/?] of R must be equivalent to the identity element in 

the tile path group P(l ) of Z . The combinatorial boundary, tile group and tile path 

group can be defined for any lattice region. However, for now we will restrict our 

definitions to the square lattice.

The square lattice consists of lattice points, edges and cells. Lattice points are the 

ordered pairs (x, y) with both x and y  being integers; two lattice points are neighbors if 

they are distance one from each other. An edge is a line segment connecting two 

neighboring lattice points. A cell is the set of all points making up the interior and 

boundary of a square of area one having its four vertices at lattice points.

A directed path P in the square lattice is a sequence of directed edges specified by a 

sequence of lattice points {(x,,y,)| 0  < i < n), where the i* directed edge connects the

lattice point (x,_,, to the lattice point (x ,,y ). P is said to be closed if
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(x0, y 0) = (x„, yn). A directed path is called simple if  no edge appears twice and if  it 

does not cross itself.

The topological boundary dC of a cell consists of its four edges oriented 

counterclockwise. The topological boundary dR of a region R is a (unordered) set of 

directed edges found by taking the set of edges in DC for all C in R, and discarding any 

edges that occur twice with opposite orientations. A region R is simply connected if  its 

complement is connected and if  its boundary edges can be ordered to form a simple 

closed path.

A simple closed path bounding a simply connected region R can be uniquely identified 

by its leading edge e. We call this the oriented boundary o f R with leading edge e and 

denote it by dR(e). We define the first vertex in dR(e) as the base point.

Directed paths in the square lattice can be described by words in the free group

F2= (a, u) on two generators. Here, a symbolizes an across (to the right) oriented edge,

and u symbolizes an upwards oriented edge. To the path P  = {(x,,y() | 0 < i < n} we

assign the word W = W(P) given by IT = g xg 2 ■•■£„, whereg, e \a,a~l ,u,u~1} . Figure

4.1 gives the words associated to certain simply connected regions in the square lattice. 

The base points are symbolized by the highlighted vertices. Note that the paths around 

the regions are oriented counterclockwise.

J I I J. J

Fig 4 .1 — Words in the free group F2 = {a , u j  associated to simply connected regions Rx, R2
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In the same light, given a word W e F2, we can assign the directed path P = P(fV), 

starting from the base point (0,0) in the square lattice, obtained by reading W from left 

to right.

Note that all of the words in the set \dR{e) \ e an edge of 51?} are cyclic permutations of 

each other and hence are conjugate in F2 . The combinatorial boundary [51?] of a 

simply connected region R is the conjugacy class in F2 containing all of the oriented 

boundaries 51?(e) ofR. That is, [51?]= fyvdR(e)fV~l \ W e f 2}. The tile group T(z) is 

defined as the smallest normal subgroup of F2 containing the combinatorial boundaries 

[5S; ] for each tile Zl e Z .  That is, T(z) = (W8Zi (el )tV~] \W The tile path group

P(z) is the quotient group Recall that the group operation in F2 (and

resultantly in r ( z )  and l ,(z)) is concatenation. The tile group and tile path group can 

be defined similarly for regions on the other lattices.

Examples:

4.1 Let Z = j | 1 1, 0  | , then the tile group

T(z)= (Wa2ua^2u~lW~1 ,Vau2a^u~2V ^  \ W , V and the tile path group

P(z)= (a,u \ a 2ua~2u~l = au2a~lu~2 = lj = (a ,u \ua2 = a2u ,u 2a = au2^.

4.2 If we label the edges of the triangle lattice as a,b,c where a points at 0°, b points at 

120°, and c points at 240°, and if Z = j V \  , A 7 , ^  j , then

P(£‘)= (a,b,c\cac~la~' =bcb~xc~x =aba~lb~x = 1  ̂= (a,b,c | ab = ba,ac = ca,cb = ca)

2 9
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§4.2 CONWAY AND LAGARIAS’ THEOREM

Now that we have defined the combinatorial boundary of a region and the tile group of a 

set of tiles, we can state our long awaited theorem.

Theorem 4.1: (Conway and Lagarias)

A necessary condition that a simply connected region R have a perfect tiling by tiles in a 

set £  is that the combinatorial boundary [<5i?] o f R is in the tile group T(l ) o f  £ .

Before proving this theorem, we will need the following lemma:

Lemma:

Given a tiling x o f a simply connected region R, there exists a decomposition 

R = R* u  R " such that R*,R~ are both nonempty simply connected regions which can 

be tiled by £ . Moreover, there are directed edges ex o f  dR* and e2 o f  dR*' so that 

dR(el ) = dR'(el )dR"(e1).

Proof of Lemma:

Assume that r  is a tiling of R with k >2  tiles. Choose any tile S  in r  such that dR and 

dS have an edge e in common. Then one can partition dR into 2 n parts where n is the 

number of times dR and dS have a set of consecutive edges in common. Refer to 

Figure 3.2 for an example of such a decomposition. Denote the parts of dR and dS as 

dRi and dS, respectively, starting with 3/?, = dSx so that dRx contains e. Continue 

labeling dRM and dSM in a counter-clockwise manner.

3 0
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FlG 4 .2 -  Decomposition o f  dR into 2n parts where n is the number o f  times dR and dS have a set o f

consecutive edges in common

Now denote dR* as dR2 u  dS2 with the orientation of the edges in dS2 reversed. Then 

dR* is a simple closed path that encloses a nonempty simply connected region R*. Let 

R** = R -  R*, then R** is also simply connected. Further, notice that S  separates the 

tiles of r  in R* from the tiles in R** -  S . So all the tiles of r  -  {s} in R -  S  lie in

can be tiled by £ .

Further, if  we let ex be the first edge in dR2 and let e2 be the first edge in dS2, then we 

have that dR(ex )-dR *(ex )dR**(e2).

■

Example 4.3

Consider the following tiling of the 8 x 8  square region R by T-tetrominoes, and let the 

yellow tile be S:

either R* or R**, hence R* and /?** are both nonempty simply connected regions which

1
R

Fig 4 .3 -  Decomposition o f  R into R * and R
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Then R* = R \ S  and R** = S . Then we have that R = R* u  R*' and both R ' and R"  

can be tiled by T-tetrominoes. Further if  we let ex and e2 be the edges labeled in Figure 

4.3, then we have that

dR(e1) = u~4a*u*a~su~4 = dR* (ex )51?“ (e2) = (u~4a su sa~*u~lau~1au~'a~lu~1a~l )(iauaua~lua~ 

Proof of Theorem 4.1:

The proof is by induction on the number of tiles in a tiling z of R with tiles from £ .

The result is clear if  R can be tiled with a single tile. Indeed the combinatorial boundary 

of R is in the tile group since the tile group is defined as the smallest normal subgroup 

that contains the combinatorial boundaries of all tiles in £ .

Assume that it is true for a tiling z o f R with k >2  tiles. That is, that the 

combinatorial boundary of R is contained in the tile group of £ .

We want to show now that for a tiling z of R with k + \ tiles, [51?] is contained in T (z ) .

Assume that z  is a tiling of R with A: + 1 tiles. Then from the lemma, we can partition R 

into R* and R** where both R* and R** can be tiled with m < k tiles, and hence both 

51?*(gj) and 51?**(e2) are in r (£ )  by the induction hypothesis. From the moreover part 

of the lemma and the group structure of T{l ) we have that 51?(e,) e T(l ).

■

Theorem 4.2:

A necessary condition that a simply connected region R have a perfect tiling by tiles in a 

set £ is that the combinatorial boundary [51?] o f R is trivial in the tile path group P (l)  

o f X.

Proof:

By the definition of P (l)  and Theorem 4.1.
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Although it is easy to find a presentation for the tile path group of a set of tiles, it is 

often very difficult to work with a group given only a presentation of it. Hence, it is 

very difficult to decide whether or not the combinatorial boundary of a region is 

contained in the tile path group. However at times we can use the Cayley diagram of the 

tile path group to help show the nontileability o f a region.

§4.3 THURSTON’S DIAMOND TILINGS

In a paper published in 1990 [12], William T. Thurston, from Princeton University, used 

Conway and Lagarias’ tile group method to show when a region on the equilateral 

triangle lattice cannot be tiled by diamonds.

Thurston first labeled the lattice so that the set of edges parallel to the x-axis (at 0°) was 

labeled a; he labeled the set of edges pointing at 1 2 0° as b, and the set of edges pointing 

at 240° as c (see Figure 4.4). He noted that since this labeling is strongly connected and 

homogeneous, the labeled, directed lattice represents the graph of a group which he 

called A.

\ / \ t \ /  \ /  \W w w w w- * W- A ►  A  

>' \  c/  \ b c/  \ b 4 \b /
\  /  ^  \  /  \  /  _  \  /\ /  a \ / q » / ci ' >- — v ► — y ► — v ► — \—

. /  V  c /  V  c /  \ b  Cf! \
x / ^ \ / _ \ /  \ t \\ /  a ' /  a ' » a <- -y-► — v------ ► — y--► — v------►—/ \ / \  t \ / \/ \ / \  / \ . / \ ,  /
; V v6 ci  \ b ci  \h t

/  '  / V

Fig 4 .4 -Homogeneous labeling o f  the equilateral triangle lattice

Suppose we wanted to tile a region R on the triangle lattice bounded by a polygon n . n  

can be described by the sequence of edges that its boundary traces out; this is a word in

3 3
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the generators a,b,c o f A. Moreover, we can think of it as an element fV(/r) in the free 

group F3 with generators a, b, c.

When a diamond is placed on the triangle lattice, its boundary traces out one of three 

paths: Z)j = aba~xb~x, D2 = bcb~lc~', D3 = cac~xa~l . Depending on the leading edge of 

the diamonds’ boundary, DX,D 2,D 3 can be described as circular permutations as the 

previously stated D / s . However, this will just give conjugate elements in F3. The tile 

path group P (z), which we will call D, is defined by these relations. That is,

D = (a, b,c\ D, = D2 = D3 = l) . The reader may notice that the relations say that the 

three generators commute with one another, so D is actually 3 3 .

Observation:

By Theorem 4.2, i f  a region R bounded by a polygon n  on the equilateral triangle 

lattice is to be tiled by diamonds, then the image l{n) o fW (n ) in D must be trivial.

Because of the convenience of D being isomorphic to 3 3 , there is a very nice geometric 

interpretation of this. Think of the Cayley diagram r(Z>) of the group D  as the skeleton 

of the canonical cubical tessellation of 3-space so the cubes are lined up face to face. 

Label the edges parallel to the x,y,z-axis with a,b,c respectively with positive orientation 

(see Figure 4.5). If the region R, on the triangle lattice, can be tiled with diamonds, then 

the word describing the boundary of R must correspond to a closed path in r(Z>).

i i

Ci ,

b b

Fig 4.5-Eight cells from P(Z))
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Examples:

4.4 The following region R does not have a tiling by diamonds since the word 

describing its boundary does not represent a closed path in r(Z)).

R is bounded by the polygon n
^ ----- tp j  which can be described by the word

\  /  \  /  \  /  JV (ir)-c3b 2a c 5a 3 in the free
' 7 ' ' ' J. . . .  _ * . y  group F3. ___

\  ' R '  • '' /\  t  s  f
 * ------v/ ' / \ /

'  '  '  '  /

' • ' / X /v / ' / \ /
/ \  The image of W{n) in

/  x  /  \  /
\  /  \  /  the graph of the tile path

7 group is not closed. Thus
\ /  R cannot be tiled with

diamonds.

I { tt)

Fig 4.6 -  Region on the triangle lattice untileable by diamonds

4.5 The following is a tiling of a region R by diamonds. Thus R is necessarily bounded 

by a polygon n  which corresponds to a closed path in the graph of the tile path 

group.

FIG 4.7 — Region on the triangle lattice tileable by diamonds

It is worth noting that the condition that l{n )  is trivial in D  is not sufficient to guarantee 

a tiling by diamonds. There exist regions in the triangle lattice that satisfy Conway and 

Lagarias’ condition, however no perfect diamond tiling exists (see Figure 4.8). Thus if

3 5
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the combinatorial boundary of R is trivial in the tile path group P (z), we still cannot 

determine that a tiling of that region exists with tiles from E .

c

c

W(n) = c2ab xc 2a xb

FIG 4 .8 -Region in the triangle lattice untileable by diamonds with boundary corresponding to the identity

in the tile path group D

In the next chapter we will see some methods that at times prove useful in showing 

nontileability in situations when the boundary word method above seems insufficient.

§4.4 REID’S CONTRIBUTION

In a paper published in 2003 [10], Michael Reid gives the following extension of 

Conway’s Theorem.

Theorem 4.3 (Reid):

Suppose that the combinatorial boundary o f  each tile in E is trivial in a group G. I f  a 

simply connected region can be tiled by E, then its combinatorial boundary must also 

be trivial in G.

Proof:

This theorem can be proved by induction on the number of tiles in a tiling of R much the 

same way that Theorem 4.1 was proved.

36
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What Reid’s Theorem is saying is that it doesn’t matter what group is used in Theorem 

4.1. The tile path group works fine since all of the combinatorial boundaries of the tiles 

in £  are trivial in P(e ). Theorem 4.3 is an extremely useful result: although it is quite 

easy to find a finite presentation for the tile path group, it is usually very difficult to 

work with the tile path group in this form. It may be easier to find a different group that 

the combinatorial boundaries of all tiles in £  are trivial in.

Example 4.6:

Consider the permutation group on five variables, S 5 (see appendix A). Let 

a = (l,2,3) e  S5, and u = (3,4,5) e S 5. Then, since

a^ua~3u~' -  au^a 'u  ̂ = auaua~lua lu xa 'u~]au } = (l)e  S5 , the combinatorial 

boundaries of each of the tiles in E are equivalent to the identity element in S 5.

Therefore, if a region is tileable by the tiles in E , its combinatorial boundary must also 

be equivalent to the identity in S5. With this in mind, we can conclude that any

(3m +1) x (3n + 1) rectangle cannot be tiled by tiles from E . This can be seen since the 

boundary word of a (3m + l)x  (3n + 1) rectangle is:

a 3"+1«3m+V (3n+V (3m+1) = a 3nW " w a “3"flr1i r 3mi r 1 = a u a 'u '  = (l23X345Xl 32X354) = (235) *

It can similarly be shown that the boundary words of (3m + l)x (3n + 2) and

(3m + 2)x (3n + 2) rectangles are also never trivial in S 5 and thus no rectangles of these

dimensions can be tiled by tiles in E . It follows that if  a rectangle is tileable by tiles in 

£ ,  either m o rn  must be divisible by three.

It should be further noted that since a 1 x 1 square has a signed tiling with tiles from E , 

there is no numbering argument that could have proved this result.

3 7
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CHAPTER 5
WINDING NUMBERS

§5.1 WINDING NUMBER OF A CLOSED PATH AND 

SIGNED AREA

We have seen how if the combinatorial boundary [S/?] of a region R does not 

correspond with the identity element in a group G that all of the boundaries of tiles in E 

are trivial in, then we can determine that a perfect tiling of R does not exist with tiles 

from E . However, if [3/?] does correspond to the identity element in G we cannot 

conclude that a perfect tiling exists. In this section we will introduce the concepts of 

winding numbers and signed area which at times can be used to determine that a region 

cannot be tiled, even though [cM?] is trivial in any such G we can find.

Definition:

Let p  be a closed lattice path, and let P  be a point on the plane that is not on p. If we 

draw a ray emanating from P, then the winding number o f  P is  the number of times p  

crosses from one side of the ray to the other in the counterclockwise direction minus the 

number of times it crosses in the clockwise direction (this definition is consistent 

regardless of the direction of the ray). The winding number o f  a cell in the lattice can 

be defined as the winding number of an arbitrary point in the cell since the winding 

number of any point in a cell is the same as the winding number of any other point in the 

cell. Further, for any lattice and any closed path on the lattice, the winding numbers of 

the cells in the lattice are all zero except for a finite number of cells. Hence we can 

calculate the sum of the winding numbers of all the cells in the lattice. This is what we 

define as the signed area o f  the path.

38
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Examples:

5.1 The closed path on the square lattice in Figure 5.1 can be described by the word 

u~2auaua~2 in F2. Each of the cells labeled A, B, and C have winding number +1 

while all other cells in the lattice have winding number zero. Thus the signed area 

of the path is +3. In fact, if the closed path is simple (no edge appears twice and the 

path does not cross itself), then the signed area is equal to plus or minus the number 

of cells enclosed by the path: positive if the path winds counterclockwise and 

negative if the path winds clockwise.

■ i •i i <
" •  !------ 1"

A ' B 1

I 1------- T-----
I I >l 1

FlG 5.1 — closed path on the square lattice

5.2 The following closed path on the square lattice can be described by the word

a 2u a ]u ]a 2 uau~x in F2. The winding number of the cell labeled A is +1 and the 

winding number of the cell labeled B is -1. The winding numbers o f all other cells 

are zero. Thus, the signed area o f the path is zero.

B

FlG 5.2 — closed path on the square lattice with signed area zero

Winding numbers and signed areas can be used to strengthen Theorem 4.3. At times, 

geometric subtleties arise from Cayley diagrams. Especially when the Cayley diagram 

is planar (it can be drawn on the plane without graph edges crossing).

3 9
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Theorem 5.1

If the boundary word of each tile in £  corresponds to a closed path enclosing a signed 

area of zero in a particular Cayley Diagram, then for a region R to be tileable by tiles in 

£ ,  its boundary word must also correspond to a closed path enclosing a signed area of 

zero.

Proof:

The proof is done by induction on the number of tiles in a tiling of R much like the proof 

of Theorem 4.1

§5.2 TILING AZTEC DIAMONDS WITH SKEW 

TETROMINOES

Although at times, finding the tile path group of a set of tiles, and the Cayley diagram of 

that group can prove nontileablity of regions in the plane, generally it is very difficult to 

find a presentation for such a group that is easy to work with. Take for instance the tile 

group for the four orientations of the skew tetromino (see Figure 5.3). A presentation

for this group is (a,u \ a 2uaua~2u~xa~xu~x = auau2a~xu~xa~xu~2 -auTxau2a~xua~xuT2 = 

a 2u a ' u a 2u ' a u ' x = 1^; it is not at all easy to construct the Cayley diagram of this 

group given this presentation.

FlG 5 .3 -The four orientations o f  the skew tetromino

However, thanks to Theorem 4.3, we don’t actually need to find the tile path group itself. 

In a paper published in 1997 [9], James Propp uses a particular strongly connected

4 0
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homogeneous directed graph (thus a graph of a group) such that the boundary words of 

all orientations of the skew tetromino correspond to closed paths in order to prove that 

Aztec diamonds of any size cannot be perfectly tiled by skew tetrominoes (see Figure 

5.4); we will call this graph T . Propp uses T to establish that if a region in the square 

lattice is tileable by skew tetrominoes, then the word that describes the boundary of that 

region must also correspond to a closed path in T . Further, Propp noticed that each of 

the orientations of the skew tetromino correspond to a path in T that encloses a signed 

area of zero. Thus, if  a region in the square lattice is tileable by skew tetrominos, then 

the word describing the boundary of that region must also correspond to a closed path 

enclosing a signed area o f zero in T .

Fig 5.4 — Propp ’.s' Cayley diagram T  fo r  an infinite group with two generators — the horizontal and 

vertical directed edges represent the action o f  the generators a and u respectively. Note that the direction 

that a and u represent alternate each row and column respectively.

Definition:

An Aztec diamond o f order n is a region in the square lattice consisting of 2 n(n +1) unit 

squares arranged in centered rows of lengths 2,4,6, - f i n -  2,2n,2n,2n -  2, • • • ,6,4,2.

FlG 5 .5 -A ztec  diamonds o f  orders 3 and 4

41
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Result:

An Aztec diamond o f  any order n > 0 cannot be tiled using the four orientations o f  the 

skew tetromino.

Proof: The combinatorial boundary of an Aztec diamond of order n is

[(wa) '1 {au~x y  {u xa 1)" (a ’«)"]. Although this corresponds to a closed path in the 

Cayley diagram in Figure 5.4, it corresponds to a closed path with a signed area o f 2n or 

- 2 n if n is even (depending on which vertex you use as your base point in the Cayley 

diagram), and to a closed path with signed area 2(n + 1) or -  2 {n + 1) if  n is odd.

Thus, by Theorem 5.1, since the signed area enclosed by the closed path corresponding 

to the boundary of the Aztec diamond is not zero for any value of n > 0, we have the 

desired result.

It is also worth noting that an Aztec diamond of order n has a signed tiling by skew 

tetrominoes whenever n = 0,3(mod4), and thus (by the consequence of Theorem 2.1) 

there is no numbering argument that proves an Aztec diamond of this size cannot be 

tiled by skew tetrominoes. It is in this sense that we can say the group theoretical 

approach to tiling problems is stronger than the numbering argument approach.

Another way to prove Theorem 5.1 (courtesy of Michael Reid) using only information 

from Chapter 4 is to consider the group of 3 x 3 matrices with entries from 3  and non

zero determinants under matrix multiplication; let a =
'1 1 o ' "-1 0 0"
0 1 0 and u = 0 1 1
0 0 -1 0 0 1

Then one can easily verify that each of the boundary words of the four orientations of 

the skew tetromino are trivial in this group, but the boundary word for the Aztec 

diamond of order n is not trivial for any value o f n > 0 .

4 2
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In the next section, we explore a problem where a solution using only information from 

Chapter 4 has not yet been discovered; it is conceivable that a solution using only 

methods from Chapter 4 does not exist.

§5.3 HEXAGONAL TRIANGLE TILING PROBLEM

In this section, we study another example where Conway and Lagarias’ method can be 

used to solve problems that coloring or numbering arguments cannot. We examine 

another problem of which a signed tiling exists but a perfect tiling does not.

The problem, in its original form, was stated on the hexagon lattice. We will state the 

problem in its original form and then show how it is equivalent to a similar problem on 

the square lattice.

For this problem, we introduce the notation TN with N  being a non-negative integer. TN 

denotes the triangular region with N  hexagons along each side. See Figure 5.6.

Problem 5.1: (hexagon lattice)

For which values of N  can TN be tiled with copies of T2 if we are allowed to rotate tiles 

as we wish?

FIG 5 .6 —Examples o f  TN fo r  N=6 andN=2

4 3
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Figure 5.7 shows a perfect tiling of Tg with copies of T2.

Fig 5 .7 -  Tiling o f  Tg with copies o f  T2

Problem 5.1 can be converted into the following problem on the square lattice. Firstly, 

Tn now denotes the staircase region with N  steps as in Figure 5.8(a).

Problem 5.2: (square lattice)

For which values of N  can the staircase region TN be tiled with copies of T2 if the only 

orientations of T2 allowed, are the ones displayed in Figure 5.8(b).

(a) (b)

Fig 5 .8 -  (a) TN on the square lattice fo r  N= 7 (b) Allowable orientations o f  T2

It is useful, at this point, to take note of a few details.

4 4
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Note #1:

Notice that in order for either a signed tiling or a perfect tiling to exist, clearly TN must

jviiv+i) .
have an area of a multiple of three. Since TN has an area of A = —^ — -, it is 

an easy exercise to show that A is a multiple of three precisely when N  = 0,2(mod3).

Note #2:

Notice that the staircase region Tn as well as the 12x2 and 12x3 rectangles can be 

tiled as in Figure 5.9(a). This shows that if TN has a perfect tiling, then so does TN+U, 

see Figure 5.9(b).

| ~ L

1

h
L

L■

L

L

1

T _ '

~ L *L . 1 . " I
■X ' l l

LiiL. iLiiLi
1 _ 1 _ ~ L ~ L ~ L “ L

(a) Perfect tilings o f  Tn and 12x2 & 12x3 (b) Method o f  tiling TN+n from a

rectangles given tiling o f  TN

Fig 5.9

4 5
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Note #3:

Notice that the both the staircase region T3 and the 3 x 1 rectangle have signed tilings as 

in Figure 5.10(a). This shows that if TN has a signed tiling, then so does TN+3, see 

Figure 5.10(b).

1

2 3

4 5 6

1 2

3 4 5

Positive tiles: [1,2,3],[2,4,5],[3,5,6] 
Negative tiles: [2,3,5]

Positive tiles: [1,3,4],[2,4,5] 
Negative tiles: [1,2,4]

(a) Signed tilings o f  T3 and 3 x 1  rectangle
(b) Method o f  constructing a signed 

tiling fo r  TN+3 from a given signed

tiling o f  Tn

Fig 5.10

Note #4:

The staircase regions T2,T9,Tn ,Tn  have perfect tilings (refer to Figure 5.11 for such 

tilings). The staircase regions T2,T3 have signed tilings (it is obvious for T2 and it was 

shown for T3 in Figure 5.10(a)).

N  = 2

N  = 9

FIG 5.11 - Perfect tilings o fT 2,T9,Tu . The tiling fo r  Tn  was shown in Fig 5.9(a)

4 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In summary, we have shown that the staircase region TN can be perfectly tiled if 

N  = 0,2,9,1 l(modl2), and that it cannot be tiled if N  = l,4,7,10(modl2). Therefore the 

only values of N  that are still left to be determined are N  = 3,5,6,8(modl2). Moreover, 

since TN has a signed tiling when N  = 3,5,6,8(modl2), Theorem 2.1 tells us that no 

numbering argument can be used to solve this problem for these cases.

In order to determine whether or not the staircase region TN has a perfect tiling with the 

tiles shown in Figure 5.8 for N  = 3,5,6,8(modl2), we define a special subgroup H of F2

by the property that the group G = has the Cayley diagram shown in Figure 5.12.

If F2 = (a, u) then the edges corresponding to the generators a and u are red and blue

respectively. We know that this is the graph of a group since it is strongly connected 

and homogeneous.

FIG 5.12 — Cayley diagram r(o) the red and blue edges represent the action o f  the 

generators a and u respectively

The relevance of H  is due to the following claim:

Claim:

The combinatorial boundary [SZ^] for N  = 0,2(mod3), as well as [5E, ] and [d l2 ] are 

contained in H.

47
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Proof:

It is enough to show that individual representatives of [32, ], [322 ] and [37^] are 

contained in H (when N  = 0,2(mod3)). Notice first that 32, = u~2a 2(ua~x )2 and 

322 = (u~'af u 2a ~2; it is easy to check that both of these correspond to closed paths in 

r(G) and thus are contained in H. Further, dTN = u~Na M(ua~l )N, and it is easy to 

check that a 3,u 3 and (ua ' J  all correspond to closed paths in r(G); this means that if 

dTN is in 77, then so is dTN+3 since u ^ N+̂ a M+3(ua~x )w+3 = u~Nu~3a Na 3(ua~x )N[u a 1 )3. 

Also note that dT2 and dT3 correspond to closed paths in G and thus are in H  which 

completes the proof.

■

Finally we consider winding numbers to solve problem 5.2 for N  = 3,5,6,8(modl2).

First we define the hexagonal signed area o f  a closed path V in r(G), and denote it by 

(̂f ). Let F  e H  be the word that describes a closed path in the Cayley diagram r(G) 

above. Then ^ ( f )  is the sum of the winding numbers of all the hexagons in r(G).

have that <j>(dTN )= in those cases. Further, it is easy to calculate ^(32,) = 1 and

We know that dTN e  H  (for N  = 3,5,6,8(modl2)), and since dTn = u Na N (ua 1Y , we

N  + 1 
3

^(322) = -1 , and by the homogeneousity of r(G ) we have that ^([32, ])=1 and

^([322 D= “ 1 • Suppose r  is a tiling of TN by tiles in 2 ,  then we have that <f>(dTN ) will

be an odd number if  there is an odd number of tiles in r , and an even number if  there is 

an even number of tiles. In other words, if m is the number of tiles in r , then

— = 7w(mod 2). Next, notice that since each tile has an area of three, we know that 

the area of TN is an odd number if  there is an odd number of tiles in r  and an even

4 8
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number if there is an even number of tiles. In other words, if m is the number of tiles in

, N (N  + 1) ,r , then —— — - = m(mod 2).

Therefore we have that in a tiling r  of TN,

sides of this congruence are periodic modulo 12, and it is easily checked that this 

congruence does not hold for N  = 3,5,6,8(modl2), proving that 8TN £ J ’(s) in these 

cases, and hence...

Result:

The triangle region TN can be tiled perfectly by copies o f  T2 i f  and only i f  

N  = 0,2,9,1 l(modl2).

The preceding argument is how Conway and Lagarias proved this result.

It should also be noted that a more elementary (although perhaps more tedious) solution 

to this problem was given by Donald C. West in 1991 and can currently be viewed on 

Donald West’s homepage [14].

§5.4 CUMULATIVE SUMMARY

Once a set of tiles I  has been given, a region R can fall into one of three categories. It 

can (i) have a perfect tiling (ii) have no signed tiling (and hence no perfect tiling) or (iii) 

have a signed tiling but no perfect tiling. If the region falls into category (i) we can 

prove that it has a tiling by producing a valid tiling for it. If the region falls into 

category (ii) then there exists a numbering argument that proves a signed tiling doesn’t 

exist. If the region falls into category (iii) then there is no numbering argument that can 

be used to show this, so these are often the difficult tiling problems to solve.

49
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At times, Reid’s Theorem (Theorem 4.3) can be used to solve some of the problems in 

which the region falls into category (iii). If we can find a group such that the 

combinatorial boundaries of all the tiles in E are trivial in, but the combinatorial 

boundary of R is not, then we can conclude that R cannot be tiled. This is easier said 

than done, but in fact we don’t actually need to find a specific group. If we can find a 

homogeneous directed graph T with the property that all the boundary words of the tiles 

in 2 correspond to closed paths in T , but the boundary word of R does not correspond 

to a closed path, then we can conclude that R cannot be tiled. We can further use the 

concept of winding numbers and signed area of a closed path to strengthen our 

arguments.

We can always find a finite presentation for the tile path group P(e ) . This group, by 

definition, has the property that all the combinatorial boundaries of tiles in E are trivial 

in it. However, it is usually very difficult to work with a group given only a finite 

presentation. In the next chapter we introduce a few other groups that can help to 

determine when a region does not have a perfect tiling.
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EXTENSION
TILE HOMOLOGY AND 
HOMOTOPY GROUPS

In this extension we enter further into the realm of Group Theory and define the tile 

homology and tile homotopy groups of a set of tiles. Some of the concepts here are 

from the more advanced theory of abstract algebra and algebraic topology, and it is 

assumed that the reader has some experience in the area. The group theory included in 

Chapter 3 does not cover what is done in this extension. Nevertheless, we encourage the 

less experienced reader to continue reading to gain an idea of how the theory o f groups 

can assist in solving tiling problems. We also recommend Michael Reid’s paper [10] for 

someone who is interested in this area. Reid’s work in this area is most impressive.

Although the concepts in this chapter can be applied to any of the regular lattices, we 

will be restricting ourselves to the square lattice.

§E.l TILE HOMOLOGY GROUP

Let A be the free abelian group of all the cells in the lattice. That is, every element of A 

has an integer-entried coordinate corresponding to each cell in the lattice; the group 

operation is coordinatewise addition. The generators of A are the elements with a 1 in 

exactly one coordinate and zeros elsewhere. Each generator corresponds to a cell on the 

lattice. To a placement of a tile in 2 ,  we associate the element of A which is 1 in those 

coordinates whose cell is covered by the tile placement, and is 0 in all other coordinates. 

In a similar way, to a region, we can associate an element of A.
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Let B(z) e  A be the subgroup of A generated by all elements corresponding to tile 

placements of tiles in £ . The tile homology group o f  £ is the quotient group 

H {l)  = ^ 3 (2 ) ‘ ^  regi°n R then has a signed tiling by £  precisely when its image is

the identity element in / /(£ ) . Further, R has a perfect tiling if  and only if  its 

corresponding element in A is the sum of elements in A corresponding solely to positive 

tile placements.

Let’s go back to our discussion on quotient groups to get a better understanding of the 

structure of H (z) . Consider a region R that does not possess a signed tiling by tiles 

from £ (assuming one exists). This region corresponds to an element in A that is not in 

B(l) . Using this element, a separate coset in A is formed when we multiply (in this 

case sum coordinatewise) this element with the elements of B(l ). We can choose an 

element to represent this coset which has only 0’s and l ’s in its coordinates such that 

any other element in this coset with only 0’s and 1 ’s has no less 1 ’s than this element. In 

other words, we choose an element that has the “best” possible signed tiling to represent 

this coset (there will be infinitely many). This means that any element in this coset can 

be altered by adding and subtracting elements representing tile placements until it is this 

representing element.

Finally recall that the elements of //(£ )  are precisely the distinct cosets o f !?(£) in A. It 

is in this sense that we say //(£ )  measures the obstruction to having a signed tiling by 

tiles is £ . //(£ ) , in a way, counts the number of cells that a region R will have left 

over when the best possible signed tiling of R has been constructed. This is why //(£ )  

has so cleverly been named the tile homology group: it can be used to measure the 

number of holes left in an attempted signed tiling of a region R.

Generally, the tile homology group is defined by infinitely many generators and 

infinitely many relations. However, in some cases, the tile homology group of a given 

set of tiles £  can be shown to be finitely generated. For now, we will restrict ourselves
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to the square lattice and introduce some notation. Following the ideal of Michael Reid, 

the cell with lower left comer at the point (z, j )  will be called the (z, j )  cell, and the 

generator element of A corresponding to this cell will be called aKj. The image of atJ

in H(l ) will be denoted by a t j .

Examples:

E.l Let £ = j | I I , Q  | , then the tile homology group H (z)  is defined by

Generators: all a tJ with i , j  e 3  

Relations: a,,j + a,+i,j =0

O i j  +  a  i j+ i  =  0

Note that we have the following two tile placements exhibited in Figure E. 1 which 

yield the relations a ,j - a i+ij~\ = 0  and a tJ - a i+ij+i = 0  respectively, and thus

@ij = @i+\,j-\ and a ij — Qi+\j+\'

11 _ +
L_ —

ii __ —

: : +

Fig E.l -  Tile placements corresponding to translations of cells by one diagonal unit

These relations show that all of H (z)  is actually generated by the two elements 

a  o.o and a o . i , and the original relations collapse into the one relation a o.o +  a o , i  =  0 .  

So ci oj is the inverse of a o ,o . It is not too difficult to see that H (z)  is isomorphic 

to 3 .  A precise isomorphism can be defined by [r] i-»  w  -  r where w and r are the 

number of white and red squares in R when the lattice has been given the
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checkerboard coloring as in Section 2.1. It is left as an exercise to show this 

mapping is indeed an isomorphism.

E.2 Let £ = {r F h  } with all four orientations allowed.

First, note that we have the following tile placements which yield the relation that 

a ,j = a  ,+u+i. This means that any cell in the lattice can be translated diagonally; it 

is not hard to see that this is true for any diagonal direction. Therefore H (l)  is 

generated by the two elements a 0,0 and a 0,1

Fig E.2 -  Translation of a cell one diagonal unit

Secondly, note that we have the following tile placement which yields the relation 

that a o,i = (a 0 , 0 ) . This is due to the fact that all five “holes” in the tiling are 

bishopwise related to each other, and the extra cell outside of the 4 x 4  rectangle is 

not. Recall that the 4 x 4  rectangle is tileable with T-tetrominoes; we thus have that

(a0,0 ) -  (a0,1 )= 0. Therefore, the tile homology group is generated by the single 

element a 0,0 .

Fig E. 3 -T ile placement showing (a 0,0 ^ = (a 0,1 )

Thirdly, note that the following tile placement yields the relation (a 0,0 J = 0  since 

each of the eight “holes” in this tiling are bishopwise related; we know that a 4 x 8 

rectangle can be tiled with T-tetrominoes.

5 4
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Fig E.4— Tile placement showing (tfo.o j =0

Finally, ao,o doesn’t have order 4 since ao,o (ao,o) = ao,i.

So the tile homology group is generated by a single element that has order eight. 

We can conclude that the tile homology group for the T-tetromino is Cg.

We can use this information to prove the following result...

Result:

An m x n rectangle has a signed tiling with h holes provided that property P  is true in 

the following table.

h P
0 mn = 0 (mod 8)
1 mn = l(mod 4)
2 mn = 2(mod 4)
3 mn = 3(mod 4)
4 mn = 4(mod 8)

We can use this to conclude, for example, that a 10x10 square does not have a perfect 

tiling with T-tetrominoes.

We are now in a position to prove Theorem 2.1(2). That is, if a region does not have a 

signed tiling by tiles in £ ,  then there is a numbering argument showing this.

5 5
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Proof of Theorem 2.1(2):

Suppose R is a region that does not have a signed tiling. Let r e H(l ) be the image of 

the region R in the tile homology group. Let (r) c: H{l ) be the cyclic subgroup

generated by r. Note that there is a homomorphism with <f>{r) * 0. For

example, if  r has Infinite order, then <f> may be defined by ^(r) = ~  mod 3 ,  while if r has

finite order n > 1 , then we may take <f>{r) = — mod 3 .
n

Q/C is a divisible abelian group (injective 3  -module), and the sequence 

0  -> (r) — H (l)  is exact, so the homomorphism </> extends to a homomorphism

H (s) —> , which is defined on all of H (y)  ; we will call this homomorphism O .

Further, since A is a free abelian group (projective 3  -module), and since the sequence 

Q —— > Q/C —» 0 is exact, the composite map A —2—»  ̂ lifts to

a homomorphism ¥  : A —» Q such that the following square commutes (where the

¥

3

vertical arrows are the natural projections). Then T  defines a numbering o f the cells 

with rational numbers (we send each basis element of A to an element in Q). Moreover,

B(z ) is the kernel of A —> Q/ ~ , which means that every tile placement covers an

integral total. Also, R covers a total that is not an integer because 0 ( r)  *  0 .

5 6
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The tile homology group is useful for detecting whether a region has a signed tiling, or 

how many “holes” are left after the region has been given its best possible signed tiling. 

However, it is not very usefully in detecting when a group with a signed tiling does not 

have a perfect tiling. The next group we introduce, the tile homotopy group, can at 

times prove useful in this task.

§E.2 TILE HOMOTOPY GROUP

Another group closely related to the tile homology group is the tile homotopy group, 

defined as follows. Let F2 be the free group with elements being words describing 

paths through the square lattice. Recall that for a set of tiles E , if we let T(e) be the 

smallest normal subgroup of F2 containing all possible boundary words of tiles in £ ,

then the tile path group o fL ,  denoted P(z) is the quotient group ^ J /p ^ y  I f a region R

has a tiling by E , then its boundary word is trivial in P(e ).

It turns out that we don’t need to work with a group as “big” as the tile path group, we 

can consider a “smaller” group. Let C c F 2 be the subgroup of closed words. That is 

words in F2 that correspond to closed paths in die square lattice. The tile homotopy 

group o f  E is the quotient group 7t(e) = (y /p ^ ' *n âct’ homology group is the

abelianization of the tile homotopy group; Michael Reid gives a proof of this in his 

paper [10].

Note that all of the boundary words of the tiles in a given set E are trivial in tt(£) . So 

we can use #(e ) with Theorem 4.3. Further tt(e ) (if accessible) is “smaller” than P ( l)  

and hence can show nontileability in more regions than P(e ).
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With the help of the computer algebra system GAP and the following two theorems, 

Reid uses tile homotopy methods to prove that certain sets of tiles cannot tile various 

rectangles in the square lattice although these rectangles possess signed tilings. The 

results are very impressive considering how difficult these finitely presented groups can 

be to work with.

Theorem E.3:

I fG  is a finitely presented group, and H  czG is a subgroup offinite index in G, then H  

is also finitely presented. Further, a presentation o f  H  can be computed explicitly.

Theorem E.4:

Suppose that a m and u n are central in the tile path group P (e) fo r some m,n>  0. Then 

tt(e) has index mn inside

Theorems E.3 and E.4 are useful tools in determining the structure of # (e ) .

Example: Let E = •

A finite presentation for P(e ) is

(a,u | a 3uaT3u~x = au3a~xu ~3 = auaua~xua~xu~xa~xu~xau~x = 1^

The first two tiles in E show us that a 3 and u3 are central in P(e); a finite presentation 

for P( AVi n\ is (a ,u \a 3 =u3 =auaua lua xu xa xu xau 1 =l)- 
\a ,u  /

Theorem E.4 says that in this example, tt(e) is a subgroup of m n ̂  of index

mn = 9. Moreover, Theorem E.3 ensures that we can explicitly compute a finite 

presentation for ^t(e) . With the assistance of the computer algebra system GAP,

5 8
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Michael Reid found that H z l

structure can completely be determined.

= 1080, hence |*r(s)| = — = 1 2 0 , and its

§E.3 CLOSING REMARK

Although Conway’s group theoretical method proves to be stronger than coloring or 

numbering arguments, this method has only been applied in a handful of cases. In the 

appendix of Michael Reid’s paper [10], he gives several examples where the tile 

homotopy group method, along with Theorems E.3 and E.4, has proved useful. It is an 

incredibly impressive list of examples. However, as previously stated, the region tiling 

problem on the square lattice falls into the computational complexity class NP-complete; 

this means that we still have a terribly long way to go before we can solve all region 

tiling problems.
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APPENDIX A
PERMUTATIONS

The Set S n

Let S = {l,2,3, •••,«} and denote S n as the set of n\ permutations of these n symbols. 

For example, if S = {1,2,3} we have that S 3 = {123,132,213,231,312,321}. Let 

/'1, i2, /3, • • •, in be some arrangement of the elements of S'. We can use the two-line

^1 2 3 -
notation to for this permutation a  =

n
. This is read, “1 is replaced

with , 2 is replaced with i2, 3 is replaced with i3 , * • • , »  is replaced with in For

( I  2 3 4 5^
example the arrangement 2,1,3,5,4 in S 5 can be noted

2 1 3  5 4

The Group

Let a ,p  e  S n, by the product a  ° f i  we mean a  and f i  are to be performed in that 

order. Now a permutation of a permutation of the elements of S  is another permutation

of these elements and thus a  ° P ^ S n. For example in S5, if a

P =

(1 2 3 4 5' 
2 1 3  5 4

and

'1 2 3 4 5n
then a  0  p  =

( \ 2 3 4 5"

,4 2 3 1 5, ,2 4 3 5 K
e S 5.

Note that the permutation fi  =
1 2 3 4 5̂ 1
4 2 3 1 5

can also be written as

P =
(2 1 3 5 4' 
2 4 3 5 1

. That is, the order of the columns is not important. With this in

6 0
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mind, if we let a  = 

( 1  2 3

' 1 2  3 - •• n ' ^1 2 3

p\ h h " h ,

3a> ii

J i i i h

n
I, and

r  =
v^l k2 k3

n

k.

Then (a °fi)-

n J

f \ 2 3

\ h  l 2 Z3

i 2 *3

,/!(;,) />('*) M 'j)  -0 (0 ,

1 2 3 n

f i i h )  P ( h )  P ( h )  ••• /*(<„).
and

{a  o 0 ) o  y  =
1 /?0,) /?02) Pih)

Pih) Pih) Pih) -  Pih)) [riPih)) riPih)) riPih))

n1 2 3

riPih)) riPih)) riPih)) ••• riPih)),
Similarly, 

a  o (/? o ^) =
0  2  3

v h  *2 l 3 n  J riPih)) rMO) riPih)) rMO),
1 2 3 n '

/ (P iO )  riPih)) riPih)) •••
And so (a  o 0)o  y  = a  ° i p ° r ) \  we say that o is associative.

ft.) ]
m . ) ) \

The permutation e =
( l  2 3 ••• n\
P 2 3 -  » 

permutation a , we have that a ° e  = e ° a  = a .

is the identity permutation since clearly for any

Finally, interchanging the two rows of a permutation a  gives us the inverse permutation

n) ^ 1 2  3 ••• n )  [I 2 3 ••• nJ

 ̂ ( \  2 3

i • -i "1 2 3 ••• n ' (h h h • h f 1 2 3 ... /T
smce a a  = O

Ji h *3 •■■ h , ll 2 3 •-  " , 2 3 . . . " ,

and a  a  = rh h h
n

n

\h h h n J

1 2 3 ••• n
1 2  3 ■■■ n

= e .
1 2 3 ■

Therefore the set S n satisfies all of the axioms for a group under the operation o . Note
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'1  2 3" ' 1 2  3"
that if a  = and p  -

,2  1 3, J 3 2,
, then a  ° P -

1 2 3 
3 1 2

and

P ° a  =
(1 2 3) 

2 3 1
so a p  * P a . Therefore in general, Sn is a non-abelian group.

Cycle Notation

The permutation a  =
' \  2 3 4 5̂ 1

can be written as (13254) where the cycle
v3 5 2 1 4,

(13254) is to be read, “1 is replaced by 3, 3 is replaced by 2 ,2  by 5 ,5 by 4, and 4 by 1”.

The permutation P  =
1 2 3 4 5 
1 2 5 3 4

can be written as (354). The symbols 1 and 2

are missing from the cycle, we are to interpret this as 1 and 2  are unchanged by this

permutation. The permutation y  =
f \ 2 3 4 5̂ 1

can be written (25)o (34). The
J  5 4 3 2,

interpretation is clear, “2 and 5 are interchanged, 3 and 4 are interchanged, and 1 is left 

unchanged”. Note that these cycles (25) and (34) are disjoint. That is that they do not 

have any symbols in common. In cycle notation, each element should be written either 

as a single cycle or as a product of two or more disjoint cycles. In this notation, the 

identity element e will be denoted by (l)

Transpositions
A cycle which involves the interchange of only two of the n symbols of S  = {l,2,3, •••,«} 

is called a transposition. Any permutation can be expressed as a product of 

transpositions. For example, the permutation (12345) of S 5 can be written

(l2)o (1 3 )0  (1 4 )0  (15) and the permutation (l2)° (345) can be written as (l2)o (3 4 ) o (35). 

A permutation is called even if it can be expressed as a product of an even number of 

transpositions, and it is called odd if  it can be expressed as a product o f an odd number 

of transpositions.

6 2
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Theorem A.1: O f the n\ permutations on n symbols, half are even and half are odd.

Proof: Denote the even permutations by p l , p 2, /?3,• •• p u and the odd permutations by 

ql ,q2,q3, - , q v. Let t be any transposition. are odd

permutations on n symbols and are unique since p x, p 2, p 3, ■ • • p u are unique; thus u < v . 

Similarly, t o qx,t  ° q2,t  ° q3, - , t  ° qv are distinct and even; thus v < u .  Hence 

n\
u =  v =  — .

2

■

The Subgroup (A»0)
The subset of all even permutations of S n is in fact a subgroup of S n. We call this 

subgroup the alternating group o f  order n, denoted An. Indeed the product of two even 

permutations is an even permutation, the inverse o f an even permutation is an even 

permutation, and the identity permutation is an even permutation.

From Theorem A.l we know that exactly half of the elements of S n are in An. This 

means that there are only two cosets of A„ in S n; these cosets, whether left or right, are 

the same: they are An and the complement of An. And thus, An is a normal subgroup

° f  S n •
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APPENDIX B
DIHEDRAL GROUPS

Motions of Symmetry
A motion o f  symmetry of a figure is a reflection or rotation so that the figure perfectly 

lands on top of itself. For example if we rotate a square by 90° it will land on top of 

itself; this is one of the eight different symmetries of the square. Similarly, if  we reflect 

an equilateral triangle about the line of symmetry that intersects a vertex v and the 

midpoint of the side opposite v then it will land on itself. The equilateral triangle has a 

total of six symmetries.

3

4

2

Fig B .l — motions o f  symmetry

For any regular polygon with n sides, n > 3 , the set of motions of symmetry of the 

figure; forms a group; we call this group the dihedral group o f  order n denoted Dn. If 

we label the vertices of the polygon 1,2,3, •••,« then an element of Dn will be a 

permutation of the n symbols. For example, if  we label the vertices of the square 

1,2,3,4 as in Figure B.2, there are eight different symmetries that arise. These 

symmetries are shown in the table below the figure.
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3 1------------- 2

FIG B.2 -  Labeling o f  the corners o f  the square

Motion of symmetry Corresponding permutation
0 ° counterclockwise rotation ©

90° counterclockwise rotation (1234)
180° counterclockwise rotation (13X24)
270° counterclockwise rotation (1432)

Reflection about the vertical axis (14X23)
Reflection about the horizontal axis (12X34)
Reflection about the main diagonal (13)
Reflection about the other diagonal (24)

The Group Dn

Let a and b be elements of Dn, we define a ° b to simply mean we perform the motion 

a first and b second. For example in Z)4, if a is the 90° counterclockwise rotation and b 

is the reflection about the vertical axis, then we have the following progression shown in 

Figure B.3.

Fig B.3 Multiplication o f  motions in D.

Notice that rotating counterclockwise by 90° and then reflecting about the vertical axis 

is the same as reflecting about the diagonal that slopes up to the right. In fact any 

motion of symmetry followed by a second motion of symmetry is itself a motion of 

symmetry. Therefore the set Dn is closed under the operation o.

6 5
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Further, since motions of symmetry of a polygon with n sides can be seen as 

permutations on n symbols, it follows that the operation o is associative (see appendix 

A). That is, if a, b, and c are elements of Dn we have that (a ° b)° c = a ° {b ° c ) .

The inverse of any reflection is repeating the same reflection, and the inverse of a 

rotation of x° counterclockwise is a rotation of 360 -  jc° counterclockwise. Finally, the 

rotation of 0° is the identity element. Therefore all of the group axioms are satisfied 

and indeed Dn is a group under o .

In fact since o in Dn is actually the same as multiplication of permutations in Sn, we 

have that Dn is a subgroup of Sn.

Presentation of Dn

Any motion of symmetry of a regular w-gon can be expressed as a finite product o f the 

motions of symmetry “rotation of (360f n f  counterclockwise” and “reflection about the 

vertical axis”. So we say that the group Dn is generated by these two elements. For 

example in D4, if we let r be the rotation of 90° counterclockwise and s be the 

reflection about the vertical axis, then we have the following table (the rotation of 0 ° is 

notated “1”).

Motion of Symmetry In terms of r and s

0 ° counterclockwise rotation 1

90° counterclockwise rotation r

180° counterclockwise rotation r 2

270° counterclockwise rotation r 3

Reflection about the vertical axis s

Reflection about the horizontal axis sr2

Reflection about the main diagonal sr3

Reflection about the other diagonal sr

6 6
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The 2n elements of Dn can be found similarly. Let r be the rotation of (360/ n f  

counterclockwise and let s be the reflection about the vertical axis. Then the elements of 

Dn are { l,r,r2, r 3 ,s ,sr ,s r2,sr3 Si nce performing s twice results in

the identity element as does performing r n times, we have that s 2 = r" = 1 . Further, we 

have the very important relation that rsrs = 1 which gives us that rs = s r '1. All other 

relations in this group can be expressed as a product of these three relations, therefore 

we have the presentation Dn = {r,s \ s 2 =r" = l,rs = .sr-1 'j.
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