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Abstract

Since the discovery of carbon nanotubes (CNTs) in 1991, extensive research 

related to the nanotubes in the fields of physics, material science and mechanical and 

electrical engineering has been came out. Most potential applications of CNTs are 

heavily based on a thorough understanding of their mechanical behavior. For this 

reason, numerous experiments and atomistic simulations have been conducted to 

study mechanical behavior of CNTs. Since these methods meet many difficulties, 

solid mechanics models offer an effective alternative method for CNTs. In this 

dissertation, several elastic beam models, which account for the interlayer van der 

Waals interaction and radial displacements, have been developed to study dynamics 

o f multiwall CNTs (MWNTs), such as free vibration, sound wave propagation and 

flow-induced instability.

First, using a multiple-Euler-beam model, non-coaxial vibration of MWNTs is 

predicted for the first time in the literature. This novel phenomenon, first predicted 

by the present model, has been confirmed by more recent molecular dynamic 

simulations. Moreover, the multiple-Euler-beam model is used to study wave
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propagation in MWNTs. Our results show that sound wave propagation in MWNTs 

is essentially coaxial only when the frequency is much below a critical frequency.

When the aspect ratio o f MWNTs is about or below 20, the wavelength of the 

higher-order modes is just few times the outermost diameter. In this case, rotary 

inertia and shear deformation would have a significant effect on dynamics o f CNTs. 

For this reason, a multiple Timoshenko-beam model is developed to study vibration 

o f short CNTs. The results predicted have been found to be in good agreement with 

more recent molecular dynamics simulations for wavelengths down to about lnm. 

These results suggest that elastic beam models would be valid for CNTs even at very 

small scale provided some subtle factors can be further taken into account.

Finally, the influence of internal moving fluid on free vibration and flow- 

induced structural instability of CNTs is studied based on a simple Euler-beam 

model. The results indicate that internal moving fluid could substantially affect 

resonant frequencies especially for longer suspended CNTs of larger innermost 

radius at higher flow velocity, and the critical flow velocity for structural instability 

in some cases could fall within the range of practical significance.
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INTRODUCTION

Chapter 1 

Introduction

1.1 Carbon Nanotubes (CNTs)

Carbon is an extraordinary element, considering the diversity of 

materials it forms. Carbon-based materials have been studied and used for 

centuries, and carbon science was long thought to be a mature field until a 

completely new form of carbon materials -  the fullerenes, such as C60, C70 and 

C80 -  was discovered in 1985. With the study o f C6o and C70, it was soon 

realized that an infinite variety o f closed graphitic structures could be formed. 

In 1991, Sumio Iijima [1] of NEC discovered the carbon nanotubes, which 

appeared perfectly graphitized (i.e. the carbon atoms are in perfect hexagonal 

arrangement) and capped at each end with pentagons, just like the fullerene 

molecules.

The discovery of CNTs in 1991 [1] has stimulated world-wide research 

activities in science and engineering devoted to carbon nano-structure and their 

applications, since CNTs are only a few nanometers in diameter, having 

extraordinary mechanical, electrical and thermal properties while providing 

strong, light and high toughness characteristics [2-7]. To mention a few, CNTs 

are about 6 times lighter and 10 times stronger than steel, can conduct 

electricity better than copper and transmit heat better than diamonds, and can

1
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INTRODUCTION

sustain large elastic strain more than 5%. Therefore, CNTs may find use in a 

wide range of applications in nanoelectronics [8-14], nanodevices [15-22], and 

super-strong nano-composites [23-32], For example, it has been suggested that 

the CNTs could be used to design a 23,000 mile cable from a space station to 

Earth without suffering a high gravitation force due to its own weight at that 

length [29],

1.1.1 Molecular Structure of CNTs

The first CNTs discovered by Iijima in 1991 [1] were multiwall carbon 

nanotubes (MWNTs) in Fig. 1.1. About two years later, he made the 

observations of single wall carbon nanotubes (SWNTs). A MWNT consists of 

an array of such SWNT with an interlayer spacing o f 0.34nm, close to the 

interlayer separation of graphite, 0.335nm. The lengths o f the two types of tubes 

can be up to hundreds o f microns, although shorter CNTs of aspect ratio as 

small as 10 or 20 are used in some cases [10, 15,17, 20-22, 33,34].

The bonding mechanism in a CNT is similar to that o f graphite, since a 

CNT can be thought of as a rolled-up graphite sheet. In the cylindrical plane of 

a CNT, each carbon atom is connected with three adjacent atoms via strong in

plane o-bond separated from each other by 120°. This in-plane o-bond is a 

strong covalent bond that binds the atoms in the plane, and results in the high 

stiffness and high strength o f a CNT. However, different from graphite, the 

atomic hexagons o f a CNT are arranged in a certain degree of helicity, i.e., the 

screw orientation with respect to the axis o f a CNT. In general, the CNTs could

2
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INTRODUCTION

be specified in terms of the tube diameter d, and the chiral angle 0 , which are 

shown in Fig. 1.2. The chiral vector Ch can be defined in terms of the lattice 

translation indices (n,m) and the basic vectors a, and a2 of the hexagonal lattice 

(a layer o f graphene sheet) [35], i.e.

Ch = nai + ma2

Different types of CNTs are thus uniquely defined by of the values o f n and m 

(Fig. 1.3). Three major categories o f CNT can also be defined by chiral angle 0 

as follows

0 = 0°, “Zigzag”

0° < 0 < 30°, “Chiral (Intermediate)”

0 = 30°, “Armchair”

Based on simple geometry, the diameter d and the chiral angle 0 can be given as

d — 0.783-\/«2 + nm + m2

n . _! V3m 6  = sin ------------------- —
2(n +nm + m )

In particular, chirality is known to have a strong impact on the 

electronic properties o f CNTs. Graphite is considered to be a semi-metal, but it 

has been shown that CNTs can be either metallic or semi-conducting,

3
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INTRODUCTION

depending on tube chirality [9]. However, the chirality o f CNTs has little effect 

on the mechanical properties such as Young’s modulus [36].

1.1.2 Mechanical and Electrical Properties of CNTs

♦ Mechanical properties

Many studies based on experiment and simulation have addressed that 

nanotubes possess high tensile modulus and strength as high as 1 TPa and 200 

GPa, respectively, which belong to the framework of continuum elasticity. The 

most important results, based on experiment and simulation, are summarized as 

follows.

In 1996, Treacy et al. [37] first investigated the elastic modulus of 

isolated MWNTs by measuring the amplitude of their intrinsic thermal vibration 

in a transmission electron microscope (TEM). The average value obtained over 

11 samples was 1.8 TPa. Wong et al. [38] first performed direct measurement of 

the stiffness and strength of MWNT with the help o f an atomic force 

microscopy (AFM). They reported the elastic modulus to be 1.26 TPa and the 

average bending strength to be 14.2 ± 8 GPa. Yu et al. have investigated the 

tensile loading of MWNTs [39] and SWNT ropes [40]. In their work, the CNTs 

were attached between two opposing AFM tips and loaded under tension 

(Fig. 1.4). The experimentally calculated tensile strengths o f the outer most 

layers ranged from 11 to 63 GPa and the elastic modulus ranged from 270 to 

950 GPa [39]. In their subsequent investigation of SWNT ropes, Yu calculated

4
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INTRODUCTION

tensile strengths o f 13 to 52 GPa and average elastic modulus of 320 to 1470 

GPa [40]. Yu et al. also found breaking strain 12% for MWNTs [39] and 5.3% 

for SWNT ropes [40],

Numerous theoretical studies were performed based on various 

molecular dynamic simulations. To mention a few, Yakobson et al. [41] 

compared molecular dynamics simulation results to the continuum shell model 

and thereby fitted both a value for Young’s modulus 5.5 TPa and for effective 

thickness of the CNTs 0.066nm. Lu [36] found from his MD simulations that 

the Young’s modulus of a SWNT is approximately 970GPa, which is close to 

that o f a graphite plane, and is independent o f diameter and chirality.

In addition to the high Young’s modulus and strength, another unique 

feature o f CNTs is their remarkable flexibility under axial compression or 

bending. For example, by intentionally creating large curvature bends in 

MWNTs, Falvo et al. [42] observed buckles and periodic ripples. They reported 

that some MWNTs could sustain up to 16% strain without obvious structural or 

mechanical failure (Fig. 1.5). Similarly, Lourie et al. [23] observed that 

MWNTs can be bent to a large angle in excess o f 90° or even 100°.

In summary, the CNTs are stronger than any other materials, but only 

one-sixth as heavy. Although the scatterings of the measured results have been 

found in different literatures, according to numerous previous studies, Young’s 

modulus lTPa (with the wall thickness 0.34nm) are in broad agreement with 

each other. Moreover, Validity o f elastic models (especially beam models) for 

CNTs is confirmed by numerous experimental fitting to mechanical

5
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measurements of the Young’s modulus of CNTs, which have been mostly made 

by assuming the CNTs to be elastic beams. Here, it is worth mentioning that, 

since the high in-plane rigidity and strength as well as low density of CNTs are, 

in fact, inherited from in-plane properties of graphite, it is this extraordinary 

resilience and resistance to fracture that distinguish CNTs from graphite.

♦ Electronic properties

The electronic properties o f CNTs are sensitively depended on the 

nanotube’s diameter and chirality. These properties are uniquely characterized 

by the chiral vector [6, 9], For example, the armchair nanotubes (n=m) possess 

metallic properties. However, for all other CNTs with chiral indices of (n,m) 

and (n,0), two possible intrinsic properties exist. When n-m=3p (where p is an 

integer), the CNTs are expected to be metallic. In the rest case, the CNTs are 

predicted to be semi-conducting materials.

In addition, CNTs have extremely low electrical resistance [6, 9, 43]. 

Resistance occurs when an electron collides with some defect in the crystal 

structure o f the material through which it is passing. The electrons inside CNTs 

are not so easily scattered because of their very small diameter and huge ratio of 

length to diameter. Since any scattering gives rise to electrical resistance, this 

reduced scattering gives CNTs their very low resistance. Moreover, 

superconductivity, which is characterized by the complete absence of electrical 

resistance, is another novel electronic property o f CNTs. Recently, a Chinese 

research group from Hong Kong has developed individual SWNT of very small

6
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diameter 0.4nm that demonstrate superconducting behavior at around 15K [44],

Another important issue is nanotube electromechanical properties. The 

effects of mechanical deformation to the electrical properties of CNTs were 

studied by several groups [45-50] due to the potential application of CNTs such 

as nanoscale electro-mechanical devices. For example, Tombler et al. [50] 

investigated by experiment the electromechanical properties o f CNTs. The CNT 

conductance decreases when the AFM tip pushes the CNTs down, but recovers 

as the tip retracts. The conductance is found to decrease by a factor o f 2 at -5° 

bending angle (strain ~3%), but decreases more dramatically by two orders of 

magnitude at a bending angle -14° (strain ~3%) in Fig. 1.6.

1.1.3 Applications of CNTs

As shown above, CNTs have extraordinary mechanical and electrical 

properties. These properties provide substantial promise for CNTs as the 

leading candidate material for nanoelectronics [8-14], nanodevices [15-22], and 

super-strong nano-composites [23-32]. The most important applications of 

CNTs are briefly summarized as follows.

♦ Nanoelectronics

An application of CNTs is not a future dream any more and has already 

been developed in some areas. One use o f CNTs is for extremely fine electron 

guns, which could be used as miniature cathode ray tubes (CRTs) in thin high

brightness low-energy low-weight displays. This type o f display would consist

7
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of a group of many tiny CRTs, each providing the electrons to hit the phosphor 

of one pixel, instead of having one giant CRT whose electrons are aimed using 

electric and magnetic fields. These displays are known as Field Emission 

Display (FED). For example, FED having CNT emitters has been fabricated for 

several years in Samsung [13]. Such devices have shown superior qualities, 

such as high emission current density and high stability.

One possible future application of CNTs is the exploration of so-called 

molecular electronics [10, 14]. Dreams about the use o f single molecules as 

active electronic elements have been around for decades. Experimental 

realization of such dreams has proved hard, but interest in these ideas has been 

revived with the advent of nanotube molecules. Recently, Rueckes et al. [10] 

demonstrated the potential o f CNT-based molecular device element and 

molecular wires for reading and writing information. Each device element is 

based on a suspended, crossed CNTs geometry that leads to bi-stable, 

electrostatically switchable on/off states. Such CNT device elements can be 

used both as nonvolatile RAM and as configurable logic tables and thus could 

serve as the key building blocks for a molecular-scale computer.

♦ Nanodevices

Another example for CNTs is probes for atomic force microscopy [15, 

20]. For example, Snow et al. [20] examined the factors that govern the stability 

of imaging using SWNTs as probes for atomic force microscopy. They found 

the elastic response, due to non-vertical alignment o f the CNTs, causes the CNT

8
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tip to jump into contact with the surface and renders it unsuitable for imaging 

for long CNTs. For short CNTs (aspect ratio = 15-30), stable noncontact-mode 

imaging can be achieved using a small cantilever vibration amplitude. Their 

result reveals the limitations of SWNTs AFM probes and suggests that thicker, 

MWNT probes or very short SWNT probes might be better candidates for 

imaging.

Kim and Lieber [17] used CNTs to create nanotweezers that can be 

utilized for nanoscale manipulation and measurement. Attaching two thin and 

rigid CNTs to electrodes on glass rod forms these nanotweezers, which can be 

opened and closed by changing voltage applied on the two tubes. Their 

experiments demonstrate that these nanotweezerc can be readily grab and 

manipulate nanostructres which was 500nm in size.

♦ Nanofluidic devices

Because of perfect hollow cylindrical geometry and superior mechanical 

strength, CNTs hold substantial promise as nanocontainers for gas storage, and 

nanopipes for conveying fluid. For example, CNTs can act as inner-connects 

between microfluidic chips or between a chip (such as a drug delivery system) 

and the subject (such as cell). CNTs that act like tiny straws could deliver 

medicines, slowly and over time, to a person’s bloodstream or to a highly 

specific location in the body [51]. In 1997, Gadd et al. [52] succeeded in trap 

argon gas at high pressure within hollow CNTs, which had an outer diameter of 

between 20 and 150nm. This filled tubes were found to retain their Ar content

9
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over several months at room temperature with little change. These findings 

demonstrate the potential for storing gases in such CNTs. Che et al. [53] 

demonstrated that both the outer and inner CNT tubules are electrochemically 

active in intercalation of lithium-ion, suggesting possible applications in 

lithium-ion battery.

♦ Super-strong nano-composites

CNTs should be the ideal reinforcing fibers for composites due to their 

exceptional mechanical properties. Qian et al. [26] have reported that by adding 

1% of nanotubes into polystyrene matrices resulted in increases of over all 

tensile modulus and strength by approximately 42 and 25%, respectively. For 

example, this kind super strong material is ideal for space industries. NASA 

Johnson Space Center (JSC) is developing materials using CNTs for space 

applications [32], where weight-driven cost is the major concern. Composites 

based on CNTs could offer strength to weight ratios beyond any materials 

currently available. Another space application of CNTs is space cable, which 

has been suggested by Harris [29]. He estimated that the CNTs could be 

designed as the longest cable in the world, which connects space station and 

Earth without suffering a high gravitation force due to its own weight at that 

length. Because o f enormous resilience and tensile strength, in the future, 

embedded into a composite, CNTs could be used to make cars that bounce in a 

wreck or buildings that sway rather than crack in an earthquake [9].

10
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1.2 Recent Studies on CNT Mechanics

As reviewed in previous section, CNTs have been identified as one of 

the most promising building blocks for future development o f nano-structures. 

Thus, the mechanical behavior of CNTs has been the subject of numerous 

experimental, atomistic simulations, and elastic continuum modeling studies.

1.2.1 Experimental Research

The small dimensions of CNTs, with diameter of tens of nanometers for 

MWNTs and about lnm  for SWNTs, and lengths of the order of microns, 

impose challenges for experimental determination of mechanical behavior and 

properties. Nevertheless, several experimental studies based on transmission 

electronic microscopy (TEM), scanning electronic microscopy (SEM), atomic 

force microscopy (AFM), have been attempted to measure the mechanical 

properties. The most important experiments based on these techniques are 

summarized as follows.

♦ SEM method

Electron Microscopes such as SEM and TEM are scientific instruments 

that use a beam of highly energetic electrons to examine objects on a very fine 

scale. Electron Microscopes uses high-energy electron beams for scattering and 

diffraction, which allows the achievement o f high resolving power, including 

down to sub-nanometer resolution because o f the extremely short wavelength of 

electrons at high kinetic energy.

11
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Yu et al. have investigated the tensile loading of MWNTs [39] and 

SWNT ropes [40], with the help of SEM and AFM (Fig. 1.4). The individual 

CNTs were attached to AFM probes inside the SEM. The measured force versus 

elongation data were converted, by SEM measurement, to a stress versus strain 

curve and the breaking strength of each CNT was obtained by measuring the 

maximum tensile loading force at break. More recently, Waters et al. [54] 

studied axially compressed buckling for short MWNTs using a SEM.

♦ TEM method

Since TEMs normally have a better resolution than SEMs, TEMs are 

widely used in experimental research. Using TEM images, Treacy et al. [37] 

were able to deduce values for Young’s modulus for individual MWNTs. They 

measured the amplitude from recorded TEM images of the thermal vibration of 

cantilevered MWNTs.

Poncharal et al. [55] designed a TEM holder to study the mechanical 

resonance of cantilevered MWNTs, and measured the bending modulus. In their 

experiment, when the frequency of the input AC signal matched the mechanical 

resonance frequency of the MWNTs, oscillation corresponding to the resonance 

mode of the cantilever MWNTs was observed (Fig. 1.7) and the resonance 

frequency o f the MWNTs thereby determined. The radial deformability for 

tubes has also been studied using TEM images. Ruoff et al. [56] first studied 

radial deformation between adjacent nanotubes. Partial flattening due to van der 

Waals forces was observed in TEM images of two adjacent and aligned

12
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MWNTs along the contact region. Numerous buckling o f CNTs was observed 

via TEM study. For example, Iijima et al. [57] observed kinks or local buckling 

on the inner side of a bent CNT due to compression. Lourie et al. [23] and 

Bower et al. [25] were able to investigate buckling behaviors o f MWNTs 

embedded within a polymer matrix.

♦ AFM method

The AFM is a very powerful microscope invented in 1986. The AFM 

consists o f a cantilever with a sharp tip at its end with tip sizes on the order o f 

nanometers. The tip is brought into close proximity of a sample surface. The 

force between the tip and the sample leads to a deflection of the cantilever. 

Typically, the deflection is measured using a laser spot reflected from the top of 

the cantilever into detector. The AFM operated in either lateral force mode, 

contact mode, or tapping mode has been the main tool in studying the 

mechanical response of CNTs under static load.

Wong et al. [38] first performed direct measurement of the stiffness and 

strength of individual, structurally isolated MWNTs using AFM operated in 

lateral force mode. The CNT was pinned at one end and load was applied to the 

tube by means of the AFM tip. The bending force was measured as a function 

of displacement along the unpinned length, and a value o f 1.26 TPa was 

obtained for the elastic modulus. Using contact mode AFM, Falvo et al. [42] 

directly applied bending force to a MWNT and repeatedly bent it through large 

angles in various configurations and thus buckles and periodic ripples were
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observed (Fig. 1.5). By using an AFM and a special substrate, Salvetat et al. [58, 

59] measured the elastic and shear modulus of SWNT ropes and MWNT. By 

AFM tip applying a load to the portion of CNTs with a suspended length, the 

maximum deflection at the center o f the beam is directly measured (Fig. 1.8). 

Therefore force versus deflection curves were obtained and compared with 

theoretical modeling based on beam mechanics.

1.2.2 Atomistic Simulations

Numerical computer simulations of the finite sample systems have been 

widely used to describe mechanical behavior o f CNTs. There are three major 

categories o f atomistic simulation methods: classical molecular dynamics (MD), 

tight binding molecular dynamics (TBMD), and ab initio methods. The three 

simulation methods have their own advantages and are suitable for studies for a 

variety of properties o f material systems. MD simulations have least 

computational cost, followed by TBMD methods. Ab initio methods are the 

most costly among the three. With well-fitted empirical potentials, MD 

simulations are quite suitable for studies o f dynamical properties o f large-scale 

systems. While ab initio methods can provide highly accuracy, the high 

computational cost limits them to systems up to hundreds of atoms currently. 

Tight binding methods lay in between MD simulations and ab initio methods, as 

to the computational cost and accuracy, and are applicable for systems up to 

thousands o f atoms.

14
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♦ MD methods

Molecular dynamics is essentially a particle method since the objective 

is to solve the governing equations of particle dynamics based on Newton’s 

second low. The MD methods for carbon based systems involves analytic 

many-body force field functions such as Tersoff-Brenner potentials, which is 

specially suited for carbon-based systems, such as diamond, graphite, fullerenes, 

and nanotubes. For example, Iijima et al. [57] performed to simulate buckling 

behaviors of SWNTs and double wall CNTs (DWNTs) under bending using 

classical MD simulation. Consistent with their own experimental observation, 

the simulation showed that buckling or kinks occurred on the concave side o f a 

bent CNT and the number o f kinks increased with the increasing bending load. 

Yakobson et al. [41] reported the Young’s modulus to be as high as 5.5TPa, 

using the MD methods based on Tersoff-Brenner potential.

♦ Ab initio methods

Ab initio is a simulation to directly solve the complex quantum many- 

body Schrodinger equation. Ab initio method provides a more accurate 

description of quantum mechanical behavior o f materials properties even 

though the system size is currently limited to only about few hundred atoms. 

For example, using ab initio based on density functional theory (DFT), 

Sanchez-Portal et al. [60] have found that the stiffness o f SWNTs is close to 

that of graphite. Srivastava et al. [61] carried out axial compression of SWNT 

and have found Young’s modulus to be about 1.2 TPa, using tight-binding

15
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molecular dynamics (TBMD) and ab initio method based on DFT.

♦ TBMD methods

In the intermediate regimes, for up to few thousand atoms, the TBMD 

approach provides very good accuracy. For example, through a TBMD method, 

Hernandez et al. [62] found the Young’s modulus to be approximately 1.2TPa, 

which is larger than that of graphite, and is slightly dependent on the tube size 

especially for small diameter nanotubes (less than 1.2nm). Srivastava et al. [63] 

used a TBMD method and have found that within the Euler buckling length 

limitation, an (8,0) CNT collapses locally at 12% compressive strain.

1.2.3 Elastic Models

As discussed above, numerous studies based on atomistic simulations 

have been done so far. Despite constant increases in available computational 

improvement, even classical molecular dynamics computations are still limited 

to simulating small scale. The simulation o f larger systems or longer times must 

currently be left to continuum elastic model [37, 38, 55, 64-78].

Among various methods, solid mechanics models, such as elastic beam 

or shell, have been widely and successfully used to study static and dynamics 

structural behavior o f CNTs. Many studies indicated “the laws of continuum 

mechanics are amazingly robust and allow one to treat even intrinsically 

discrete objects only a few atoms in diameter” [5]. For example, buckling 

force predicted by the Euler-beam model is in good agreement with
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experimental data [77], resonant frequencies and vibrational modes of CNTs 

given by the cantilever beam model agree well with experiments [37, 55], and 

sound velocity predicted by the Euler-beam model agrees well with data 

obtained by other methods [78].

♦ Elastic Beam Models

CNTs are only few nanometers in diameter, while as long as a few mm. 

Therefore, aspect ratio o f CNTs is usually very large, up to 1000 or beyond, 

although shorter CNTs of aspect ratio as small as 10 or 20 are also used in some 

cases, such as CNT-based nanotweezers [17] and ATM tips [15, 20, 34], In all 

these cases, because there are large numbers of atoms along the longitudinal 

direction, elastic-rod or elastic-beam model is adequate for overall mechanical 

deformation o f CNTs. It is known that transverse dynamics o f an elastic beam 

under axial force F and transverse distributed pressure p(x) (per unit axial 

length) is governed by [79, 80]

d w d4w d2w
p(x)  + F — — = E I — J- + p A - y -  (1.1)

dx dxA dt2 '

where x is the axial coordinate, t is time, w(x, t) is the deflection of the beam, I 

and A are the moment of inertia and the area o f the cross-section of the beam, E 

and p are Young’s modulus and the mass density (per unit volume). Thus, (pA) 

is the mass density per unit axial length, (El) represents the bending stiffness o f
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the beam, and (EA) represents the axial stiffness which is defined by the axial 

force divided by the axial strain (the latter does not appear explicitly in Eq 

(1.1)). In addition, bending moment M and transverse shear force V are given

These equations provide a complete description of elastic beam model with 

appropriate boundary conditions (such as pinned, clamped, and free ends).

In order to apply elastic beam model (1.1) to CNTs, it is sufficient to 

know the mass density per unit axial length (pA), the bending stiffness (El), and 

the axial stiffness (EA). Once the three parameters are known, the deflection of 

CNTs can be determined by (1.1) even without knowing the details o f the cross- 

sectional geometry (such as I and A). Recognition of this simple fact is 

important for understanding applicability o f the elastic beam model to one

dimensional nanoscale structures, such as CNTs or DNA molecules which are 

only few atoms in diameter and thus doubtful about applicability of continuum 

models across their cross-sections. For instance, there have been different 

opinions on the thickness of SWNTs. Although most researchers have adopted 

the equilibrium interlayer spacing between adjacent nanotubes (about 0.34 nm) 

as the representative thickness o f SWNTs combined with a Young modulus o f 

about 1 TPa, some authors have suggested a much smaller thickness (say, 0.066 

nm, [5, 41]) combined with a Young’s modulus o f about 5 TPa. It is obvious

by

dx dx
( 1.2)
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that axial stiffness (EA) keeps unchanged if the Young’s modulus is 5 times 

larger and, at the same time, the thickness is 5 times smaller. Furthermore, it is 

readily seen that these different definitions of thickness do not significantly 

affect the value of bending stiffness (El) provided the cross-section of SWNTs 

is treated as a thin annulus. Thus, the governing equation (1.1) and the overall 

deflection of SWNTs remain essentially unchanged when these different 

thickness of SWNTs are adopted. More detailed examples will be shown 

Chapter 2.

♦ Elastic Shell Models

When aspect ratios o f CNTs are small, or local deformation is concerned, 

CNTs should be treated as elastic shell rather than elastic beam. Continuum 

elastic shell models also have been effectively used to study static and dynamic 

structural behavior of CNTs, particularly in buckling problem.

Axially compressed buckling of SWNTs: Axially compressed buckling of 

SWNTs was studied in [65] using elastic shell model. For example, the critical 

strain for SWNTs of diame

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



INTRODUCTION

SWNTs of radius 0.67nm is about 1.2nm, which is in good agreement with the 

value 1.3nm obtained in [82] by molecular dynamics simulations.

SWNT ropes under high pressure: An interesting phenomenon of SWNT 

ropes is the pressure-induced abrupt changes observed for vibrational modes 

and electric conductivity when the applied external pressure reached a critical 

value ranging from 1.5 to 1.9 GPa [83-85]. The conventional elastic 

honeycombs model is modified and applied to the honeycomb-like structure of 

SWNT ropes under high pressure [66]. For example, for SWNT ropes of 

diameters 1.3 nm, the critical pressure predicted by the elastic model [66] is 

about 1.8 GPa, in excellent agreement with the known data ranging from 1.5 

GPa to 1.9 GPa [83-85],

MWNT under high pressure: Tang et al. [86] studied electronic properties of 

a specific group of MWNTs of about twenty layers (with the innermost radius 

1.5 nm, and the outermost radius 8 nm) under high pressure. They observed that 

an abrupt change of conductivity of MWNTs occurs when the applied external 

pressure reaches a critical value about 1.5 GPa. Wang et al. [87] studied this 

problem with a multiple-shell model, and found that the predicted critical 

pressure for the MWNTs tested in [86] is about 1 GPa, in reasonably good 

agreement with the experimental result 1.5 GPa [86].
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1.3 Contributions of the Present Work [70-76]

Most o f the potential applications of CNTs are heavily based on a 

thorough understanding of their mechanical behavior. For example, experiments 

and molecular dynamics simulations showed that electronic properties o f CNTs 

can be changed by mechanical deformations up to several orders of magnitude 

[45-50]. This can explain why the study of mechanical behavior o f CNTs has 

been one topic of major concern [37-39,41, 42, 55, 64-76, 78, 88-94].

Among various methods, solid mechanics models, such as elastic beam 

or shell, have been widely and successfully used to study static and dynamics 

structural behavior o f CNTs. Particularly, elastic models provide simple 

formulas in many important cases, which clearly identify major factors 

affecting mechanical behavior of CNTs. Indeed, because controlled experiments 

at nanoscale are usually difficult, and molecular dynamics simulation remains 

expensive and formidable (especially for large sized atomic systems), solid 

mechanics models offer a effective alternative method for the study of CNTs. 

On the other hand, owing to new phenomena at nanoscale (especially for the 

multi-layer structure o f MWNTs and the interlayer van der Waals interaction), 

traditional elastic models cannot be applied to CNTs in many cases of practical 

and academic interest. This has raised a major challenge to solid mechanics.

The present work [70-76] is based on the multiple-beam model [67], 

which accounts for the interlayer van der Waals interaction, and is devoted to a 

systematic study on the dynamics of CNTs, such as vibration, wave propagation 

and flow-induced instability o f CNTs. The objective o f this research is to study
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the unique features o f mechanical behavior o f CNTs (especially MWNTs with 

interlayer van der Waals interaction) and to spark and facilitate further interest 

in this research topic. Since many of the results given in [70-76] are newly 

discovered phenomenon in CNTs mechanics, some of them cannot be compared 

to any known experiments and atomistic simulations available in the literature. 

However, some of the new results predicted by the present models [70-76], such 

as non-coaxial vibration of MWNTs and the relevance of Timoshenko-beam 

model for short wavelength dynamics o f CNTs, have been well confirmed by 

more recent atomistic simulations conducted by other researchers [95-97].

In Chapter 2, the general formulation o f several elastic beam models is 

outlined. The existing single-beam models are reviewed and the predicted 

results are compared to experiments and atomistic simulations. Particularly, the 

multiple-Euler-beam model and multiple-Timoshenko-beam model are 

developed, and the intertube van der Waals interaction coefficient is defined.

In Chapter 3, vibration of MWNTs [70, 71] is discussed, using the 

multiple Euler-beam model. For the first time, this research predicts that non

coaxial vibrations in MWNTs will be excited at terahertz frequencies. These 

results predicted by a simple multiple-beam-model [70, 71] are found to agree 

well with more recent molecular simulations [95, 96] on non-coaxial vibration 

of MWNTs. For example, Zhao et al. [95] MD simulations show that non

coaxial instability does occur for frequencies in the terahertz range. More 

recently, Li and Chou [96] have also found non-coaxial vibration of DWNTs 

using molecular structural mechanics method. Li and Chou concluded that
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“This phenomenon was first reported by Yoon et al. [70] based on an elastic 

continuum multishell model. Our simulation results agree with Yoon et al. in 

that the vibration modes associated with the fundamental frequencies are almost 

coaxial, and non-coaxial vibrations are exited at higher frequencies.” These 

results confirm the effectiveness o f the multiple elastic beam model for 

MWNTs.

In Chapter 4, using the multiple-Euler-beam model, transverse sound 

wave propagation in MWNTs is studied [72]. It is predicted that (N -l) critical 

frequencies exist for an N-wall CNT, at which the number of the wave speeds 

changes. When the frequency is higher than at least one of the critical 

frequencies, non-coaxial vibrational modes emerge, which propagate along the 

MWNT at different wave speeds. These results represent some interesting 

features o f wave propagation in MWNTs, which cannot be described by the 

existing single-beam model.

In Chapter 5, vibration of short MWNTs is discussed [74], using the 

multiple-Timoshenko-beam model. Because rotary inertia and shear 

deformation are significant for higher-order modes of shorter elastic beams, the 

CNTs studied here are modeled as Timoshenko-beams instead o f classical 

Euler-beams. Detailed results are demonstrated for DWNTs of aspect ratio 10, 

20 or 50, based on the Timoshenko-beam model and the Euler-beam model, 

respectively. This work suggests that the Timoshenko-beam model, rather than 

the Euler-beam model, is relevant for terahertz vibration of short CNTs.

In Chapter 6, using the multiple-Timoshenko-beam model, effects of
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rotary inertia and shear deformation on transverse wave propagation in 

individual MWNTs are discussed [73], The results show that the effects of 

rotary inertia and shear deformation are negligible and transverse wave 

propagation can be described satisfactorily by the existing single-Euler-beam 

model only when the frequency is far below the lowest critical frequency. When 

the frequency is very close to or higher than the lowest critical frequency, rotary 

inertia and shear deformation come to significantly affect the wave speed. The 

effects of rotary inertia and shear deformation on transverse wave propagation 

predicted by the present model, have been found to be in good agreement with 

more recent atomistic simulation [97]. Therefore, these results shows that 

terahertz transverse wave propagation in MWNTs should be better modeled by 

Timoshenko-beam model, instead of Euler-beam model.

In Chapter 7, the elastic (hollow) beam model is employed to study the 

CNTs conveying fluid [75]. The emphasis is on the influence of internal moving 

fluid on free vibration and flow-induced structural instability o f CNTs. The 

results indicate that internal moving fluid could substantially affect resonant 

frequencies especially for suspended longer carbon nanotubes of larger 

innermost radius at higher flow velocity, and the critical flow velocity for 

structural instability in some cases could fall within the range o f practical 

significance. On the other hand, even a compliant surrounding elastic medium 

(such as polymer matrix with lGPa) can significantly reduce the effect o f 

internal moving fluid on resonant frequencies, and suppress or eliminate 

structural instability within the practical range of flow velocity.
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Chapter 8 studies the influence of internal moving fluid on free vibration 

and flow-induced flutter instability of cantilever CNTs [76]. In contrast to 

Chapter 7, non-conservative characteristics o f cantilever CNTs is highlighted. 

Indeed, cantilever CNTs conveying fluid are damped with decaying amplitude 

for flow velocity below a certain critical value, while flutter instability occurs 

and vibration becomes amplified with growing amplitude when the flow 

velocity exceeds the critical value.
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Fig. 1.1. (Top) Transmission electron microscopy (TEM) image of MWNTS [1], 

(Bottom) Schematic structures o f SWNTs and MWNTs
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Fig 1.2. The chiral vector Ch is defined on the hexagonal lattice of carbon atoms 

by unit vectors ax and a2 and the chiral angle 0 [27]
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Fig. 1.3. Examples of zigzag, chiral, and arm chair CNTs
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Fig. 1.4. Micrographs showing the apparatus for tensile loading of MWNTs 

[39] (Left) An SEM image o f two AFM tips holding MWNTs, (Right) High 

magnification SEM image o f the indicated region in left

Fig. 1.5. Bending and buckling o f CNT [42], (a) Original shape of CNT, (b) 

until it bends all the way back onto itself, (c) CNT is bent upwards all the 

way back onto itself, (d) The same CNT is bent all the way back the other 

way onto itself
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c

Fig. 1.6. Experimental result [50] o f conductance (G) of the SWNT versus 

strain (a) in the suspended part of the CNTs. (Inset) conductance (G) versus 

bending angle (0)
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A B C

Fig. 1.7. CNT response to resonant alternating applied potential [55], (a) In the 

absence of potential, (b) fundamental mode of vibration (530KHz), (c) second 

mode of vibration (3.01MHz)
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Fig. 1.8. (a) AFM image of a SWNT ropes adhered to the membrane, (b) 

Schematic o f the measurement [58]
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Chapter 2 

Elastic Beam Models for Multiwall 
Carbon Nanotubes (MWNTs)

2.1 Introduction

CNTs are only a few nanometers in diameter, while as long as a few mm. 

Therefore, elastic beam model is ideal for the study o f the overall mechanical 

deformation o f CNTs. Many studies showed that the classic Euler-beam offers a 

simple and reliable model for overall mechanical deformation of CNTs 

provided the characteristic wavelength is much larger than the diameter of 

CNTs. Although CNTs can have diameters only several times larger than the 

length of a bond between carbon atoms (d=0.142nm), continuum elastic beam 

models [37, 38, 55, 64-78] have been effectively used to study static and 

dynamic structural behavior o f CNTs, such as static deflection [38], column 

buckling [77], resonant frequencies and modes [37, 55], and sound wave 

propagation [78]. Since the elastic beam models enjoy very simple 

mathematical formulas, they have the potential to identify the key parameters 

affecting basic mechanical behavior o f CNTs (and thus rule out other less 

important parameters), explain or predict new physical phenomena, and 

stimulate and guide further experiments and molecular dynamics simulations. 

This chapter studies systematically elastic beam models such as conventional
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single-beam model, multiple-Euler-beam model, and multiple-Timoshenko- 

beam model.

2.2 Single-Beam Models

Static deflection: For a cantilever beam of length L under a concentrated

force P at a point x=a measured from the fixed end, the deflection at any point 

between x=a and the free end x=L is [98]

Pa2
y  = ------(3 x - a ) , a < x < L  (2.1)

6 E l

3
The 1/a dependency of P/y when x=a predicted by this formula has been 

confirmed by the experimental data for CNTs [38] (Fig. 2.1). As another 

example, the maximum deflection o f a simple beam under a concentrated force 

P applied at its midspan is [98]

PL
y  = -------  (2 .2)4SEI v '

where the number 48 becomes 192 for a clamped beam. This relation has been 

used [99] to estimate the Young’s modulus o f CNTs based on experimental data 

of the maximum deflection. The estimated value (E=0.81 TPa) is in good 

agreement with the values obtained by other methods. It is emphasized that the 

thickness o f SWNTs in these studies has been taken as 0.34 nm and the
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thickness of MWNTs has been calculated by the difference o f the outermost 

radius Rout and the innermost radius Rin, and thus l=7t(R0U4-R in4)/4.

Column buckling: Dai et al. [15] used MWNTs as AFM tip and treated them

as a hinged elastic column, and thus the maximum axial force MWNTs could 

sustain is estimated by the Euler force given by [98]

P  = ^  (2.3)
L

Assuming E=lTPa, for example, these authors found that the Euler force for a 

250nm-long, 5nm-diameter MWNT (treated as a column of solid circular cross- 

section) is about 5nN. The Euler force is also estimated by Yao & Lordi [100] 

for some other examples o f CNTs. In particular, the Young’s modulus of CNTs 

has been estimated by comparing the values of Euler force obtained by 

molecular dynamics simulations with those given by (2.3), see Garg et al. [77]. 

Their results confirmed that the Young’s modulus estimated by such a 

comparison is around lTPa, in satisfactory agreement with the values obtained 

by other methods.

Winkler-model: CNTs have been suggested as reinforcement fibers for

super-strong composites [23-32]. Therefore, the role of surrounding elastic 

medium in mechanical behavior o f embedded CNTs is a significant topic. A 

simplified model for the surrounding elastic medium is provided by the
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Winkler-like model [101, 102] which assumes that interaction pressure acting

on the embedded CNT per unit length is given by

where y(x) is the deflection o f the embedded CNT, k is a spring constant of the 

surrounding elastic medium which may depend not only on the Young’s 

modulus of the surrounding elastic medium and the outermost diameter o f the 

CNT, but also on the wavelength of the deformed CNT. The minus sign on the 

right-hand side indicates that the interaction pressure is opposite to the 

deflection. This simplest model has been used to study column buckling of 

embedded CNTs by Lourie et al. [23] and Ru [67], and vibration o f embedded 

MWNTs by Yoon et al. [71],

Resonant frequencies: The n-order resonant (circular) frequency of a

MWNT of length L, given by the single-beam model [37, 55, 79, 80, 91, 103], 

has the form

where p is the mass density (per unit volume) o f CNTs, I and A are the moment 

of inertia and the area o f the cross-sectional o f MWNT, and RoUt and Rin, are the

p  = - ky(x) (2.4)

(2.5)
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outermost and the innermost radii. In addition, Xn is a constant depending on the 

number n and end conditions. For instance, for fixed end conditions (that is, all 

nested individual tubes o f the MWNT are clamped at both ends), ^^= 4 .73 , 

^2L=7.85, /\.3L=10.996. For cantilever end conditions, A^L^l.875, A.2L=4.694, 

7i3L=7.855, see [79, 80]. If  the CNT is embedded in an elastic medium 

characterized by the Winkler model (2.4), the n-order resonant (circular) 

frequency is [71, 79]

Prior experiments [37, 55, 91, 103] have convincingly shown that resonant 

frequencies o f CNTs can be calculated by the formula (2.5). For example, for a 

CNT tested in [55], the experimental ratio co2/coi is 5.68, in good agreement

vibrational mode was observed in [55], and the experimental value of a 

characteristic length is 0.76L, in good agreement with the theoretical value 0.8L

Sound wave speeds: It is well known that longitudinal and transverse sound

wave speeds (phase velocity) in an elastic beam are [74]

(2.6)

with the theoretical ratio 6.2 predicted by (2.5). In addition, the second-order

(Fig. 1.7).

(2.7)
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In particular, the transverse speed vT depends on both the frequency to and the 

cross-sectional shape, while the longitudinal speed vL depends on none o f them. 

Popov et al. [78] have used these formulas to calculate sound speeds along 

CNTs. The value of Young’s modulus of CNTs obtained by (2.7) based on a 

comparison with another method is about lTPa, in good agreement with the 

known values. This indicates that the classic elastic beam formulas (2.7) can be 

applied to sound wave propagation in CNTs [78, 93, 94],

2.2 Multiple-Beam Models

Most of CNTs are MWNTs, which consist of arrays of SWNTs with an 

interlayer spacing of 0.34nm and each tube is coupled with its neighboring 

tubes through van der Waals interactions (Fig. 2.2). Therefore, Carbon MWNTs 

are different from traditional elastic beams due to their hollow multi-layer 

structure and the associated interlayer van der Waals forces. On one hand, it is 

known that friction between adjacent tubes in MWNTs is so low that the 

adjacent tubes could easily slide to each other [18, 104, 105]. On the other hand, 

although the van der Waals repulsive forces resist any reduction of interlayer 

spacing between adjacent tubes in MWNTs, it is not clear whether the 

magnitude o f the repulsive forces in CNTs is so strong that the change in 

interlayer spacing in MWNTs can always be neglected even in some extreme 

cases. In spite o f this, all previous beam models, such as those mentioned above, 

have ignored interlayer radial displacements in MWNTs and treated a MWNT
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as a single-elastic beam. The previous work based on single-beam model [37, 

55, 88, 90] assumes that all originally concentric tubes of a MWNT remain 

coaxial during deformation and thus can be described by a single deflection 

curve. In reality, however, individual tubes of a MWNT could deform 

individually with non-zero interlayer radial displacements, while their 

individual deformations are coupled through the interlayer van der Waals 

interaction.

2.3.1 Interlayer van der Waals Forces and the Interaction 

Coefficient

The van der Waals interaction energy potential, as a function o f the 

interlayer spacing between two adjacent tubes, can be estimated by the 

Lennard-Jones model [106]. In view of the linearized analysis, the van der 

Waals interaction pressure at any given point between two adjacent tubes 

should be a linear function of the deflection jump at that point. On the other 

hand, because the resultant interaction pressure, or its energy potential, is 

defined per unit axial length, it should be proportional to the circumferential 

dimension (for instance, the inner radius) o f the adjacent tubes.

Thus one can assume that the interaction energy potential per unit axial 

length between any two adjacent tubes is 2Rig(8), where g(8) is a universal 

function of the intertube spacing 8, and the R; is the inner radius. Note that the 

radii of nanotubes are usually not smaller than 0.5nm [107], g(S) can be well 

estimated by using the energy potential per unit area between two flat graphite

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ELASTIC BEAM MODELS FOR MULTIWALL CARBON NANQTUBES 

sheets, as given by Girifalco and Lad [106]. In doing so, the resultant

interaction pressure (from both sides) between any two adjacent tubes of the

inner radius R, is given by

P = 2R,^dS
+ cf(Aw), c.

S=Sa

(2.8)
s=sa

where 80 is the initial interlayer spacing, (Aw) is the deflection jump due to any 

deflection, and all higher order terms have been neglected because the present 

analysis is linearized in nature. For the present study, the initial interlayer 

spacing (about 0.34nm) is equal or very close to the equilibrium interlayer 

spacing at which dg/d5=0 [106], then the first term o f Eq. (2.8) vanishes.

According to the data given in Girifalco and Lad [106], the coefficient 

o f interaction pressure can be estimated

200(2R.)erg /cm 2
c .  — ......   '  *— —  ,</ = 0.142#wn (2.9)

0.16d

where Rj is the radius of the j  nanotube. A slightly different approximate value 

of the interaction coefficient can be obtained using the data given in a more 

recent work [108] for a specific group o f DWNTs o f very small radii, in which 

the curvature effect of CNTs is considered. According to the data given in Saito 

et al. [108], the coefficient o f interaction pressure can be estimated (see Fig.
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2.3)

320(2R )erg / cm2
c . = ------------     ,d  = 0A42nm (2.10)

0.16 d 2 V ’

Throughout this dissertation, both interaction coefficients will be used. 

Evidently, a small difference in the interaction coefficient will not cause any 

significant consequences to the final results.

2.3.2 Multiple-Euler-Beam Model

The single-elastic beam model widely used in the literature [21, 37, 38, 

55, 88, 90] assumes that all nested individual tubes of a MWNT remain coaxial 

during deformation and thus can be described by a single deflection curve. Such 

a model cannot be used to describe interlayer displacement o f MWNTs. For this 

reason, a multiple-Euler-beam model has been developed in [67] to study 

column buckling of MWNTs embedded within an elastic medium and 

successfully used to study vibration [70, 71] o f MWNTs and sound wave 

speeds [72] in MWNTs. In addition, unlike the single-elastic beam model [37, 

55, 88, 90] which assumes that all originally concentric tubes o f a MWNT 

remain exactly coaxial during vibration and thus can be described by a single 

deflection curve, the present analysis considers interlayer radial displacements 

within the MWNT and assumes that each individual tube o f MWNTs has an 

individual deflection curve which is not necessarily coincident with the
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deflection curves of other nested tubes o f the MWNT. Thus, in a multiple- 

Euler-beam model, each of the nested, originally concentric nanotubes o f a 

MWNT is described as an individual elastic Euler-beam, and the deflections of 

all nested tubes are coupled through the van der Waals interaction between any 

two adjacent tubes (Fig. 2.2). Since all nested tubes o f a MWNT are originally 

concentric and the van der Waals interaction is determined by the interlayer 

spacing, the net van der Waals interaction pressure remains zero for each of the 

tubes provided they deform coaxially. Thus, for small-deflection linear 

problems, the interaction pressure at any point between any two adjacent tubes 

linearly depends on the difference of their deflections at that point. Thus, N 

nested tubes o f an embedded N-wall CNT is described by the following N 

coupled equations [67, 70-72]

i ,  52

r 1 r d 4W7 , 8 2W0c2[w3 - w 2] - c j w 2 - w l] = EI2— j L + pA2
dx dt2

(2 .11)

Pm~P(AM) [wN
d4w M „ d 2wN 

w<N-n] = EIN ^ r ^  + PANdx4 dt2

where x is the axial coordinate, t is time, wj(x, t) (j= l,2 ,.. .N) is the deflection of 

the j tube, Ij and Aj (j= l,2 ,.. .N) are the moment o f inertia and the area o f the 

cross-section, the subscripts 1, 2, ... N  denote the quantities o f the innermost

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ELASTIC BEAM MODELS FOR MULTIWALL CARBON NANOTUBES

tube, its adjacent tube, and the outermost tube, respectively, and the two tubes 

have the same Young’s modulus E and the mass density p per unit volume. The 

interaction coefficients Cj can be calculated by Eq (2.9) or (2.10). In addition, 

the pressure pm per unit axial length, acting on the outermost tube due to the 

surrounding elastic medium, can be described by a Winkler-like model (Eq 2.4)

2.3.2 Multiple-Timoshenko-Beam Model

Many proposed applications and designs o f CNTs, however, are 

involved with short CNTs of aspect ratio down to 10, or periodically supported 

CNTs with finite spans. For short CNTs, as will be shown Chapter 3, non

coaxial intertube vibration of MWNTs will be excited at ultrahigh frequencies 

at which the characteristic wavelength of vibrational modes is just a few times 

the outermost diameter o f MWNTs. In this case, rotary inertia and shear 

deformation, which are ignored in the classical Euler-beam model, would 

become substantial for vibration of elastic beams when the characteristic 

wavelength is just a few times the diameter of their cross-section. For this 

reason, a multiple-Timoshenko-beam Model has been developed in [74] to 

study vibration of MWNTs. Thus, all nanotubes o f MWNTs are modeled as a 

Timoshenko-beam, instead of classical Euler-beam. It is known that the total 

deflection w(x,t) o f a Timoshenko-beam, and the slope cp(x, t) of the beam due 

to bending deformation alone are determined by the following two coupled 

equations [79, 109-111]
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where x is the axial coordinate, t is time, I and A are the moment o f inertia and 

the area of the cross-section of the beam, p is the distributed pressure per unit 

axial length, E and G are Young’s modulus and shear modulus, respectively, p 

is the mass density per unit volume, and K is the so-called shear coefficient 

which is about 0.6 ~ 0.7 for thin-walled circular cross-sections and 0.9 for solid 

circular cross-sections [110, 111].

Let us apply equations (2.12) to all tubes o f a MWNT. Thus, multiple- 

Timoshenko-beam model o f a N wall CNT, of length L and outer diameter d 

(Fig. 2.1), is described by the following equations

KAG((p
(2 .12)

(2.13)
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where wj(x, t) and cpj(x, t) (j= l,2 ,.. .N) are the total deflection and the slope due 

to bending of the j th nanotube, Ij and Aj are the moment of inertia and the area of 

the cross-section of the j th tube, here the 1, 2, ... N denote the quantities o f the 

innermost tube, its adjacent tube, and the outermost tube, respectively, and the 

interaction coefficients Cj can be calculated by Eq (2.9) or (2.10).
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Fig. 2.1. (Top) Schematic o f a cantilevered CNT with a free end. The CNT of 

length L is subjected to a point load P at x=a, (Bottom) The dependence of 

force constant (P/y) on position x (dot: experiment, solid line: results given by 

Euler-beam) [38]
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van der Waals Interaction

L

Fig. 2.2. Schematic of a MWNT under intertube van der Waals interaction.
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Fig. 2.3. The potential energy of the van der Waals potential per carbon atom 

plotted as a function o f the interlayer spacing [108],
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Chapter 3 

Vibration of MWNTs 
Modeled as Euler-Beams

3.1 Introduction

The single-elastic beam model, which ignores non-coaxial intertube 

radial displacements and the related internal degrees o f freedom, has been 

widely used to study static and dynamic behavior of MWNTs [21, 37, 38, 42, 

55, 90, 112]. However, in many proposed designs o f SWNT or MWNT-based 

electronics and nanodevices, CNT are often supported periodically [9-12, 19]. 

In some other applications, such as nanotweezers [17] and AFM tips[15, 20, 34], 

shorter CNTs are preferred to prevent undesirable kinking and buckling. 

Therefore, vibrational behavior o f CNTs of smaller aspect ratios, or embedded 

in an elastic medium are o f both practical and theoretical interest. In theses 

cases, it is anticipated that intertube radial displacements o f MWNTs, which are 

completely ignored by the existing single-elastic beam model, would come to 

play a significant role and give rise to complicated intertube resonant 

frequencies and non-coaxial vibrational modes (defined by substantially non

coincident axes o f the nested nanotubes). Although the intertube vibration 

would unlikely affect overall deflection of the outermost tube of MWNTs, it 

will inevitably cause internal non-coaxial deformation and distort the otherwise
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concentric geometry of MWNTs. Especially, because each o f the nested tubes 

o f a MWNT could have different electronic properties than the others, non

coaxial distortion could significantly affect some important physical (electronic 

[113-120] and optical [121, 122]) properties o f MWNTs. Hence, it is relevant to 

study when vibration of MWNTs becomes substantially non-coaxial. In this 

chapter, using a multiple-Euler-beam model, intertube vibration of MWNTs is 

presented with an emphasis on the role o f van der Waals force.

3.2 Non-Coaxial Vibration of MWNTs

3.2.1 Resonant Frequencies and Vibrational Modes of a Double- 

Wall CNT (DWNT)

To clearly demonstrate essential concepts of non-coaxial vibration of 

MWNTs, let us first consider a DWNT [70, 108, 123, 124] o f length L without 

surrounding medium (Fig 3.1). Applying Eq. (2.11) to each of the two 

concentric tubes, the multiple-beam model gives the equations for vibration o f a 

DWNT as [70]

d4wx d2wx
c[w2 - w x] = E Ix— f  + pAx— ±- 

ox dt

■c[w2 -w ,]  = E l .
d4w2
dx4

+ p A d2w2
dt2

(3.1)

where, Young’s modulus E = lTPa and the mass density p=1.3g/cm3. (Here, it 

should be mentioned that a mass density p=1.3g/cm3, based on a definition
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[p724, [94]], has been used in Chapter 3 and 4 [70-72].) It is seen from (3.1) 

that vibration of the inner tube is coupled with vibration of the outer tube 

through the van der Waals interaction. Equation (3.1) is mathematically similar 

to the governing equations for vibration of an elastically connected double

beam system [125], or coupled harmonic oscillators [126, 127]. Here, let us 

consider the case in which the inner and outer nanotubes have the same end 

conditions. Thus, the inner and outer tubes share the same vibrational mode 

Y(x) determined by

= X'Y (X) (3.2)
dx

with the given end conditions. The value X and the associated mode Y(x) are 

determined as the eigenvalue and associated eigenfunction o f (3.2) with the 

given end conditions. For instance, for fixed end conditions, the first three 

eigenvalues of (3.2) are 7]L=4.73, 72L=7.85, 73L=10.996. For cantilever end 

conditions, 7,^=1.875, 72L=4.694, 73L=7.855 [79, 80]. Thus, for the n-order 

vibrational mode Yn(x) (n=l,2..., defined by the eigenfunction associated with 

the n-th eigenvalue of (3.2)), the ffequency-equation can be obtained by 

substituting Wi =aielcot Yn (x), w2 =a2e'rat Yn(x) to (3.1), where ai and a2 represent 

the amplitudes of the inner and the outer tubes, respectively, and oo is the 

(circular) frequency. It turns out that, in contrast to the only n-order resonance 

frequency (2.5) given by the single-beam model [37, 55, 91, 103], the multiple- 

beam model [70] predicts two n-order resonant (circular) frequencies as
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(3.3)

where

El X+c El X+c
a n = — ^  +  — 2— z  >

M  pA2
> 4 w ,

(3.4)

Here, the subscript 1 stands for the lowest (natural) n-order resonant frequency, 

in order to distinguish it from other n-order intertube resonant frequency 

characterized by substantially non-coaxial vibrational modes. For each of the 

resonant frequencies, the associated amplitude ratio of vibrational modes of the 

inner to the outer tubes is

a2 c c

Here, it should be stated that the present work is limited to infinitesimal 

vibration. Therefore, as usual, nonlinear large deflection effects are not taken 

into account.
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♦ Resonant Frequency of a Fixed CNT

For a periodically supported MWNT, it is reasonable to assume that the 

deflection and the slope are zero at the supporters due to the symmetry. Thus, 

let us consider a fixed DWNT. For instance, assume that the inner and the outer 

diameters are 0.7 and 1.4 nm, respectively [70, 108, 123, 124], Thus, the two n- 

order resonant frequencies given by Eq. (3.3), for n=l-5, are listed in Table 3-1 

for several smaller aspect ratios.

Mode (n)

L/Dout 1 2 3 4 5

©nl

10 14 38 72 106 141

20 3.5 10 19 31 46

50 0.6 1.6 3.1 5.1 7.5

© n 2

10 103 107 123 162 225

20 102 102 103 105 110

50 102 102 102 102 102

Table 3.1 Resonant frequencies (1011 Flz) o f a fixed DWNT (with the inner 

diameter 0.7 and the outer diameter 1.4nm)

It is found from Table 3.1 that:

1) The natural n-order resonant frequency coni is always close to that given by 

the single-beam model (2.5), with a relative error less than 1% for n= l, and less 

than 25% for n=5.
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2) The intertube n-order resonant frequency G)n2, about 10 THz, is insensitive to 

the mode number n, and is much higher than the lowest natural frequency ©n 

for larger aspect ratios. Therefore, the single-beam model is accurate for coaxial 

vibrations o f DWNTs of larger aspect ratios at relatively lower frequencies, 

such as studied in [37, 55, 91, 103].

3) For shorter DWNT, however, the lowest non-coaxial resonant frequencies 

©n2 are comparable to the first few higher natural frequencies.

For example, for aspect ratio 10 (for which the beam model is adequate), the 

first few intertube frequencies ©n2 (for n=l, 2, 3, 4 or 5) are around 10 THz, 

comparable to the 3rd-order natural frequency ©3i= 7.17 THz, and 4th-order 

natural frequency ©41= 10.6 THz. In this case, the non-coaxial intertube 

resonant frequencies and the associated non-coaxial vibrational modes will be 

excited at the higher natural frequencies.

♦ Resonant Frequency of a Cantilever CNT

Shorter cantilever MWNTs are used in some nanodevices (such as 

nanotweezers and AFM tips [15, 17, 20, 34], Here, the first few resonant 

frequencies o f a shorter cantilever DWNT are listed in Table 3.2. It is seen from 

Tables 3.1 and 3.2 that all conclusions obtained for fixed DWNTs remain 

qualitatively true for cantilever DWNTs. In particular, the lowest intertube 

resonant frequencies are almost the same in the two cases, indicating that they 

are insensitive to the end conditions.
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Mode (n)

L/Dout 1 2 3 4 5

® nl

10 2 14 38 72 106

20 0.6 3.5 10 19 31

50 0.1 0.6 1.6 3.1 5.1

®n2

10 102 103 107 123 162

20 102 102 102 103 105

50 102 102 102 102 102

Table 3.2 Resonant frequencies (1011 Hz) o f a cantilever DWNT (with the inner 

diameter 0.7 and the outer diameter 1.4nm)

♦ Amplitude Ratio

For both fixed and cantilever DWNTs, the amplitude ratio ai/a2 of the 

inner to the outer tubes for the natural frequency coni is always close to unity, 

indicating that the associated vibrational modes are almost coaxial. On the other 

hand, the amplitude ratio ai/a2 for the intertube resonant frequency o)n2 is about 

- 2, indicating that the deflection o f the inner tube is opposite to the deflection 

of the outer tube and thus the associated vibrational mode will distort otherwise 

concentric geometry of DWNTs. Since the concentric structure is the 

geometrical characteristic o f MWNTs, such a non-coaxial intertube vibration 

would crucially affect some of their important physical properties.
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3.2.2 Resonant Frequencies and Vibrational Modes of a 5-Wall 

CNT

Further, let us consider a five-wall CNT with the innermost diameter 0.7 

nm, and the outermost diameter 3.5nm. In this case, the equations (2.11) with 

N=5 lead to five coupled equations.

r , d 4w. , d 2w. 
cx[w2 -  w,] = EIX ——  + pAx —~r , 

dx dt
r , r , d 4Wj , d 2w2

c2[w3 -  w2] -  cx[w2 -  wx] = EI2 + pA2 — — ,
dx dt

r T r n d 4wx J d 2w,c,[w4 - w 3] - c 2[ w , - w 2] = EI3— T - + pA3—r i i-, (3.6)
dx dt

r n r  d^W. , <72W.
c4K  -  w4] - c3[w4 -  w3] = E I4——  + pA4 — i- ,

ax dt
d 4ws d 2ws

- C4[Wl- W4] - £ f 5_  + A<J_

For each of the vibrational modes Yn(x) (n=l,2...) determined by (3.2), the 

frequency-equation can be obtained by substituting wj =aj e1(0tYn(x) (j=1,2,3,4,5) 

into (3.6). It turns out that, the 5-wall CNT has five resonance frequencies 

(Dni (lowest) < con2 < ©n3 < tfln4 < ©n5(highest), in contrast to the single 

resonance frequency given by the single-beam model (2.5).

For example, for fixed end conditions, all five resonant frequencies for 

n=l-5 are shown in Table 3.3.
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Mode ( n )

L/Dout 1 2 3 4 5

® nl

10 4.9 13.4 25.5 38.9 50.5

20 1.2 3.4 6.6 10.9 16.1

50 0.2 0.5 1.1 1.8 2.6

©n2

10 53 54 57 65 80

20 53 53 53 53 54

50 53 53 53 53 53

©n3

10 90 91 93 97 106

20 90 90 91 91 91

50 90 90 90 90 90

C0n4

10 122 122 123 127 133

20 121 121 122 122 122

50 121 121 121 121 121

©n5

10 145 145 147 150 157

20 145 145 145 145 145

50 145 145 145 145 145

Table 3.3 Resonant frequencies (1011 Hz) o f a fixed DWNT (with the inner 

diameter 0.7 and the outer diameter 1.4nm)

It is seen that all results obtained for DWNTs remain qualitatively true for the 

5-wall CNT, while the lowest intertube resonant frequency now decreases to

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



VIBRATION OF MWNTS MODELED AS EULER-BEAMS

5.25 THz. Again, it confirms that the single-beam model is relevant to coaxial 

vibrations o f MWNTs of larger aspect ratios at relatively lower frequencies [37, 

55, 91], and non-coaxial vibrations occur only at much higher frequencies. Here, 

four non-coaxial intertube vibrational modes are shown in Fig.3.2. It is seen 

that the intertube vibration causes complex non-coaxial distortion of the 

MWNT. In particular, non-coaxial vibration could occur inside a MWNT even 

without significant deflection of the outermost tube. Of course, the jump of the 

deflection between any two adjacent tubes is bounded by the initial intertube 

spacing (about 0.34nm). This is not a problem for small deflection linear 

vibrations studied here.

3.3 The Effect of a Surrounding Elastic Medium on

Vibration of MWNT

In many proposed applications and designs, however, CNTs are often 

embedded in another elastic medium [23, 25-27, 128, 129]. Therefore, 

vibrational behavior o f CNTs o f embedded in an elastic medium are of both 

practical and theoretical interest.

Transverse vibration of N nested tubes o f an embedded N-wall CNT 

(Fig. 3-3) is described by the N coupled equations (2.11), where, Young’s 

modulus E = lTPa and the mass density p=1.3g/cm3. In addition, the pressure 

pm per unit axial length, acting on the outermost tube due to the surrounding 

elastic medium, can be described by a Winkler-like model (2.4), and k is a
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constant determined by the material constants o f the elastic medium, the 

outermost diameter of the embedded MWNT, and the wavelength of vibrational 

modes. It is known [101, 130] that the simple model (2.4) is especially relevant 

if  the constant k is allowed to be dependent on the wavelength. For example, for 

an elastic medium (such as polymers) o f a Young’s modulus of 2GPa [23], the 

dependency of k on the mode number n (defined later) is shown in Fig. 3.4. 

([101], Eqs. (53, 54)). For the present analysis, the parameter (mid/2L) is 

between 0.03 and 0.5. It is seen that the constant k almost linearly increases 

with the mode number n in this range. On the other hand, because k is 

proportional to the Young’s modulus of the surrounding elastic medium, the 

value of k for other Young’s modulus can be easily obtained from Fig. 3.4. 

Finally, it should be stated that the model (2.4) can be employed to describe not 

only a MWNT embedded in an elastic medium, but also a MWNT embedded 

within an elastic thin film, or within a CNT-sheet, or within a CNT-rope. 

Therefore, vibration of MWNTs held by an elastic constraint described by (2.4) 

is o f great practical and theoretical interest.

3.3.1 Resonant Frequencies and Vibrational Modes of a DWNT

To clearly demonstrate essential ideas o f intertube vibration of an 

embedded MWNT, let us first consider a DWNT of length L, as shown in Fig. 

3.3. For a DWNT, the equations are given by (2.11) with N=2 as follows
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r d 2w x

c ,[w 2 - w l] =  EIl — r  + pAl — r ,
uX Ctt sn

r4 t2 V ' /
; r i  v r  d  W 2 , a d  w 2-kw 2 — c , [w 2 - w ,] =  EI2——  + pA2 — y -

ax at

The two n-order resonant frequencies and the associated amplitude ratio o f the 

inner to the outer tubes are given by

<  2

®»2 = + >/a « - 4M ’ (3-8)

=  1 + ^ 2^1  _  +  A
a 2 c, q  Cj

where

P4 P 4

p p 1̂ 2 p M

(3.9)

Here, a>nl is the lower n-order resonant frequency and 0)n2 is the higher n-order 

resonant frequency, and the spring constant k may depend on the mode number 

n.

For the sake o f comparison, the n-order resonant frequency o f a MWNT, 

embedded in an elastic medium characterized by the spring constant k, given by
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the single-beam model (2.6) is denoted by

I 4 E l  + k
< o  = (3' 10)(PA)

where I and A are the total moment of inertia and the total cross-sectional area 

of MWNT. Thus, 1=11+I2 and A=A, +A2 for a DWNT.

If the parameter C! is so large that

Cl » 1, ^ - » 1  (3.11)
K .E I

it can be verified that the jump of the deflections between any two adjacent 

tubes is negligible, and thus the lower n-order resonant frequency coni given by

(3.8) reduces to (3.10) given by the single-elastic beam model. In this case, the 

higher n-order intertube resonant frequency a)n2 given by (3.10) reduces to

For example, for a fixed DWNT with the inner diameter 0.7 nm and the 

outer diameter d=1.4 nm [70, 108, 123, 124], the two resonant frequencies conj 

given by (3.8) for n= l, 2, 3 and j= 1,2 are shown in Fig. 3.5. for different aspect 

ratios, mode number n, and spring constant k. Similar results for a cantilever 

DWNT are given in Fig. 3.6 . It is found that
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1) When the spring constant k is smaller than the interaction coefficient Ci (such 

as a polymer medium [23]), the lower n-order resonant frequency coni given by

(3.8) is close to the natural frequency oon0 given by the single-beam model 

(3.10). The relative error is less than 2% for n=T, and less than 10% for n=3. In 

this case, the lower resonant frequencies coni can be estimated by the single

beam model (3.10).

2) However, as the ratio kJc\ is bigger than unity and approaches 100, the lower 

resonant frequency coni tends to 6.6 THz for n=l, to 7 THz for n=2, and to 8.1 

THz for n=3 with the fixed end condition, and to 6.56 THz for n=l, to 6.61 THz 

for n=2, and to 7 THz for n=3 with the cantilever end condition. In these cases, 

the lower resonant frequency co„i is almost one order o f magnitude lower than 

the frequency oon0 given by the single-beam model. Therefore, the single-beam 

model fails to predict the lower n-order resonant frequency.

3) When the spring constant k is much lower than the interaction coefficient Ci 

(say, k/ci< 0.1), the higher n-order intertube resonant frequency a>n2 (for 

n=l,2,3) is insensitive to the mode number, the aspect ratio, and the end 

condition. The intertube resonant frequency ®n2 is always above 1 THz, and 

thus much higher than the lowest resonant frequency ©n for large aspect ratios 

(say L/d>50). However, for smaller aspect ratios (say L/d=10, see [15, 17] for 

application o f MWNTs o f small aspect ratio, and [20] for recent progress in 

MWNTs o f small aspect ratio as AFM tip), the first few intertube resonant 

frequencies <an2 are comparable to the 3-order resonant frequency g)31 and the 3- 

order natural frequency g)30 given by the single-beam model (3.10). For
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example, for a fixed DWNT of aspect ratio 10 and k/ci = 0.001, the first three 

intertube resonant frequencies ©n2 (n=l,2,3) are 8.1 THz, 8.7 THz, and 11 THz, 

comparable to the 3-order natural frequency ft)30= 6.9 THz.

4) However, as the ratio k/cj is larger than unity and approaches 100, the higher 

n-order intertube resonant frequency con2 rapidly goes up. The ratio con2/©no 

converges to 1.23 (n=l,2,3). In this case, the frequency given by the single

beam model (3.10) is close to the higher n-order resonant frequency con2, rather 

than the lower one con]. This is due to the fact that the intertube interaction is 

much weaker than the constraint of the surrounding elastic medium.

5) When the spring constant k is much lower than the interaction coefficient Ci 

(say, k/ci< 0.1), the amplitude ratio ai/a2 of the inner to the outer tubes for the 

lower n-order resonant frequency oonl is found to be very close to unity, which 

indicates that the associated resonant mode is almost coaxial and close to that 

given by the single-beam model. However, as the ratio k/ci increases, the 

amplitude ratio ai/a2 for the lower n-order resonant frequency conl is no longer 

close to unity. On the other hand, when the spring constant k is much smaller 

than Ci, the amplitude ratio ai/a2 for the higher n-order intertube resonant 

frequency con2 is found to be always negative, which indicates that the 

deflection o f the inner tube is opposite to the deflection of the outer tube, and 

thus the associated intertube resonant mode is substantially non-coaxial. As the 

ratio k/ci increases, the amplitude ratio ai/a2 for the higher n-order intertube 

resonant frequency con2 goes to zero. For instance, for a fixed DWNT o f aspect 

ratio 10 and k/ci = 100, ai/a2 is about -0.02. This implies that the amplitude of
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the outer tube is much bigger than the amplitude of the inner tube, because the 

intertube interaction is so weak that the inner tube is almost disconnected from 

the outer tube.

3.3.2 Resonant Frequencies and Vibrational Modes of a 5-wall 

CNT

Further, let us consider a 5-wall CNT with the innermost diameter 0.7 

and the outermost diameter Dout = 3.5nm. Thus, the 5-wall CNT has five 

resonance frequencies conl(lowest) < C0n2< a)n3 < (on4 < con5(highest), in similar 

to two different resonance frequencies o f the DWNT. The five n-order resonant 

frequencies co„j for n=l, 2, 3 and j=l,2,..,5 are shown in Fig. 3.7-3.10 for 

different aspect ratios, end conditions, mode number n, and spring constant k. It 

is found that

1) When the spring constant k is much smaller than the interaction coefficient c4 

(say, k/c4< 0.1), the lowest n-order resonant frequency (on, is close to that given 

by the single-beam model (3.10). This relative error is less than 4% for n= l, and 

less than 9% for n=3. In this case, the lowest n-order resonant frequency coni 

can be estimated satisfactorily by the single-beam model (3.10).

2) However, as k/c4 increases and approaches 100, the lowest n-order resonant 

frequency coni tends to 2.93 THz for n= l, to 3.03 THz for n=2, and to 3.31 THz 

for n=3 with the fixed end condition, and to 2.92 THz for n= l, to 2.93 THz for 

n=2, and to 3.03 THz for n=3 with the cantilever end condition. In particular, 

the lowest resonant frequency conl is about one order of magnitude smaller than
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the frequency con0 given by the single-beam model (3.10).

3) When the spring constant k is much smaller than the interaction coefficient c4 

(say, k/c4< 0.1), the highest n-order intertube resonant frequency con5is always 

above 10 THz, and thus much higher than the lowest n-order resonant 

frequency o v . However, as k/c4 increases and approaches 100, the ratio o f the 

highest n-order intertube frequency con5 to the frequency fon0 given by single

beam model tends to 1.74 (for n=l,2,3). It is anticipated that the number 1.74 is 

determined by the number o f the nested tubes and their radii.

4) When the spring constant k is much smaller than the interaction coefficient c4 

(say, k/c4< 0.1), the amplitude ratio aj/a5 (j=T ,2,3,4) o f the inner to the 

outermost tubes for the lowest n-order resonant frequency coni is found to be 

very close to unity, which indicates that the associated resonant mode is almost 

coaxial, see Figs. 3.11. and 3.12. However, as the ratio k/c4 increases, the 

amplitude ratios aj/a5, a2/a5, a3/a5, and a4/a5 for the lowest n-order resonant 

frequency coni are no longer close to unity. For instance, for a fixed 5-wall CNT 

o f aspect ratio 10 and k/c4 = 1, ai/a5, a2/a5, a3/a5, and a4/a5 are 3.87, 3.36, 2.66, 

and 1.84, respectively, see Figs. 3.13 and 3.14. This means that the deflections 

o f the five tubes are no longer coaxial, although they are o f the same sign.

5) On the other hand, the amplitude ratios for the higher n-order intertube 

resonant frequencies ©n2, con3, ©n4> and co^, are found to have different signs, 

which indicates that the deflections o f the some tube are opposite to the 

deflections of the others, and thus the associated vibrational mode is 

substantially non-coaxial, see Figs. 3.11-3.14. Clearly, such non-coaxial
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vibrational modes will inevitably distort concentric internal structure of 

MWNTs, and thus significantly alter some of their important physical properties.

3.4 Summary

Internal vibration o f MWNTs is studied using the multiple-Euler-beam 

model, which considers the intertube radial displacements and the associated 

internal degrees of freedom of MWNTs. The first few non-coaxial resonant 

frequencies are found to be insensitive to vibrational modes, length o f MWNTs, 

and the end conditions, while they decrease with the number of nested layers. 

When the surrounding elastic medium is very compliant (such as polymers), the 

lowest resonant frequency predicted by the present model is almost coincident 

with the lowest natural frequency given by the existing single-beam model, 

while other new intertube resonant frequencies predicted by the present model 

are much higher than the lowest natural frequency given by the single-beam 

model. For smaller aspect ratios and radii, these non-coaxial intertube resonant 

frequencies are found to be comparable to the first few higher natural 

frequencies given by the single-beam model. This implies that internal non

coaxial resonance will be excited at the higher natural frequencies, and thus 

MWNTs cannot maintain their concentric structure at ultrahigh frequencies. As 

a result, non-coaxial intertube vibration will distort the otherwise concentric 

geometry of MWNTs, and thus crucially alter some o f their important physical 

properties. In particular, because the first few intertube resonant frequencies fall 

into a very narrow range, their non-coaxial vibrational modes would be excited
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simultaneously. These results predicted by a simple linear multiple-Euler-beam

model [70, 71] are found to well agree with recent molecular simulations [95,

96] on non-coaxial vibration of MWNTs. Non-coaxial vibration is clearly

observed by their molecular structural mechanics simulation (Fig. 3.15, (e)).
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Fig. 3.1. Non-coaxial vibration of a DWNT

%

Fig 3.2. Four non-coaxial intertube vibrational modes of a fixed 5-wall CNT
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L

Fig. 3.3. Vibration of a MWNT embedded within an elastic medium 

characterized by a spring constant k.

k(GPa)
10

 (54) of [41

 p3) of {41
8

8

4

2

0
0 0.40.2

Fig. 3.4. Dependency of the spring constant k  on the parameter (nrcd/2L) (with 

Young’s modulus E = 2GPa, Poisson ratio v = 0.35, d = the outermost diameter, 

n = mode number).
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Fixed (n=1)

0.5 -

-0.5

Fixed (n=2)

0.5 -

-0.5

Fixed (n=3)
Log(G>nj /©30)

0.5 -

-0.5 -

Log(k/c,)

Fig. 3.5. DWNT frequencies against the spring constant k  for fixed end 

condition (with the inner diameter 0.7 nm and the outer diameter 1.4 nm).
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Cantilever (n=1)

Log(conj/co10)

0.5

-0.5

Cantilever (n=2)

0.5

-0.5

Log(k/c,)

Cantilever (n=3)

0.5 -

-0.5

Fig. 3.6. DWNT frequencies against the spring constant k  for cantilever end 

condition (with the inner diameter 0.7 nm and the outer diameter 1.4 nm).
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Fixed (L/d=10; n=1

Log((Onj / co10)

0.5
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Fixed (L/d=10; n=2)

Log(conj / ©20)

0.5 a-

-0.5

-1.5 4-

Fixed (L/d=10; n=3)

0.5 i t

-0.5 —

-1.5 4-

Fig. 3.7. 5-wall CNT frequencies against the spring constant k  for fixed end 

condition (with the innermost diameter 0.7 nm and the outermost diameter 3.5 

nm, andL /d=  10).
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Fixed (L/d=50; n=1)

0.5

-0.5

Fixed (L/d=50; n=2)

0.5 -

-0.5 -

-1.5

Fixed (L/d=50; n=3)

0.5

-0.5

- 1.5

Fig. 3.8. 5-wall CNT frequencies against the spring constant k for fixed end 

condition (with the innermost diameter 0.7 nm and the outermost diameter 3.5 

nm, and L/d = 50).
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Cantilever (L/d=10; n=1)

0.5

- 0.5  -

Cantilever (L/d=10; n=2)
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- 0.5  -

- 1.5

Cantilever (L/d=10; n=3)

Log(0Jnj / co30)

0.5  E J-

- 0.5  -

- 1.5

Fig. 3.9. 5-wall CNT frequencies against the spring constant k for cantilever 

end condition (with the innermost diameter 0.7 nm and the outermost diameter 

3.5 nm, and L/d = 10).
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Cantilever (L/d=50; n=1)

0.5
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Cantilever (L/d=50; n=2)

0.5
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-1.5

Cantilever (L/d=50; n=3)
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Fig. 3.10. 5-wall CNT frequencies against the spring constant k for cantilever 

end condition (with the innermost diameter 0.7 nm and the outermost diameter 

3.5 nm, and L/d = 50).
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Fig. 3.11. Five intertube vibrational modes of a fixed 5-wall CNT. (with L/d 

10, k/c4 = 0.001, and n=l).
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4

Fig. 3.12. Five intertube vibrational modes o f a fixed 5-wall CNT. (with L/d = 

10, k/c4 = 1, and n=l).
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1

Fig. 3.13. Five intertube vibrational modes o f a cantilever 5-wall CNT. (with 

L/d = 10, k/c4 = 0.001, and n=l).
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'5

Fig. 3.14. Five intertube vibrational modes o f a cantilever 5-wall CNT. (with 

L/d = 10, k/c4 = 1, and n=l).
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(a) (b) (c) (d) (e)

Fig. 3.15. First five vibration modes for a DWNT given by atomistic 

simulation: Non-coaxial mode is clearly shown in (e) [96]
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Chapter 4 

Wave Propagation in MWNTs 
Modeled as Euler-Beams

4.1 Introduction

In the previous Chapter, we have studied the role o f interlayer radial 

displacements and the related internal degrees of freedom in transverse 

vibration of MWNTs. Our results reveal that the intertube radial displacements, 

which are ignored by the single-elastic beam model, come to play a crucial role 

at ultrahigh frequencies. In view of rapidly growing interest in terahertz physics 

of nanoscale materials and devices [131-135], a relevant open problem is 

terahertz sound wave propagation in MWNTs. Since prior studies of sound 

wave propagation in CNTs have been largely limited to SWNTs [78, 93, 136], 

for MWNT-based electronics, nanodevices and nanocomposites [11, 12, 17-19, 

27, 28, 137], it is crucial to understand sound wave propagation in individual 

MWNTs within terahertz range.

This chapter aims to study sound wave propagation in individual 

MWNTs. The analysis is based on a multiple-Euler-beam model [72]. The 

multiple-Euler-beam model predicts that there exist (N -l) critical frequencies 

(above terahertz) for an N-wall CNT. When the frequency is below all critical 

frequencies, vibrational mode is almost coaxial, and the associated sound speed
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is predicted satisfactorily by the existing single-elastic beam model. When the 

frequency exceeds at least one of the critical frequencies, however, non-coaxial 

vibrational modes emerge and propagate at various speeds considerably 

different than the speed predicted by the single-beam model. Hence, the single

beam model, which has been effectively used to study sound wave propagation 

in SWNTs [78, 136], fails for MWNTs at ultrahigh frequencies, and non-coaxial 

sound wave propagation comes to play a dominant role.

4.2 Non-Unique Sound Wave Speeds and the Critical 

Frequencies

4.2.1 Two Sound Wave Speeds in DWNT

To clearly demonstrate essential ideas o f non-coaxial sound wave 

propagation in MWNTs, let us first consider a DWNT with the innermost 

diameter 0.7nm. For a sinusoid propagating in an infinite DWNT, the transverse 

sound wave speed can be studied by substituting Wi=aie' (qx‘0)t), w2=a2e' (qx'wt) to

(3.1), which gives [80, 138]

c, [a2 -  ax ] = [EIxq4 -  pAxco2 ]ax,

-  cx[a2 -  ax ] = [EI2q4 -  pA1co2 ]a2

where, ai and a2 represent the amplitudes of the inner and the outer tubes, 

respectively, and q and to are the wave number and the (circular) frequency. It

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



WAVE PROPAGATION IN MWNTS MODELED AS EULER-BEAMS

turns out that DWNT can have two sound speeds, in contrast to the only sound 

speed o f DWNT given by the single-beam model [78, 136]. The two sound 

speeds and the amplitude ratio of the inner tube to the outer tube of the 

associated vibrational modes are given by

CO

V2 =

^(* + ^ 0 ^ 4 / 3  

Xflco

a x _ ^ ^ E I 2q A pco2A 2 

a , c, c,

(4.2)

where (a 2 > 40)

,PA\ a  = (——— +
Eli
2

EL
-)co2 - (

EL EL
PA2^„2 , 1 1

2

P A1A2 „ 4  „  „ 2  PiAl A2 )
e i xe i 2

)cP
(4.3)

e i xe i 2
co - q c o

In particular, it can be verified that i f  the van der Waals interaction coefficient is 

so large that the jump of the deflections between any two tubes is negligible, the 

speed Vi given by (4.2) is reduced to that given by (2.7) based on the single 

elastic beam, while the other speed v2 given by (4.2) is not real.

It can be verified that Vi given by (4.2) is always positive, while v2 is 

not real for sufficiently low frequency. Thus, there is a critical frequency above
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which both Vj and v2 given by (4.2) are positive. This critical (circular) 

frequency is sometime called “cut-off frequency” [80], given by

When the frequency is below the critical frequency (4.4), only one speed exists 

which is Vi given by (4.2). On the other hand, when the frequency is higher than 

the critical frequency (4.4), there are two different sound speeds Vi and v2 given 

by (4.2). The two sound speeds and the respective amplitude ratios o f the inner 

tube to the outer tube are given in Fig. 4.1.

It is seen from Fig. 4.1 that when the frequency is below the critical 

frequency (4.4), only one sound speed exists, and the associated vibrational 

mode of the DWNT is almost coaxial (with the amplitude ratio close to unity) 

except when the frequency is very close to the critical one. In this case, the 

unique sound speed is very close to that given by the single-beam model (2.7). 

However, once the frequency exceeds the critical frequency, a new non-coaxial 

vibrational mode emerges which propagates at a speed v2 much higher than the 

speed (2.7) given by the single-beam model. In particular, this non-coaxial 

mode is characterized by negative amplitude ratio, which indicates that the 

deflection of the outer tube is opposite to the deflection o f the inner tube. When 

the frequency is much higher than the critical frequency, the two speeds (4.2) 

predicted by the present model are significantly different from that given by the

(4.4)
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single-beam model, and their vibrational modes are substantially non-coaxial. 

Therefore, the single-beam model, which has been effectively applied to sound 

wave propagation in SWNTs [78, 136], fails for MWNTs at ultrahigh 

frequencies, and non-coaxial vibration comes to play the dominant role.

Here, it is noticed that the critical frequency (4.4) predicted by the 

present model is very close to the intertube resonant frequency of DWNTs 

predicted by [70]. In particular, similar to the latter, the critical frequency (4.4) 

predicted by the present model is insensitive to the inner radius of DWNTs. For 

instance, the critical (circular) frequency (4.6) is 8.034THz, 9.063THz, 

9.20THz, and 9.26THz, when the inner radii of the DWNT are 0.35nm, 3.5nm, 

lOnm, and 50nm, respectively.

4.2.2 Five Sound Wave Speeds in 5-wall CNT

Let us now consider a 5-wall CNT with the innermost diameter 0.7 nm, 

and the outermost diameter 3.5nm. For a sinusoid propagating in an infinite 5- 

wall CNT, the transverse sound wave speed can be studied by substituting wj 

=aje' (qx'0)t) (j=l,2...5) to (3.6), which gives

c,[a2 - a x\ = [E Ixq4 - pAxco2]a,,

C 2 K  -  « 2  ]  -  C 1 1 « 2  "  -  \ E I 2<1 ~  p A ^ C O  ] # 2 5

c3 [a4 -  a3 ] -  c2 [a3 -  a2 ] = [.El3q4 -  pA3&2 ]a3, (4.5)

c4[a5 -  a4] -  c3[a4 -  a 3] = [EI4q4 -  pA4o)2]a4,

~ c4[a5 ~ a 4] = [EIsq4 -  pA,(o2]a5
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It turns out that there exist four critical frequencies ©i < co2 < ©3 < ®4- For the

present example, the four critical (circular) frequencies are 4.14THz, 7.12THz,

9.56THz, and 11.40THz, respectively. Five sound speeds are given in Fig. 4.2,

with comparison to the speed given by the single-beam model (2.7). In addition,

the associated amplitude ratios of the four inner tubes to the outermost tube are

given in Figs. 4.3-4.7 for each of the five different sound speeds. It is seen that

when the frequency is below the lowest critical frequency, only one sound

speed is real, and the associated vibrational mode is almost coaxial except when

the frequency is very close to the critical one. In this case, the only sound speed

is very close to that given by the single-beam model. However, once the

frequency exceeds the lowest critical frequency but is still below the second

critical frequency, a new non-coaxial vibrational mode emerges (see Fig. 4.4)

which propagates at a speed much higher than the speed (2.7) given by the

single-beam model (see Fig.4.2). This non-coaxial mode is characterized by

negative amplitude ratio ai/a5, which indicates that the deflection of the

innermost tube is opposite to the deflection of the outermost tube. Furthermore,

when the frequency exceeds the second critical frequency but is still below the

third critical frequency, two non-coaxial vibrational modes exist (see Figs. 4.4

and 4.5) which propagate at two distinct speeds significantly different than the

speed (2.7) given by the single-beam model (see Fig.4.2). Similar phenomena

occur when the frequency increases and exceeds the third and the highest

critical frequency. Finally, when the frequency is higher than all four critical

frequencies, most o f the five speeds predicted by the present model are
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significantly different from that given by the single-beam model, and their 

vibrational modes are substantially non-coaxial (see Figs. 4.3-4.7). These 

results clearly show that the single-beam model fails to predict the sound speed 

and vibrational mode for MWNTs at ultrahigh frequencies, and sound wave 

propagation in MWNTs exhibits complex new phenomena and is highly non

coaxial. Therefore, sound wave propagation in MWNTs at ultrahigh frequency 

has to be described by new model (such as the present model), which accounts 

for the intertube radial displacements and the associated internal degrees of 

freedom.

4.3 The Effect of a Surrounding Elastic Medium on Wave 

Propagation

It has been seen that the critical frequencies play a crucial role in 

terahertz sound wave propagation in MWNTs. Here, let us examine the effect of 

a surrounding elastic medium on the critical frequencies of an isolated MWNT. 

For the sake of simplicity, let us consider a DWNT embedded within an elastic 

medium. In this case, the pressure p  per unit axial length, acting on the outer 

tube of the DWNT due to the surrounding elastic medium, can be described by 

a Winkler-like model (2.4). By substituting w ^ a ie 1 (qx~mt)5 w2=a2e '(qx~®l) to (3.7), 

one can find that there are two different critical frequencies. Below the lower 

critical frequency co0, no real sound speed exists. When the frequency is 

between the lower critical frequency (co0) and the higher critical frequency (coi), 

only one real sound speed exists. Finally, above the two critical frequencies,
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two real sound speeds exist. These critical frequencies ©0 and ©i can be 

determined by

ch

=

c. + k i [ P + k y

(4.6)

- { ( — +2 pAx pA2
• , ci + k ) i ( c» i Cl + k )2 Acxk

PA PAi P A  A

The dependency of the critical frequencies on the spring constant is 

shown in Fig. 4.8. It is seen that the lower critical frequency ©0 increases with 

the increasing spring constant, and is determined essentially by the surrounding 

elastic medium [80]. On the other hand, the higher critical frequency ©i is 

insensitive to the spring constant. In particular, ©0 given by (4.6) is very close 

to the critical frequency given by [80] for a single-beam surrounded by an 

elastic medium. For example, when inner radius Ri is 0.35nm, the lower critical 

frequency given by (4.6) is 0.12THz (k/c=0.001), 3.55THz (k/c=l), while that 

given by the single-beam model [80] is 0.12THz (k/c=0.001), 3.79THz (k/c=l). 

It is also seen from Fig. 4.9 that when the frequency is between the lower 

critical frequency ©0 and higher critical frequency ©i, the unique sound speed is 

very close to that given by the single-beam model [80] in the presence o f an 

elastic medium. However, above the higher critical frequency ©1? the two 

speeds predicted by the present model are significantly different from that given 

by the single-beam model.
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4.4 Summary

In summary, sound wave propagation in MWNTs is studied based on a 

multiple-Euler-beam model. It is found that there are (N-l) critical frequencies 

for an N-wall CNT. Sound wave propagation in MWNTs is essentially coaxial 

only when the frequency is much below all critical frequencies, and becomes 

substantially non-coaxial when the frequency is higher than at least one of the 

(N -l) critical frequencies. In the latter case, the sound speeds predicted by the 

present model are significantly higher or lower than that given by the existing 

single-beam model, depending not only on the frequency but also on the 

vibrational modes. In particular, when the frequency is higher than all (N-l) 

critical frequencies, N different sound speeds will exist simultaneously with 

their respective non-coaxial vibrational modes. In view o f the fact that non

coaxial vibration would crucially alter some important physical properties of 

MWNTs, it is anticipated that new physical phenomena will occur in ultrahigh- 

frequency sound wave propagation in MWNTs. Here, we would like to mention 

that recent progress in nanodevices has made it feasible or more practical to 

generate and detect vibration and wave propagation in terahertz range [131- 

134],
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Fig.4.1. DWNT wave speeds and the associated amplitude ratios
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Fig. 4.5. 5-wall CNT amplitude ratios for the speed v3
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Chapter 5 

Vibration of MWNTs 
Modeled as Timoshenko-Beams

5.1 Introduction

Many proposed applications and designs o f CNTs are involved with 

short CNTs o f aspect ratio down to 10, or periodically supported CNTs with 

finite spans. Such examples include suspended crossing CNTs with spans about 

20 nm [10], CNTs as single-electron transistors o f length down to 20 nm [22], 

MWNTs of aspect ratio around 20 (about 300 nm long and 10-20 nm in 

diameter) as electrometers [33] or building blocks in nanoelectronics [19], 

CNT-nanomechanical switches o f aspect ratio around 10 [21], and CNTs of 

aspect ratio about 10-25 as AFM tip [20, 34], Owing to the hollow structure of 

CNTs, short CNTs are preferred in many cases to prevent undesirable kinking 

and buckling. Therefore, vibrational behavior of short CNTs, say, o f aspect ratio 

between 10 and 50, is of practical significance. In this case, intertube radial 

displacements o f MWNTs, which are ignored by the existing single-elastic 

beam model [37, 38, 55,90], could come to play a significant role.

In Chapter 3, we have studied the role o f interlayer radial displacements 

in transverse vibration of MWNTs [70, 71] based on a simple linear model o f 

multiple-Euler-beams. Our results show that non-coaxial intertube vibration of
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short MWNTs will be excited at ultrahigh frequencies (above 1 THz) at which 

the characteristic wavelength of vibrational modes is just a few times the 

outermost diameter o f MWNTs. In this case, the existing single-beam model of 

coaxial vibration fails, and a more relevant model that considers non-coaxial 

intertube radial displacements o f MWNTs is required.

Another relevant issue to be clarified is the effects of rotary inertia and 

shear deformation in terahertz vibrations of short CNTs. It is well-known that 

rotary inertia and shear deformation, which are ignored in the classical Euler- 

beam model, would become substantial for vibration o f elastic beams when the 

characteristic wavelength is just a few times the diameter o f their cross-section 

[79, 109-111]. For this reason, the relevance of the classical Euler-beam model 

to short CNTs is questionable. To clarify this issue, vibration o f short DWNTs is 

studied in this Chapter based on the multiple-Timoshenko-beam model 

developed in [73, 74], instead of multiple-Euler-beams.

The major goal of this study is to identify the cases in which the Euler- 

beam model leads to substantial errors and thus the more relevant Timoshenko- 

beam model is required, and also to compare the Timoshenko-beam effects with 

the Multiple-beam effects studied in [70, 71]. To this end, detailed results are 

demonstrated based on the Timoshenko-beam model, as well as the Euler- 

beam-model. As will be shown below, the results show that the rotary inertia 

and shear deformation have a substantial effect on higher-order resonant 

frequencies (within terahertz range) o f DWNTs o f smaller aspect ratio (between 

10 and 20). Therefore, the Timoshenko-beam model, rather than the Euler-beam
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model, should be used for terahertz vibrations of short CNTs [74],

5.2 Double-Timoshenko-Beam Model for Vibration

So far, all elastic beam models used for CNTs are based on the classical 

Euler-beam model. This chapter studies vibration of short DWNTs [108, 123, 

124], based on the Timoshenko-beam model. Let us apply equations (2.13) to 

each of the inner and outer tubes of a DWNT. Thus, transverse vibration of a 

DWNT, of length L and outer diameter d, is described by the following four 

coupled equations for four unknowns Wj(x, t) and cpj(x, t) (j=l,2)

where, the two tubes have the same Young’s modulus E=TTPa and shear 

modulus G=0.4Tpa (with Poisson ratio v=0.25), with the effective thickness o f 

SWNTs, 0.3 5nm. In addition, the dependence of the shear coefficient k  on the 

radius is neglected for DWNTs, and we take k=0.8. Here, it should be 

mentioned that a mass density p=T.3g/cm3, based on a slightly different 

definition ([94] p724), has been used in our previous Chapters 2 and 3. To be 

consistent with the definitions o f the effective thickness and the Young’s

K A fi{
d2w.
d t2

ox dt (5.1)
-K A 2G(
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modulus listed above, the mass density o f graphite is used in this chapter.

5.2.1 Resonant Frequencies of DWNTs

Here, to isolate the effects of shear deformation and rotary inertia on 

resonant frequencies (rather than resonant modes), we consider the case in 

which the inner and outer tubes of the DWNT are simply supported. In this case, 

vibrational modes of the DWNT are o f the form [79, 109]

where ai and a2 represent the amplitudes o f deflections of the inner and the 

outer tubes, and bi and b2 represent the amplitudes of the slopes of the inner and 

outer tubes due to bending deformation alone, respectively. In addition, integer 

n  is the mode-number, and co is the circular frequency. Substitution o f (5.2) into

(5.1), one has

pAxco2 -k A xG(— ) 2 -  c k A f ii" - )  c 0
L L

kAtG ( ~ )  PIx(o2 - £ / , ( — ) 2 -k A xG  0 0
L L

Therefore, from this chapter, we shall use the mass density p=2.3g/cm .

0 = 1,2) (5.2)
H7JX

0

c

0

0 pA2co2 -k A M (— Y  - c

p l2 co2 — hi 2 ̂ — ) -  kA2 G 
L

a
b.

(5.3)
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Thus, the resonant frequencies are determined by the eigen-equation obtained 

by setting the determinant o f the coefficient matrix of (5.3) to zero. It is readily 

seen that for given order-number n, the present double-Timoshenko-beam 

model gives four n-order resonance frequencies, in contrast to two n-order 

resonant frequencies given by the single-Timoshenko-beam model [79], two n- 

order resonant frequencies given by the double-Euler-beam model [70, 71], and 

the single n-order resonance frequency given by the single-Euler-beam model. 

In particular, the single n-order resonant frequency given by the single-Euler- 

beam model is

f n l = y ~ *  (5'4)2 tc ( p A )

where = (mt/L) for simply supported beams

where I and A are the total moment o f inertia and the total cross-sectional area 

of MWNT. Thus, I=Ii+I2 and A=A1+A2 for a DWNT.

In what follows, the resonant frequency f=co/(27r) o f simply supported 

DWNTs is calculated based on four different elastic beam models:

(DT): the double-Timoshenko-beam (DT) model described by (5.1) which gives 

four n-order frequencies, fni< fn2< f„3< fn4;

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



VIBRATION OF MWNTS MODELED AS TIMOSHENKO-BEAMS

(DE): the double-Euler-beam (DE) model described in [70, 71] which treats 

each o f the inner and outer tubes of the DWNT as a single-Euler-beam and 

gives two n-order frequencies, fn]< fn2;

(ST): the single-Timoshenko-beam (ST) model which treats the DWNT as a 

single-Timoshenko-beam described by (2.12), with I=Ii+I2 and A=Ai+A2, and 

gives two n-order frequencies, fni< fn2;

(SE): the single-Euler-beam (SE) model, which gives the single n-order 

frequency fnl (5.4).

The n-order frequencies given by the different models are distinguished 

by (DT 1<DT2<DT3<DT4), (DEKDE2), (STKST2) or (SE), when necessary. 

All nine n-order frequencies given by the four different models are shown in 

Figs. 5.1-5.6 for a DWNT o f the inner diameter 0.7nm or 7nm and aspect ratio 

10, 20 or 50, respectively. All frequencies are shown as a function o f the mode- 

number n, from n=l to n=10, where L/doUt is the aspect ratio. It is found from 

Figs. 5.1- 5.6 that:

1) The lowest n-order frequency fni increases quickly with increasing mode- 

number n, while other higher n-order frequencies fnk (k>l) are not sensitive to 

the number n especially for n smaller than 3 or 4.

2) For all examples considered here, the four lowest first-order frequency (fn) 

given by the four different models are very close to each other and almost 

indistinguishable. For example, for DWNT of inner-diameter 0.7 nm and aspect 

ratio 10, the lowest first-order frequencies (fn) given by the four models (DT, 

DE, ST, SE) are 0.0728THz, 0.0745THz, 0.073 ITHz, and 0.0746THz,
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respectively. On the other hand, for DWNT of inner-diameter 7 nm and aspect 

ratio 10, the lowest first-order frequency (fn) given by the four models are 

0.141THz, 0.144THz, 0.141THz, and 0.144THz, respectively. In addition, the 

small differences of the lowest first-order frequencies given by the four 

different models further diminish with increasing aspect ratio o f DWNTs.

3) For the mode-number n= l, beside the lowest first-order frequency, the DT- 

model gives three higher frequencies, while the ST-model and the DE-model 

give another higher frequency, respectively. It is seen that the 2nd first-order 

frequency (fi2) given by the DT-model corresponds to the second first-order 

frequency given by the DE-model for smaller radii (Figs.5.1-5.3), and the 3rd 

first-order frequency (f13) given by the DT model is close to the second first- 

order frequency given by the ST-model for larger radii (Figs.5.4-5.6). These 

higher first-order frequencies (n=l) are characterized by substantial shear 

deformation or non-coaxial deflections o f the inner and outer tubes (as will be 

demonstrated below) and are at least one order o f magnitude higher than the 

lowest first-order frequency. Hence, if  only the single lowest resonant 

frequency (fn) is concerned, the lowest first-order frequency given by the SE 

model (5.4) for n=l is accurate enough, and any double-beam model or 

Timoshenko-beam model is not needed.

4) This conclusion remains qualitatively true even for the first few higher-order 

frequencies (n=3, 4, 5 or even higher) when the aspect ratio is larger (say, equal 

to or larger than 50). Indeed, when L/d=50, it is seen from Fig. 5.3 and Fig. 5.6 

that the four lowest n-order frequencies given by the four different models for
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the mode-number n up to 10 are very close to each other. Hence, it is concluded 

that the lowest n-order frequency fnl for n up to 10 can be estimated 

satisfactorily by the SE-model (5.4) provided that the aspect ratio o f DWNTs is 

sufficiently large (say, equal to or larger than 50).

5) However, when the aspect ratio is relatively small, say between 10 and 20, it 

is seen from Figs. 5.1, 5.2 and Figs. 5.4, 5.5 that the lowest n-order (such as n=3, 

4, or 5) frequencies fni given by the DT model, the ST model and the DE model 

are substantially lower than that given by the SE model (5.4). For example, for 

DWNT o f inner-diameter 0.7 nm and aspect ratio 10, the lowest 4th-order 

frequency (n=4) given by the four models (DT, DE, ST, SE) are 0.861THz, 

l.OOTHz, 0.940THz, and 1.19THz, respectively, and the lowest 5th-order 

frequency (n=5) given by the four models (DT, DE, ST, SE) are 1.18THz, 

1.37THz, 1.34THz, and 1.86THz, respectively. In addition, for DWNT of inner- 

diameter 7 nm and aspect ratio 10, the lowest 4th-order frequency (n=4) given 

by the four models (DT, DE, ST, SE) are 0.177THz, 0.23 ITHz, 0.178THz, and 

0.23 ITHz, respectively, and the lowest 5th-order frequency (n=5) given by the 

four models (DT, DE, ST, SE) are 0.252THz, 0.360THz, 0.252THz, and 

0.361THz, respectively. Therefore, the single-Euler-beam (SE) model (5.4), 

used widely in the literature, leads to substantial errors for the lowest n-order 

resonant frequencies fni for n> l, (such as n=3, 4 or 5) o f short DWNTs o f 

aspect ratio below 20.

6) Finally, because both the Timoshenko-beam model [79, 109-111] and the 

double-beam model [67, 70, 71] are significant only when the characteristic
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wavelength is just a few times the diameter of CNTs, it is interesting to compare 

the relative importance of the Timoshenko-beam effect and the double-beam 

effect. It is anticipated that the role of intertube displacements o f MWNTs is 

more significant for small-diameter than for large-diameter CNTs [70, 71] 

(because the amplitude of the intertube radial displacements is of the order of 

magnitude of the intertube spacing, they are significant only compared to the 

deflections o f small-diameter CNTs, but not to the deflections o f large-diameter 

CNTs). Indeed, it is seen from Figs 5.1 and 5.2 that the lowest n-order 

frequencies fnl (for n>l) given by the double-beam models (DT and DE) for 

small-diameter DWNTs are significantly different from those given by the 

single-beam models (ST, SE). For larger-diameter DWNTs, however, it is seen 

from Figs. 5.4 and 5.5 that the double-beam models (DT) and (DE) give almost 

the same lowest n-order frequencies fn] (for n> l) as those given by the single

beam models (ST, SE). On the other hand, the effects o f the Timoshenko-beam 

are significant for all DWNTs of smaller aspect ratio (Figs. 5.1-5.2 and 5.4-5.5), 

regardless o f their radii. Therefore, it is concluded that both the Timoshenko- 

beam effects and the double-beam effects are significant for CNTs o f smaller 

aspect ratio (around or below 20), while the double-beam effects are further 

restricted to small-diameter DWNTs. Despite this, because the radii o f 

DWNTs are usually small (with inner diameter 0.6~0.9nm, and outer diameter 

1.3~1.6nm. see [108, 123, 124]), the double-beam effects are significant for 

short DWNTs.
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5.2.2 Shear Deformation and Non-Coaxial Deflections

Let us now discuss the effects of the Timoshenko-beam model, as well as 

the double-beam model, on the deflection curves o f DWNTs. The contribution 

o f shear deformation to the total deflection slope is defined by

/) dY tTTUC /c c\6 - q ) -------= ye cos  (5.5)
dx L

where y represents the amplitude of shear deformation. Obviously, for the 

single-Euler-beam (SE) model, the deflection curves o f the inner and outer 

tubes are exactly the same and the shear deformation 0(x,t) is identically zero, 

thus ai=a2, bi=b2=ai(n7t/L) and yi=y2=0. However, when the Timoshenko-beam 

model is adopted, shear deformation and rotary inertia are taken into account 

which give rise to non-zero shear deformation y. On the other hand, the double

beam model accounts for intertube radial displacement between the inner and 

outer tubes and thus can quantify the difference between two (non-coaxial) 

deflection curves ( a ^ a 2). Therefore, the effects of the Timoshenko-beam and 

the double-beam can be studied by examining the ratio ai/a2, which indicates 

the degree of the non-coincidence of the deflections of the two tubes, and the 

ratio y2/b2 which indicates the relative amplitude o f the shear deformation o f the 

outer tube of DWNTs (the result for the inner tube is qualitatively similar and 

thus not included here). It follows from (5.1, 5.2, 5.5) that the deflection 

amplitude ratio o f the inner to the outer tubes, and the ratio o f the outer tube’s
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shear deformation to its deflection slope due to bending deformation are given

by

ax _ (kA2GX) - (p A 2a 2 -  kA2GA2 -  c)(pI2co - E I 2X  - kA2G) 
a2 c(pI2o)2 - E I 2X  - k A 2G)

y 2 _ I 2(pco2 - E / 12)
(p2 kA2G

(5.6)

In what follows, the ratio ai/a2 given by the DT model and the DE-model 

for the lower two n-order frequencies are shown in Figs. 5.7-5.8 and Figs. 5.9- 

5.10, respectively, for the examples considered in Figs. 5.1-5.6. Here, because 

the second n-order frequency (fn2) given by the DT-model corresponds to the 

second n-order frequency given by DE-model only for smaller radii (see 

Section 5.2.1), the results for the second n-order frequencies given by the DT- 

model and the DE-model are demonstrated only for small radius 0.35 nm (Figs 

5.8 and 5.10). Related data for the ratio y2/b2 given by the DT model and the 

ST-model for all n-order frequencies are shown in Figs. 5.11-5.14 and Figs. 

5.15-5.16, respectively. It is found from Figs. 5.7-5.16 that:

1) The amplitude ratio ai/a2 corresponding to the lowest (first-order) frequency 

(fn), as shown in Fig. 5.7 for the DT model and Fig. 5.9 for the DE model, are 

always very close to unity for all examples considered here. This indicates that 

the deflection curves o f the inner and outer tubes for the lowest (first-order) 

frequency (fn) are almost coincident and thus the vibration of the DWNT is
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almost coaxial at the lowest (first-order) frequency fn.

2) For the lowest n-order frequencies fni with n>3, it is seen from Fig. 5.7 and 

Fig. 5.9 that the associated amplitude ratio ai/a2 is no longer close to unity for 

small-diameter DWNTs of aspect ratio 10 or 20, which indicates that the 

deflection curves of the inner and outer tubes are no longer coincident in these 

cases. However, for larger aspect ratio (50) or larger inner radius (3.5 nm), it is 

seen from Figs. 5.7 and 5.9 that the amplitude ratio ai/a2 for the lowest n-order 

frequencies f„i with n>3 is still very close to unity and thus the deflection 

curves of the inner and outer tubes are still almost coincident. Consistent with 

Section 3, these results also confirm that the effect o f the double-beam model is 

significant only for small-diameter CNTs o f smaller aspect ratio. Here, it is 

noticed from Figs. 5.7 and 5.9 that the ratio ai/a2 for the lowest n-order 

frequency with n>l of small-diameter DWNTs given by the DT model and the 

DE model are qualitatively similar, but quantitatively different.

3) On the other hand, the amplitude ratio ai/a2 of other higher n-order frequency 

(fnk with k> l) is not close to unity. For example, for small-diameter DWNTs, it 

is seen from Figs. 5.8 and 5.10 that the amplitude ratio ai/a2 of the second n- 

order frequency (fn2) is always negative, which indicates that the deflection of 

the inner tube is simply opposite to the deflection o f the outer tube, and thus 

vibration o f the DWNT is substantially non-coaxial. It is seen that from Figs. 

5.1-5.6 that the second n-order frequency (fn2) for all examples discussed here is 

always within terahertz range. Hence, this also indicates that the effects o f the 

double-beam model are essential for terahertz vibration o f MWNTs.
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4) Now, let us discuss the relative amplitude of shear deformation. For the 

lowest n-order frequency (f„i), the ratio y2/b2, which represents the relative 

amplitude of shear deformation o f the outer tube, is negligible only for n= l, or 

for n> l with larger aspect ratio 50. This indicates that the shear deformation is 

significant provided that the wavelength is sufficiently short, consistent with the 

common concepts of the Timoshenko-beam. For example, it is seen from Figs. 

5.11 and 5.15 that the six curves can almost be classified by the wavelength, 

only slightly affected by the radius.

5) For small aspect ratio (10 and 20) and higher mode number n>3, it is seen 

from Figs. 5.11 and 5.15 that the shear deformation has a substantial effect on 

the deflections even for the lowest n-order frequency fnl. For example, it is seen 

from Figs. 5.11 and 5.15 that the absolute value of the ratio y2/b2 is larger than 

unity for small aspect ratio L/d=10, and is about 25% for moderate aspect ratio 

L/d=20, almost regardless o f the radius. In these cases, the shear deformation, 

which is neglected by the classical Euler-beam model, is significant and cannot 

be neglected.

6) It is seen from Figs. 5.12-5.14 and Fig. 5.16 that almost all higher n-order 

frequencies (fnk with k>l) are characterized by substantial shear deformation, 

with the only exception described in Fig. 5.12 for the second n-order frequency 

(fn2) given by the DT-model for small diameter 0.35 nm and smaller order- 

number n (up to n=4 or 5). In the latter case, as mentioned before, the second n- 

order frequency (fn2) given by the DT-model corresponds to the second n-order 

frequency (fn2) given by the DE-model in which shear deformation is neglected.
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This explains why the shear deformation is negligible in this case.

7) Except for the above case, all other cases described in Figs. 5.12-5.14 and

Fig. 5.16 exhibit substantial shear deformation characterized by large absolute

values of the ratio y2/b2. In particular, it is seen from Figs. 5.12-5.14 and Fig.

5.16 that the six curves shown there can almost be classified by the radius, only

moderately affected by the wavelength. This indicates that, unlike the vibration

o f the lowest n-order frequency fnl which largely depends on the wavelength,

the vibration o f the higher n-order frequencies f^  (with k>l) is not sensitive to

the wavelength. This conclusion is consistent to similar results obtained in the

analysis o f resonant frequencies given in section 5.2.1.

5.3 Summary

Free vibration of short DWNTs is studied using a double-Timoshenko- 

beam model, which considers intertube radial displacements between the inner 

and outer tubes and treats the inner and outer tubes as two individual 

Timoshenko-beams. The results indicate that both the Timoshenko-beam effect 

and the double-beam effect are significant when the wavelength o f DWNTs is 

just a few times larger than the outer diameter o f DWNTs. In particular, it is the 

case when the higher-order frequencies (within the terahertz range) o f short 

DWNTs (of smaller aspect ratio around or below 20) are considered. 

Furthermore, the results show that the effects o f the double-beam are more 

significant for small-diameter than for large-diameter DWNTs, while the 

Timoshenko-beam effects are significant for both large-diameter and small-
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diameter DWNTs. This is attributed to the fact that the double-beam effects 

become significant only when the amplitude of interlayer radial displacements 

(which are of the order o f the interlayer spacing) is comparable to the overall 

deflections of MWNTs (which are of the order o f the radius). Because the radii 

o f DWNTs are usually small, the double-beam effects play a significant role in 

free vibration of short DWNTs. Hence, the effects of the Timoshenko-beam and 

the double-beam are relevant for terahertz vibration of short MWNTs of aspect 

ratio below or around 20. On the other hand, if  only the single lowest (first- 

order) resonant frequency is concerned, the classical single-Euler-beam model 

is accurate enough, any double-beam model or Timoshenko-beam model is not 

needed even for short MWNTs.
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beam model
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Fig. 5.13. DWNT amplitude ratio (y2/b2) for fn3 using a double-Timoshenko-

beam model
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Fig. 5.15. DWNT amplitude ratio (y/b) for fnl using a single-Timoshenko-beam
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Chapter 6 

Wave Propagation in MWNTs 
Modeled as Timoshenko-Beams

6.1 Introduction

The role o f non-coaxial interlayer radial displacements in transverse 

vibration and wave propagation in MWNTs are studied. These results shows 

that non-coaxial intertube vibration and transverse waves o f MWNTs will be 

excited at ultrahigh frequencies (above 1 THz), which would have substantial 

effects on both the natural frequencies and the wave speed of MWNTs. As 

discussed above, in the terahertz range, the characteristic wavelength of 

transverse waves in MWNTs would be just a few times the outermost diameter 

o f MWNTs [72], In this case, a relevant issue to be clarified is the effects of 

rotary inertia and shear deformation on transverse wave propagation of 

MWNTs. It is well-known that rotary inertia and shear deformation, which are 

ignored in the classic Euler-beam model, would become essential for transverse 

wave propagation of elastic beams at ultrahigh frequencies when the 

characteristic wavelength downs to just few times the diameter o f the cross- 

section [79, 80, 109-111], For this reason, the relevance of classic Euler-beam 

model to terahertz wave propagation in CNTs is questionable. In this Chapter, 

transverse wave propagation o f individual DWNTs is studied based on the
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double-Timoshenko-beam model developed in [74], Unlike chapter 4, however, 

CNTs are modeled as Timoshenko-beams, instead of the classic Euler-beams. 

As will be shown below, the rotary inertia and shear deformation, incorporated 

by Timoshenko-beam model, do have a substantial effect on terahertz transverse 

wave propagation in CNTs. Therefore, Timoshenko-beam model, rather than 

the Euler-beam model, is more relevant for terahertz wave propagation in CNTs 

[73].

6.2 Double-Timoshenko-Beam Model for Wave Propagation

6.2.1 Determination of the Wave Speeds

To study transverse wave propagation, let us consider the deflection and 

the slope given by [80, 138]

Y = a ei(qx~mt)

, ; = * > - >  (<u)

where ai and a2 represent the amplitudes o f deflections o f the inner and the 

outer tubes, respectively, and bi and b2 represent the amplitudes o f the slopes of 

the inner and outer tubes due to bending deformation alone, respectively. In 

addition, q is the wave number, and 0) is the (circular) frequency. The equation 

to determine the wave speeds can be obtained by substituting (6.1) to (5.1), with 

the result
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KGAxq 2 + c  — pAxa>2 iKGAxq -  c 0 ~ax~

- iK G A xq EIxq 2 +K G A X -  p i x(02 0 0 E
-  c 0 KGA2q 2 + c -  pA2co2 iKGAxq a 2

0 0 -  iKGAxq EI2q 2 +KG A2 - p l 20)2 A .

- 0  (6 .2)

The wave speeds are determined by the condition for existence of non-zero 

solution which gives

F(q2, ®) =

(.EI2q 2 + KGA2 -  p I2co2) { - c 2 (EIxq2 + KGAX -  pIxco2)

+ (KGA2q2 + c - p A 2a>2)[{KGAlq 2 + c - pAxco2){EIxq2 + KGAX - pIxco2) - (K G A xq)2}\ 

- ( KGA2q)2 {(KGAxq 2 + c - p A xco2)(EIxq2 + KGAX - p l xa 2) - ( . KGAxq f }

= 0 (6-3)

It is noticed that equation (6.3) is a fourth-order algebraic equation for q2. It is 

anticipated that the present double-Timoshenko-beam model could give as 

many as four different wave speeds for a given frequency, in contrast to at most 

two wave speeds given by the single-Timoshenko-beam model [79, 80, 109- 

111], at most two wave speeds given by the double-Euler-beam model [72], and 

the single wave speed given by the single-Euler-beam model [80]. In particular, 

for the sake of comparison, the single transverse wave speed o f a MWNT based 

on single-Euler-beam model is given by Eq. (2.7), where I and A are the total 

moment o f inertia and the cross-sectional area o f MWNT. Thus, I=Ii+l2 and 

A=Aj+A2 for a DWNT.
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In what follows, the wave speed (phase velocity=a>/q) is calculated based 

on four different elastic beam models:

(DT): the double-Timoshenko-beam (DT) model described by (6.3) which gives 

at most four wave speeds for given frequency, vi<v2<v3<v4;

(DE): the double-Euler-beam (DE) model described in [72] which treats each of 

the inner and outer tubes of the DWNT as a single-Euler-beam and gives at 

most two wave speeds for given frequency, vi<v2;

(ST): the single-Timoshenko-beam (ST) model which treats the DWNT as a 

single Timoshenko-beam, with I=Ii+I2 and A=Aj+A2, and gives at most two 

wave speeds for given frequency, V i < v 2 ;

(SE): the single-Euler-beam (SE) model, which gives the single wave speed (v0) 

for given frequency (2.7).

The wave speeds given by different models are distinguished by (DT), 

(DE), (ST) or (SE), when necessary. Obviously, the number of the wave speeds, 

which are defined by co/k, is equal to the number of positive roots of equation

(6.3). The function F(p2, co) is illustrated in Figs. 6.1 and 6.2 for DWNTs of 

diameter 0.7 nm and 7 nm respectively. It is seen from Figs. 6.1 and 6.2 that for
'y

very low frequency, F(q , ca) has only one positive root for q , which implies 

that there is only one transverse wave speed for very low frequency. On the 

other hand, when frequency is extremely high, there are four different positive 

roots for q , and thus four distinct transverse wave speeds exist for extremely 

high frequency. When the frequency is between the two extreme cases, the 

number o f wave speeds varies between one and four, depending on the
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frequency and the diameter of DWNTs.

6.2.2 Transverse Wave Speeds and associated amplitude ratios

All different wave speeds given by the four different models are shown 

in Figs. 6.3 and 6.4 for a DWNT of the inner diameter 0.7nm or 7nm, 

respectively. It is found from Figs. 6.3 and 6.4 that there exist several critical 

frequencies for any given DWNT. In contrast to the SE, ST, DE model, which 

has a fixed number of wave speeds, the number of the critical frequencies based 

on DT model may depend on the diameters o f DWNTs. For example, there are 

3 critical frequencies for DWNT of diameter 7nm, and 4 critical frequencies for 

DWNT of diameter 0.7 nm. When the frequency is far below the lowest critical 

frequency, only one speed exists which is quite close to the single wave speed 

given by the single-Euler-beam model (2.7). The effect o f Timoshenko-beam 

on the wave speed becomes significant even when the frequency is below but 

close to the lowest critical frequency. For example, it is seen from Fig. 6.4 that 

the wave speeds given by SE and DE models are about 50% higher than that 

given by ST and DT models around the lowest critical frequency. When the 

frequency is higher than at least one o f the critical frequencies, there are at least 

two different sound speeds, which are significantly different from the wave 

speed (2.7) given by the single-Euler-beam model. Therefore, the single-Euler- 

beam model, which has been successfully applied to sound wave propagation in 

SWNTs [72], is applicable for DWNTs only at relatively low frequencies, but 

fails at ultrahigh frequencies.

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



WAVE PROPAGATION IN MWNTS MODELED AS TIMOSHENKQ-BEAMS

Inner radius 

(nm)
Model Critical frequency (THz)

0.35

DT

to* = 6.0307 

©i = 6.0396 

©2 = 23.11 

©3 = 42.63

ST ©sx = 26.43

DE ©de = 6.0396

3.5

DT

©i = 4.325 

©2 = 4.763 

©3 = 6.813

ST © st = 4.518

DE ©de ”  6.813

Table 6.1 Critical frequencies given by different models in a DWNT.

The critical frequencies and the number o f different wave speeds are shown in 

Table 6.1 and Table 6.2, respectively, for DWNTs o f diameter 0.7 nm or 7 nm. 

For instance, the lowest critical (circular) frequency is 6.0307 THz or 4.325 

THz, when the inner diameter o f the DWNT is 0.7nm or 7nm, respectively. In 

particular, the Timoshenko-beam model has a crucial effect on the lowest 

critical frequency for large-radius MWNTs. Indeed, it is seen from Table 6.1 

that the lowest critical (circular) frequency given by DT model for inner radius 

3.5nm, 4.325 THz, is much lower than that given by DE model, which is 6.813
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THz. Here, we would mention that the real frequency f  (=co/27r) is about 6 times 

lower than the circular frequency go.

Inner radius 

(nm)
Frequency (go)

Number of sound 

wave speeds

0.35

go < go* 1

CO — GO* 2

GO* <  GO <  COi 3

GOi <  CO <  C02 2

C02 <  GO <  C03 3

C03 <  GO 4

3.5

GO <  CO! 1

GO! <  GO <  C02 2

C02 <  CO <  C03 3

C03 <  GO 4

Table 6.2 The number o f sound wave speeds given 

by the double-Timoshenko-beam model in a DWNT.

In particular, when the frequency is extremely high, the present double- 

Timoshenko-beam model predicts four different wave speeds, vi<V2<V3<V4. 

However, Vi is very close to v2, while v3 is very close to v4. In addition, the two 

asymptotic wave speeds for extremely high frequencies are very close to the 

two wave speeds given by the single-Timoshenko-beam model for extremely 

high frequencies as follows [80]
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Inner radius 

(nm)
Model

Asymptotic 

transverse wave 

speeds (m/s)

0.35

DT

Vl= l 1790 

v2=11794 

v3=20860 

v4=20880

ST
^=11795. 

v2=20851

3.5

DT

vi=11795 

v2=11795 

v3=20851 

v4=20851

ST
Vl=11795 

v2=20851

Table 6.3 Asymptotic transverse wave speeds for extremely high

frequencies.

All these wave speeds are shown in Table 6.3. Since the two asymptotic speeds

(6.4) are independent o f the geometry of the cross-section, the four speeds 

given by DT model for extremely high frequencies are independent o f the inner 

radius and the outer radius, and approach the two speeds (6.4), respectively.

Finally, the amplitude ratio of the inner tube deflection to the outer tube
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deflection, given by the DT and DE models, is shown in Figs. 6.5 and 6.6, for 

diameter 0.7 nm and 7 nm, respectively. It is seen from Figs. 6.5 and 6.6 that 

when the frequency is far lower than the lowest critical frequency, the 

amplitude ratio ai/a2 is very close to unity, indicating that the vibrational mode 

is almost coaxial. However, the amplitude ratio ai/a2 could significantly deviate 

from unity when the frequency is below but close to the lowest critical 

frequency. This phenomenon is substantial especially for small radius DWNTs. 

Indeed, it is seen from Fig. 6.5 that the amplitude ratio ai/a2 is as large as 3 or 5 

around the lowest critical frequency for DWNT of inner radius 0.35nm. This 

indicates that, in contrast to the Timoshenko-beam effects which are more 

significant for large-radius than small-radius CNTs, non-coaxial modes 

incorporated by double-beam (DT, DE) models are more relevant for small- 

radius than large-radius CNTs. On the other hand, when the frequency exceeds 

at one o f the critical frequencies, the amplitude ratio ai/a2 is no longer close to 

unity, or even becomes negative, which indicates that the vibrational modes are 

substantially non-coaxial. In these cases, the existing single-beam model fails, 

and the double-beam models (DT, DE) are required to account for the role o f 

intertube radial displacements.

6.3 Summary

In summary, sound wave propagation in DWNTs is studied based on a 

double-Timoshenko-beam model. It is found that there are a few (say, 3 or 4, 

depending on the diameters) terahertz critical frequencies for a DWNT at which
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the number of wave speeds changes. Sound wave propagation in DWNTs is 

essentially coaxial and Timoshenko-beam effects are negligible only when the 

frequency is far below all critical frequencies. When the frequency is close to or 

higher than the lowest critical frequencies, rotary inertia and shear deformation, 

incorporated by Timoshenko-beam model, have a substantial effect on the wave 

speeds especially for MWNTs of larger radii. In this case, the sound speeds 

predicted by the present model are significantly higher or lower than that given 

by the existing single-Euler-beam model, and depend not only on the frequency 

but also on the vibrational modes. In particular, Timoshenko-beam effects 

significantly lower the value of the lowest critical frequency especially for 

MWNTs of larger radii. More recently, atomistic simulation [97] shows that 

Timoshenko-beam model would be effective even for wavelengths down to 

about 1 nm, which confirms the effectiveness of the elastic beam model. Hence, 

Timoshenko-beam model is more relevant for terahertz wave propagation in 

CNTs.
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F(q ,®)F(q ,ffl)

Fig. 6.1. The function F(q2, w) which determines the number o f the wave speeds 

for given frequency in a DWNT (inner radius 0.35nm).

Fig. 6.2. The function F(q2, ©) which determines the number o f the wave speeds 

for given frequency in a DWNT (inner radius 3.5nm).
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Fig.6.3. The wave speeds as function o f frequency in a DWNT (inner radius

0.35nm)
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Fig.6.4. The wave speeds as function o f frequency in a DWNT (inner radius

3.5nm)

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



WAVE PROPAGATION IN MWNTS MODELED AS TIMOSHENKO-BEAMS

■ f t -

14.5

002

100

••-1000

Fig.6.5. The amplitude ratio o f the inner-tube deflection to the outer-tube

deflection of a DWNT (inner radius 0.3 5nm)
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Fig.6.6. The amplitude ratio o f the inner-tube deflection to the outer-tube

deflection of a DWNT (inner radius 3.5nm)
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Chapter 7 

Vibration and Instability of 
CNTs Conveying Fluid

7.1 Introduction

Because of perfect hollow cylindrical geometry and superior mechanical 

strength, CNTs hold substantial promise as nanocontainers for gas storage, and 

nanopipes for conveying fluid (such as gas or water) [52, 53, 139-143]. Fluid 

flow inside CNTs raises a significant and challenging research topic [144-151]. 

On the other hand, the influence of internal moving fluid on overall mechanical 

behavior of CNTs is another topic o f major concern. The present chapter 

examines the effects of internal moving fluid on free vibration and structural 

instability of CNTs conveying fluid. These interesting issues remain unexplored 

in the literature.

Fluid mechanics o f flow within CNTs aims to study how the wall-fluid 

interaction and the viscosity of fluid affect velocity distribution, and how the 

velocity distribution depends on the applied pressure gradient in a non-classic 

way [144-151]. Since our goal is not to study fluid mechanics inside CNTs, we 

shall assume, instead, that a uniform steady-state flow is achieved throughout a 

straight CNT, with a constant and uniform (mean) flow velocity defined by the 

flow flux divided by the innermost cross-sectional area (Here, it is noted that
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the uniformity of flow velocity throughout the entire CNT is a simple 

consequence of the uniform cross-section, if the fluid is assumed to be 

incompressible). Thus, the role o f the internal fluid in the present study is 

characterized by two parameters, the (mean) flow velocity V and the mass 

density of fluid M (per unit axial length), and the wall-fluid interaction and the 

viscosity o f fluid, which affect the velocity distribution and the mean flow 

velocity V, will not explicitly appear in the present study. In other words, the 

role o f the wall-fluid interaction and the viscosity of fluid is the wall-fluid 

interaction and the viscosity o f fluid is considered here only implicitly through 

their influence on the mean flow velocity. Therefore, we shall focus on the 

effects o f internal flow o f the mean flow velocity V on vibration and structural 

instability o f CNTs, without concerning how the wall-fluid interaction and the 

viscosity o f fluid affect the mean flow velocity and what external pressure 

gradient is needed to achieve such a flow within CNTs.

In addition, as discussed in previous Chapters, continuum elastic beam 

models [37, 38, 55, 64-78] have been effectively used to study static and 

dynamic structural behavior o f CNTs, such as static deflection [38], column 

buckling [77], resonant frequencies and modes [37, 55], and sound wave 

propagation [78]. Since the elastic beam models enjoy very simple 

mathematical formulas, they have the potential to identify the key parameters 

affecting basic mechanical behavior of CNTs (and thus rule out other less 

important parameters), explain or predict new physical phenomena, and 

stimulate and guide further experiments and molecular dynamics simulations.
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Based on these ideas, the present chapter studies the effects of internal 

moving fluid on free vibration and structural instability of CNTs conveying 

fluid[75], Here, the structural behavior of CNTs is described by the classic 

Euler-beam model, and the role of internal moving fluid is characterized by two 

parameters, the mean flow velocity V and the mass density of fluid M (per unit 

axial length), as shown in Fig. 7.1. In addition, CNT is assumed to be simply 

supported or clamped at both ends, with or without being embedded into an 

elastic medium such as polymer.

7.2 The Model for CNTs Conveying Fluid

As shown in Fig. 7.1, a CNT conveying fluid will be described as an 

elastic hollow tube conveying fluid. Here, as usual, we shall neglect gravity 

effect and assume that the constraint for axial displacement o f CNT is absent or 

negligible. Thus, let the mean flow velocity and the mass density (per unit axial 

length) o f the fluid be V and M, respectively, vibration and structural instability 

o f a CNT conveying fluid can be described by the model [152-154]

E I ^ -  + (M V2 + p A - r ) ^ -  + 2M V —  + (M  + m ) ^  + kw = 0 (7.1)
dx v 'obt2 dxdt V '  8 t2 V '

where x is the axial coordinate, t is time, w(x,t) is the deflection o f the CNT, E 

and I are Young’s modulus and the moment o f inertia o f the cross-section o f the 

CNT, A is the area o f the innermost cross-section o f the CNT, m is the mass of 

CNT per unit axial length (which is equal to the cross-sectional area o f CNT
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itself multiplied by the mass density of CNTs), k is the Winkler constant of the 

surrounding elastic medium described as a Winkler-like elastic foundation [71, 

153, 154], and T* and p* are the externally applied tension (on CNT) and global 

pressure (exerted on fluid equally at both ends of CNT). As explained in [153, 

154] for elastic tubes, regardless o f the details o f the wall-fluid interaction and 

the viscosity o f fluid, the sum (pA-T), where T and p are the tension (on CNT) 

and pressure (exerted on fluid) along the tube, remains constant throughout the 

whole tube even though the tension T and pressure p individually vary along the 

tube. It follows that (pA-T) in (5.1) can be replaced by its value (p*A-T*) at any 

one o f the two ends. In particular, p =T =0 if  both the applied external tension 

and the global pressure are zero at one end o f CNT.

Here, it is stressed that the role o f internal moving fluid is characterized 

by two parameters o f the fluid, its mass density M and the mean flow velocity 

V (the latter is defined by the flow flux divided by the area of the innermost 

cross-section o f CNT). The complicated wall-fluid interaction and the viscosity 

o f fluid affect vibration and instability o f CNT only through affecting the 

velocity distribution and the mean flow velocity, but will not explicitly appear 

in the governing equation (5.1). Hence, the present model focuses on the effects 

o f internal moving fluid on vibration and instability o f CNTs, and does not 

study how the wall-fluid interaction and the viscosity o f fluid affect the mean 

flow velocity V and what applied pressure gradient is required to achieve such a 

flow inside CNTs.
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7.2.1 Vibrational Frequencies

First, we examine the effect of internal flow on vibrational frequencies 

o f CNTs conveying fluid. Let us apply Galerkin procedure [152, 154] and 

expand the vibrational deflection w(x,t) as

K * ,0  = IX (x )4 ,.(0  (7.2)
r=1

where N is a chosen sufficiently large integer, qr(t) are undetermined time- 

dependent functions, and Yr(x) are the first N vibrational modes of Eq.(l) with 

V=0, p*A=T*, and under the specified BCs. Obviously, expression (7.2) always 

satisfies the given BCs for any nonzero value of V. Following the standard 

procedure o f the Galerkin method, substitution of (7.2) into Eq. (7.1) leads to N 

coupled second-order ordinary differential equations for N unknown time- 

dependent functions qr(t) (r= 1,2,.. .N)

N "  M  + m L-

r=1 IV E l  0 v E l i  dx
Sqr
dt

+
rM V2 + p A - T \ Lrv d %  , ^

(A, 1 *
(7.3)

9,1  = 0

(s = 1,2,....N)

where \  is eigenvalue associated with Yr(x) under the given boundary 

conditions.

The system (7.3) has N conjugate pairs o f eigen-values, which determine
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the first N vibrational frequencies of the CNT described by (7.1). These eigen

values can be obtained by substituting qr(t)=Ar elftlt into (7.3), where Ar is the 

amplitude coefficient and © is the circular frequency. The accuracy o f the 

method usually increases with increasing number N. For our purposes, it is 

enough to consider N=5. It turns out that this method is sufficiently accurate 

when the flow velocity is below or up to the critical flow velocity in some cases, 

or just a fraction of the critical flow velocity in other cases. In this paper, we 

shall confine ourselves to the effect o f internal moving fluid on the two lowest 

resonant frequencies of the CNT.

Here, we first consider the case in which the CNT are simply supported 

at both ends. In this case, the vibrational modes o f (7.1) when V=0 and under 

BCs are of the simple form

: sin
v L

(7.4)

where L is the length of CNT. In both cases k=0 (suspended CNTs) and k>0 

(embedded CNTs surrounded by an elastic medium), the first N modes o f (1) 

when V=0 are given by (7.4) for r= l,2 ,.. .N.

The examples o f CNTs considered here include: I) MWNT with 

RoUt=50nm and t=10nm; and II) MWNT with RoUt=40 nm and t=20 nm [144], 

where RoUt is the outermost radius, and t is the thickness o f CNTs defined as the 

difference between the outermost and the innermost radii. Here, three different
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aspect ratios of CNTs, (L/2RoUt)=20, 100 and 500 are considered. On the other 

hand, to be specific, water will be considered as the fluid moving inside CNTs. 

The mass density of CNTs is 2.3g/cm3 with Young’s modulus E of 1 TPa, and 

the mass density of water is lg/cm . In addition, the Winkler-constant is based 

on polymer matrix [71] and estimated of the value of k=l GPa. Finally, the 

available data in the literature for flow velocity inside CNTs range from 400m/s 

[150] to 2000m/s [151], or even up to 50000m/s [146]. Therefore, to cover a 

wide range of flow velocity inside CNTs of various innermost diameters, we 

shall artificially consider the flow velocity V up to lOOOOOm/s, in spite o f the 

fact that the available data for flow velocity o f water inside CNTs (of very 

small innermost diameter) are much lower than this value.

In what follows, the resonant frequencies f=a)/(27t) of simply supported 

CNTs conveying fluid are calculated and shown in Figs. 1.2-1.1 for the two 

cases defined above, with or without a surrounding elastic medium. Since we 

are mainly interested in the effect o f internal moving fluid, it is assumed in 

Figs. 1.2-1.1 that the external global pressure p* and tension T* at the ends are 

zero. It is seen from Figs. 1.2-1.1 that:

1) Resonant frequencies o f simply supported CNTs conveying fluid decrease 

parabolically with the flow velocity of internal moving fluid. This phenomenon 

is common for examples I and II, especially for suspended CNTs without a 

surrounding elastic medium, as shown in Figs. 1.2-1 A. As the flow velocity 

increases, the lowest frequency reduces to zero at a critical flow velocity where 

a static structural instability characterized by adjacent neutral equilibrium states
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occurs. All of these conclusions qualitatively agree with the results of elastic 

tubes conveying fluid [152-154].

2) In the absence of a surrounding elastic medium, the results of Figs. 1.2-1 A  

indicate that the internal moving fluid has a substantial effect on the lowest 

resonant frequencies o f CNTs. This effect is relatively insignificant for CNTs of 

smaller aspect ratio (such as L/2Rout=20, as shown in Fig. 7.2) at lower flow 

velocity, but becomes crucial at higher flow velocity even for CNTs of smaller 

aspect ratio, and for CNTs of larger aspect ratio (such as L/2Rout=100 or 500, as 

shown in Figs. 7.3 and 7.4) even at lower flow velocity. For instance, the lowest 

frequency of CNTs of aspect ratio 20 for examples I and II decreases by 50% 

when the flow velocity V is 1020m/s and 2060m/s, respectively, and becomes 

zero when the flow velocity V reaches the critical value 1190m/s and 2380m/s, 

respectively. On the other hand, the lowest frequency of CNTs of aspect ratio 

500 for examples I and II decreases by 50% when the flow velocity V is 41 m/s 

and 83m/s, respectively, and becomes zero when the flow velocity V reaches 

the critical value 48m/s and 96m/s, respectively. Therefore, the influence of 

internal moving fluid on resonant frequencies becomes crucial especially for 

suspended CNTs o f larger aspect ratio at higher flow velocity.

3). However, the results o f Figs. 1.5-1.1 indicate that even a compliant 

surrounding elastic medium (such as polymer) has a significant effect to reduce 

the sensitivity o f resonant frequencies to the internal flow velocity V. The role 

o f a surrounding elastic medium becomes significant especially for CNTs of 

larger aspect ratio, such as those shown in Figs. 7.6 and 7.7. For example, for
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the examples I and II with k=lGPa, the lowest frequency of CNTs of aspect 

ratio 20 (see Fig. 7.5) decreases by 50% when the flow velocity V is 3630m/s 

and 7300m/s, respectively. On the other hand, the change of the lowest 

frequency of embedded CNTs of aspect ratio 100 or 500 (see Figs. 7.6 and 7.7) 

is smaller than 23% and 1% when the flow velocity V is up to 4000m/s and 

1500m/s, respectively. Therefore, even a compliant surrounding elastic medium 

can significantly reduce the influence of the internal moving fluid on resonant 

frequencies o f CNTs of larger aspect ratio.

Next, let us consider a clamped CNT, which is clamped at both ends 

without constraint for axial displacement. In this case, the first N vibrational 

modes o f (7.1) with V=0 are not as simple as expression (7.4), and will not be 

shown here. The resonant frequencies f=o)/(2jt) o f clamped CNTs conveying 

fluid are calculated and shown in Figs. 7.8-7.13 for CNTs of various aspect 

ratios, under the condition p*=T*=0. Comparison between Figs. 12-1.1 and Figs. 

7.8-7.13 indicates that all results obtained above for simply supported CNTs 

remain essentially the same for clamped CNTs. However, the influence of 

internal flowing fluid on resonant frequencies o f clamped CNTs is generally 

less than that o f simply supported CNTs under otherwise identical conditions. 

For example, Figs 7.2 and 7.8 indicate that the lowest resonant frequency o f a 

simply-supported CNT of aspect ratio 20 decreases 50% for examples I and II 

when the flow velocity is 1020m/s and 2060m/s, respectively, although the 

lowest resonant frequency of a clamped CNT o f aspect ratio 20 decreases 50% 

for examples I and II when the flow velocity is 1990m/s and 4130m/s,
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respectively. Hence, resonant frequencies of clamped CNTs are less sensitive to 

the internal moving fluid than those of simply supported CNTs under other 

identical conditions.

7.2.2 Critical Flow Velocity and Critical Global Pressure

As mentioned above, the lowest frequency of a simply supported or 

clamped CNT reduces to zero when the flow velocity reaches a critical value. 

The vanishing frequency implies the existence of adjacent neutral equilibrium 

states and indicates a static structural instability o f CNTs. In other words, a 

simply supported or clamped CNT undergoes a static structural instability 

(buckling) when the flow velocity reaches a critical value at which the lowest 

frequency vanishes. This critical flow velocity depends on the geometry of 

CNTs, the end conditions and the surrounding elastic medium. The mode of 

structural instability could be the same as the first vibrational mode o f (7.1) 

with V=0 in some cases (such as suspended CNTs without a surrounding elastic 

medium), or quite different from any one of the first few vibrational modes of

(7.1) with V=0 in other cases (particularly, in the presence of a surrounding 

elastic medium). In the former case, we have considered the flow velocity up to 

the critical flow velocity (see Figs. 1.2-1.5, 7.8-7.11). In the latter case, we only 

considered lower flow velocity (below a fraction of the critical flow velocity) 

for which the vibrational mode with V>0 can be well described by the first few 

vibrational modes for V=0 (see Figs. 7.6,7.7, and 7.12,7.13).

Although the dependency o f resonant frequencies on the flow velocity
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requests numerical calculation, simple general formula is available for the 

critical flow velocity in some typical cases, which helps to examine the 

dependency of the critical flow velocity on other parameters such as the aspect 

ratio o f CNTs, the Winkler constant, and the mass density o f the fluid. In fact, 

when the global pressure p*=0, the critical flow velocity can be determined by 

static buckling analysis of (7.1) [153, 154], which leads to a simple critical flow 

velocity formula

r7rV =  —
E l

1 +  -
kL4

EI(r7t)A
(7.5)

for simply-supported CNTs, where r is the mode number defined by (7.4) and 

should be chosen to minimize the critical flow velocity (7.5). The critical flow 

velocity formula for clamped CNTs is [153]

r - V L ^ L
' L ] i f

1 +
3 kL4 A

\6 tt E l

a  \^L
l v a 7

r 4+6rl +\ kL*
r z + 1 ( r  +  X)7t E l

f  , 8 4  n* WJ
for k <  t E I \

11 L4

.  ; 84 ^-4
for k >  - E l

11 L4
(7.6)

where r is the mode number and should be determined as the smallest integer 

satisfying (7.7).
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k T 4

r 4 + 2 r3 + 3 r2 +2r + 6> —p — (7.7)
n  E l

The formulas (7.5) and (7.6) are shown in Figs. 7.14 and 7.15, respectively, for 

various radii of CNTs and for water and helium (the mass density of the latter is 

0.137g/cm2). Comparing Figs. 7.14, 7.15 with the results o f Figs. 1.2-1 A, 7.8- 

7.10 indicates that the critical flow velocity given by (7.5, 7.6) through static 

buckling analysis is identical to the critical flow velocity given by vibration 

analysis at which the lowest frequency vanishes. For example, the CNT of case 

I (L/2RoUt = 500) with k=0 will buckle when the internal flow velocity reaches 

the critical value 48m/s (Fig. 7.14). This value of critical flow velocity is likely 

o f practical significance [146, 151]. On the other hand, it can be verified that 

even a complaint elastic medium has a substantial effect to raise the critical 

flow velocity. For example, in the presence o f an elastic medium o f the 

Winkler-constant k=lGPa, the critical flow velocity o f case I (L/2RoUt = 500) 

will increase to 4630m/s (Fig. 7.14).

Another interesting subject is structural instability o f CNTs conveying 

fluid under internal high pressure. It is known in pipeline industries [155] that 

internally pressured elastic pipeline would buckle at a critical internal pressure. 

It is expected that similar phenomenon could occur for CNTs in some extreme 

cases. In fact, the critical global pressure can be determined simply by static 

buckling analysis o f (7.1) [153, 154]. When the flow velocity V=0, this leads to 

a simple critical global pressure formula
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AL V rn  )
(7.8)

for simply-supported CNTs, where the mode number r is determined to 

minimize the critical global pressure (7.8). Similarly, the critical global pressure 

for clamped CNTs is [153]

( IT T )2

AL1
E I +

3kL 
I 6 x 4

4 \ _ . 84 ;r4
for k <  - E l ;

11 L

n
P a r  =

2 'V 4 + 6 r2 +1
AL2 r  +1

E I +
JcL4

(r + l);r4
„ 84 ^-4
for k >  - E l

11 L4
(7.9)

where the mode number r is the smallest integer satisfying (7.7). The formulas 

(7.8) and (7.9) are shown in Figs. 7.16 and 7.17, respectively, for various radii 

of CNTs. For example, the CNT of case I (L/2RoUt = 500) will buckle when the 

internal global pressure reaches a critical value 2.3GPa (Fig. 7.7-7.16). 

Although this value of critical pressure is higher than some known data for 

CNTs (about 100 MPa, [144, 145, 147], it is likely o f practical significance in 

some extreme cases especially for CNTs o f larger aspect ratio. On the other 

hand, even a complaint elastic medium has a substantial effect to raise the 

critical pressure. For example, in the presence o f an elastic medium of the 

Winkler-constant k=lGPa, the critical pressure o f case I (L/2R0Ut = 500) will 

increase to 21.4 TPa (Fig. 7.16), which is simply beyond the range o f practical
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interest.

7.3 Summary

The influence of internal moving fluid on free vibration and flow- 

induced structural instability o f CNTs is studied. It is shown that the internal 

moving fluid could substantially affect vibrational frequencies especially for 

suspended, longer and larger-innermost-radius CNTs at higher flow velocity. In 

particular, these results indicate that the critical flow velocity for structural 

instability of CNTs could fall within the range of practical significance at least 

in some extreme cases. On the other hand, a simple method to prevent such 

phenomena is to put CNTs within a surrounding elastic medium. Indeed, even a 

complaint surrounding elastic medium (such as polymer matrix) can 

significantly reduce the effect o f internal moving fluid on vibrational 

frequencies, and suppress or eliminates structural instability within the practical 

range o f flow velocity. It is believed that these results could provide useful data 

for the proposed application o f CNTs as nanopipes conveying fluid. Also, the 

study o f the dependence o f resonant frequencies o f CNTs conveying fluid on 

the flow velocity could offer a simple method to estimate the internal flow 

velocity by measuring the change in resonant frequencies.
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Fig. 7.1. CNT conveying fluid of the mass density M (per unit axial length)

and the mean flow velocity
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Fig. 7.2. Real frequency as a function of the water flow velocity, for the lowest 

two modes of a simply supported CNT with L/2RoUt=20.

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



VIBRATION AND INSTABILITY OF CNTS CONVEYING FLUID
50

(M Hz)

M ode  1 (I )  

- a-  M ode  2 (I )  

— Mo d e  1 (II)  

-X- M ode  2  (II)

40

©

30

S3C3£3©

$

V (m/s)
o

o 200 400 600 800 1000

Fig. 7.3. Real frequency as a function of the water flow velocity, for the lowest 
two modes of a simply supported CNT with L/2Rout=100.
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Fig. 7.4. Real frequency as a function o f the water flow velocity, for the lowest 

two modes of a simply supported CNT with 1721^=500.
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Fig. 7.5. Real frequency as a function of the water flow velocity, 
for the lowest two modes of a simply supported CNT (L/2RoUt=20)

surrounded by an elastic medium of k=lGPa.
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Fig. 7.6. Real frequency as a function of the water flow velocity, 
for the lowest two modes o f a simply supported CNT (L/2R<3Ut=100) 

surrounded by an elastic medium of k= 1 GPa.
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Fig.7.7. Real frequency as a function of the water flow velocity, 

for the lowest two modes of a simply supported CNT (L/2RoUt=500) 
surrounded by an elastic medium of k=lGPa.
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Fig. 7.8. Real frequency as a function of the water flow velocity, 

for the lowest two modes of a clamped CNT with L/2RoUt=20.

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



VIBRATION AND INSTABILITY OF CNTS CONVEYING FLUID
so (MHz)

M o d e 1 (I) 

M o d e  2  (I) 

M o d e  1 (II)  

- x -  M o d e  2  ( I I)

x

2  20

o
0 200 800 1000 1200 1400400 600

Fig. 7.9. Real frequency as a function of the water flow velocity, 

for the lowest two modes of a clamped CNT with L/2RoUt=100.
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Fig. 7.10. Real frequency as a function of the water flow velocity, 

for the lowest two modes of a clamped CNT with 17211^=500.
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Fig. 7.11. Real frequency as a functions of the water flow velocity, for the 
lowest two modes of a clamped CNT (L/2Rout=20) surrounded by an elastic

medium o f k=lGPa.
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Fig. 7.12. Real frequency as a function o f the water flow velocity, for the lowest

two modes o f a clamped CNT (L/2Rout=T00) surrounded by an elastic medium
of k=lGPa.
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Fig. 7.13. Real frequency as a function o f the water flow velocity, for the lowest 

two modes of a clamped CNT (L/2RoUt=500) surrounded by an elastic medium

of k=lGPa.
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Fig.7.14. Critical flow velocity with the global pressure p*=0 for simply

supported CNTs.
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Fig.7.15. Critical flow velocity with the global pressure p*=0 for clamped CNTs.
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Fig.7.16. Critical global pressure with the flow velocity V=0 for simply
supported CNTs.
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Fig.7.17. Critical global pressure with the flow velocity V=0 for clamped CNTs.
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Chapter 8 

Flow Induced Flutter Instability of 
Cantilever CNTs

8.1 Introduction

In the previous Chapter, the effects o f internal moving fluid on free 

vibration and structural instability of CNTs pinned or clamped at both ends was 

studied [75]. In that case, internal flow-induced vibration of CNTs is 

conservative in nature and characterized by periodic vibration with constant 

amplitude, and the lowest frequency reduces to zero when a critical flow 

velocity is reached. This leads to “divergence instability” o f supported CNTs, 

similar to static buckling of compressed elastic column. Our results show that 

internal moving fluid substantially affects vibrational frequencies especially for 

longer CNTs of larger innermost radius at higher flow velocity, and the critical 

flow velocity for “divergence instability” o f CNTs in some cases may fall 

within the range of practical significance.

Many proposed applications of CNTs as nanopipes are likely involved 

with cantilever CNTs which are clamped at one end but free at the other end. It 

is known that flow-induced vibration o f cantilever pipes is non-conservative in 

nature and characterized by decaying or growing amplitude [152-154]. When 

the flow velocity is sufficiently low, vibration of cantilever pipes fades off with
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time. On the other hand, vibration amplitude will grow with time after a critical 

flow velocity is reached. This phenomenon is called “flutter” which has been 

studied extensively within the framework of aero-elasticity [156]. Motivated by 

the idea that vibration and flutter instability o f cantilever CNTs conveying fluid 

are likely of both theoretical and practical interest, the present Chapter studies 

flow induced free vibration and flutter instability o f cantilever CNTs [76].

8.2 The Model for CNTs Conveying Fluid

As shown in Fig. 8.1, a CNT conveying fluid will be described by a 

cantilever elastic hollow tube. Vibration and flutter instability o f a cantilever 

CNT conveying fluid can also be described by the Eq. (7.1) [152-154]. It is 

again stressed that the role o f internal moving fluid is characterized by two 

parameters o f the fluid, its mass density M and the mean flow velocity V. The 

wall-fluid interaction and the viscosity o f fluid inside CNTs do affect vibration 

and instability of CNT, but only through affecting the velocity distribution and 

the mean flow velocity. Hence, the effect o f the wall-fluid interaction and the 

viscosity o f fluid are implicitly included in the velocity distribution and the 

mean flow velocity, and will not explicitly appear in the governing equation

(7.1). Therefore, the present work focuses on the effects o f internal moving 

fluid on vibration and flutter instability, without concerning how the wall-fluid 

interaction and the viscosity of fluid affect the mean flow velocity V or what 

applied pressure gradient is required to achieve such a flow inside CNTs.
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8.2.1. Flutter instability and Non Conservative System

As shown above, a cantilever pipe conveying fluid is a non-conservative 

system, which, for sufficiently high flow velocity, loses stability by flutter. 

Therefore cantilever CNTs conveying fluid are damped with decaying 

amplitude for flow velocity below a certain critical value. Beyond this critical 

flow velocity, flutter instability occurs and vibration becomes amplified with 

growing amplitude. To highlight the non-conservative nature of flow-induced 

flutter instability o f cantilever CNTs, it is stated that, as explained by Benjamin 

[157] and Paidoussis and Li [154], the work (AW) done by the fluid forces to 

the elastic tube over a cycle of oscillation of period T is

AW -M VU dw
dt

+ V r d w ^

\  dt j
(  dw 
KdXy

d t - — )
dw
dt

\ 2
+ V 2

dw) 
\ dx ;

dt (8.1)

where (3w/3t)L and (dw/dx)L are the lateral velocity and the slope at the end 

x=L, respectively. For supported CNTs, because (dw/dt)L is identically zero, the 

first integral on RHS is zero. In addition, because the vibration is strictly 

periodic, the second term on RHS also vanishes. Hence, AW=0 and vibration of 

supported CNTs is conservative. For a cantilever CNT, however, because the 

deflection and slope o f the free end are not identically zero and the amplitude at 

t=T is not exactly the same as its value at t=0, none o f the two integrals on RHS 

is identically zero. When V is sufficiently small, it turns out that the first term 

within the first square brackets is dominant over all other terms, it follows that
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AW<0, and thus the amplitude decays with time and the cantilever CNT is 

damped. However, this ceases to be true for sufficiently high flow velocity V 

which could lead to AW>0. Thus cantilever CNTs could gain energy from the 

flow, and vibration would be amplified for sufficiently high flow velocity. In 

other words, for sufficiently high flow velocity, cantilever CNTs could lose 

stability by flutter. We believe that flutter instability o f cantilever CNTs has 

significant consequences to the design of CNTs as nanopipes conveying fluid.

8.2.2 Vibrational Frequencies and Critical Flow Velocity

For free vibration of a cantilever CNT shown in Fig. 8.1, boundary 

conditions are

where C is a constant, and © is the complex circular frequency. Substitution of 

(8.3) into equation (7.1) gives

(8.2)

Consider solutions o f the form

w(x,t) = R e[CeicaeiM] (8.3)

E la 4 - M V 2a 2 - 2M V oa ~ (M  + rri)co2 + k = 0 (8.4)
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which determines four complex roots a n (n=l,2,3,4) as a function of ©. The 

complete solution of equation (7.1) is thus

w (i,0  = R e [E c .e '" -V " ]  (8.5)
n=1

where the constants Cn (n=l,2,3,4) should be determined by the boundary 

condition (8.2). Thus, substituting (8.5) into (8.2) yields

1 1 1 1
a 2 <z3 « 4 c2

a*e,a' a \ e a> a ] e a' c 3
a \e ,a' a \e ictl a \e ia' a \e ia* C4_

The condition for existence of a non-trivial solution gives the characteristic 

equation in co, which determines the eigenvalues and the associated vibrational 

modes. For very small V, it turns out that the imaginary parts o f all eigenvalues, 

which represent the decaying rate of amplitude, are non-negative and hence the 

vibration amplitude decays with time. As V increases, the imaginary parts o f © 

vary and at least one of them will reduce to zero at a certain critical flow 

velocity V=VC beyond which the imaginary part o f © changes sign from 

positive to negative and the amplitude will grow with time. This indicates the 

onset o f flutter instability. In this paper, we shall confine ourselves to the effect 

o f internal moving fluid on the first three vibrational modes of the CNT 

described by (7.1). Here, as usual, the first, second, and third vibrational modes
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are defined by the three lowest vibrational frequencies at V=0. For V>0, 

however, all frequencies vary with V. Hence, it is possible that the frequency of 

a higher mode may be even lower than the frequency of a lower mode for 

sufficiently high flow velocity V. For example, the frequency o f mode 2 may be 

even lower than the frequency of mode 1 for sufficiently high V.

The examples of CNTs considered here are: I) MWNT with the 

outermost radius R=40 nm and thickness t=20 nm, II) MWNT with R=50nm 

and t=T0nm [144], where the thickness t is defined as the difference between 

the outermost and the innermost radii. Here, two different aspect ratios o f 

CNTs, L/2R=10 or 50, are considered. On the other hand, to be specific, water 

has been considered as the fluid inside CNTs. The mass density o f CNTs is 

2.3g/cm with Young’s modulus E of 1 TPa, and the mass density of water is
-y

lg/cm . In addition, to study the effect of a surrounding elastic medium 

modeled as a Winkler-like elastic foundation, the Winkler-constant k is 

considered to have a value ranging from 1 KPa or IMPa (for soft materials such 

as bio-tissue, [158]), to 1 GPa (for moderately stiff materials like polymers 

[71]). Finally, we shall consider here the flow velocity V up to lOOOOm/s, in 

spite o f the fact that the available data for the flow velocity o f water in CNTs 

(of very small innermost diameter) are much lower than this value.

In what follows, vibrational frequency f=Re(o)/(27r)) and the decaying 

rate Im(o)/(27t)) o f cantilever CNTs conveying fluid are calculated and shown in 

Fig. 8.2-8.13 for CNTs with or without being embedded in a surrounding elastic
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medium characterized by the Winkler constant k. The main results are 

summarized as follows.

1) The results of Figs. 8.2-8.13. indicate that internal moving fluid has a 

substantial effect on vibrational frequencies (=Re(co/(27c))) and the decaying 

rate (=Im(oj/(27u))) of cantilever CNTs conveying fluid. This effect is more 

significant at higher flow velocity even for CNTs of smaller aspect ratio 

(L/2R=T0), and for CNTs o f larger aspect ratio (such as L/2R=50, as shown in 

Fig. 8.5-8.7 and 8.11-8.13) even at lower flow velocity, but is less significant 

for CNTs o f smaller aspect ratio (such as L/2R=10, as shown in Figs. 8.2-8.4 

and 8.8-8.10) at lower flow velocity.

2) Vibrational frequencies (=Re(to/(27t))) o f CNTs conveying fluid vary with 

increasing flow velocity. For example, in Case I with L/2R=50 and K=0 (Fig. 

8.5), vibrational frequency of mode 1 increases slowly up to V=1500m/s, then 

begins to decrease, and finally reduces to zero around V=2000m/s and remains 

zero until V=2700m/s. So, between V=2000m/s and 2700m/s, the frequency of 

the first mode is identically zero [156], which means that the amplitude o f 

deflection of the cantilever CNT decays monotonically with time without 

backward and forward oscillation. In addition, for Case II with L/2R=10 and 

k=0, it is seen from Fig.8.8 that the frequency of the mode 1 reduces to zero 

around V=2800m/s and remains zero until V=4300m/s. These phenomena 

qualitatively agree with the general results o f cantilever elastic tubes conveying 

fluid [153].
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3) For lower flow velocity U, internal flow causes damping to cantilever CNTs 

in all modes and the vibration amplitude of CNTs decays with time. For 

example, for L/2R=10 and 50, the cantilever CNTs in all cases discussed here 

are damped for flow velocity below 6000m/s, and 1200m/s, respectively. This 

phenomenon is common for the examples I, II, with or without a surrounding 

elastic medium, as shown in Figs. 8.2-8.13.

Winkler const (K) 0 lKPa IMPa lGPa

Aspect ratio (L/2R) 10 50 10 50 10 50 10

Case

I

Mode

1
- - - - - - -

Mode

2
7560m/s 1510m/s 7560m/s 1510m/s 7560m/s 1790m/s 10080tn/s

Mode

3
- - - - - - -

Case

II

Mode

1
- - - - - - -

Mode

2
12070m /s 2 4 1 0 m /s 12070m /s 2 4 2 0 m /s 120 7 0 m /s 2 4 4 0 m /s -

Mode

3
68 0 0 m /s 1360m /s 6 8 0 0 m /s 1360m /s 6 8 0 0 m /s 1490m /s 7 9 2 0 m /s

Table 8.1 Critical flow velocity for flutter instability o f cantilever CNTs

4) Without a surrounding elastic medium (k=0), the critical flow velocity for 

flutter instability, at which the decaying rate o f amplitude changes from positive
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to negative and thus the amplitude starts to grow, is inversely proportional to 

the aspect ratio (L/2R), while both vibrational frequency (=Re(o)/(27t))) and the 

decaying rate (=Im(co/(27t))) are inversely proportional to square of the aspect 

ratio (L/2R) (Figs. 8.2-8.13). For example, in Case I, the critical flow velocities 

Vc for flutter instability (of mode 2) are 7564m/s and 1512m/s for L/2R =10 

and 50, respectively (Table. 8.1). On the other hand vibrational frequencies 

(=Re(co/(27i))) o f mode 1 at V=0, at which the decaying rate is zero for both 

case, are 380MHz and 15MHz for L/2R =10 and 50, respectively. On the other 

hand, for the same aspect ratio (L/2R), the effect of internal flow on vibrational 

frequencies (=Re(oV(27i))) and the decaying rate (=Im(©/(27t))) are more 

significant for thin CNTs than for thicker CNTs. For example, for L/2R=10, 

flutter instability occurs at 7564m/s for thicker CNT o f smaller innermost 

radius (Case I), and at 6803m/s for thin CNT of larger innermost radius (Case

II) (Table. 8.1). This is attributed to the fact that when the outermost radius is 

not very different, the restoring flexural force o f CNTs o f smaller innermost 

radius is significantly larger than that o f CNTs of larger innermost radius, and 

thus the destabilizing centrifugal force overcomes the restoring flexural force 

only at a higher flow velocity.

5) As studied in chapter 7, even a compliant surrounding elastic medium has a 

significant effect on flow-induced instability o f supported CNTs conveying 

fluid. Here, Let us consider the role o f a surrounding elastic medium in flutter 

instability o f cantilever CNTs. First, with a very soft surrounding elastic 

medium, such as bio-tissue with k=l KPa [158], all phenomena for vibration
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and flutter instability o f cantilever CNTs are similar as those obtained above in 

the absence o f a surrounding elastic medium (k=0). For example, the critical 

flow velocity Vc of Case II when L/2R=50 and k=lK Pa is 1364m/s, which is 

almost same as 1361 m/s o f the same case with k=0 (Table. 8.1). Hence, it is

concluded that a very soft surrounding elastic medium (say k<lKPa) has almost

no effect on vibrational frequencies and the decaying rate of cantilever CNTs 

conveying fluid.

6) When the Winkler constant o f the surrounding elastic medium increases to 1 

MPa, the surrounding elastic medium still doesn’t make any significant 

difference for CNTs o f smaller aspect ratio L/2R=10. However, if  the aspect 

ratio is larger (such as L/2R = 50), a surrounding elastic medium with k=lM Pa 

significantly reduces the sensitivity o f vibrational frequency (=Re(co/(27r))) and 

the decaying rate (=Im(o)/(27i))) to the internal flow velocity V. For example, 

the critical flow velocity Vc of Case I with L/2R=50 increases from 1512m/s for 

k=0 to 1789m/s for k=lM Pa (Table. 8.1). Hence, the role of a surrounding 

elastic medium with k=lM Pa becomes significant for CNTs of larger aspect 

ratio, such as those shown in Figs. 8.5-8.7, and 8.11-8.13.

7) When a moderately stiffer surrounding elastic medium (such as polymer with 

k=lGPa) is considered, the surrounding elastic medium has a more significant 

effect on vibrational frequency and the decaying rate. For example, even for a 

short CNT (L/2R=10), the critical flow velocity Vc o f Case I increases from 

7564m/s when k=0 to 10076m/s when k=lGPa (Table. 8.1). Therefore, it is 

concluded that a moderately stiff surrounding elastic medium (with k=lGPa)
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has a significant effect on vibrational frequencies and flutter instability even for 

CNTs of small aspect ratio L/2R=10.

8.3 Summary

The influence of internal moving fluid on free vibration and flow- 

induced flutter instability o f cantilever CNTs is studied. Unlike supported 

CNTs, which lose stability by static buckling, cantilever CNTs lose stability by 

flutter at a certain critical flow velocity. These results indicate that internal 

moving fluid has a substantial effect on vibrational frequencies and the 

decaying rate o f amplitude, and the critical flow velocity for flutter instability in 

some cases may fall within the range of practical significance. On the other 

hand, these studies indicate that a moderately stiff surrounding elastic medium 

can significantly reduce the effect of internal moving fluid on vibrational 

frequencies and suppress or eliminate the flow-induced flutter instability, while 

a very soft surrounding elastic medium has almost no effect on vibrational 

frequencies and the decaying rate of amplitude.
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W

Fig. 8.1. Cantilever CNT conveying fluid o f the mass density M 

(per unit axial length) and the mean flow velocity V.
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Chapter 9 

Conclusions and Future Plans

9.1 Conclusions

The elastic beam models provide a powerful and effective approach for 

CNTs, and could play an indispensable role in the study of CNTs. In addition, 

since the elastic beam models enjoy very simple mathematical formulas, they 

have the potential to identify the key parameters affecting basic mechanical 

behavior o f CNTs (and thus rule out other less important parameters), explain or 

predict new physical phenomena, and stimulate and guide further experiments 

and molecular dynamics simulations.

In this dissertation, several elastic beam models have been developed 

and utilized to study dynamics of MWNTs, such as free vibration, sound wave 

propagation and instability. Since the existing single-elastic beam model widely 

used in the literature assumes that all nested individual tubes of a MWNT 

remain coaxial during deformation and vibration, it cannot be used to study 

intertube relative vibration o f MWNTs. For this reason, a multiple-Euler-beam 

model is developed, in which each of the nested, originally concentric 

nanotubes of a MWNT is described as an individual elastic beam, and the 

deflections o f all nested tubes are coupled through the van der Waals interaction
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between any two adjacent tubes. As shown Chapter 3 and 4, the multiple-beam 

model shows that internal degrees of freedom of MWNTs become essential 

when the characteristic wavelength of vibrational modes is just few times larger 

than the outermost diameter o f MWNTs. In this case, more accurate elastic 

model that considers interlayer radial displacements of MWNTs is required.

Another issue that is probably significant in this case is the effects of 

rotary inertia and shear deformation. For this reason, a multiple-Timoshenko- 

beam model is developed and studied in chapter 4 and 5 for vibration and wave 

propagation in CNTs. Finally, the influence of internal moving fluid on free 

vibration and flow-induced structural instability of (hollow) CNTs is studied 

based on the elastic beam model. Many of the results obtained by the present 

models are reported in literature for the first time, and still remain challenging 

for experiments and atomistic simulations. On the other hand, some results 

predicted by present models, such as non-coaxial vibration of MWNTs and the 

validity o f the Timoshenko-beam model for CNTs have been confirmed by 

more recent atomistic simulations [95-97]. Here, major conclusions based on 

our work [70-76] are summarized as follows.

♦ Vibration of MWNTs

1) For the first time, non-coaxial vibration of MWNTs is predicted by the 

multiple-beam model. In particular, the first few non-coaxial resonant
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frequencies are found to be insensitive to vibrational modes, length o f MWNTs, 

and the end conditions, while they decrease with the number o f nested layers.

2) For smaller aspect ratios, the lowest non-coaxial intertube resonant 

frequencies are found to be comparable to the first few higher natural 

frequencies. This implies that internal non-coaxial resonance will be excited at 

the higher natural frequencies, and MWNTs cannot maintain their concentric 

structure at ultrahigh frequencies. These results have been confirmed by more 

recent molecular simulations, which offers an evidence for validity o f the 

multiple-beam models for CNTs [95, 96].

3) In addition, when the surrounding elastic medium is very compliant (such as 

polymers), the lowest resonant frequency predicted by the present model is 

almost coincident with the lowest natural frequency given by the existing 

single-beam model, while other new intertube resonant frequencies predicted by 

the present model are much higher than the lowest natural frequency given by 

the single-beam model.

4) Both the Timoshenko-beam effect and the double-beam effect are significant 

when the wavelength of DWNTs is just a few times larger than the outer 

diameter of DWNTs. In particular, it is the case when the higher-order 

frequencies (within the terahertz range) o f short DWNTs (of smaller aspect ratio 

around or below 20) are considered.
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5) On the other hand, if  only the single lowest (first-order) resonant frequency 

is concerned, the classical single-Euler-beam model is accurate enough, any 

double-beam model or Timoshenko-beam model is not needed even for short 

MWNTs.

♦ Wave Propagation in MWNTs

1) For N-wall CNT, the multiple-Euler-beam model predicts (N-l) critical 

frequencies, while the multiple-Timoshenko-beam model predicts at least (2N-

1) critical frequencies. For example, for DWNT, it is found that there is only 

one terahertz critical frequency based on the double-Euler-beam model, or there 

are a few (say, 3 or 4, depending on the diameters) terahertz critical frequencies 

based on the double-Timoshenko-beam model.

2) Sound wave propagation in MWNTs is essentially coaxial only when the 

frequency is much below all critical frequencies, and becomes substantially 

non-coaxial when the frequency is higher than at least one o f the (N -l) critical 

frequencies. In the latter case, the sound speeds predicted by the multiple-beam 

model are significantly higher or lower than that given by the existing single

beam model, depending not only on the frequency but also on the vibrational 

modes.
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3) When the frequency is close to or higher than the lowest critical frequencies, 

rotary inertia and shear deformation, incorporated by Timoshenko-beam model, 

have a substantial effect on the wave speeds especially for MWNTs of larger 

radii. In this case, the sound speeds predicted by the present model are 

significantly higher or lower than that given by the existing single-Euler-beam 

model. These results have been found to be in good agreement with more recent 

molecular dynamics simulations [97].

4) In particular, Timoshenko-beam effects significantly lower the value of the 

lowest critical frequency especially for MWNTs of larger radii. Hence, 

multiple-Timoshenko-beam model is more relevant for terahertz wave 

propagation in CNTs.

♦ Vibration and Instability of CNTs Conveying Fluid

1) Internal moving fluid could substantially affect resonant frequencies 

especially for suspended longer CNTs of larger innermost radius at higher flow 

velocity. Supported CNTs lose stability by static buckling, while cantilever 

CNTs lose stability by flutter at a certain critical flow velocity. In particular, the 

critical flow velocity for structural instability in some cases could fall within the 

range of practical significance.
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2) On the other hand, our results indicate that a moderately stiff surrounding 

elastic medium (such as polymer with k=lGPa) can significantly reduce the 

effect o f internal moving fluid on vibrational frequencies and suppress or 

eliminate the flow-induced flutter instability, while a very soft surrounding 

elastic medium (such as bio-tissue with k=l KPa) has almost no effect on 

vibrational frequencies and the decaying rate of amplitude.

3) We believe that these results could provide useful data for the proposed 

application of CNTs as nanopipes conveying fluid. Also, the study of the 

dependence of resonant frequencies of CNTs conveying fluid on the flow 

velocity could offer a simple method to estimate the internal flow velocity by 

measuring the change in resonant frequencies.

9.2 Future Plans

♦ Structure instability of CNTs due to van der Waals force

Recently, suspended parallel and crossing array of CNTs has been 

proposed as a promising design towards CNT-based nanoelectonics [10, 22], In 

such a design, because the van der Waals attractive forces between suspended 

CNTs and the substrate and any two adjacent CNTs have a crucial effect on the 

deformation of suspended CNTs, structural instability o f suspended CNTs 

would be a major concern. Most recently, we studied structural instability o f an 

elastic film under surface van der Waals forces based on Kerr’s model [159,
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160], Structural instability o f suspended CNTs interacting with the substrate can 

be studied using the elastic-beam model of CNTs by taking the attractive forces 

between CNTs and the substrate into account. This offers an interesting topic 

for future work.

♦ D eflection and vibration o f  SW NT ropes w ith individual deflection  

curves

SWNT ropes have been used in various nanodevices, such as probes in 

scanning probe microscopy [15], and nanotweezers [17]. The multiple-beam 

model can be modified to study the effects of the intertube relative 

displacements on the mechanical performance of SWNT ropes, and deflection, 

vibrational behavior and delamination of SWNT ropes. For example, when the 

intertube debonding force or the elastic energy stored in individual SWNTs 

exceeds a critical value, it is anticipated that delamination o f individual CNTs 

from the SWNT ropes could occur. This significant issue for CNT ropes has not 

been studied in the literature.

♦ Contact mechanics o f CNTs

When CNTs are used as building blocks o f nanodeviecs, the 

electrostatic or van der Waals interaction between neighboring nanotubes or 

between nanotubes and other materials has a decisive effect on the deformation 

o f the CNTs [10, 161]. Such deformation has an essential influence on 

electronic performance o f CNT-based electronics, and can be studied by
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crossing-beam and crossing-tube models with the assumption that the 

interacting force between the crossing nanotubes depends on the distance 

between the crossing nanotubes at the point o f contact. Our recent studies [159, 

160] indicated that the van der Waals like interacting forces between two bodies 

could lead to surface morphological instability o f the contacting bodies. We 

believe that the morphological instability of CNTs is a significant research topic 

for contact mechanics o f CNTs.

♦ Non-linear vibration o f MW NTs

The present work is limited to infinitesimal linear free vibration of 

MWNTs. Although there is evidence that non-coaxial vibrational frequencies 

and modes predicted by the simple linear double-beam model are found to 

agree well with more recent atomistic simulations [95, 96], the non-linearity o f 

the intertube van der Waals interaction would play a significant role in moderate 

or large amplitude non-coaxial vibration of MWNTs. Since CNTs has 

remarkable flexibility under axial compression or bending [23, 42], large- 

amplitude non-linear vibration o f MWNTs could be an interesting research 

topic for CNTs.
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